Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 1 Features Versatile IC supports 155/51 Mbits/s SONET/SDH interface solutions for T3/E3, DS2, T1/E1/J1, and DS0/E0/J0 applications. Implementation supports both linear (1 + 1, unprotected) and ring (UPSR) network topologies. Provides full termination of up to 21 E1, 28 T1, or 28 J1. Low power 3.3 V supply. -40 C to +85 C industrial temperature range. 456-pin ball grid array (PBGA) package. Complies with Bellcore*, ITU, ANSI , ETSI and Japanese TTC standards: GR-253-CORE, GR-499, (ATT) TR-62411, ITU-T G.707, G.704, G.706, G.783, G.962, G.964, G.965, Q.542, T1.105, JT-G704, JT-G706, JT-G707, JT-I431-a, ETS 300 417-1-1, ETS 300 011, T1.107, T1.404. 1.2 STS/STM Pointer Interpreter Interprets STS/AU/TU-3 pointers. Synchronizes 8 kHz frame and 2 kHz superframe to system/shelf timing reference by setting the transmit STS-3/STM-1 pointers to a fixed value of 522. Monitors/terminates SPE path overhead. 1.3 Telecom Bus Interface Telecom bus interface to mate devices including clock, data[8], parity, SPE-, J0-, J1-, and V1 timing indicator. Line and path RDI and REI signals passed to mate devices. Three Super Mapper devices, two configured as mate devices, provide full termination of an STS-3/STM-1. A three-chip solution to terminate 84 DS1s/J1s or 63 E1s. 1.1 SONET/SDH Interface 1.4 VT Termination/Generation (x28/x21) Termination of a single 155 Mbits/s STS-3/STM-1 or single 51 Mbits/s STS-1/STM-0. Built-in clock and data recovery circuit at 155 Mbits/s STS-3/STM-1 interface (can be deselected if external clock recovery is provided). Supports overhead processing for all transport and path overhead bytes. Optional insertion and extraction of overhead bytes via a serial transport overhead access channel. Configurable as dedicated DCC channels. Software controlled linear 1 + 1 protection via dedicated interface to protection card. Full path termination and SPE extraction/insertion. SONET/SDH compliant condition and alarm reporting. Built-in diagnostic loopback modes. 8 kHz line frame sync output. * Bellcore is now Telcordia Technologies. Telcordia Technologies is a trademark of Telcordia Technologies, Inc. ANSI is a registered trademark of American National Standards Institute, Inc. Monitors/terminates VT path overhead for 28 VT1.5/TU-11 or 21 VT2/TU-12. Synchronizes VT/TU SPE to system/shelf timing reference by setting the transmit VT/TU pointers to fixed values for asynchronous mapping or by dynamically changing the transmit VT/TU pointers for byte synchronous mapping. Fixed pointer generation in transmit side for asynchronous mapping. Dynamic pointer generation in transmit side for bytesynchronous mapping. 1.5 Mapping/Multiplexing Modes (x28/x21) Maps DS3 clear channel or framed signal into STS-1 or TUG-3. Maps T1/E1/J1 into VT/TU (including DS1 into TU-12). Supports asynchronous, byte-synchronous, and bitsynchronous mapping. TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 1 Features (continued) Supports UPSR applications via the dedicated ring interface and an external tributary selector. Supports all valid T1/E1/J1 multiplexing structures into STS-1 and STS-3/STM-1: -- STS-3/STS-1/SPE/VTG/VTx -- STM-1/AU-3/TUG-2/TU-1x/VC-1x -- STM-1/AU-4/TUG-3/TUG-2/TU-1x/VC-1x Allows grooming of VTs/TUs in granularity of TUG-2s within the STS-3/STM-1 signal. Supports J2 trace identifier monitoring/insertion. Configurable VT/TU slot selection for DS1, E1, and J1 insertion and drop. Automatic receive monitor functions include VT/TU RDI-V, REI-V, BIP-2 errors, AIS-V, LOP-V. Complies with GR-253-CORE, GR-499, ITU-T G.707, G.704, G.783, T1.105, JT-G707, ETS 300 417-1-1. Preliminary Data Sheet May 2001 Sources may be broadcast, looped back, or routed to/from a test-pattern generator or monitor. Any DS1 or E1 channel may be routed through the jitter attenuator. DS3 may be configured for the M13 to interconnect with the SPE, or external I/O to interconnect with the M13 or SPE. 1.8 Jitter Attenuation PLL-free receive operation using built-in digital jitter attenuator (in VT/VC mode or M13 mode). Configurable to meet jitter and MTIE requirements. 1.9 PDH Interfaces One DS3, 7x DS2. x28/x21 framed or unframed DS1 or E1 interfaces. One additional dedicated protection channel for DS2/DS1/E1. 1.6 M13 Features Configurable multiplexer/demultiplexer for 28 DS1 signals, 21 E1 signals, or 7 DS2 signals to/from a DS3 signal. Operates in either M23 or C-bit parity mode. Provisionable time slot selection for DS1, E1, and DS2 insertion or drop. Full alarm monitoring and generation (LOS, BPV, EXZ, OOF, SEF, AIS, RAI, FEAC, P-bit and C-bit parity errors, FEBE). HDLC transmitter with 128-byte data buffer and HDLC receiver with 128-byte data FIFO for the C-bit parity path maintenance data link. DS3, DS2, DS1, and E1 loopback and loopback request generation. 1.10 T1/E1/J1 Framing Features (x28/x21) x28/x21 T1/E1/J1 channels. Line coding: B8ZS, HDB3, ZCS, AMI, and CMI (JJ20-11). T1 framing modes: ESF, D4, SLC (R)-96, T1 DM DDS, and SF (Ft only). E1 framing: G.704 basic and CRC-4 multiframe consistent with G.706. J1 framing modes: JESF (Japan). Supports T1 and E1 unframed and transparent transmission format. T1 signaling modes: transparent; register and system access for ESF 2-state, 4-state, and 16-state; D4 2-state, 4-state, and 16-state; SLC-96 2-state, 4-state, and 16-state; J-ESF handling groups maintenance and signaling; VT 1.5 SPE 2, 4, 16 state. E1 signaling modes: transparent; register and system access for entire TS16 multiframe structure as per ITU G.732. Signaling debounce and change of state interrupt. V5.2 Sa7 processing. Complies with T1.102, T1.107, T1.231, T1.403, T1.404, GR 499, G.747, and G.775. 1.7 DS3/DS2/DS1/E1 Cross Connect Highly configurable interconnect for up to 28 DS1 or 21 E1 signals to/from the framer, external pins, M13, or VT mappers. Supports up to seven DS2 signals to/from the external pins or M13. 2 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 1 Features (continued) 1.11 System Test and Maintenance Alarm reporting and performance monitoring per AT&T, ANSI, ITU-T, and ETSI standards. A variety of loopback modes implemented on SONET/SDH side as well as on framer level. Facility data link features: -- HDLC or transparent access for either ESF or DDS + FDL frame formats. -- Register/stack access for SLC-96 transmit and receive data. -- Extended superframe (ESF): automatic transmission of the ESF performance report messages (PRM). Automatic transmission of the ANSI T1.403 ESF performance report messages. Automatic detection and transmission of the ANSI T1.403 ESF FDL bit-oriented codes. -- Register/stack access for all CEPT Sa-bits transmit and receive data. Built-in test pattern generator and monitor configurable for simultaneously testing E1, DS1, DS2, and DS3 (one channel each). HDLC features: -- HDLC or transparent mode. -- Programmable logical channel assignment: any time slot, any bit for ISDN D-channel, also inserts/ extracts C-channels for V5.1, V5.2 interfaces. -- 64 logical channels in both transmit and receive direction (any framing format). -- Maximum channel data rate: 64 kbits/s. -- Minimum channel data rate: 4 kbits/s (DS1-FDL or E1 Sa bit). -- 128-byte FIFO per channel in both transmit and receive direction. -- Tx to Rx loopback supported. System interfaces: -- Concentration highway interface: Single clock and frame sync signals; programmable clock rates at 2.048 MHz, 4.096 MHz, 8.192 MHz, and 16.384 MHz; programmable data rates at 2.048 Mbits/s, 4.096 Mbits/s, and 8.192 Mbits/s; programmable clock edges and bit/byte offsets. -- Parallel system bus interface at 19.44 MHz for data and signaling: single clock and frame sync signals. -- Time-division multiplex data rate serial interface at 1.544 MHz or 2.048 MHz. Twenty-eight receive data, clock, and frame sync signals. Twenty-eight transmit data signals with a global clock and frame sync. -- Network serial multiplexed interface minimal pin count serial interface at 51.84 MHz optimized for data and IMA applications. Agere Systems Inc. Microprocessor Interface 20-bit address and 16-bit data interface with 16 MHz to 66 MHz read and write access. Compatible with most industry-standard processors. Chip Testing and Maintenance IEEE * 1149.1 JTAG boundary scan. Interface to Other Agere ME Devices Seamless interface to the following Agere Systems' devices: TADM042G5. * IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. 3 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 Table of Contents By Major Sections Contents Page Features ...................................................................................................................................................................1 Product Description .................................................................................................................................................. 5 Preface ...................................................................................................................................................................5 Interface Specifications ............................................................................................................................................ 8 Pin Information .......................................................................................................................................................8 Electrical Characteristics ...................................................................................................................................... 33 Timing Characteristics ......................................................................................................................................... 37 Ordering Information ............................................................................................................................................ 61 Register Description ............................................................................................................................................... 62 Microprocessor Interface and Global Control and Status Registers .................................................................... 62 TMUX Registers ...................................................................................................................................................75 SPE Mapper Registers ...................................................................................................................................... 133 VT/TU Mapper Registers ................................................................................................................................... 153 M13/M23 MUX/DeMUX Registers ..................................................................................................................... 196 28-Channel Framer Registers ............................................................................................................................ 239 Cross Connect (XC) Registers ........................................................................................................................... 321 Digital Jitter Attenuation Controller Registers .................................................................................................... 331 Test-Pattern Generation/Detection Registers ..................................................................................................... 336 Functional Descriptions ........................................................................................................................................ 354 Microprocessor Interface Functional Description ...............................................................................................354 TMUX Functional Description ............................................................................................................................ 359 SPE Mapper Functional Description ..................................................................................................................396 VT/TU Mapper Functional Description ............................................................................................................... 425 M13/M23 MUX/DeMUX Block Functional Description ....................................................................................... 455 28-Channel Framer Block Functional Description .............................................................................................. 475 Cross Connect (XC) Block Functional Description ............................................................................................ 542 Digital Jitter Attenuation Controller Functional Description ................................................................................ 570 Test-Pattern Generation/Detection Functional Description ................................................................................ 574 Philosophies ....................................................................................................................................................... 582 Applications .......................................................................................................................................................... 588 Change History .................................................................................................................................................. 604 4 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Product Description 2 Preface Table of Contents Contents Page 1 Features ............................................................................................................................................................... 1 1.1 SONET/SDH Interface ................................................................................................................................... 1 1.2 STS/STM Pointer Interpreter ......................................................................................................................... 1 1.3 Telecom Bus Interface ................................................................................................................................... 1 1.4 VT Termination/Generation (x28/x21) ............................................................................................................ 1 1.5 Mapping/Multiplexing Modes (x28/x21) ......................................................................................................... 1 1.6 M13 Features ................................................................................................................................................. 2 1.7 DS3/DS2/DS1/E1 Cross Connect .................................................................................................................. 2 1.8 Jitter Attenuation ............................................................................................................................................ 2 1.9 PDH Interfaces ............................................................................................................................................... 2 1.10 T1/E1/J1 Framing Features (x28/x21) ......................................................................................................... 2 1.11 System Test and Maintenance .................................................................................................................... 3 2 Preface ................................................................................................................................................................. 5 2.1 Major Categories ............................................................................................................................................ 6 2.2 Naming Convention for Registers and Parameters ....................................................................................... 6 2.3 Overview ........................................................................................................................................................ 7 Figures Page Figure 1. Functional Diagram of Super Mapper ....................................................................................................... 7 Agere Systems Inc. 5 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 2 Preface (continued) The objective of this data sheet is to define the functionality of the Super Mapper for hardware and software developers. The information contained in this data sheet is preliminary, and may change without notice; the reader must therefore ascertain that the latest version is used when a product is under development. The latest version of this data sheet can be accessed at: http://www.lucent.com/micro/netcom/products/ pdh.html#super_mapper. 2.1 Major Categories This data sheet is divided into six major categories with sub-sections as follows: Features Product Description -- Features -- Preface -- Overview Interface Specifications -- Pin Information -- Electrical Characteristics -- Timing Characteristics -- Ordering Information Register Descriptions -- Microprocessor Interface Registers -- TMUX Registers -- SPE Mapper Registers -- VT/UT Mapper Registers -- M13/M23 MUX/deMUX Registers -- 28-Channel Framer Registers -- Cross Connect (XC) Registers -- Digital Jitter Attenuation Registers -- Test Pattern Generation/Detection Registers Functional Descriptions -- Microprocessor Interface Description -- TMUX Registers Description -- SPE Mapper Registers Description -- VT/UT Mapper Registers Description -- M13/M23 MUX/deMUX Registers Description -- 28-Channel Framer Registers Description -- Cross Connect (XC) Registers Description -- Digital Jitter Attenuation Registers Description -- Test Pattern Generation/Detection Registers Description Applications -- Application Block Diagrams and Descriptions 6 Preliminary Data Sheet May 2001 2.2 Naming Convention for Registers and Parameters There are many provisioning registers for controlling the Super Mapper. A naming convention for all registers and parameters (bit names) is followed throughout this data sheet. A prefix is attached to the base name of each register or parameter, depending on which functional section the register or parameter is associated with: SMPR_, for the Microprocessor Interface TMUX_, for the TMUX SPE_, for the SPE Mapper VT_, for the VT/VC Mapper M13_, for the M13/M23 MUX/deMUX FRM_, for the 28-Channel Framer XC_, for the Cross Connect DJA_, for the Digital Jitter Attenuator TPG_ and TPM_, for the Test-Pattern Generator/ Detection A suffix is appended to the base name of three common parameters: _IS, for interrupt signal. _IM, for interrupt mask. _SWRS, for software reset. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 2 Preface (continued) 2.3 Overview The SONET/SDH Super Mapper device integrates the SONET/SDH line, path, and tributary termination functions with M13 multiplex functions and the primary rate framing function. It is designed to drive an OC-3/STM-1 optical signal directly or to allow for modular growth in terminal or add/drop applications. It provides a versatile interface for all STS-3/STM-1 and STS-1 termination applications in point-to-point scenarios and for ring applications. This chip can be used in tributary shelf applications for up to 28 T1 or J1 or 21 E1 line cards providing all possible mappings into SONET/SDH. Because of the flexibility of the mappings, software upgrades from M13 mapped connections to VT/TU mapped connections are possible. This device can also be used for DS3/DS2 applications. A single Super Mapper is capable of processing the aggregate bandwidth of one STS-1 or DS3. By communicating to two other mate devices via the telecom bus interface, the Super Mapper is capable of terminating a full STS-3/STM-1 signal. RPOAC SYS CLK SYNC TPOAC TELECOM BUS OVERHEAD TERMINATION SYSTEM INTERFACE BUS TCB AND TDL DS2AISCLK RCB AND RDL DS3 T1/E1/J1 FRAMING MAPPING & MULTIPLEXING DS0/E0 (XN) DS1 (X29) /E1 (X22) FRAMER BANK M13 MUX DS2 (X7) SPE/ STS-1/ AU-3 DS1/E1 (NSMI MODE) AU-3 MAPPER STS-3 STM-1 T1/E1 DS2 DS3 TMUX CROSS CONNECT TEST PATTERN GEN/MON DIGITAL JITTER ATTENUATOR MPU INTERFACE AND CONTROL RTOAC DS3/STS1 (NSMI MODE) LINETX VT/VC MAPPER MSP 1+1 LINERX DS1XCLK E1XCLK TTOAC MPU INTERFACE LOPOHIN LOPOHOUT MISC 5-8923(F) Figure 1. Functional Diagram of Super Mapper Agere Systems Inc. 7 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 Interface Specifications 3 Pin Information Table of Contents Contents Page 3 Pin Information ..................................................................................................................................................... 8 3.1 456-Pin PBGA Pin Diagram ........................................................................................................................... 9 3.2 Pin Assignments ............................................................................................................................................ 9 3.3 Pin Descriptions ........................................................................................................................................... 15 3.3.1 High-speed I/O Pin Descriptions ........................................................................................................ 15 3.3.2 Protection Switch I/O Pin Description ................................................................................................ 16 3.3.3 Telecom Bus (Low-speed I/O) Pin Description .................................................................................. 16 3.3.4 TOAC and POAC ............................................................................................................................... 19 3.3.5 Miscellaneous Signals ........................................................................................................................ 20 3.3.6 DS3 Port ............................................................................................................................................. 20 3.3.7 M13 Multiplexer/Demultiplexer Receive Section ................................................................................ 22 3.3.8 Low-Order Path Overhead Access Channel ...................................................................................... 23 3.3.9 Framer PLL ........................................................................................................................................ 27 3.3.10 Test Pins .......................................................................................................................................... 30 3.4 Outline Diagram ........................................................................................................................................... 32 3.4.1 456-Pin PBGA .................................................................................................................................... 32 List of Figures Figure 2. Pin Diagram of 456-Pin PBGA (Bottom View)........................................................................................... 9 Figure 3. Protection Switch..................................................................................................................................... 16 Figure 4. DS1/E1 to DXC Block Diagram ............................................................................................................... 23 List of Tables Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order ....................................................................... 9 Table 2. Pin Assignments for 456-Pin PBGA by Signal Name .............................................................................. 12 Table 3. High-speed I/O Pin Descriptions ............................................................................................................. 15 Table 4. Protection Switch I/O Pin Description ...................................................................................................... 16 Table 5. Telecom Bus (Low-speed I/O) Pin Description ........................................................................................ 17 Table 6. TOAC and POAC .................................................................................................................................... 19 Table 7. Miscellaneous Signals ............................................................................................................................. 20 Table 8. DS3 Port .................................................................................................................................................. 21 Table 9. DS3 Port, C-Bit, and Datalink Access ..................................................................................................... 22 Table 10. M13 Multiplexer/Demultiplexer Receive Section ................................................................................... 22 Table 11. Low-Order Path Overhead Access Channel ......................................................................................... 23 Table 12. Multifunction System Interface Transmit Path Direction ........................................................................ 24 Table 13. Framer PLL ............................................................................................................................................ 27 Table 14. Microprocessor Interfaces ..................................................................................................................... 28 Table 15. General Purpose Interface .................................................................................................................... 29 Table 16. Test Pins ................................................................................................................................................ 30 Table 17. CDR Power ............................................................................................................................................ 30 Table 18. LVDS Control Pins ................................................................................................................................. 30 8 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information (continued) 3.1 456-Pin PBGA Pin Diagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A A1 BALL CORNER 5-8931(F) Figure 2. Pin Diagram of 456-Pin PBGA (Bottom View) 3.2 Pin Assignments r Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order Pin Signal Name Pin Signal Name Pin A1 VDD A21 VSS B15 A2 VSS A22 VDD B16 A3 LINERXDATA17 A23 LINETXSYNC12 B17 A4 LINERXDATA18 A24 LINETXSYNC13 B18 A5 VDD A25 VSS A6 VSS A26 VDD Signal Name Pin Signal Name LINETXDATA2 C9 LINERXSYNC24 LINETXSYNC4 C10 LINERXCLK25 LINETXSYNC5 C11 LINERXCLK26 LINETXSYNC6 C12 LINERXCLK27 B19 LINETXCLK7 C13 LINERXDATA28 B20 LINETXDATA8 C14 LINETXSYNC2 A7 LINERXDATA21 B1 VSS B21 LINETXSYNC10 C15 LINETXCLK3 A8 LINERXSYNC23 B2 LINERXCLK15 B22 LINETXDATA10 C16 LINETXCLK4 A9 LINERXCLK24 B3 LINERXSYNC18 B23 LINETXDATA11 C17 LINETXCLK5 A10 VDD B4 LINERXSYNC19 B24 LINETXDATA12 C18 LINETXDATA6 A11 VSS B5 LINERXSYNC20 B25 LINETXCLK13 C19 LINETXSYNC8 A12 LINERXDATA27 B6 LINERXDATA20 B26 V SS C20 LINETXCLK9 A13 LINERXSYNC29 B7 LINERXSYNC22 C1 LINERXSYNC15 C21 LINETXCLK10 A14 LINETXDATA1 B8 LINERXCLK23 C2 LINERXDATA14 C22 LINETXCLK11 A15 LINETXSYNC3 B9 LINERXDATA24 C3 LINERXCLK17 C23 LINETXCLK12 A16 VSS B10 LINERXDATA25 C4 LINERXCLK18 C24 LINETXCLK14 A17 VDD B11 LINERXDATA26 C5 LINERXCLK19 C25 LINETXSYNC15 A18 LINETXCLK6 B12 LINERXSYNC28 C6 LINERXCLK20 C26 LINETXDATA14 A19 LINETXDATA7 B13 LINERXCLK29 C7 LINERXCLK21 D1 LINERXSYNC14 A20 LINETXSYNC9 B14 LINETXCLK1 C8 LINERXDATA22 D2 LINERXDATA13 Agere Systems Inc. 9 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information Preliminary Data Sheet May 2001 (continued) Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued) Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name D3 LINERXCLK14 E21 LINETXDATA13 J25 LINETXDATA21 N1 LINERXDATA3 D4 VSS E22 VDD J26 LINETXCLK21 N2 LINERXCLK3 D5 LINERXDATA19 E23 LINETXDATA16 K1 VDD N3 LINERXSYNC4 D6 LINERXSYNC21 E24 LINETXCLK16 K2 LINERXSYNC7 N4 LINERXSYNC3 D7 LINERXCLK22 E25 LINETXSYNC17 K3 LINERXCLK7 N5 SCAN_EN D8 LINERXDATA23 E26 VDD K4 LINERXDATA6 N11 V SS D9 LINERXSYNC25 F1 VSS K5 LINERXSYNC16 N12 V SS D10 LINERXSYNC26 F2 LINERXSYNC12 K22 DS3NEGDATAIN N13 V SS D11 LINERXSYNC27 F3 LINERXCLK12 K23 LINETXSYNC23 N14 V SS D12 LINERXCLK28 F4 LINERXDATA11 K24 LINETXCLK22 N15 V SS D13 LINERXDATA29 F5 LINERXDATA15 K25 LINETXDATA22 N16 V SS D14 LINETXSYNC1 F22 LINETXSYNC14 K26 VDD N22 DS3DATAOUTCLK D15 LINETXCLK2 F23 LINETXSYNC18 L1 V SS N23 LINETXDATA26 D16 LINETXDATA3 F24 LINETXCLK17 L2 LINERXSYNC6 N24 LINETXDATA25 D17 LINETXDATA4 F25 LINETXDATA17 L3 LINERXCLK6 N25 LINETXCLK26 D18 LINETXDATA5 F26 VSS L4 LINERXDATA5 N26 LINETXSYNC26 D19 LINETXSYNC7 G1 LINERXSYNC11 L5 VDD P1 LINERXSYNC2 D20 LINETXCLK8 G2 LINERXDATA10 L11 V SS P2 LINERXCLK2 D21 LINETXDATA9 G3 LINERXCLK11 L12 VSS P3 LINERXDATA1 D22 LINETXSYNC11 G4 LINERXCLK10 L13 V SS P4 LINERXDATA2 D23 VSS G5 VSS L14 V SS P5 IDDQ D24 LINETXCLK15 G22 VSS L15 V SS P11 V SS D25 LINETXSYNC16 G23 LINETXCLK19 L16 V SS P12 V SS D26 LINETXDATA15 G24 LINETXCLK18 L22 VDD P13 V SS E1 VDD G25 LINETXSYNC19 L23 LINETXSYNC24 P14 V SS E2 LINERXDATA12 G26 LINETXDATA18 L24 LINETXCLK23 P15 V SS E3 LINERXCLK13 H1 LINERXDATA9 L25 LINETXDATA23 P16 VSS E4 LINERXSYNC13 H2 LINERXCLK9 L26 V SS P22 DS3NEGDATAOUT E5 VDD H3 LINERXSYNC10 M1 LINERXSYNC5 P23 LINETXSYNC27 E6 LINERXSYNC17 H4 LINERXSYNC9 M2 LINERXDATA4 P24 LINETXSYNC28 E7 VSS H5 LINERXDATA16 M3 LINERXCLK5 P25 LINETXCLK27 E8 TDLDATA H22 RDLDATA M4 LINERXCLK4 P26 LINETXDATA27 E9 TDLCLK H23 LINETXDATA20 M5 SCAN_MODE R1 RLSDATA7 E10 DS2AISCLK H24 LINETXDATA19 M11 VSS R2 LINERXSYNC1 E11 V DD H25 LINETXCLK20 M12 V SS R3 RLSDATA6 E12 TCBDATA H26 LINETXSYNC20 M13 V SS R4 LINERXCLK1 E13 TCBCLK J1 LINERXCLK8 M14 V SS R5 TCK E14 TCBSYNC J2 LINERXSYNC8 M15 V SS R11 V SS E15 RCBDATA J3 LINERXDATA8 M16 V SS R12 V SS E16 V DD J4 LINERXDATA7 M22 DS3POSDATAIN R13 V SS E17 RCBCLK J5 LINERXCLK16 M23 LINETXCLK25 R14 V SS E18 RCBSYNC J22 DS3DATAINCLK M24 LINETXCLK24 R15 V SS E19 RDLCLK J23 LINETXSYNC22 M25 LINETXSYNC25 R16 VSS E20 VSS J24 LINETXSYNC21 M26 LINETXDATA24 R22 DS3POSDATAOUT 10 Agere Systems Inc. Preliminary Data Sheet May 2001 3 Pin Information TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 (continued) Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued) Pin Signal Name Pin R23 LINETXCLK28 W5 R24 LINETXCLK29 W22 Signal Name Pin Signal Name Pin Signal Name TMSN AB19 TXDATAEN AB20 RXDATAEN AD11 RPSC155N VDD AD12 REF14 R25 LINETXDATA28 W23 DATA4 AB21 MODE2_PLL AD13 TPSC155N R26 LINETXSYNC29 W24 DATA7 AB22 VDD AD14 ECSEL T1 VSS W25 DATA5 AB23 ADDR19 AD15 TSTSFTLD T2 RLSDATA4 W26 DATA6 AB24 INTN AD16 DS1XCLK T3 RLSDATA3 Y1 TLSDATA2 AB25 DATA15 AD17 MPMODE T4 RLSDATA5 Y2 TLSDATA3 AB26 VDD AD18 DSN T5 VDD Y3 TLSDATA1 AC1 RLSSYNC52 AD19 ADDR3 T11 VSS Y4 TLSDATA4 AC2 RLSC52 AD20 ADDR7 T12 VSS Y5 VSS AC3 TLSC52 AD21 ADDR10 T13 VSS Y22 VSS AC4 V SS AD22 VDDD_PLL T14 VSS Y23 DATA8 AC5 TPOACSYNC AD23 VSSS_PLL T15 VSS Y24 DATA11 AC6 AUTO_AIS1 AD24 CLKIN_PLL T16 VSS Y25 DATA9 AC7 RHSCP AD25 ADDR16 T22 VDD Y26 DATA10 AC8 THSSYNCP AD26 ADDR15 T23 LINETXDATA29 AA1 VSS AC9 VDDA_CDR AE1 V SS T24 RSTN AA2 TLSCLK AC10 RPSC155P AE2 TTOACDATA T25 PMRST AA3 TLSPAR AC11 REF10 AE3 RPOACCLK T26 VSS AA4 TLSDATA0 AC12 TPSC155P AE4 TPOACCLK U1 VDD AA5 RTOACSYNC AC13 LOPOHCLKIN AE5 LOSEXT U2 RLSDATA1 AA22 ADDR13 AC14 LOPOHDATAIN AE6 AUTO_AIS2 U3 RLSDATA0 AA23 DATA12 AC15 ETOGGLE AE7 RHSDN U4 RLSDATA2 AA24 DATA14 AC16 TSTMUX0 AE8 THSCN U5 TDI AA25 DATA13 AC17 E1XCLK AE9 THSDN U22 PHASEDETDOWN AA26 VSS AC18 CSN AE10 RPSD155N U23 DTN AB1 VDD AC19 ADDR0 AE11 CTAPTH U24 PAR1 AB2 TLSSPE AC20 ADDR4 AE12 RESLO U25 PAR0 AB3 TLSV1 AC21 ADDR8 AE13 TPSD155N U26 VDD AB4 TLSJ0J1V1 AC22 ADDR12 AE14 BYPASS V1 RLSSPE AB5 VDD AC23 VSS AE15 EXDNUP V2 RLSPAR AB6 TTOACCLK AC24 ADDR17 AE16 TSTMUX1 V3 RLSJ0J1V1 AB7 VSS AC25 APS_INTN AE17 MPCLK V4 RLSCLK AB8 TRSTN AC26 ADDR18 AE18 ADSN V5 TDO AB9 IC3STATEN AD1 RTOACCLK AE19 ADDR1 V22 PHASEDETUP AB10 CTAPRH AD2 TLSSYNC52 AE20 ADDR5 V23 DATA0 AB11 VDD AD3 RTOACDATA AE21 ADDR9 V24 DATA3 AB12 VSSA_CDR AD4 RPOACDATA AE22 ADDR11 V25 DATA1 AB13 CTAPRP AD5 TPOACDATA AE23 VDDS_PLL V26 DATA2 AB14 LOPOHVALIDIN AD6 AUTO_AIS3 AE24 MODE1_PLL W1 TLSDATA6 AB15 LOPOHCLKOUT AD7 RHSFSYNCN AE25 ADDR14 W2 TLSDATA7 AB16 VDD AD8 RHSCN AE26 VSS W3 TLSDATA5 AB17 LOPOHDATAOUT AD9 THSSYNCN AF1 VDD W4 RLSV1 AB18 LOPOHVALIDOUT AD10 RPSD155P AF2 VSS Agere Systems Inc. 11 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information Preliminary Data Sheet May 2001 (continued) Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued) Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name AF3 TTOACSYNC AF9 THSDP A15 TSTMODE AF21 VSS AF4 RPOACSYNC AF10 VDD A16 V SS AF22 VDD AF5 VDD AF11 VSS A17 VDD AF23 VSSA_PLL AF6 VSS A12 REWSHI A18 RWMN AF24 MODE0_PLL AF7 RHSDP AF13 TPSD155P A19 ADDR2 AF8 THSCP AF14 TSTPHASE AF20 ADDR6 Table 2. Pin Assignments for 456-Pin PBGA by Signal Name 12 Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin ADDR0 AC19 CTAPRP AB13 ECSEL AD14 LINERXCLK24 A9 ADDR1 AE19 CTAPTH AE11 ETOGGLE AC15 LINERXCLK25 C10 ADDR2 AF19 DATA0 V23 EXDNUP AE15 LINERXCLK26 C11 ADDR3 AD19 DATA1 V25 IC3STATEN AB9 LINERXCLK27 C12 ADDR4 AC20 DATA2 V26 IDDQ P5 LINERXCLK28 D12 ADDR5 AE20 DATA3 V24 INTN AB24 LINERXCLK29 B13 ADDR6 AF20 DATA4 W23 LINERXCLK1 R4 LINERXDATA1 P3 ADDR7 AD20 DATA5 W25 LINERXCLK2 P2 LINERXDATA2 P4 ADDR8 AC21 DATA6 W26 LINERXCLK3 N2 LINERXDATA3 N1 ADDR9 AE21 DATA7 W24 LINERXCLK4 M4 LINERXDATA4 M2 ADDR10 AD21 DATA8 Y23 LINERXCLK5 M3 LINERXDATA5 L4 ADDR11 AE22 DATA9 Y25 LINERXCLK6 L3 LINERXDATA6 K4 ADDR12 AC22 DATA10 Y26 LINERXCLK7 K3 LINERXDATA7 J4 ADDR13 AA22 DATA11 Y24 LINERXCLK8 J1 LINERXDATA8 J3 ADDR14 AE25 DATA12 AA23 LINERXCLK9 H2 LINERXDATA9 H1 ADDR15 AD26 DATA13 AA25 LINERXCLK10 G4 LINERXDATA10 G2 ADDR16 AD25 DATA14 AA24 LINERXCLK11 G3 LINERXDATA11 F4 ADDR17 AC24 DATA15 AB25 LINERXCLK12 F3 LINERXDATA12 E2 ADDR18 AC26 DS1XCLK AD16 LINERXCLK13 E3 LINERXDATA13 D2 ADDR19 AB23 DS2AISCLK E10 LINERXCLK14 D3 LINERXDATA14 C2 ADSN AE18 DS3DATAINCLK J22 LINERXCLK15 B2 LINERXDATA15 F5 APS_INTN AC25 DS3DATAOUTCLK N22 LINERXCLK16 J5 LINERXDATA16 H5 AUTO_AIS1 AC6 DS3NEGDATAIN K22 LINERXCLK17 C3 LINERXDATA17 A3 AUTO_AIS2 AE6 DS3NEGDATAOUT P22 LINERXCLK18 C4 LINERXDATA18 A4 AUTO_AIS3 AD6 DS3POSDATAIN M22 LINERXCLK19 C5 LINERXDATA19 D5 BYPASS AE14 DS3POSDATAOUT R22 LINERXCLK20 C6 LINERXDATA20 B6 CLKIN_PLL AD24 DSN AD18 LINERXCLK21 C7 LINERXDATA21 A7 CSN AC18 DTN U23 LINERXCLK22 D7 LINERXDATA22 C8 CTAPRH AB10 E1XCLK AC17 LINERXCLK23 B8 LINERXDATA23 D8 Agere Systems Inc. Preliminary Data Sheet May 2001 3 Pin Information TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 (continued) Table 2. Pin Assignments for 456-Pin PBGA by Signal Name (continued) Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin LINERXDATA24 B9 LINETXCLK7 B19 LINETXDATA19 H24 LOPOHCLKOUT AB15 LINERXDATA25 B10 LINETXCLK8 D20 LINETXDATA20 H23 LOPOHDATAIN AC14 LINERXDATA26 B11 LINETXCLK9 C20 LINETXDATA21 J25 LOPOHDATAOUT AB17 LINERXDATA27 A12 LINETXCLK10 C21 LINETXDATA22 K25 LOPOHVALIDIN AB14 LINERXDATA28 C13 LINETXCLK11 C22 LINETXDATA23 L25 LOPOHVALIDOUT AB18 LINERXDATA29 D13 LINETXCLK12 C23 LINETXDATA24 M26 LOSEXT AE5 LINERXSYNC1 R2 LINETXCLK13 B25 LINETXDATA25 N24 MODE0_PLL AF24 LINERXSYNC2 P1 LINETXCLK14 C24 LINETXDATA26 N23 MODE1_PLL AE24 LINERXSYNC3 N4 LINETXCLK15 D24 LINETXDATA27 P26 MODE2_PLL AB21 LINERXSYNC4 N3 LINETXCLK16 E24 LINETXDATA28 R25 MPCLK AE17 LINERXSYNC5 M1 LINETXCLK17 F24 LINETXDATA29 T23 MPMODE AD17 LINERXSYNC6 L2 LINETXCLK18 G24 LINETXSYNC1 D14 PAR0 U25 LINERXSYNC7 K2 LINETXCLK19 G23 LINETXSYNC2 C14 PAR1 U24 LINERXSYNC8 J2 LINETXCLK20 H25 LINETXSYNC3 A15 PHASEDETDOWN U22 LINERXSYNC9 H4 LINETXCLK21 J26 LINETXSYNC4 B16 PHASEDETUP V22 LINERXSYNC10 H3 LINETXCLK22 K24 LINETXSYNC5 B17 PMRST T25 LINERXSYNC11 G1 LINETXCLK23 L24 LINETXSYNC6 B18 RCBCLK E17 LINERXSYNC12 F2 LINETXCLK24 M24 LINETXSYNC7 D19 RCBDATA E15 LINERXSYNC13 E4 LINETXCLK25 M23 LINETXSYNC8 C19 RCBSYNC E18 LINERXSYNC14 D1 LINETXCLK26 N25 LINETXSYNC9 A20 RDLCLK E19 LINERXSYNC15 C1 LINETXCLK27 P25 LINETXSYNC10 B21 RDLDATA H22 LINERXSYNC16 K5 LINETXCLK28 R23 LINETXSYNC11 D22 REF10 AC11 LINERXSYNC17 E6 LINETXCLK29 R24 LINETXSYNC12 A23 REF14 AD12 LINERXSYNC18 B3 LINETXDATA1 A14 LINETXSYNC13 A24 RESHI AF12 LINERXSYNC19 B4 LINETXDATA2 B15 LINETXSYNC14 F22 RESLO AE12 LINERXSYNC20 B5 LINETXDATA3 D16 LINETXSYNC15 C25 RHSCN AD8 LINERXSYNC21 D6 LINETXDATA4 D17 LINETXSYNC16 D25 RHSCP AC7 LINERXSYNC22 B7 LINETXDATA5 D18 LINETXSYNC17 E25 RHSDN AE7 LINERXSYNC23 A8 LINETXDATA6 C18 LINETXSYNC18 F23 RHSDP AF7 LINERXSYNC24 C9 LINETXDATA7 A19 LINETXSYNC19 G25 RHSFSYNCN AD7 LINERXSYNC25 D9 LINETXDATA8 B20 LINETXSYNC20 H26 RLSC52 AC2 LINERXSYNC26 D10 LINETXDATA9 D21 LINETXSYNC21 J24 RLSCLK V4 LINERXSYNC27 D11 LINETXDATA10 B22 LINETXSYNC22 J23 RLSDATA0 U3 LINERXSYNC28 B12 LINETXDATA11 B23 LINETXSYNC23 K23 RLSDATA1 U2 LINERXSYNC29 A13 LINETXDATA12 B24 LINETXSYNC24 L23 RLSDATA2 U4 LINETXCLK1 B14 LINETXDATA13 E21 LINETXSYNC25 M25 RLSDATA3 T3 LINETXCLK2 D15 LINETXDATA14 C26 LINETXSYNC26 N26 RLSDATA4 T2 LINETXCLK3 C15 LINETXDATA15 D26 LINETXSYNC27 P23 RLSDATA5 T4 LINETXCLK4 C16 LINETXDATA16 E23 LINETXSYNC28 P24 RLSDATA6 R3 LINETXCLK5 C17 LINETXDATA17 F25 LINETXSYNC29 R26 RLSDATA7 R1 LINETXCLK6 A18 LINETXDATA18 G26 LOPOHCLKIN AC13 RLSJ0J1V1 V3 Agere Systems Inc. 13 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information Preliminary Data Sheet May 2001 (continued) Table 2. Pin Assignments for 456-Pin PBGA by Signal Name (continued) Signal Name 14 Pin Signal Name Pin Signal Name Pin Signal Name Pin RLSPAR V2 TLSPAR AA3 VDD AB11 VSS N12 RLSSPE V1 TLSSPE AB2 VDD AB16 VSS N13 RLSSYNC52 AC1 TLSSYNC52 AD2 VDD AB22 VSS N14 RLSV1 W4 TLSV1 AB3 VDD AB26 VSS N15 RPOACCLK AE3 TMSN W5 VDD AF1 VSS N16 RPOACDATA AD4 TPOACCLK AE4 VDD AF5 VSS P11 RPOACSYNC AF4 TPOACDATA AD5 VDD AF10 VSS P12 RPSC155N AD11 TPOACSYNC AC5 VDD AF17 VSS P13 RPSC155P AC10 TPSC155N AD13 VDD AF22 VSS P14 RPSD155N AE10 TPSC155P AC12 VDD AF26 VSS P15 RPSD155P AD10 TPSD155N AE13 VDDA_CDR AC9 V SS P16 RSTN T24 TPSD155P AF13 VDDD_PLL AD22 V SS R11 RTOACCLK AD1 TRSTN AB8 VDDS_PLL AE23 V SS R12 RTOACDATA AD3 TSTMODE AF15 V SS A2 V SS R13 RTOACSYNC AA5 TSTMUX0 AC16 VSS A6 V SS R14 RWN AF18 TSTMUX1 AE16 V SS A11 VSS R15 RXDATAEN AB19 TSTPHASE AF14 VSS A16 VSS R16 SCAN_EN N5 TSTSFTLD AD15 VSS A21 VSS T1 SCAN_MODE M5 TTOACCLK AB6 V SS A25 VSS T11 TCBCLK E13 TTOACDATA AE2 V SS B1 V SS T12 TCBDATA E12 TTOACSYNC AF3 V SS B26 VSS T13 TCBSYNC E14 TXDATAEN W22 VSS D4 V SS T14 TCK R5 VDD A1 V SS D23 VSS T15 TDI U5 VDD A5 V SS E7 V SS T16 TDLCLK E9 VDD A10 V SS E20 VSS T26 TDLDATA E8 VDD A17 V SS F1 V SS Y5 TDO V5 VDD A22 V SS F26 VSS Y22 THSCN AE8 VDD A26 V SS G5 V SS AA1 THSCP AF8 VDD E1 V SS G22 VSS AA26 THSDN AE9 VDD E5 V SS L1 V SS AB7 THSDP AF9 VDD E11 V SS L11 V SS AB20 THSSYNCN AD9 VDD E16 V SS L12 V SS AC4 THSSYNCP AC8 VDD E22 V SS L13 V SS AC23 TLSC52 AC3 VDD E26 V SS L14 V SS AE1 TLSCLK AA2 VDD K1 V SS L15 V SS AE26 TLSDATA0 AA4 VDD K26 V SS L16 V SS AF2 TLSDATA1 Y3 VDD L5 V SS L26 V SS AF6 TLSDATA2 Y1 VDD L22 V SS M11 VSS AF11 TLSDATA3 Y2 VDD T5 V SS M12 VSS AF16 TLSDATA4 Y4 VDD T22 V SS M13 VSS AF21 TLSDATA5 W3 VDD U1 V SS M14 VSS AF25 TLSDATA6 W1 VDD U26 VSS M15 VSSA_CDR AB12 TLSDATA7 W2 VDD AB1 VSS M16 VSSA_PLL AF23 TLSJ0J1V1 AB4 VDD AB5 VSS N11 VSSS_PLL AD23 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information (continued) 3.3 Pin Descriptions 3.3.1 High-speed I/O Pin Descriptions The high speed I/O consists of five LVDS signals (10 pins) that connect the Super Mapper to an external OC-3 optics device. It exchanges an STS-3 or STM-1 signal between the TMUX and an OC-3 transceiver. The Super Mapper is capable of recovering a clock from the receive data, or can accept a clock recovered externally by the optics device. If internal clock recovery is used, the Super Mapper uses THSCP/N as a reference. The high-speed I/O may also run at 52.84 Mbits/s in applications that terminate an STS-1 or EC-1 signal. In this case, the (electrical) line signals are typically terminated by a line interface unit (LIU) chip. The operating speed of the high-speed I/O is determined by TMUX_RCV_TX_MODE. Table 3. High-speed I/O Pin Descriptions Pin Symbol Type I/O Description AF7, RHSDP LVDS I AE7 RHSDN Receive High-speed Data. 155.52 Mbits/s serial data input in STS-1 or STM-1 format, or 51.84 Mbits/s data in STS-1 format. If RHSD is not used (in a slave Super Mapper, for example) the P input should be pulled high through a 1 k resistor and the N input pulled low through a 1 k resistor. RHSD is typically provided by and OC-3 receiver, an STS-1 line interface unit or an higher order (e.g. STS-12) demultiplexing chip. AC7, RHSCP LVDS I AD8 RHSCN Receive High-speed Clock. 155.52 or 51.84 MHz clock for STS-3 or STS-1 input data. Typically supplied by an external OC-3 opto-electonic device, or an STS-1/EC1 line interface unit, synchronous with RHSD. If the internal clock recovery (CDR) feature is enabled, RHC is not required and should be connected to through 1 k resistors to VDD (RHCP input) and VSS (RHCN input). AF8, THSCP LVDS I AE8 THSCN Transmit High-speed Clock. Transmit 155.52 MHz or 51.84 MHz clock. Master clock for the transmit sections of the TMUX, telecom bus, SPE, and VT mappers. THSC is also used as a reference clock for the receive CDR, if it is being used. AC8, THSSYNCP LVDS I AD9 THSSYNCN Transmit High-speed Frame Synchronization. An optional input that may be used to specify the position of the transmit STS-3, STM-1, or STS-1 frame. THSSYNC marks the position of bit 1 of the A1 byte, i.e., the first bit of the overhead in the THSD output. If THSSYNC is not used, the P input should be pulled high through a 1 k resistor, and the N input pulled low through a 1 k resistor. A typical application for this pin may be to synchronize a group of Super Mappers, so that their STS-3 outputs may be multiplexed into an STS-12 signal. AF9, THSDP LVDS O AE9 THSDN Transmit High-speed Data. Transmit output for STS-3, STM-1, or STS-1 serial data. Typically connected to an OC-3 module or an LIU, if operating in STS-1 mode. May also be connected to a higher order multiplexing device, STS-12 for example. Agere Systems Inc. 15 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) 3.3.2 Protection Switch I/O Pin Description The protection switch I/O provides additional copies of the high-speed interface signals so that various protection schemes may be implemented. The protection interface may be used when the high-speed interface is operating in both STS-3 and STS-1 modes. If the protection port is not used, the input clock and data may be left unconnected, tied to power (P inputs), or ground (N inputs) through 1 k resistors. Unused protection outputs should be left unconnected. Table 4. Protection Switch I/O Pin Description Pin AD10, Symbol RPSD155P Type LVDS I/O I AE10 AC10, RPSD155N RPSC155P Description Receive Protection Data. Receive side high-speed serial data input from protection board. LVDS I AD11 AF13, RPSC155N TPSD155P Receive Protection Clock. Receive side high-speed clock input from protection board. LVDS O AE13 AC12, TPSD155N TPSC155P Transmit Protection Data. Transmit side high-speed serial data output to protection board. LVDS O AD13 TPSC155N Transmit Protection Clock. Transmit side high-speed clock output to protection board. HIGH-SPEED I/O TPSMUXSEL2 HIGH-SPEED PROTECTION INPUTS HIGH-SPEED PROTECTION OUTPUTS RPSMUXSEL1 TPSMUXSEL3 STS-3 RECEIVE FRAMER STS-3 TRANSMIT FRAMER Figure 3. Protection Switch 3.3.3 Telecom Bus (Low-speed I/O) Pin Description The telecom bus on the Super Mapper is used for interconnecting STS-1 signals. It has two eight-bit data buses, one for upstream data and one for downstream data, plus clock and frame indication signals for each bus. The telecom bus can operate at 19.44 MHz (space for three STS-1 signals) or 6.48 MHz (space for 1 STS-1 signal). Super Mappers in OC-3 applications are typically connected together using the telecom bus, and the bus is configured to operate at 19.44 MHz. 16 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information (continued) Table 5. Telecom Bus (Low-speed I/O) Pin Description Pin R1, R3, T4, T2, T3, U4, U2, U3 Symbol RLSDATA[7:0] Type -- I/O I/O V4 RLSCLK -- I/O V2 RLSPAR -- I/O V1 RLSSPE -- I/O V3 RLSJ0J1V1 -- I/O W4 RLSV1 -- I/O Agere Systems Inc. Description Receive Low-speed Data (7:0), Parallel Data Bus. Used to connect the downstream STS-1 signals from the master to the slave devices. In master mode, RLSDATA is an output bus, eight bits wide. It contains all the received data for distribution to the two slave devices. Connect to RLSDATA(7:0) on the slave devices. In slave mode, these pins are inputs and should be connected to the RLSDATA(7:0) outputs on the master. RLSDATA contains three byte-interleaved STS-1 time slots. The slot used by each SPE mapper in the slaves and the master device, is determined by programing the SPE_RSTS3_TMSLOT register bits. Receive Low-speed Clock. This is a 19.44 MHz or 6.48 MHz clock for the receive low speed data bits. In 19.44 MHz master mode, this is a 19.44 MHz clock output for distribution to the two slave devices. Connect to RLSCLK on the slaves. RLSCLK is an input signal on slave devices. Note: As outputs, these pins have 6 mA drive capability. Receive Low-speed Parity. Receive data parity bit, may be configured for odd or even parity generated on RLSDATA(7:0). The default is odd parity; it may be set to even by setting bit 2 of the register at 0x4001B an output in master mode and an input in slave mode. Connect the RSLPAR (output) on the master to The RLSPAR (input) pins on the slaves. Receive Low-speed SPE Marker. Receive synchronous payload envelope timing indicator. It is high, while there is SPE data on the RLSDATA(7:0) output bus. Connect to RLSSPE on the slaves. RLSSPE is an input on slave devices. Receive Low-speed J0/J1/V1 Marker. On the master device, this is an output that is high while J0-1, J1 (1, 2 and 3) and V1 (1, 2 and 3) bytes are present on the RLSDATA bus. Connect to RLSJ0J1V1 on the slaves, which is an input. Receive Low-speed V1 Marker. Receive V1 timing indicator. On the master this is an output that is high while the V1 bytes (1, 2 and 3) are present on RLSDATA(7:0) output bus. Connect to RLSV1 on the slaves. 17 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) Table 5. Telecom Bus (Low-speed I/O) Pin Description (continued) Pin W2, W1, W3, Y4, Y2, Y1, Y3, AA4 Symbol TLSDATAI[7:0] Type -- I/O I/O AA2 TLSCLK -- I/O AA3 TLSPAR -- I/O AB2 TLSSPE -- I/O AB4 TLSJ0J1V1 -- I/O AB3 TLSV1 -- I/O AC2 RLSC52 -- I/O AC1 RLSSYNC52 -- I/O 18 Description Transmit Low-speed Data (7:0). This is a parallel data bus. It is used to connect the upstream STS-1 signals from the slave devices to the master device. In master mode, TLSDATA is an input bus, eight bits wide. It contains all the transmit STS-1 data from the slave devices. In slave mode, these pins are outputs and should be connected to the TLSDATA(7:0) inputs on the master. TLSDATA contains three byte-interleaved STS-1 time slots. The slot used by each SPE mapper in the slaves and the master device, is determined by programing the SPE_TSTS3_TMSLOT register bits. Transmit Low-speed Clock. This is a 19.44 MHz or 6.48 MHz clock for the TLSDATA(7:0) bits. TLSCLK is an output on a master Super Mapper and an input on a slave. Note: As outputs, these pins have 6 mA drive capability. Transmit Low-speed Parity. This parity bit is generated on the TLSDATA(7:0) bits output from slave devices and input to the master Super Mapper. May be configured for odd or even parity generation or for checking. Transmit Low-speed SPE Marker. High while the STS-1 payloads are present on the TLSDATA(7:0) bus. Low while the STS-1 overhead is present on the TLSDATA(7:0) bus. An output from the master and input on the slaves. Transmit Low-speed J0/J1/V1 Marker. Transmit J0, J1, or V1, timing indicator. High while the J0, J1 or V1 bits are present on the TLSDATA(7:0) bus. An output on the master and input on slaves. Transmit Low-speed V1 Marker 3. Transmit V1 timing indicator. High while the V1 bits are present on the TLSDATA(7:0) bus. An output on the master and input on slaves. Receive Low-speed Clock. When in output (master) mode, it is the receive side of the 51.84 MHz clock output, synchronous to the receive high-speed input clock (data). When in input (slave) mode, it receives a 51.84 MHz clock input, synchronous to the receive high-speed input clock (data). Note: As outputs, these pins have 6 mA drive capability. Receive Low-speed Sync. When in output (master) mode, it is the receive side frame sync output synchronous to a 51.84 MHz output. When in input mode, it is the receive side frame sync input synchronous to a 51.84 MHz input. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information (continued) Table 5. Telecom Bus (Low-speed I/O) Pin Description (continued) Pin Symbol Type I/O Description AC3 TLSC52 -- I/O Transmit Low-speed Clock. When in output (master) mode, it is the transmit side 51.84 MHz clock output synchronous to transmit high-speed input clock. When in input mode, it receives a 51.84 MHz clock input synchronous to transmit high-speed input clock Note: TLSCLK is used as the master clock for the T1/E1 framer and should therefore be provided even if the TMUX SPE and VT mappers are not used. AD2 TLSSYNC52 -- I/O Transmit Low-speed Sync. When in output (master) mode, it is the transmit side frame sync output synchronous to 51.84 MHz output. When in input (slave) mode, it receives the transmit side frame sync input synchronous to 51.84 MHz input. 3.3.4 TOAC and POAC The transport and path overhead access channels (TOAC and POAC) allow parts of the SONET/SDH overhead to be examined externally (receive direction) or overwritten (transmit direction) through serial data ports. Each port has clock and data lines and synchronization signal that marks the last bit of the frame so that the rest of the overhead bytes can be identified. The receive TOAC and POAC channels contain all of the respective overheads bytes. The transmit channels contain space for all the overhead bytes, but whether they are actually transmitted depend on how the device is programmed. Some overhead bytes can not be modified; others may be modified only through the CPU port; some may be modified only through the overhead access channels; and some may be modified either through the CPU port, or through the overhead access channels. Table 6. TOAC and POAC Pin AD1 Symbol RTOACCLK AD3 RTOACDATA AA5 RTOACSYNC AB6 TTOACCLK AE2 TTOACDATA AF3 TTOACSYNC AE3 RPOACCLK AD4 RPOACDATA Agere Systems Inc. Type -- I/O O Description Receive TOAC Clock. Receive side serial access channel clock output for the transport overhead bytes. -- O Receive TOAC Data. Receive side serial access channel data output for the transport overhead bytes. -- O Receive TOAC Synchronization. Receive side sync output for TOAC channel. Active-high during the LSB of the last byte. -- O Transmit TOAC Clock. Transmit side serial access channel clock output for the transport overhead bytes. -- I Transmit TOAC Data. Transmit side serial access channel Pull down data input for the transport overhead bytes. -- O Transmit TOAC Synchronization. Transmit side sync output for TOAC channel. Active-high during the LSB of the last byte. Path Overhead Access Channel (POAC) -- O Receive POAC Clock. Receive side serial access channel clock output for the path overhead bytes. -- O Receive POAC Data. Receive side serial access channel data output for the path overhead bytes. 19 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information Preliminary Data Sheet May 2001 (continued) Table 6. TOAC and POAC (continued) Pin AF4 Symbol RPOACSYNC Type -- AE4 TPOACCLK -- AD5 TPOACDATA -- AC5 TPOACSYNC -- I/O O Description Receive POAC Synchronization. Receive side sync output for POAC channel. Active-high during the last bit of the last byte of the POAC frame. O Transmit POAC Clock. Transmit side serial access channel clock output for the path overhead bytes. I Transmit POAC Data. Transmit side serial access channel Pull down data input for the path overhead bytes. O Transmit POAC Synchronization. Transmit side sync output for POAC channel. Active-high during the last bit of the last byte. 3.3.5 Miscellaneous Signals Table 7. Miscellaneous Signals Pin Symbol Type I/O Description AE5 LOSEXT -- I AD6, AE6, AC6 AUTO_AIS -- I/O AIS Enable (3:1). Control signal for automatic AIS insertion on each STS1. The STS-1 AIS is applied down stream on the telecom bus, i.e., it is an output from masters and an input to slaves. Active-high. Input when slave mode. Output when master mode If not used, leave open. AD7 RHSFSYNCN -- O Receive High-speed Frame Synchronization. Receive side frame sync output indicating the frame location of the highspeed data input. May be used as a 8 kHz timing reference for network synchronization to the receive high-speed data input (STS-3 or STS-1). Loss of Signal External. External loss of signal input. If Pull up external clock and data recovery is used on the high-speed I/O port, it may be connected to this input which can be configured to assert the LOS register bit normally associated with the internal LOS detection in the internal CDR block. The polarity of LOS may be programmed active-high or low. 3.3.6 DS3 Port If a DS3 output is required in a Super Mapper application and the DS3 signal has been recovered (demapped) from an STS-1, then it is necessary to smooth the DS3 recovered clock. The DS3 clock extracted from the STS-1 clock will have considerable jitter introduced when the SONET overhead is removed and pointer adjustments are made. A phase locked loop is recommended for this purpose. The Super Mapper contains a phase comparator, that can be used in conjunction with an external low-pass filter and voltage controlled crystal oscillator to implement the PLL. 20 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information (continued) Table 8. DS3 Port Pin Symbol Type I/O Description V22 PHASEDETUP -- O Phase Detector Up. Phase error signal out to external filter and VCXO. This output will generate an error signal when the VCXO output is slower than the reference signal. U22 PHASEDETDOWN -- O Phase Detector Down. Phase error signal out to external filter and VCXO. This output will generate an error signal when the VCXO output is faster that the reference signal. R22 DS3POSDATAOUT -- O Positive Data Output. Serial DS3 positive data out to LIU when the DS3 output port is operating in dual rail-mode. Nonreturn to zero DS3 data output when the DS3 output is operating in single ended mode. P22 DS3NEGDATAOUT -- O Negative Data Output. Serial DS3 negative data output to LIU when the DS3 port is operating in dual rail mode. In single rail mode, this output is not used and may be left unconnected. N22 DS3DATAOUTCLK -- I DS3 Data Out Clock. 44.736 MHz DS3 clock input. If the Super Mapper is being used to map DS3 data to and from STS-1, then this clock will be supplied by the external VCXO that is associated with the DS3 clock recovery PLL. In other DS3 modes (e.g., M13) this input will be supplied by an external crystal oscillator, usually associated with a DS3 LIU. If the DS3 port is not used, this input may be tied to ground or left open, since it is equipped with an internal pull-down resistor. Pull down M22 DS3POSDATAIN -- I Pull down K22 DS3NEGDATAIN -- I Pull down J22 DS3DATAINCLK -- I Pull down Agere Systems Inc. Positive Data Input. If the DS3 port is configured in dual-rail mode, then this input is serial positive data from an external DS3 LIU. If the DS3 port is configured in single-rail mode, then this input is serial nonreturn-to zero data from the external LIU. Negative Data In. In dual rail mode, this is negative data from an external DS3 LIU. In single rail mode, it may be connected to the bipolar violation output of the external DS3 LIU, left unconnected, or tied to ground. DS3 Data In Clock. This is a 44.736 MHz clock input from the clock recovery in the external DS3 LIU. 21 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) Table 9. DS3 Port, C-Bit, and Datalink Access Pin Symbol Type I/O Description E14 TCBSYNC -- O Transmit C-Bit Sync. In the C-bit parity mode, 10 C-bits may optionally be input for multiplexing into the transmit DS3 frame through the TCBDATA input. The TCBSYNC output is low, except during the rising edge of TCBCLK that is used to input C2. E13 TCBCLK -- O Transmit C-Bit Clock. A gapped clock (nominally 93.983 kHz) for accepting selected C-bits on input M13_CBDATA. E12 TCBDATA -- I E9 TDLCLK -- O E8 TDLDATA -- I Transmit C-Bit Data. In the C-bit parity mode, the network requirePull down ments bit (C2), and the unused C-bits (C4, C5, C6, C16, C17, C18, C19, C20, and C21) may optionally be input for multiplexing into the transmit DS3 frame through this input. Transmit Data Link Clock. A gapped clock (nominally 28.195 kHz) for accepting path maintenance data link C-bits on input TDLDATA. Transmit Data Link Data. The path maintenance data link C-bits Pull down (C13, C14, and C15) may optionally be input for multiplexing into the transmit DS3 frame through this input. 3.3.7 M13 Multiplexer/Demultiplexer Receive Section Two groups of signals are defined in this section. The first group are reference clocks, used internally in the jitter attenuation and AIS generation processes. Note that these are typically supplied by free-running crystal oscillators. The outputs below provide access to the received C-bits and data link bits extracted from the received DS3 frame. These operate in the same way if the source of the DS3 signal is from an SPE or from the external DS3 port. Table 10. M13 Multiplexer/Demultiplexer Receive Section 22 Pin Symbol Type I/O AC17 E1XCLK -- I AD16 DS1XCLK -- E10 DS2AISCLK -- E18 RCBSYNC -- Description E1 Reference Clock. This clock is used as a reference for the jitter Pulldown attenuator when it is operating in the E1 mode. It must have a frequency of 2.048 MHz, 32.768 MHz, or 65.536 MHz and a stability of 50 ppm. It is also used to generate an E1 AIS (all ones). May be left unconnected, or tied to ground, if no E1 options are being used. I DS1 Reference Clock. This clock is used as a reference for the jitter attenuator when it is operating in the DS1 or the J1 mode. It must Pulldown have a frequency of 1.544 MHz, 24.704 MHz, or 49.408 MHz and a stability of 32 ppm. This clock signal is also used to generate DS1 AIS signals. May be left unconnected or tied to ground, if not, no DS1 options are being used. I DS2 Reference Clock. A 6.312 MHz 30 ppm input. In the M23 Pulldown mode, this clock is used to generate DS2 AIS. May be left unconnected or tied to ground if no DS2 options are being used. Note that C-bit parity mode does no require a DS2 reference clock. O Receive C-Bit Sync. Ten C-bits are output on RCD after they are demultiplexed from the received DS3 signal. The RCS output is low, except during the rising edge of RCD that is used to output C2. Agere Systems Inc. Preliminary Data Sheet May 2001 3 Pin Information TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 (continued) Table 10. M13 Multiplexer/Demultiplexer Receive Section (continued) Pin Symbol Type I/O Description E17 RCBCLK -- O Receive C-Bit Clock. A gapped clock (nominally 93.983 kHz) for outputting selected C-bits on RCD. E15 RCBDATA -- O Receive C-Bit Data. The received network requirements bit (C2) and the received unused C-bits (C4, C5, C6, C16, C17, C18, C19, C20, and C21) are output after they are demultiplexed from the received DS3 signal. E19 RDLCLK -- O Receive Data Link Clock. A gapped clock (nominally 28.195 kHz) for outputting path maintenance data link C-bits on RDLD. H22 RDLDATA -- O Receive Data Link Data. The received path maintenance data link C-bits (C13, C14, and C15) that are demultiplexed from the received DS3 signal. 3.3.8 Low-Order Path Overhead Access Channel Each VT has a low-order path overhead, and this interface allows access to all LOPOH bits for all VTs. Note that the purpose of doing this is slightly different form the transport and path overhead access. These are used to cross couple the bits between links in a protection scheme, rather than provide access for examination or modification of the overhead, although that is possible too. Table 11. Low-Order Path Overhead Access Channel Pin Symbol Type AC13 AC14 LOPOHCLKIN LOPOHDATAIN -- -- AB14 LOPOHVALIDIN -- AB15 AB17 LOPOHCLKOUT LOPOHDATAOUT -- -- AB18 LOPOHVALIDOUT -- I/O Description Transmit Direction I Pull down 6.48 MHz Low Order Path Overhead Clock. I Pull down Low-Order Path Overhead Data. (O-bits, V5, J2, Z6/N2, Z7, and K4 byte.) I Pull down Valid LOPOH_DATA. Receive Direction O 6.48 MHz Low Order Path Overhead Clock. O Low-Order Path Overhead Data. (O-bits,V5, J2, Z6/N2, Z7/K4 byte.) O Valid VTMPR_LOPOH_DATA Output. TELECOM BUS LOPOH OUTPUTS LOPOH OUTPUTS VT MAPPER VT MAPPER LOPOH INPUTS LOPOH INPUTS DS1/E1 TO DXC Figure 4. DS1/E1 to DXC Block Diagram Agere Systems Inc. 23 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) Table 12. Multifunction System Interface Transmit Path Direction Pin Symbol Type C13, A12, B11, B10, B9, D8, C8, A7, B6, D5, A4, A3, H5, F5, C2, D2, E2, F4, G2, H1, J3, J4, K4, L4, M2, N1, P4, P3 LINERXDATA[28:1] -- D13 LINERXDATA29 I/O Description I Line Receive Data (28:1). Configurable inputs to the Pull down internal cross connect. The use depends on the application. Generally, these inputs are used for the received positive-rail or single-rail DS1/E1 line data input. If operating in dual rail mode, the negative rail will be expected on LINERXSYNC(28:1). Using dual rail mode implies that the internal B8ZS or HDB3 decoders are enabled, and line code violations can be detected and counted inside the Super Mapper. These data inputs may be assigned, using the cross connect block, to the DS1 or E1 inputs on the VT mapper, M13 or DS1/E1 framers. It is also possible to use the inputs for DS2 data, in which case they may be assigned to the M23 multiplexer inputs. -- I Receive Data 29. Configurable input to the internal Pull down cross connect. May be used as an additional line receive data input, for a protection channel. Other possible uses are as follows: Global transmit line clock input. Externally supplied 1.544 MHz or 2.048 MHz low jitter clock phase-locked to the TDM system clock. Used for transmit line clock on the DS1/E1 framers. This is not normally used, because the DS1/E1 framer has a PLL which can generate a 1.544 MHz clock from the TDM system clock (CHI clock). This applies in PSB and CHI modes. Receive data input. If NSMI mode is used, this will be a 51.84 Mbits/s serial data input. D12, C12, C11, C10, A9, B8, D7, C7, C6, C5, C4, C3, J5, B2, D3, E3, F3, G3, G4, H2, J1, K3, L3, M3, M4, N2, P2, R4 LINERXCLK[28:1] -- B13 LINERXCLK29 -- 24 I/O Receive Clock (28:1). Configurable inputs/outputs to Pull down the internal cross connect. Typically a line clock associated with the corresponding LINERXDATA input. It can therefore be running at DS1, E1 or DS2 rate. The cross connect is used to assign these inputs to the VT mapper, M13 or DS1/E1 framers. I/O Receive Clock 29. May be used as additional receive Pull down clock input for a DS1/E1 protection channel. Also has special use as a master clock. In CHI mode, it is the receive clock input (2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz). In PSB mode, it is the receive clock input (19.44 MHz). In NSMI mode, it is the receive clock output. (51.84 MHz). Agere Systems Inc. Preliminary Data Sheet May 2001 3 Pin Information TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 (continued) Table 12. Multifunction System Interface Transmit Path Direction (continued) Pin Symbol Type I/O Description B12, D11, D10, D9, C9, A8, B7, D6, B5, B4, B3, E6, K5, C1, D1, E4, F2, G1, H3, H4, J2, K2, L2, M1, N3, N4, P1, R2 LINERXSYNC[28:1] -- I Line Receive Synchronous 28:1. Multifunction input. Channel assignment may be configured through the internal cross connect. Can be used as the negative rail of a DS1/E1 signal in conjunction with LINERXDATA(28:1), when operating in dual-rail mode. In CHI mode these inputs are used for receive TDM highways that may run at 2.048, 4.096, or 8.192 Mbits/s. In parallel system bus mode the receive system data bus inputs are assigned to LINERXSYNC 16:1. The PSB is a 16bit wide bus that operates at 19.44 MHz. A13 LINERXSYNC29 -- I/O Line Receive Synchronous 29. Multifunction input. Channel assignment may be configured through the internal cross connect. Can be used as the negative rail of a DS1/E1 signal in conjunction with LINERXDATA 29, when operating in dual-rail mode. In CHI and PSB modes this input is used as the receive system frame synchronization input. In NSMI mode, it is the receive frame sync output R25, P26, N23, N24, M26, L25, K25, J25, H23, H24, G26, F25, E23, D26, C26, E21, B24, B23, B22, D21, B20, A19, C18, D18, D17, D16, B15, A14 LINETXDATA[28:1] -- I/O Line Transmit Data (28:1) Configurable outputs from the internal cross connect. Used for transmit positiverail or single-rail DS1/E1 line data outputs. May be connected to the DS1/E1 outputs from the VT mapper, M13 MUX or DS1/E1 frame line outputs. May also be used as a DS2 output. T23 LINETXDATA29 -- O Line Transmit Data 29. Configurable output from the internal cross connect. An extra DS1 or E1 transmit port that may be used for protection or as a timing reference output. Agere Systems Inc. 25 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information Preliminary Data Sheet May 2001 (continued) Table 12. Multifunction System Interface Transmit Path Direction (continued) Pin Symbol Type I/O Description R23, P25, N25, M23, M24, L24, K24, J26, H25, G23, G24, F24, E24, D24, C24, B25, C23, C22, C21, C20, D20, B19, A18, C17, C16, C15, D15, B14 LINETXCLK[28:1] -- I/O Line Transmit Clock (28:1). Configurable outputs from the internal cross connect. Can be used as the clock signals for LINETXDATA(28:1) in DS1, E1, and DS2 modes. R24 LINETXCLK29 -- I/O Line Transmit Clock 29. Configurable output to the internal cross connect for the protection or timing reference channel. Also used as the transmit global system clock input for CHI (2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz), PSB (19.44 MHz), and NSMI (51.84 MHz) modes. P24, P23, N26, M25, L23, K23, J23, J24, H26, G25, F23, E25, D25, C25, F22, A24, A23, D22, B21, A20, C19, D19, B18, B17, B16, A15, C14, D14 LINETXSYNC[28:1] -- I/O Line Transmit Synchronous (28:1). Configurable inputs/outputs to the internal cross connect. An output when used as the negative rail of a DS1 or E1 output port operating in dual-rail mode. In CHI mode, these pins may be used as output TDM highways. In PSB mode, bits 16:1 are used for the transmit data bus, and bits 28:17 are not used. These pins may also be used as DS2 I/O to the M12 block as follows: 7:1--Tx data out. 14:8--Tx clock in. 21:16--Rx data in. 28:22--Rx clock in. R26 LINETXSYNC29 -- I/O Line Transmit Synchronous 29. Configurable input/ output to the internal cross connect. An output when used as the negative rail of a DS1 or E1 output port operating in dual-rail mode. In CHI and PSB modes, it is used as the transmit system frame synchronization input. In NSMI mode, it is the transmit system frame sync output. AB19 RXDATAEN -- O NSMI Receive Enable. Receive data enable for NSMI mode. W22 TXDATAEN -- O NMSI Transmit Enable. Transmit data enable for NSMI mode. 26 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 3 Pin Information (continued) 3.3.9 Framer PLL The DS1/E1 framer has a phase-locked loop that may be used to generate a transmit line clock at 1.544 MHz or 2.048 MHz. The reference signal for this PLL may be chosen from a number of possible sources, all typically synchronized to the system clock (CHI transmit/receive clock for example.) In order to ensure reliable performance ,this PLL has its own isolated power pins. The PLL also has a number of test control pins that are used for factory testing only. The PLL is active when framer bit PLL_BYPAS = 0. When PLL_BYPAS = 1, the PLL is bypassed and an external clock at the system interface is used as the line clock. An example would be when the framers are programmed for a CHI interface at 2.048 MHz and the frames are programmed for E1, the PLL may be bypassed and the CHI system clock may be used as the line clock. Table 13. Framer PLL Pin Symbol Type I/O Description AD22 VDDD_PLL VDD -- Digital VDD for PLL. AE23 VDDS_PLL VDD -- Analog VDD for PLL. AF23 VSSA_PLL VSS -- Analog VSS for PLL. AD23 VSSS_PLL VSS -- Digital VSS for PLL. AD24 CLKIN_PLL -- AB21 MODE2_PLL -- AF24 MODE0_PLL -- I PLL Mode 0. PLL control input 0. Pull down AE24 MODE1_PLL -- I PLL Mode 1. PLL control input 1. The PLL mode inputs should Pull down be hardwired to the logic levels shown in the table below, depending on the frequency of the reference supplied to CLKIN_PLL. I Clock In PLL. Phase locked-loop reference clock input. FrePull down quency should be consistent with the MODE_PLL pins in the PLL Mode1 table below. A 1.544 MHz clock for DS1 transmit outputs is generated synchronous to this clock. I/O PLL Mode 2. Control bit that should be tied to the appropriate state depending on the frequency of CLKIN_PLL consistent with the PLL Mode1 table below. This pin is also used during factory testing as an output. Mode2 0 0 0 0 1 1 1 1 Agere Systems Inc. Mode1 0 0 1 1 0 0 1 1 Mode0 0 1 0 1 0 1 0 1 CLKIN_PLL Reserved 51.84 MHz 26.624 MHz 19.44 MHz 16.348 MHz 8.194 MHz 4.096 MHz 2.048 MHz 27 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) Table 14. Microprocessor Interfaces Pin Symbol Type I/O Description AE17 MPCLK -- I Processor Clock. This is the synchronous microprocessor clock (when MPMODE=1). The maximum clock frequency is 66 MHz. This clock is required to properly sample address, data, and control signals from the microprocessor in both asynchronous and synchronous modes of operation. This clock must be within the range of 16 MHz--66 MHz. AD17 MPMODE -- I Control Port Mode. If the microprocessor interface is synchronous, CPM should be set to 1. If the microprocessor interface is asynchronous, CPM should be set to 0. AC18 CSN -- I Chip Select. Active-low chip select. For synchronous mode, it should be stable beyond a certain setup time before the rising clock edge when AS is active. For asynchronous mode, it should be stable before DS is asserted. Pull up AE18 ADSN -- I Address Strobe. Active-low address strobe that is a 1 PCK cycle wide pulse for synchronous mode and active for the entire read/write cycle for asynchronous mode. Address bus signals, A(19:0), are transparently latched into Super Mapper when AS is low. The address bus should remain valid for the duration of AS. AF18 RWN -- I Read/Write Cycle Selection. RW is set high for a read operation, or set low for write operation. AD18 DSN -- I Data Strobe. DS is not used for synchronous mode. For asynchronous mode, write operation, DS becomes active after data is stable. For read operation, it is similar to AS. AB23, AC26, AC24, AD25, AD26, AE25, AA22, AC22, AE22, AD21, AE21, AC21, AD20, AF20, AE20, AC20, AD19, AF19, AE19, AC19 ADDR[19:0] -- I Address (19:0). A19 is the most significant and A0 the least significant bit for addressing all the internal SM registers during CPU access cycles. AB25, AA24, AA25, AA23, Y24, Y26, Y25, Y23, W24, W26, W25, W23, V24, V26, V25, V23 DATA[15:0] -- I/O Data (15:0). Data bus for all transfers between the CPU and the internal SM registers. The pins are inputs during write cycles and outputs during read cycles. DATA15 is the MSB and DATA0 is the LSB. U24, U25 PAR[1:0] -- I/O CPU Port Parity (1:0). Byte-wide parity bits for data. CPP[1] is the parity for D[15:8] and CPP[0] is the parity for D[7:0]. 28 Note: The Super Mapper is little endian, the least significant byte is stored in the lowest address and the most significant byte is stored in the highest address. Care must be exercised in connection to microprocessors that use big-endian byte ordering. Agere Systems Inc. Preliminary Data Sheet May 2001 3 Pin Information TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 (continued) Table 14. Microprocessor Interfaces (continued) Pin Symbol Type I/O U23 DTN -- O AB24 INTN -- AC25 APS_INTN -- Description Data Transfer Acknowledge. In synchronous CPU mode, Open Drain DTA goes low at 4th cycle for write or 5th cycle for read, resulting in a fixed 2 wait-states for writes and 3 wait-states for reads. In asynchronous P mode, after qualification of AS and DS by TLSC52 clock, DTA goes low for two TLSC52 clock cycles for writes and three TLSC52 clock cycles for reads. DTA goes high, along with the rising edge of AS. O Interrupt. Super Mapper interrupt request, active-low. An Open Drain open drain output should be connected to an external pull-up resistor. O APS Interrupt. Automatic protection switch interrupt request, Open Drain active-low. An open drain output should be connected to an external pull-up resistor. Table 15. General Purpose Interface Pin Symbol Type I/O Description T24 RSTN -- I Pull up Reset. Global reset, active-low. Initializes all internal registers to their default state. T25 PMRST -- I/O Performance Monitor Reset. May be configured as an input and then used to directly reset all the counters associated with DS1/E1 performance monitoring. If an internal PM reset is used, PMRST is configured as an output that indicates when a PM reset occurred. Pull down R5 TCK -- I Test Clock. This signal provides timing for the boundary scan and TAP controller. This signal should be static, except during boundary scan testing. U5 TDI -- I Test Data In. Data input for the boundary scan; sampled on the rising edge of TCK. Pull up W5 TMSN -- I Pull up AB8 TRSTN -- I Pull down Test Mode Select (Active-Low). Controls boundary scan test operations. TMS is sampled on the rising edge of TCK. Test Reset (Active-Low). This signal is an asynchronous reset for the TAP controller. V5 TDO -- O Test Data Out. Updated on the falling edge of TCK. The TDO output is high impedance, except when scanning out test data. AB9 IC3STATEN -- I Global Output Enable. All output and bidirectional buffers will be high impedance when this input is low. Normally pulled high internally. Pull up Agere Systems Inc. 29 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) 3.3.10 Test Pins These pins are for factory test purposes only and must be connected as stated below for normal operation. They are used to establish special configurations for testing, inserting test data, etc. For normal operation they should be left unconnected; each is equipped with a pull-up or pull-down to the inactive (normal operation) state. Table 16. Test Pins Pin Symbol Type I/O Description N5 SCAN_EN -- I Pull down Test Only. Scan enable (active-high). M5 SCAN_MODE -- I Pull down Test Only. Serial scan input for testing (active-high). P5 IDDQ -- I Pull up AE14 BYPASS -- I Pull down Test Only. Enables functional bypassing of the clock synthesis with a test clock (active-high). AF14 TSTPHASE -- I Pull down Test Only. Controls bypass of 32 PLL-generated phases with 32 low-speed phases, generated by test logic (active-high). AD14 ECSEL -- I Pull down Test Only. Enables external test control of 155 MHz clock phase selection through ETOGGLE and EXDNUP inputs (active-high). AC15 ETOGGLE -- I Pulldown Test Only. Moves 155 MHz clock selection one phase per positive pulse > 20ns. Active + pulse. AE15 EXDNUP -- I Pulldown Test Only. Direction of phase changes. 0 = down 1 = up. AF15 TSTMODE -- I Pulldown Test Only. Enables CDR test mode. AD15 TSTSFTLD -- I Pulldown Test Only. Enables CDR test mode shift register. AE16, AC16 TSTMUX[1:0] -- O Test Only. IDDQ input (active-high). Test Only. CDR test mode output Table 17. CDR Power Pin Symbol Type I/O Description AC9 VDDA_CDR -- I Analog Power. Isolated analog power supply VDD for CDR. AB12 VSSA_CDR -- I Analog Ground. Isolated analog power supply VSS for CDR. Symbol Type I/O Description -- I Resistor 1, 2. A 100 1% resistor is should be connected between these two pins as a reference for the LVDS input buffer termination. Table 18. LVDS Control Pins Pin 30 AF12 RESHI AE12 RESLO AC11 REF10 -- I Voltage Reference 1. 1.0 V reference voltage input. AD12 REF14 -- I Voltage Reference 2. 1.4 V reference voltage input. Agere Systems Inc. Preliminary Data Sheet May 2001 3 Pin Information TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 (continued) Table 18. LVDS Control Pins (continued) Pin Symbol Type I/O AB10 CTAPRH -- -- Center Tap 1. For RHSD P/N and RHSC P/N. Optional, 0.1 F capacitor connected between CTAP pin and ground, to improve the common mode rejection of the LVDS input buffers. AE11 CTAPTH -- -- Center Tap 2. For THSD P/N and THSC P/N. Optional, 0.1 F capacitor connected between CTAP pin and ground, to improve the common mode rejection of the LVDS input buffers. AB13 CTAPRP -- -- Center Tap 3. For RPSD155 P/N and RPSC155 P/N. Optional, 0.1 F capacitor connected between CTAP pin and ground, to improve the common mode rejection of the LVDS input buffers. Agere Systems Inc. Description 31 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 3 Pin Information (continued) 3.4 Outline Diagram 3.4.1 456-Pin PBGA Dimensions are in millimeters. 35.00 0.20 +0.70 30.00 -0.00 A1 BALL IDENTIFIER ZONE 30.00 +0.70 -0.00 35.00 0.20 MOLD COMPOUND PWB 1.17 0.05 0.56 0.06 2.33 0.21 SEATING PLANE 0.20 0.60 0.10 SOLDER BALL 25 SPACES @ 1.27 = 31.75 CENTER ARRAY FOR THERMAL ENHANCEMENT (OPTIONAL) A1 BALL CORNER AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 0.75 0.15 25 SPACES @ 1.27 = 31.75 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 11 13 15 17 19 21 23 25 5-6216(F)r.1 32 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 4 Electrical Characteristics Table of Contents Contents Page 4 Electrical Characteristics .................................................................................................................................... 33 4.1 Absolute Maximum Ratings ......................................................................................................................... 34 4.2 Handling Precautions ................................................................................................................................... 34 4.3 Operating Conditions ................................................................................................................................... 34 4.4 Logic Interface Characteristics ..................................................................................................................... 35 4.5 LVDS Interface Characteristics .................................................................................................................... 36 List of Figures Figure 5. Single-Ended Input Specification ............................................................................................................ 35 List of Tables Table 19. Absolute Maximum Ratings ................................................................................................................... 34 Table 20. Handling Precaution .............................................................................................................................. 34 Table 21. Recommended Operating Conditions ................................................................................................... 34 Table 22. Logic Interface Characteristics .............................................................................................................. 35 Table 23. LVDS Interface Characteristics ............................................................................................................. 36 Agere Systems Inc. 33 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 4 Electrical Characteristics (continued) 4.1 Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. Table 19. Absolute Maximum Ratings Parameter Symbol Min Max Unit dc Supply Voltage Range VDD -0.5 4.6 V Power Dissipation PD -- -- mW Tstg -65 125 C Ambient Operating Temperature Range TA -40 85 C Maximum Voltage (digital input pins) -- -- 5.25 V Minimum Voltage (digital input pins) -- -0.3 -- V Storage Temperature Range 4.2 Handling Precautions Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Agere employs a human-body model (HBM) and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used in the defined model. No industry-wide standard has been adopted for the CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by using these circuit parameters: Table 20. Handling Precaution Device Voltage TMXF28155 2000 V 4.3 Operating Conditions The following tables list the voltages required for proper operation of the TMXF28155 device, along with their tolerances. Table 21. Recommended Operating Conditions Parameter Power Ground Input Voltage, High Input Voltage, Low 1.0 V, LVDS Reference* 1.4 V:,LVDS Reference* Symbol VDD VSS VIH VIL LVDS_REF10 LVDS_REF14 Min 3.14 -- VDD - 1.0 VSS -- -- Typ 3.3 0.0 -- -- 1.0 1.4 Max 3.47 -- 5.25 1.0 -- -- Unit V V V V V V * Internal reference voltage is used if SMPR_LVDS_REF_SEL = 1 (Table 70); or else external voltage is used. 34 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 4 Electrical Characteristics (continued) 4.4 Logic Interface Characteristics Table 22. Logic Interface Characteristics Parameter Input Leakage Output Current: Low High Output Voltage: Low High Input Capacitance Symbol IL Test Conditions -- Min -- Max 1.0 Unit A IOL IOH -- -- -- -- 2 2 mA mA VOL VOH CI -- -- -- VSS VDD - 0.5 -- 0.5 5.25 1.5 V V pF The input specification for the remaining (nonbalanced) inputs are specified in Figure 5. VIH VIL tF tR 5-6032(F)r.2 Figure 5. Single-Ended Input Specification Agere Systems Inc. 35 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 4 Electrical Characteristics (continued) 4.5 LVDS Interface Characteristics 3.3 V 5% VDD, 0--125 C, slow--fast process. Table 23. LVDS Interface Characteristics . Parameter Input Voltage Range, VIA or VIB Input Differential Threshold Input Differential Hysteresis Receiver Differential Input Impedance Output Voltage: Low (VOA or VOB) High (VOA or VOB) Output Differential Voltage Output Offset Voltage Output Impedance, Single Ended RO Mismatch Between A and B Change in Differential Voltage Between Complementary States Change in Output Offset Voltage Between Complementary States Output Current Output Current Symbol Test Conditions Input Buffer Parameters VI |VGPD| < 925 mV, dc--1 MHz VIDTH |VGPD| < 925 mV, 311 MHz VHYST (+VIDTH) - (-VIDTH) RIN With built-in termination, center-tapped Output Buffer Parameters Min Typ Max Unit 0.0 -100 -- 80 1.2 -- -- 100 2.4 100 --* 120 V mV mV VOL VOH |VOD| VOS RO RO |VOD| RLOAD = 100 1% RLOAD = 100 1% RLOAD = 100 1% RLOAD = 100 1% VCM = 1.0 V and 1.4 V VCM = 1.0 V and 1.4 V RLOAD = 100 1% -- 0.925 0.25 1.125 40 -- -- -- -- -- -- 50 -- -- 1.475 -- 0.40 1.275 60 10 25 V V V V % mV VOS RLOAD = 100 1% -- -- 25 mV ISA, ISB ISAB Driver shorted to VSS Drivers shorted together -- -- -- -- 24 12 mA mA * Buffer will not produce output transition when input is open-circuited. 36 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics Table of Contents Contents Page 5 Timing Characteristics ........................................................................................................................................ 37 5.1 TMUX Block Timing ..................................................................................................................................... 39 5.2 DS3 Timing .................................................................................................................................................. 43 5.3 M13 Timing .................................................................................................................................................. 44 5.4 VT Mapper Timing ....................................................................................................................................... 45 5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing ................................................................. 45 5.5 Concentration Highway (CHI) Timing .......................................................................................................... 46 5.6 Parallel System Bus Timing ......................................................................................................................... 47 5.7 NSMI Timing Mode 1 ................................................................................................................................... 49 5.8 SMI Timing Mode 2 (8 pin) ........................................................................................................................... 49 5.9 Framer Only Mode Timing ........................................................................................................................... 51 5.10 Framer--LIU Mode Timing ........................................................................................................................ 53 5.11 Microprocessor Interface Timing ................................................................................................................ 54 5.11.1 Synchronous Mode .......................................................................................................................... 54 5.12 Asynchronous Mode .................................................................................................................................. 56 5.13 General Purpose Interface Timing ............................................................................................................. 60 6 Ordering Information............................................................................................................................................ 61 Figures Page Figure 6. Generic Clock Timing .............................................................................................................................. 39 Figure 7. Generic Interface Data Timing ................................................................................................................ 41 Figure 8. VT Mapper Transmit Path Overhead Detailed Timing ............................................................................ 45 Figure 9. VT Mapper Receive Path Overhead Detailed Timing ............................................................................. 45 Figure 10. CHI Transmit I/O Timing........................................................................................................................ 46 Figure 11. CHI Receive I/O Timing......................................................................................................................... 47 Figure 12. Parallel System Bus Interface Transmit I/O Timing............................................................................... 48 Figure 13. Parallel System Bus Interface Receive I/O Timing................................................................................ 48 Figure 14. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin AD17) = 1) ................................. 54 Figure 15. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1) ................................. 55 Figure 16. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin AC18) = 0) ............ 57 Figure 17. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0) ............................... 59 Tables Page Table 24. High-speed Input Clock Specifications .................................................................................................. 39 Table 25. Output Clock Specifications ................................................................................................................... 40 Table 26. Input Timing Specifications .................................................................................................................... 41 Table 27. Output Timing Specifications ................................................................................................................. 42 Table 28. DS3 Input Clock Specifications ............................................................................................................. 43 Table 29. Input Timing Specifications .................................................................................................................... 43 Table 30. Output Timing Specifications ................................................................................................................. 43 Table 31. M13 Clock Specifications ...................................................................................................................... 44 Table 32. Input Timing Specifications .................................................................................................................... 44 Table 33. Output Timing Specifications ................................................................................................................. 44 Table 34. VT Mapper Receive Path Overhead Detailed Timing ............................................................................ 45 Table 35. CHI Transmit Timing Characteristics ..................................................................................................... 46 Table 36. CHI Receive Timing Characteristics ...................................................................................................... 47 Table 37. PSB Interface Transmit Timing Characteristics ..................................................................................... 47 Agere Systems Inc. 37 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table of Contents (continued) Tables Page Table 38. PSB Interface Receive Timing Characteristics ...................................................................................... 48 Table 39. NSMI (Mode 1) Input Clock Specifications ............................................................................................ 49 Table 40. Input Timing Specifications .................................................................................................................... 49 Table 41. Output Timing Specifications ................................................................................................................. 49 Table 42. SMI (Mode 2) Input Clock Specifications ............................................................................................... 49 Table 43. Input Timing Specifications .................................................................................................................... 50 Table 44. Output Timing Specifications ................................................................................................................. 50 Table 45. Framer Only Mode Clock Specifications ............................................................................................... 51 Table 46. Framer Mode Only Input Timing Specifications ..................................................................................... 52 Table 47. Framer Mode Only Output Timing Specifications .................................................................................. 52 Table 48. Framer--LIU Mode Clock Specifications ............................................................................................... 53 Table 49. Framer--LIU Mode Input Timing Specifications .................................................................................... 54 Table 50. Framer--LIU Mode Output Timing Specifications ................................................................................. 54 Table 51. Microprocessor Interface Synchronous Write Cycle Specifications ...................................................... 55 Table 52. Microprocessor Interface Synchronous Read Cycle Specifications ...................................................... 56 Table 53. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................... 58 Table 54. Microprocessor Interface Asynchronous Read Cycle Specifications .................................................... 60 Table 55. Input Timing Specifications .................................................................................................................... 60 Table 56. Output Timing Specifications ................................................................................................................. 61 38 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) 5.1 TMUX Block Timing The TMUX (STS-N/STM-1) timing parameters can be grouped separately for clocks, inputs, and outputs. Table 24 shows the input clock specifications for this device. The rise and fall times refer to the transition times from 10% to 90% of full swing. For definitions of the signal names, see the pin descriptions section at the beginning of this data sheet. Table 24. High-speed Input Clock Specifications Symbol Parameter Signal Name fCK Operating Frequency tCK Clock Period tCLKHI Clock Pulse High Time tR Rise Time tF Fall Time THSCP/N RHSCP/N RPSC155P/N THSCP/N RHSCP/N RPSC155P/N THSCP/N RHSCP/N RPSC155P/N THSCP/N RHSCP/N RPSC155P/N THSCP/N RHSCP/N RPSC155P/N 155 Clock Min Nom -- 155.52 30 ppm -- 155.52 30 ppm -- 155.52 30 ppm -- 6.43 0.4% -- 6.43 0.5% -- 6.43 0.5% 2.5 -- 2.5 -- 2.5 -- -- -- -- -- -- -- -- -- -- -- -- -- Max Min -- -- -- -- -- -- -- -- -- -- 3.9 7.8 3.9 7.8 3.9 1.5 -- 1.5 -- 1.5 1.5 -- 1.5 -- 1.5 51 Clock Nom 51.84 50 ppm 51.84 50 ppm 19.29 0.4% 19.29 0.5% -- -- -- -- -- -- -- -- -- -- Unit Max -- MHz -- MHz MHz -- ns -- ns ns 11.6 ns 11.6 ns ns 5.0 ns 5.0 ns ns 5.0 ns 5.0 ns ns Note: When the true and complement inputs are floating, the input buffer will not oscillate. tCK tCLKHI tR tF 5-9077(F) Figure 6. Generic Clock Timing Agere Systems Inc. 39 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) The output clock specifications are shown in Table 25, where the symbols match the waveform diagram above. Table 25. Output Clock Specifications Signal Name Reference CLK* Frequency TLSCLK TTOACCLK RLSCLK THSCP/N THSCP/N RHSCP/N or Internal CDR Clock RHSCP/N or Internal CDR Clock THSCP/N THSCP/N RHSCP/N THSCP/N RHSCP/N RTOACCLK TPSC155P/N TPOACCLK RPOACCLK TLSC52 RLSC52 19.44 MHz 5.184 MHz 19.44 MHz Clock Pulse High Time (tCLKHI) 24.43--27.00 ns 91.62--101.3 ns 24.43--27.00 ns Test Condition CL = 50 pF CL = 15 pF CL = 50 pF Max Rise Time (tR) 3.5 ns 3.5 ns 3.5 ns Max Fall Time (tF) 3.5 ns 3.5 ns 3.5 ns 5.184 MHz 91.62--101.3 ns CL = 15 pF 3.5 ns 3.5 ns 155.5 MHz 5.184 MHz 5.184 MHz 51.84 MHz 51.84 MHz 3.119--3.311 ns 91.62--101.3 ns 91.62--101.3 ns 9.162--10.13 ns 9.162--10.13 ns CL = 15 pF CL = 15 pF CL = 15 pF CL = 30 pF CL = 30 pF 1.5 ns 3.5 ns 3.5 ns 3.0 ns 3.0 ns 1.5 ns 3.5 ns 3.5 ns 3.0 ns 3.0 ns * The specifications for the table are with all loopbacks disabled. Note: Any of the telecom signals being used as inputs (slave Super Mapper) need to meet these same output clock specifications. 40 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) Table 26. Input Timing Specifications Input Name Reference CLK THSSYNC TLSDATA[7:0] TLSPAR TLSSPE TLSJ0J1V1 TLSV1 TLSSYNC52 TTOACDATA TPOACDATA THSC TLSCLK TLSCLK TLSCLK TLSCLK TLSCLK TLSC52 TTOACCLK TPOACCLK RHSDP/N RPSD155P/N RLSDATA[7:0] RLSPAR RLSSPE RLSJ0J1V1 RLSV1 RLSSYNC52 RHSCP/N RPSC155P/N RLSCLK RLSCLK RLSCLK RLSCLK RLSCLK RLSC52 LOSEXT AUTO_AIS[3:1] NA NA Min Setup Time (tS) Transmit Signals 2.0 ns 5.0 ns 5.0 ns 5.0 ns 5.0 ns 5.0 ns 4.0 ns 10.0 ns 10.0 ns Receive Signals 2.0 ns 2.0 ns 5.0 ns 5.0 ns 5.0 ns 5.0 ns 5.0 ns 4.0 ns Miscellaneous Signals ASYNC ASYNC Min Hold Time (tH) 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns 0.0 ns ASYNC ASYNC CLOCK tSU tH DATA CLOCK tPD DATA Figure 7. Generic Interface Data Timing Agere Systems Inc. 41 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table 27. Output Timing Specifications Output Name THSDP/N TPSD155P/N TLSDATA[7:0] TLSPAR TLSSPE TLSJ0J1V1 TLSV1 TLSSYNC52 TTOACSYNC TPOACSYNC RLSDATA[7:0] RLSPAR RLSSPE RLSJOJ1V1 RLSVI RLSSYNC52 RTOACSYNC RTOACDATA RPOACSYNC RPOACDATA RHSFSYNCN AUTO_AIS[3:1] Reference CLK Test Conditions Propagation Delay* tPD Min Max Transmit Signals CL = 15 pF 0.6 CL = 15 pF 0.6 CL = 50 pF 4.0 CL = 50 pF 4.0 CL = 50 pF 4.0 CL = 50 pF 4.0 CL = 50 pF 4.0 CL = 30 pF 0.0 CL = 15 pF 10.0 CL = 15 pF 10.0 Receive Signals RLSCLK CL = 50 pF 4.0 RLSCLK CL = 50 pF 4.0 RLSCLK CL = 50 pF 4.0 RLSCLK CL = 50 pF 4.0 RLSCLK CL = 50 pF 4.0 RLSC52 CL = 30 pF 0.0 RTOACCLK CL = 15 pF 10.0 RTOACCLK CL = 15 pF 10.0 RPOACCLK CL = 15 pF 10.0 RPOACCLK CL = 15 pF 10.0 RLSCLK CL = 30 pF 0.0 Miscellaneous Signals NA -- ASYNC THSCP/N TPSC155P/N TLSCLK TLSCLK TLSCLK TLSCLK TLSCLK TLSC52 TTOACCLK TPOACCLK Unit 2.9 2.9 12.0 12.0 12.0 12.0 12.0 6.0 30.0 30.0 ns ns ns ns ns ns ns ns ns ns 12.0 12.0 12.0 12.0 12.0 6.0 30.0 30.0 30.0 30.0 8.0 ns ns ns ns ns ns ns ns ns ns ns ASYNC -- * Propagation delay skew, tPLH - tPHL, is 200 ps. 42 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) 5.2 DS3 Timing Table 28. DS3 Input Clock Specifications Symbol Parameter Signal Name Min Max Unit fCK Clock Frequency -- Clock Period Clock Pulse High Time tR Rise Time 22.353 22.353 16 16 2 ns tCLKHI -- -- -- -- 6 6 0 44.736 MHz 50 ppm tCK ns tF Fall Time DS3DATAINCLK DS3DATAOUTCLK DS3DATAINCLK DS3DATAOUTCLK DS3DATAINCLK DS3DATAOUTCLK DS3DATAINCLK DS3DATAOUTCLK DS3DATAINCLK DS3DATAOUTCLK 0 2 ns ns Table 29. Input Timing Specifications Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH) DS3POSDATAIN DS3DATAINCLK 4 0 DS3NEGDATAIN DS3DATAINCLK 4 0 Table 30. Output Timing Specifications Output Name Reference CLK Test Conditions DS3POSDATAOUT DS3NEGDATAOUT DS3DATAOUTCLK DS3DATAOUTCLK CL = 15 pF CL = 15 pF Agere Systems Inc. Propagation Delay tPD Min Max 2 6 2 6 Unit ns ns 43 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) 5.3 M13 Timing Table 31. M13 Clock Specifications Symbol Parameter Signal Name Min Nom Max Unit fCK Clock Frequency tCLKHI Clock Pulse High Time Rise Time tF Fall Time -- -- 2.048 1.544 -- -- -- 212.19 212.19 212.19 212.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.983 gapped 28.195 gapped 32.768 24.704 6.312 93.983 28.195 223.53 223.53 223.53 223.53 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 65.536 49.408 -- -- -- 250.77 250.77 250.77 250.77 3 3 3 3 3 3 3 3 3 3 3 3 3 3 kHz kHz MHz MHz MHz kHz kHz ns tR TCBCLK TDLCLK E1XCLK DS1XCLK DS2AISCLK RCBCLK RDLCLK TCBCLK TDLCLK RCBCLK RDLCLK TCBCLK TDLCLK E1XCLK DS1XCLK DS2AISCLK RCBCLK RDLCLK TCBCLK TDLCLK E1XCLK DS1XCLK DS2AISCLK RCBCLK RDLCLK ns ns Table 32. Input Timing Specifications Input Name Reference CLK TCBDATA TDLDATA TCBCLK TDLCLK Setup Time (tS) Min Max 50 -- 50 -- Hold Time (t H) Min Max 0 -- 0 -- Unit ns ns Table 33. Output Timing Specifications 44 Output Name Reference CLK Test Conditions TCBSYNC RCBSYNC RCBDATA RDLDATA TCBCLK RCBCLK RCBCLK RDLCLK CL = 15 pF CL = 15 pF CL = 15 pF CL = 15 pF Propagation Delay t PD Min Max 2 10 2 10 2 10 2 10 Unit ns ns ns ns Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) 5.4 VT Mapper Timing 5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing Table 34. VT Mapper Receive Path Overhead Detailed Timing Symbol fCK tCK tCLKHI tR tF tSD tHD tSV tHV tPDV tPDD Parameter Clock Frequency Clock Period Clock Pulse High Time Clock Rise Time Clock Fall Time LOPOH Data Setup Time LOPOH Data Hold Time LOPOH Valid Signal Setup Time LOPOH Valid Signal Hold Time Clock to LOPOH Valid Signal Out Clock to LOPOH Data Out Min Max Unit 6.48 154 50 0 0 5 0 5 0 0 0 6.48 154 75 3 3 -- -- -- -- 5 5 MHz ns ns ns ns ns ns ns ns ns ns tC K L O PO H C LK IN tSV L O P O H VA L ID IN tHV tSD tHD L O P O H D ATA IN 5-9078(F) Figure 8. VT Mapper Transmit Path Overhead Detailed Timing tCK LOPOHCLKOUT tPDV LOPOHVALIDOUT tPDD LOPOHDATAOUT 5-9079(F) Figure 9. VT Mapper Receive Path Overhead Detailed Timing Agere Systems Inc. 45 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) 5.5 Concentration Highway (CHI) Timing Table 35 and Table 36 with Figure 10 and Figure 11, respectively, illustrate the detailed CHI timing for clock, data, and frame synchronization. Table 35. CHI Transmit Timing Characteristics Symbol fCK tCK tR tF tS tH tPD Parameter Clock Frequency* Clock Period Clock Rise Time Clock Fall Time Frame Sync Setup Time Frame Sync Hold Time Clock to CHI Data Delay Min Max Unit 2.048 488.2 0 0 35 0 -- 16.384 61.04 3 3 -- -- 25 MHz ns ns ns ns ns ns * fCK can be either 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz. tCK LINETXCLK29 CLOCK tH tS LINETXSYNC29 FRAME SYNC tPD LINETXSYNC[28:1] DATA 5-9080(F) Figure 10. CHI Transmit I/O Timing 46 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) Table 36. CHI Receive Timing Characteristics Symbol Parameter fCK tCK tR tF tSSYNC tHSYNC tSDATA Clock Frequency* Clock Period Clock Rise Time Clock Fall Time Frame Sync Setup Time Frame Sync Hold Time CHI Data Setup Time tHDATA CHI Data Hold Time Min Max Unit 2.048 488.2 0 0 30 0 25 16.384 61.04 3 3 -- -- -- -- MHz ns ns ns ns ns ns 0 ns * fCK can be either 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz. tCK LINERXCLK29 CLOCK tSSYNC tHSYNC LINERXSYNC29 FRAME SYNC tSDATA tHDATA LINERXSYNC[28:1] DATA 5-9081(F) Figure 11. CHI Receive I/O Timing 5.6 Parallel System Bus Timing Table 37 and Table 38 with Figure 12 and Figure 13, respectively, show the transmit and receive timing. In the transmit direction (to the system interface) the frame sync is sampled and the data is clocked out on the rising edge of the clock. In the receive direction (from the switch) the data and frame sync are sampled on the rising edge of the clock. Table 37. PSB Interface Transmit Timing Characteristics Symbol fCK tCK tR tF tS tH tPD Agere Systems Inc. Parameter Clock Frequency Clock Period Clock Rise Time Clock Fall Time Frame Sync Setup Time Frame Sync Hold Time Clock to PSB Out Delay Min Max Unit 19.44 51.44 0 0 8 0 3 19.44 51.44 3 3 -- -- 10 MHz ns ns ns ns ns ns 47 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) LINETXCLK29 CLOCK tS tH tCK tPD LINETXSYNC29 FRAME SYNC 6 (3) STUFFED TS IN DS1 (E1) LINETXSYNC[16:1] DATA STUFFED TS STUFFED TS DEV #0, TS #1, DEV #0, TS #1, LINK #0 LINK #1 5-9082(F) Figure 12. Parallel System Bus Interface Transmit I/O Timing Table 38. PSB Interface Receive Timing Characteristics Symbol fCK tCK tR tF Parameter tSSYNC tHSYNC tSDATA Clock Frequency Clock Period Clock Rise Time Clock Fall Time Frame Sync Setup Time Frame Sync Hold Time PSB to Clock Setup Time tHDATA PSB Hold Time from Clock Min Max Unit 19.44 51.44 0 0 8 0 8 19.44 51.44 3 3 -- -- -- -- MHz ns ns ns ns ns ns 0 ns LINERXCLK29 CLOCK tSSYNC tHSYNC tCK tSDATA tHDATA LINERXSYNC29 FRAME SYNC LINERXSYNC[16:1] DATA STUFFED TS STUFFED TS DEV #0, TS #1, DEV #0, TS #1, LINK #0 LINK #1 DATA SAMPLED 5-9083(F) Figure 13. Parallel System Bus Interface Receive I/O Timing 48 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) 5.7 NSMI Timing Mode 1 (6 Pin) Table 39. NSMI (Mode 1) Input Clock Specifications Symbol Parameter Signal Name Min Nom Max Unit tCK tR Clock Frequency Clock Pulse High Time Rise Time tF Fall Time LINE_TXCLK29 LINE_RXCLK29 LINE_TXCLK29 LINE_RXCLK29 LINE_TXCLK29 LINE_RXCLK29 LINE_TXCLK29 LINE_RXCLK29 -- -- 6 6 -- -- -- -- 51.84/44.736 50 ppm 51.84/44.736 50 ppm -- -- -- -- -- -- -- -- 12 12 3 3 3 3 MHz MHz ns ns ns ns ns ns tCKHI Table 40. Input Timing Specifications Input Name Reference CLK LINE_RXDATA29 LINE_RXSYNC29 LINE_RXCLK29 LINE_RXCLK29 Setup Time (tS) Min Max 5 -- 5 -- Hold Time Min 0 0 (t H) Max -- -- Unit ns ns Table 41. Output Timing Specifications Output Name Reference CLK Test Conditions LINE_TXDATA29 LINE_TXSYNC29 RXDATAEN TXDATAEN LINE_TXCLK29 LINE_TXCLK29 LINE_TXCLK29 LINE_TXCLK29 CL = 15 pF CL = 15 pF CL = 15 pF CL = 15 pF Propagation Delay tPD Min Max 0 3.5 0 3.5 0 3.5 0 3.5 Unit ns ns ns ns 5.8 SMI Timing Mode 2 (8 Pin) Table 42. SMI (Mode 2) Input Clock Specifications Symbol tCK Parameter Clock Period tCKHI Clock Pulse High Time tR Rise Time tF Fall Time Agere Systems Inc. Signal Name LINE_TXCLK29 LINE_RXCLK29 RXDATAEN LINE_TXCLK29 LINE_RXCLK29 RXDATAEN LINE_TXCLK29 LINE_RXCLK29 RXDATAEN LINE_TXCLK29 LINE_RXCLK29 RXDATAEN Min 44.736 MHz 50 ppm TBD TBD 6 6 TBD 0 0 0 0 0 0 Nom 19.29 19.29 TBD 1/3 tck 1/3 or 1/2 tck TBD -- -- -- -- -- -- Max TBD TBD TBD TBD TBD TBD 3 3 3 3 3 3 Unit ns ns ns ns ns ns ns ns ns ns ns ns 49 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table 43. Input Timing Specifications Input Name Reference CLK LINE_RXDATA29 LINE_RXSYNC29 LINE_RXCLK29 LINE_RXCLK29 Setup Time (tS) Min Max 5 -- 5 -- Hold Time Min 0 0 (tH) Max -- -- Unit ns ns Table 44. Output Timing Specifications Output Name Reference CLK Test Conditions LINE_TXDATA29 LINE_TXSYNC29 TXDATAEN LINE_TXCLK29 LINE_TXCLK29 RXDATAEN CL = TBD pF CL = TBD pF CL = TBD pF 50 Propagation Delay tPD Min Max 0 3.5 0 3.5 0 3.5 Unit ns ns ns Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) 5.9 Framer Only Mode Timing Table 45. Framer Only Mode Clock Specifications Symbol tCK Parameter Clock Frequency Signal Name TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 tCKHI Clock Pulse High Time TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 tR Rise Time TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 Agere Systems Inc. Min -50 ppm -130 ppm -50 ppm -130 ppm -50 ppm -50 ppm -50 ppm -50 ppm -130 ppm -50 ppm -50 ppm -50 ppm -50 ppm 6 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 0 0 0 0 0 0 0 0 0 0 0 0 0 Nom 51.84 1.544 or 2.048 1.544 2.048 or 4.096 or 8.192 or 16.384 1.544 or 2.048 or 4.096 or 8.192 or 16.384 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD -- -- -- -- -- -- -- -- -- -- -- -- -- Max 50 ppm 130 ppm 50 ppm 130 ppm 50 ppm 50 ppm 50 ppm 50 ppm 130 ppm 50 ppm 50 ppm 50 ppm 50 ppm 12 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 3 3 3 3 3 3 3 3 3 3 3 3 3 Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 51 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table 45. Framer Only Mode Clock Specifications (continued) Symbol tF Parameter Fall Time Signal Name TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 Min 0 0 0 0 0 0 0 0 0 0 0 0 0 Nom -- -- -- -- -- -- -- -- -- -- -- -- -- Max 3 3 3 3 3 3 3 3 3 3 3 3 3 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns Table 46. Framer Mode Only Input Timing Specifications Input Name Reference CLK LINERXDATA[28:1] LINERXSYNC[28:1] LINERXSYNC29 LINETXSYNC29 LINERXCLK[28:1] LINERXCLK[28:1] LINERXCLK29 LINETXCLK29 Setup Time (tS) Min Max 25 -- 30 -- 30 -- 35 -- Hold Time Min 0 0 0 0 (tH) Max -- -- -- -- Unit ns ns ns ns Table 47. Framer Mode Only Output Timing Specifications Output Name Reference CLK Test Conditions Propagation Delay tPD Min Max Unit LINETXDATA[28:1] LINETXCLK[28:1] CL = TBD pF 25 TBD ns LINETXDATA29 LINETXCLK29 CL = TBD pF 25 TBD ns LINETXSYNC[28:1] LINETXCLK[28:1] CL = TBD pF TBD TBD ns 52 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) 5.10 Framer--LIU Mode Timing Table 48. Framer--LIU Mode Clock Specifications Symbol tCK Parameter Clock Frequency Signal Name TLSC52 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 tCKHI Clock Pulse High Time TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 tR Rise Time TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 tF Fall Time TLSC52 LINERXDATA29 LINERXCLK[28:1] LINERXCLK29 LINETXCLK[28:1] LINETXCLK29 Agere Systems Inc. Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Nom 51.84 TBD 2.048 or 4.096 or 8.192 or 16.384 TBD or 2.048 or 4.096 or 8.192 or 16.384 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Unit MHz TBD MHz MHz MHz MHz TBD MHz MHz MHz MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 53 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table 49. Framer--LIU Mode Input Timing Specifications Input Name Reference CLK LINERXDATA[28:1] LINERXDATA29 LINERXSYNC[28:1] LINERXSYNC29 LINERXCLK[28:1] LINERXCLK29 LINERXCLK[28:1] LINERXCLK29 Setup Time (tS) Min Max TBD 35 TBD 35 TBD 35 TBD 35 Hold Time (t H) Min Max 35 -- 35 -- 35 -- 35 -- Unit ns ns ns ns Table 50. Framer--LIU Mode Output Timing Specifications Output Name Reference CLK Test Conditions LINETXDATA[28:1] LINETXDATA29 LINETXSYNC[28:1] LINETXSYNC29 LINETXCLK[28:1] LINETXCLK29 LINETXCLK[28:1] LINETXCLK29 CL = TBD pF CL = TBD pF CL = TBD pF CL = TBD pF Propagation Delay tPD Min Max -35 35 -35 35 -35 35 -35 35 Unit ns ns ns ns 5.11 Microprocessor Interface Timing 5.11.1 Synchronous Mode The synchronous microprocessor interface mode is selected when MPMODE (pin AD17) = 1. Interface timing for the synchronous mode write cycle is given in Figure 14 and in Table 51 and for the read cycle in Figure 15 and in Table 52. Note: In addition to the MPU_CLK, the VT mapper block also requires TLSC52,TLSSYNC52, RLSC52, RLSSYNC52 signals to access specific portions of the register map. The user needs to make sure that the VT_RDY bit is set before VT_MAPPER reads/writes can occur. tCLK T1 T2 T3 Tn - 2 Tn - 1 Tn MPCLK (66 MHz MAX) tWS tAPD tCSNVS tAPD ADDR[9:0] CSN tADSNVS tAIPD ADSN tAPD tWS RWN tAPD tWS DATA[15:0] (INPUT) tDTNIPD tDTNVPD tADSNVDTF DTN HIGH Z HIGH Z 5-7659(F)a Figure 14. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin AD17) = 1) 54 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) MPCLK 16 MHz minimum to 66 MHz maximum frequency. ADDR [19:0] The address will be available throughout the entire cycle. DATA[15:0] Data will be available during cycle T1. RWN (Input) The read (H) write (L) signal is always high except during a write cycle. CSN (Input) Chip select is an active-low signal. DTN (Output) Data transfer acknowledge is active-low for one clock and then driven high before entering a highimpedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state term.) DTN will become 3-stated when CSN is high. Typically DTN is active 4 or 5 MPCLK cycles after ADSN is low. ADSN (Input) Address strobe is active-low. ADSN must be 1 MPCLK clock period wide. Table 51. Microprocessor Interface Synchronous Write Cycle Specifications (See Figure 14 on page 54 for the timing diagram.) Symbol Parameter TCLK tWS tAPD MPCLK 16 MHz Min--66 MHz Max Frequency ADDR, RWN, DATA (write) Valid to MPCLK MPCLK to ADDR, RWN, DATA, CSN (write) Invalid CSN Valid to MPCLK ADSN Valid to MPCLK MPCLK to ADSN Invalid MPCLK to DTN Valid MPCLK to DTN Invalid ADSN Valid to DT Falling tCSNVS tADSNVS tAIPD tDTNVPD tDTNIPD TADSNVDTF T0 T1 T2 Tn - 4 Setup (ns) (Min) -- 3.5 -- 3.5 5.5 -- -- -- -- Tn - 3 Tn - 2 Hold (ns) Delay (ns) Delay (ns) (Min) (Max) (Min) -- -- -- 0 -- -- 5 -- -- 0 -- -- 0 -- -- 5 -- -- -- 16 4 -- 16 4 -- 1000 -- Tn - 1 Tn MPCLK (66 MHz MAX) tAPD tAVS ADDR[9:0] tCSNSU CSN tADSNSU tSNIPD ADSN RWN tDVPD tADSNVDTF DTN HIGH Z tDIPD HIGH Z tDAIPD DATA[15:0] (OUTPUT) 5-7660(F).a Figure 15. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1) Agere Systems Inc. 55 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) MPCLK 16 MHz minimum to 66 MHz maximum frequency. ADDR [19:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns high. DATA [15:0] Read data is stable in Tn -1. RWN (Input) The read (H) write (L) signal is always high during the read cycle. CSN (Input) Chip select is an active-low signal. DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one clock and then driven high before entering a high-impedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state term.) DT will become 3-stated when CS is high. Typically DTN is active 4 or 5 MPCLK cycles after ADSN is low. ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide. Table 52. Microprocessor Interface Synchronous Read Cycle Specifications (See Figure 15 on page 55 for the timing diagram.) Symbol Parameter tCLK tAVS tAPD MPCLK 16 MHz Min--66 MHz Max Frequency ADDR Valid to MPCLK MPCLK to ADDR Invalid CSN Active to MPCLK ADSN Valid to MPCLK MPCLK to ADSN Inactive MPCLK to DTN Valid MPCLK to DTN Invalid MPCLK to DATA 3-state ADSN Valid to DT Falling tCSNSU tADSNSU tSNIPD tDVPD tDIPD tDAIPD tADSNVDTF Setup (ns) (Min) -- 3.5 -- 3.5 5.5 -- -- -- -- -- Hold (ns) (Min) -- 0 5 0 0 5 -- -- -- -- Delay (ns) (Max) -- -- -- -- -- -- 8 8 8 1000 5.12 Asynchronous Mode The asynchronous microprocessor interface mode is selected when MPMODE (pin AC18) = 0. Interface timing for the asynchronous mode write cycle is given in Figure 16 and in Table 53, and for the read cycle in Figure 17 and in Table 54 (see pages 59--60). 56 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) ADDR[19:0] tCSFDSF tAICSR CSN tAVADSF tADSRAI ADSN tAVDSF tDSNRAI DSN tRWFDSF tDSRRWR tDVDSF tDSRDI RWN DATA[15:0] (INPUT) tADSRDTR tCSFDTR DTN HIGH Z tDSFDTF tCSRDT3 HIGH Z 5-7661(F).ar.1 Figure 16. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin AC18) = 0) ADDR [19:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle. DATA [15:0] Write data is asynchronously passed from the host bus to the internal bus. Data will be available throughout the entire cycle. RWN (Input) The read (H) write (L) signal is always high except during a write cycle. CSN (Input) Chip select is an active-low signal. DTN (Output) Data transfer acknowledge (active-low). DTN is driven asynchronously based on the arrival of CSN. DTN is driven high until the internal transaction is done. DTN is driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated when CSN is high. ADSN (Input) Address strobe is active-low. ADSN must be a minimum of one MPCLK clock period wide. DSN (Input) Data strobe is active-low. Agere Systems Inc. 57 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table 53. Microprocessor Interface Asynchronous Write Cycle Specifications (See Figure 16 on page 57 for the timing diagram.) Symbol tCSFDSF tAICSR tAVADSF tADSRAI tAVDSF tDSNRAI tRWFDSF tDSRRWR tDVDSF tDSRDI tCSFDTR tDSFDTF tADSRDTR tCSRDT3 Parameter CSN Fall to DSN Fall ADDR Invalid to CSN Rise ADDR Valid to ADSN Fall ADSN Rise to ADDR Invalid ADDR Valid to DSN Fall DSN Rise to ADDR Invalid RWN Fall to DSN Fall DSN Rise to RWN Rise DATA Valid to DSN Fall DSN Rise to DATA Invalid CSN Fall to DTN Rise DSN Fall to DTN Fall ADSN Rise to DTN Rise CSN Rise to DTN 3-state Min Interval (ns) 0 0 0 0 0 0 0* 0* 0* 0* 20 120 20 10 Max Interval (ns) -- -- -- -- -- -- -- -- -- -- -- 280 -- -- * Simulation results. Falling edges of ADSN and DSN determine falling edge of DTN. DTN fall is variable, depending on the block selected for access, and may be longer than the typical maximum specified. Rising edge of ADSN determines rising edge of DTN. Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select (CSN) may be connected and driven from the same source. In this configuration, the setup and hold times for ADSN must be satisfied. 58 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) ADDR[19:0] tAICSR tCSFDSF CSN tADSRAI tAVADSF ADSN tDSNRAI tAVDSF DSN RWN tCSFDTR tCSRDT3 tDSFDTF DTN tADSRDTR HIGH Z HIGH Z tDTVDV HIGH Z tADSRD3 HIGH Z DATA[15:0] 5-7662(F).ar.1 Figure 17. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0) ADDR [19:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle. DATA [15:0] Read data on the internal bus is only valid for one clock cycle; therefore, a latch is necessary to meet the correct timing on the host bus. RWN (Input) The read (H) write (L) signal is always high during a read cycle. CSN (Input) Chip select is an active-low signal. DTN (Output) Data transfer acknowledge (active-low). DTN is driven asynchronously based on the arrival of CSN, DSN, and ADSN. DTN is driven high while the internal bus transaction is in progress. There is no need to provide synchronization to outgoing signals in this mode. DTN is driven high and then placed in a high-impedance state when either ADSN or DSN is deasserted. DTN will become 3-stated when CSN is high. ADSN (Input) Address strobe is active-low. DSN (Input) Data strobe is active-low. Agere Systems Inc. 59 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 5 Timing Characteristics (continued) Table 54. Microprocessor Interface Asynchronous Read Cycle Specifications (See Figure 17 on page 59 for the timing diagram.) Symbol tCSFDSF tAICSR tAVADSF tADSRAI tAVDSF tDSNRAI tCSFDTR tDSFDTF Parameter CSN Fall to DSN Fall ADDR Invalid to CSN Rise ADDR Valid to ADSN Fall ADSN Rise to ADDR Invalid ADDR Valid to DSN Fall DSN Rise to ADDR Invalid CSN Fall to DTN Rise DSN Fall to DTN Fall tADSRDTR ADSN Rise to DTN Rise tCSRDT3 CSN Rise to DTN 3-state tDTVDV DTN Valid to DATA Valid tADSRD3 ADSN Rise to DATA 3-state Min Interval (ns) 01 0 0 0 0 0 20 100 20 10 06 20 Max Interval (ns) -- -- 60 2 -- -- -- -- 2803, 4 --5 -- -- -- Notes: 1 DSN can be asserted up to 20 ns (1 clk at 50 MHz) previous to CSN. 2 ADDR can be asserted up to 60 ns (3 clk at 50 MHz) into cycle from ASDN. 3 DTN fall is variable depending on the block selected for access and may be longer than typical maximum specified. 4 Leading edges of ADSN and DSN determine the falling edge of DTN. 5 Rising edge of ADSN determines the rising edge of DTN. 6 Data toggle 20 ns (1 clk at 50 MHz) previous to CSN. Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select (CSN) may be connected and driven from the same source. In this configuration, the setup and hold times for ADSN must be satisfied. 5.13 General Purpose Interface Timing Table 55. Input Timing Specifications Input Name TDI TMSN TRSTN SCAN_EN SCAN_MODE RSTN PMRST IC3STATEN IDDQ 60 Reference CLK Min Setup Time (tS) JTAG Signals TCLK 15.0 ns TCLK 15.0 ns NA ASYNC NA ASYNC NA ASYNC Miscellaneous Signals NA ASYNC NA ASYNC NA ASYNC NA ASYNC Min Hold Time (t H) 2.0 ns 2.0 ns ASYNC ASYNC ASYNC ASYNC ASYNC ASYNC ASYNC Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 5 Timing Characteristics (continued) Table 56. Output Timing Specifications Output Name Reference CLK TDO TLCK PMRST NA Test Conditions Transmit Signals CL = 25 pF Miscellaneous Signals -- Propagation Delay* (tPD) Min Max Unit 3.0 20.0 ns ASYNC ASYNC -- * Propagation delay skew, tPLH - tPHL, is 200 ps. 6 Ordering Information Device Code TMXF281553BAL-2-DB Agere Systems Inc. Package 456-pin PBGA Temperature -40 C to 85 C Comcode 108700055 61 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 Register Description 7 Microprocessor Interface and Global Control and Status Registers Table of Contents Contents Page 7 Microprocessor Interface and Global Control and Status Registers ................................................................... 62 7.1 Super Mapper Global Control and Status Registers .................................................................................... 63 7.2 Microprocessor Interface Register Map ........................................................................................................ 73 Tables Page Table 57. SMPR_VCR, Super Mapper Version Control Register (RO) ................................................................. 63 Table 58. SMPR_SYMR[4], Super Mapper Symbol Register4 SMPR (RO) ......................................................... 63 Table 59. SMPR_SYMR[3], Super Mapper Symbol Register3 (RO) ..................................................................... 63 Table 60. SMPR_SYMR[2], Super Mapper Symbol Register2 (RO) ..................................................................... 63 Table 61. SMPR_SYMR[1], Super Mapper Symbol Register1 (RO) ..................................................................... 64 Table 62. SMPR_SYMR[0], Super Mapper Symbol Register0 (RO) ..................................................................... 64 Table 63. SMPR_ISR, Super Mapper Interrupt Status Register (RO) ................................................................... 64 Table 64. SMPR_IMR, Super Mapper Interrupt Mask Register (RW) ................................................................... 65 Table 65. SMPR_GTR, Global Trigger Register (RW) .......................................................................................... 66 Table 66. SMPR_MSRR, Block Software Reset Register (RW) ........................................................................... 66 Table 67. SMPR_GCR, Global Control Register (RW) ......................................................................................... 68 Table 68. SMPR_TSCR, TMUX, and SPEMPR Control Register (RW) ................................................................ 69 Table 69. SMPR_FCR, Framer Control Register (RW) ......................................................................................... 69 Table 70. SMPR_CLCR, CDR and LVDS Control Register (RW) ......................................................................... 70 Table 71. SMPR_CPCR, Clock and Power Control Register (RW) ...................................................................... 71 Table 72. SMPR_PMRCHR, PM Reset Count High Register (RW) ...................................................................... 71 Table 73. SMPR_PMRCLR, PM Reset Count Low Register (RW) ....................................................................... 72 Table 74. SMPR_SR, Scratch Register (RW) ....................................................................................................... 72 Table 75. SMPR_TX_LINE_EN1 ........................................................................................................................... 72 Table 76. Microprocessor Interface Register Map ................................................................................................. 73 62 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 7 Microprocessor Interface and Global Control and Status Registers (continued) 7.1 Super Mapper Global Control and Status Registers This section gives a brief description of each register bit and its functionality. The abbreviations after each register indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W). Table 57. SMPR_VCR, Super Mapper Version Control Register (RO) Address Bit Name Function 0x00000 15:11 -- Reserved. 10:8 SMPR_VERSION[2:0] Super Mapper Version Number. SMPR version register will change each time the device is changed. 7:0 SMPR_ID[7:0] SMPR ID Number. Reset Default 0x0000 Table 58. SMPR_SYMR[4], Super Mapper Symbol Register4 SMPR (RO) Address 0x00001 Bit 15:8 7:0 Name T M Function Super Mapper Symbol Bit. Super Mapper Symbol Bit. Reset Default 0x544D Table 59. SMPR_SYMR[3], Super Mapper Symbol Register3 (RO) Address 0x00002 Bit 15:8 7:0 Name X F Function Super Mapper Symbol Bit. Super Mapper Symbol Bit. Reset Default 0x5846 Table 60. SMPR_SYMR[2], Super Mapper Symbol Register2 (RO) Address 0x00003 Bit 15:8 7:0 Agere Systems Inc. Name 2 8 Function Super Mapper Symbol Bit. Super Mapper Symbol Bit. Reset Default 0x3238 63 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 61. SMPR_SYMR[1], Super Mapper Symbol Register1 (RO) Address 0x00004 Bit 15:8 7:0 Name 1 5 Function Super Mapper Symbol Bit. Super Mapper Symbol Bit. Reset Default 0x3135 Table 62. SMPR_SYMR[0], Super Mapper Symbol Register0 (RO) Address 0x00005 Bit 15:8 7:0 Name 5 CR Function Super Mapper Symbol Bit. Super Mapper Symbol Bit. Reset Default 0x350D Table 63. SMPR_ISR, Super Mapper Interrupt Status Register (RO) Address Bit 0x00008 15 14:10 9 8 7 6 5 Name Function Reset Default SMPR_APS_IS APS Interrupt. Active-high signal indicating an interrupt event 0x0000 has occurred in the automatic protection switch (APS) block, which is within the TMUX block. -- Reserved. SMPR_PARITY_IS Microprocessor Interface Data Bus Parity Error Interrupt. Active-high signal indicating a P data bus parity error has occurred. Summary of errors detected in PAR[1] and PAR[0] parity detectors. SMPR_PMRESET_IS Performance Monitor Reset Interrupt. Active-high signal indicating a 1 second event has occurred. SMPR_TPG_IS TPG Interrupt. Active-high signal indicating an interrupt event has occurred in the test pattern generation block. SMPR_DJA_IS DJA Interrupt. Active-high signal indicating an interrupt event has occurred in the digital jitter attenuation block. SMPR_FRM_IS FRM Interrupt. Active-high signal indicating an interrupt event has occurred in the framer block. However, on device powerup, this bit is erroneously set. A device initialization routine containing the following sequence should clear the interrupt: Power up the framer block by selecting one of the clock options in address 0x00012. Set and clear the framer software reset bit, bit of address 0x0000E. Power down the framer block in address 0x00012. XC Interrupt. Active-high signal indicating an interrupt event has occurred in the cross connect block. M13 Interrupt. Active-high signal indicating an interrupt event has occurred in the M13 multiplexer/demultiplexer block. VTMPR Interrupt. Active-high signal indicating an interrupt event has occurred in the VT mapper block. SPEMPR Interrupt. Active-high signal indicating an interrupt event has occurred in the SPE mapper block. TMUX Interrupt. Active-high signal indicating an interrupt event has occurred in the TMUX block. 64 4 SMPR_XC_IS 3 SMPR_M13_IS 2 SMPR_VTMPR_IS 1 SMPR_SPEMPR_IS 0 SMPR_TMUX_IS Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 64. SMPR_IMR, Super Mapper Interrupt Mask Register (RW) Address Bit 0x00009 15 14:10 9 8 7 6 5 4 3 2 1 0 Agere Systems Inc. Name Function Reset Default SMPR_APS_IM APS Interrupt Mask. When this bit is set to 1, the composite 0x83FF interrupt bit will be inhibited from contributing to the interrupt pin APS_INTN. -- Reserved. SMPR_PARITY_IM Microprocessor Interface Data Bus Parity Error Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_PMRESET_IM Performance Monitor Reset Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_TPG_IM TPG Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_DJA_IM DJA Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_FRM_IM FRM Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_XC_IM XC Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_M13_IM M13 Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_VTMPR_IM VTMPR Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_SPEMPR_IM SPEMPR Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. SMPR_TMUX_IM TMUX Interrupt Mask. When this bit is set to 1, the composite interrupt bit will be inhibited from contributing to the interrupt pin INTN. 65 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 65. SMPR_GTR, Global Trigger Register (RW) Address 0x0000D Bit 15:10 9 Name -- SMPR_BER_INSRT 8 SMPR_PMRESET 7:1 0 -- SMPR_SWRS Function Reset Default 0x0000 Reserved. Bit Error Rate Insertion. When this bit is set to 1, this bit indicates to the Super Mapper that a bit error has to be inserted in the appropriate frame. Performance Monitor Reset. When this bit is set to 1, the PMRESET signal will transition from a logic 0 to a logic 1 state. It will stay at a logic 1 state for a minimum of 100 ns. (Self-clearing.) Reserved. Super Mapper Software Reset. When this bit is set to 1, it will create a software reset of the device. This reset has the same effect as the hardware reset. All microprocessor registers are reset to their default states and all internal data path state machine are reset. (Self-clearing.) Table 66. SMPR_MSRR, Block Software Reset Register (RW) Address Bit Name Function 0x0000E 15:8 7 -- SMPR_TPG_SWRS 6 SMPR_DJA_SWRS 5 SMPR_FRM_SWRS Reserved. TPG Block Software Reset. When this bit is set to 1, it will create a software reset for the test-pattern generation macro. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the macro are reset to their default states. All internal data path state machine within the block are also reset. DJA Block Software Reset. When this bit is set to 1, it will create a software reset for the digital jitter attenuation block. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the macro are reset to their default states. All internal data path state machine within the block are also reset. FRM Block Software Reset. When this bit is set to 1, it will create a software reset for the framer block. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the block are reset to their default states. All internal data path state machine within the block are also reset. 66 Reset Default 0x0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 66. SMPR_MSRR, Block Software Reset Register (RW) (continued) Address Bit Name 0x0000E 4 SMPR_XC_SWRS 3 SMPR_M13_SWRS 2 1 0 Agere Systems Inc. Function Reset Default XC Block Software Reset. When this bit is set to 1, it will 0x0000 create a software reset for the cross connect block. This reset has the same effects as the hardware reset and chiplevel software reset. All microprocessor registers within the block are reset to their default states. All internal data path state machine within the block are also reset. M13 Block Software Reset. When this bit is set to 1, it will create a software reset for the M13 multiplexer/demultiplexer block. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the block are reset to their default states. All internal data path state machine within the block are also reset. SMPR_VTMPR_SWRS VTMPR Block Software Reset. When this bit is set to 1, it will create a software reset for the VTMPR block. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the block are reset to their default states. All internal data path state machine within the block are also reset. SMPR_SPEMPR_SWRS SPEMPR Block Software Reset. When this bit is set to 1, it will create a software reset for the SPEMPR block. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the block are reset to their default states. All internal data path state machine within the block are also reset. SMPR_TMUX_SWRS TMUX Block Software Reset. When this bit is set to 1, it will create a software reset for the TMUX block. This reset has the same effects as the hardware reset and chip-level software reset. All microprocessor registers within the block are reset to their default states. All internal data path state machine within the block are also reset. 67 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 67. SMPR_GCR, Global Control Register (RW) Address Bit 0x0000F 15:10 9:8 Name -- SMPR_PMMODE[1:0] Function Reset Default 0x0000 Reserved. Performance Monitor Mode: 00 = PMRST comes from external pin. 10 = PMRST comes from external pin. 01 = PMRST comes from internal 1 second counter. Note: Please see Table 72 and Table 73. 7:5 4 3 2 1 11 = PMRST is software controlled using the SMPR_PMREST register bit 8 (Table 65 on page 66). -- Reserved. SMPR_PARITY_EVEN_ODD Even or Odd Parity Indication on the Microprocessor Data Bus. This bit controls the parity setting and checking on the microprocessor data bus: SMPR_OH_DEFLT SMPR_FXD_STFF_DEFLT SMPR_COR_COW 0 = Even parity on microprocessor byte data/parity bus. 1 = Odd parity on microprocessor byte data/parity bus. Overhead Default. This bit controls the filling of the unused overhead bytes: 0 = Filling the unused overhead bits with 0. 1 = Filling the unused overhead bits with 1. Fixed Stuff Default. This bit control the filling of the fixed stuff bytes: 0 = Filling the fixed stuff bytes with 0. 1 = Filling the fixed stuff bytes with 1. Clear On Read or Clear On Write. This bit controls the way clearing is performed on all delta and event bits in all registers: 0 = The delta and event bit is cleared by writing a 1 to it. Note: The clear-on-write (COW) feature does not apply to all registers in the 28-channel framer block. The only framer block register that has COW is transmit FDL link register 8 (address 0x8LTD7). All other registers in the framer block are only clear-on-read. 0 SMPR_SAT_ROLLOVER 1 = The delta and event bit is cleared when a microprocessor read is performed on this delta and event bit. Saturate or Rollover. This bit controls if error counters hold their values or rollover when they reach their maximum values. 0 = Error counters rollover when reaching maximum values. 1 = Error counters hold their values when reaching maximum values. 68 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 68. SMPR_TSCR, TMUX, and SPEMPR Control Register (RW) Address Bit Name Function -- MPU_RHDZTHD_LB SMPR_RETIME_CLK_EDGE Reserved. Forces Received High-speed to Transmit Highspeed Data Loopback Prior to the CDR. Retime Clock Edge for the Received High-speed Data. This bit controls on which clock edge, positive or negative, the received high-speed data is to retimed. SMPR_TELECOMBUS_EDGE 1 = The received data will be clocked into the device on the negative clock edge. 0 = The received data will be clocked into the device on the positive clock edge. Telecom Bus Edge. When the SPE mapper is enabled to use a time slot on the telecom bus. This bit selects the clock edge for the data signals transmitted to the telecom bus during the selected time slot. 0x00010 15:4 3 2 1 0 Reset Default 0x0000 0 = Clock telecom bus signals out on the falling edge. 1 = Clock telecom bus signals out on the rising edge. SMPR_TMUX_MASTER_SLAVE SMPR/TMUX Master Slave. This bit controls if the TMUX block in this Super Mapper is the master device in the system module that this Super Mapper is on, or if it is a slave device. 0 = This Super Mapper/TMUX is a slave device in the module. 1 = This Super Mapper/TMUX is a master device in the module. Table 69. SMPR_FCR, Framer Control Register (RW) Address Bit 0x00012 15:3 2:0 Name Function -- Reserved. SMPR_FRM_CLK_SEL[2:0] Framer Clock Selection. Selects the source of the framer high-speed clock the selected clock needs to be faster than the aggregate throughput of the framer block for proper operation. Reset Default 0x0000 000 = Framer is powered down. No clock required. 001 = Framer receives TLSC52 (pin AC3) clock input 010 = Framer receives DS1XCLK (pin AD16) clock input. 011 = Framer receives E1XCLK (pin AC17) clock input. Agere Systems Inc. 69 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 70. SMPR_CLCR, CDR, and LVDS Control Register (RW) Address Bit Name Function 0x00013 15:11 -- Reserved. 10 SMPR_MPU_CDR_MODE CDR Mode Selection. This bit controls the operating mode of the internal CDR; whether it operates at 155 MHz or 51 MHz. 9 8 7:4 3 2 1 0 Reset Default 0x000C 0 = 155 MHz mode. 1 = 51 MHz mode. SMPR_MPU_CG_PWRDN PLL Powerdown Selection. This bit controls whether the internal framer PLL is powered on or off. SMPR_LVDS_REF_SEL -- SMPR_RXPWRDN SMPR_PLLPWRDN 0 = Internal PLL powered on. 1 = Internal PLL powered off. LVDS Reference Voltage Selection. This bit controls which reference voltage, internal or external, is used to power the LVDS buffers. 0 = External reference voltage is used. 1 = Internal reference voltage is used. Reserved. CDR Channel Powerdown. This bit controls the power to the CDR data channel. 0 = Channel is active, power is on. 1 = Channel is inactive, power to the channel is turned off. CDR Phase-Lock Loop Powerdown. This bit controls the power to the CDR PLL circuit. SMPR_MRESET 0 = PLL is active, power to the PLL is turned on. 1 = PLL is inactive, power to the PLL is turned off. CDR Master Reset. This bit is used for the CDR initialization. It can also be used in test mode to reset test circuitry. SMPR_CDR_SEL 0 = No reset. 1 = Reset mode. CDR Selection. This bit controls if the TMUX receives its high-speed receive clock and data from the on-chip CDR block or from the pins (bypass the CDR). 0 = Bypass CDR. Receives clock and data directly from pins. 1 = Use CDR. Receives clock and data through CDR. 70 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 71. SMPR_CPCR, Clock and Power Control Register (RW) Address Bit Name 0x00014 15:9 8 -- SMPR_M13_TCLK Reserved. M13 MUX/Tx Clock Enable. SMPR_M13_RCLK 0 = M13 MUX/Tx clock is powered down and inactive. 1 = M13 MUX/Tx clock is powered up and active. M13 DeMUX Rx Clock Enable. 7 6 5 4 SMPR_DJA_CLK Function 0 = M13 deMUX/Rx clock is powered down and inactive. 1 = M13 deMUX/Rx clock is powered up and active. Digital Jitter Attenuation Clock Enable. SMPR_VTMPR_TCLK 0 = DJA DPLL is powered down and inactive. 1 = DJA DPLL is powered up and active. VT Mapper Tx Clock Enable. SMPR_VTMPR_RCLK 0 = VT mapper Tx clock is powered down and inactive. 1 = VT mapper Tx clock is powered up and active. VT Mapper Rx Clock Enable. 3 0 = VT mapper Rx clock is powered and inactive. 1 = VT mapper Rx clock is powered up and active. SMPR_SPEMPR_TCLK SPE Mapper Tx Clock Enable. 2 0 = SPE mapper Tx clock is powered down and inactive. 1 = SPE mapper Tx clock is powered up and active. SMPR_SPEMPR_RCLK SPE Mapper Rx Clock Enable. 1 SMPR_TMUX_TCLK 0 = SPE mapper Rx clock is powered down and inactive. 1 = SPE mapper Rx clock is powered up and active. TMUX Tx Clock Enable. SMPR_TMUX_RCLK 0 = TMUX Tx clock is powered down and inactive. 1 = TMUX Tx clock is powered up and active. TMUX Rx Clock Enable. 0 Reset Default 0x0000 0 = TMUX Rx clock is powered down and inactive. 1 = TMUX Rx clock is powered up and active. Table 72. SMPR_PMRCHR, PM Reset Count High Register (RW) Address Bit Name Function 0x00016 15:11 -- Reserved. 10:0 SMPR_PMRESET_HIGH_COUNT[10:0] Performance Monitor Counter Preset. The preset value of this register determines the frequency of the internal PM counter. User should preload an appropriate value based on the microprocessor interface clock rate in order to reach the desired PMRST rate. Agere Systems Inc. Reset Default 0x01F8 71 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 73. SMPR_PMRCLR, PM Reset Count Low Register (RW) Address Bit Name Function 0x00017 15:0 SMPR_PMRESET_LOW_COUNT[15:0] Performance Monitor Counter Preset. The preset value of this register determines the frequency of the internal PM counter. User should preload an appropriate value based on the microprocessor interface clock rate in order to reach the desired PMRST rate. Reset Default 0x0000 Table 74. SMPR_SR, Scratch Register (RW) Address Bit 0x0001F 15:0 Name Function SMPR_SCRATCH_REGISTER[15:0] Scratch Register. This register is for test and diagnostics purpose. Reset Default 0x0000 Read/write operations can be performed on all bits. No SMPR control and status will be affected by any read/write operations to this register. Table 75. SMPR_TX_LINE_EN1 Address Bit Name 0x00018 15:0 SMPR_TX_LINE_EN[16:1] 0x00019 12:0 72 Function 3-State Control for LINETXDATA, LINETXCLK, and LINETXSYNC Output Pins. SMPR_TX_LINE_EN[29:17] 3-State Control for LINETXDATA, LINETXCLK, and LINETXSYNC Output Pins. Reset Default 0x0000 0x0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 7 Microprocessor Interface and Global Control and Status Registers (continued) 7.2 Microprocessor Interface Register Map Table 76. Microprocessor Interface Register Map Address Symbol Bit 15 0x00000 SMPR_VCR 0 Bit Bit Bit Bit Bit 14 13 12 11 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Super Mapper Version Control Register--RO 0 0 0 0 SMPR_VERSION[2:0] SMPR_ID[7:0] Super Mapper Symbol Register--RO 0x00001 SMPR_SYMR4 0x54 = T 0x4D = M 0x00002 SMPR_SYMR3 0x58 = X 0x46 = F 0x00003 SMPR_SYMR2 0x32 = 2 0x38 = 8 0x00004 SMPR_SYMR1 0x31 = 1 0x35 = 5 0x00005 SMPR_SYMR0 0x35 = 5 0x0D = CR 0x00006 -- 0x00007 -- 0x00008 SMPR_ISR SMPR_APS_IS SMPR_ PARITY_IS SMPR_ PMRESET_IS 0x00009 SMPR_IMR SMPR_APS_IM SMPR_ PARITY_IM SMPR_ PMRESET_IM 0x0000A -- 0x0000C -- 0x0000D SMPR_GTR SMPR_BER_ INSRT SMPR_ PMRESET Super Mapper Interrupt Status Register--RO SMPR_TPG_IS SMPR_DJA_IS SMPR_FRM_ IS SMPR_XC_IS SMPR_M13_ SMPR_VTMPR_ IS IS SMPR_ SPEMPR_IS SMPR_TMUX_ IS SMPR_XC_IM SMPR_M13_ SMPR_VTMPR_ IM IM SMPR_ SPEMPR_IM SMPR_TMUX_ IM Super Mapper Interrupt Mask Register--R/W SMPR_TPG_IM SMPR_DJA_ IM SMPR_FRM_ IM Global Trigger Register--R/W SMPR_SWRS Block Software Reset Register--R/W 0x0000E SMPR_MSRR SMPR_TPG_SWRS SMPR_DJA_ SWRS SMPR_FRM_ SWRS SMPR_XC_ SWRS SMPR_M13_ SMPR_VTMPR_ SMPR_SPEMPR_ SWRS SWRS SWRS SMPR_TMUX_ SWRS Global Control Register (SMPR_GCR)--R/W 0x0000F SMPR_GCR Agere Systems Inc. SMPR_PMMODE[1:0] SMPR_PARITY_ EVEN_ODD SMPR_OH_ DEFLT SMPR_FXD_ STFF_DEFLT SMPR_COR_ COW SMPR_SAT_ ROLLOVER 73 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 7 Microprocessor Interface and Global Control and Status Registers (continued) Table 76. Microprocessor Interface Register Map (continued) Address Symbol 0x00010 SMPR_TSCR 0x00011 -- 0x00012 SMPR_FCR Bit 15:11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 MP0RH02THD_LB SMPR_RETIME_ CLK_EDGE Bit 1 Bit 0 TMUX and SPEMOR CONTROL Register--R/W SMPR_TELECOMBUS_ SMPR_SMPR_TMUX_ EDGE MASTER_SLAVE FRAMER Control Register--R/W SMPR_FRM_CLK_SEL[2:0] CDR and LVDS Control Register--R/W 0x00013 SMPR_CLCR 0x00014 SMPR_CPCR 0x00015 -- 0x00016 SMPR_PMRCHR -- SMPR_MPU_C SMPR_MPU_ SMPR_LVDS_ DR_MODE CG_PWRDN REF_SEL SMPR_RXPWRDN SMPR_ PLLPWRDN SMPR_MRESET SMPR_CDR_SEL SMPR_SPEMPR_ TXCLK SMPR_SPEMPR_ RXCLK SMPR_TMUX_ TXCLK SMPR_TMUX_RXCLK Clock and Power Control Register--R/W SMPR_M13_ SMPR_M13_ TXCLK RXCLK SMPR_DJA_ CLK SMPR_VTMPR_ SMPR_VTMPR_ TXCLK RXCLK PM Reset Count Register High--R/W SMPR_PMRESET_HIGH_COUNT[10:0] PM Reset Count Register Low--R/W 0x00017 SMPR_PMRCLR SMPR_PMRESET_LOW_COUNT[15:0] 0x00018 TX_LINE_EN1 TX_LINE_EN[16-1] 0x00019 TX_LINE_EN2 TX_LINE_EN[29-17] Scratch Register--R/W 0x0001F 74 SMPR_SR SMPR_SCRATCH_REGISTER[15:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers Table of Contents Contents Page 8 TMUX Registers ................................................................................................................................................. 75 8.1 TMUX Register Descriptions ........................................................................................................................ 77 8.2 TMUX Register Map ................................................................................................................................... 124 Tables Page Table 77. TMUX_ID_R, TMUX Identification Register (RO) .................................................................................. 77 Table 78. TMUX_ONESHOT, TMUX One-Shot Register 0 to 1 (R/W) ................................................................. 77 Table 79. TMUX_RCV_TX_MODE, TMUX Receive/Transmit Mode (R/W) .......................................................... 77 Table 80. TMUX_TX_DLT, Delta/Event (COR/COW) ........................................................................................... 78 Table 81. TMUX_RPS_DLT, Delta/Event (COR/COW) ........................................................................................ 78 Table 82. TMUX_RHS_DLT, Delta/Event (COR/COW) ........................................................................................ 79 Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) ............................................................................ 81 Table 84. TMUX_TX_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) .......................... 87 Table 85. TMUX_RPS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) ....................... 88 Table 86. TMUX_RHS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) ....................... 88 Table 87. TMUX_RPOH[1--3]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0) .................. 89 Table 88. TMUX_APSINT_MSK, Mask Bits for APSINT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) ........... 91 Table 89. TMUX_TX_STATE, State Parameters (RO) ......................................................................................... 91 Table 90. TMUX_RPS_STATE, State and Value Parameters (RO) ..................................................................... 91 Table 91. TMUX_RHS_STATE, State and Value Parameters (RO) ..................................................................... 92 Table 92. TMUX_RPOH[1--3]_STATE, State and Value Parameters (RO) ......................................................... 92 Table 93. TMUX_RHS_CTL, Receive High-speed Control Parameters (R/W) ..................................................... 94 Table 94. TMUX_RLS_BITBLK_CTL, Receive Low-speed Control Parameters (R/W) ........................................ 94 Table 95. TMUX_RLS_MODE_CTL, Receive Low-speed Control Parameters (R/W) .......................................... 95 Table 96. TMUX_RAISINH_CTL, Receive Low-speed Control Parameters (R/W) ............................................... 96 Table 97. TMUX_LOSDETCNT, Receive Low-speed Control Parameters (R/W) ................................................ 97 Table 98. TMUX_CNTD_TOH_[A--B], Continuous N-Times Detect Control Parameters (R/W) .......................... 98 Table 99. TMUX_CNTD_POH_[A--B], Continuous N-Times Detect Control Parameters (R/W) ......................... 99 Table 100. TMUX_C2EXP[1--2_3], Continuous N-Times Detect Control Parameters (R/W) ............................ 100 Table 101. TMUX_RF1MON, Receive Monitor Values (RO) .............................................................................. 100 Table 102. TMUX_RAPSMON, Receive Monitor Values (RO) ........................................................................... 100 Table 103. TMUX_RS1MON, Receive Monitor Values (RO) .............................................................................. 100 Table 104. TMUX_RPOHMON[1--3][A--D], Receive Monitor Values (RO) ....................................................... 101 Table 105. TMUX_TLS_CTL, Transmit Low-speed Control Parameters (R/W) .................................................. 102 Table 106. TMUX_THS_PORT_CTL, Transmit High-speed Port Control Parameters (R/W) ............................. 103 Table 107. TMUX_THS_TOH_CTL, Transmit High-speed Control Parameters (R/W) ....................................... 103 Table 108. TMUX_THS_POH[1--3]_CTL, Transmit High-speed Control Parameters (R/W) ............................. 105 Table 109. TMUX_TLRDI_CTL, Transmit High-speed Line RDI Control Parameters (R/W) .............................. 109 Table 110. TMUX_TPRDI_CTL, Transmit High-speed Path RDI Control Parameters (R/W) ............................. 109 Table 111. TMUX_TZ0_INS_VAL, Transmit TOH and POH Insert Values (R/W) .............................................. 110 Table 112. TMUX_TS1_F1_INS_VAL, Transmit TOH and POH Insert Values (R/W) ........................................ 110 Table 113. TMUX_TAPS_INS_VAL, Transmit TOH and POH Insert Values (R/W) ........................................... 110 Table 114. TMUX_TPOH[1--3]_INS_[A--C], Transmit TOH and POH Insert Values (R/W) ............................. 110 Table 115. TMUX_TBERINS_CTL, Transmit High-speed Error Insertion Control Parameters (R/W) ................ 112 Table 116. TMUX_THS_ERR_CTL, Transmit High-speed Error Insertion Control Parameters (R/W) ............... 113 Table 117. TMUX_TOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) ............................. 113 Table 118. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) .......................... 115 Table 119. TMUX_TFRAMEOFFSET, Transmit High-speed Offset Control Parameters (R/W) ......................... 116 Table 120. TMUX_SD_CTL[1--6], B1/B2 Signal Degrade Set/Clear Control Registers (R/W) .......................... 116 Agere Systems Inc. 75 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table of Contents (continued) Tables Page Table 121. TMUX_SF_CTL[1--6], B1/B2 Signal Fail Set/Clear Control Registers (R/W) ................................... 117 Table 122. TMUX_B3SD_CTL[1--6], B3 Signal Degrade Set/Clear Control Registers (R/W) ........................... 117 Table 123. TMUX_B3SF_CTL[1--6], B3 Signal Fail Set/Clear Control Registers (R/W) .................................... 118 Table 124. TMUX_B1ECNT, Receive B1 Error Counts (RO) .............................................................................. 118 Table 125. TMUX_B2ECNT_17_16 and TMUX_B2ECNT_15_0, Receive B2 Error Counts (RO) ..................... 119 Table 126. TMUX_B3ECNT[1--3], Receive B3 Error Counts (RO) .................................................................... 119 Table 127. TMUX_M1ECNT_17_16 and TMUX_M1ECNT_15_0, Receive M1 Error Counts (RO) ................... 120 Table 128. TMUX_G1ECNT[1--3], Receive G1 Error Counts (RO) ................................................................... 120 Table 129. TMUX_RPTR_INCCNT[1--3], Receive Pointer Increment Count (RO) ............................................ 121 Table 130. TMUX_RPTR_DECCNT[1--3], Receive Pointer Decrement Count (RO) ......................................... 121 Table 131. TMUX_RJ0EXPECTED[1--8], Expected J0 Byte Sequence (R/W) ................................................. 121 Table 132. TMUX_RJ0CAPTURED[1--8], Captured J0 Receive Value (RO) .................................................... 121 Table 133. TMUX_TJ0VALUE[1--8], J0 Byte Transmit Insert (R/W) .................................................................. 121 Table 134. TMUX_RJ1EXPECTED1_[1--32], Expected J1 Byte Value for Port 1 (R/W) ................................... 122 Table 135. TMUX_RJ1EXPECTED2_[1--32], Expected J1 Byte Value for Port 2 (R/W) ................................... 122 Table 136. TMUX_RJ1EXPECTED3_[1--32], Expected J1 Byte Value for Port 3 (R/W) ................................... 122 Table 137. TMUX_RJ1CAPTURED1_[1--32], Captured J1 Value for STS #1 (RO) .......................................... 122 Table 138. TMUX_RJ1CAPTURED2_[1--32], Captured J1 Value for STS #2 (RO) .......................................... 122 Table 139. TMUX_RJ1CAPTURED3_[1--32], Captured J1 Value for STS #3 (RO) .......................................... 123 Table 140. TMUX_TJ1VALUE_1[1--32], J1 Byte Transmit Insert for STS #1 (R/W) ......................................... 123 Table 141. TMUX_TJ1VALUE_2[1--32], J1 Byte Transmit Insert for STS #2 (R/W) ......................................... 123 Table 142. TMUX_TJ1VALUE_3[1--32], J1 Byte Transmit Insert for STS #3 (R/W) ......................................... 123 Table 143. TMUX Register Map .......................................................................................................................... 124 76 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) 8.1 TMUX Register Descriptions This section provides a brief description of each register bit and its functionality. The abbreviations after each register indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W). Table 77. TMUX_ID_R, TMUX Identification Register (RO) Address Bit Name 0x40000 15:11 -- 10:8 7:0 Function Reserved. 0x0 TMUX_VERSION[2:0] Block Version Number. Block version register will change each time the device is changed. TMUX_ID[7:0] Reset Default Block ID Number. 0x0 0x04 Table 78. TMUX_ONESHOT, TMUX One-Shot Register 0 to 1 (R/W) Address Bit Name 0x40002 15:8 -- 7 6 5 Function Reserved. 0x00 TMUX_B3SFCLEAR B3 Signal Fail Clear. Allows the signal fail algorithm to be forced into the normal state. TMUX_B3SFSET Reset Default B3 Signal Fail Set. Allows the signal fail algorithm to be forced into the failed state. TMUX_B3SDCLEAR B3 Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state. 0 0 0 4 TMUX_B3SDSET B3 Signal Degrade Set. Allows the signal degrade algorithm to be forced into the degraded state. 0 3 TMUX_SFCLEAR Signal Fail Clear. Allows the signal fail algorithm to be forced into the normal state. 0 2 TMUX_SFSET Signal Fail Set. Allows the signal fail algorithm to be forced into the failed state. 0 1 TMUX_SDCLEAR Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state. 0 0 TMUX_SDSET Signal Degrade Set. Allows the signal degrade algorithm to be forced into the degraded state. 0 Table 79. TMUX_RCV_TX_MODE, TMUX Receive/Transmit Mode (R/W) Address Bit Name 0x40003 15:1 -- 0 TMUX_STS1MODE Agere Systems Inc. Function Reserved. STS-1 Mode Control Bit. A 1 indicates that the received and transmitted high-speed data is STS-1 data operating at 52 MHz. A 0 indicates that the received and transmitted high-speed data operates at 155 MHz. Reset Default 0x000 0 77 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 80. TMUX_TX_DLT, Delta/Event (COR/COW) Address Bit 0x40004 15:7 6:4 3 2 1 0 Name Function Reset Default -- Reserved. 0x000 TMUX_TLSPARE[3:1] Transmit Low-speed Parity Error Event (Input Port Num0 ber). This event bit indicates a byte transfer parity error was detected on the respective STS-1/AU-3 input. The mask bits are TMUX_TLSPARM[3:1] (Table 84). TMUX_TPOAC_PE Transmit Path Overhead Access Channel (TPOAC) Par0 ity Error Event. This event bit indicates a parity error was detected on the incoming transmit path overhead access channel. The mask bit is TMUX_TPOAC_PM (Table 84). 0 TMUX_TTOAC_PE Transmit Transport Overhead Access Channel (TTOAC) Parity Error Event. This event bit indicates a parity error was detected on the incoming transmit transport overhead access channel. The mask bit is TMUX_TTOAC_PM (Table 84). TMUX_THSILOFD Transmit High-speed Input Loss of Frame Delta. This 0 delta bit indicates a change of state for the transmit loss of frame bit TMUX_THSILOF (Table 89). The mask bit is TMUX_THSILOFM (Table 84). 0 TMUX_THSILOCD Transmit High-speed Input Loss of Clock Delta. This delta bit indicates a change of state for the transmit loss of high-speed clock bit TMUX_THSILOC (Table 89). The mask bit is TMUX_THSILOCM (Table 84). Table 81. TMUX_RPS_DLT, Delta/Event (COR/COW) Address Bit 0x40005 15:6 5 4 3 2 1 0 78 Name Function Reset Default -- Reserved. 0x000 0 TMUX_RPSLOFD Receive Protection High-speed Loss of Frame Delta. This delta bit indicates a change in state of TMUX_RPSLOF (Table 90). The mask bit is TMUX_RPSLOFM (Table 85). TMUX_RPSOOFD Receive Protection High-speed Out of Frame Delta. This 0 delta bit indicates a change in state of TMUX_RPSOOF (Table 90). The mask bit is TMUX_RPSOOFM (Table 85). TMUX_RPSILOCD Receive Protection High-speed Loss of Input Clock 0 Delta. This delta bit indicates a change in state of the TMUX_RPSILOC (Table 90) state bit. The mask bit is TMUX_RPSILOCM (Table 85). TMUX_RPSB2E Receive Protection High-speed B2 Error Event. This event 0 bit indicates a B2 error was detected in the receive protection input. The mask bit is TMUX_RPSB2M (Table 85). 0 TMUX_RPSLREIE Receive Protection High-speed Line REI Event. This event bit indicates a line REI error was detected in the receive protection input. The mask bit is TMUX_RPSLREIM (Table 85). -- Reserved. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 82. TMUX_RHS_DLT, Delta/Event (COR/COW) Address Bit Name 0x40006 15 -- 14 13 Function Reset Default Reserved. 0 TMUX_RS1BABE Receive S1 Babble Event. This event bit indicates an inconsistent S1 value is being received. The event is triggered if TMUX_CNTDS1FRAME[3:0] (Table 98) consecutive frames pass without a validated message occurring. The mask bit is TMUX_RS1BABM (Table 86). 0 TMUX_RS1MOND Receive S1 Monitor Delta. This delta bit indicates a change of state for TMUX_RS1MON[7:0] (Table 103). A new S1 value is detected after TMUX_CNTDS1[3:0] (Table 98) consecutive occurrences of a consistent new value in the S1 byte. The mask bit is TMUX_RS1MONM. 0 12 TMUX_RLRDIMOND Receive Line RDI Monitor Delta. This delta bit indicates a change in state for TMUX_RLRDIMON (Table 91) when the pattern 110 is detected/not detected TMUX_CNTDK2[3:0] (Table 98) consecutive times in the incoming STS-3/STM-1 frame. The mask bit is TMUX_RLRDIMONM (Table 86). 0 11 TMUX_RLAISMOND Receive Line AIS Monitor Delta. This delta bit indicates a change in state for TMUX_RLAISMON (Table 91) when the pattern 111 is detected/not detected TMUX_CNTDK2[3:0] consecutive times in the incoming STS-3/STM-1 frame. The mask bit is TMUX_RLAISMONM (Table 86). 0 10 TMUX_RK2MOND Receive K2 Monitor Delta. This delta bit indicates a change in state for TMUX_K2MON[2:0] (Table 102 on page 100). A new K2 value is detected after TMUX_CNTDK2[3:0] consecutive occurrences of a consistent new value in the three least significant bits of the incoming K2 byte. Note that this delta bit may be coincident with TMUX_RLRDIMOND and TMUX_RLAISMOND. The mask bit is TMUX_RK2MONM (Table 86). 0 9 TMUX_RAPSBABE Receive APS Babble Event. This event bit indicates when an inconsistent APS value has been detected TMUX_CNTDK1K2[3:0] (Table 98) times in the incoming TMUX_CNTDK1K2FRAME[3:0] (Table 98) consecutive frames. The mask bit is TMUX_RAPSBABM (Table 86 on page88 ). 0 8 TMUX_RAPSMOND Receive APS Monitor Delta. This delta bit indicates a change in state in the received APS value TMUX_RAPSMON[12:0] (Table 102) when a new consistent value is detected TMUX_CNTDK1K2[3:0] times in the K1 and K2[7:3] bits. The mask bit is TMUX_RAPSMONM (Table 86). Agere Systems Inc. 0 79 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 82. TMUX_RHS_DLT, Delta/Event (COR/COW) (continued) Address Bit 0x40006 7 80 Name Function Reset Default TMUX_RF1MOND Receive F1 Monitor Delta. This delta bit indicates a change in state of TMUX_RF1MON0[7:0] and TMUX_RF1MON1[7:0] (Table 101) when a consistent new value is detected in the incoming F1 byte for TMUX_CNTDF1[3:0] (Table 98) continuous frames. The current value is stored in TMUX_RF1MON0[7:0] and the previous value is stored in TMUX_RF1MON0[7:0]. The mask bit is TMUX_RF1MONM (Table 86). 0 6 TMUX_RTIMSD Receive Section Trace Identifier Mismatch Delta. This delta bit indicates a change in state in the received 16byte J0 sequence of bytes if the J0 mode is programmed to receive a 16-byte sequence. The mask bit is TMUX_RTIMSM (Table 86). 0 5 TMUX_RHSSFD Receive High-speed Signal Fail BER Algorithm Delta. This delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RHSSF (Table 91). The mask bit for this delta bit is TMUX_RHSSFM (Table 86). 0 4 TMUX_RHSSDD Receive High-speed Signal Degrade BER Algorithm Delta. This delta bit indicates a change of state for the signal degrade BER algorithm state bit TMUX_RHSSD (Table 91). The mask bit is TMUX_RHSSDM (Table 86). 0 3 TMUX_RHSLOSD Receive High-speed Loss of Signal Delta. This delta bit indicates a change in state of either TMUX_RHSLOS (Table 91) or TMUX_RHSLOSEXTI (Table 91). TMUX_RHSLOSEXTI is an external input from a device pin. TMUX_RHSLOS is an internally generated state bit based on monitoring for a consecutive 0/1s pattern in the data input. The mask bit is TMUX_RHSLOSM (Table 86). 0 2 TMUX_RHSLOFD Receive High-speed Loss of Frame Delta. This delta bit indicates a change in state of TMUX_RHSLOF (Table 91). The mask bit is TMUX_RHSLOFM (Table 86). 0 1 TMUX_RHSOOFD Receive High-speed Out of Frame Delta. This delta bit indicates a change in state of TMUX_RHSOOF (Table 91). The mask bit is TMUX_RHSOOFM (Table 86). 0 0 TMUX_RHSILOCD Receive High-speed Loss of Input Clock Delta. This delta bit indicates a change in state of the TMUX_RHSILOC (Table 91) state bit. The mask bit is TMUX_RHSILOCM (Table 86). 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) Address Bit Name 0x40007 15 TMUX_RSFB3D1 14 13 12 11 10 9 Agere Systems Inc. Function Receive Path Signal Fail BER Algorithm Delta. This delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RSFB31 (Table 92) at the path level for port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RSFB3M1 (Table 87). TMUX_RSDB3D1 Receive Path Signal Degrade BER Algorithm Delta. This delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RSDB31 (Table 92) at the path level for port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RSDB3M1 (Table 87). TMUX_RUNEQPE1 Receive Path Unequipped Event. This event bit indicates that the current value of the received C2 (signal label) byte, TMUX_C2MON1[7:0] (Table 104), has a value 0x00, indicating unequipped payload on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RUNEQPM1 (Table 87). TMUX_RPLMPE1 Receive Path Payload Label Mismatch Event. This event bit indicates that the current value of the received C2 (signal label) byte, TMUX_C2MON1[7:0], differs from the expected C2 value, TMUX_C2EXP1[7:0] (Table 100) for port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RPLMPM1 (Table 87). TMUX_RN1MOND1 Receive N1 Monitor Delta. This delta bit indicates a change in state in TMUX_N1MON1[7:0] (Table 104). The N1 current value is updated when a consecutive and consistent value is detected in the incoming N1 byte for TMUX_CNTDN1[3:0] (Table 99) frames on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RN1MONM1 (Table 87). TMUX_RK3MOND1 Receive K3 Monitor Delta. This delta bit indicates a change in state in TMUX_K3MON1[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming K3 byte for TMUX_CNTDK3[3:0] (Table 99) frames on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RK3MONM1 (Table 87). TMUX_RF3MOND1 Receive F3 (Path User Byte) Monitor Delta. This delta bit indicates a change in state in TMUX_F3MON01[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming F3 byte for TMUX_CNTDF3[3:0] (Table 99) frames on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RF3MONM1 (Table 87). Reset Default 0 0 0 0 0 0 0 81 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) (continued) Address Bit 0x40007 8 7 6 5 4 3 2 82 Name Function TMUX_RF2MOND1 Receive F2 (Path User Byte) Monitor Delta. This delta bit indicates a change in state in TMUX_F2MON01[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming F2 byte for TMUX_CNTDF2[3:0] (Table 99) frames on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RF2MONM1 (Table 87). TMUX_RRDIPD1 Receive Path RDI (Remote Defect Indication) Monitor Delta. This delta bit indicates a change in state in TMUX_RDIPMON1[2:0] (Table 104) that occurs when a consecutive and consistent new value is detected in the incoming G1[3:1] bits for TMUX_CNTDRDIP[3:0] (Table 99) frames on port 1. The device monitors either G1 bit 3 or G1[3:1] depending on TMUX_REPRDI_MODE (Table 95). Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RRDIPM1 (Table 87). TMUX_RC2MOND1 Receive C2 (Signal Label) Monitor Delta. This delta bit indicates a change in state in TMUX_C2MON1[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming C2 byte for TMUX_CNTDC2[3:0] (Table 99) frames on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RC2MONM1 (Table 87). TMUX_RTIMPD1 Receive Path Trace Identifier Mismatch Delta. This delta bit indicates a change in state in the received 16-byte J1 sequence on port 1 if the J1 mode is programmed to receive a 16-byte sequence. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RTIMPM1 (Table 87). TMUX_RNDFE1 Receive New Data Flag Event. This event bit indicates that the incoming pointer has the new data flag enabled, causing a jump in the current pointer location for port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RNDFM1 (Table 87). TMUX_RDECE1 Receive Pointer Decrement Event. This event bit indicates that a valid incoming pointer decrement indication was received on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RDECM1 (Table 87). TMUX_RINCE1 Receive Pointer Increment Event. This event bit indicates that a valid incoming pointer increment indication was received on port 1. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RINCM1 (Table 87). Reset Default 0 0 0 0 0 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) (continued) Address Bit 0x4007 1 0 0x40008 15 14 13 12 11 10 Agere Systems Inc. Name Function Reset Default 0 TMUX_RPAISD1 Receive Path AIS Delta. This delta bit indicates a change in state of the TMUX_RPAIS1 (Table 92) state bit, which designates that the port 1 pointer interpreter is in the alarm indication signal state. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RPAISM1 (Table 87). TMUX_RLOPD1 Receive Loss of Pointer Delta. This delta bit indicates a 0 change in state of the TMUX_RLOP1 (Table 92) state bit, which designates that the port 1 pointer interpreter is in the loss of pointer state. Only port 1 information is valid in AU-4 mode. The mask bit is TMUX_RLOPM1 (Table 87). 0 TMUX_RSFB3D2 Receive Path Signal Fail BER Algorithm Delta. This delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RSFB32 (Table 92) at the path level for port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RSFB3M2 (Table 87). TMUX_RSDB3D2 Receive Path Signal Degrade BER Algorithm Delta. This 0 delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RSDB32 (Table 92) at the path level for port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RHSSDB3M2. 0 TMUX_RUNEQPD2 Receive Path Unequipped Delta. This delta bit indicates that the current value of the received C2 (signal label) byte, TMUX_C2MON2[7:0] (Table 104), has a value 0x00, indicating unequipped payload for port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode.The mask bit is TMUX_RUNEQPM2 (Table 87). 0 TMUX_RPLMPD2 Receive Path Payload Label Mismatch Delta. This event bit indicates that the current value of the received C2 (signal label) byte, TMUX_C2MON2[7:0], differs from the expected C2 value, TMUX_C2EXP2[7:0] (Table 100) for port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode.The mask bit is TMUX_RPLMPM2 (Table 87). 0 TMUX_RN1MOND2 Receive N1 Monitor Delta. This delta bit indicates a change in state in TMUX_N1MON2[7:0] (Table 104). The N1 current value is updated when a consecutive and consistent value is detected in the incoming N1 byte for TMUX_CNTDN1[3:0] (Table 99) frames on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RN1MONM2 (Table 87). 0 TMUX_RK3MOND2 Receive K3 Monitor Delta. This delta bit indicates a change in state in TMUX_K3MON2[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming K3 byte for TMUX_CNTDK3[3:0] (Table 99) frames on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RK3MONM2 (Table 87). 83 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) (continued) Address Bit 0x40008 9 8 7 6 5 4 3 84 Name Function Reset Default 0 TMUX_RF3MOND2 Receive F3 (Path User Byte) Monitor Delta. This delta bit indicates a change in state in TMUX_F3MON02[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming F3 byte for TMUX_CNTDF3[3:0] (Table 99) frames on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RF3MONM2 (Table 87). 0 TMUX_RF2MOND2 Receive F2 (Path User Byte) Monitor Delta. This delta bit indicates a change in state in TMUX_F2MON02[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming F2 byte for TMUX_CNTDF2[3:0] (Table 99) frames on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RF2MONM2 (Table 87). 0 TMUX_RRDIPD2 Receive Path RDI (Remote Defect Indication) Monitor Delta. This delta bit indicates a change in state in TMUX_RDIPMON2[2:0] (Table 104) which occurs when a consecutive and consistent new value is detected in the incoming G1[3:1] bits for TMUX_CNTDRDIP[3:0] (Table 99) frames on port 2. The device monitors either G1 bit 3 or G1[3:1] depending on TMUX_REPRDI_MODE (Table 95). Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RRDIPM2 (Table 87). 0 TMUX_RC2MOND2 Receive C2 (Signal Label) Monitor Delta. This delta bit indicates a change in state in TMUX_C2MON2[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming C2 byte for TMUX_CNTDC2[3:0] (Table 99) frames on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RC2MONM2 (Table 87). 0 TMUX_RTIMPD2 Receive Path Trace Identifier Mismatch Delta. This delta bit indicates a change in state in the received 16-byte J1 sequence for port 2 if the J1 mode is programmed to receive a 16-byte sequence. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RTIMPM2 (Table 87). 0 TMUX_RNDFE2 Receive New Data Flag Event. This event bit indicates that the incoming pointer has the new data flag enabled for port 2, causing a jump in the current pointer location. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RNDFM2 (Table 87). 0 TMUX_RDECE2 Receive Pointer Decrement Event. This event bit indicates that a valid incoming pointer decrement indication was received on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RDECM2 (Table 87). However, increment and decrement event indication should be ignored during loss-of-pointer (LOP) condition. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) (continued) Address Bit Name Function 0x40008 2 TMUX_RINCE2 1 TMUX_RPAISD2 0 TMUX_RLOPD2 15 TMUX_RSFB3D3 14 TMUX_RSDB3D3 13 TMUX_RUNEQPE3 12 TMUX_RPLMPE3 Receive Pointer Increment Event. This event bit indicates that a valid incoming pointer increment indication was received on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RINCM2 (Table 87). However, increment and decrement event indication should be ignored during loss-of-pointer (LOP) condition. Receive Path AIS Delta. This delta bit indicates a change in state of the TMUX_RPAIS2 (Table 92) state bit, which designates that the port 2 pointer interpreter is in the alarm indication signal state. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RPAISM2 (Table 87). Receive Loss of Pointer Delta. This delta bit indicates a change in state of the TMUX_RLOP2 (Table 92) state bit, which designates that the port 2 pointer interpreter is in the loss of pointer state. Only port 1 information is valid in AU-4 mode. The mask bit is TMUX_RLOPM2 (Table 87). Receive Path Signal Fail BER Algorithm Delta. This delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RSFB32 (Table 92) at the path level for port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RSFB3M3 (Table 87). Receive Path Signal Degrade BER Algorithm Delta. This delta bit indicates a change of state for the signal fail BER algorithm state bit TMUX_RSDB32 (Table 92) at the path level for port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RSDB3M3 (Table 87). Receive Path Unequipped Event. This event bit indicates that the current value of the received C2 (signal label) byte, TMUX_C2MON3[7:0] (Table 104), has a value 0x00, indicating unequipped payload for port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RUNEQPM3 (Table 87). Receive Path Payload Label Mismatch Event. This event bit indicates that the current value of the received C2 (signal label) byte, TMUX_C2MON3[7:0], differs from the expected C2 value, TMUX_C2EXP3[7:0] (Table 100) for port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RPLMPM3 (Table 87). 0x40009 Agere Systems Inc. Reset Default 0 0 0 0 0 0 0 85 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) (continued) Address Bit Name 0x40009 11 TMUX_RN1MOND3 10 TMUX_RK3MOND3 9 TMUX_RF3MOND3 8 TMUX_RF2MOND3 7 TMUX_RDIPD3 6 TMUX_RC2MOND3 5 TMUX_RTIMPD3 86 Function Reset Default 0 Receive N1 Monitor Delta. This delta bit indicates a change in state in TMUX_N1MON3[7:0] (Table 104). The N1 current value is updated when a consecutive and consistent value is detected in the incoming N1 byte for TMUX_CNTDN1[3:0] (Table 99) frames on port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RN1MONM3 (Table 87). 0 Receive K3 Monitor Delta. This delta bit indicates a change in state in TMUX_K3MON3[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming K3 byte for TMUX_CNTDK3[3:0] (Table 99) frames on port 2. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RK3MONM3 (Table 87). 0 Receive F3 (Path User Byte) Monitor Delta. This delta bit indicates a change in state in TMUX_F3MON03[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming F3 byte for TMUX_CNTDF3[3:0] (Table 99) frames on port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RF3MONM3 (Table 87). Receive F2 (Path User Byte) Monitor Delta. This delta bit 0 indicates a change in state in TMUX_F2MON03[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming F2 byte for TMUX_CNTDF2[3:0] (Table 99) frames on port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RF2MONM3 (Table 87). Receive Path RDI (Remote Defect Indication) Monitor 0 Delta. This delta bit indicates a change in state in TMUX_RDIPMON3[2:0] (Table 104) which occurs when a consecutive and consistent new value is detected in the incoming G1[3:1] bits for TMUX_CNTDRDIP[3:0] (Table 99) frames on port 3. The device monitors either G1 bit 3 or G1[3:1] depending on TMUX_REPRDI_MODE (Table 95). Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RRDIPM3 (Table 87). Receive C2 (Signal Label) Monitor Delta. This delta bit indi0 cates a change in state in TMUX_C2MON3[7:0] (Table 104), which is updated when a consecutive and consistent value is detected in the incoming C2 byte for TMUX_CNTDC2[3:0] (Table 99) frames on port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RC2MONM3 (Table 87). Receive Path Trace Identifier Mismatch Delta. This delta bit 0 indicates a change in state in the received 16-byte J1 sequence for port 3 if the J1 mode is programmed to receive a 16-byte sequence. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RTIMPM3 (Table 87). Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 83. TMUX_RPOH[1--3]_DLT, Delta/Event (COR/COW) (continued) Address Bit Name 0x40009 4 TMUX_RNDFE3 3 TMUX_RDECE3 2 TMUX_RINCE3 1 TMUX_RPAISD3 0 TMUX_RLOPD3 Function Reset Default Receive New Data Flag Event. This event bit indicates that the 0 incoming pointer has the new data flag enabled, causing a jump in the current pointer location for port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RNDFM3 (Table 87). Receive Pointer Decrement Event. This event bit indicates 0 that a valid incoming pointer decrement indication was received on port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RDECM3 (Table 87). 0 Receive Pointer Increment Event. This event bit indicates that a valid incoming pointer increment indication was received on port 3. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RINCM3 (Table 87). Receive Path AIS Delta. This delta bit indicates a change in 0 state of the TMUX_RPAIS3 (Table 92) state bit, which designates that the port 3 pointer interpreter is in the alarm indication signal state. Only port 1 information is valid in AU-4 mode and in STS-1 mode. The mask bit is TMUX_RPAISM3 (Table 87). 0 Receive Loss of Pointer Delta. This delta bit indicates a change in state of the TMUX_RLOP3 (Table 92) state bit, which designates that the port 3 pointer interpreter is in the loss of pointer state. Only port 1 information is valid in AU-4 mode. The mask bit is TMUX_RLOPM3 (Table 87). Note: In Table 84, the mask bits are set to suppress an interrupt when the corresponding event has occurred or change in state has taken place. Table 84. TMUX_TX_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) Address Bit 0x4000A 15:7 6:4 3 2 1 0 Agere Systems Inc. Name Function Reset Default -- Reserved. 0x000 TMUX_TLSPARM[3:1] Transmit Low-speed Parity Error Mask (Input Port Num1 ber). See Table 80 for description. TMUX_TPOAC_PM Transmit Path Overhead Access Channel (TPOAC) Par1 ity Error Mask. See Table 80 for description. TMUX_TTOAC_PM Transmit Transport Overhead Access Channel (TTOAC) 1 Parity Error Mask. See Table 80 for description. TMUX_THSILOFM Transmit High-speed Input Loss of Frame Mask. See 1 Table 80 for description. TMUX_THSILOCM Transmit High-speed Input Loss of Clock Mask. See 1 Table 80 for description. 87 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Note: In Table 85, the mask bits are set to suppress an interrupt when the corresponding event has occurred or change in state has taken place. Table 85. TMUX_RPS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) Address Bit 0x4000B 15:6 5 4 3 2 1 Name Function -- Reserved. TMUX_RPSLOFM Receive Protection High-speed Loss of Frame Mask. See Table 81 for description. TMUX_RPSOOFM Receive Protection High-speed Out of Frame Mask. See Table 81 for description. TMUX_RPSILOCM Receive Protection High-speed Loss of Input Clock Mask. See Table 81 for description. TMUX_RPSB2M Receive Protection High-speed B2 Error Mask. See Table 81 for description. TMUX_RPSLREIM Receive Protection High-speed Line REI Mask. See Table 81 for description. Reset Default 0x000 1 1 1 1 1 Note: In Table 86, the mask bits are set to suppress an interrupt when the corresponding event has occurred or change in state has taken place. Table 86. TMUX_RHS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) Address Bit 0x4000C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 88 Name Function Reset Default -- Reserved. 0 TMUX_RS1BABM Receive S1 Babble Mask. See Table 82 for description. 1 TMUX_RS1MONM Receive S1 Monitor Mask. See Table 82 for description. 1 TMUX_RLRDIMONM Receive Line RDI Monitor Mask. See Table 82 for descrip1 tion. TMUX_RLAISMONM Receive Line AIS Monitor Mask. See Table 82 for descrip1 tion. TMUX_RK2MONM Receive K2 Monitor Mask. See Table 82 for description. 1 TMUX_RAPSBABM Receive APS Babble Mask. See Table 82 for description. 1 TMUX_RAPSMONM Receive APS Monitor Mask. See Table 82 for description. 1 TMUX_RF1MONM Receive F1 Monitor Mask. See Table 82 for description. 1 TMUX_RTIMSM Receive Section Trace Identifier Mismatch Mask. See 1 Table 82 for description. TMUX_RHSSFM Receive High-speed Signal Fail BER Algorithm Mask. 1 See Table 82 for description. TMUX_RHSSDM Receive High-speed Signal Degrade BER Algorithm 1 Mask. See Table 82 for description. TMUX_RHSLOSM Receive High-speed Loss of Signal Mask. See Table 82 1 for description. TMUX_RHSLOFM Receive High-speed Loss of Frame Mask. See Table 82 1 for description. TMUX_RHSOOFM Receive High-speed Out of Frame Mask. See Table 82 for 1 description. TMUX_RHSILOCM Receive High-speed Loss of Input Clock Mask. See 1 Table 82 for description. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Note: In Table 87, the mask bits are set to suppress an interrupt when the corresponding event has occurred or change in state has taken place. Table 87. TMUX_RPOH[1--3]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0) Address Bit Name 0x4000D 15 TMUX_RSFB3M1 14 TMUX_RSDB3M1 13 12 TMUX_RUNEQPM1 TMUX_RPLMPM1 11 10 9 TMUX_RN1MONM1 TMUX_RK3MONM1 TMUX_RF3MONM1 8 TMUX_RF2MONM1 7 TMUX_RRDIPM1 6 TMUX_RC2MONM1 5 TMUX_RTIMPM1 4 3 TMUX_RNDFM1 TMUX_RDECM1 2 TMUX_RINCM1 1 0 15 TMUX_RPAISM1 TMUX_RLOPM1 TMUX_RSFB3M2 14 TMUX_RSDB3M2 13 12 TMUX_RUNEQPM2 TMUX_RPLMPM2 11 10 9 TMUX_RN1MONM2 TMUX_RK3MONM2 TMUX_RF3MONM2 8 TMUX_RF2MONM2 7 TMUX_RRDIPM2 0x4000E Agere Systems Inc. Function Reset Default Receive Path Signal Fail BER Algorithm Mask. See Table 83 1 for description. Receive Path Signal Degrade BER Algorithm Mask. See 1 Table 83 for description. Receive Path Unequipped Mask. See Table 83 for description. 1 Receive Path Payload Label Mismatch Mask. See Table 83 1 for description. Receive N1 Monitor Mask. See Table 83 for description. 1 Receive K3 Monitor Mask. See Table 83 for description. 1 Receive F3 (Path User Byte) Monitor Mask. See Table 83 for 1 description. Receive F2 (Path User Byte) Monitor Mask. See Table 83 for 1 description. Receive Path RDI (Remote Defect Indication) Monitor Mask. 1 See Table 83 for description. 1 Receive C2 (Signal Label) Monitor Mask. See Table 83 for description. Receive Path Trace Identifier Mismatch Mask. See Table 83 1 for description. Receive New Data Flag Mask. See Table 83 for description. 1 Receive Pointer Decrement Mask. See Table 83 for descrip1 tion. Receive Pointer Increment Mask. See Table 83 for descrip1 tion. Receive Path AIS Mask. See Table 83 for description. 1 Receive Loss of Pointer Mask. See Table 83 for description. 1 Receive Path Signal Fail BER Algorithm Mask. See Table 83 1 for description. Receive Path Signal Degrade BER Algorithm Mask. See 1 Table 83 for description. Receive Path Unequipped Mask. See Table 83 for description. 1 Receive Path Payload Label Mismatch Mask. See Table 83 1 for description. Receive N1 Monitor Mask. See Table 83 for description. 1 Receive K3 Monitor Mask. See Table 83 for description. 1 Receive F3 (Path User Byte) Monitor Mask. See Table 83 for 1 description. Receive F2 (Path User Byte) Monitor Mask. See Table 83 for 1 description. Receive Path RDI (Remote Defect Indication) Monitor Mask. 1 See Table 83 for description. 89 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Note: In Table 87, the mask bits are set to suppress an interrupt when the corresponding event has occurred or change in state has taken place. Table 87. TMUX_RPOH[1--3]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0) (continued) Address Bit 0x4000E 6 5 4 3 2 0x4000F 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 90 Name Function TMUX_RC2MONM2 Receive C2 (Signal Label) Monitor Mask. See Table 83 for description. TMUX_RTIMPM2 Receive Path Trace Identifier Mismatch Mask. See Table 83 for description. TMUX_RNDFM2 Receive New Data Flag Mask. See Table 83 for description. TMUX_RDECM2 Receive Pointer Decrement Mask. See Table 83 for description. TMUX_RINCM2 Receive Pointer Increment Mask. See Table 83 for description. TMUX_RPAISM2 Receive Path AIS Mask. See Table 83 for description. TMUX_RLOPM2 Receive Loss of Pointer Mask. See Table 83 for description. TMUX_RSFB3M3 Receive Path Signal Fail BER Algorithm Mask. See Table 83 for description. TMUX_RSDB3M3 Receive Path Signal Degrade BER Algorithm Mask. See Table 83 for description. TMUX_RUNEQPM3 Receive Path Unequipped Mask. See Table 83 for description. TMUX_RPLMPM3 Receive Path Payload Label Mismatch Mask. See Table 83 for description. TMUX_RN1MONM3 Receive N1 Monitor Mask. See Table 83 for description. TMUX_RK3MONM3 Receive K3 Monitor Mask. See Table 83 for description. TMUX_RF3MONM3 Receive F3 (Path User Byte) Monitor Mask. See Table 83 for description. TMUX_RF2MONM3 Receive F2 (Path User Byte) Monitor Mask. See Table 83 for description. TMUX_RRDIPM3 Receive Path RDI (Remote Defect Indication) Monitor Mask. See Table 83 for description. TMUX_RC2MONM3 Receive C2 (Signal Label) Monitor Mask. See Table 83 for description. TMUX_RTIMPM3 Receive Path Trace Identifier Mismatch Mask. See Table 83 for description. TMUX_RNDFM3 Receive New Data Flag Mask. See Table 83 for description. TMUX_RDECM3 Receive Pointer Decrement Mask. See Table 83 for description. TMUX_RINCM3 Receive Pointer Increment Mask. See Table 83 for description. TMUX_RPAISM3 Receive Path AIS Mask. See Table 83 for description. TMUX_RLOPM3 Receive Loss of Pointer Mask. See Table 83 for description. Reset Default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Note: In Table 88, the mask bits are set to suppress an interrupt when the corresponding event has occurred or change in state has taken place. Table 88. TMUX_APSINT_MSK, Mask Bits for APSINT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) Address Bit Name 0x40011 15:8 7 -- TMUX_RHSSF_APSM 6 5 4 3 2 1 0 Function Reserved. Receive High-speed Signal Fail BER Algorithm APSINT Mask. See Table 82 for description. TMUX_RHSSD_APSM Receive High-speed Signal Degrade BER Algorithm APSINT Mask. See Table 82 for description. TMUX_RAPSMON_APSM Receive APS Monitor APSINT Mask. See Table 83 for description. TMUX_RLAISMON_APSM Receive Line AIS Monitor APSINT Mask. See Table 82 for description. TMUX_RHSLOS_APSM Receive High-speed Loss of Signal APSINT Mask. See Table 82 for description. TMUX_RHSLOF_APSM Receive High-speed Loss of Frame APSINT Mask. See Table 82 for description. TMUX_RHSOOF_APSM Receive High-speed Out of Frame APSINT Mask. See Table 82 for description. TMUX_RHSILOC_APSM Receive High-speed Loss of Input Clock APSINT Mask. See Table 82 for description. Reset Default 0x000 1 1 1 1 1 1 1 1 Note: When state bits are set in Table 89, the corresponding function has occurred. Table 89. TMUX_TX_STATE, State Parameters (RO) Address Bit 0x40012 15:2 1 0 Name Function -- Reserved. TMUX_THSILOF Transmit High-speed Input Loss of Frame State. See Table 80 for description. TMUX_THSILOC Transmit High-speed Input Loss of Clock State. See Table 80 for description. Reset Default 0x000 0 0 Note: When state bits are set in Table 90, the corresponding function has occurred. Table 90. TMUX_RPS_STATE, State and Value Parameters (RO) Address Bit 0x40013 15:6 5 4 3 2:0 Agere Systems Inc. Name Function -- Reserved. TMUX_RPSLOF Receive Protection High-speed Loss of Frame State. See Table 81 for description. TMUX_RPSOOF Receive Protection High-speed Out of Frame State. See Table 81 for description. TMUX_RPSILOC Receive Protection High-speed Loss of Input Clock State. See Table 81 for description. -- Reserved. Reset Default 0x000 0 0 0 000 91 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Note: When state bits are set in Table 91, the corresponding function has occurred. Table 91. TMUX_RHS_STATE, State and Value Parameters (RO) Address Bit Name 0x40014 15:13 -- 12 TMUX_RLRDIMON Receive Line RDI Monitor State. See Table 82 for description. 0 11 TMUX_RLAISMON Receive Line AIS Monitor State. See Table 82 for description. 0 10:8 -- 7 Function Reset Default Reserved. 000 Reserved. 000 TMUX_RHSLOSEXTI Reflects LOSEXT Pin (AE5) Input. -- 6 TMUX_RTIMS Reflects Section-Level Trace Identifier Mismatch State. -- 5 TMUX_RHSSF Receive High-speed Signal Fail BER Algorithm State. See Table 82 for description. 0 4 TMUX_RHSSD Receive High-speed Signal Degrade BER Algorithm State. See Table 82 for description. 0 3 TMUX_RHSLOS Receive High-speed Loss of Signal State. See Table 82 for description. 0 2 TMUX_RHSLOF Receive High-speed Loss of Frame State. See Table 82 for description. 0 1 TMUX_RHSOOF Receive High-speed Out of Frame State. See Table 82 for description. 0 0 TMUX_RHSILOC Receive High-speed Loss of Input Clock State. See Table 82 for description. 0 Note: When state bits are set in Table 92, the corresponding function has occurred. Table 92. TMUX_RPOH[1--3]_STATE, State and Value Parameters (RO ) Address Bit Name Function 0x40015 15 TMUX_RSFB31 14 TMUX_RSDB31 13 TMUX_RUNEQP1 12 TMUX_RPLMP1 11:6 5 -- TMUX_RTIMP1 4:2 1 -- TMUX_RPAIS1 0 TMUX_RLOP1 Receive Path Signal Fail BER Algorithm State. See Table 83 for description. Receive Path Signal Degrade BER Algorithm State. See Table 83 for description. Receive Path Unequipped State. See Table 83 for description. Receive Path Payload Label Mismatch State. See Table 83 for description. Reserved. Receive Path Trace Identifier Mismatch State. See Table 83 for description. Reserved. Receive Path AIS State. See Table 83 for description. Receive Loss of Pointer State. See Table 83 for description. 92 Reset Default 0 0 0 0 0x00 0 000 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 92. TMUX_RPOH[1--3]_STATE, State and Value Parameters (RO) (continued) Address Bit Name 0x40016 15 TMUX_RSFB32 14 13 12 11:6 5 4 3:2 1 0 0x40017 15 14 13 12 11:6 5 4 3:2 1 0 Agere Systems Inc. Function Receive Path Signal Fail BER Algorithm State. See Table 83 for description. TMUX_RSDB32 Receive Path Signal Degrade BER Algorithm State. See Table 83 for description. TMUX_RUNEQP2 Receive Path Unequipped State. See Table 83 for description. TMUX_RPLMP2 Receive Path Payload Label Mismatch State. See Table 83 for description. -- Reserved. TMUX_RTIMP2 Receive Path Trace Identifier Mismatch State. See Table 83 for description. -- Reserved. TMUX_CONCAT_STATE2[1:0] Concatenation Pointer State Machine State. State bits indicate the state of the concatenation state machine (LOPC = 10, AISC = 01, CONC = 00) for port 2. These values only have meaning in the AU-4 mode with the TMUX_RCONCATMODE bit (Table 95) set to the concatenation mode (1). TMUX_RPAIS2 Receive Path AIS State. See Table 83 for description. TMUX_RLOP2 Receive Loss of Pointer State. See Table 83 for description. TMUX_RSFB33 Receive Path Signal Fail BER Algorithm State. See Table 83 for description. TMUX_RSDB33 Receive Path Signal Degrade BER Algorithm State. See Table 83 for description. TMUX_RUNEQP3 Receive Path Unequipped State. See Table 83 for description. TMUX_RPLMP3 Receive Path Payload Label Mismatch State. See Table 83 for description. -- Reserved. TMUX_RTIMP3 Receive Path Trace Identifier Mismatch State. See Table 83 for description. -- Reserved. TMUX_CONCAT_STATE3[1:0] Concatenation Pointer State Machine State. State bits indicate the state of the concatenation state machine (LOPC = 10, AISC = 01, CONC = 00) for port 3. These values only have meaning in the AU-4 mode and the TMUX_RCONCATMODE bit (Table 95) set to the concatenation mode (1). TMUX_RPAIS3 Receive Path AIS State. See Table 83 for description. TMUX_RLOP3 Receive Loss of Pointer State. See Table 83 for description. Reset Default 0 0 0 0 0x000 0 0 00 0 0 0 0 0 0 0x000 0 0 00 0 0 93 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 93. TMUX_RHS_CTL, Receive High-speed Control Parameters (R/W) Address 0x40019 Bit 15:4 3 2 1 0 Name Function -- Reserved. TMUX_LOSEXT_LEVEL Controls External LOSEXT Polarity. 0 = active-low. 1 = active-high. TMUX_RPSMUXSEL1 Receive Protection Switch Control. Control bit, when set to a logic 1, causes the receive protection switch data and clock inputs to be selected; otherwise, the normal receive high-speed data input is selected. TMUX_THS2RHSLB Transmit High-speed to Receive High-speed Loopback Control. Control bit, when set to a logic 1, causes the transmit output STS-3/STM-1 (AU-4) signal to be looped back to the receive input; otherwise, the loopback is disabled. TMUX_RHSDSCR Receive High-speed Descramble Enable. Control bit, when set to a logic 1, causes the input STS-3/STM-1 (AU-4) signal to be descrambled; otherwise, the signal is not descrambled. Reset Default 0x000 0 0 0 0 Table 94. TMUX_RLS_BITBLK_CTL, Receive Low-speed Control Parameters (R/W) Address 0x4001A 94 Bit Name Function Reset Default 15:9 -- Reserved. 0x00 8:7 TMUX_RCV_SS_EXP[1:0] Expected Receive Pointer Size Bits Value. 00 Expected value of incoming pointer SS bits. 6 TMUX_RCV_SS_ENB Receive Size Bits Enable. Control bit, when set to 0 a logic 0, causes the received size bits to be ignored by the pointer interpreter; otherwise, the received size bits must equal the expected size bits or the received pointer value will be invalid. 5 -- Reserved. 0 4 TMUX_BITBLKG1 Receive Bit/Block Error Count Control. Control 0 bit, when set to a logic 0, causes the receive error counter to count bit errors; otherwise, count block errors (a block equals one frame). 3 TMUX_BITBLKM1 Receive Bit/Block Error Count Control. Control 0 bit, when set to a logic 0, causes the receive error counter to count bit errors; otherwise, count block errors (a block equals one frame). 2 TMUX_BITBLKB3 Receive Bit/Block Error Count Control. Control 0 bit, when set to a logic 0, causes the receive error counter to count bit errors; otherwise, count block errors (a block equals one frame). 1 TMUX_BITBLKB2 Receive Bit/Block Error Count Control. Control 0 bit, when set to a logic 0, causes the receive error counter to count bit errors; otherwise, count block errors (a block equals one frame). 0 TMUX_BITBLKB1 Receive Bit/Block Error Count Control. Control 0 bit, when set to a logic 0, causes the receive error counter to count bit errors; otherwise, count block errors (a block equals one frame). Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 95. TMUX_RLS_MODE_CTL, Receive Low-speed Control Parameters (R/W) Address Bit Name 0x4001B 15:14 -- 13 Function Reset Default Reserved. 00 TMUX_RPAIS_INS Receive Force Path AIS Insertion. Control bit, when set to a logic 1, causes the receive low-speed signal to carry PAIS as well as asserting all AUTO_AIS[1--3] (pins AC6, AE6, and AD6) (Table 3) outputs. 0 12 TMUX_8ORMAJORITY Receive Control Bit for Pointer Justifications. Control bit, when set to a logic 1, causes the pointer interpreter to accept an increment or decrement only if 8 out of 10 bits are correct; otherwise, it will accept an increment or decrement based on majority vote only. 0 11 TMUX_SDB1B2SEL Receive Signal Degrade Algorithm Input Selection. Control bit, when set to a logic 1, causes the B2 errors to contribute to the signal degrade calculation; otherwise, the B1 error count is used. 0 10 TMUX_SFB1B2SEL Receive Signal Fail Algorithm Input Selection. Control bit, when set to a logic, causes the B2 errors to contribute to the signal degrade calculation; otherwise, the B1 error count is used. 0 9:7 TMUX_J1MONMODE[2:0] Receive J1 Monitor Mode. There are six modes, as defined in J1 monitor on page 377. 000 6:4 TMUX_J0MONMODE[2:0] Receive J0 Monitor Mode. There are six modes, as defined in Section 17.5.5 J0 Monitor on page 370. 000 3 TMUX_S1MODE4 Receive S1 Monitor Mode. Control bit, when set to a logic 1, causes the most significant nibble of the S1 byte to be monitored; otherwise, the entire S1 byte is monitored. 0 2 TMUX_RLSPAROEG Receive Low-speed Parity Odd or Even Generation. Control bit, when set to a logic 1, forces the output parity bit to be even; otherwise, the parity is odd. 0 1 TMUX_RCONCATMODE Receive Concatenation Mode. Control bit, when set to a logic 1, causes the input pointer interpreter to operate in concatenation mode. This mode is most likely used in AU-4 mode; otherwise, three independent pointers are expected. 0 0 TMUX_REPRDI_MODE 0 Agere Systems Inc. Receive Enhanced Path RDI Mode. Control bit, when set to a logic 1, causes the receive path RDI monitor to monitor the enhanced (3-bit found in G1[3:1]) value of path RDI; otherwise, a 1-bit value (G1[3]) is monitored. 95 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 96. TMUX_RAISINH_CTL, Receive Low-speed Control Parameters (R/W) Address Bit Name Function Reset Default 0x4001C 15 TMUX_R_M1_BIT7 Receive M1 MSB Mode. Control bit, when set to a logic 1, causes the most significant bit in the M1 byte to be ignored for line REI accumulation; otherwise, the MSB is included. 0 14 TMUX_RSDB3_AISINH Receive B3 Signal Degrade AIS Inhibit. Control bit, when set to a logic 1, inhibit the associated alarm from causing the assertion of the AUTO_AIS output; otherwise, the associated failure causes assertion of the corresponding AUTO_AIS output signal. 0 13 TMUX_RSFB3_AISINH Receive B3 Signal Fail AIS Inhibit. Control bit, when set to a logic 1, inhibit the associated alarm from causing the assertion of the AUTO_AIS output; otherwise, the associated failure causes assertion of the corresponding AUTO_AIS output signal. 0 12:10 TMUX_RTIMP_AISINH[3:1] Receive Path Trace Identifier Mismatch AIS Inhibit Bits. Control bits, when set to a logic 1, inhibit the associated alarm from causing the assertion of the AUTO_AIS output; otherwise, the associated failure causes assertion of the corresponding AUTO_AIS output signal. 0 9 TMUX_RUNEQP_AISINH Receive Path Unequip AIS Inhibit. Control bit, when set to a logic 1, inhibit the associated alarm from causing the assertion of the AUTO_AIS output; otherwise, the associated failure causes assertion of the corresponding AUTO_AIS output signal. 0 8 TMUX_RPLMP_AISINH Receive Path Payload Label Mismatch AIS Inhibit. Control bit, when set to a logic 1, inhibit the associated alarm from causing the assertion of the AUTO_AIS output; otherwise, the associated failure causes assertion of the corresponding AUTO_AIS output signal. 0 7 TMUX_RHSSD_AISINH Receive High-speed Signal Degrade AIS Inhibit. Control bits, when set to a logic 1, inhibit the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. 0 6 TMUX_RHSSF_AISINH Receive High-speed Signal Fail AIS Inhibit. Control bits, when set to a logic 1, inhibit the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. 0 TMUX_RPAISLOP_AISINH Receive Path AIS or LOP AIS Inhibit. Control bits, when set to a logic 1, inhibit the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. 0 5 96 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 96. TMUX_RAISINH_CTL, Receive Low-speed Control Parameters (R/W) (continued) Address Bit 0x4001C 4 Name Function TMUX_RLAISMON_AISINH Receive Line AIS Monitor AIS Inhibit. Control bit, when set to a logic 1, inhibits the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. Reset Default 0 3 TMUX_RLOF_AISINH Receive Loss-of-Frame AIS Inhibit. Control bit, when set to a logic 1, inhibits the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. 0 2 TMUX_ROOF_AISINH Receive High-speed Out-of-Frame AIS Inhibit. Control bit, when set to a logic 1, inhibits the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. 0 1 TMUX_RHSLOS_AISINH Receive High-speed Loss-of-Signal AIS Inhibit. Control bit, when set to a logic 1, inhibits the associated alarm from causing AIS generation; otherwise, the associated failure causes AIS generation on all STS-1/AU-3 outputs as well as the assertion of AUTO_AIS outputs. 0 0 TMUX_RILOC_AISINH Receive Input Loss-of-Clock AIS Inhibit. Control bit, when set to a logic 1, inhibits the associated alarm from causing the assertion of the AUTO_AIS outputs; otherwise, the associated failure causes assertion of all AUTO_AIS output signals. 0 Table 97. TMUX_LOSDETCNT, Receive Low-speed Control Parameters (R/W) Address Bit Name 0x4001D 15:14 -- Function Reserved. 13:11 TMUX_FORCEC2DEF[2:0] Force TMUX_RPLMP Defects. These bits (one for each STS-1 in an STS-3) will force TMUX_RPLMP defects on certain conditions as shown in Table 524 (STS Signal Label Defect Conditions). 10:0 Agere Systems Inc. TMUX_LOSDETCNT[10:0] Loss-of-Signal Detection Count. Control bits are the number of consecutive all-0s/1s pattern detected to declare LOS state in the unscrambled STS-3/STM-1 (AU-4) input frame. A value of 0x02D equals 2.3 s while a value of 0x798 equals 100 s. Reset Default 00 000 0x02D 97 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 98. TMUX_CNTD_TOH_[A--B], Continuous N-Times Detect Control Parameters (R/W) Address Bit Name Function Reset Default 0x4001E 15:12 TMUX_CNTDK1K2FRAME[3:0] Continuous N-Times Detect for APS Frame Bytes. Sets the number of CNTD frames within which an inconsistent APS value is detected in the incoming STS-3/STM-1 (AU-4). This value is used in the APS babble algorithm. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 11:8 TMUX_CNTDK1K2[3:0] Continuous N-Times Detect for APS (K1, K2[7:3]) Bytes. Sets the number of CNTD occurrences of a consistent APS value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 7:4 TMUX_CNTDF1[3:0] Continuous N-Times Detect for F1 Byte. Sets the number of CNTD occurrences of a consistent F1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 3:0 TMUX_CNTDJ0[3:0] Continuous N-Times Detect for J0 Byte. Sets the number of CNTD occurrences of a consistent J0 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 Reserved. 00 0x4001F 15:14 98 0xC -- 13:12 TMUX_CTDLOPCNT[1:0] Continuous N-Times Detect for Loss of Pointer State. Control bits are the number of consecutive conditions for invalid pointer and invalid concatenation indication (pointer interpretation). Valid values are the following: 00 = 8, 01 = 9, 10 = 10, and 11 = 8. 0x0 11:8 TMUX_CNTDS1FRAME[3:0] Continuous N-Times Detect for S1 Frame Bytes. Sets the number of CNTD frames within which an inconsistent S1 value is detected in the incoming STS-3/STM-1 (AU-4). This value is used in the S1 babble algorithm. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 7:4 TMUX_CNTDS1[3:0] Continuous N-Times Detect for S1 Byte. Sets the number of CNTD occurrences of a consistent S1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 3:0 TMUX_CNTDK2[3:0] Continuous N-Times Detect for K2[2:0] Byte. Sets the number of CNTD occurrences of a consistent K2[2:0] value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0xC Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 99. TMUX_CNTD_POH_[A--B], Continuous N-Times Detect Control Parameters (R/W) Address Bit Name Function Reset Default 0x40020 15:12 TMUX_CNTDF2[3:0] Continuous N-Times Detect for F2 Byte. Sets the number of CNTD occurrences of a consistent F2 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 TMUX_CNTDRDIP[3:0] Continuous N-Times Detect for G1[3:1] Byte. Sets the number of CNTD occurrences of a consistent G1[3:1] value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 11:8 0x40021 7:4 TMUX_CNTDC2[3:0] Continuous N-Times Detect for C2 Byte. Sets the number of CNTD occurrences of a consistent C2 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 3:0 TMUX_CNTDJ1[3:0] Continuous N-Times Detect for J1 Byte. Sets the number of CNTD occurrences of a consistent J1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 15:13 -- Reserved. 000 12 TMUX_CTDB1SEL 11:8 TMUX_CNTDN1[3:0] Continuous N-Times Detect for N1 Byte. Sets the number of CNTD occurrences of a consistent N1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 7:4 TMUX_CNTDK3[3:0] Continuous N-Times Detect for K3 Byte. Sets the number of CNTD occurrences of a consistent K3 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 3:0 TMUX_CNTDF3[3:0] Continuous N-Times Detect for F3 Byte. Sets the number of CNTD occurrences of a consistent F3 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 Agere Systems Inc. Continuous N-Times AUTO AIS Select. Control bit, when set to a logic 1, causes TOH CNTD counters to be reset whenever the AUTO_AIS signal is asserted. 0 99 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 100. TMUX_C2EXP[1--2_3], Continuous N-Times Detect Control Parameters (R/W) Address Bit Name 0x40022 15:8 -- 7:0 0x40023 Function Reset Default Reserved. 0x00 TMUX_C2EXP1[7:0] Expected C2 Byte for Port 1. Should be programmed to contain expected signal label (C2) for port 1. 0x00 15:8 TMUX_C2EXP3[7:0] Expected C2 Byte for Port 3. Should be programmed to contain expected signal label (C2) for port 3. 0x00 7:0 TMUX_C2EXP2[7:0] Expected C2 Byte for Port 2. Should be programmed to contain expected signal label (C2) for port 2. 0x00 Table 101. TMUX_RF1MON, Receive Monitor Values (RO) Address Bit Name Function Reset Default 0x40024 15:8 TMUX_RF1MON1[7:0] Receive F1 Previous Monitor Value. See Section 17.5.7 F1 Monitor on page 371. 0x00 7:0 TMUX_RF1MON0[7:0] Receive F1 Current Monitor Value. See Section 17.5.7 F1 Monitor on page 371. 0x00 Table 102. TMUX_RAPSMON, Receive Monitor Values (RO) Address Bit Name 0x40025 15:3 TMUX_ RAPSMON[12:0] 2:0 TMUX_K2MON[2:0] Function Reset Default Receive APS Monitor Value. See Section 17.5.9 Automatic Protection Switch (APS) Monitor on page 371. 0x00 Receive K2 Monitor Value. See Section 17.5.9 Automatic Protection Switch (APS) Monitor on page 371. 0x0 Table 103. TMUX_RS1MON, Receive Monitor Values (RO) Address Bit Name 0x40026 15:8 -- 7:0 TMUX_RS1MON[7:0] 100 Function Reset Default Reserved. 0x00 Receive S1 Monitor Value. See Section 17.5.12 Sync Status Monitor on page 372. 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 104. TMUX_RPOHMON[1--3][A--D], Receive Monitor Values (RO) Address 0x40027 0x40028 0x40029 0x4002A 0x4002B 0x4002C 0x4002D 0x4002E 0x4002F 0x40030 Bit Name Function 15:11 -- Reserved. 10:8 TMUX_RDIPMON1[2:0] Receive Path RDI Monitor Value for Port 1. See RDI-P Detection on page 379. 7:0 TMUX_C2MON1[7:0] Receive C2 Monitor Value for Port 1. See Signal Label C2 Byte Monitor on page 378. 15:8 TMUX_F2MON11[7:0] Receive F2 Previous Monitor Value for Port 1. See Path User Byte F2 Monitor on page 380. 7:0 TMUX_F2MON01[7:0] Receive F2 Current Monitor Value for Port 1. See Path User Byte F2 Monitor on page 380. 15:8 TMUX_F3MON11[7:0] Receive F3 Previous Monitor Value for Port 1. See Path User Byte F3 Monitor on page 380. 7:0 TMUX_F3MON01[7:0] Receive F3 Current Monitor Value for Port 1. See Path User Byte F3 Monitor on page 380. 15:8 TMUX_N1MON1[7:0] Receive N1 Monitor Value for Port 1. See N1 Byte Monitor on page 381. 7:0 TMUX_K3MON1[7:0] Receive K3 Monitor Value for Port 1. See K3 Byte Monitor on page 381. 15:11 -- Reserved. 10:8 TMUX_RDIPMON2[2:0] Receive Path RDI Monitor Value for Port 2. See RDI-P Detection on page 379. 7:0 TMUX_C2MON2[7:0] Receive C2 Monitor Value for Port 2. See Signal Label C2 Byte Monitor on page 378. 15:8 TMUX_F2MON12[7:0] Receive F2 Previous Monitor Value for Port 2. See Path User Byte F2 Monitor on page 380. 7:0 TMUX_F2MON02[7:0] Receive F2 Current Monitor Value for Port 2. See Path User Byte F2 Monitor on page 380. 15:8 TMUX_F3MON12[7:0] Receive F3 Previous Monitor Value for Port 2. See Path User Byte F3 Monitor on page 380. 7:0 TMUX_F3MON02[7:0] Receive F3 Current Monitor Value for Port 2. See Path User Byte F3 Monitor on page 380. 15:8 TMUX_N1MON2[7:0] Receive N1 Monitor Value for Port 2. See N1 Byte Monitor on page 381. 7:0 TMUX_K3MON2[7:0] Receive K3 Monitor Value for Port 2. See K3 Byte Monitor on page 381. 15:11 -- Reserved. 10:8 TMUX_RDIPMON3[2:0] Receive Path RDI Monitor Value for Port 3. See RDI-P Detection on page 379. 7:0 TMUX_C2MON3[7:0] Receive C2 Monitor Value for Port 3. See Signal Label C2 Byte Monitor on page 378. 15:8 TMUX_F2MON13[7:0] Receive F2 Previous Monitor Value for Port 3. See Path User Byte F2 Monitor on page 380. 7:0 TMUX_F2MON03[7:0] Receive F2 Current Monitor Value for Port 3. See Path User Byte F2 Monitor on page 380. Agere Systems Inc. Reset Default 0x00 0x0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0 0x00 0x00 0x00 101 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 104. TMUX_RPOHMON[1--3][A--D], Receive Monitor Values (RO) (continued) Address Bit Name 0x40031 15:8 TMUX_F3MON13[7:0] Receive F3 Previous Monitor Value for Port 3. See Path User Byte F3 Monitor on page 380. 0x00 7:0 TMUX_F3MON03[7:0] Receive F3 Current Monitor Value for Port 3. See Path User Byte F3 Monitor on page 380. 0x00 15:8 TMUX_N1MON3[7:0] Receive N1 Monitor Value for Port 3. See N1 Byte Monitor on page 381. 0x00 7:0 TMUX_K3MON3[7:0] Receive K3 Monitor Value for Port 3. See K3 Byte Monitor on page 381. 0x00 0x40032 Function Reset Default Table 105. TMUX_TLS_CTL, Transmit Low-speed Control Parameters (R/W) Address Bit Name 0x40033 15:7 -- Reset Default Reserved. 0x000 6:4 TMUX_TLS_UNEQP[3:1] Transmit Low-speed Unequipped Insert Control. Control bit, when set to a logic 1, causes an unequip signal to be generated in the selected STS-1/AU-3 time slot in the STS-3/STM-1 (AU-4) output signal; normal data is sent when set to a logic 0. Only TMUX_TLS_UNEQP1 is used in AU-4 mode. 0 3:1 TMUX_TLS_PAISINS[3:1] Transmit Low-speed Path AIS Insert Control. Control bit, when set to a logic 1, causes path AIS to be inserted into the selected STS-1/TUG-3 time slot in the STS-3/STM-1 (AU-4) output signal; normal data is sent when set to a logic 0. Only TMUX_TLS_PAISINS1 is used in AU-4 mode. 0 0 102 Function TMUX_TLSVOEPAR Transmit Low-speed Verify Odd or Even Parity. Control bit, when set to a logic 0, causes odd parity to be verified per byte transfer per STS-1/AU-3 input; otherwise, even parity is verified. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 106. TMUX_THS_PORT_CTL, Transmit High-speed Port Control Parameters (R/W) Address Bit 0x40034 15:4 3 2 1 0 Name Function Reset Default -- Reserved. 0x000 0 TMUX_TPSMUXSEL3 Transmit High-speed Protection MUX Selection. Control bit, when set to a logic 1, causes the receive side working input STS-3/STM-1 (AU-4) signal to be selected; otherwise, the signal coming in from the transmit low-speed side (telecom bus) and POH MUX is selected. The output of this MUX is sent to a transport overhead MUX and eventually out the TPSD155P/N (pins AF13, AE13) and TPSC155P/N (pins AC12, AD13) outputs. 0 TMUX_TPSMUXSEL2 Transmit High-speed Protection MUX Selection. Control bit, when set to a logic 1, causes the receive side protection input STS-3/STM-1 (AU-4) signal to be selected; otherwise, the signal coming in from the transmit low-speed side (telecom bus) and POH MUX is selected. The output of this MUX is sent to a transport overhead MUX and eventually out the THSDP/N (pins AF9, AE9) output. TMUX_RHS2THSLB Receive High-speed to Transmit High-speed Loopback 0 Control. Control bit, when set to a logic 1, causes the receive STS-3/STM-1(AU-4) input signal to be looped back to the transmit high-speed output; loopback is disabled when set to a logic 0. 0 TMUX_THSSCR Transmit High-speed Scramble Enable. Control bit, when set to a logic 1, causes the output STS-3/STM-1 (AU-4) signal to be scrambled; the signal is not scrambled if set to a logic 0. Table 107. TMUX_THS_TOH_CTL, Transmit High-speed Control Parameters (R/W) Address 0x40035 Bit Reset Default 15:13 -- Reserved. 0x0 0 12 TMUX_TCONCATMODE Transmit a Concatenated Signal. Control bit, when set to a logic 1, causes the outgoing STS-3/STM-1 signal to be concatenated; otherwise, the outgoing signal is three independent STS-1s (for a 155 MHz signal). 11 TMUX_TPREIRDISEL Transmit MUX Selection Control for Outgoing Path 0 REI and RDI. Control bit, when set to a logic 1, causes the path REI and RDI signals to be selected from the protection board; otherwise, they are derived from the receive side of the same TMUX. 0 10 TMUX_TLREIRDISEL Transmit MUX Selection Control for Outgoing Line REI and RDI. Control bit, when set to a logic 1, causes the line REI and RDI signals to be selected from the protection board; otherwise, they are derived from the receive side of the same TMUX. 9:8 TMUX_TSS[1:0] Transmit SS (Bits). These bits are inserted into the out00 going pointer value (but not in the concatenation values). Agere Systems Inc. Name Function 103 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 107. TMUX_THS_TOH_CTL, Transmit High-speed Control Parameters (R/W) (continued) Address Bit 0x40035 7 TMUX_THSLREIINH Transmit Line REI Inhibit. Control bit, when set to a logic 1, disables hardware insertion of line REI (B2 errors) in the outgoing STM-1 (AU-4) frame M1 byte; a logic 0 enables hardware insertion of line REI. 0 6 TMUX_THSLAISINS Transmit High-speed Line AIS Insertion. Control bit, when set to a logic 1, causes line AIS to be inserted into the outgoing STS-3/STM-1 (AU-4) signal; otherwise, line AIS is not sent. 0 5 TMUX_THSAPSINS Transmit APS Value Insert (Control). Control bit, when set to a logic 1, inserts the value in TMUX_TAPSINS[12:0] (Table 113) into the outgoing K1 and K2[7:3] bytes in the STS3/STM-1 (AU-4) frame; a logic 0 inserts the default value based on SMPR_OH_DEFLT (Table 67). 0 104 Name Function Reset Default 4 TMUX_THSK2INS Transmit K2[2:0] Insert (Control). Control bit, when set to a logic 1, inserts the value in TMUX_TK2INS[2:0] (Table 113) into the outgoing K2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 inserts the default value based on SMPR_OH_DEFLT. 0 3 TMUX_THSS1INS Transmit S1 Insert (Control). Control bit, when set to a logic 1, inserts the value in TMUX_TS1INS[7:0] (Table 112) into the outgoing S1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TTOAC channel or a default value. 0 2 TMUX_THSF1INS Transmit F1 Insert (Control). Control bit, when set to a logic 1, inserts the value in TMUX_TF1INS[7:0] (Table 112) into the outgoing S1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TTOAC channel or a default value. 0 1 TMUX_THSZ0INS Transmit Z0-2 and Z0-3 Insert (Control). Control bit, when set to a logic 1, inserts the values in TMUX_TZ02INS[7:0] (Table 111) and TMUX_TZ03INS[7:0] (Table 111) into the outgoing Z0-2 and Z0-3 bytes in the STS-3/STM-1 (AU-4) frame; a logic 0 inserts the default value based on SMPR_OH_DEFLT. 0 0 TMUX_THSJ0INS Transmit J0 Insert (Control). Control bit, when set to a logic 1, inserts the 16-byte sequence TMUX_TJ0DINS[16--1][7:0] (Table 133) into the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 inserts the default value based on SMPR_OH_DEFLT. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 108. TMUX_THS_POH[1--3]_CTL, Transmit High-Speed Control Parameters (R/W) Address Bit Name 0x40036 15:9 -- Function Reserved. Reset Default 0x00 8 TMUX_THSPREIINH1 Transmit Path REI Inhibit for Port 1. Control bit, when set to a logic 1, disables hardware insertion of path REI (B3 errors) in the outgoing STM-1 (AU-4) frame G1 byte; a logic 0 enables hardware insertion of path REI. Only port 1 control is valid in AU-4 mode. 0 7 TMUX_TPOHTHRU1 Transmit High-speed Path Overhead Insertion from Lowspeed Input (Telecom Bus). Control bit, when set to a logic 1, causes all path overhead bytes, and H1, H2, and H3, to be passed through from the low-speed telecom bus to the highspeed output signal. Only port 1 control is valid in AU-4 mode. 0 6 TMUX_THSN1INS1 Transmit N1 Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the value in TMUX_TN1INS1[7:0] (Table 114) into the outgoing N1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 5 TMUX_THSK3INS1 Transmit K3 Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the value in TMUX_TK3INS1[7:0] (Table 114) into the outgoing K3 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 4 TMUX_THSF3INS1 Transmit F3 Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the value in TMUX_TF3INS1[7:0] (Table 114) into the outgoing F3 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 3 TMUX_THSF2INS1 Transmit F2 Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the value in TMUX_TF2INS1[7:0] (Table 114) into the outgoing F2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 2 TMUX_THSRDIPINS1 Transmit Path RDI Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the value in TMUX_TRDIPINS1[2:0] (Table 114) into the outgoing G1[3:1] bits in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. Agere Systems Inc. 0 105 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 108. TMUX_THS_POH[1--3]_CTL, Transmit High-Speed Control Parameters (R/W) (continued) Address Bit Name Function Reset Default 0x40036 1 TMUX_THSC2INS1 Transmit C2 Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the value in TMUX_TC2INS1[7:0] (Table 114) into the outgoing C2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 0 TMUX_THSJ1INS1 Transmit J1 Insert (Control) for Port 1. Control bit, when set to a logic 1, inserts the 64-byte sequence TMUX_TJ1DINS1[64--1][7:0] (Table 140) into the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 15:9 -- 0x40037 106 Reserved. 8 TMUX_THSPREIINH2 Transmit Path REI Inhibit for Port 2. Control bit, when set to a logic 1, disables hardware insertion of path REI (B3 errors) in the outgoing STS-3/STM-1 (AU-4) frame G1 byte; a logic 0 enables hardware insertion of path REI. Only port 1 control is valid in AU-4 mode. 7 TMUX_TPOHTHRU2 Transmit High-speed Path Overhead Insertion from Lowspeed Input (Telecom Bus). Control bit, when set to a logic 1, causes all path overhead bytes for port 2 and, H1, H2, and H3, to be passed through from the low-speed telecom bus to the high-speed output signal. Only port 1 control is valid in AU-4 mode. 6 TMUX_THSN1INS2 Transmit N1 Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the value in TMUX_TN1INS2[7:0] (Table 114) into the outgoing N1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 5 TMUX_THSK3INS2 Transmit K3 Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the value in TMUX_TK3INS2[7:0] (Table 114) into the outgoing K3 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 4 TMUX_THSF3INS2 Transmit F3 Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the value in TMUX_TF3INS2[7:0] (Table 114) into the outgoing F3 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 108. TMUX_THS_POH[1--3]_CTL, Transmit High-Speed Control Parameters (R/W) (continued) Address Bit Name Function Reset Default 0x40037 3 TMUX_THSF2INS2 Transmit F2 Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the value in TMUX_TF2INS2[7:0] (Table 114) into the outgoing F2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 2 0x40038 TMUX_THSRDIPINS2 Transmit Path RDI Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the value in TMUX_TRDIPINS2[2:0] (Table 114) into the outgoing G1[3:1] bits in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 1 TMUX_THSC2INS2 Transmit C2 Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the value in TMUX_TC2INS2[7:0] (Table 114) into the outgoing C2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 0 TMUX_THSJ1INS2 Transmit J1 Insert (Control) for Port 2. Control bit, when set to a logic 1, inserts the 64-byte sequence TMUX_TJ1DINS2[64--1][7:0] (Table 141) into the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 15:9 -- Reserved. 0x00 8 TMUX_THSPREIINH3 Transmit Path REI Inhibit for Port 3. Control bit, when set to a logic 1, disables hardware insertion of path REI (B3 errors) in the outgoing STS-3/STM-1 (AU-4) frame G1 byte; a logic 0 enables hardware insertion of path REI. Only port 1 control is valid in AU-4 mode. 0 7 TMUX_TPOHTHRU3 Transmit High-speed Path Overhead Insertion from Lowspeed Input (Telecom Bus). Control bit, when set to a logic 1, causes all path overhead bytes for port 3, and H1, H2, and H3, to be passed through from the low-speed telecom bus to the high-speed output signal. Only port 1 control is valid in AU-4 mode. 0 6 TMUX_THSN1INS3 Transmit N1 Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the value in TMUX_TN1INS3[7:0] (Table 114) into the outgoing N1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 5 TMUX_THSK3INS3 Transmit K3 Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the value in TMUX_TK3INS3[7:0] (Table 114) into the outgoing K3 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. 0 Agere Systems Inc. 107 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 108. TMUX_THS_POH[1--3]_CTL, Transmit High-Speed Control Parameters (R/W) (continued) Address Bit Name 0x40038 4 TMUX_THSF3INS3 3 2 1 0 108 Function Transmit F3 Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the value in TMUX_TF3INS3[7:0] (Table 114) into the outgoing F3 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. TMUX_THSF2INS3 Transmit F2 Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the value in TMUX_TF2INS3[7:0] (Table 114) into the outgoing F2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. TMUX_THSRDIPINS3 Transmit Path RDI Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the value in TMUX_TRDIPINS3[2:0] (Table 114) into the outgoing G1[3:1] bits in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. TMUX_THSC2INS3 Transmit C2 Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the value in TMUX_TC2INS3[7:0] (Table 114) into the outgoing C2 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. TMUX_THSJ1INS3 Transmit J1 Insert (Control) for Port 3. Control bit, when set to a logic 1, inserts the 64-byte sequence TMUX_TJ1DINS3[64--1][7:0] (Table 142) into the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the TPOAC channel or a default value. Only port 1 control is valid in AU-4 mode. Reset Default 0 0 0 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 109. TMUX_TLRDI_CTL, Transmit High-Speed Line RDI Control Parameters (R/W) Address 0x4003A Bit 15:7 6 5 4 3 2 1 0 Name -- TMUX_TRHSSD_LRDIINH Function Reserved. Transmit Receive High-speed Signal Degrade L-RDI Inhibit. Control bit, when set to a logic 1, causes the associated failure not to contribute to the automatic insertion of RDI-L; otherwise, the associated alarm contributes to the generation of RDI-L. TMUX_TRHSSF_LRDIINH Transmit Receive High-speed Signal Fail L-RDI Inhibit. Control bit, when set to a logic 1, causes the associated failure not to contribute to the automatic insertion of RDIL; otherwise, the associated alarm contributes to the generation of RDI-L. TMUX_TRLAISMON_LRDIINH Transmit Receive Line AIS Line RDI Inhibit. Same as above. TMUX_TRHSLOF_LRDIINH Transmit Receive High-speed Loss-ofFrame Line RDI Inhibit. Same as above. TMUX_TRHSOOF_LRDIINH Transmit Receive High-speed Out-ofFrame Line RDI Inhibit. Same as above. TMUX_TRHSLOS_LRDIINH Transmit Receive High-speed Loss-ofSignal Line RDI Inhibit. Same as above. TMUX_TRILOC_LRDIINH Transmit Receive Input Loss-of-Clock Line RDI Inhibit. Same as above. Reset Default 0x000 0 0 0 0 0 0 0 Table 110. TMUX_TPRDI_CTL, Transmit High-Speed Path RDI Control Parameters (R/W) Address Bit Reset Default 0x4003B 15:8 -- Reserved. 0x000 7:5 TMUX_TRTIM_PRDIINH[3:1] Transmit Receive Trace Identifier Mismatch Path RDI 0 Inhibit. When a 1, causes the associated failure not to contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 0 4 TMUX_TRUEQ_PRDIINH Transmit Receive Unequipped Path RDI Inhibit. When a 1, causes the associated failure not to contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 3 TMUX_TRPLM_PRDIINH Transmit Receive Payload Label Mismatch Path RDI 0 Inhibit. When a 1, causes the associated failure not to contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 2 TMUX_TRLOP_PRDIINH Transmit Receive Loss-of-Pointer RDI Inhibit. When 0 a 1, causes the associated failure not to contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 1 TMUX_TRPAIS_PRDIINH Transmit Receive Path AIS RDI Inhibit. Same as 0 above. 0 TMUX_TEPRDI_MODE Transmit Enhanced RDI Mode. When a 1, causes the 0 enhanced 3-bit path RDI value to be transmitted in G1[3:1]; otherwise, a one-bit value (G1[3]) is sent. Agere Systems Inc. Name Function 109 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 111. TMUX_TZ0_INS_VAL, Transmit TOH and POH Insert Values (R/W) Address Bit Name Function Reset Default 0x4003C 15:8 TMUX_TZ03INS[7:0] Transmit Z0-3 Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output Z0-3 byte if TMUX_THSZ0INS (Table 107) is asserted. 0x00 7:0 TMUX_TZ02INS[7:0] Transmit Z0-2 Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output Z0-2 byte if TMUX_THSZ0INS is asserted. 0x00 Table 112. TMUX_TS1_F1_INS_VAL, Transmit TOH and POH Insert Values (R/W) Address Bit Name Function Reset Default 0x4003D 15:8 TMUX_TS1INS[7:0] Transmit S1 Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output S1 byte if TMUX_THSS1INS (Table 107) is asserted. 0x00 7:0 TMUX_TF1INS[7:0] Transmit F1 Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output F1 byte if TMUX_THSF1INS (Table 107) is asserted. 0x00 Table 113. TMUX_TAPS_INS_VAL, Transmit TOH and POH Insert Values (R/W) Address Bit 0x4003E 15:3 2:0 Name Function Reset Default TMUX_TAPSINS[12:0] Transmit APS Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output K1[7:0] and K2[7:3] bits if TMUX_THSAPSINS (Table 107) is asserted. TMUX_TK2INS[2:0] Transmit K2 Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output K2[2:0] bits if TMUX_THSK2INS (Table 107) is asserted. 0x00 000 Table 114. TMUX_TPOH[1--3]_INS_[A--C], Transmit TOH and POH Insert Values (R/W) Address Bit Name Function 0x4003F 15:11 -- Reserved. 10:8 TMUX_TRDIPINS1[2:0] Transmit Path RDI Data Insert Value for Port 1. Register value is inserted into the STS-3/STM-1 (AU-4) output G1[3:1] bits if TMUX_THSRDIPINS1 (Table 108) is asserted, regardless of the value of TMUX_TEPRDI_MODE (Table 110). 7:0 TMUX_TC2INS1[7:0] Transmit C2 Data Insert Value for Port 1. Register value is inserted into the STM-1(AU-4) output C2 byte if TMUX_THSC2INS1 (Table 108) is asserted. 0x40040 15:8 TMUX_TF3INS1[7:0] Transmit F3 Data Insert Value for Port 1. Register value is inserted into the STM-1(AU-4) output F3 byte if TMUX_THSF3INS1 (Table 108) is asserted. 0x40040 7:0 TMUX_TF2INS1[7:0] Transmit F2 Data Insert Value for Port 1. Register value is inserted into the STM-1(AU-4) output F2 byte if TMUX_THSF2INS1 (Table 108) is asserted. 110 Reset Default 0x00 000 0x00 0x00 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 114. TMUX_TPOH[1--3]_INS_[A--C], Transmit TOH and POH Insert Values (R/W) (continued) Address 0x40041 0x40042 0x40043 0x40044 0x40045 0x40046 0x40047 Bit Reset Default 15:8 TMUX_TN1INS1[7:0] Transmit N1 Data Insert Value for Port 1. Register value is 0x00 inserted into the STM-1(AU-4) output N1 byte if TMUX_THSN1INS1 (Table 108) is asserted. 7:0 TMUX_TK3INS1[7:0] Transmit K3 Data Insert Value for Port 1. Register value is 0x00 inserted into the STM-1(AU-4) output K3 byte if TMUX_THSK3INS1 (Table 108) is asserted. 15:11 -- Reserved. 0x00 10:8 TMUX_TRDIPINS2[2:0] Transmit Path RDI Data Insert Value for Port 2. Register 000 value is inserted into the STS-3/STM-1 (AU-4) output G1[3:1] bits if TMUX_THSRDIPINS2 (Table 108) is asserted, regardless of the value of TMUX_TEPRDI_MODE. 7:0 TMUX_TC2INS2[7:0] Transmit C2 Data Insert Value for Port 2. Register value is 0x00 inserted into the STM-1(AU-4) output C2 byte if TMUX_THSC2INS1 is asserted. 15:8 TMUX_TF3INS2[7:0] Transmit F3 Data Insert Value for Port 2. Register value is 0x00 inserted into the STM-1(AU-4) output F3 byte if TMUX_THSF3INS1 is asserted. 7:0 TMUX_TF2INS2[7:0] Transmit F2 Data Insert Value for Port 2. Register value is 0x00 inserted into the STM-1(AU-4) output F2 byte if TMUX_THSF2INS1 is asserted. 15:8 TMUX_TN1INS2[7:0] Transmit N1 Data Insert Value for Port 2. Register value is 0x00 inserted into the STM-1(AU-4) output N1 byte if TMUX_THSN1INS1 (Table 108) is asserted. 0x00 7:0 TMUX_TK3INS2[7:0] Transmit K3 Data Insert Value for Port 2. Register value is inserted into the STM-1(AU-4) output K3 byte if TMUX_THSK3INS1 (Table 108) is asserted. 15:11 -- Reserved. 0x00 000 10:8 TMUX_TRDIPINS3[2:0] Transmit Path RDI Data Insert Value for Port 3. Register value is inserted into the STS-3/STM-1 (AU-4) output G1[3:1] bits if TMUX_THSRDIPINS3 (Table 108) is asserted, regardless of the value of TMUX_TEPRDI_MODE. 7:0 TMUX_TC2INS3[7:0] Transmit C2 Data Insert Value for Port 3. Register value is 0x00 inserted into the STM-1(AU-4) output C2 byte if TMUX_THSC2INS1 (Table 108) is asserted. 15:8 TMUX_TF3INS3[7:0] Transmit F3 Data Insert Value for Port 3. Register value is 0x00 inserted into the STM-1(AU-4) output F3 byte if TMUX_THSF3INS1 (Table 108) is asserted. 0x00 7:0 TMUX_TF2INS3[7:0] Transmit F2 Data Insert Value for Port 3. Register value is inserted into the STM-1(AU-4) output F2 byte if TMUX_THSF2INS1 (Table 108) is asserted. 0x00 15:8 TMUX_TN1INS3[7:0] Transmit N1 Data Insert Value for Port 3. Register value is inserted into the STM-1(AU-4) output N1 byte if TMUX_THSN1INS1 is asserted. 7:0 TMUX_TK3INS3[7:0] Transmit K3 Data Insert Value for Port 3. Register value is 0x00 inserted into the STM-1(AU-4) output K3 byte if TMUX_THSK3INS1 is asserted. Agere Systems Inc. Name Function 111 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 115. TMUX_TBERINS_CTL, Transmit High-Speed Error Insertion Control Parameters (R/W) Address Bit Name 0x40048 15:13 -- 12 TMUX_TPSLREIINS Transmit Protection Signal Line REI Insert. Control bit, when set to a logic 1, causes one line REI error in the outgoing protection STS-3/STM-1 (AU-4) signal when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. 0 11 TMUX_TPSB2EIINS Transmit Protection Signal B2 Error Insert. Control bit, when set to a logic 1, causes one B2 error in the outgoing protection STS-3/STM-1 (AU-4) signal when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. 0 10:8 TMUX_TPREIINS[3:1] Transmit Path REI Error Insert. Control bit, when set to a logic 1, causes one path REI error in the outgoing STS-3/STM-1 (AU-4) signal when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. Only port 1 control is valid in AU-4 mode. 0 7:5 4 3:1 0 112 Function Reset Default Reserved. 0x0 TMUX_THSB3ERRINS[3:1] Transmit High-speed B3 Error Insert. Control bit, when set to a logic 1, causes the output B3 byte in the outgoing STS-3/STM-1 (AU-4) signal to be inverted when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. Only port 1 control is valid in AU-4 mode. TMUX_TLREIINS Transmit High-speed Line REI Insert. Control bit, when set to a logic 1, causes one line REI error in the outgoing STS-3/STM-1 (AU-4) signal when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. TMUX_THSB2ERRINS[3:1] Transmit High-speed B2 Error Insert. Control bit, when set to a logic 1, causes the output B2 bytes in the outgoing STS-3/STM-1 (AU-4) signal to be inverted when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. TMUX_THSB1ERRINS Transmit High-speed B1 Error Insert. Control bit, when set to a logic 1, causes the output B1 byte in the outgoing STS-3/STM-1 (AU-4) signal to be inverted when there is a rising edge observed on the SMPR_BER_INSRT (Table 65) input signal. 0 0 000 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 116. TMUX_THS_ERR_CTL, Transmit High-Speed Error Insertion Control Parameters (R/W) Address Bit Name 0x40049 15:10 -- 9 TMUX_TAPSBABINS Function Reserved. Reset Default 0x00 Transmit APS Babble Insert. When 1, causes an inconsistent APS byte (K1[7:0], K2[7:3]) to be inserted into the outgoing STS-3/STM-1 (AU-4) frame. 0 8:6 TMUX_TH1H2INVEN[3:1] Transmit H1 H2 Corrupt Enable. When 1, cause the output H1 and H2 bytes of the STS-3/STM-1 (AU-4) signal to be corrupted on a per STS-1 basis. In the AU-4 mode, only control bit 1 is used. 000 5 TMUX_TH1H2INVORNDF Transmit H1 H2 Corrupt or NDF. When 0, causes an invalid pointer to be inserted into the output H1 and H2 bytes; otherwise, a continuous NDF condition (1001) is sent. 0 4:0 TMUX_TA2ERRINS[4:0] Transmit Frame Error Insert Value. These bits specify the number of consecutive frames to be inserted with a frame error is inserted in the outgoing A2 byte. This number of errored frames is sent each time a rising edge is observed on the SMPR_BER_INSRT (Table 65) input signal. 0x0 Table 117. TMUX_TOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W ) Address Bit 0x4004A 15 14 13 12:10 9 Agere Systems Inc. Name Function TMUX_RTOAC_D412MODE Receive TOAC DCC4 to DCC12 Only Mode. When 1, causes the RTOAC data signal to carry only a parity byte followed by DCC4 to DCC12 bytes. The clock rate is 640 kHz. If this control bit is a logic 0 and TMUX_RTOAC_D13MODE is a logic zero, then the receive TOAC channel is in full access mode. TMUX_RTOAC_D13MODE Receive TOAC DCC1 to DCC3 Only Mode. When 1, causes the RTOAC data signal to carry only a parity byte followed by DCC1 to DCC3 bytes. The clock rate is 260 kHz. If this control bit is a logic 0 and TMUX_RTOAC_D412MODE is a logic zero, then the receive TOAC channel is in full access mode. TMUX_RTOAC_OEPINS Receive TOAC Odd or Even Parity Insert. When 1, forces receive the output TOAC parity bit to be even; otherwise, the parity is odd. -- Reserved. TMUX_TTOAC_D412MODE Transmit TOAC DCC4 to DCC12 Only Mode. When 1, causes DCC4 to DCC12 in the outgoing frame to be inserted from the TTOAC channel. The TTOAC clock rate is 640 kHz. If this control bit is a logic 0 and TMUX_TTOAC_D13MODE is a logic zero, then the transmit TOAC channel is in full access mode. Reset Default 0 0 0 000 0 113 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 117. TMUX_TOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) (continued) Address Bit Name Function 0x4004A 8 TMUX_TTOAC_D13MODE 7 TMUX_TTOAC_AVAIL 6 TMUX_TTOAC_S1 5 TMUX_TTOAC_F1 4 TMUX_TTOAC_E2 3 TMUX_TTOAC_E1 2 TMUX_TTOAC_D4TO12 1 TMUX_TTOAC_D1TO3 0 TMUX_TTOAC_OEPMON Transmit TOAC DCC1 to DCC3 Only Mode. When 1, causes DCC1 to DCC3 in the outgoing frame to be inserted from the TTOAC channel. The TTOAC clock rate is 260 kHz. If this control bit is a logic 0 and TMUX_TTOAC_D13MODE is a logic zero, then the transmit TOAC channel is in full access mode. Transmit TOAC Available Byte Control. When 1, causes the incoming TOAC values for undefined bytes (bold-faced bytes in Table 523) to be inserted into the outgoing STS-3/STM-1 frame. Otherwise, their values depend on SMPR_OH_DEFLT (Table 67). Transmit TOAC S1 Byte Control. When 1, causes the incoming TOAC S1 value to be inserted into the S1 byte of the outgoing STS-3/STM-1 frame if the TMUX_THSS1INS (Table 107) control bit is deasserted. If the S1 is not inserted from register control or from the transmit TOAC channel, then its value depends on SMPR_OH_DEFLT. Transmit TOAC F1 Byte Control. When 1, causes the incoming TOAC F1 value to be inserted into the F1 byte of the outgoing STS-3/STM-1 frame if the TMUX_THSF1INS (Table 107) control bit is desasserted. If the F1 is not inserted from register control or from the transmit TOAC channel, then its value depends on SMPR_OH_DEFLT. Transmit TOAC E1 Byte Control. When 1, causes the incoming TOAC E1 value to be inserted into the E1 byte of the outgoing STS-3/STM-1 frame. Otherwise, the E1 value depends on SMPR_OH_DEFLT. Transmit TOAC E1 Byte Control. When 1, causes the incoming TOAC E1 value to be inserted into the E1 byte of the outgoing STS-3/STM-1 frame. Otherwise, the E1 value depends on SMPR_OH_DEFLT. Transmit TOAC D4 to D12 Byte Control. When 1, causes the TTOAC values to be inserted into the D4 to D12 bytes of the outgoing frame. If this control bit is a logic zero, then the outgoing D4 to D12 values depend on SMPR_OH_DEFLT. Transmit TOAC D1 to D3 Byte Control. When 1, causes the TTOAC values to be inserted into the D1 to D3 bytes of the outgoing frame. If this control bit is a logic zero, then the outgoing D1 to D3 values depend on SMPR_OH_DEFLT. Transmit TOAC Odd or Even Parity Monitor. When 1, forces the input TOAC parity checker to check for odd parity; otherwise, even parity is checked on the transmit TOAC channel. 114 Agere Systems Inc. Reset Default 0 0 0 0 0 0 0 0 0 Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 118. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) Address Bit Name Function 0x4004B 15:14 TMUX_RPOAC_SEL[1:0] Receive POAC STS-1 Port Selection. Designates which STS-1 inserts its path overhead bytes onto the receive POAC channel. Values of 00 or 01 designate STS-1 #1, 10 designates STS-1 #2, 11 designates STS-1 #3. 13 TMUX_RPOAC_OEPINS Receive POAC Odd or Even Parity Insert. When 1, forces receive the output POAC parity bit to be even; otherwise, the parity is odd. 12:10 9:8 -- Reserved. TMUX_TPOAC_SEL[1:0] Transmit POAC STS-1 Port Selection. Designates which STS-1 obtains path overhead bytes from the transmit POAC channel. Values of 00 or 01 designate STS-1 #1, 10 designates STS-1 #2, 11 designates STS-1 #3. 7 -- 6 Reset Default 00 0 000 00 Reserved. 0 TMUX_TPOAC_N1 Transmit POAC N1 Byte Control. When 1, causes the incoming POAC N1 value to be inserted into the N1 byte of the selected TPOAC STS-1 if the corresponding TMUX_THSN1INS (Table 108) control bit is desasserted. If the N1 is not inserted from register control or from the transmit POAC channel, then its value depends on SMPR_OH_DEFLT (Table 67). 0 5 TMUX_TPOAC_K3 Transmit POAC K3 Byte Control. When 1, causes the incoming POAC K3 value to be inserted into the K3 byte of the selected TPOAC STS-1 if the corresponding TMUX_THSK3INS (Table 108) control bit is desasserted. If the K3 is not inserted from register control or from the transmit POAC channel, then its value depends on SMPR_OH_DEFLT. 0 4 TMUX_TPOAC_F3 Transmit POAC F3 Byte Control. When 1, causes the incoming POAC F3 value to be inserted into the F3 byte of the selected TPOAC STS-1 if the corresponding TMUX_THSF3INS (Table 108) control bit is desasserted. If the F3 is not inserted from register control or from the transmit POAC channel, then its value depends on SMPR_OH_DEFLT. 0 3 TMUX_TPOAC_F2 Transmit POAC F2 Byte Control. When 1, causes the incoming POAC F2 value to be inserted into the F2 byte of the selected TPOAC STS-1 if the corresponding TMUX_THSF2INS (Table 108) control bit is desasserted. If the F2 is not inserted from register control or from the transmit POAC channel, then its value depends on SMPR_OH_DEFLT (Table 67). 0 Agere Systems Inc. 115 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 118. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) (continued) Address Bit Name Function Reset Default 0x4004B 2 TMUX_TPOAC_C2 Transmit POAC C2 Byte Control. When 1, causes the incoming POAC C2 value to be inserted into the C2 byte of the selected TPOAC STS-1 if the corresponding TMUX_THSC2INS (Table 108) control bit is desasserted. If the C2 is not inserted from register control or from the transmit POAC channel, then its value depends on SMPR_OH_DEFLT. 0 1 TMUX_TPOAC_J1 Transmit POAC J1 Byte Control. Control bit, when set to a logic 1, causes the incoming POAC J1 value to be inserted into the J1 byte of the selected TPOAC STS-1 if the corresponding TMUX_THSJ1INS (Table 108) control bit is desasserted. If the J1 is not inserted from register control or from the transmit POAC channel, then its value depends on SMPR_OH_DEFLT. 0 0 TMUX_TPOAC_OEPMON Transmit TOAC Odd or Even Parity Monitor. Control bit, when set to a logic 1, forces the input TOAC parity checker to check for odd parity; otherwise, even parity is checked on the transmit TOAC channel. 0 Table 119. TMUX_TFRAMEOFFSET, Transmit High-Speed Offset Control Parameters (R/W) Address Bit Name Function Reset Default 0x4004D 15:13 TMUX_TLBITCNT[2:0] Transmit Load Bit Count. Allows the output STS-3/STM-1 (AU-4) frame to have any relationship to the input frame sync pulse (THSSJ0J1V1I). 000 12:11 TMUX_TLSTSCNT[1:0] Transmit Load STS-1 Count. Same as above. 00 10:4 TMUX_TLCOLCNT[6:0] Transmit Load Column Count. Same as above. 3:0 TMUX_TLROWCNT[3:0] Transmit Load Row Count. Same as above. 0000000 0000 ) Table 120. TMUX_SD_CTL[1--6], B1/B2 Signal Degrade Set/Clear Control Registers (R/W) Address Bit Name 0x4004E 0x4004F 0x4004F 15:0 2:0 14:7 TMUX_SDNSSET[18:3] TMUX_SDNSSET[2:0] 0x40050 0x40051 0x40052 116 Function Reset Default 0x00000 Signal Degrade Ns Set. Number of frames in a monitoring block for signal degrade (SD). 0x00 TMUX_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then SD is set. 6:3 TMUX_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining 0x0 if a monitoring block is bad. 15:0 TMUX_SDBSET[15:0] Signal Degrade B Set. Number of monitoring blocks. 0x0000 15:0 TMUX_SDNSCLEAR[18:3] Signal Degrade Ns Clear. Number of frames in a 0x00000 2:0 TMUX_SDNSCLEAR[2:0] monitoring block for SD. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 120. TMUX_SD_CTL[1--6], B1/B2 Signal Degrade Set/Clear Control Registers (R/W) (continued) Address Bit Name Function 0x40052 0x40052 14:7 TMUX_SDMCLEAR[7:0] 6:3 TMUX_SDLCLEAR[3:0] 15:0 TMUX_SDBCLEAR[15:0] Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. Signal Degrade L Clear. Error threshold for determining if a monitoring block is bad. Signal Degrade B Clear. Number of monitoring blocks. 0x40053 Reset Default 0x00 0x0 0x0000 Table 121. TMUX_SF_CTL[1--6], B1/B2 Signal Fail Set/Clear Control Registers (R/W) Address Bit Name 0x40054 0x40055 0x40055 15:0 2:0 14:7 TMUX_SFNSSET[18:3] TMUX_SFNSSET[2:0] 0x40055 6:3 0x40056 0x40057 0x40058 0x40058 15:0 15:0 2:0 14:7 0x40058 6:3 0x40059 15:0 Function Reset Default 0x0000 0 0x00 Signal Fail Ns Set. Number of frames in a monitoring block for signal fail (SF). TMUX_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then SF is set. TMUX_SFLSET[3:0] Signal Fail L Set. Error threshold for determining if a 0x0 monitoring block is bad. TMUX_SFBSET[15:0] Signal Fail B Set. Number of monitoring blocks. 0x0000 TMUX_SFNSCLEAR[18:3] Signal Fail Ns Clear. Number of frames in a monitoring 0x0000 TMUX_SFNSCLEAR[2:0] block for SF. 0 TMUX_SFMCLEAR[7:0] Signal Fail M Clear. Threshold of the number of bad 0x00 monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. TMUX_SFLCLEAR[3:0] Signal Fail L Clear. Error threshold for determining if a 0x0 monitoring block is bad. TMUX_SFBCLEAR[15:0] Signal Fail B Clear. Number of monitoring blocks. 0x0000 Table 122. TMUX_B3SD_CTL[1--6], B3 Signal Degrade Set/Clear Control Registers (R/W) Address Bit Name 0x4005A 0x4005B 0x4005B 15:0 2:0 14:7 TMUX_B3SDNSSET[18:3] TMUX_B3SDNSSET[2:0] 0x4005B 0x4005C 0x4005D 0x4005E Function B3 Signal Degrade Ns Set. Number of frames in a monitoring block for signal degrade (SD). TMUX_B3SDMSET[7:0] B3 Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then SD is set. 6:3 TMUX_B3SDLSET[3:0] B3 Signal Degrade L Set. Error threshold for determining if a monitoring block is bad. 15:0 TMUX_B3SDBSET[15:0] B3 Signal Degrade B Set. Number of monitoring blocks. 15:0 TMUX_B3SDNSCLEAR[18:3] B3 Signal Degrade Ns Clear. Number of frames in a 2:0 TMUX_B3SDNSCLEAR[2:0] monitoring block for SD. Agere Systems Inc. Reset Default 0x0000 0 0x00 0x0 0x0000 0x0000 0 117 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 122. TMUX_B3SD_CTL[1--6], B3 Signal Degrade Set/Clear Control Registers (R/W) (continued) Address Bit Name 0x4005E 14:7 TMUX_B3SDMCLEAR[7:0] 6:3 TMUX_B3SDLCLEAR[3:0] 15:0 TMUX_B3SDBCLEAR[15:0] 0x4005F Function B3 Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. B3 Signal Degrade L Clear. Error threshold for determining if a monitoring block is bad. B3 Signal Degrade B Clear. Number of monitoring blocks. Reset Default 0x00 0x0 0x0000 Table 123. TMUX_B3SF_CTL[1--6], B3 Signal Fail Set/Clear Control Registers (R/W) Address Bit Name Function Reset Default 0x40060 0x40061 15:0 2:0 TMUX_B3SFNSSET[18:3] TMUX_B3SFNSSET[2:0] 0x40061 14:7 TMUX_B3SFMSET[7:0] B3 Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then SF is set. 0x00 0x40061 6:3 TMUX_B3SFLSET[3:0] B3 Signal Fail L Set. Error threshold for determining if a monitoring block is bad. 0x0 0x40062 15:0 TMUX_B3SFBSET[15:0] 0x40063 0x40064 15:0 2:0 0x40064 14:7 TMUX_B3SFMCLEAR[7:0] B3 Signal Fail M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. 0x00 0x40064 6:3 TMUX_B3SFLCLEAR[3:0] B3 Signal Fail L Clear. Error threshold for determining if a monitoring block is bad. 0x0 0x40065 15:0 B3 Signal Fail Ns Set. Number of frames in a monitoring block for SF. B3 Signal Fail B Set. Number of monitoring blocks. TMUX_B3SFNSCLEAR[18:3] B3 Signal Fail Ns Clear. Number of frames in a TMUX_B3SFNSCLEAR[2:0] monitoring block for SF. TMUX_B3SFBCLEAR[15:0] B3 Signal Fail B Clear. Number of monitoring blocks. 0x0000 0 0x0000 0x0000 0 0x0000 Table 124. TMUX_B1ECNT, Receive B1 Error Counts (RO) Address Bit 0x40066 15:0 118 Name Function Reset Default TMUX_B1ECNT[15:0] Receive High-speed B1 Error Count. Counts the number 0x0000 of B1 errors in the received STS-3/STM-1 (AU-4) frame. This counter can either count actual BIP errors or block errors; see TMUX_BITBLKB1 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER (Table 67) and transfers its internal count to a holding register when SMPR_PMRESET (Table 65) transitions from a logic 0 to 1. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 125. TMUX_B2ECNT_17_16 and TMUX_B2ECNT_15_0, Receive B2 Error Counts (RO) Address Bit Name 0x40067 15:2 -- 0x40067-- 0x40068 1:0 15:0 Function Reserved. Reset Default 0x000 TMUX_B2ECNT[17:16]-- Receive High-speed B2 Error Count. Counts the TMUX_B2ECNT[15:0] number of B2 errors in the received STS-3/STM-1 (AU-4) frame. This counter can either count actual BIP errors or block errors; see TMUX_BITBLKB2 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. 0x0000 0 Table 126. TMUX_B3ECNT[1--3], Receive B3 Error Counts (RO) Address Bit 0x40069 15:0 0x4006A 15:0 0x4006B 15:0 Agere Systems Inc. Name Function Reset Default 0x0000 TMUX_B3ECNT1[15:0] Receive High-speed B3 Error Count for Port 1. Counts the number of B3 errors in the receive STS-3/STM-1 (AU-4) frame for port 1. Only counter value 1 is valid in AU-4 mode. This counter can either count actual BIP errors or block errors; see TMUX_BITBLKB3 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER (Table 67) and transfers its internal count to a holding register when SMPR_PMRESET (Table 65) transitions from a logic 0 to 1. 0x0000 TMUX_B3ECNT2[15:0] Receive High-speed B3 Error Count for Port 2. Counts the number of B3 errors in the receive STS-3/STM-1 (AU-4) frame for port 2. Only counter value 1 is valid in AU-4 mode. This counter can either count actual BIP errors or block errors; see TMUX_BITBLKB3 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. 0x0000 TMUX_B3ECNT3[15:0] Receive High-speed B3 Error Count for Port 3. Counts the number of B3 errors in the receive STS-3/STM-1 (AU-4) frame for port 3. Only counter value 1 is valid in AU-4 mode. This counter can either count actual BIP errors or block errors; see TMUX_BITBLKB3 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. 119 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 127. TMUX_M1ECNT_17_16 and TMUX_M1ECNT_15_0, Receive M1 Error Counts (RO) Address Bit Name 0x4006C 15:2 -- 0x4006C-- 0x4006D 1:0 15:0 Function Reset Default Reserved. 0x000 TMUX_M1ECNT[17:16]-- Receive Line REI Count. Counts the number of TMUX_M1ECNT[15:0] errors received in the M1 byte of the receive STS-3/STM-1 (AU-4) frame. This counter can either count actual errors or block errors; see TMUX_BITBLKM1 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. 0x00000 Table 128. TMUX_G1ECNT[1--3], Receive G1 Error Counts (RO) Address Bit Name Function Reset Default 0x4006E 15:0 TMUX_G1ECNT1[15:0] Receive Path REI Count for Port 1. Counts the number of 0x0000 B3 errors received in the G1[7:4] bits of port 1 in the received STS-3/STM-1 (AU-4) frame. This counter can either count actual errors or block errors; see TMUX_BITBLKB3 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER (Table 67) and transfers its internal count to a holding register when SMPR_PMRESET (Table 65) transitions from a logic 0 to 1. 0x4006F 15:0 TMUX_G1ECNT2[15:0] Receive Path REI Count for Port 2. Counts the number of 0x0000 B3 errors received in the G1[7:4] bits of port 2 in the received STS-3/STM-1 (AU-4) frame. This counter can either count actual errors or block errors; see TMUX_BITBLKB3 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. 0x40070 120 15:0 TMUX_G1ECNT3[15:0] Receive Path REI Count for Port 3. Counts the number of 0x0000 B3 errors received in the G1[7:4] bits of port 3 in the received STS-3/STM-1 (AU-4) frame. This counter can either count actual errors or block errors; see TMUX_BITBLKB3 (Table 95). This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 129. TMUX_RPTR_INCCNT[1--3], Receive Pointer Increment Count (RO) Address Bit Name 0x40074-- 0x40076 15:11 -- 0x40074-- 0x40076 10:0 Function Reserved. Reset Default 0x000 TMUX_RPTR_INC1[10:0]-- Receive Pointer Increment Count. Counts the TMUX_RPTR_INC3[10:0] number of increments in the incoming pointer values. This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER (Table 67) and transfers its internal count to a holding register when SMPR_PMRESET (Table 65) transitions from a logic 0 to 1. 0x000 Table 130. TMUX_RPTR_DECCNT[1--3], Receive Pointer Decrement Count (RO) Address Bit 0x40077-- 15:11 0x40079 0x40077-- 0x40079 10:0 Name -- Function Reserved. Reset Default 0x000 TMUX_RPTR_DEC1[10:0]-- Receive Pointer Decrement Count. Counts the TMUX_RPTR_DEC3[10:0] number of decrements in the incoming pointer values. This counter holds at its maximum value or rolls over depending on the value of SMPR_SAT_ROLLOVER and transfers its internal count to a holding register when SMPR_PMRESET transitions from a logic 0 to 1. 0x000 Table 131. TMUX_RJ0EXPECTED[1--8], Expected J0 Byte Sequence (R/W) Address Bit 0x400A0-- 15:0 0x400A7 Name Function TMUX_EXPJ0DMON[16--1][7:0] Expected Receive J0 Value. Registers contain either the programmed expected J0 16byte sequence or the previously captured J0 sequence, depending on the J0 mode. Reset Default 0x0000 Table 132. TMUX_RJ0CAPTURED[1--8], Captured J0 Receive Value (RO) Address Bit Name Function Reset Default 0x400A8-- 15:0 TMUX_J0DMON[16--1][7:0] Received J0 Value. Registers capture a 16-byte 0x0000 0x400AF sequence from the J0 byte of the receive input signal. Table 133. TMUX_TJ0VALUE[1--8], J0 Byte Transmit Insert (R/W) Address Bit Name Function 0x400B0-- 15:0 TMUX_TJ0DINS[16--1][7:0] Transmit J0 Data Insert. Registers allow a 16-byte 0x400B7 sequence to be inserted into the J0 byte of the STS-3/STM-1(AU-4) output signal. Agere Systems Inc. Reset Default 0x0000 121 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 134. TMUX_RJ1EXPECTED1_[1--32], Expected J1 Byte Value for Port 1 (R/W) Address Bit 0x400E0-- 0x400FF 15:0 Name Function TMUX_EXPJ1DMON1[64--1][7:0] Expected Receive J1 Value for Port 1. Registers contain either the programmed expected J1 16-byte/64-byte sequence or the previously captured J1 sequence, depending on the J1 mode. Reset Default 0x0000 Table 135. TMUX_RJ1EXPECTED2_[1--32], Expected J1 Byte Value for Port 2 (R/W) Address Bit 0x40100-- 15:0 0x4011F Name TMUX_EXPJ1DMON2[64--1][7:0] Function Reset Default Expected Receive J1 Value for Port 2. Reg- 0x0000 isters contain either the programmed expected J1 16-byte/64-byte sequence or the previously captured J1 sequence, depending on the J1 mode. Table 136. TMUX_RJ1EXPECTED3_[1--32], Expected J1 Byte Value for Port 3 (R/W) Address Bit Name Function Reset Default 0x40120-- 15:0 TMUX_EXPJ1DMON3[64--1][7:0] Expected Receive J1 Value for Port 3. Regis- 0x0000 0x4013F ters contain either the programmed expected J1 16-byte/64-byte sequence or the previously captured J1 sequence, depending on the J1 mode. Table 137. TMUX_RJ1CAPTURED1_[1--32], Captured J1 Value for STS #1 (RO) Address Bit 0x40140-- 15:0 0x4015F Name Function TMUX_J1DMON1[64--1][7:0] Receive J1 Monitor Data for Port 1. Registers capture a 16-byte/64-byte sequence from the port 1, J1 byte of the STS-3/STM-1 (AU-4) input signal. Only port 1 information is valid in AU-4 mode. Reset Default 0x0000 Table 138. TMUX_RJ1CAPTURED2_[1--32], Captured J1 Value for STS #2 (RO) Address Bit 0x40160-- 15:0 0x4017F 122 Name Function TMUX_J1DMON2[64--1][7:0] Receive J1 Monitor Data for Port 2. Registers capture a 64-byte sequence from the port 2, J1 byte of the STS-3/STM-1 (AU-4) input signal. Only port 1 information is valid in AU-4 mode. Reset Default 0x0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 139. TMUX_RJ1CAPTURED3_[1--32], Captured J1 Value for STS #3 (RO) Address Bit 0x40180-- 15:0 0x4019F Name Function TMUX_J1DMON3[64--1][7:0] Receive J1 Monitor Data for Port 3. Registers capture a 64-byte sequence from the port 3 J1 byte of the STS-3/STM-1 (AU-4) input signal. Only port 1 information is valid in AU-4 mode. Reset Default 0x0000 Table 140. TMUX_TJ1VALUE_1[1--32], J1 Byte Transmit Insert for STS #1 (R/W) Address 0x401A0-- 0x401BF Bit Name Function Reset Default 15:0 TMUX_TJ1DINS[64--1][7:0] Transmit J1 Data Insert for Port 1. Registers allow 0x0000 a 64-byte sequence to be inserted into the port 1, J1 byte of the STS-3/STM-1(AU-4) output signal. Only port 1 information is valid in AU-4 mode. Table 141. TMUX_TJ1VALUE_2[1--32], J1 Byte Transmit Insert for STS #2 (R/W) Address 0x401C0-- 0x401DF Bit Name Function 15:0 TMUX_TJ1DINS2[64--1][7:0] Transmit J1 Data Insert for Port 2. Registers allow a 64-byte sequence to be inserted into the port 2, J1 byte of the STS-3/STM-1(AU-4) output signal. Only port 1 information is valid in AU-4 mode. Reset Default 0x0000 Table 142. TMUX_TJ1VALUE_3[1--32], J1 Byte Transmit Insert for STS #3 (R/W) Address Bit 0x401E0-- 15:0 0x401FF Agere Systems Inc. Name Function Reset Default TMUX_TJ1DINS3[64--1][7:0] Transmit J1 Data Insert for Port 3. Registers allow 0x0000 a 64-byte sequence to be inserted into the port 2, J1 byte of the STS-3/STM-1(AU-4) output signal. Only port 1 information is valid in AU-4 mode. 123 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) 8.2 TMUX Register Map Table 143. TMUX Register Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TMUX_SD CLEAR TMUX_SD SET ID and Version--RO 0x40000 TMUX_ID_ R TMUX_VERSION[2:0] TMUX_TMUX_ID[7:0] = 0X04 0x40002 TMUX_ON ESHOT 0x40003 TMUX_RC V_TX_MO DE 0x40004 TMUX_TX _DLT 0x40005 TMUX_ RPS_ DLT 0x40006 TMUX_RH S_DLT TMUX_RS TMUX_RS 1BABE 1MOND TMUX_RLRDI MOND TMUX_RLAI SMOND TMUX_RK2 MOND TMUX_RAP SBABE TMUX_RAP SMOND TMUX_RF1 MOND 0x40007 TMUX_RP TMUX_RS TMUX_RS TMUX_RU OH1_DLT FB3D1 DB3D1 NEQPD1 TMUX_RPLM PD1 TMUX_RN1 MOND1 TMUX_RK3 MOND1 TMUX_RF3 MOND1 TMUX_RF2 MOND1 0x40008 TMUX_RP TMUX_RS TMUX_RS TMUX_RU OH2_ FB3D2 DB3D2 NEQPD2 DLT TMUX_RPLM PD2 TMUX_RN1 MOND2 TMUX_RK3 MOND2 TMUX_RF3 MOND2 0x40009 TMUX_RP TMUX_RS TMUX_RS TMUX_RU OH3_DLT FB3D3 DB3D3 NEQPD3 TMUX_RPLM PD3 TMUX_RN1 MOND3 TMUX_RK3 MOND3 TMUX_RF3 MOND3 One-Shot (0 to 1 transition Control Bit Parameters--R/W TMUX_B3S TMUX_B3S TMUX_B3S TMUX_B3S TMUX_SFC TMUX_SFS FCLEAR FSET DCLEAR ET DSET LEAR Receive/Transmit Mode--R/W TMUX_STS 1MODE Delta and Event Parameters--COR/COW TMUX_TLS PARE3 TMUX_TLS PARE2 TMUX_TLS PARE1 TMUX_TP OAC_PE TMUX_TTO TMUX_THS TMUX_THS AC_PE ILOFD ILOCD TMUX_RP SLOFD TMUX_RP SOOFD TMUX_RP SILOCD TMUX_RP SB2E TMUX_RP SLREIE TMUX_RTI MSD TMUX_RH SSFD TMUX_RH SSDD TMUX_RH SLOSD TMUX_RH SLOFD TMUX_RH SOOFD TMUX_RH SILOCD TMUX_RR DIPD1 TMUX_RC2 MOND1 TMUX_RTI MPD1 TMUX_RN DFE1 TMUX_RD ECE1 TMUX_RIN TMUX_RPA CE1 ISD1 TMUX_RL OPD1 TMUX_RF2 MOND2 TMUX_RR DIPD2 TMUX_RC2 MOND2 TMUX_RTI MPD2 TMUX_RN DFE2 TMUX_RD ECE2 TMUX_RIN TMUX_RPA CE2 ISD2 TMUX_RL OPD2 TMUX_RF2 MOND3 TMUX_RR DIPD3 TMUX_RC2 MOND3 TMUX_RTI MPD3 TMUX_RN DFE3 TMUX_RD ECE3 TMUX_RIN TMUX_RPA CE3 ISD3 TMUX_RL OPD3 TMUX_TLS PARM3 TMUX_TLS PARM2 TMUX_TLS PARM1 TMUX_TP OAC_PM TMUX_TTO TMUX_THS TMUX_THS AC_PM ILOFM ILOCM TMUX_RP SLOFM TMUX_RP SOOFM TMUX_RP SILOCM TMUX_RP SB2M TMUX_RP SLREIM Interrupt Mask Parameters for INT Pin--R/W 0x4000A TMUX_ TX_ MSK 0x4000B TMUX_RP S_MSK 0x4000C TMUX_RH S_MSK TMUX_RS TMUX_RS 1BABM 1MONM TMUX_RLRDI MONM TMUX_RLAI SMONM TMUX_RK2 MONM TMUX_RAP SBABM TMUX_RAP SMONM TMUX_RF1 MONM TMUX_RTI MSM TMUX_RH SSFM TMUX_RH SSDM TMUX_RH SLOSM TMUX_RH SLOFM TMUX_RH SOOFM TMUX_RH SILOCM 0x4000D TMUX_RP TMUX_RS TMUX_RS TMUX_RU OH1_MSK FB3M1 DB3M1 NEQPM1 TMUX_RPLM PM1 TMUX_RN1 MONM1 TMUX_RK3 MONM1 TMUX_RF3 MONM1 TMUX_RF2 MONM1 TMUX_RR DIPM1 TMUX_RC2 MONM1 TMUX_RTI MPM1 TMUX_RN DFM1 TMUX_RD ECM1 TMUX_RIN TMUX_RPA CM1 ISM1 TMUX_RL OPM1 0x4000E TMUX_RP TMUX_RS TMUX_RS TMUX_RU OH2_MSK FB3M2 DB3M2 NEQPM2 TMUX_RPLM PM2 TMUX_RN1 MONM2 TMUX_RK3 MONM2 TMUX_RF3 MONM2 TMUX_RF2 MONM2 TMUX_RR DIPM2 TMUX_RC2 MONM2 TMUX_RTI MPM2 TMUX_RN DFM2 TMUX_RD ECM2 TMUX_RIN TMUX_RPA CM2 ISM2 TMUX_RL OPM2 0x4000F TMUX_RP TMUX_RS TMUX_RS TMUX_RU OH3_MSK FB3M3 DB3M3 NEQPM3 TMUX_RPLM PM3 TMUX_RN1 MONM3 TMUX_RK3 MONM3 TMUX_RF3 MONM3 TMUX_RF2 MONM3 TMUX_RR DIPM3 TMUX_RC2 MONM3 TMUX_RTI MPM3 TMUX_RN DFM3 TMUX_RD ECM3 TMUX_RIN TMUX_RPA CM3 ISM3 TMUX_RL OPM3 0x40011 TMUX_AP S_MSK TMUX_ RHSSD_ APSM TMUX_ RAPSMON _APSM TMUX_ TMUX_ TMUX_ RLAISMON RHSLOS_A RHSLOF_A _APSM PSM PSM Interrupt Mask Parameters for APSINT Pin--R/W 124 TMUX_RH SSF_APSM TMUX_ RHSOOF_ APSM TMUX_ RHSILOC_ APSM Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 State and Value Parameters--RO 0x40012 TMUX_TX_ST ATE TMUX_THS TMUX_THS ILOF ILOC 0x40013 TMUX_RPS_ STATE 0x40014 TMUX_RHS_ STATE 0x40015 TMUX_RPOH 1_STATE TMUX_RS FB31 TMUX_RS DB31 TMUX_RU NEQP1 TMUX_RPL MP1 0x40016 TMUX_RPOH 2_STATE TMUX_RS FB32 TMUX_RS DB32 TMUX_RU NEQP2 0x40017 TMUX_RPOH 3_STATE TMUX_RS FB33 TMUX_RS DB33 TMUX_RU NEQP3 0x40019 TMUX_RHS_ CTL 0x4001A TMUX_RLS_ BITBLK_CTL 0x4001B TMUX_RLS_ MODE_CTL 0x4001C TMUX_RAISI NH_CTL 0x4001D TMUX_LOSD ETCNT 0x4001E TMUX_CNTD _TOH_A 0x4001F TMUX_CNTD _TOH_B 0x40020 TMUX_CNTD _POH_A 0x40021 TMUX_CNTD _POH_B 0x40022 TMUX_C2EX P1 0x40023 TMUX_C2EX P2_3 TMUX_RLR TMUX_RLA DIMON ISMON TMUX_RH SLOSEXTI TMUX_RTI MS TMUX_RP SLOF TMUX_RP SOOF TMUX_RP SILOC TMUX_RH SSF TMUX_RH SSD TMUX_RH SLOS TMUX_RH SLOF TMUX_RH SOOF TMUX_RH SILOC TMUX_RTI MP1 TMUX_RPA IS1 TMUX_RL OP1 TMUX_RPL MP2 TMUX_RTI MP2 TMUX_CONCAT_STATE2 TMUX_RPA [1:0] IS2 TMUX_RL OP2 TMUX_RPL MP3 TMUX_RTI MP3 TMUX_CONCAT_STATE3 TMUX_RPA [1:0] IS3 TMUX_RL OP3 TMUX_LOS TMUX_RP TMUX_THS EXT_LEVE SMUXSEL1 2RHSLB L TMUX_RH SDSCR TMUX_BIT BLKM1 TMUX_BIT BLKB3 TMUX_BIT BLKB2 TMUX_BIT BLKB1 TMUX_S1 MODE4 TMUX_RLS TMUX_ PAROEG RCONCATMODE TMUX_ REPRDI_ MODE Receive High-speed Control Parameters--R/W Receive Low-speed Control Parameters--R/W TMUX_RCV_SS_EXP[1:0 ] TMUX_RPA IS_INS TMUX_R_ M1_BIT7 TMUX_ RSDB3_ AISINH TMUX_8O RMAJORITY TMUX_RSF B3_AISINH TMUX_SD B1B2SEL TMUX_SFB 1B2SEL TMUX_RTIMP_AISINH[3:1] TMUX_J1MONMODE[2:0] TMUX_ RUNEQP_ AISINH TMUX_RPL MP_AISINH TMUX_ RHSSD_ AISINH TMUX_FORCEC2DEF[2:0] TMUX_RC V_SS_ENB TMUX_BIT BLKG1 TMUX_J0MONMODE[2:0] TMUX_ RHSSF_ AISINH TMUX_ RPAISLOP _AISINH TMUX_ TMUX_RL TMUX_RO RLAISMON OF_AISINH OF_AISINH _AISINH TMUX_ RHSLOS_ AISINH TMUX_RIL OC_AISINH TMUX_LOSDETCNT[10:0] Continuous N-Times Detect Values--R/W Agere Systems Inc. TMUX_CNTDK1K2FRAME[3:0] TMUX_CTDLOPCNT[1:0] TMUX_CNTDF2[3:0] TMUX_CT DB1SEL TMUX_CNTDK1K2[3:0] TMUX_CNTDF1[3:0] TMUX_CNTDJ0[3:0] TMUX_CNTDS1FRAME[3:0] TMUX_CNTDS1[3:0] TMUX_CNTDK2[3:0] TMUX_CNTDRDIP[3:0] TMUX_C2[3:0] TMUX_CNTDJ1[3:0] TMUX_CNTDN1[3:0] TMUX_CNTDK3[3:0] TMUX_CNTDF3[3:0] TMUX_C2EXP1[7:0] TMUX_C2EXP3[7:0] TMUX_C2EXP2[7:0] 125 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive Monitor Values--RO 0x40024 TMUX_RF1M ON TMUX_RF1MON1[7:0] TMUX_RF1MON0[7:0] 0x40025 TMUX_RAPS MON 0x40026 TMUX_RS1M ON 0x40027 TMUX_RPOH MON1A 0x40028 TMUX_RPOH MON1B TMUX_F2MON11[7:0] TMUX_F2MON01[7:0] 0x40029 TMUX_RPOH MON1C TMUX_F3MON11[7:0] TMUX_F3MON01[7:0] 0x4002A TMUX_RPOH MON1D TMUX_N1MON1[7:0] TMUX_K3MON1[7:0] 0x4002B TMUX_RPOH MON2A 0x4002C TMUX_RPOH MON2B TMUX_F2MON12[7:0] TMUX_F2MON02[7:0] 0x4002D TMUX_RPOH MON2C TMUX_F3MON12[7:0] TMUX_F3MON02[7:0] 0x4002E TMUX_RPOH MON2D TMUX_N1MON2[7:0] TMUX_K3MON2[7:0] 0x4002F TMUX_RPOH MON3A 0x40030 TMUX_RPOH MON3B TMUX_F2MON13[7:0] TMUX_F2MON03[7:0] 0x40031 TMUX_RPOH MON3C TMUX_F3MON13[7:0] TMUX_F3MON03[7:0] 0x40032 TMUX_RPOH MON4D TMUX_N1MON3[7:0] TMUX_K3MON3[7:0] 0x40033 TMUX_TLS_C TL 0x40034 TMUX_THS_ PORT_CTL TMUX_RAPSMON[12:0] TMUX_K2MON[2:0] TMUX_RS1MON[7:0] TMUX_RDIPMON1[2:0] TMUX_RDIPMON2[2:0] TMUX_RDIPMON3[2:0] TMUX_C2MON1[7:0] TMUX_C2MON2[7:0] TMUX_C2MON3[7:0] Transmit Low-speed Control Parameters--R/W TMUX_TLS_UNEQP[3:1] TMUX_TLS_PAISINS[3:1] TMUX_TLS VOEPAR Transmit High-speed Port Control Parameters--R/W 126 TMUX_TPS TMUX_TPS MUXSEL3 MUXSEL2 TMUX_RH S2THSLB TMUX_THS SCR Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit High-speed Control Parameters--R/W 0x40035 TMUX_THS_ TOH_CTL TMUX_TC ONCATMODE TMUX_TPR TMUX_TLR EIRDISEL EIRDISEL TMUX_TSS[1:0] TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS LREIINH LAISINS APSINS K2INS S1INS F1INS Z0INS J0INS 0x40036 TMUX_THS_ POH1_CTL TMUX_THS PREIINH1 TMUX_TP OHTHRU1 TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS N1INS1 K3INS1 F3INS1 F2INS1 RDIPINS1 C2INS1 J1INS1 0x40037 TMUX_THS_ POH2_CTL TMUX_THS PREIINH2 TMUX_TP OHTHRU2 TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS N1INS2 K3INS2 F3INS2 F2INS2 RDIPINS2 C2INS2 J1INS2 0x40038 TMUX_THS_ POH3_CTL TMUX_THS PREIINH3 TMUX_TP OHTHRU3 TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS TMUX_THS N1INS3 K3INS3 F3INS3 F2INS3 RDIPINS3 C2INS3 J1INS3 0x4003A TMUX_TLRDI _CTL 0x4003B TMUX_TPRDI _CTL 0x4003C TMUX_TZ0_I NS_VAL TMUX_TZ03INS[7:0] TMUX_TZ02INS[7:0] 0x4003D TMUX_TS1_F 1_INS_VAL TMUX_TS1INS[7:0] TMUX_TF1INS[7:0] 0x4003E TMUX_TAPS _INS_VAL TMUX_TAPSINS[12:0] 0x4003F TMUX_TPOH 1_INS_A TMUX_TRDIPINS1[2:0] 0x40040 TMUX_TPOH 1_INS_B TMUX_TF3INS1[7:0] TMUX_TF2INS1[7:0] 0x40041 TMUX_TPOH 1_INS_C TMUX_TN1INS1[7:0] TMUX_TK3INS1[7:0] 0x40042 TMUX_TPOH 2_INS_A 0x40043 TMUX_TPOH 2_INS_B TMUX_TF3INS2[7:0] TMUX_TF2INS2[7:0] 0x40044 TMUX_TPOH 2_INS_C TMUX_TN1INS2[7:0] TMUX_TK3INS2[7:0] 0x40045 TMUX_TPOH 3_INS_A 0x40046 TMUX_TPOH 3_INS_B TMUX_TF3INS3[7:0] TMUX_TF2INS3[7:0] 0x40047 TMUX_TPOH 3_INS_C TMUX_TN1INS3[7:0] TMUX_TK3INS3[7:0] Transmit High-speed Line RDI Control Parameters--R/W TMUX_TRS TMUX_TRS TMUX_TRL TMUX_TRL TMUX_TR TMUX_TRL D_LRDIINH F_LRDIINH AISMON_L OF_LRDIIN OOF_LRDII OS_LRDIIN RDIINH H NH H TMUX_TRI LOC_LRDII NH Transmit High-speed Path RDI Control Parameters--R/W TMUX_TIM_PRDIINH[3:1] TMUX_TRU TMUX_TRP TMUX_TRL TMUX_TRP TMUX_TEP EQ_PRDIIN LM_PRDIIN OP_PRDIIN AIS_PRDII RDI_MODE H H H NH Transmit TOH and POH Insert Values--R/W Agere Systems Inc. TMUX_TRDIPINS2[2:0] TMUX_TRDIPINS3[2:0] TMUX_TK2INS[2:0] TMUX_TC2INS1[7:0] TMUX_TC2INS2[7:0] TMUX_TC2INS3[7:0] 127 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit High-speed Error Insertion Control Parameters--R/W 0x40048 TMUX_TBERI NS_CTL TMUX_TPS TMUX_TPS B2EINS LREIINS TMUX_TPREIINS[3:1] 0x40049 TMUX_THS_ ERR_CTL 0x4004A TMUX_TOAC _CTL 0x4004B TMUX_RPOA C_CTL 0x4004D TMUX_TFRA MEOFFSET 0x4004E TMUX_SD_C TL1 0x4004F TMUX_SD_C TL2 0x40050 TMUX_SD_C TL3 TMUX_SDBSET[15:0] 0x40051 TMUX_SD_C TL4 TMUX_SDNSCLEAR[18:3] 0x40052 TMUX_SD_C TL5 0x40053 TMUX_SD_C TL6 0x40054 TMUX_SF_C TL1 0x40055 TMUX_SF_C TL2 0x40056 TMUX_SF_C TL3 TMUX_SFBSET[15:0] 0x40057 TMUX_SF_C TL4 TMUX_SFNSCLEAR[18:3] 0x40058 TMUX_SF_C TL5 0x40059 TMUX_SF_C TL6 TMUX_TAP SBABINS TMUX_THSB3ERRINS[3:1] TMUX_TH1H2INVEN[3:1] TMUX_TLR EIINS TMUX_TH1 H2INVORN DF TMUX_THSB2ERRINS[3:1] TMUX_THS B1ERRINS TMUX_TA2ERRINS[4:0] Receive/Transmit TOAC/POAC Control Parameters--R/W TMUX_RT OAC_D412 MODE TMUX_RT OAC_D13 MODE TMUX_RPOAC_ SEL[1:0] TMUX_ RTOAC_ OEPINS TMUX_ TTOAC_ D412MODE TMUX_ TTOAC_ D13MODE TMUX_ RPOAC_ OEPINS TMUX_TPOAC_SEL[1:0] TMUX_TTO TMUX_TTO TMUX_TTO TMUX_TTO TMUX_TTO AC_AVAIL AC_S1 AC_F1 AC_E2 AC_E1 TMUX_TP OAC_N1 TMUX_TP OAC_K3 TMUX_TP OAC_F3 TMUX_TP OAC_F2 TMUX_ TTOAC_ D4TO12 TMUX_TTO AC_D1TO3 TMUX_ TTOAC_ OEPMON TMUX_TP OAC_C2 TMUX_TP OAC_J1 TMUX_ TPOAC_ OEPMON Transmit High-speed Offset Control Parameters --R/W TMUX_TLBITCNT[2:0] TMUX_TLSTSCNT[1:0] TMUX_TLCOLCNT[6:0] TMUX_TLROWCNT[3:0] B1/B2 Signal Degrade Set/Clear Control Registers--R/W TMUX_SDNSSET[18:3] TMUX_SDMSET[7:0] TMUX_SDMCLEAR[7:0] TMUX_SDLSET[3:0] TMUX_SDNSSET[2:0] TMUX_SDLCLEAR[3:0] TMUX_SDNSCLEAR[2:0] TMUX_SFLSET[3:0] TMUX_SFNSSET[2:0] TMUX_SFLCLEAR[3:0] TMUX_SFNSCLEAR[2:0] TMUX_SDBCLEAR[15:0] B1/B2 Signal Fail Set/Clear Control Registers--R/W 128 TMUX_SFNSSET[18:3] TMUX_SFMSET[7:0] TMUX_SFMCLEAR[7:0] TMUX_SFBCLEAR[15:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 B3 Signal Degrade Set/Clear Control Registers--R/W 0x4005A TMUX_B3SD _CTL1 TMUX_B3SDNSSET[18:3] 0x4005B TMUX_B3SD _CTL2 0x4005C TMUX_B3SD _CTL3 TMUX_B3SDBSET[15:0] 0x4005D TMUX_B3SD _CTL4 TMUX_B3SDNSCLEAR[18:3] 0x4005E TMUX_B3SD _CTL5 0x4005F TMUX_B3SD _CTL6 0x40060 TMUX_B3SF_ CTL1 0x40061 TMUX_B3SF_ CTL2 0x40062 TMUX_B3SF_ CTL3 TMUX_B3SFBSET[15:0] 0x40063 TMUX_B3SF_ CTL4 TMUX_B3SFNSCLEAR[18:3] 0x40064 TMUX_B3SF_ CTL5 0x40065 TMUX_B3SF_ CTL6 TMUX_B3SDMSET[7:0] TMUX_B3SDMCLEAR[7:0] TMUX_B3SDLSET[3:0] TMUX_B3SDNSSET[2:0] TMUX_B3SDLCLEAR[3:0] TMUX_B3SDNSCLEAR[2:0] TMUX_B3SFLSET[3:0] TMUX_B3SFNSSET[2:0] TMUX_B3SFLCLEAR[3:0] TMUX_B3SFNSCLEAR[2:0] TMUX_B3SDBCLEAR[15:0] B3 Signal Fail Set/Clear Control Registers--R/W Agere Systems Inc. TMUX_B3SFNSSET[18:3] TMUX_B3SFMSET[7:0] TMUX_B3SFMCLEAR[7:0] TMUX_B3SFBCLEAR[15:0] 129 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive B1, B2, B3, M1, G1, and N1 Error Counts--RO 0x40066 TMUX_B1EC NT TMUX_B1ECNT[15:0] 0x40067 TMUX_B2EC NT_17_16 0x40068 TMUX_B2EC NT_15_0 TMUX_B2ECNT[15:0] 0x40069 TMUX_B3EC NT1 TMUX_B3ECNT1[15:0] 0x4006A TMUX_B3EC NT2 TMUX_B3ECNT2[15:0] 0x4006B TMUX_B3EC NT3 TMUX_B3ECNT3[15:0] 0x4006C TMUX_M1EC NT_17_16 0x4006D TMUX_M1EC NT_15_0 TMUX_M1ECNT[15:0] 0x4006E TMUX_G1EC NT1 TMUX_G1ECNT1[15:0] 0x4006F TMUX_G1EC NT2 TMUX_G1ECNT2[15:0] 0x40070 TMUX_G1EC NT3 TMUX_G1ECNT3[15:0] 0x40074 TMUX_RPTR _INCCNT1 TMUX_RPTR_INC1[10:0] 0x40075 TMUX_RPTR _INCCNT2 TMUX_RPTR_INC2[10:0] 0x40076 TMUX_RPTR _INCCNT3 TMUX_RPTR_INC3[10:0] 0x40077 TMUX_RPTR _DECCNT1 TMUX_RPTR_DEC1[10:0] 0x40078 TMUX_RPTR _DECCNT2 TMUX_RPTR_DEC2[10:0] 0x40079 TMUX_RPTR _DECCNT3 TMUX_RPTR_DEC3[10:0] TMUX_B2ECNT[17:16] TMUX_M1ECNT[17:16] Receive Pointer Increment and Decrement Counts--RO 130 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Expected J0 Receive Value--R/W 0x400A0 -- 0x400A7 TMUX_RJ0EX PECTED [1--8] TMUX_EXPJ0DMON[2][7:0] -- TMUX_EXPJ0DMON[16][7:0] 0x400A8 -- 0x400AF TMUX_RJ0C APTURED [1--8] TMUX_J0DMON[2][7:0] -- TMUX_J0DMON[16][7:0] 0x400B0 -- 0x400B7 TMUX_TJ0VA LUE[1--8] TMUX_TJ0DINS[2][7:0] -- TMUX_TJ0DINS[16][7:0] 0x400E0 -- 0x400FF TMUX_RJ1EX PECTED_1 [1--32] TMUX_EXPJ1DMON1[2][7:0] -- TMUX_EXPJ1DMON1[64][7:0] 0x40100 -- 0x4011F TMUX_RJ1EX PECTED_2 [1--32] TMUX_EXPJ1DMON2[2][7:0] -- TMUX_EXPJ1DMON2[64][7:0] 0x40120 -- 0x4013F TMUX_RJ1EX PECTED_3 [1--32] TMUX_EXPJ1DMON3[2][7:0] -- TMUX_EXPJ1DMON3[64][7:0] TMUX_EXPJ0DMON[1][7:0] -- TMUX_EXPJ0DMON[15][7:0] Captured J0 Receive Value--RO TMUX_J0DMON[1][7:0] -- TMUX_J0DMON[15][7:0] J0 Byte Transmit Insert--R/W TMUX_TJ0DINS[1][7:0] -- TMUX_TJ0DINS[15][7:0] Expected J1 Receive Value for STS #1--R/W TMUX_EXPJ1DMON1[1][7:0] -- TMUX_EXPJ1DMON1[63][7:0] Expected J1 Receive Value for STS #2--R/W TMUX_EXPJ1DMON2[1][7:0] -- TMUX_EXPJ1DMON2[63][7:0] Expected J1 Receive Value for STS #3--R/W Agere Systems Inc. TMUX_EXPJ1DMON3[1][7:0] -- TMUX_EXPJ1DMON3[63][7:0] 131 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 8 TMUX Registers (continued) Table 143. TMUX Register Map (continued) Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0x40140 -- 0x4015F TMUX_RJ1C APTURED_1 [1--32] TMUX_J1DMON1[2][7:0] -- TMUX_J1DMON1[64][7:0] 0x40160 -- 0x4017F TMUX_RJ1C APTURED_2 [1--32] TMUX_J1DMON2[2][7:0] -- TMUX_J1DMON2[64][7:0] 0x40180 -- 0x4019F TMUX_RJ1C APTURED_3 [1--32] TMUX_J1DMON3[2][7:0] -- TMUX_J1DMON3[64][7:0] 0x401A0 -- 0x401BF TMUX_TJ1VA LUE_1 [1--32] TMUX_TJ1DINS1[2][7:0] -- TMUX_TJ1DINS1[64][7:0] 0x401C0 -- 0x401DF TMUX_TJ1VA LUE_2 [1--32] TMUX_TJ1DINS2[2][7:0] -- TMUX_TJ1DINS2[64][7:0] 0x401E0 -- 0x401FF TMUX_TJ1VA LUE_3 [1--32] TMUX_TJ1DINS3[2][7:0] -- TMUX_TJ1DINS3[64][7:0] Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Captured J1 Receive Value for STS #1--RO TMUX_J1DMON1[1][7:0] -- TMUX_J1DMON1[63][7:0] Captured J1 Receive Value for STS #2--RO TMUX_J1DMON2[1][7:0] -- TMUX_J1DMON2[63][7:0] Captured J1 Receive Value for STS #3--RO TMUX_J1DMON3[1][7:0] -- TMUX_J1DMON3[63][7:0] J1 Byte Transmit Insert for STS #1--R/W TMUX_TJ1DINS1[1][7:0] -- TMUX_TJ1DINS1[63][7:0] J1 Byte Transmit Insert for STS #2--R/W TMUX_TJ1DINS2[1][7:0] -- TMUX_TJ1DINS2[63][7:0] J1 Byte Transmit Insert for STS #3--R/W 132 TMUX_TJ1DINS3[1][7:0] -- TMUX_TJ1DINS3[63][7:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers Table of Contents Contents Page 9 SPE Mapper Registers ..................................................................................................................................... 133 9.1 SPE Mapper Register Descriptions ........................................................................................................... 134 9.2 SPE Mapper Register Map ........................................................................................................................ 149 Contents Page Table 144. SPE_VERSION_R, SPE Version and Identification Register (RO) ................................................... 134 Table 145. SPE_ONESHOT, One-Shot (R/W) .................................................................................................... 134 Table 146. SPE_EVENT1--SPE_EVENT3, SPE Deltas/Events (COR/COW) ................................................... 134 Table 147. SPE_MASK1--SPE_MASK3, Mask Bits (R/W) ................................................................................ 136 Table 148. SPE_STATE1--SPE_STATE2, Receive/Transmit State and Value Parameters (RO) .................... 137 Table 149. SPE_RAOH_CTL1--SPE_RAOH_CTL3, Receive Control for Alarm and OH Functions (R/W) ....... 138 Table 150. SPE_CNTD1--SPE_CNTD2, Continuous N-Times Detect Values (R/W) ........................................ 139 Table 151. SPE_ROHC2, Receive Overhead Expected Value for C2 Byte (R/W) ............................................. 140 Table 152. SPE_RMON1--SPE_RMON5, Receive Monitor Values (RO) .......................................................... 140 Table 153. SPE_MAP_CTL1--SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W) ........................ 140 Table 154. SPE_TAOH_CTL1--SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W) ....................... 143 Table 155. SPE_TRDIREI_CTL, Transmit Path RDI and REI Control Register (R/W) ....................................... 145 Table 156. SPE_TERRINS_CTL, Transmit Error Insertion Control (R/W) .......................................................... 145 Table 157. SPE_TOHINS1--SPE_TOHINS4, Transmit OH Insert Value (R/W) ................................................ 145 Table 158. SPE_SIGDEG_CTL1--SPE_SIGDEG_CTL6, Signal Degrade BER Algorithm Parameters (R/W) .. 146 Table 159. SPE_SIGFAIL_CTL1--SPE_SIGFAIL_CTL6, Signal Fail BER Algorithm Parameters (R/W) .......... 146 Table 160. SPE_ERRCNT1--SPE_ERRCNT6, B3, G1, Bipolar Violation, and Excess Zero Error Count (RO) ....................................................................................................................... 147 Table 161. SPE_PTRCNT1--SPE_PTRCNT3, Receive Pointer Increment and Decrement Count (RO) .......... 147 Table 162. SPE_RJ1MON_R1--SPE_RJ1MON_R32, Receive J1 Monitor Values (RO) .................................. 147 Table 163. SPE_TJ1DINS_R1--SPE_TJ1DINS_R32, Transmit J1 Insert Values (R/W) ................................... 148 Table 164. SPE_RJ1DEXP_R1--SPE_RJ1DEXP_R32, Receive J1 Expected Values (R/W) ........................... 148 Table 165. SPE_SCRATCH_R, Scratch Pad (R/W) ........................................................................................... 148 Table 166. SPE Mapper Register Map ................................................................................................................ 149 Agere Systems Inc. 133 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) 9.1 SPE Mapper Register Descriptions This section gives a brief description of each register bit and its functionality. The abbreviations after each register indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W). Table 144. SPE_VERSION_R, SPE Version and Identification Register (RO) Address 0x30000 Bit Name Function 15:11 -- Reserved. 10:8 SPE_VERSION[2:0] Block Version Number. Block version register will change each time the device is changed. 7:0 SPEMPR_ID[7:0] Block ID Number. Reset Default 0x00 0x0 0x03 Table 145. SPE_ONESHOT, One-Shot (R/W) Address Bit Name Function Reset Default 0x30002 15:5 -- 4 SPE_BIPOL_ERR Bipolar Violation Error. A single bipolar violation error for DS3 output is transmitted each time this bit transitions from a 0 to 1. 0 3 SPE_SFCLEAR Signal Fail Clear. Allows the signal fail algorithm to be forced into the normal state. 0 2 SPE_SFSET Signal Fail Set. Allows the signal fail algorithm to be forced into the failed state. 0 1 SPE_SDCLEAR Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state. 0 0 SPE_SDSET Signal Degrade Set. Allows the signal degrade algorithm to be forced into the degraded state. 0 Reserved. 0x000 Note: In Table 122, the mask bits for these delta and event bits are in Table 147, state bits are in Table 148, and monitor values are in Table 152. Table 146. SPE_EVENT1--SPE_EVENT3, SPE Deltas/Events (COR/COW) Address Bit Name 0x30003 15:7 6 -- SPE_RDATA_PE 5 SPE_TPOAC_PE 4 3 2 1 0 SPE_K3DMOND SPE_N1DMOND SPE_C2DMOND SPE_F2DMOND SPE_F3DMOND 134 Function Reset Default Reserved. 0x000 Received Data Parity Error Event. Event bit indicates a parity 0 error was detected on the incoming data. Transmit POAC Parity Error Event. Event bit indicates a parity 0 error was detected on the incoming POAC. K3 Data Monitor Delta Bit. The mask bit is SPE_K3DMONM. 0 N1 Data Monitor Delta Bit. The mask bit is SPE_N1DMONM. 0 C2 Data Monitor Delta Bit. The mask bit is SPE_C2DMONM. 0 F2 Data Monitor Delta Bit. The mask bit is SPE_F2DMONM. 0 F3 Data Monitor Delta Bit. The mask bit is SPE_F3DMONM. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 146. SPE_EVENT1--SPE_EVENT3, SPE Deltas/Events (COR/COW) (continued) Address Bit 0x30004 15:11 10 9 8 7 0x30004 6 5 4 3 2 1 0 0x30005 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Function -- Reserved. SPE_PRDIDMOND Path RDI Delta. Delta bit indicates a change of state for the path RDI state bit SPE_PRDIDMON. The delta bit is cleared when read. The mask bit for this delta bit is SPE_PRDIDMONM. SPE_RNDFE Pointer Interpreter New Data Flag Event Bit. The mask bit is SPE_RNDFM. SPE_RDECE Pointer Interpreter Decrement Event Bit. The mask bit is SPE_RDECM. However, increment and decrement event indications should be ignored during LOP condition. SPE_RINCE Pointer Interpreter Increment Event Bit. The mask bit is SPE_RINCM. However, increment and decrement event indications should be ignored during LOP condition. SPE_RAISD Delta Bit for the AIS Alarm Detect State Bit. The mask bit is SPE_RAISM. SPE_RLOPD Delta Bit for the Loss of Pointer Alarm State Bit. The mask bit is SPE_RLOPM. SPE_SFB3D Signal Fail BER Algorithm Delta. Indicates a change of state for the signal fail BER algorithm state bit SFB3. This bit clears when read. The mask bit is SPE_SFB3M. SPE_SDB3D Signal Degrade BER Algorithm Delta. Indicates a change of state for the signal degrade BER algorithm state bit SDB3. This bit clears when read. The mask bit is SPE_SDB3M. SPE_RUNEQD Delta Bit for the Unequipped Alarm State Bit. The mask bit is SPE_RUNEQM. SPE_RPLMD Delta Bit for the Payload Label Mismatch Alarm State Bit. The mask bit is SPE_RPLMM. SPE_RTIMD Trace Indicator Mismatch Event Bit (J1 Byte). The mask bit is SPE_RTIMM. -- Reserved. SPE_RSY52LOSD Delta Bit for Loss of Sync 52 Signal from Telecom Bus. SPE_RV1LOSD Delta Bit for Loss of V1 Sync Signal from Telecom Bus. SPE_RSPELOSD Delta Bit for Loss of SPE Sync Signal from Telecom Bus. SPE_RJ0J1V1LOSD Delta Bit for Loss of J0J1V1 Sync Signal from Telecom Bus. SPE_RDS3LOCD Delta Bit for Loss of DS3 External Clock from External Pin. SPE_RC52LOCD Delta Bit for Loss of 52 MHz Clock from Telecom Bus. SPE_RLSLOCD Delta Bit for Loss of 19 MHz Clock from Telecom Bus. -- Reserved. SPE_TSY52LOSD Delta Bit for Loss of Sync 52 Signal from Telecom Bus. SPE_TV1LOSD Delta Bit for Loss of V1 Sync Signal from Telecom Bus. SPE_TSPELOSD Delta Bit for Loss of SPE Sync Signal from Telecom Bus. SPE_TJ0J1V1LOSD Delta Bit for Loss of J0J1V1 Sync Signal from Telecom Bus. SPE_TDS3LOCD Delta Bit for Loss of DS3 External Clock from External Pin. SPE_TC52LOCD Delta Bit for Loss of 52 MHz Clock from Telecom Bus. SPE_TLSLOCD Delta Bit for Loss of 19 MHz Clock from Telecom Bus. Agere Systems Inc. Reset Default 0x00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 147. SPE_MASK1--SPE_MASK3, Mask Bits (R/W) Address Bit Name 0x30006 15:7 -- 6 SPE_RDATA_PM Received Data Parity Error Mask. Active-high. 1 5 SPE_TPOAC_PM Transmit POAC Parity Error Mask. Active-high. 1 4 SPE_K3DMONM K3 Data Monitor Mask Bit. Active-high. 1 3 SPE_N1DMONM N1 Data Monitor Mask Bit. Active-high. 1 2 SPE_C2DMONM C2 Data Monitor Mask Bit. Active-high. 1 1 SPE_F2DMONM F2 Data Monitor Mask Bit. Active-high. 1 0 SPE_F3DMONM 0x30007 15:11 0x30008 10 SPE_PRDIDMONM 9 Reset Default Reserved. 000000 000 F3 Data Monitor Mask Bit. Active-high. 1 Reserved. 00000 Path RDI Mask Bit. Active-high. 1 SPE_RNDFM Pointer Interpreter New Data Flag Mask Bit. Active-high 1 8 SPE_RDECM Pointer Interpreter Decrement Mask Bit. Active-high. 1 7 SPE_RINCM Pointer Interpreter Increment Mask Bit. Active-high 1 6 SPE_RAISM Mask Bit for the AIS Alarm Detect State Bit. Active-high. 1 5 SPE_RLOPM Mask Bit for the Loss of Pointer Alarm State Bit. Activehigh. 1 4 SPE_SFB3M Signal Fail Mask Bit. Active-high. 1 3 SPE_SDB3M Signal Degrade Mask Bit. Active-high. 1 2 SPE_RUNEQM Mask Bit for the Unequipped Alarm State Bit. Active-high. 1 1 SPE_RPLMM Mask Bit for the Payload Label Mismatch Alarm State Bit. Active-high. 1 0 SPE_RTIMM Trace Indicator Mismatch Mask Bits. Active-high. 1 15 -- Reserved. 0 14 SPE_RSY52LOSM Mask Bit for Loss of Sync 52 Signal from Telecom Bus. Active-high. 1 13 SPE_RV1LOSM Mask Bit for Loss of V1 Sync Signal from Telecom Bus. Active-high. 1 12 SPE_RSPELOSM Mask Bit for Loss of SPE Sync Signal from Telecom Bus. Active-high. 1 11 136 -- Function SPE_RJ0J1V1LOSM Mask Bit for Loss of J0J1V1 Sync Signal from Telecom Bus. Active-high. 1 10 SPE_RDS3LOCM Mask Bit for Loss of DS3 External Clock from External PIN. Active-high. 1 9 SPE_RC52LOCM Mask Bit for Loss of 52 MHz Clock from Telecom Bus. Active-high. 1 8 SPE_RLSLOCM Mask Bit for Loss of 19 MHz Clock from Telecom Bus. Active-high. 1 7 -- Reserved. 0 6 SPE_TSY52LOSM Mask Bit for Loss of Sync 52 Signal from Telecom Bus. Active-high. 1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 147. SPE_MASK1--SPE_MASK3, Mask Bits (R/W) (continued) Address Bit Name Function Reset Default 0x30008 5 SPE_TV1LOSM Mask Bit for Loss of V1 Sync Signal from Telecom Bus. Active-high. 1 4 SPE_TSPELOSM Mask Bit for Loss of SPE Sync Signal from Telecom Bus. Active-high. 1 3 SPE_TJ0J1V1LOSM Mask Bit for Loss of J0J1V1 Sync Signal from Telecom Bus. Active-high. 2 SPE_TDS3LOCM Mask Bit for Loss of DS3 External Clock from External PIN. Active-high. 1 1 SPE_TC52LOCM Mask Bit for Loss of 52 MHz Clock from Telecom Bus. Active-high. 1 0 SPE_TLSLOCM Mask Bit for Loss of 19 MHz Clock from Telecom Bus. Active-high. 1 Table 148. SPE_STATE1--SPE_STATE2, Receive/Transmit State and Value Parameters (RO) Address Bit 0x30009 15:7 6 5 4 3 2 1 0 15 14 13 12 11 0x3000A 10 9 8 7 6 5 4 3 2 1 0 Agere Systems Inc. Name Function Reset Default -- Reserved. 0x000 SPE_RAIS Path AIS State Bit. 0 SPE_RLOP Path Loss of Pointer State Bit. 0 SPE_SFB3 Signal Fail State Bit. 0 SPE_SDB3 Signal Degrade State Bit. 0 SPE_RUNEQ Path Unequipped State Bit. 0 SPE_RPLM Path Payload Label Mismatch State Bit. 0 SPE_RTIM Path Trace Indicator Mismatch State Bit. 0 -- Reserved. 0 SPE_RSY52LOS State Bit for Loss of Sync 52 Signal from Telecom Bus. 0 SPE_RV1LOS State Bit for Loss of V1 Sync Signal from Telecom Bus. 0 SPE_RSPELOS State Bit for Loss of SPE Sync Signal from Telecom Bus. 0 SPE_RJ0J1V1LOS State Bit for Loss of J0J1V1 Sync Signal from Telecom 0 Bus. SPE_RDS3LOC State Bit for Loss of DS3 External Clock from External 0 PIN. SPE_RC52LOC State Bit for Loss of 52 MHz Clock from Telecom Bus. 0 SPE_RLSLOC State Bit for Loss of 19 MHz Clock from Telecom Bus. 0 -- Reserved. 0 SPE_TSY52LOS State Bit for Loss of Sync 52 Signal from Telecom Bus. 0 SPE_TV1LOS State Bit for Loss of V1 Sync Signal from Telecom Bus. 0 SPE_TSPELOS State Bit for Loss of SPE Sync Signal from Telecom Bus. 0 SPE_TJ0J1V1LOS State Bit for Loss of J0J1V1 Sync Signal from Telecom 0 Bus. SPE_TDS3LOC State Bit for Loss of DS3 External Clock from External 0 Pin. SPE_TC52LOC State Bit for Loss of 52 MHz Clock from Telecom Bus. 0 SPE_TLSLOC State Bit for Loss of 19 MHz Clock from Telecom Bus. 0 137 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) ) Table 149. SPE_RAOH_CTL1--SPE_RAOH_CTL3, Receive Control for Alarm and OH Functions (R/W) Address Bit 0x3000B 15:8 7 6:4 3 2 1 0 0x3000C 15:12 11:10 9 8 7 6 5 4 3 2 1 0 138 Name Function Reset Default -- Reserved. 0x00 SPE_RD_OEPAR Received Data Odd/Even Parity Check. If 0, odd parity 0 check for received data; if 1, even parity check. SPE_J1MONMODE[2:0] J1 Monitoring Mode. There are four monitoring modes 000 as defined in the document. SPE_RPRDI_MODE Receive ERDI Mode. When 1, 3-bit enhanced ERDI 0 mode is supported; when 0, the 1-bit RDI mode is supported. SPE_G1BITBLKCNT G1 Error Count in Bit or Block. When 0, G1(7:4) 0 check logic will count bit errors; otherwise, it counts block errors. SPE_B3BITBLKCNT B3 Error Count in Bit or Block. When 0, B3 check 0 logic will count bit errors; otherwise, it counts block errors. SPE_RPOAC_OEPINS Receive POAC Odd or Even Parity Insert. When 1, 0 the output POAC parity bit is even; otherwise, the parity is odd. -- Reserved. 0x0 SPE_CNTDLOPCNT[1:0] Continuous N-Times Detect for Loss of Pointer. Two 00 bit programmable integration constant for the pointer interpreter. -- Reserved. 0 0 SPE_8ORMAJORITY TU-3 Pointer Interpreter Mode Control. When 1, the pointer interpreter transitions into the INC and DEC states based on 8 of the 10 I and D bits. Otherwise, the pointer interpreter transitions into the INC and DEC states based on majority rule. SPE_PAISINS Path AIS Software Insertion. When 1, path AIS 0 insertion is enabled. SPE_PAIS_AISINH Path AIS State bit Inhibit Signal for Generating Path 0 AIS. When 1, the inhibit is on. SPE_PAIS_LOPINH Loss of Pointer Inhibit Signal for Generating Path 0 AIS. When 1, the inhibit is on. SPE_PAIS_SFB3INH Signal Fail Inhibit Signal for Generating Path AIS. 0 When 1, the inhibit is on. SPE_PAIS_SDB3INH Signal Degrade Inhibit Signal for Generating Path 0 AIS. When 1, the inhibit is on. SPE_PAIS_UNEQINH Path Unequipped Inhibit Signal for Generating Path 0 AIS. When 1, the inhibit is on. SPE_PAIS_PLMINH Path Label Mismatch Inhibit Signal for Generating 0 Path AIS. When 1, the inhibit is on. SPE_PAIS_TIMINH Path Trace Indicator Mismatch Inhibit Signal for 0 Generating Path AIS. When 1, the inhibit is on. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 149. SPE_RAOH_CTL1--SPE_RAOH_CTL3, Receive Control for Alarm and OH Functions (R/W) Address Bit 0x3000D 15:7 6 5 4 3 2 1 0 Name Function Reset Default -- Reserved. 0x000 SPE_AIS_LOSSY52INH Loss of Sync 52 State Bit Inhibit Signal for Generat0 ing Path AIS. When 1, the inhibit is on. SPE_AIS_LOSV1INH Loss of V1 Sync Inhibit Signal for Generating Path 0 AIS. When 1, the inhibit is on. SPE_AIS_LOSSPEINH Loss of SPE Sync Inhibit Signal for Generating Path 0 AIS. When 1, the inhibit is on. SPE_AIS_LOSJ0J1V1INH Loss of J0J1V1 Sync Inhibit Signal for Generating 0 Path AIS. When 1, the inhibit is on. SPE_AIS_LOCDS3INH Loss of Ext DS3 Clock Inhibit Signal for Generating 0 Path AIS. When 1, the inhibit is on. SPE_AIS_LOC52INH Loss of 52 MHz Clock Inhibit Signal for Generating 0 Path AIS. When 1, the inhibit is on. SPE_AIS_LOCINH Loss of 19 MHz Clock Inhibit Signal for Generating 0 Path AIS. When 1, the inhibit is on. Table 150. SPE_CNTD1--SPE_CNTD2, Continuous N-Times Detect Values (R/W) Address Bit Name Function Reset Default 0x3000F 15:12 SPE_CNTDC2[3:0] Continuous N-Times Detect for C2 Byte. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 11:8 SPE_CNTDF3[3:0] Continuous N-Times Detect for F3 Byte. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 7:4 SPE_CNTDF2[3:0] Continuous N-Times Detect for F2 Byte. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 3:0 SPE_CNTDJ1[3:0] Continuous N-Times Detect for J1 Bytes. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 15:12 SPE_CNTDN1[3:0] Continuous N-Times Detect for N1 Byte. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 SPE_CNTDPRDI[3:0] Continuous N-Times Detect for G1 Byte. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 0x30010 11:8 7:4 SPE_CNTDK3[3:0] 3:0 -- Agere Systems Inc. Continuous N-Times Detect for K3[6:4] Byte. The valid range for this register is 0x3--0xF. Invalid values will be mapped to a value of 0x3. 0x3 Reserved. 0x0 139 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 151. SPE_ROHC2, Receive Overhead Expected Value for C2 Byte (R/W) Address Bit Name 0x30011 15:8 -- 7:0 Function Reset Default Reserved. 0x00 SPE_C2DEXP[7:0] Programmable Expected Value for C2 Byte. The programmed value is checked against the actual received value to determine payload label mismatch error. 0x00 Table 152. SPE_RMON1--SPE_RMON5, Receive Monitor Values (RO) Address Bit Name 0x30012 15:3 -- 2:0 0x30013 0x30014 0x30015 0x30016 Function Reset Default Reserved. 0x000 SPE_PRDIDMON[2:0] Received Byte G1[3:1] Monitor Value. 0x0 15:8 SPE_N1DMON[7:0] Received Byte N1[7:0] Monitor Value. 0x00 7:0 SPE_K3DMON[7:0] Received Byte K3[7:0] Monitor Value. 0x00 15:8 SPE_F2DMON1[7:0] Received Byte F2[7:0] Previous Monitor Value. 0x00 7:0 SPE_F2DMON0[7:0] Received Byte F2[7:0] Current Monitor Value. 0x00 15:8 SPE_F3DMON1[7:0] Received Byte F3[7:0] Previous Monitor Value. 0x00 7:0 SPE_F3DMON0[7:0] Received Byte F3[7:0] Current Monitor Value. 0x00 15:8 -- Reserved. 0x00 7:0 SPE_C2DMON[7:0] Received Byte C2[7:0] Monitor Value. 0x00 Table 153. SPE_MAP_CTL1--SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W) Address Bit Name 0x30018 15 SPE_T_STS1_MODE 14 13:12 140 Function Transmit STS-1 Mode. When 1, STS-1 mode is selected for transmit data; when 0, STS-3/STM-1. SPE_T_NSMI_MODE Transmit Serial STS-1 SPE Mode. When 1, serial data is accepted through an external serial interface and mapped to STS-1 SPE. SPE_TDS3SRCTYP[1:0] Transmit DS3 Source Type. Two bit value selects one of three DS3 input sources. 11 SPE_T_VT_DS3 10 SPE_T_AU3_TUG3 00 or 01 = DS3 data from M13 block. 10 = DS3 data from loopback (Rx to Tx). 11 = DS3 data from external clear channel. Transmit VT or DS3 Input. When 1, VT input data is selected; when 0, DS3 input data is selected. Transmit AU-3/STS-1 or TUG-3 Mapping. When 1, AU-3/STS-1 mapping is selected; when 0, TUG-3 mapping is selected. Reset Default 0 0 00 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 153. SPE_MAP_CTL1--SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W) (continued) Address Bit 0x30018 9:8 7 6 5:4 3 2 1:0 0x30019 Name Function SPE_TSTS3TMSLOT[1:0] Transmit STS-3 Time-Slot Value. Two-bit value selects one of three STS-1 time slots within an STS-3 in the transmit direction. 00 = No output. 01 = STS-1/TUG-3 data for slot 1 in STS-3/STM-1. 10 = STS-1/TUG-3 data for slot 2 in STS-3/STM-1. 11 = STS-1/TUG-3 data for slot 3 in STS-3/STM-1. SPE_R_STS1_MODE Receive STS-1 Mode. When 1, STS-1 mode is selected for receive data. When 0, STS-3/STM-1. SPE_R_NSMI_MODE Receive Serial STS-1 SPE Mode. When 1, serial data demapped from STS-1 SPE is sent out to an external serial interface. SPE_RDS3OUTTYP[1:0] Receive DS3 Output Type. Two-bit value selects one of three DS3 output devices. 00 or 01 = DS3 data to M13 block. 10 = DS3 data to loopback (RX to TX). 11 = DS3 data to external clear channel. SPE_R_VT_DS3 Receive VT or DS3 Output. When 1, VT data is output; when 0, DS3 data is output. SPE_R_AU3_TUG3 Receive AU-3/STS-1 or TUG-3 Demapping. When 1, AU-3/STS-1 demapping is selected; when 0, TUG-3 demapping is selected. SPE_RSTS3TMSLOT[1:0] Receive STS-3 Time Slot. Selects one of three STS-1 time slots within an STS-3/STM-1 frame in the receive direction. 15:13 SPE_T_NSMI_BIT[2:0] 12:10 SPE_R_NSMI_BIT[2:0] 9:6 5 -- SPE_TDS3CLK_EDGE 00 = No selection. 01 = STS-1/TUG-3 data from slot 1 in STS-3/STM-1. 10 = STS-1/TUG-3 data from slot 2 in STS-3/STM-1. 11 = STS-1/TUG-3 data from slot 3 in STS-3/STM-1. Transmit Serial Sync Position Within a Byte Boundary. Selects one of eight positions for the bit sync of the serial transmit data stream (previously known as the NSMI interface data). Receive Serial Sync Position Within a Byte Boundary. Selects one of eight positions for the bit sync of the serial receive data stream (previously known as the NSMI interface data). Reserved. External DS3 Clock Edge Select for DS3 Input Data Retiming. Reset Default 00 0 0 00 0 0 00 0x0 0x0 0x0 0x0 0 = Negative edge is selected. 1 = Positive edge is selected. Agere Systems Inc. 141 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 153. SPE_MAP_CTL1--SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W) (continued) Address Bit Name Function Reset Default 0x30019 4 SPE_PHDETUP_INV Phase Detector Up Signal Invert. When 1, the phase detector up signal required for an external PLL in DS3 mode, is inverted from its current phase. 0x0 3 SPE_PHDETDN_INV Phase Detector Down Signal Invert. When 1, the phase detector down signal required for an external PLL in DS3 mode, is inverted from its current phase. 0x0 2 SPE_TDS3BPV_IN Transmit DS3 BPV/Data In. When 1, DS3NEGDATAIN (K22) input pin is used as external B3ZS bipolar violation indication instead of negative input pulse. 0x00 1 SPE_TDS3_BIPOLAR Transmit DS3 Bipolar/Unipolar. When 1, the DS3 input is bipolar; when 0, the DS3 input is unipolar. 0x00 0 SPE_RDS3_BIPOLAR Receive DS3 Bipolar/Unipolar. When 1, the DS3 output is bipolar; when 0, the DS3 output is unipolar. 0x00 15 -- 14:8 SPE_T_NSMI_COL[6:0] 7 -- 6:0 SPE_R_NSMI_COL[6:0] 0x3001A 142 Reserved. Transmit Serial Sync Position. Selects one of 90 positions aligned with 90 SONET columns within SONET row 9 for the bit sync of the serial transmit data stream (previously known as the NSMI interface data). 0x0 Reserved. Receive Serial Sync Position. Selects one of 90 positions aligned with 90 SONET columns within SONET row 9 for the bit sync of the serial transmit data stream (previously known as the NSMI interface data). 0x0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 154. SPE_TAOH_CTL1--SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W) Address Bit Name 0x3001B 15:10 0x3001C -- 9 SPE_TD_OEPAR 8 SPE_ TREIRDISEL 7 SPE_TAISPINS 6 Function Reserved. Reset Default 0x00 Transmit Data Odd/Even Parity Generate. When 0, odd parity is generated for transmit data; when 1, even parity is generated. 00 REI and RDI Input Select. Control bit, when 1, inserts REI/RDI value from the protected channel REI/RDI lines; otherwise, the value is inserted from the direct feedback (receive to transmit) lines. 0 Force Path AIS in the Output. Active-high. 0 SPE_TN1INS Transmit N1 Insert Control. Control bit, when 1, inserts the value in SPE_TN1DINS[7:0] (Table 157) into the outgoing N1 byte in the STS-1 frame; otherwise, the insert value depends on SPE_TPOAC_N1 (Table 154) control bit. 1 5 SPE_TK3INS Transmit K3 Insert Control. Control bit, when 1, inserts the value in SPE_TK3DINS[7:0] (Table 157) into the outgoing K3 bytes; otherwise, the insert value depends on SPE_TPOAC_K3 (Table 154) control bit. 0 4 SPE_TH4INS Transmit H4 Insert Control. Control bit, when 1, inserts the overhead default value SMPR_OH_DEFLT (Table 67) into the outgoing H4 bytes; otherwise, the insert value depends on SPE_TPOAC_H4 (Table 154) control bit. 0 3 SPE_TF3INS Transmit F3 Insert Control. Control bit, when 1, inserts the value in SPE_TF3DINS[7:0] (Table 157) into the outgoing F3 byte in the STS-1 frame; otherwise, the insert value depends on SPE_TPOAC_F3 (Table 154) control bit. 1 2 SPE_TF2INS Transmit F2 Insert Control. Control bit, when 1, inserts the value in SPE_TF2DINS[7:0] (Table 157) into the outgoing F2 byte in the STS-1 frame; otherwise, the insert value depends on SPE_TPOAC_F2 (Table 154) control bit. 1 1 SPE_TC2INS Transmit C2 Insert Control. Control bit, when 1, inserts the value in SPE_TC2DINS[7:0] (Table 157) into the outgoing C2 byte in the STS-1 frame; otherwise, the insert value depends on SPE_TPOAC_C2 (Table 154) control bit. 1 0 SPE_TJ1INS Transmit J1 Insert Control. Control bit, when 1, inserts the value in SPE_TJ1DINS[1--64][7:0] (Table 163) into the outgoing J1 bytes; otherwise, the insert value depends on SPE_TPOAC_J1 (Table 154) control bit. 0 15:8 -- 7 Reserved. SPE_TPOAC_OEPMON Transmit POAC Odd or Even Parity Monitor. When 1, even parity is checked for transmit POAC channels; otherwise, odd parity is checked. 6 Agere Systems Inc. SPE_TPOAC_N1 Transmit POAC N1 Byte Control. Control bit, when 0, the default value is inserted into the N1 byte in the transmit frame. When 1, the TPOAC value is inserted in the N1 byte. 0x00 0 0 143 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 154. SPE_TAOH_CTL1--SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W) (continued) Address Bit Name Function Reset Default 0x3001C 5 SPE_TPOAC_K3 Transmit POAC K3 Byte Control. Control bit, when 0, the default value is inserted into the K3 byte in the transmit frame. When 1, the TPOAC value is inserted in the K3 byte. 0 4 SPE_TPOAC_H4 Transmit POAC H4 Byte Control. Control bit, when 0, the default value is inserted into the H4 byte in the transmit frame. When 1, the TPOAC value is inserted in the H4 byte. 0 3 SPE_TPOAC_F3 Transmit POAC F3 Byte Control. Control bit, when 0, the default value is inserted into the F3 byte in the transmit frame. When 1, the TPOAC value is inserted in the F3 byte. 0 2 SPE_TPOAC_F2 Transmit POAC F2 Byte Control. Control bit, when 0, the default value is inserted into the F2 byte in the transmit frame. When 1, the TPOAC value is inserted in the F2 byte. 0 1 SPE_TPOAC_C2 Transmit POAC C2 Byte Control. Control bit, when 0, the default value is inserted into the C2 byte in the transmit frame. When 1, the TPOAC value is inserted in the C2 byte. 0 0 SPE_TPOAC_J1 Transmit POAC J1 Byte Control. Control bit, when 0, the default value is inserted into the J1 byte in the transmit frame. When 1, the TPOAC value is inserted in the J1 byte. 0 0x3001D 15:8 SPE_NPI_BYTE2[7:0] Transmit NPI Byte 2. Programmable value for NPI byte 2 to be inserted into the NPI byte location. 0 7:0 SPE_NPI_BYTE1[7:0] Transmit NPI Byte 1. Programmable value for NPI byte 1 to be inserted into the NPI byte location. 0 0x3001E 15:8 0x00 1 SPE_TTIM_PRDIINH Transmit Trace Indicator Mismatch RDI Inhibit. Control bit, when 1, the TIM failure will not contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 0 SPE_TPLM_PRDIINH Transmit Path Label Mismatch RDI Inhibit. Control bit, when 1, the PLM failure will not contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 0 SPE_TUNEQ_PRDIINH Transmit Path Unequipped RDI Inhibit. Control bit, when 1, the unequipped failure will not contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 0 SPE_TPRDIINS 6 5 3 Reserved. Transmit RDI Software Insert. When 1, the value in SPE_TG1DINS[3:1] is inserted into G1[3:1] in the transmit frame; otherwise, hardware insert is enabled for RDI-P insertion. 7 4 144 -- SPE_TLOP_PRDIINH Transmit Loss of Pointer RDI Inhibit. Control bit, when 1, the loss of pointer failure will not contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 155. SPE_TRDIREI_CTL, Transmit Path RDI and REI Control Register (R/W) Address Bit Name Function Reset Default 0x3001E 2 SPE_TPAIS_PRDIINH Transmit Path AIS RDI Inhibit. Control bit, when 1, the path AIS failure will not contribute to the automatic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P. 0 1 SPE_TPRDI_MODE Transmit PRDI Mode. When 1, 3-bit enhanced ERDI mode is supported; when 0, the 1-bit RDI mode is supported. 0 0 SPE_TREIP_INH Transmit REI-P Inhibit. When 1, inhibits automatic insertion of REI-P. 0 Table 156. SPE_TERRINS_CTL, Transmit Error Insertion Control (R/W) Address Bit Name Function 0x3001F 15:3 -- 2 SPE_BERR_INS Bit Error Insert Control Bit. When 1, bit errors will be inserted on selected signals (whose error insert bits are set) each time a pulse occurs on the BER_INS line. 0 1 SPE_TB3ERRINS Transmit B3 Error Insertion. When 1, the B3 output will be inverted. 0 0 SPE_TREIERRINS Transmit G1 Error Insert. When 1, an error will be inserted continuously into the outgoing G1[7:4] bits, until reset to 0. 0 Reserved. Reset Default 0x000 Table 157. SPE_TOHINS1--SPE_TOHINS4, Transmit OH Insert Value (R/W) Address Bit 0x30020 15:8 SPE_TF3DINS[7:0] Transmit F3 Byte Value. This value is inserted into the transmit F3 byte. 0x00 7:0 SPE_TF2DINS[7:0] Transmit F2 Byte Value. This value is inserted into the transmit F2 byte. 0x00 15:8 SPE_TC2DINS[7:0] Transmit C2 Byte Value. This value is inserted into the transmit C2 byte. 0x00 7:0 SPE_TK3DINS[7:0] Transmit K3 Byte Value. This value is inserted into the transmit K3 byte. 0x00 15:8 SPE_TG1DINS[7:0] Transmit G1 Byte Value. This value is inserted into the transmit G1 byte. 0x00 7:0 SPE_TN1DINS[7:0] Transmit N1 Byte Value. This value is inserted into the transmit N1 byte. 0x00 0x30021 0x30022 0x30023 15:8 7:0 Agere Systems Inc. Name -- Function Reserved. SPE_TH4DINS[7:0] Transmit H4 Byte Value. This value is inserted into the transmit H4 byte. Reset Default 0x00 0x00 145 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 158. SPE_SIGDEG_CTL1--SPE_SIGDEG_CTL6, Signal Degrade BER Algorithm Parameters (R/W) Address Bit Name 0x30024 0x30025 0x30025 15:0 2:0 15 14:7 SPE_SDNSSET[18:3] SPE_SDNSSET[2:0] 6:3 0x30026 0x30027 0x30028 0x30028 15:0 15:0 2:0 15 14:7 0x30028 6:3 0x30029 15:0 Function Signal Degrade Ns Set. Number of frames in a monitoring block for SD. -- Reserved. SPE_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then signal degrade (SD) is set. SPE_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining a bad monitoring block. SPE_SDBSET[15:0] Signal Degrade B Set. Number of monitoring blocks. SPE_SDNSCLEAR[18:3] Signal Degrade Ns Clear. Number of frames in a SPE_SDNSCLEAR[2:0] monitoring block for SD. -- Reserved. SPE_SDMCLEAR[7:0] Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. SPE_SDLCLEAR[3:0] Signal Degrade L Clear. Error threshold for determining a bad monitoring block. SPE_SDBCLEAR[15:0] Signal Degrade B Clear. Number of monitoring blocks. Reset Default 0x0000 0 0 0x00 0x0 0x0000 0x0000 0 0 0x00 0x0 0x0000 Table 159. SPE_SIGFAIL_CTL1--SPE_SIGFAIL_CTL6, Signal Fail BER Algorithm Parameters (R/W) Address Bit Name 0x3002A 0x3002B 0x3002B 15:0 2:0 15 14:7 SPE_SFNSSET[18:3] SPE_SFNSSET[2:0] 0x3002B 6:3 0x3002C 0x3002D 0x3002E 0x3002E 15:0 15:0 2:0 15 14:7 0x3002E 6:3 0x3002F 15:0 146 Function Signal Fail Ns Set. Number of frames in a monitoring block for SF. -- Reserved. SPE_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then signal fail (SF) is set. SPE_SFLSET[3:0] Signal Fail L Set. Error threshold for determining a bad monitoring block. SPE_SFBSET[15:0] Signal Fail B Set. Number of monitoring blocks. SPE_SFNSCLEAR[18:3] Signal Fail Ns Clear. Number of frames in a monitoring SPE_SFNSCLEAR[2:0] block for SF. -- Reserved. SPE_SFMCLEAR[7:0] Signal Fail M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. SPE_SFLCLEAR[3:0] Signal Fail L Clear. Error threshold for determining a bad monitoring block. SPE_SFBCLEAR[15:0] Signal Fail B Clear. Number of monitoring blocks. Reset Default 0x0000 0 0 0x00 0x0 0x0000 0x0000 0 0 0x00 0x0 0x0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 160. SPE_ERRCNT1--SPE_ERRCNT6, B3, G1, Bipolar Violation, and Excess Zero Error Count (RO) Address Bit Name Function Reset Default 0x30030 15:0 SPE_B3ECNT[15:0] B3 Error Count. The value of internal running counter is transferred into this holding register coincident with the end of a performance monitor interval. 0x0000 0x30031 15:0 SPE_G1ECNT[15:0] G1 Error Count. The value of internal running counter is transferred into this holding register coincident with the end of a performance monitor interval. 0x0000 0x30033 0x30033 0x30034 15:8 7:0 15:0 0x30035 0x30035 0x30036 15:8 7:0 15:0 -- Reserved. SPE_BIPOL_CNT[23:16] Bipolar Coding Violation Occurrence Count. The SPE_BIPOL_CNT[15:0] value of internal running counter is transferred into this holding register coincident with the end of a performance monitor interval. -- SPE_EXZ_CNT[23:16]] SPE_EXZ_CNT[15:0] Reserved. Excess Zero Occurrence Count. The value of internal running counter is transferred into this holding register coincident with the end of a performance monitor interval. 0x0000 00 0x0000 00 Table 161. SPE_PTRCNT1--SPE_PTRCNT3, Receive Pointer Increment and Decrement Count (RO) Address Bit Name 0x30037 15:10 -- 9:0 SPE_STORED_PTR[9:0] 15:11 -- 10:0 SPE_RPTR_INC[10:0] 15:11 -- 10:0 SPE_RPTR_DEC[10:0] 0x30038 0x30039 Function Reset Default Reserved. 0x00 Stored TU-3 Pointer Location. 0x000 Reserved. 0x00 Pointer Increment Count from Pointer Interpreter Block. The value of internal running counter is transferred into this holding register coincident with the end of a performance monitor interval. 0x000 Reserved. 0x00 Pointer Decrement Count from Pointer Interpreter Block. The value of internal running counter is transferred into this holding register coincident with the end of a performance monitor interval. 0x000 Table 162. SPE_RJ1MON_R1--SPE_RJ1MON_R32, Receive J1 Monitor Values (RO) Address Bit 0x30042 -- 0x30061 15:0 Agere Systems Inc. Name Function SPE_RJ1DMON[1--64][7:0] Receive J1 Monitor Value. These registers capture a 64-byte sequence from the J1 byte of each frame. Reset Default 0x00 147 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 163. SPE_TJ1DINS_R1--SPE_TJ1DINS_R32, Transmit J1 Insert Values (R/W) Address Bit Name 0x30062 -- 0x30081 15:0 SPE_TJ1DINS[1--64][7:0] Function Reset Default Transmit J1 Insert Value. These registers allow a 64-byte sequence to be inserted into the J1 byte of each frame. 0x00 Table 164. SPE_RJ1DEXP_R1--SPE_RJ1DEXP_R32, Receive J1 Expected Values (R/W) Address Bit 0x30082 -- 0x300A1 15:0 Name Function Reset Default SPE_RJ1DEXP[1--64][7:0] Receive J1 Expected Value. These registers hold a programmable 64-byte expected sequence for the J1 byte of each frame. 0x00 Table 165. SPE_SCRATCH_R, Scratch Pad (R/W) Address Bit Name Function Reset Default 0x300A2 15:0 SPE_SCRATCH[15:0] Scratch Register. Allows the control system to verify read and write operations to the device without affecting device operation. 0x0000 148 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) 9.2 SPE Mapper Register Map Note: In Table 166, the reset default of all reserved bits is 0. Shading denotes reserved bits. Table 166. SPE Mapper Register Map Address Symbol 0x30000 SPE_ VERSION_R 0x30001 -- 0x30002 SPE_ ONESHOT Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPE Version and Identification Registers--RO SPE_VERSION[2:0] SPEMPR_ID[7:0] One Shot (0 to 1 transition) Control Bit Parameters--R/W SPE_ BIPOL_ERR SPE_ SFCLEAR SPE_SFSET SPE_ SDCLEAR SPE_SDSET SPE_ K3DMOND SPE_ N1DMOND SPE_ C2DMOND SPE_ F2DMOND SPE_ F3DMOND Delta and Event Parameters--COR/COW 0x30003 SPE_EVENT1 SPE_ RDATA_PE 0x30004 SPE_EVENT2 0x30005 SPE_EVENT3 SPE_PRDI SPE_RNDFE SPE_RDECE SPE_RINCE DMOND SPE_RSY5 2LOSD SPE_ RV1LOSD SPE_RSPE SPE_RJ0J1 SPE_RDS3 LOSD V1LOSD LOCD SPE_ RC52LOCD SPE_ RLSLOCD SPE_ TPOAC_PE SPE_RAISD SPE_RLOPD SPE_SFB3D SPE_SDB3D SPE_ TSY52LOSD SPE_ TV1LOSD SPE_ RUNEQD SPE_RPLMD SPE_RTIMD SPE_ SPE_TJ0J1V TSPELOSD 1LOSD SPE_ TDS3LOCD SPE_ TC52LOCD SPE_ TLSLOCD SPE_ K3DMONM SPE_ C2DMONM SPE_ F2DMONM SPE_ F3DMONM Interrupt Mask Parameters for INT Pins--R/W 0x30006 SPE_MASK1 0x30007 SPE_MASK2 0x30008 SPE_MASK3 0x30009 SPE_STATE1 SPE_ RDATA_PM SPE_PRDI SPE_RNDFM DMONM SPE_RSY5 2LOSM SPE_ RV1LOSM SPE_RSPE SPE_RJ0J1 SPE_RDS3 LOSM V1LOSM LOCM SPE_ RC52LOCM SPE_ RDECM SPE_ TPOAC_PM SPE_ N1DMONM SPE_RINCM SPE_RAISM SPE_RLOPM SPE_SFB3M SPE_SDB3M SPE_ RLSLOCM SPE_ TSY52LOSM SPE_ TV1LOSM SPE_ TSPELOSM SPE_TJ0J1V 1LOSM SPE_RAIS SPE_RLOP SPE_SFB3 SPE_SDB3 SPE_ TSY52LOS SPE_ TV1LOS SPE_ TSPELOS SPE_ TJ0J1V1LOS SPE_ RUNEQM SPE_ TDS3LOCM SPE_RPLMM SPE_RTIMM SPE_ TC52LOCM SPE_ TLSLOCM SPE_RUNEQ SPE_RPLM SPE_RTIM State and Value Parameters--RO 0x3000A SPE_STATE2 SPE_ RSY52LOS SPE_ RV1LOS SPE_ SPE_RJ0J1 SPE_ RSPELOS V1LOS RDS3LOC SPE_ RC52LOC SPE_ RLSLOC SPE_ TDS3LOC SPE_ TC52LOC SPE_ TLSLOC Receive Control Parameters for Alarm and Overhead Functions--R/W 0x3000B SPE_RAOH_ CTL1 0x3000C SPE_RAOH_ CTL2 0x3000D SPE_RAOH_ CTL3 Agere Systems Inc. SPE_RD_ OEPAR SPE_CNTDLOPCNT[1:0] SPE_8ORMA JORITY SPE_ PAISINS SPE_J1MONMODE[2:0] SPE_PAIS_ AISINH SPE_PAIS_ LOPINH SPE_AIS_LO SSY52INH SPE_AIS_ LOSV1INH SPE_PAIS_ SFB3INH SPE_RPRDI SPE_G1BTB SPE_B3BTB SPE_RPOAC LKCNT LKCNT _MODE _OEPINS SPE_PAIS_ SDB3INH SPE_PAIS_ UNEQINH SPE_PAIS_ PLMINH SPE_PAIS_ TIMINH SPE_AIS_LO SPE_AIS_LO SPE_AIS_ SSPEINH SJ0J1V1INH LOCDS3INH SPE_AIS_ LOC52INH SPE_AIS_ LOCINH 149 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 166. SPE Mapper Register Map (continued) Address Symbol 0x3000E -- Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Continuous N-Times Detect Values--R/W 0x3000F SPE_CNTD1 SPE_CNTDC2[3:0] SPE_CNTDF3[3:0] SPE_CNTDF2[3:0] 0x30010 SPE_CNTD2 SPE_CNTDN1[3:0] SPE_CNTDPRDI[3:0] SPE_CNTDK3[3:0] 0x30011 SPE_ROHC2 SPE_CNTDJ1[3:0] Receive Overhead Expected Value for C2 Byte--R/W SPE_C2DEXP[7:0] Receive Monitor Values--RO 0x30012 SPE_RMON1 0x30013 SPE_RMON2 SPE_N1DMON[7:0] SPE_K3DMON[7:0] SPE_PRDIDMON[2:0] 0x30014 SPE_RMON3 SPE_F2DMON1[7:0] SPE_F2DMON0[7:0] 0x30015 SPE_RMON4 SPE_F3DMON1[7:0] SPE_F3DMON0[7:0] 0x30016 SPE_RMON5 0x30017 -- SPE_C2DMON[7:0] Transmit/Receive Control Parameters for Mapping Functions--R/W 0x30018 SPE_MAP_CTL1 SPE_T_ST S1_MODE 0x30019 SPE_MAP_CTL2 0x3001A SPE_MAP_CTL3 SPE_T_NS MI_MODE SPE_TDS3SRCTYP[1:0] SPE_T_NSMI_BIT[2:0] SPE_T_ VT_DS3 SPE_T_ SPE_TSTS3TMSLOT[1:0] SPE_R_STS SPE_R_NS AU3_TUG3 1_MODE MI_MODE SPE_R_NSMI_BIT[2:0] SPE_RDS3OUTTYP[1:0] SPE_R_ VT_DS3 SPE_R_ SPE_RSTS3TMSLOT[1:0] AU3_TUG3 SPE_TDS3 SPE_PHDE SPE_PHDE SPE_TDS3 CLK_EDGE TUP_INV TDN_INV BPV_IN SPE_T_NSMI_COL[6:0] SPE_TDS3 SPE_RDS3 _BIPOLAR _BIPOLAR SPE_R_NSMI_COL[6:0] Transmit Control Parameters for Alarm and Overhead Functions--R/W 0x3001B SPE_TAOH_ CTL1 0x3001C SPE_TAOH_ CTL2 0x3001D SPE_TAOH_ CTL3 0x3001E SPE_TRDIREI_ CTL SPE_TD_ OEPAR SPE_TREIR DISEL SPE_ TAISPINS SPE_ TN1INS SPE_ TK3INS SPE_ TH4INS SPE_TPOA SPE_ SPE_ SPE_ C_OEPMON TPOAC_N1 TPOAC_K3 TPOAC_H4 SPE_NPI_BYTE2[7:0] SPE_ TF3INS SPE_ TF2INS SPE_ TC2INS SPE_ TJ1INS SPE_ TPOAC_F3 SPE_ TPOAC_F2 SPE_ TPOAC_C2 SPE_ TPOAC_J1 SPE_NPI_BYTE1[7:0] Transmit Path RDI and REI Control Parameters--R/W 150 SPE_TPRDII SPE_TTIM_ SPE_TPLM SPE_TUNE SPE_TLOP SPE_TPAIS SPE_TPRDI SPE_TREIP NS PRDIINH _PRDIINH Q_PRDIINH _PRDIINH _PRDIINH _MODE _INH Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 9 SPE Mapper Registers (continued) Table 166. SPE Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Error Insertion Control Parameters--R/W 0x3001F SPE_TERRINS_CTL SPE_BERR_INS SPE_TB3ERRINS SPE_TREIERRINS Transmit OH Insert Value--R/W 0x30020 SPE_TOHINS1 SPE_TF3DINS[7:0] 0x30021 SPE_TOHINS2 SPE_TC2DINS[7:0] SPE_TF2DINS[7:0] SPE_TK3DINS[7:0] 0x30022 SPE_TOHINS3 SPE_TG1DINS[7:0] SPE_TN1DINS[7:0] 0x30023 SPE_TOHINS4 SPE_TH4DINS[7:0] Signal Degrade Set/Clear Control Registers--R/W 0x30024 SPE_SIGDEG_CTL1 0x30025 SPE_SIGDEG_CTL2 0x30026 SPE_SIGDEG_CTL3 0x30027 SPE_SIGDEG_CTL4 0x30028 SPE_SIGDEG_CTL5 0x30029 SPE_SIGDEG_CTL6 0x3002A SPE_SIGFAIL_CTL1 0x3002B SPE_SIGFAIL_CTL2 0x3002C SPE_SIGFAIL_CTL3 0x3002D SPE_SIGFAIL_CTL4 0x3002E SPE_SIGFAIL_CTL5 0x3002F SPE_SIGFAIL_CTL6 SPE_SDNSSET[18:3] SPE_SDMSET[7:0] SPE_SDLSET[3:0] SPE_SDNSSET[2:0] SPE_SDBSET[15:0] SPE_SDNSCLEAR[18:3] SPE_SDMCLEAR[7:0] SPE_SDLCLEAR[3:0] SPE_SDNSCLEAR[2:0] SPE_SDBCLEAR[15:0] Signal Fail Set/Clear Control Registers--R/W Agere Systems Inc. SPE_SFNSSET[18:3] SPE_SFMSET[7:0] SPE_SFLSET[3:0] SPE_SFNSSET[2:0] SPE_SFBSET[15:0] SPE_SFNSCLEAR[18:3] SPE_SFMCLEAR[7:0] SPE_SFLCLEAR[3:0] SPE_SFNSCLEAR[2:0] SPE_SFBCLEAR[15:0] 151 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 9 SPE Mapper Registers (continued) Table 166. SPE Mapper Register Map (continued) Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0x30030 SPE_ERRCNT1 SPE_B3ECNT[15:0] 0x30031 SPE_ERRCNT2 SPE_G1ECNT[15:0] 0x30032 -- 0x30033 SPE_ERRCNT3 0x30034 SPE_ERRCNT4 0x30035 SPE_ERRCNT5 0x30036 SPE_ERRCNT6 0x30037 SPE_PTRCNT1 0x30038 SPE_PTRCNT2 SPE_RPTR_INC[10:0] SPE_RPTR_DEC[10:0] Bit 3 Bit 2 Bit 1 Bit 0 B3 and G1 Error Counts--RO Bipolar Violation and Excess Zero Counts for DS3--RO SPE_BIPOL_CNT[23:16] SPE_BIPOL_CNT[15:0] SPE_EXZ_CNT[23:16] SPE_EXZ_CNT[15:0] Receive Pointer Increment and Decrement Counts--RO SPE_STORED_PTR[9:0] 0x30039 SPE_PTRCNT3 0x3003A -- 0x30041 -- 0x30042 -- 0x30061 SPE_RJ1MON_R1 -- SPE_RJ1MON_R32 SPE_RJ1DMON[2][7:0] -- SPE_RJ1DMON[64][7:0] 0x30062 -- 0x30081 SPE_TJ1DINS_R1 -- SPE_TJ1DINS_R32 SPE_TJ1DINS[2][7:0] -- SPE_TJ1DINS[64][7:0] 0x30082 -- 0x300A1 SPE_RJ1DEXP_R1 -- SPE_RJ1DEXP_R32 SPE_RJ1DEXP[2][7:0] -- SPE_RJ1DEXP[64][7:0] 0x300A2 SPE_SCRATCH_R 0x300A3 -- 0x301FF -- J1 Byte Receive Monitor--RO SPE_RJ1DMON[1][7:0] -- SPE_RJ1DMON[63][7:0] J1 Byte Transmit Insert--R/W SPE_TJ1DINS[1][7:0] -- SPE_TJ1DINS[63][7:0] J1 Byte Expected Values--R/W SPE_RJ1DEXP[1][7:0] -- SPE_RJ1DEXP[63][7:0] Scratch Register--R/W 152 SPE_SCRATCH[15:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers Table of Contents Contents Page 10 VT/TU Mapper Registers ................................................................................................................................ 153 10.1 VT/TU Mapper Register Descriptions ..................................................................................................... 154 10.2 VT/TU Mapper Register Map .................................................................................................................. 171 Tables Page Table 167. VT_VERSION_R, VT Mapper Ready, Version, and Identification (RO) ............................................ 154 Table 168. VT_GDELTA, VT Global Deltas (COR/COW) ................................................................................... 154 Table 169. VT_REVENT_DELTA[1--28], Receive Event and Delta Per Channel (COR/COW) ........................ 155 Table 170. VT_LOPOHFAIL_EVENT, Low-Order Path Overhead Failure Event (COR/COW) .......................... 155 Table 171. VT_TEVENT_DELTA[1--28], Transmit Event and Delta Per Channel (COR/COW) ........................ 156 Table 172. VT_GMASK, VT Global Masks (R/W) ............................................................................................... 156 Table 173. VT_RMASK[1--28], Receive Masks Per Channel (R/W) .................................................................. 157 Table 174. VT_LOPOHFAIL_MASK, Low-Order Path Overhead Failure Mask (R/W) ....................................... 158 Table 175. VT_TMASK[1--28], Transmit Masks Per Channel (R/W) ................................................................. 158 Table 176. VT_GSTATE, VT Global State (RO) ................................................................................................. 158 Table 177. VT_RSTATE[1--28], Receive State Per Channel (RO) .................................................................... 159 Table 178. VT_RAPSSTATE[1--28], Receive APS State Per Channel (RO) ..................................................... 159 Table 179. VT_TSTATE[1--28], Transmit State Per Channel (RO) ................................................................... 159 Table 180. VT_GCTL1, VT Global Control Register 1 (R/W) .............................................................................. 160 Table 181. VT_GCTL2, VT Global Control Register 2 (R/W) .............................................................................. 160 Table 182. VT_GCTL3, VT Global Control Register 3 (R/W) .............................................................................. 161 Table 183. VT_GCTL4, VT Global Control Register 4 (R/W) .............................................................................. 161 Table 184. VT_GCTL5, VT Global Control Register 5 (R/W) .............................................................................. 162 Table 185. VT_SIGDEG_CTL1, Signal Degrade Control Register 1 (R/W) ........................................................ 163 Table 186. VT_SIGDEG_CTL2, Signal Degrade Control Register 2 (R/W) ........................................................ 163 Table 187. VT_SIGDEG_CTL3, Signal Degrade Control Register 3 (R/W) ........................................................ 163 Table 188. VT_SIGDEG_CTL4, Signal Degrade Control Register 4 (R/W) ........................................................ 163 Table 189. VT_SIGDEG_CTL5, Signal Degrade Control Register 5 (R/W) ........................................................ 164 Table 190. VT_SIGDEG_CTL6, Signal Degrade Control Register 6 (R/W) ........................................................ 164 Table 191. VT_SIGDEG_CTL7, Signal Degrade Control Register 7 (R/W) ........................................................ 164 Table 192. VT_SIGFAIL_CTL1, Signal Fail Control Register 1 (R/W) ................................................................ 164 Table 193. VT_SIGFAIL_CTL2, Signal Fail Control Register 2 (R/W) ................................................................ 164 Table 194. VT_SIGFAIL_CTL3, Signal Fail Control Register 3 (R/W) ................................................................ 164 Table 195. VT_SIGFAIL_CTL4, Signal Fail Control Register 4 (R/W) ................................................................ 165 Table 196. VT_SIGFAIL_CTL5, Signal Fail Control Register 5 (R/W) ................................................................ 165 Table 197. VT_SIGFAIL_CTL6, Signal Fail Control Register 6 (R/W) ................................................................ 165 Table 198. VT_TCTL[1--28], Transmit Control Per Channel (R/W) ................................................................... 166 Table 199. VT_TTUOH_CTL[1--28], Transmit TU Overhead Control Per Channel (R/W) ................................. 167 Table 200. VT_TAPSRIVAL[1--28], Transmit APS and Remote Indication Per Channel (R/W) ........................ 167 Table 201. VT_TSWOW[1--28], Transmit Software Overwrite Per Channel (R/W) ........................................... 167 Table 202. VT_TSIG_CTL[1--28], Transmit Signaling Control Per Channel (R/W) ........................................... 168 Table 203. VT_J2BYTE_INS_R[1--28][1--16], J2 Insert Values Per Channel (R/W) ........................................ 168 Table 204. VT_RCTL[1--28], Receive Control Per Channel (R/W) .................................................................... 168 Table 205. VT_RTUOH_CTL[1--28], Receive TU Overhead Control Per Channel (RO) ................................... 169 Table 206. VT_RBIP2_CNT[1--28], Receive BIP-2 Error Count Per Channel (RO) .......................................... 169 Table 207. VT_RREIV_CNT[1--28], Receive REI-V Error Count Per Channel (RO) ......................................... 169 Table 208. VT_RPTR_CNT[1--28], Receive Pointer and Count Per Channel (RO) .......................................... 170 Table 209. VT_J2BYTE_EXP_R[1--28][1--16], J2 Expected Values Per Channel (R/W, RO) ......................... 170 Table 210. VT_THRES_CTL[1--28], Transmit Elastic Store Threshold Control (R/W) ...................................... 170 Table 211. VT/TU Mapper Register Map ............................................................................................................. 171 Agere Systems Inc. 153 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) 10.1 VT/TU Mapper Register Descriptions The following tables describe the functions of all bits in the register map. For each address, the register bits are indicated as either read/write (R/W) or read only (RO), and the value of the bits on reset is given. Table 167. VT_VERSION_R, VT Mapper Ready, Version, and Identification (RO) Address Bit Name Function 0x20000 15 VT_RDY 14:11 10:8 -- VT_VERSION[2:0] 7:0 VT_ID[7:0] VT/TU Mapper Ready. A 1 indicates that the VT/TU mapper is ready for microprocessor reads and writes. Reserved. Block Version Number. These bits identify the version number of the VT/TU mapper. Block ID Number. VT_ID returns a fixed value (0x02) when read. Reset Default 0x0 0x0 NA 0x02 Table 168. VT_GDELTA, VT Global Deltas (COR/COW) Address Bit Name Function 0x20001 15:3 2 -- VT_SD_D 1 VT_SF_D 0 VT_H4LOMF_D Reserved. VT/TU Signal Degrade Delta Bit. Logic 1 indicates a change in the signal degrade condition based on the internal bit error rate detector. VT/TU Signal Fail Delta Bit. Logic 1 indicates a change in the signal fail condition based on the internal bit error rate detector. H4 Mismatch Delta Bit. Logic 1 indicates a change in the H4 loss of multiframe condition. 154 Reset Default 0x000 0x1 0x1 0x1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 169. VT_REVENT_DELTA[1--28], Receive Event and Delta Per Channel (COR/COW) Address Bit Name Function 0x20002 -- 0x2001D 15 -- 14 VT_RX_VTREI_E[1--28] Reserved. Reset Default 0 Receive REI-V Event Bit. Logic 1 indicates that REI-V was received. 0x0 13 VT_RX_BIP2ERR_E[1--28] Receive BIP-2 Error Event Bit. Logic 1 indicates that BIP-2 errors have been detected. 0x0 12 VT_RX_ESOVFL_E[1--28] Receive Elastic Store Overflow Event Bit. Logic one indicates an elastic store overflow. 0x0 11 VT_APS_D[1--28] ERDI-V Delta Bit. Logic 1 indicates a VTAPS change of value. 0x1 10 VT_ERDI_D[1--28] ERDI-V Delta Bit. Logic 1 indicates an ERDI-V change of value. 0x1 9 VT_RDI_D[1--28] RDI-V Delta Bit. Logic 1 indicates an RDI-V change of value. 0x1 8 VT_RFI_D[1--28] RFI-V Delta Bit. Logic 1 indicates an RFI-V change of value. 0x1 7 -- 6 VT_LOPS_D[1--28] VT Loss of Phase Sync Delta Bit. Logic 1 indicates a change of VTLOPS state. 0x1 5 VT_J2TIM_D[1--28] J2 Trace Identifier Mismatch. Logic 1 indicates a change of J2TIM state. 0x1 4 VT_PLM_D[1--28] VT Payload Label Mismatch Delta Bit. Logic 1 indicates a change of VTPLM state. 0x1 3 VT_UNEQ_D[1--28] VT Unequip Delta Bit. Logic 1 indicates a change of VTUNEQ state. 0x1 2 VT_SIZERR_D[1--28] VT Size Error Delta Bit. Logic 1 indicates a change of VTSIZERR state. 0x1 1 VT_AIS_D[1--28] AIS-V Delta Bit. Logic 1 indicates a change of VTAIS state. 0x0 0 VT_LOP_D[1--28] LOP-V Delta Bit. Logic 1 indicates a change of VTLOP state. 0x1 Reserved. 0 Table 170. VT_LOPOHFAIL_EVENT, Low-Order Path Overhead Failure Event (COR/COW) Address Bit Name 0x2001E 15:1 -- 0 VT_LOPOH_FAIL_E Agere Systems Inc. Function Reserved. Low-Order Path Overhead Failure Event Bit. Logic 1 indicates that a failure has occurred on the LOPOH serial access channel. Reset Default 0x000 0x0 155 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 171. VT_TEVENT_DELTA[1--28], Transmit Event and Delta Per Channel (COR/COW) Address Bit Name 0x2001F -- 0x2003A 15:5 -- 4 Function Reset Default Reserved. 0x000 VT_TX_ESOVFL_E[1--28] Transmit Elastic Store Overflow Event Bit. Logic 1 indicates an elastic store overflow. Reserved. 0x0 3 -- 0 2 VT_LOFS_D[1--28] Loss of Frame Sync Delta Bit. Logic 1 indicates a change of VT_LOFS[1--28] (Table 179) state. 0x1 1 VT_TX_AIS_D[1--28] Transmit AIS Delta Bit. Logic 1 indicates a change of VT_TX_AIS[1--28] (Table 179) state. 0x0 0 VT_TX_LOC_D[1--28] Transmit Loss of Clock Delta Bit. Logic 1 indicates a change of VT_TX_LOC[1--28] (Table 179) state. 0x1 Table 172. VT_GMASK, VT Global Masks (R/W) Address Bit Name 0x2003B 15:3 -- 2 VT_SD_M VT/TU Signal Degrade Mask Bit. If set to a logic 1, VT_SD_D (Table 168) will not contribute to the interrupt. 0x1 1 VT_SF_M VT/TU Signal Fail Mask Bit. If set to a logic 1, VT_SF_D (Table 168) will not contribute to the interrupt. 0x1 0 VT_H4LOMF_M H4 Mismatch Mask Bit. If set to a logic 1, VT_H4LOMF_D (Table 168) will not contribute to the interrupt. 0x1 156 Function Reset Default Reserved. 0x000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 173. VT_RMASK[1--28], Receive Masks Per Channel (R/W) Note: The event and delta bits for these mask bits are in Table 169. Address Bit Name 0x2003C -- 0x20057 15 -- 14 VT_RX_VTREI_M[1--28] Function Reserved. Receive REI-V Mask Bit. If set to a logic 1, VT_RX_VTREI_E[1--28] will not contribute to the interrupt. Reset Default 0 0x1 13 VT_RX_BIP2ERR_M[1--28] Receive BIP-2 Error Mask Bit. If set to a logic 1, VT_RX_BIP2ERR_E[1--28] will not contribute to the interrupt. 0x1 12 VT_RX_ESOVFL_M[1--28] Receive Elastic Store Overflow Mask Bit. If set to a logic 1, VT_RX_ESOVFL_E[1--28] will not contribute to the interrupt. 0x1 11 VT_APS_M[1--28] VT APS Mask Bit. If set to a logic 1, VT_APS_D[1--28] will not contribute to the interrupt. 0x1 10 VT_ERDI_M[1--28] ERDI-V Mask Bit. If set to a logic 1, VT_ERDI_D[1--28] will not contribute to the interrupt. 0x1 9 VT_RDI_M[1--28] RDI-V Mask Bit. If set to a logic 1, VT_RDI_D[1--28] will not contribute to the interrupt. 0x1 8 VT_RFI_M[1--28] RFI-V Mask Bit. If set to a logic 1, VT_RFI_D[1--28] will not contribute to the interrupt. 0x1 7 -- 6 VT_LOPS_M[1--28] VT Loss of Phase Sync Mask Bit. If set to a logic 1, VT_LOPS_D[1--28] will not contribute to the interrupt. 0x1 5 VT_J2TIM_M[1--28] J2 Mismatch Mask Bit. If set to a logic 1, VT_J2TIM_D[1--28] will not contribute to the interrupt. 0x1 4 VT_PLM_M[1--28] VT Payload Label Mismatch Mask Bit. If set to a logic 1, VT_PLM_D[1--28] will not contribute to the interrupt. 0x1 3 VT_UNEQ_M[1--28] VT Unequip Mask Bit. If set to a logic 1, VT_UNEQ_D[1--28] will not contribute to the interrupt. 0x1 2 VT_SIZERR_M[1--28] VT Size Error Mask Bit. If set to a logic 1, VT_SIZERR_D[1--28] will not contribute to the interrupt. 0x1 1 VT_AIS_M[1--28] AIS-V Mask Bit. If set to a logic 1, VT_AIS_D[1--28] will not contribute to the interrupt. 0x1 0 VT_LOP_M[1--28] LOP-V Mask Bit. If set to a logic 1, VT_LOP_D[1--28] will not contribute to the interrupt. 0x1 Agere Systems Inc. Reserved. 0 157 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 174. VT_LOPOHFAIL_MASK, Low-Order Path Overhead Failure Mask (R/W) Address Bit Name 0x20058 15:1 -- 0 VT_LOPOH_FAIL_M Function Reset Default Reserved. 0x000 Low-Order Path Overhead Failure Mask Bit. If set to a logic 1, VT_LOPOH_FAIL_E (Table 170) will not contribute to the interrupt. 0x1 Table 175. VT_TMASK[1--28], Transmit Masks Per Channel (R/W) Address Bit Name 0x20059 -- 0x20074 15:5 -- 4 Function Reset Default Reserved. 0x000 VT_TX_ESOVFL_M[1--28] Transmit Elastic Store Overflow Mask Bit. If set to a logic 1, VT_TX_ESOVFL_E[1--28] (Table 171) will not contribute to the interrupt. Reserved. 0x1 3 RESERVED 0 2 VT_LOFS_M[1--28] Loss of Frame Sync Mask Bit. If set to a logic 1, VT_LOFS_D[1--28] (Table 171) will not contribute to the interrupt. 0x1 1 VT_TX_AIS_M[1--28] Transmit AIS Mask Bit. If set to a logic 1, VT_TX_AIS_D[1--28] (Table 171) will not contribute to the interrupt. 0x1 0 VT_TX_LOC_M[1--28] Transmit Loss of Clock Mask Bit. If set to a logic 1, VT_TX_LOC_D[1--28] (Table 171) will not contribute to the interrupt. 0x1 Table 176. VT_GSTATE, VT Global State (RO) Address Bit Name 0x20075 15:3 -- 2 VT_SD VT/TU Signal Degrade. Logic 1 indicates a signal degrade condition on the selected channel. 0x1 1 VT_SF VT/TU Signal Fail. Logic 1 indicates a signal fail condition on the selected channel. 0x1 0 VT_H4LOMF H4 Loss of Multiframe. Logic 1 indicates a loss of H4 multiframe alignment. 0x1 158 Function Reset Default Reserved. 0x000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 177. VT_RSTATE[1--28], Receive State Per Channel (RO) Address Bit Name Function Reset Default VT_ERDI[1--28][2:0] Enhanced RDI-V Value. These bits are the stored ERDI-V bits received in the Z7 byte. 0x000 VT_LAB[1--28][2:0] VT Signal Label. These bits are the stored VT signal label bits received in the V5 byte. 0x000 9 VT_RDI[1--28] RDI-V Value. This bit is the accepted RDI-V bit received in the V5 byte. 0x00 8 VT_RFI[1--28] RFI-V Value. This bit is the accepted RFI-V bit received in the V5 byte. 0x00 7 -- 6 VT_LOPS[1--28] VT Loss of Phase Sync. Logic 1 indicates a loss of P-bit phase synchronization. 0x1 5 VT_J2TIM[1--28] J2 Trace Identifier Mismatch. Logic 1 indicates a mismatch between the expected trace and the detected trace. 0x1 4 VT_PLM[1--28] VT Payload Label Mismatch. Logic 1 indicates PLM-V. 0x1 3 VT_UNEQ[1--28] VT Unequip. Logic 1 indicates UNEQ-V. 0x1 2 VT_SIZERR[1--28] VT Size Error. Logic 1 indicates a VT size error. 0x1 1 VT_AIS[1--28] AIS-V. Logic 1 indicates AIS-V. 0x0 0 VT_LOP[1--28] LOP-V. Logic 1 indicates LOP-V. 0x1 0x20076 15:13 -- 0x20091 12:10 Reserved. 0 Table 178. VT_RAPSSTATE[1--28], Receive APS State Per Channel (RO) Address Bit Name 0x20092 -- 0x200AD 15:4 -- 3:0 VT_APS[1--28][3:0] Function Reserved. Reset Default 0x000 VT APS Value. These bits are the stored VT APS bits received in the Z7/K4 byte. 0x0 Table 179. VT_TSTATE[1--28], Transmit State Per Channel (RO) Address Bit Name 0x200AE -- 0x200C9 15:3 -- 2 VT_LOFS[1--28] 1 0 Agere Systems Inc. Function Reserved. Reset Default 0x000 Loss of Frame Sync. Logic 1 indicates DS1/E1 loss of frame sync. 0x1 VT_TX_AIS[1--28] Transmit AIS. Logic 1 indicates DS1/E1 AIS. 0x0 VT_TX_LOC[1--28] Transmit Loss of Clock. Logic 1 indicates DS1/E1 loss of clock. 0x1 159 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 180. VT_GCTL1, VT Global Control Register 1 (R/W) Address Bit Name 0x200CA 15 -- Function Reset Default Reserved. 0 14:8 VT_RX_GRP_TYPE[6:0] Receive Group Type. VT/TU group type selection. Logic 1 selects VT1.5/TU-11 and logic 0 selects VT2/TU-12 group type. Group 1 is the LSB. 7 6:0 -- Reserved. 0x7F 0 VT_TX_GRP_TYPE[6:0] Transmit Group Type. VT/TU group type selection. Logic 1 selects VT1.5/TU-11 and logic 0 selects VT2/TU-12 group type. Group 1 is the LSB. 0x7F Table 181. VT_GCTL2, VT Global Control Register 2 (R/W) Address Bit 0x200CB 15:11 10 9 -- VT_LOPS_AIS_INH Function Reset Default Reserved. 0x00 VT/TU Loss of Phase Sync. Contribution to AIS inhibit control. 0x0 VT_J2TIM_ERDI_INH J2 Trace Identifier Mismatch. Contribution to ERDI inhibit control. 0x0 8 VT_J2TIM_RDI_INH J2 Trace Identifier Mismatch. Contribution to RDI inhibit control. 0x0 7 VT_J2TIM_AIS_INH J2 Trace Identifier Mismatch. Contribution to AIS inhibit control. 0x0 6 VT_LOMF_AIS_INH Loss of Multiframe. Contribution to AIS inhibit control. 0x0 5 VT_PLM_AIS_INH Payload Label Mismatch. Contribution to AIS inhibit control. 0x0 4 VT_UNEQ_AIS_INH UNEQ-V. Contribution to AIS inhibit control. 0x0 3 -- 2 VT_UPSR Unidirectional Path Switch Ring Mode Control. Logic 1 activates the UPSR mode of operation. When the device is programmed for UPSR mode, the transmitted REI-V, RDI-V, RFI-V, and ERDI-V are based on the receive conditions. Otherwise, the transmitted LOPOH is a copy of the received overhead bytes. 0x0 1 VT_8ORMAJORITY VT Pointer Interpreter Mode Control. Logic 1 tells the pointer interpreter to transition into the inc and dec states based on 8 of the 10 I and D bits. Otherwise, the pointer interpreter transitions into the inc and dec states based on majority rule. 0x1 0 160 Name Reserved. 0 VT_BIT_BLOCK_CNT Performance Monitor Count Mode Control. Logic 1 activates BIP-2, TC-BIP-2, REI, and TC-CRC-7 counts based on single bit errors. Otherwise, errors are counted on a block basis. 0x1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 182. VT_GCTL3, VT Global Control Register 3 (R/W) Address Bit Name 0x200CC 15:8 -- 7:4 3:0 Function Reserved. 0x00 VT_LOPS_NTIME[3:0] VT/TU Loss of Phase Sync NTIME Detection Control. This nibble is programmed to provision the number of consecutive errored phase indications required to transition into the VT_LOPS[1--28] (Table 177) state. Only valid in byte synchronous mode. Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. VT_H4_NTIME[3:0] Reset Default H4 Multiframe Indication NTIME Detection Control. This nibble is programmed to provision the number of consecutive errored multiframe indications required to transition into the VT_H4LOMF (Table 176) state. Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x6 0x6 Table 183. VT_GCTL4, VT Global Control Register 4 (R/W) Address Bit Name Function Reset Default 0x200CD 15:11 VT_Z6_NTIME[3:0] Z6 Byte Monitor NTIME Detection Control. This nibble is programmed to provision the number of consecutive consistent Z6 bytes required to accept a new value. Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x3 11:8 VT_J2_NTIME[3:0] J2 Byte Monitor NTIME Detection Control. This nibble is programmed to provision the number of consecutive consistent J2 sequences required for the J2 byte monitor to transition in and out of J2TIM. Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x3 7:4 VT_INV_NTIME[3:0] Pointer Interpreter Invalid Pointer NTIME Detection Control. This nibble is programmed to provision the number of invalid pointers required for the pointer interpreter to go into the VT_LOP[1--28] (Table 177) state. Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x8 3:0 VT_NDF_NTIME[3:0] Pointer Interpreter NDF Pointer NTIME Detection Control. This nibble is programmed to provision the number of consecutive NDF pointers required for the pointer interpreter to go into the VT_LOP state. Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x8 Agere Systems Inc. 161 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 184. VT_GCTL5, VT Global Control Register 5 (R/W) Address Bit Name Function Reset Default 0x200CE 15:12 VT_APS_NTIME[3:0] APS NTIME Detection Control. This nibble is programmed to provision the number of consecutive consistent new values required to accept a new VT_APS[1--28][3:0] (Table 178). Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x3 11:8 VT_LAB_NTIME[3:0] VT Signal Label NTIME Detection Control. This nibble is programmed to provision the number of consecutive consistent new values required to accept a new VT_LAB[1--28][2:0] (Table 177). Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x3 7:4 VT_ERDI_NTIME[3:0] ERDI-V NTIME Detection Control. This nibble is programmed to provision the number of consecutive consistent new values required to accept a new VT_ERDI[1--28][2:0] (Table 177). Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x3 3:0 162 VT_RDI_NTIME[3:0] RDI-V NTIME Detection Control. This nibble is programmed to provision the number of consecutive consistent new values required to accept a new VT_RDI[1--28] (Table 177). Note: The valid range of values is 0x1--0xF. A value of 0x0 will be mapped to 0x1. 0x3 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 185. VT_SIGDEG_CTL1, Signal Degrade Control Register 1 (R/W) Address Bit 0x200CF 15:12 Name -- Function Reset Default Reserved. 0x00 11 VT_SFCLEAR VT Signal Fail Clear. Allows the signal fail algorithm to be forced into the normal state. This is a one shot which is activated by a 0 to 1 transition. 0x0 10 VT_SFSET VT Signal Fail Set. Allows the signal fail algorithm to be forced into the failed state. This is a one shot which is activated by a 0 to 1 transition. 0x0 9 VT_SDCLEAR Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state. This is a one shot which is activated by a 0 to 1 transition. 0x0 8 VT_SDSET Signal Degrade Set. Allows the signal degrade algorithm to be forced into the failed state. This is a one shot which is activated by a 0 to 1 transition. 0x0 7:5 -- Reserved. 000 4:0 VT_BER_CH_ SEL[4:0] Bit Error Rate Monitor Channel Select. Selects which channel (1--28/21) is being monitored by the internal BER monitor. Valid inputs are 00001--11100. 0x00 Table 186. VT_SIGDEG_CTL2, Signal Degrade Control Register 2 (R/W) Address Bit Name Function Reset Default 0x200D0 15:0 VT_SDNSSET[18:3] Signal Degrade Ns Set. Number of frames in a monitoring block for SD. 0x0000 Table 187. VT_SIGDEG_CTL3, Signal Degrade Control Register 3 (R/W) Address Bit Name Function 0x200D1 15 -- 14:7 VT_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then signal degrade SD is set. 0x00 6:3 VT_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining if a monitoring block is bad. 0x0 2:0 VT_SDNSSET[2:0] Signal Degrade Ns Set. Number of frames in a monitoring block for SD. 0x0 Reserved. Reset Default 0 Table 188. VT_SIGDEG_CTL4, Signal Degrade Control Register 4 (R/W) Address Bit Name 0x200D2 15:0 VT_SDBSET[15:0] Agere Systems Inc. Function Signal Degrade B Set. Number of monitoring blocks. Reset Default 0x0000 163 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 189. VT_SIGDEG_CTL5, Signal Degrade Control Register 5 (R/W) Address Bit 0x200D3 15:0 Name Function Reset Default VT_SDNSCLEAR[18:3] Signal Degrade Ns Clear. Number of frames in a monitoring block for SD. 0x0000 Table 190. VT_SIGDEG_CTL6, Signal Degrade Control Register 6 (R/W) Address Bit Name 0x200D4 15 -- 14:7 VT_SDMCLEAR[7:0] Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. 0x00 6:3 VT_SDLCLEAR[3:0] Signal Degrade L Clear. Error threshold for determining if a monitoring block is bad. 0x0 2:0 Function Reset Default Reserved. 0 VT_SDNSCLEAR[2:0] Signal Degrade Ns Clear. Number of frames in a monitoring block for SD. 0x0 Table 191. VT_SIGDEG_CTL7, Signal Degrade Control Register 7 (R/W) Address Bit 0x200D5 15:0 Name Function Reset Default VT_SDBCLEAR[15:0] Signal Degrade B Clear. Number of monitoring blocks. 0x0000 Table 192. VT_SIGFAIL_CTL1, Signal Fail Control Register 1 (R/W) Address Bit Name Function Reset Default 0x200D6 15:0 VT_SFNSSET[18:3] Signal Fail Ns Set. Number of frames in a monitoring block for SF. 0x0000 Table 193. VT_SIGFAIL_CTL2, Signal Fail Control Register 2 (R/W) Address Bit Name 0x200D7 15 -- Function Reset Default Reserved. 0 14:7 VT_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then SF is set. 0x00 6:3 VT_SFLSET[3:0] 0x0 2:0 Signal Fail L Set. Error threshold for determining if a monitoring block is bad. VT_SFNSSET[2:0] Signal Fail Ns Set. Number of frames in a monitoring block for SF. 0x0 Table 194. VT_SIGFAIL_CTL3, Signal Fail Control Register 3 (R/W) Address Bit Name 0x200D8 15:0 VT_SFBSET[15:0] 164 Function Signal Fail B Set. Number of monitoring blocks. Reset Default 0x0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 195. VT_SIGFAIL_CTL4, Signal Fail Control Register 4 (R/W) Address Bit Name Function Reset Default 0x200D9 15:0 VT_SFNSCLEAR[18:3] Signal Fail Ns Clear. Number of frames in a monitoring block for SF. 0x0000 Table 196. VT_SIGFAIL_CTL5, Signal Fail Control Register 5 (R/W) Address Bit Name 0x200DA 15 -- 14:7 VT_SFMCLEAR[7:0] Signal Fail M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. 0x00 6:3 VT_SFLCLEAR[3:0] Signal Fail L Clear. Error threshold for determining if a monitoring block is bad. 0x0 2:0 Function Reserved. Reset Default 0 VT_SFNSCLEAR[2:0] Signal Fail Ns Clear. Number of frames in a monitoring block for SF. 0x0 Table 197. VT_SIGFAIL_CTL6, Signal Fail Control Register 6 (R/W) Address Bit 0x200DB 15:0 Agere Systems Inc. Name Function VT_SFBCLEAR[15:0] Signal Fail B Clear. Number of monitoring blocks. Reset Default 0x0000 165 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 198. VT_TCTL[1--28], Transmit Control Per Channel (R/W) Address Bit Name Function Reset Default 0x200DC 15:13 -- Reserved. -- 12 VT_TX_ERDI_EN[1--28] Transmit Path Enhanced RDI-V Enable. Logic one 0x200F7 enables enhanced RDI-V. 11 VT_ERDI_EN[1--28] 10 0x0 Enhanced RDI-V Source Selection. Logic one activates software overwrite of the ERDI-V bits of the Z7 byte. Otherwise, insertion is based on the LOPOH serial channel or automatic generation. 0x0 VT_RDI_EN[1--28] RDI-V Source Selection. Logic one activates software overwrite of the RDI-V bit of the V5 byte. Otherwise, insertion is based on the LOPOH serial channel or automatic generation. 0x0 9 VT_RFI_EN[1--28] RFI-V Source Selection. Logic one activates software overwrite of the RFI-V bit of the V5 byte. If VT_V5_INS[1--28] = 0 (Table 199) and the mapping is set to byte synchronous DS1, a logic zero enables automatic insertion of RFI-V. If VT_V5_INS[1--28] = 1, a logic zero inserts RFI-V based on the LOPOH serial channel. 0x0 8 VT_REI_EN[1--28] REI-V Enable. Logic one activates automatic generation of REI-V. If VT_V5_INS[1--28] = 0, the generation is based on the received BIP-2 errors. Otherwise, insertion is based on the LOPOH serial channel. 0x0 7 -- 6 VT_AIS_INS[1--28] 5 166 0x0 Reserved. 0 AIS-V Insertion Control. Logic one forces AIS-V to be transmitted in the specified channel. 0x0 VT_TX_CLKEDGE[1--28] Transmit Path DS1/E1 Clock Edge Selection. Logic one forces the DS1/E1 signals to be retimed using the rising edge of the associated clock. Logic zero forces the DS1/E1 signals to be retimed using the falling edge of the associated clock. 0x0 4 VT_LB_SEL[1--28] Tributary Loopback Selection. Logic one activates tributary loopback. 0x0 3:0 VT_TX_MAPTYPE [1--28][3:0] Transmit Mapping Mode Control. See Table 558. 0x6 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 199. VT_TTUOH_CTL[1--28], Transmit TU Overhead Control Per Channel (R/W) Address Bit Name 0x200F8 -- 0x20113 15:11 -- Function Reserved. Reset Default 0x00 10:9 VT_O_INS[1--28][1:0] O-Bit Insertion Control. See Table 566 on page446 . 0x0 8:7 VT_Z7_INS[1--28][1:0] Z7 Byte Insertion Control. See Table 565, Z7/K4 Overhead Byte Insertion Modes Per Channel on page446 . 0x0 6:5 VT_Z6_INS[1--28][1:0] Z6 Byte Insertion Control. See Table 564, Z6/N2 Overhead Byte Insertion Modes Per Channel on page445 . 0x0 4:3 VT_J2_INS[1--28][1:0] J2 Byte Insertion Control. See Table 563, J2 Overhead Byte Insertion Modes Per Channel on page 445. 0x0 2 VT_V5_INS[1--28] 1:0 VT_BIP2ERR_ INS[1--28][1:0] V5 Byte Insertion Control. Logic one forces the V5 byte to be programmed via the LOPOH serial channel. See Table 559 on pag e443. 0x0 BIP-2 Error Insertion Control. See Table 560 on page 443. 0x0 Table 200. VT_TAPSRIVAL[1--28], Transmit APS and Remote Indication Per Channel (R/W) Address Bit Name Function 0x20114 -- 0x2012F 15:12 11:8 -- VT_APS_ INS[1--28][3:0] 7:5 4:2 -- VT_ERDI_ INS[1--28][2:0] 1 VT_RDI_INS[1--28] 0 VT_RFI_INS[1--28] Reserved. APS Software Overwrite Value. This nibble is programmed to utilize APS bits in the Z7/K4 byte. This nibble will be transmitted in bits 1:4 of the Z7/K4 byte. Reserved. Enhanced RDI-V Software Overwrite Values. If VT_ERDI_EN[1--28] (Table 198) is a logic one, these bits are written into the ERDI-V locations of the Z7 byte. RDI-V Software Overwrite Values. If VT_RDI_EN[1--28] (Table 198) is a logic one, this value will be written into the RDI-V location of the V5 byte. RFI-V Software Overwrite Values. If VT_RFI_EN[1--28] (Table 198) is a logic one, this value will be written into the RFI-V location of the V5 byte. Reset Default 0x0 0x0 0x0 0x0 0x0 0x0 Table 201. VT_TSWOW[1--28], Transmit Software Overwrite Per Channel (R/W) Address Bit Name Function 0x20130 -- 0x2014B 15:8 VT_OBIT_ INS[1--28][7:0] 7:0 VT_Z6BYTE_ INS[1--28][7:0] Overhead Values for Software Overwrite in Asynchronous Mappings. This byte is programmed to utilize the overhead bits in asynchronous VT/TU mappings. VT_OBIT_INS[7:4] will be transmitted in the byte following J2 and VT_OBIT_INS[3:0] will be transmitted in the byte following Z6/N2. Z6 Software Overwrite Values. This byte is programmed into the outgoing Z6/N2 location when VT_Z6_INS[1--28][1:0] (Table 199) = 01. Agere Systems Inc. Reset Default 0x00 0x00 167 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 202. VT_TSIG_CTL[1--28], Transmit Signaling Control Per Channel (R/W) Address Bit Name 0x2014C -- 0x20167 15:11 10 -- VT_USE_FBIT[1--28] 9 8 7:5 4:0 Function Reserved. Frame Bit Use Control. Logic one provisions use of the F bit in the outgoing VT/TU. Otherwise, the F bit is forced to the value of bit SMPR_OH_DEFLT (Table 67) in the microprocessor interface on the outgoing VT/TU. VT_USE_PBIT[1--28] Phase Bit Use Control. Logic one provisions use of the P bits in the outgoing VT/TU. Otherwise, the P bits are forced to the value of bit SMPR_OH_DEFLT in the microprocessor interface on the outgoing VT/TU. VT_USE_SBIT[1--28] Signaling Bit Use Control. Logic one provisions use of the S bits in the outgoing VT/TU. Otherwise, the S bits are forced to the value of bit SMPR_OH_DEFLT in the microprocessor interface on the outgoing VT/TU. -- Reserved. VT_TXSIG_CH_SEL[1--28][4:0] Transmit Input Channel Selection. These bits are programmed with the same value as the cross connect for each individual channel. The bits are only used in byte synchronous mode and can be set to 0xXX for all other modes. If an invalid value is programmed, UNEQ-V will be transmitted in the specified channel. Invalid decimal values are 0, 29, 30, and 31. Reset Default 000000 0x1 0x1 0x1 000 0x00 Table 203. VT_J2BYTE_INS_R[1--28][1--16], J2 Insert Values Per Channel (R/W) Address Bit 0x20168 -- 0x20327 15:8 7:0 Name Function -- Reserved. VT_J2BYTE_ J2 Software Overwrite Values. These values are written INS[1--28][1--16][7:0] into the outgoing J2 byte when VT_J2_INS[1--28][1:0] = 01 (Table 199). Reset Default 0x00 0x00 Table 204. VT_RCTL[1--28], Receive Control Per Channel (R/W) Address Bit Name Function 0x20328 -- 0x20343 15 VT_SF_ESF[1--28] 14 VT_WR_FBIT[1--28] 13 VT_SYNC_PBIT[1--28] DS1 Frame Type for Byte Synchronous Mode. Logic one provisions an SF frame format. Otherwise, an ESF frame format is provisioned. F-Bit Provisioning Control. See Table 556, Rx Signaling Behavior per Channel on page 439. P-Bit Provisioning Control. See Table 556, Rx Signaling Behavior per Channel on page 439. 168 Reset Default 0x0 0x0 0x0 Agere Systems Inc. Preliminary Data Sheet June 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 204. VT_RCTL[1--28], Receive Control Per Channel (R/W) (continued) Address Bit 0x20328 -- 0x20343 12:8 7:5 4 3:0 Name Function Reset Default VT_RXSIG_CH_ Receive Output Channel Selection. These bits are pro- 0x00 SEL[1--28][4:0] grammed with the same value as the cross connect for each individual channel. The bits are only used in byte synchronous mode and can be set to 0xXX for all other modes. If an invalid value is programmed, UNEQ-V will be transmitted in the specified channel. Invalid decimal values are 0, 29, 30, and 31. See Rx Signaling Behavior per Channel on page 439. VT_J2MON_ J2 Trace Monitoring Mode Control. See J2 Byte Moni0x00 MODE[1--28][2:0] tor and Termination (J2MON) on page 438. VT_RX_ERDI_EN[1--28] Receive Path Enhanced RDI-V Enable. Logic one 0x0 enables enhanced RDI-V. VT_RX_ Receive Demapping Mode Control. See Table 555, 0x6 MAPTYPE[1--28][3:0] Receive VT/TU Demapping Selection on page 437. Table 205. VT_RTUOH_CTL[1--28], Receive TU Overhead Control Per Channel (RO) Address Bit 0x20344 -- 0x2035F 15:8 7:0 Name Function VT_Z6_BYTE[1--28][7:0] Received Z6/N2 Byte Value. Accepted Z6/N2 value. VT_OBITS[1--28][7:0] Received O Bits Value. Accepted overhead bits in asynchronous and bit synchronous modes. VT_OBITS[7:4] are the O bits received in the byte following J2, and VT_OBITS[3:0] are the O bits received in the byte following Z6/N2. Reset Default 0x00 0x00 Table 206. VT_RBIP2_CNT[1--28], Receive BIP-2 Error Count Per Channel (RO) Address Bit Name 0x20360 -- 0x2037B 15:12 -- 11:0 VT_BIP2ERR_ CNT[1--28][11:0] Function Reserved. Reset Default 0x0 BIP-2 Error Count. BIP-2 error count updated on a 0 to 1 transition of SMPR_PMRESET (Table 65). 0x000 Table 207. VT_RREIV_CNT[1--28], Receive REI-V Error Count Per Channel (RO) Address Bit Name 0x2037C -- 0x20397 15:11 -- 10:0 VT_REI_ CNT[1--28][10:0] Agere Systems Inc. Function Reset Default Reserved. 0x00 REI-V Error Count. REI-V error count updated on a 0 to 1 transition of SMPR_PMRESET. 0x000 169 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 208. VT_RPTR_CNT[1--28], Receive Pointer and Count Per Channel (RO) Address Bit Name Function Reset Default 0x20398 -- 0x203B3 15:8 VT_STORED_ PTR[1--28][7:0] Store VT/TU Pointer Location. This value indicates the stored location of the V5 byte within the VT/TU mapping. 0x00 7:4 VT_PTR_ DEC[1--28][3:0] VT Pointer Decrement Count. VT pointer decrement count updated on a 0 to 1 transition of SMPR_PMRESET. 0x0 3:0 VT_PTR_ INC[1--28][3:0] VT Pointer Increment Count. VT pointer increment count updated on a 0 to 1 transition of SMPR_PMRESET. 0x0 Table 209. VT_J2BYTE_EXP_R[1--28][1--16], J2 Expected Values Per Channel (R/W, RO) Address Bit Name Function Reset Default 0x203B4 -- 0x20573 15:8 VT_J2BYTE_ J2 Expected Values. This value is programmed by the EXP[1--28][1--16][7:0] user as an expected value for the J2 byte. The hardware will compare this value to the incoming J2 sequence when VT_J2MON_MODE[1--28][2:0] = 011 or 100 (Table 204 on pag e168). 0x00 7:0 VT_J2BYTE_ J2 Detected Values. Accepted J2 sequence or value. DET[1--28][1--16][7:0] 0x00 Table 210. VT_THRES_CTL[1--28], Transmit Elastic Store Threshold Control (R/W) Address Bit Name 0x20574 -- 0x2058F 15 -- 14:8 VT_HIGH_ THRES[1--28][6:0] 7 -- 6:0 VT_LOW_ THRES[1--28][6:0] 170 Function Reset Default Reserved. 0x0 Transmit Elastic Store High Threshold. Programmable threshold controlling positive justifications. 0x28 Reserved. 0x0 Transmit Elastic Store Low Threshold. Programmable threshold controlling negative justifications. 0x27 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) 10.2 VT/TU Mapper Register Map Table 211. VT/TU Mapper Register Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 VT_SD_D VT_SF_D VT_H4LOMF_ D VT Mapper ID--RO 0x20000 VT_VERSION_R 0x20001 VT_GDELETA 0x20002 VT_REVENT_DELTA1 VT_RX_VTREI_E1 VT_RX_BIP2ERR_E1 VT_RX_ESOVFL_E1 VT_APS_D1 VT_ERDI_D1 VT_RDI_D1 VT_RFI_D1 VT_LOPS_D1 VT_J2TIM_D1 VT_PLM_D1 VT_UNEQ_D1 VT_SIZERR_D1 VT_AIS_D1 VT_LOP_D1 0x20003 VT_REVENT_DELTA2 VT_RX_VTREI_E2 VT_RX_BIP2ERR_E2 VT_RX_ESOVFL_E2 VT_APS_D2 VT_ERDI_D2 VT_RDI_D2 VT_RFI_D2 VT_LOPS_D2 VT_J2TIM_D2 VT_PLM_D2 VT_UNEQ_D2 VT_SIZERR_D2 VT_AIS_D2 VT_LOP_D2 0x20004 VT_REVENT_DELTA3 VT_RX_VTREI_E3 VT_RX_BIP2ERR_E3 VT_RX_ESOVFL_E3 VT_APS_D3 VT_ERDI_D3 VT_RDI_D3 VT_RFI_D3 VT_LOPS_D3 VT_J2TIM_D3 VT_PLM_D3 VT_UNEQ_D3 VT_SIZERR_D3 VT_AIS_D3 VT_LOP_D3 0x20005 VT_REVENT_DELTA4 VT_RX_VTREI_E4 VT_RX_BIP2ERR_E4 VT_RX_ESOVFL_E4 VT_APS_D4 VT_ERDI_D4 VT_RDI_D4 VT_RFI_D4 VT_LOPS_D4 VT_J2TIM_D4 VT_PLM_D4 VT_UNEQ_D4 VT_SIZERR_D4 VT_AIS_D4 VT_LOP_D4 0x20006 VT_REVENT_DELTA5 VT_RX_VTREI_E5 VT_RX_BIP2ERR_E5 VT_RX_ESOVFL_E5 VT_APS_D5 VT_ERDI_D5 VT_RDI_D5 VT_RFI_D5 VT_LOPS_D5 VT_J2TIM_D5 VT_PLM_D5 VT_UNEQ_D5 VT_SIZERR_D5 VT_AIS_D5 VT_LOP_D5 0x20007 VT_REVENT_DELTA6 VT_RX_VTREI_E6 VT_RX_BIP2ERR_E6 VT_RX_ESOVFL_E6 VT_APS_D6 VT_ERDI_D6 VT_RDI_D6 VT_RFI_D6 VT_LOPS_D6 VT_J2TIM_D6 VT_PLM_D6 VT_UNEQ_D6 VT_SIZERR_D6 VT_AIS_D6 VT_LOP_D6 0x20008 VT_REVENT_DELTA7 VT_RX_VTREI_E7 VT_RX_BIP2ERR_E7 VT_RX_ESOVFL_E7 VT_APS_D7 VT_ERDI_D7 VT_RDI_D7 VT_RFI_D7 VT_LOPS_D7 VT_J2TIM_D7 VT_PLM_D7 VT_UNEQ_D7 VT_SIZERR_D7 VT_AIS_D7 VT_LOP_D7 0x20009 VT_REVENT_DELTA8 VT_RX_VTREI_E8 VT_RX_BIP2ERR_E8 VT_RX_ESOVFL_E8 VT_APS_D8 VT_ERDI_D8 VT_RDI_D8 VT_RFI_D8 VT_LOPS_D8 VT_J2TIM_D8 VT_PLM_D8 VT_UNEQ_D8 VT_SIZERR_D8 VT_AIS_D8 VT_LOP_D8 0x2000A VT_REVENT_DELTA9 VT_RX_VTREI_E9 VT_RX_BIP2ERR_E9 VT_RX_ESOVFL_E9 VT_APS_D9 VT_ERDI_D9 VT_RDI_D9 VT_RFI_D9 VT_LOPS_D9 VT_J2TIM_D9 VT_PLM_D9 VT_UNEQ_D9 VT_SIZERR_D9 VT_AIS_D9 VT_LOP_D9 0x2000B VT_REVENT_DELTA10 VT_RX_VTREI_E10 VT_RX_BIP2ERR_E10 VT_RX_ESOVFL_E10 VT_APS_D10 VT_ERDI_D10 VT_RDI_D10 VT_RFI_D10 VT_LOPS_D10 VT_J2TIM_D10 VT_PLM_D10 VT_UNEQ_D10 VT_SIZERR_D10 VT_AIS_D10 VT_LOP_D10 0x2000C VT_REVENT_DELTA11 VT_RX_VTREI_E11 VT_RX_BIP2ERR_E11 VT_RX_ESOVFL_E11 VT_APS_D11 VT_ERDI_D11 VT_RDI_D11 VT_RFI_D11 VT_LOPS_D11 VT_J2TIM_D11 VT_PLM_D11 VT_UNEQ_D11 VT_SIZERR_D11 VT_AIS_D11 VT_LOP_D11 0x2000D VT_REVENT_DELTA12 VT_RX_VTREI_E12 VT_RX_BIP2ERR_E12 VT_RX_ESOVFL_E12 VT_APS_D12 VT_ERDI_D12 VT_RDI_D12 VT_RFI_D12 VT_LOPS_D12 VT_J2TIM_D12 VT_PLM_D12 VT_UNEQ_D12 VT_SIZERR_D12 VT_AIS_D12 VT_LOP_D12 0x2000E VT_REVENT_DELTA13 VT_RX_VTREI_E13 VT_RX_BIP2ERR_E13 VT_RX_ESOVFL_E13 VT_APS_D13 VT_ERDI_D13 VT_RDI_D13 VT_RFI_D13 VT_LOPS_D13 VT_J2TIM_D13 VT_PLM_D13 VT_UNEQ_D13 VT_SIZERR_D13 VT_AIS_D13 VT_LOP_D13 0x2000F VT_REVENT_DELTA14 VT_RX_VTREI_E14 VT_RX_BIP2ERR_E14 VT_RX_ESOVFL_E14 VT_APS_D14 VT_ERDI_D14 VT_RDI_D14 VT_RFI_D14 VT_LOPS_D14 VT_J2TIM_D14 VT_PLM_D14 VT_UNEQ_D14 VT_SIZERR_D14 VT_AIS_D14 VT_LOP_D14 0x20010 VT_REVENT_DELTA15 VT_RX_VTREI_E15 VT_RX_BIP2ERR_E15 VT_RX_ESOVFL_E15 VT_APS_D15 VT_ERDI_D15 VT_RDI_D15 VT_RFI_D15 VT_LOPS_D15 VT_J2TIM_D15 VT_PLM_D15 VT_UNEQ_D15 VT_SIZERR_D15 VT_AIS_D15 VT_LOP_D15 0x20011 VT_REVENT_DELTA16 VT_RX_VTREI_E16 VT_RX_BIP2ERR_E16 VT_RX_ESOVFL_E16 VT_APS_D16 VT_ERDI_D16 VT_RDI_D16 VT_RFI_D16 VT_LOPS_D16 VT_J2TIM_D16 VT_PLM_D16 VT_UNEQ_D16 VT_SIZERR_D16 VT_AIS_D16 VT_LOP_D16 0x20012 VT_REVENT_DELTA17 VT_RX_VTREI_E17 VT_RX_BIP2ERR_E17 VT_RX_ESOVFL_E17 VT_APS_D17 VT_ERDI_D17 VT_RDI_D17 VT_RFI_D17 VT_LOPS_D17 VT_J2TIM_D17 VT_PLM_D17 VT_UNEQ_D17 VT_SIZERR_D17 VT_AIS_D17 VT_LOP_D17 0x20013 VT_REVENT_DELTA18 VT_RX_VTREI_E18 VT_RX_BIP2ERR_E18 VT_RX_ESOVFL_E18 VT_APS_D18 VT_ERDI_D18 VT_RDI_D18 VT_RFI_D18 VT_LOPS_D18 VT_J2TIM_D18 VT_PLM_D18 VT_UNEQ_D18 VT_SIZERR_D18 VT_AIS_D18 VT_LOP_D18 0x20014 VT_REVENT_DELTA19 VT_RX_VTREI_E19 VT_RX_BIP2ERR_E19 VT_RX_ESOVFL_E19 VT_APS_D19 VT_ERDI_D19 VT_RDI_D19 VT_RFI_D19 VT_LOPS_D19 VT_J2TIM_D19 VT_PLM_D19 VT_UNEQ_D19 VT_SIZERR_D19 VT_AIS_D19 VT_LOP_D19 0x20015 VT_REVENT_DELTA20 VT_RX_VTREI_E20 VT_RX_BIP2ERR_E20 VT_RX_ESOVFL_E20 VT_APS_D20 VT_ERDI_D20 VT_RDI_D20 VT_RFI_D20 VT_LOPS_D20 VT_J2TIM_D20 VT_PLM_D20 VT_UNEQ_D20 VT_SIZERR_D20 VT_AIS_D20 VT_LOP_D20 0x20016 VT_REVENT_DELTA21 VT_RX_VTREI_E21 VT_RX_BIP2ERR_E21 VT_RX_ESOVFL_E21 VT_APS_D21 VT_ERDI_D21 VT_RDI_D21 VT_RFI_D21 VT_LOPS_D21 VT_J2TIM_D21 VT_PLM_D21 VT_UNEQ_D21 VT_SIZERR_D21 VT_AIS_D21 VT_LOP_D21 0x20017 VT_REVENT_DELTA22 VT_RX_VTREI_E22 VT_RX_BIP2ERR_E22 VT_RX_ESOVFL_E22 VT_APS_D22 VT_ERDI_D22 VT_RDI_D22 VT_RFI_D22 VT_LOPS_D22 VT_J2TIM_D22 VT_PLM_D22 VT_UNEQ_D22 VT_SIZERR_D22 VT_AIS_D22 VT_LOP_D22 0x20018 VT_REVENT_DELTA23 VT_RX_VTREI_E23 VT_RX_BIP2ERR_E23 VT_RX_ESOVFL_E23 VT_APS_D23 VT_ERDI_D23 VT_RDI_D23 VT_RFI_D23 VT_LOPS_D23 VT_J2TIM_D23 VT_PLM_D23 VT_UNEQ_D23 VT_SIZERR_D23 VT_AIS_D23 VT_LOP_D23 0x20019 VT_REVENT_DELTA24 VT_RX_VTREI_E24 VT_RX_BIP2ERR_E24 VT_RX_ESOVFL_E24 VT_APS_D24 VT_ERDI_D24 VT_RDI_D24 VT_RFI_D24 VT_LOPS_D24 VT_J2TIM_D24 VT_PLM_D24 VT_UNEQ_D24 VT_SIZERR_D24 VT_AIS_D24 VT_LOP_D24 0x2001A VT_REVENT_DELTA25 VT_RX_VTREI_E25 VT_RX_BIP2ERR_E25 VT_RX_ESOVFL_E25 VT_APS_D25 VT_ERDI_D25 VT_RDI_D25 VT_RFI_D25 VT_LOPS_D25 VT_J2TIM_D25 VT_PLM_D25 VT_UNEQ_D25 VT_SIZERR_D25 VT_AIS_D25 VT_LOP_D25 0x2001B VT_REVENT_DELTA26 VT_RX_VTREI_E26 VT_RX_BIP2ERR_E26 VT_RX_ESOVFL_E26 VT_APS_D26 VT_ERDI_D26 VT_RDI_D26 VT_RFI_D26 VT_LOPS_D26 VT_J2TIM_D26 VT_PLM_D26 VT_UNEQ_D26 VT_SIZERR_D26 VT_AIS_D26 VT_LOP_D26 0x2001C VT_REVENT_DELTA27 VT_RX_VTREI_E27 VT_RX_BIP2ERR_E27 VT_RX_ESOVFL_E27 VT_APS_D27 VT_ERDI_D27 VT_RDI_D27 VT_RFI_D27 VT_LOPS_D27 VT_J2TIM_D27 VT_PLM_D27 VT_UNEQ_D27 VT_SIZERR_D27 VT_AIS_D27 VT_LOP_D27 0x2001D VT_REVENT_DELTA28 VT_RX_VTREI_E28 VT_RX_BIP2ERR_E28 VT_RX_ESOVFL_E28 VT_APS_D28 VT_ERDI_D28 VT_RDI_D28 VT_RFI_D28 VT_LOPS_D28 VT_J2TIM_D28 VT_PLM_D28 VT_UNEQ_D28 VT_SIZERR_D28 VT_AIS_D28 VT_LOP_D28 VT_ RDY VT_VERSION[2:0] VT_ID[7:0] VT Global Events--COR/COW Receive Delta and Event Parameters--COR/COW Agere Systems Inc. 171 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Delta and Event Parameters--COR/COW 0x2001E VT_LOPOHFAIL_EVENT 0x2001F VT_TEVENT_DELTA1 VT_TX_ESOVFL_E1 VT_LOFS_D1 VT_TX_AIS_D1 VT_TX_LOC_D1 0x20020 VT_TEVENT_DELTA2 VT_TX_ESOVFL_E2 VT_LOFS_D2 VT_TX_AIS_D2 VT_TX_LOC_D2 0x20021 VT_TEVENT_DELTA3 VT_TX_ESOVFL_E3 VT_LOFS_D3 VT_TX_AIS_D3 VT_TX_LOC_D3 0x20022 VT_TEVENT_DELTA4 VT_TX_ESOVFL_E4 VT_LOFS_D4 VT_TX_AIS_D4 VT_TX_LOC_D4 0x20023 VT_TEVENT_DELTA5 VT_TX_ESOVFL_E5 VT_LOFS_D5 VT_TX_AIS_D5 VT_TX_LOC_D5 0x20024 VT_TEVENT_DELTA6 VT_TX_ESOVFL_E6 VT_LOFS_D6 VT_TX_AIS_D6 VT_TX_LOC_D6 0x20025 VT_TEVENT_DELTA7 VT_TX_ESOVFL_E7 VT_LOFS_D7 VT_TX_AIS_D7 VT_TX_LOC_D7 0x20026 VT_TEVENT_DELTA8 VT_TX_ESOVFL_E8 VT_LOFS_D8 VT_TX_AIS_D8 VT_TX_LOC_D8 0x20027 VT_TEVENT_DELTA9 VT_TX_ESOVFL_E9 VT_LOFS_D9 VT_TX_AIS_D9 VT_TX_LOC_D9 0x20028 VT_TEVENT_DELTA10 VT_TX_ESOVFL_E10 VT_LOFS_D10 VT_TX_AIS_D10 VT_TX_LOC_D10 VT_LOPOH_FAIL_ E 0x20029 VT_TEVENT_DELTA11 VT_TX_ESOVFL_E11 VT_LOFS_D11 VT_TX_AIS_D11 VT_TX_LOC_D11 0x2002A VT_TEVENT_DELTA12 VT_TX_ESOVFL_E12 VT_LOFS_D12 VT_TX_AIS_D12 VT_TX_LOC_D12 0x2002B VT_TEVENT_DELTA13 VT_TX_ESOVFL_E13 VT_LOFS_D13 VT_TX_AIS_D13 VT_TX_LOC_D13 0x2002C VT_TEVENT_DELTA14 VT_TX_ESOVFL_E14 VT_LOFS_D14 VT_TX_AIS_D14 VT_TX_LOC_D14 0x2002D VT_TEVENT_DELTA15 VT_TX_ESOVFL_E15 VT_LOFS_D15 VT_TX_AIS_D15 VT_TX_LOC_D15 0x2002E VT_TEVENT_DELTA16 VT_TX_ESOVFL_E16 VT_LOFS_D16 VT_TX_AIS_D16 VT_TX_LOC_D16 0x2002F VT_TEVENT_DELTA17 VT_TX_ESOVFL_E17 VT_LOFS_D17 VT_TX_AIS_D17 VT_TX_LOC_D17 0x20030 VT_TEVENT_DELTA18 VT_TX_ESOVFL_E18 VT_LOFS_D18 VT_TX_AIS_D18 VT_TX_LOC_D18 0x20031 VT_TEVENT_DELTA19 VT_TX_ESOVFL_E19 VT_LOFS_D19 VT_TX_AIS_D19 VT_TX_LOC_D19 0x20032 VT_TEVENT_DELTA20 VT_TX_ESOVFL_E20 VT_LOFS_D20 VT_TX_AIS_D20 VT_TX_LOC_D20 0x20033 VT_TEVENT_DELTA21 VT_TX_ESOVFL_E21 VT_LOFS_D21 VT_TX_AIS_D21 VT_TX_LOC_D21 0x20034 VT_TEVENT_DELTA22 VT_TX_ESOVFL_E22 VT_LOFS_D22 VT_TX_AIS_D22 VT_TX_LOC_D22 0x20035 VT_TEVENT_DELTA23 VT_TX_ESOVFL_E23 VT_LOFS_D23 VT_TX_AIS_D23 VT_TX_LOC_D23 0x20036 VT_TEVENT_DELTA24 VT_TX_ESOVFL_E24 VT_LOFS_D24 VT_TX_AIS_D24 VT_TX_LOC_D24 0x20037 VT_TEVENT_DELTA25 VT_TX_ESOVFL_E25 VT_LOFS_D25 VT_TX_AIS_D25 VT_TX_LOC_D25 0x20038 VT_TEVENT_DELTA26 VT_TX_ESOVFL_E26 VT_LOFS_D26 VT_TX_AIS_D26 VT_TX_LOC_D26 0x20039 VT_TEVENT_DELTA27 VT_TX_ESOVFL_E27 VT_LOFS_D27 VT_TX_AIS_D27 VT_TX_LOC_D27 0x2003A VT_TEVENT_DELTA28 VT_TX_ESOVFL_E28 VT_LOFS_D28 VT_TX_AIS_D28 VT_TX_LOC_D28 172 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 VT_SD_M VT_SF_M VT_H4LOMF_ M VT Global Interrupt Masks--R/W 0x2003B VT_GMASK Receive Interrupt Masks--R/W 0x2003C VT_RMASK1 VT_RX_VTREI_M1 VT_RX_BIP2ERR_M1 VT_RX_ESOVFL_M1 VT_APS_M1 VT_ERDI_M1 VT_RDI_M1 VT_RFI_M1 VT_LOPS_M1 VT_J2TIM_M1 VT_PLM_M1 VT_UNEQ_M1 VT_SIZERR_M1 VT_AIS_M1 VT_LOP_M1 0x2003D VT_RMASK2 VT_RX_VTREI_M2 VT_RX_BIP2ERR_M2 VT_RX_ESOVFL_M2 VT_APS_M2 VT_ERDI_M2 VT_RDI_M2 VT_RFI_M2 VT_LOPS_M2 VT_J2TIM_M2 VT_PLM_M2 VT_UNEQ_M2 VT_SIZERR_M2 VT_AIS_M2 VT_LOP_M2 0x2003E VT_RMASK3 VT_RX_VTREI_M3 VT_RX_BIP2ERR_M3 VT_RX_ESOVFL_M3 VT_APS_M3 VT_ERDI_M3 VT_RDI_M3 VT_RFI_M3 VT_LOPS_M3 VT_J2TIM_M3 VT_PLM_M3 VT_UNEQ_M3 VT_SIZERR_M3 VT_AIS_M3 VT_LOP_M3 0x2003F VT_RMASK4 VT_RX_VTREI_M4 VT_RX_BIP2ERR_M4 VT_RX_ESOVFL_M4 VT_APS_M4 VT_ERDI_M4 VT_RDI_M4 VT_RFI_M4 VT_LOPS_M4 VT_J2TIM_M4 VT_PLM_M4 VT_UNEQ_M4 VT_SIZERR_M4 VT_AIS_M4 VT_LOP_M4 0x20040 VT_RMASK5 VT_RX_VTREI_M5 VT_RX_BIP2ERR_M5 VT_RX_ESOVFL_M5 VT_APS_M5 VT_ERDI_M5 VT_RDI_M5 VT_RFI_M5 VT_LOPS_M5 VT_J2TIM_M5 VT_PLM_M5 VT_UNEQ_M5 VT_SIZERR_M5 VT_AIS_M5 VT_LOP_M5 0x20041 VT_RMASK6 VT_RX_VTREI_M6 VT_RX_BIP2ERR_M6 VT_RX_ESOVFL_M6 VT_APS_M6 VT_ERDI_M6 VT_RDI_M6 VT_RFI_M6 VT_LOPS_M6 VT_J2TIM_M6 VT_PLM_M6 VT_UNEQ_M6 VT_SIZERR_M6 VT_AIS_M6 VT_LOP_M6 0x20042 VT_RMASK7 VT_RX_VTREI_M7 VT_RX_BIP2ERR_M7 VT_RX_ESOVFL_M7 VT_APS_M7 VT_ERDI_M7 VT_RDI_M7 VT_RFI_M7 VT_LOPS_M7 VT_J2TIM_M7 VT_PLM_M7 VT_UNEQ_M7 VT_SIZERR_M7 VT_AIS_M7 VT_LOP_M7 0x20043 VT_RMASK8 VT_RX_VTREI_M8 VT_RX_BIP2ERR_M8 VT_RX_ESOVFL_M8 VT_APS_M8 VT_ERDI_M8 VT_RDI_M8 VT_RFI_M8 VT_LOPS_M8 VT_J2TIM_M8 VT_PLM_M8 VT_UNEQ_M8 VT_SIZERR_M8 VT_AIS_M8 VT_LOP_M8 0x20044 VT_RMASK9 VT_RX_VTREI_M9 VT_RX_BIP2ERR_M9 VT_RX_ESOVFL_M9 VT_APS_M9 VT_ERDI_M9 VT_RDI_M9 VT_RFI_M9 VT_LOPS_M9 VT_J2TIM_M9 VT_PLM_M9 VT_UNEQ_M9 VT_SIZERR_M9 VT_AIS_M9 VT_LOP_M9 0x20045 VT_RMASK10 VT_RX_VTREI_M10 VT_RX_BIP2ERR_M10 VT_RX_ESOVFL_M10 VT_APS_M10 VT_ERDI_M10 VT_RDI_M10 VT_RFI_M10 VT_LOPS_M10 VT_J2TIM_M10 VT_PLM_M10 VT_UNEQ_M10 VT_SIZERR_M10 VT_AIS_M10 VT_LOP_M10 0x20046 VT_RMASK11 VT_RX_VTREI_M11 VT_RX_BIP2ERR_M11 VT_RX_ESOVFL_M11 VT_APS_M11 VT_ERDI_M11 VT_RDI_M11 VT_RFI_M11 VT_LOPS_M11 VT_J2TIM_M11 VT_PLM_M11 VT_UNEQ_M11 VT_SIZERR_M11 VT_AIS_M11 VT_LOP_M11 0x20047 VT_RMASK12 VT_RX_VTREI_M12 VT_RX_BIP2ERR_M12 VT_RX_ESOVFL_M12 VT_APS_M12 VT_ERDI_M12 VT_RDI_M12 VT_RFI_M12 VT_LOPS_M12 VT_J2TIM_M12 VT_PLM_M12 VT_UNEQ_M12 VT_SIZERR_M12 VT_AIS_M12 VT_LOP_M12 0x20048 VT_RMASK13 VT_RX_VTREI_M13 VT_RX_BIP2ERR_M13 VT_RX_ESOVFL_M13 VT_APS_M13 VT_ERDI_M13 VT_RDI_M13 VT_RFI_M13 VT_LOPS_M13 VT_J2TIM_M13 VT_PLM_M13 VT_UNEQ_M13 VT_SIZERR_M13 VT_AIS_M13 VT_LOP_M13 0x20049 VT_RMASK14 VT_RX_VTREI_M14 VT_RX_BIP2ERR_M14 VT_RX_ESOVFL_M14 VT_APS_M14 VT_ERDI_M14 VT_RDI_M14 VT_RFI_M14 VT_LOPS_M14 VT_J2TIM_M14 VT_PLM_M14 VT_UNEQ_M14 VT_SIZERR_M14 VT_AIS_M14 VT_LOP_M14 0x2004A VT_RMASK15 VT_RX_VTREI_M15 VT_RX_BIP2ERR_M15 VT_RX_ESOVFL_M15 VT_APS_M15 VT_ERDI_M15 VT_RDI_M15 VT_RFI_M15 VT_LOPS_M15 VT_J2TIM_M15 VT_PLM_M15 VT_UNEQ_M15 VT_SIZERR_M15 VT_AIS_M15 VT_LOP_M15 0x2004B VT_RMASK16 VT_RX_VTREI_M16 VT_RX_BIP2ERR_M16 VT_RX_ESOVFL_M16 VT_APS_M16 VT_ERDI_M16 VT_RDI_M16 VT_RFI_M16 VT_LOPS_M16 VT_J2TIM_M16 VT_PLM_M16 VT_UNEQ_M16 VT_SIZERR_M16 VT_AIS_M16 VT_LOP_M16 0x2004C VT_RMASK17 VT_RX_VTREI_M17 VT_RX_BIP2ERR_M17 VT_RX_ESOVFL_M17 VT_APS_M17 VT_ERDI_M17 VT_RDI_M17 VT_RFI_M17 VT_LOPS_M17 VT_J2TIM_M17 VT_PLM_M17 VT_UNEQ_M17 VT_SIZERR_M17 VT_AIS_M17 VT_LOP_M17 0x2004D VT_RMASK18 VT_RX_VTREI_M18 VT_RX_BIP2ERR_M18 VT_RX_ESOVFL_M18 VT_APS_M18 VT_ERDI_M18 VT_RDI_M18 VT_RFI_M18 VT_LOPS_M18 VT_J2TIM_M18 VT_PLM_M18 VT_UNEQ_M18 VT_SIZERR_M18 VT_AIS_M18 VT_LOP_M18 0x2004E VT_RMASK19 VT_RX_VTREI_M19 VT_RX_BIP2ERR_M19 VT_RX_ESOVFL_M19 VT_APS_M19 VT_ERDI_M19 VT_RDI_M19 VT_RFI_M19 VT_LOPS_M19 VT_J2TIM_M19 VT_PLM_M19 VT_UNEQ_M19 VT_SIZERR_M19 VT_AIS_M19 VT_LOP_M19 0x2004F VT_RMASK20 VT_RX_VTREI_M20 VT_RX_BIP2ERR_M20 VT_RX_ESOVFL_M20 VT_APS_M20 VT_ERDI_M20 VT_RDI_M20 VT_RFI_M20 VT_LOPS_M20 VT_J2TIM_M20 VT_PLM_M20 VT_UNEQ_M20 VT_SIZERR_M20 VT_AIS_M20 VT_LOP_M20 0x20050 VT_RMASK21 VT_RX_VTREI_M21 VT_RX_BIP2ERR_M21 VT_RX_ESOVFL_M21 VT_APS_M21 VT_ERDI_M21 VT_RDI_M21 VT_RFI_M21 VT_LOPS_M21 VT_J2TIM_M21 VT_PLM_M21 VT_UNEQ_M21 VT_SIZERR_M21 VT_AIS_M21 VT_LOP_M21 0x20051 VT_RMASK22 VT_RX_VTREI_M22 VT_RX_BIP2ERR_M22 VT_RX_ESOVFL_M22 VT_APS_M22 VT_ERDI_M22 VT_RDI_M22 VT_RFI_M22 VT_LOPS_M22 VT_J2TIM_M22 VT_PLM_M22 VT_UNEQ_M22 VT_SIZERR_M22 VT_AIS_M22 VT_LOP_M22 0x20052 VT_RMASK23 VT_RX_VTREI_M23 VT_RX_BIP2ERR_M23 VT_RX_ESOVFL_M23 VT_APS_M23 VT_ERDI_M23 VT_RDI_M23 VT_RFI_M23 VT_LOPS_M23 VT_J2TIM_M23 VT_PLM_M23 VT_UNEQ_M23 VT_SIZERR_M23 VT_AIS_M23 VT_LOP_M23 0x20053 VT_RMASK24 VT_RX_VTREI_M24 VT_RX_BIP2ERR_M24 VT_RX_ESOVFL_M24 VT_APS_M24 VT_ERDI_M24 VT_RDI_M24 VT_RFI_M24 VT_LOPS_M24 VT_J2TIM_M24 VT_PLM_M24 VT_UNEQ_M24 VT_SIZERR_M24 VT_AIS_M24 VT_LOP_M24 0x20054 VT_RMASK25 VT_RX_VTREI_M25 VT_RX_BIP2ERR_M25 VT_RX_ESOVFL_M25 VT_APS_M25 VT_ERDI_M25 VT_RDI_M25 VT_RFI_M25 VT_LOPS_M25 VT_J2TIM_M25 VT_PLM_M25 VT_UNEQ_M25 VT_SIZERR_M25 VT_AIS_M25 VT_LOP_M25 0x20055 VT_RMASK26 VT_RX_VTREI_M26 VT_RX_BIP2ERR_M26 VT_RX_ESOVFL_M26 VT_APS_M26 VT_ERDI_M26 VT_RDI_M26 VT_RFI_M26 VT_LOPS_M26 VT_J2TIM_M26 VT_PLM_M26 VT_UNEQ_M26 VT_SIZERR_M26 VT_AIS_M26 VT_LOP_M26 0x20056 VT_RMASK27 VT_RX_VTREI_M27 VT_RX_BIP2ERR_M27 VT_RX_ESOVFL_M27 VT_APS_M27 VT_ERDI_M27 VT_RDI_M27 VT_RFI_M27 VT_LOPS_M27 VT_J2TIM_M27 VT_PLM_M27 VT_UNEQ_M27 VT_SIZERR_M27 VT_AIS_M27 VT_LOP_M27 0x20057 VT_RMASK28 VT_RX_VTREI_M28 VT_RX_BIP2ERR_M28 VT_RX_ESOVFL_M28 VT_APS_M28 VT_ERDI_M28 VT_RDI_M28 VT_RFI_M28 VT_LOPS_M28 VT_J2TIM_M28 VT_PLM_M28 VT_UNEQ_M28 VT_SIZERR_M28 VT_AIS_M28 VT_LOP_M28 Agere Systems Inc. 173 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Interrupt Masks--R/W 0x20058 VT_LOPOHFAIL_MASK VT_LOPOH_FAIL_ M 0x20059 VT_TMASK1 VT_TX_ESOVFL_M1 VT_LOFS_M1 VT_TX_AIS_M1 VT_TX_LOC_M1 0x2005A VT_TMASK2 VT_TX_ESOVFL_M2 VT_LOFS_M2 VT_TX_AIS_M2 VT_TX_LOC_M2 0x2005B VT_TMASK3 VT_TX_ESOVFL_M3 VT_LOFS_M3 VT_TX_AIS_M3 VT_TX_LOC_M3 0x2005C VT_TMASK4 VT_TX_ESOVFL_M4 VT_LOFS_M4 VT_TX_AIS_M4 VT_TX_LOC_M4 0x2005D VT_TMASK5 VT_TX_ESOVFL_M5 VT_LOFS_M5 VT_TX_AIS_M5 VT_TX_LOC_M5 0x2005E VT_TMASK6 VT_TX_ESOVFL_M6 VT_LOFS_M6 VT_TX_AIS_M6 VT_TX_LOC_M6 0x2005F VT_TMASK7 VT_TX_ESOVFL_M7 VT_LOFS_M7 VT_TX_AIS_M7 VT_TX_LOC_M7 0x20060 VT_TMASK8 VT_TX_ESOVFL_M8 VT_LOFS_M8 VT_TX_AIS_M8 VT_TX_LOC_M8 0x20061 VT_TMASK9 VT_TX_ESOVFL_M9 VT_LOFS_M9 VT_TX_AIS_M9 VT_TX_LOC_M9 0x20062 VT_TMASK10 VT_TX_ESOVFL_M10 VT_LOFS_M10 VT_TX_AIS_M10 VT_TX_LOC_M10 0x20063 VT_TMASK11 VT_TX_ESOVFL_M11 VT_LOFS_M11 VT_TX_AIS_M11 VT_TX_LOC_M11 0x20064 VT_TMASK12 VT_TX_ESOVFL_M12 VT_LOFS_M12 VT_TX_AIS_M12 VT_TX_LOC_M12 0x20065 VT_TMASK13 VT_TX_ESOVFL_M13 VT_LOFS_M13 VT_TX_AIS_M13 VT_TX_LOC_M13 0x20066 VT_TMASK14 VT_TX_ESOVFL_M14 VT_LOFS_M14 VT_TX_AIS_M14 VT_TX_LOC_M14 0x20067 VT_TMASK15 VT_TX_ESOVFL_M15 VT_LOFS_M15 VT_TX_AIS_M15 VT_TX_LOC_M15 0x20068 VT_TMASK16 VT_TX_ESOVFL_M16 VT_LOFS_M16 VT_TX_AIS_M16 VT_TX_LOC_M16 0x20069 VT_TMASK17 VT_TX_ESOVFL_M17 VT_LOFS_M17 VT_TX_AIS_M17 VT_TX_LOC_M17 0x2006A VT_TMASK18 VT_TX_ESOVFL_M18 VT_LOFS_M18 VT_TX_AIS_M18 VT_TX_LOC_M18 0x2006B VT_TMASK19 VT_TX_ESOVFL_M19 VT_LOFS_M19 VT_TX_AIS_M19 VT_TX_LOC_M19 0x2006C VT_TMASK20 VT_TX_ESOVFL_M20 VT_LOFS_M20 VT_TX_AIS_M20 VT_TX_LOC_M20 0x2006D VT_TMASK21 VT_TX_ESOVFL_M21 VT_LOFS_M21 VT_TX_AIS_M21 VT_TX_LOC_M21 0x2006E VT_TMASK22 VT_TX_ESOVFL_M22 VT_LOFS_M22 VT_TX_AIS_M22 VT_TX_LOC_M22 0x2006F VT_TMASK23 VT_TX_ESOVFL_M23 VT_LOFS_M23 VT_TX_AIS_M23 VT_TX_LOC_M23 0x20070 VT_TMASK24 VT_TX_ESOVFL_M24 VT_LOFS_M24 VT_TX_AIS_M24 VT_TX_LOC_M24 0x20071 VT_TMASK25 VT_TX_ESOVFL_M25 VT_LOFS_M25 VT_TX_AIS_M25 VT_TX_LOC_M25 0x20072 VT_TMASK26 VT_TX_ESOVFL_M26 VT_LOFS_M26 VT_TX_AIS_M26 VT_TX_LOC_M26 0x20073 VT_TMASK27 VT_TX_ESOVFL_M27 VT_LOFS_M27 VT_TX_AIS_M27 VT_TX_LOC_M27 0x20074 VT_TMASK28 VT_TX_ESOVFL_M28 VT_LOFS_M28 VT_TX_AIS_M28 VT_TX_LOC_M28 174 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive State Parameters--RO 0x20075 VT_GSTATE VT_SD VT_SF VT_H4LOMF 0x20076 VT_RSTATE1 VT_ERDI(1)[2:0] VT_LAB(1)[2:0] VT_RDI(1) VT_RFI1 VT_LOPS1 VT_J2TIM1 VT_PLM1 VT_UNEQ1 VT_SIZERR1 VT_AIS1 VT_LOP1 0x20077 VT_RSTATE2 VT_ERDI(2)[2:0] VT_LAB(2)[2:0] VT_RDI(2) VT_RFI2 VT_LOPS2 VT_J2TIM2 VT_PLM2 VT_UNEQ2 VT_SIZERR2 VT_AIS2 VT_LOP2 0x20078 VT_RSTATE3 VT_ERDI(3)[2:0] VT_LAB(3)[2:0] VT_RDI(3) VT_RFI3 VT_LOPS3 VT_J2TIM3 VT_PLM3 VT_UNEQ3 VT_SIZERR3 VT_AIS3 VT_LOP3 0x20079 VT_RSTATE4 VT_ERDI(4)[2:0] VT_LAB(4)[2:0] VT_RDI(4) VT_RFI4 VT_LOPS4 VT_J2TIM4 VT_PLM4 VT_UNEQ4 VT_SIZERR4 VT_AIS4 VT_LOP4 0x2007A VT_RSTATE5 VT_ERDI(5)[2:0] VT_LAB(5)[2:0] VT_RDI(5) VT_RFI5 VT_LOPS5 VT_J2TIM5 VT_PLM5 VT_UNEQ5 VT_SIZERR5 VT_AIS5 VT_LOP5 0x2007B VT_RSTATE6 VT_ERDI(6)[2:0] VT_LAB(6)[2:0] VT_RDI(6) VT_RFI6 VT_LOPS6 VT_J2TIM6 VT_PLM6 VT_UNEQ6 VT_SIZERR6 VT_AIS6 VT_LOP6 0x2007C VT_RSTATE7 VT_ERDI(7)[2:0] VT_LAB(7)[2:0] VT_RDI(7) VT_RFI7 VT_LOPS7 VT_J2TIM7 VT_PLM7 VT_UNEQ7 VT_SIZERR7 VT_AIS7 VT_LOP7 0x2007D VT_RSTATE8 VT_ERDI(8)[2:0] VT_LAB(8)[2:0] VT_RDI(8) VT_RFI8 VT_LOPS8 VT_J2TIM8 VT_PLM8 VT_UNEQ8 VT_SIZERR8 VT_AIS8 VT_LOP8 0x2007E VT_RSTATE9 VT_ERDI(9)[2:0] VT_LAB(9)[2:0] VT_RDI(9) VT_RFI9 VT_LOPS9 VT_J2TIM9 VT_PLM9 VT_UNEQ9 VT_SIZERR9 VT_AIS9 VT_LOP9 0x2007F VT_RSTATE10 VT_ERDI(10)[2:0] VT_LAB(10)[2:0] VT_RDI(10) VT_RFI10 VT_LOPS10 VT_J2TIM10 VT_PLM10 VT_UNEQ10 VT_SIZERR10 VT_AIS10 VT_LOP10 0x20080 VT_RSTATE11 VT_ERDI(11)[2:0] VT_LAB(11)[2:0] VT_RDI(11) VT_RFI11 VT_LOPS11 VT_J2TIM11 VT_PLM11 VT_UNEQ11 VT_SIZERR11 VT_AIS11 VT_LOP11 0x20081 VT_RSTATE12 VT_ERDI(12)[2:0] VT_LAB(12)[2:0] VT_RDI(12) VT_RFI12 VT_LOPS12 VT_J2TIM12 VT_PLM12 VT_UNEQ12 VT_SIZERR12 VT_AIS12 VT_LOP12 0x20082 VT_RSTATE13 VT_ERDI(13)[2:0] VT_LAB(13)[2:0] VT_RDI(13) VT_RFI13 VT_LOPS13 VT_J2TIM13 VT_PLM13 VT_UNEQ13 VT_SIZERR13 VT_AIS13 VT_LOP13 0x20083 VT_RSTATE14 VT_ERDI(14)[2:0] VT_LAB(14)[2:0] VT_RDI(14) VT_RFI14 VT_LOPS14 VT_J2TIM14 VT_PLM14 VT_UNEQ14 VT_SIZERR14 VT_AIS14 VT_LOP14 0x20084 VT_RSTATE15 VT_ERDI(15)[2:0] VT_LAB(15)[2:0] VT_RDI(15) VT_RFI15 VT_LOPS15 VT_J2TIM15 VT_PLM15 VT_UNEQ15 VT_SIZERR15 VT_AIS15 VT_LOP15 0x20085 VT_RSTATE16 VT_ERDI(16)[2:0] VT_LAB(16)[2:0] VT_RDI(16) VT_RFI16 VT_LOPS16 VT_J2TIM16 VT_PLM16 VT_UNEQ16 VT_SIZERR16 VT_AIS16 VT_LOP16 0x20086 VT_RSTATE17 VT_ERDI(17)[2:0] VT_LAB(17)[2:0] VT_RDI(17) VT_RFI17 VT_LOPS17 VT_J2TIM17 VT_PLM17 VT_UNEQ17 VT_SIZERR17 VT_AIS17 VT_LOP17 0x20087 VT_RSTATE18 VT_ERDI(18)[2:0] VT_LAB(18)[2:0] VT_RDI(18) VT_RFI18 VT_LOPS18 VT_J2TIM18 VT_PLM18 VT_UNEQ18 VT_SIZERR18 VT_AIS18 VT_LOP18 0x20088 VT_RSTATE19 VT_ERDI(19)[2:0] VT_LAB(19)[2:0] VT_RDI(19) VT_RFI19 VT_LOPS19 VT_J2TIM19 VT_PLM19 VT_UNEQ19 VT_SIZERR19 VT_AIS19 VT_LOP19 0x20089 VT_RSTATE20 VT_ERDI(20)[2:0] VT_LAB(20)[2:0] VT_RDI(20) VT_RFI20 VT_LOPS20 VT_J2TIM20 VT_PLM20 VT_UNEQ20 VT_SIZERR20 VT_AIS20 VT_LOP20 0x2008A VT_RSTATE21 VT_ERDI(21)[2:0] VT_LAB(21)[2:0] VT_RDI(21) VT_RFI21 VT_LOPS21 VT_J2TIM21 VT_PLM21 VT_UNEQ21 VT_SIZERR21 VT_AIS21 VT_LOP21 0x2008B VT_RSTATE22 VT_ERDI(22)[2:0] VT_LAB(22)[2:0] VT_RDI(22) VT_RFI22 VT_LOPS22 VT_J2TIM22 VT_PLM22 VT_UNEQ22 VT_SIZERR22 VT_AIS22 VT_LOP22 0x2008C VT_RSTATE23 VT_ERDI(23)[2:0] VT_LAB(23)[2:0] VT_RDI(23) VT_RFI23 VT_LOPS23 VT_J2TIM23 VT_PLM23 VT_UNEQ23 VT_SIZERR23 VT_AIS23 VT_LOP23 0x2008D VT_RSTATE24 VT_ERDI(24)[2:0] VT_LAB(24)[2:0] VT_RDI(24) VT_RFI24 VT_LOPS24 VT_J2TIM24 VT_PLM24 VT_UNEQ24 VT_SIZERR24 VT_AIS24 VT_LOP24 0x2008E VT_RSTATE25 VT_ERDI(25)[2:0] VT_LAB(25)[2:0] VT_RDI(25) VT_RFI25 VT_LOPS25 VT_J2TIM25 VT_PLM25 VT_UNEQ25 VT_SIZERR25 VT_AIS25 VT_LOP25 0x2008F VT_RSTATE26 VT_ERDI(26)[2:0] VT_LAB(26)[2:0] VT_RDI(26) VT_RFI26 VT_LOPS26 VT_J2TIM26 VT_PLM26 VT_UNEQ26 VT_SIZERR26 VT_AIS26 VT_LOP26 0x20090 VT_RSTATE27 VT_ERDI(27)[2:0] VT_LAB(27)[2:0] VT_RDI(27) VT_RFI27 VT_LOPS27 VT_J2TIM27 VT_PLM27 VT_UNEQ27 VT_SIZERR27 VT_AIS27 VT_LOP27 0x20091 VT_RSTATE28 VT_ERDI(28)[2:0] VT_LAB(28)[2:0] VT_RDI(28) VT_RFI28 VT_LOPS28 VT_J2TIM28 VT_PLM28 VT_UNEQ28 VT_SIZERR28 VT_AIS28 VT_LOP28 Agere Systems Inc. 175 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive APS Value Parameters--RO 0x20092 VT_RAPSSTATE1 VT_APS(1)[3:0] 0x20093 VT_RAPSSTATE2 VT_APS(2)[3:0] 0x20094 VT_RAPSSTATE3 VT_APS(3)[3:0] 0x20095 VT_RAPSSTATE4 VT_APS(4)[3:0] 0x20096 VT_RAPSSTATE5 VT_APS(5)[3:0] 0x20097 VT_RAPSSTATE6 VT_APS(6)[3:0] 0x20098 VT_RAPSSTATE7 VT_APS(7)[3:0] 0x20099 VT_RAPSSTATE8 VT_APS(8)[3:0] 0x2009A VT_RAPSSTATE9 VT_APS(9)[3:0] 0x2009B VT_RAPSSTATE10 VT_APS(10)[3:0] 0x2009C VT_RAPSSTATE11 VT_APS(11)[3:0] 0x2009D VT_RAPSSTATE12 VT_APS(12)[3:0] 0x2009E VT_RAPSSTATE13 VT_APS(13)[3:0] 0x2009F VT_RAPSSTATE14 VT_APS(14)[3:0] 0x200A0 VT_RAPSSTATE15 VT_APS(15)[3:0] 0x200A1 VT_RAPSSTATE16 VT_APS(16)[3:0] 0x200A2 VT_RAPSSTATE17 VT_APS(17)[3:0] 0x200A3 VT_RAPSSTATE18 VT_APS(18)[3:0] 0x200A4 VT_RAPSSTATE19 VT_APS(19)[3:0] 0x200A5 VT_RAPSSTATE20 VT_APS(20)[3:0] 0x200A6 VT_RAPSSTATE21 VT_APS(21)[3:0] 0x200A7 VT_RAPSSTATE22 VT_APS(22)[3:0] 0x200A8 VT_RAPSSTATE23 VT_APS(23)[3:0] 0x200A9 VT_RAPSSTATE24 VT_APS(24)[3:0] 0x200AA VT_RAPSSTATE25 VT_APS(25)[3:0] 0x200AB VT_RAPSSTATE26 VT_APS(26)[3:0] 0x200AC VT_RAPSSTATE27 VT_APS(27)[3:0] 0x200AD VT_RAPSSTATE28 VT_APS(28)[3:0] 176 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit State Parameters--RO 0x200AE VT_TSTATE1 VT_LOFS1 VT_TX_AIS1 VT_TX_LOC1 0x200AF VT_TSTATE2 VT_LOFS2 VT_TX_AIS2 VT_TX_LOC2 0x200B0 VT_TSTATE3 VT_LOFS3 VT_TX_AIS3 VT_TX_LOC3 0x200B1 VT_TSTATE4 VT_LOFS4 VT_TX_AIS4 VT_TX_LOC4 0x200B2 VT_TSTATE5 VT_LOFS5 VT_TX_AIS5 VT_TX_LOC5 0x200B3 VT_TSTATE6 VT_LOFS6 VT_TX_AIS6 VT_TX_LOC6 0x200B4 VT_TSTATE7 VT_LOFS7 VT_TX_AIS7 VT_TX_LOC7 0x200B5 VT_TSTATE8 VT_LOFS8 VT_TX_AIS8 VT_TX_LOC8 0x200B6 VT_TSTATE9 VT_LOFS9 VT_TX_AIS9 VT_TX_LOC9 0x200B7 VT_TSTATE10 VT_LOFS10 VT_TX_AIS10 VT_TX_LOC10 0x200B8 VT_TSTATE11 VT_LOFS11 VT_TX_AIS11 VT_TX_LOC11 0x200B9 VT_TSTATE12 VT_LOFS12 VT_TX_AIS12 VT_TX_LOC12 0x200BA VT_TSTATE13 VT_LOFS13 VT_TX_AIS13 VT_TX_LOC13 0x200BB VT_TSTATE14 VT_LOFS14 VT_TX_AIS14 VT_TX_LOC14 0x200BC VT_TSTATE15 VT_LOFS15 VT_TX_AIS15 VT_TX_LOC15 0x200BD VT_TSTATE16 VT_LOFS16 VT_TX_AIS16 VT_TX_LOC16 0x200BE VT_TSTATE17 VT_LOFS17 VT_TX_AIS17 VT_TX_LOC17 0x200BF VT_TSTATE18 VT_LOFS18 VT_TX_AIS18 VT_TX_LOC18 0x200C0 VT_TSTATE19 VT_LOFS19 VT_TX_AIS19 VT_TX_LOC19 0x200C1 VT_TSTATE20 VT_LOFS20 VT_TX_AIS20 VT_TX_LOC20 0x200C2 VT_TSTATE21 VT_LOFS21 VT_TX_AIS21 VT_TX_LOC21 0x200C3 VT_TSTATE22 VT_LOFS22 VT_TX_AIS22 VT_TX_LOC22 0x200C4 VT_TSTATE23 VT_LOFS23 VT_TX_AIS23 VT_TX_LOC23 0x200C5 VT_TSTATE24 VT_LOFS24 VT_TX_AIS24 VT_TX_LOC24 0x200C6 VT_TSTATE25 VT_LOFS25 VT_TX_AIS25 VT_TX_LOC25 0x200C7 VT_TSTATE26 VT_LOFS26 VT_TX_AIS26 VT_TX_LOC26 0x200C8 VT_TSTATE27 VT_LOFS27 VT_TX_AIS27 VT_TX_LOC27 0x200C9 VT_TSTATE28 VT_LOFS28 VT_TX_AIS28 VT_TX_LOC28 Agere Systems Inc. 177 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 VT Global Control Parameters--R/W 0x200CA VT_GCTL1 0x200CB VT_GCTL2 0x200CC VT_GCTL3 VT_LOPS_NTIME[3:0] VT_H4_NTIME[3:0] 0x200CD VT_GCTL4 VT_Z6_NTIME[3:0] VT_J2_NTIME[3:0] VT_INV_NTIME[3:0] VT_NDF_NTIME[3:0] 0x200CE VT_GCTL5 VT_APS_NTIME[3:0] VT_LAB_NTIME[3:0] VT_ERDI_NTIME[3:0] VT_RDI_NTIME[3:0] VT_RX_GRP_TYPE[6:0] VT_TX_GRP_TYPE[6:0] VT_LOPS_AIS VT_J2TIM_ER VT_J2TIM_RDI VT_J2TIM_AIS VT_LOMF_AIS VT_PLM_AIS_I VT_UNEQ_AIS _INH DI_INH _INH _INH _INH NH _INH VT_UPSR VT_8ORMAJO VT_BIT_BLO RITY CK_CNT Signal Degrade Control--R/W 0x200CF VT_SIGDEG_ CTL1 0x200D0 VT_SIGDEG_ CTL2 0x200D1 VT_SIGDEG_ CTL3 0x200D2 VT_SIGDEG_ CTL4 0x200D3 VT_SIGDEG_ CTL5 0x200D4 VT_SIGDEG_ CTL6 0x200D5 VT_SIGDEG_ CTL7 0x200D6 VT_SIGFAIL_ CTL1 0x200D7 VT_SIGFAIL_ CTL2 0x200D8 VT_SIGFAIL_ CTL3 0x200D9 VT_SIGFAIL_ CTL4 0x200DA VT_SIGFAIL_ CTL5 0x200DB VT_SIGFAIL_ CTL6 VT_SFCLEAR VT_SFSET VT_SDCLEAR VT_SDSET VT_BER_CH_SEL[4:0] VT_SDNSSET[18:3] VT_SDMSET[7:0] VT_SDLSET[3:0] VT_SDNSSET[2:0] VT_SDLCLEAR[3:0] VT_SDNSCLEAR[2:0] VT_SFLSET[3:0] VT_SFNSSET[2:0] VT_SFLCLEAR[3:0] VT_SFNSCLEAR[2:0] VT_SDBSET[15:0] VT_SDNSCLEAR[18:3] VT_SDMCLEAR[7:0] VT_SDBCLEAR[15:0] Signal Fail Control--R/W 178 VT_SFNSSET[18:3] VT_SFMSET[7:0] VT_SFBSET[15:0] VT_SFNSCLEAR[18:3] VT_SFMCLEAR[7:0] VT_SFBCLEAR[15:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Control Parameters--R/W 0x200DC VT_TCTL1 VT_TX_ERDI_EN1 VT_ERDI_EN1 VT_RDI_EN1 VT_RFI_EN1 VT_REI_EN1 VT_AIS_INS1 VT_TX_CLKEDGE1 VT_LB_SEL1 VT_TX_MAPTYPE(1)[3:0] 0x200DD VT_TCTL2 VT_TX_ERDI_EN2 VT_ERDI_EN2 VT_RDI_EN2 VT_RFI_EN2 VT_REI_EN2 VT_AIS_INS2 VT_TX_CLKEDGE2 VT_LB_SEL2 VT_TX_MAPTYPE(2)[3:0] 0x200DE VT_TCTL3 VT_TX_ERDI_EN3 VT_ERDI_EN3 VT_RDI_EN3 VT_RFI_EN3 VT_REI_EN3 VT_AIS_INS3 VT_TX_CLKEDGE3 VT_LB_SEL3 VT_TX_MAPTYPE(3)[3:0] 0x200DF VT_TCTL4 VT_TX_ERDI_EN4 VT_ERDI_EN4 VT_RDI_EN4 VT_RFI_EN4 VT_REI_EN4 VT_AIS_INS4 VT_TX_CLKEDGE4 VT_LB_SEL4 VT_TX_MAPTYPE(4)[3:0] 0x200E0 VT_TCTL5 VT_TX_ERDI_EN5 VT_ERDI_EN5 VT_RDI_EN5 VT_RFI_EN5 VT_REI_EN5 VT_AIS_INS5 VT_TX_CLKEDGE5 VT_LB_SEL5 VT_TX_MAPTYPE(5)[3:0] 0x200E1 VT_TCTL6 VT_TX_ERDI_EN6 VT_ERDI_EN6 VT_RDI_EN6 VT_RFI_EN6 VT_REI_EN6 VT_AIS_INS6 VT_TX_CLKEDGE6 VT_LB_SEL6 VT_TX_MAPTYPE(6)[3:0] 0x200E2 VT_TCTL7 VT_TX_ERDI_EN7 VT_ERDI_EN7 VT_RDI_EN7 VT_RFI_EN7 VT_REI_EN7 VT_AIS_INS7 VT_TX_CLKEDGE7 VT_LB_SEL7 VT_TX_MAPTYPE(7)[3:0] 0x200E3 VT_TCTL8 VT_TX_ERDI_EN8 VT_ERDI_EN8 VT_RDI_EN8 VT_RFI_EN8 VT_REI_EN8 VT_AIS_INS8 VT_TX_CLKEDGE8 VT_LB_SEL8 VT_TX_MAPTYPE(8)[3:0] 0x200E4 VT_TCTL9 VT_TX_ERDI_EN9 VT_ERDI_EN9 VT_RDI_EN9 VT_RFI_EN9 VT_REI_EN9 VT_AIS_INS9 VT_TX_CLKEDGE9 VT_LB_SEL9 VT_TX_MAPTYPE(9)[3:0] 0x200E5 VT_TCTL10 VT_TX_ERDI_EN10 VT_ERDI_EN10 VT_RDI_EN10 VT_RFI_EN10 VT_REI_EN10 VT_AIS_INS10 VT_TX_CLKEDGE10 VT_LB_SEL10 VT_TX_MAPTYPE(10)[3:0] 0x200E6 VT_TCTL11 VT_TX_ERDI_EN11 VT_ERDI_EN11 VT_RDI_EN11 VT_RFI_EN11 VT_REI_EN11 VT_AIS_INS11 VT_TX_CLKEDGE11 VT_LB_SEL11 VT_TX_MAPTYPE(11)[3:0] 0x200E7 VT_TCTL12 VT_TX_ERDI_EN12 VT_ERDI_EN12 VT_RDI_EN12 VT_RFI_EN12 VT_REI_EN12 VT_AIS_INS12 VT_TX_CLKEDGE12 VT_LB_SEL12 VT_TX_MAPTYPE(12)[3:0] 0x200E8 VT_TCTL13 VT_TX_ERDI_EN13 VT_ERDI_EN13 VT_RDI_EN13 VT_RFI_EN13 VT_REI_EN13 VT_AIS_INS13 VT_TX_CLKEDGE13 VT_LB_SEL13 VT_TX_MAPTYPE(13)[3:0] 0x200E9 VT_TCTL14 VT_TX_ERDI_EN14 VT_ERDI_EN14 VT_RDI_EN14 VT_RFI_EN14 VT_REI_EN14 VT_AIS_INS14 VT_TX_CLKEDGE14 VT_LB_SEL14 VT_TX_MAPTYPE(14)[3:0] 0x200EA VT_TCTL15 VT_TX_ERDI_EN15 VT_ERDI_EN15 VT_RDI_EN15 VT_RFI_EN15 VT_REI_EN15 VT_AIS_INS15 VT_TX_CLKEDGE15 VT_LB_SEL15 VT_TX_MAPTYPE(15)[3:0] 0x200EB VT_TCTL16 VT_TX_ERDI_EN16 VT_ERDI_EN16 VT_RDI_EN16 VT_RFI_EN16 VT_REI_EN16 VT_AIS_INS16 VT_TX_CLKEDGE16 VT_LB_SEL16 VT_TX_MAPTYPE(16)[3:0] 0x200EC VT_TCTL17 VT_TX_ERDI_EN17 VT_ERDI_EN17 VT_RDI_EN17 VT_RFI_EN17 VT_REI_EN17 VT_AIS_INS17 VT_TX_CLKEDGE17 VT_LB_SEL17 VT_TX_MAPTYPE(17)[3:0] 0x200ED VT_TCTL18 VT_TX_ERDI_EN18 VT_ERDI_EN18 VT_RDI_EN18 VT_RFI_EN18 VT_REI_EN18 VT_AIS_INS18 VT_TX_CLKEDGE18 VT_LB_SEL18 VT_TX_MAPTYPE(18)[3:0] 0x200EE VT_TCTL19 VT_TX_ERDI_EN19 VT_ERDI_EN19 VT_RDI_EN19 VT_RFI_EN19 VT_REI_EN19 VT_AIS_INS19 VT_TX_CLKEDGE19 VT_LB_SEL19 VT_TX_MAPTYPE(19)[3:0] 0x200EF VT_TCTL20 VT_TX_ERDI_EN20 VT_ERDI_EN20 VT_RDI_EN20 VT_RFI_EN20 VT_REI_EN20 VT_AIS_INS20 VT_TX_CLKEDGE20 VT_LB_SEL20 VT_TX_MAPTYPE(20)[3:0] 0x200F0 VT_TCTL21 VT_TX_ERDI_EN21 VT_ERDI_EN21 VT_RDI_EN21 VT_RFI_EN21 VT_REI_EN21 VT_AIS_INS21 VT_TX_CLKEDGE21 VT_LB_SEL21 VT_TX_MAPTYPE(21)[3:0] 0x200F1 VT_TCTL22 VT_TX_ERDI_EN22 VT_ERDI_EN22 VT_RDI_EN22 VT_RFI_EN22 VT_REI_EN22 VT_AIS_INS22 VT_TX_CLKEDGE22 VT_LB_SEL22 VT_TX_MAPTYPE(22)[3:0] 0x200F2 VT_TCTL23 VT_TX_ERDI_EN23 VT_ERDI_EN23 VT_RDI_EN23 VT_RFI_EN23 VT_REI_EN23 VT_AIS_INS23 VT_TX_CLKEDGE23 VT_LB_SEL23 VT_TX_MAPTYPE(23)[3:0] 0x200F3 VT_TCTL24 VT_TX_ERDI_EN24 VT_ERDI_EN24 VT_RDI_EN24 VT_RFI_EN24 VT_REI_EN24 VT_AIS_INS24 VT_TX_CLKEDGE24 VT_LB_SEL24 VT_TX_MAPTYPE(24)[3:0] 0x200F4 VT_TCTL25 VT_TX_ERDI_EN25 VT_ERDI_EN25 VT_RDI_EN25 VT_RFI_EN25 VT_REI_EN25 VT_AIS_INS25 VT_TX_CLKEDGE25 VT_LB_SEL25 VT_TX_MAPTYPE(25)[3:0] 0x200F5 VT_TCTL26 VT_TX_ERDI_EN26 VT_ERDI_EN26 VT_RDI_EN26 VT_RFI_EN26 VT_REI_EN26 VT_AIS_INS26 VT_TX_CLKEDGE26 VT_LB_SEL26 VT_TX_MAPTYPE(26)[3:0] 0x200F6 VT_TCTL27 VT_TX_ERDI_EN27 VT_ERDI_EN27 VT_RDI_EN27 VT_RFI_EN27 VT_REI_EN27 VT_AIS_INS27 VT_TX_CLKEDGE27 VT_LB_SEL27 VT_TX_MAPTYPE(27)[3:0] 0x200F7 VT_TCTL28 VT_TX_ERDI_EN28 VT_ERDI_EN28 VT_RDI_EN28 VT_RFI_EN28 VT_REI_EN28 VT_AIS_INS28 VT_TX_CLKEDGE28 VT_LB_SEL28 VT_TX_MAPTYPE(28)[3:0] Agere Systems Inc. 179 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit TU OH Control Parameters--R/W 0x200F8 VT_TTUOH_CTL1 VT_O_INS(1)[1:0] VT_Z7_INS(1)[1:0] VT_Z6_INS(1)[1:0] VT_J2_INS(1)[1:0] VT_V5_INS1 VT_BIP2ERR_INS(1)[1:0] 0x200F9 VT_TTUOH_CTL2 VT_O_INS(2)[1:0] VT_Z7_INS(2)[1:0] VT_Z6_INS(2)[1:0] VT_J2_INS(2)[1:0] VT_V5_INS2 VT_BIP2ERR_INS(2)[1:0] 0x200FA VT_TTUOH_CTL3 VT_O_INS(3)[1:0] VT_Z7_INS(3)[1:0] VT_Z6_INS(3)[1:0] VT_J2_INS(3)[1:0] VT_V5_INS3 VT_BIP2ERR_INS(3)[1:0] 0x200FB VT_TTUOH_CTL4 VT_O_INS(4)[1:0] VT_Z7_INS(4)[1:0] VT_Z6_INS(4)[1:0] VT_J2_INS(4)[1:0] VT_V5_INS4 VT_BIP2ERR_INS(4)[1:0] 0x200FC VT_TTUOH_CTL5 VT_O_INS(5)[1:0] VT_Z7_INS(5)[1:0] VT_Z6_INS(5)[1:0] VT_J2_INS(5)[1:0] VT_V5_INS5 VT_BIP2ERR_INS(5)[1:0] 0x200FD VT_TTUOH_CTL6 VT_O_INS(6)[1:0] VT_Z7_INS(6)[1:0] VT_Z6_INS(6)[1:0] VT_J2_INS(6)[1:0] VT_V5_INS6 VT_BIP2ERR_INS(6)[1:0] 0x200FE VT_TTUOH_CTL7 VT_O_INS(7)[1:0] VT_Z7_INS(7)[1:0] VT_Z6_INS(7)[1:0] VT_J2_INS(7)[1:0] VT_V5_INS7 VT_BIP2ERR_INS(7)[1:0] 0x200FF VT_TTUOH_CTL8 VT_O_INS(8)[1:0] VT_Z7_INS(8)[1:0] VT_Z6_INS(8)[1:0] VT_J2_INS(8)[1:0] VT_V5_INS8 VT_BIP2ERR_INS(8)[1:0] 0x20100 VT_TTUOH_CTL9 VT_O_INS(9)[1:0] VT_Z7_INS(9)[1:0] VT_Z6_INS(9)[1:0] VT_J2_INS(9)[1:0] VT_V5_INS9 VT_BIP2ERR_INS(9)[1:0] 0x20101 VT_TTUOH_CTL10 VT_O_INS(10)[1:0] VT_Z7_INS(10)[1:0] VT_Z6_INS(10)[1:0] VT_J2_INS(10)[1:0] VT_V5_INS10 VT_BIP2ERR_INS(10)[1:0] 0x20102 VT_TTUOH_CTL11 VT_O_INS(11)[1:0] VT_Z7_INS(11)[1:0] VT_Z6_INS(11)[1:0] VT_J2_INS(11)[1:0] VT_V5_INS11 VT_BIP2ERR_INS(11)[1:0] 0x20103 VT_TTUOH_CTL12 VT_O_INS(12)[1:0] VT_Z7_INS(12)[1:0] VT_Z6_INS(12)[1:0] VT_J2_INS(12)[1:0] VT_V5_INS12 VT_BIP2ERR_INS(12)[1:0] 0x20104 VT_TTUOH_CTL13 VT_O_INS(13)[1:0] VT_Z7_INS(13)[1:0] VT_Z6_INS(13)[1:0] VT_J2_INS(13)[1:0] VT_V5_INS13 VT_BIP2ERR_INS(13)[1:0] 0x20105 VT_TTUOH_CTL14 VT_O_INS(14)[1:0] VT_Z7_INS(14)[1:0] VT_Z6_INS(14)[1:0] VT_J2_INS(14)[1:0] VT_V5_INS14 VT_BIP2ERR_INS(14)[1:0] 0x20106 VT_TTUOH_CTL15 VT_O_INS(15)[1:0] VT_Z7_INS(15)[1:0] VT_Z6_INS(15)[1:0] VT_J2_INS(15)[1:0] VT_V5_INS15 VT_BIP2ERR_INS(15)[1:0] 0x20107 VT_TTUOH_CTL16 VT_O_INS(16)[1:0] VT_Z7_INS(16)[1:0] VT_Z6_INS(16)[1:0] VT_J2_INS(16)[1:0] VT_V5_INS16 VT_BIP2ERR_INS(16)[1:0] 0x20108 VT_TTUOH_CTL17 VT_O_INS(17)[1:0] VT_Z7_INS(17)[1:0] VT_Z6_INS(17)[1:0] VT_J2_INS(17)[1:0] VT_V5_INS17 VT_BIP2ERR_INS(17)[1:0] 0x20109 VT_TTUOH_CTL18 VT_O_INS(18)[1:0] VT_Z7_INS(18)[1:0] VT_Z6_INS(18)[1:0] VT_J2_INS(18)[1:0] VT_V5_INS18 VT_BIP2ERR_INS(18)[1:0] 0x2010A VT_TTUOH_CTL19 VT_O_INS(19)[1:0] VT_Z7_INS(19)[1:0] VT_Z6_INS(19)[1:0] VT_J2_INS(19)[1:0] VT_V5_INS19 VT_BIP2ERR_INS(19)[1:0] 0x2010B VT_TTUOH_CTL20 VT_O_INS(20)[1:0] VT_Z7_INS(20)[1:0] VT_Z6_INS(20)[1:0] VT_J2_INS(20)[1:0] VT_V5_INS20 VT_BIP2ERR_INS(20)[1:0] 0x2010C VT_TTUOH_CTL21 VT_O_INS(21)[1:0] VT_Z7_INS(21)[1:0] VT_Z6_INS(21)[1:0] VT_J2_INS(21)[1:0] VT_V5_INS21 VT_BIP2ERR_INS(21)[1:0] 0x2010D VT_TTUOH_CTL22 VT_O_INS(22)[1:0] VT_Z7_INS(22)[1:0] VT_Z6_INS(22)[1:0] VT_J2_INS(22)[1:0] VT_V5_INS22 VT_BIP2ERR_INS(22)[1:0] 0x2010E VT_TTUOH_CTL23 VT_O_INS(23)[1:0] VT_Z7_INS(23)[1:0] VT_Z6_INS(23)[1:0] VT_J2_INS(23)[1:0] VT_V5_INS23 VT_BIP2ERR_INS(23)[1:0] 0x2010F VT_TTUOH_CTL24 VT_O_INS(24)[1:0] VT_Z7_INS(24)[1:0] VT_Z6_INS(24)[1:0] VT_J2_INS(24)[1:0] VT_V5_INS24 VT_BIP2ERR_INS(24)[1:0] 0x20110 VT_TTUOH_CTL25 VT_O_INS(25)[1:0] VT_Z7_INS(25)[1:0] VT_Z6_INS(25)[1:0] VT_J2_INS(25)[1:0] VT_V5_INS25 VT_BIP2ERR_INS(25)[1:0] 0x20111 VT_TTUOH_CTL26 VT_O_INS(26)[1:0] VT_Z7_INS(26)[1:0] VT_Z6_INS(26)[1:0] VT_J2_INS(26)[1:0] VT_V5_INS26 VT_BIP2ERR_INS(26)[1:0] 0x20112 VT_TTUOH_CTL27 VT_O_INS(27)[1:0] VT_Z7_INS(27)[1:0] VT_Z6_INS(27)[1:0] VT_J2_INS(27)[1:0] VT_V5_INS27 VT_BIP2ERR_INS(27)[1:0] 0x20113 VT_TTUOH_CTL28 VT_O_INS(28)[1:0] VT_Z7_INS(28)[1:0] VT_Z6_INS(28)[1:0] VT_J2_INS(28)[1:0] VT_V5_INS28 VT_BIP2ERR_INS(28)[1:0] 180 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit APS and Remote Indication--R/W 0x20114 VT_TAPSRIVAL1 VT_APS_INS(1)[3:0] VT_ERDI_INS(1)[2:0] VT_RDI_INS1 VT_RFI_INS1 0x20115 VT_TAPSRIVAL2 VT_APS_INS(2)[3:0] VT_ERDI_INS(2)[2:0] VT_RDI_INS2 VT_RFI_INS2 0x20116 VT_TAPSRIVAL3 VT_APS_INS(3)[3:0] VT_ERDI_INS(3)[2:0] VT_RDI_INS3 VT_RFI_INS3 0x20117 VT_TAPSRIVAL4 VT_APS_INS(4)[3:0] VT_ERDI_INS(4)[2:0] VT_RDI_INS4 VT_RFI_INS4 0x20118 VT_TAPSRIVAL5 VT_APS_INS(5)[3:0] VT_ERDI_INS(5)[2:0] VT_RDI_INS5 VT_RFI_INS5 0x20119 VT_TAPSRIVAL6 VT_APS_INS(6)[3:0] VT_ERDI_INS(6)[2:0] VT_RDI_INS6 VT_RFI_INS6 0x2011A VT_TAPSRIVAL7 VT_APS_INS(7)[3:0] VT_ERDI_INS(7)[2:0] VT_RDI_INS7 VT_RFI_INS7 0x2011B VT_TAPSRIVAL8 VT_APS_INS(8)[3:0] VT_ERDI_INS(8)[2:0] VT_RDI_INS8 VT_RFI_INS8 0x2011C VT_TAPSRIVAL9 VT_APS_INS(9)[3:0] VT_ERDI_INS(9)[2:0] VT_RDI_INS9 VT_RFI_INS9 0x2011D VT_TAPSRIVAL10 VT_APS_INS(10)[3:0] VT_ERDI_INS(10)[2:0] VT_RDI_INS10 VT_RFI_INS10 0x2011E VT_TAPSRIVAL11 VT_APS_INS(11)[3:0] VT_ERDI_INS(11)[2:0] VT_RDI_INS11 VT_RFI_INS11 0x2011F VT_TAPSRIVAL12 VT_APS_INS(12)[3:0] VT_ERDI_INS(12)[2:0] VT_RDI_INS12 VT_RFI_INS12 0x20120 VT_TAPSRIVAL13 VT_APS_INS(13)[3:0] VT_ERDI_INS(13)[2:0] VT_RDI_INS13 VT_RFI_INS13 0x20121 VT_TAPSRIVAL14 VT_APS_INS(14)[3:0] VT_ERDI_INS(14)[2:0] VT_RDI_INS14 VT_RFI_INS14 0x20122 VT_TAPSRIVAL15 VT_APS_INS(15)[3:0] VT_ERDI_INS(15)[2:0] VT_RDI_INS15 VT_RFI_INS15 0x20123 VT_TAPSRIVAL16 VT_APS_INS(16)[3:0] VT_ERDI_INS(16)[2:0] VT_RDI_INS16 VT_RFI_INS16 0x20124 VT_TAPSRIVAL17 VT_APS_INS(17)[3:0] VT_ERDI_INS(17)[2:0] VT_RDI_INS17 VT_RFI_INS17 0x20125 VT_TAPSRIVAL18 VT_APS_INS(18)[3:0] VT_ERDI_INS(18)[2:0] VT_RDI_INS18 VT_RFI_INS18 0x20126 VT_TAPSRIVAL19 VT_APS_INS(19)[3:0] VT_ERDI_INS(19)[2:0] VT_RDI_INS19 VT_RFI_INS19 0x20127 VT_TAPSRIVAL20 VT_APS_INS(20)[3:0] VT_ERDI_INS(20)[2:0] VT_RDI_INS20 VT_RFI_INS20 0x20128 VT_TAPSRIVAL21 VT_APS_INS(21)[3:0] VT_ERDI_INS(21)[2:0] VT_RDI_INS21 VT_RFI_INS21 0x20129 VT_TAPSRIVAL22 VT_APS_INS(22)[3:0] VT_ERDI_INS(22)[2:0] VT_RDI_INS22 VT_RFI_INS22 0x2012A VT_TAPSRIVAL23 VT_APS_INS(23)[3:0] VT_ERDI_INS(23)[2:0] VT_RDI_INS23 VT_RFI_INS23 0x2012B VT_TAPSRIVAL24 VT_APS_INS(24)[3:0] VT_ERDI_INS(24)[2:0] VT_RDI_INS24 VT_RFI_INS24 0x2012C VT_TAPSRIVAL25 VT_APS_INS(25)[3:0] VT_ERDI_INS(25)[2:0] VT_RDI_INS25 VT_RFI_INS25 0x2012D VT_TAPSRIVAL26 VT_APS_INS(26)[3:0] VT_ERDI_INS(26)[2:0] VT_RDI_INS26 VT_RFI_INS26 0x2012E VT_TAPSRIVAL27 VT_APS_INS(27)[3:0] VT_ERDI_INS(27)[2:0] VT_RDI_INS27 VT_RFI_INS27 0x2012F VT_TAPSRIVAL28 VT_APS_INS(28)[3:0] VT_ERDI_INS(28)[2:0] VT_RDI_INS28 VT_RFI_INS28 Agere Systems Inc. 181 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Software Overwrite Parameters--R/W 0x20130 VT_TSWOW1 VT_OBIT_INS(1)[7:0] VT_Z6BYTE_INS(1)[7:0] 0x20131 VT_TSWOW2 VT_OBIT_INS(2)[7:0] VT_Z6BYTE_INS(2)[7:0] 0x20132 VT_TSWOW3 VT_OBIT_INS(3)[7:0] VT_Z6BYTE_INS(3)[7:0] 0x20133 VT_TSWOW4 VT_OBIT_INS(4)[7:0] VT_Z6BYTE_INS(4)[7:0] 0x20134 VT_TSWOW5 VT_OBIT_INS(5)[7:0] VT_Z6BYTE_INS(5)[7:0] 0x20135 VT_TSWOW6 VT_OBIT_INS(6)[7:0] VT_Z6BYTE_INS(6)[7:0] 0x20136 VT_TSWOW7 VT_OBIT_INS(7)[7:0] VT_Z6BYTE_INS(7)[7:0] 0x20137 VT_TSWOW8 VT_OBIT_INS(8)[7:0] VT_Z6BYTE_INS(8)[7:0] 0x20138 VT_TSWOW9 VT_OBIT_INS(9)[7:0] VT_Z6BYTE_INS(9)[7:0] 0x20139 VT_TSWOW10 VT_OBIT_INS(10)[7:0] VT_Z6BYTE_INS(10)[7:0] 0x2013A VT_TSWOW11 VT_OBIT_INS(11)[7:0] VT_Z6BYTE_INS(11)[7:0] 0x2013B VT_TSWOW12 VT_OBIT_INS(12)[7:0] VT_Z6BYTE_INS(12)[7:0] 0x2013C VT_TSWOW13 VT_OBIT_INS(13)[7:0] VT_Z6BYTE_INS(13)[7:0] 0x2013D VT_TSWOW14 VT_OBIT_INS(14)[7:0] VT_Z6BYTE_INS(14)[7:0] 0x2013E VT_TSWOW15 VT_OBIT_INS(15)[7:0] VT_Z6BYTE_INS(15)[7:0] 0x2013F VT_TSWOW16 VT_OBIT_INS(16)[7:0] VT_Z6BYTE_INS(16)[7:0] 0x20140 VT_TSWOW17 VT_OBIT_INS(17)[7:0] VT_Z6BYTE_INS(17)[7:0] 0x20141 VT_TSWOW18 VT_OBIT_INS(18)[7:0] VT_Z6BYTE_INS(18)[7:0] 0x20142 VT_TSWOW19 VT_OBIT_INS(19)[7:0] VT_Z6BYTE_INS(19)[7:0] 0x20143 VT_TSWOW20 VT_OBIT_INS(20)[7:0] VT_Z6BYTE_INS(20)[7:0] 0x20144 VT_TSWOW21 VT_OBIT_INS(21)[7:0] VT_Z6BYTE_INS(21)[7:0] 0x20145 VT_TSWOW22 VT_OBIT_INS(22)[7:0] VT_Z6BYTE_INS(22)[7:0] 0x20146 VT_TSWOW23 VT_OBIT_INS(23)[7:0] VT_Z6BYTE_INS(23)[7:0] 0x20147 VT_TSWOW24 VT_OBIT_INS(24)[7:0] VT_Z6BYTE_INS(24)[7:0] 0x20148 VT_TSWOW25 VT_OBIT_INS(25)[7:0] VT_Z6BYTE_INS(25)[7:0] 0x20149 VT_TSWOW26 VT_OBIT_INS(26)[7:0] VT_Z6BYTE_INS(26)[7:0] 0x2014A VT_TSWOW27 VT_OBIT_INS(27)[7:0] VT_Z6BYTE_INS(27)[7:0] 0x2014B VT_TSWOW28 VT_OBIT_INS(28)[7:0] VT_Z6BYTE_INS(28)[7:0] 182 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Signaling Control Parameters--R/W 0x2014C VT_TSIG_CTL1 VT_USE_FBIT1 VT_USE_PBIT1 VT_USE_SBIT1 VT_TXSIG_CH_SEL(1)[4:0] 0x2014D VT_TSIG_CTL2 VT_USE_FBIT2 VT_USE_PBIT2 VT_USE_SBIT2 VT_TXSIG_CH_SEL(2)[4:0] 0x2014E VT_TSIG_CTL3 VT_USE_FBIT3 VT_USE_PBIT3 VT_USE_SBIT3 VT_TXSIG_CH_SEL(3)[4:0] 0x2014F VT_TSIG_CTL4 VT_USE_FBIT4 VT_USE_PBIT4 VT_USE_SBIT4 VT_TXSIG_CH_SEL(4)[4:0] 0x20150 VT_TSIG_CTL5 VT_USE_FBIT5 VT_USE_PBIT5 VT_USE_SBIT5 VT_TXSIG_CH_SEL(5)[4:0] 0x20151 VT_TSIG_CTL6 VT_USE_FBIT6 VT_USE_PBIT6 VT_USE_SBIT6 VT_TXSIG_CH_SEL(6)[4:0] 0x20152 VT_TSIG_CTL7 VT_USE_FBIT7 VT_USE_PBIT7 VT_USE_SBIT7 VT_TXSIG_CH_SEL(7)[4:0] 0x20153 VT_TSIG_CTL8 VT_USE_FBIT8 VT_USE_PBIT8 VT_USE_SBIT8 VT_TXSIG_CH_SEL(8)[4:0] 0x20154 VT_TSIG_CTL9 VT_USE_FBIT9 VT_USE_PBIT9 VT_USE_SBIT9 VT_TXSIG_CH_SEL(9)[4:0] 0x20155 VT_TSIG_CTL10 VT_USE_FBIT10 VT_USE_PBIT10 VT_USE_SBIT10 VT_TXSIG_CH_SEL(10)[4:0] 0x20156 VT_TSIG_CTL11 VT_USE_FBIT11 VT_USE_PBIT11 VT_USE_SBIT11 VT_TXSIG_CH_SEL(11)[4:0] 0x20157 VT_TSIG_CTL12 VT_USE_FBIT12 VT_USE_PBIT12 VT_USE_SBIT12 VT_TXSIG_CH_SEL(12)[4:0] 0x20158 VT_TSIG_CTL13 VT_USE_FBIT13 VT_USE_PBIT13 VT_USE_SBIT13 VT_TXSIG_CH_SEL(13)[4:0] 0x20159 VT_TSIG_CTL14 VT_USE_FBIT14 VT_USE_PBIT14 VT_USE_SBIT14 VT_TXSIG_CH_SEL(14)[4:0] 0x2015A VT_TSIG_CTL15 VT_USE_FBIT15 VT_USE_PBIT15 VT_USE_SBIT15 VT_TXSIG_CH_SEL(15)[4:0] 0x2015B VT_TSIG_CTL16 VT_USE_FBIT16 VT_USE_PBIT16 VT_USE_SBIT16 VT_TXSIG_CH_SEL(16)[4:0] 0x2015C VT_TSIG_CTL17 VT_USE_FBIT17 VT_USE_PBIT17 VT_USE_SBIT17 VT_TXSIG_CH_SEL(17)[4:0] 0x2015D VT_TSIG_CTL18 VT_USE_FBIT18 VT_USE_PBIT18 VT_USE_SBIT18 VT_TXSIG_CH_SEL(18)[4:0] 0x2015E VT_TSIG_CTL19 VT_USE_FBIT19 VT_USE_PBIT19 VT_USE_SBIT19 VT_TXSIG_CH_SEL(19)[4:0] 0x2015F VT_TSIG_CTL20 VT_USE_FBIT20 VT_USE_PBIT20 VT_USE_SBIT20 VT_TXSIG_CH_SEL(20)[4:0] 0x20160 VT_TSIG_CTL21 VT_USE_FBIT21 VT_USE_PBIT21 VT_USE_SBIT21 VT_TXSIG_CH_SEL(21)[4:0] 0x20161 VT_TSIG_CTL22 VT_USE_FBIT22 VT_USE_PBIT22 VT_USE_SBIT22 VT_TXSIG_CH_SEL(22)[4:0] 0x20162 VT_TSIG_CTL23 VT_USE_FBIT23 VT_USE_PBIT23 VT_USE_SBIT23 VT_TXSIG_CH_SEL(23)[4:0] 0x20163 VT_TSIG_CTL24 VT_USE_FBIT24 VT_USE_PBIT24 VT_USE_SBIT24 VT_TXSIG_CH_SEL(24)[4:0] 0x20164 VT_TSIG_CTL25 VT_USE_FBIT25 VT_USE_PBIT25 VT_USE_SBIT25 VT_TXSIG_CH_SEL(25)[4:0] 0x20165 VT_TSIG_CTL26 VT_USE_FBIT26 VT_USE_PBIT26 VT_USE_SBIT26 VT_TXSIG_CH_SEL(26)[4:0] 0x20166 VT_TSIG_CTL27 VT_USE_FBIT27 VT_USE_PBIT27 VT_USE_SBIT27 VT_TXSIG_CH_SEL(27)[4:0] 0x20167 VT_TSIG_CTL28 VT_USE_FBIT28 VT_USE_PBIT28 VT_USE_SBIT28 VT_TXSIG_CH_SEL(28)[4:0] Agere Systems Inc. 183 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Channel 1 Transmit J2 Value Parameters--R/W 0x20168 -- 0x20177 VT_J2BYTE_INS_R[1][1] -- VT_J2BYTE_INS_R[1][16] 0x20178 -- 0x20187 VT_J2BYTE_INS_R[2][1] -- VT_J2BYTE_INS_R[2][16] 0x20188 -- 0x20197 VT_J2BYTE_INS_R[3][1] -- VT_J2BYTE_INS_R[3][16] 0x20198 -- 0x201A7 VT_J2BYTE_INS_R[4][1] -- VT_J2BYTE_INS_R[4][16] 0x201A8 -- 0x201B7 VT_J2BYTE_INS_R[5][1] -- VT_J2BYTE_INS_R[5][16] 0x201B8 -- 0x201C7 VT_J2BYTE_INS_R[6][1] -- VT_J2BYTE_INS_R[6][16] 0x201C8 -- 0x201D7 VT_J2BYTE_INS_R[7][1] -- VT_J2BYTE_INS_R[7][16] 0x201D8 -- 0x201E7 VT_J2BYTE_INS_R[8][1] -- VT_J2BYTE_INS_R[8][16] 0x201E8 -- 0x201F7 VT_J2BYTE_INS_R[9][1] -- VT_J2BYTE_INS_R[9][16] 0x201F8 -- 0x20207 VT_J2BYTE_INS_R[10][1] -- VT_J2BYTE_INS_R[10][16] 0x20208 -- 0x20217 VT_J2BYTE_INS_R[11][1] -- VT_J2BYTE_INS_R[11][16] VT_J2BYTE_INS(1)(1)[7:0] -- VT_J2BYTE_INS(1)(16)[7:0] Channel 2 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(2)(1)[7:0] -- VT_J2BYTE_INS(2)(16)[7:0] Channel 3 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(3)(1)[7:0] -- VT_J2BYTE_INS(3)(16)[7:0] Channel 4 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(4)(1)[7:0] -- VT_J2BYTE_INS(4)(16)[7:0] Channel 5 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(5)(1)[7:0] -- VT_J2BYTE_INS(5)(16)[7:0] Channel 6 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(6)(1)[7:0] -- VT_J2BYTE_INS(6)(16)[7:0] Channel 7 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(7)(1)[7:0] -- VT_J2BYTE_INS(7)(16)[7:0] Channel 8 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(8)(1)[7:0] -- VT_J2BYTE_INS(8)(16)[7:0] Channel 9 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(9)(1)[7:0] -- VT_J2BYTE_INS(9)(16)[7:0] Channel 10 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(10)(1)[7:0] -- VT_J2BYTE_INS(10)(16)[7:0] Channel 11 Transmit J2 Value Parameters--R/W 184 VT_J2BYTE_INS(11)(1)[7:0] -- VT_J2BYTE_INS(11)(16)[7:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Channel 12 Transmit J2 Value Parameters--R/W 0x20218 -- 0x20227 VT_J2BYTE_INS_R[12][1] -- VT_J2BYTE_INS_R[12][16] 0x20228 -- 0x20237 VT_J2BYTE_INS_R[13][1] -- VT_J2BYTE_INS_R[13][16] 0x20238 -- 0x20247 VT_J2BYTE_INS_R[14][1] -- VT_J2BYTE_INS_R[14][16] 0x20248 -- 0x20257 VT_J2BYTE_INS_R[15][1] -- VT_J2BYTE_INS_R[15][16] 0x20258 -- 0x20267 VT_J2BYTE_INS_R[16][1] -- VT_J2BYTE_INS_R[16][16] 0x20268 -- 0x20277 VT_J2BYTE_INS_R[17][1] -- VT_J2BYTE_INS_R[17][16] 0x20278 -- 0x20287 VT_J2BYTE_INS_R[18][1] -- VT_J2BYTE_INS_R[18][16] 0x20288 -- 0x20297 VT_J2BYTE_INS_R[19][1] -- VT_J2BYTE_INS_R[19][16] 0x20298 -- 0x202A7 VT_J2BYTE_INS_R[20][1] -- VT_J2BYTE_INS_R[20][16] 0x202A8 -- 0x202B7 VT_J2BYTE_INS_R[21][1] -- VT_J2BYTE_INS_R[21][16] 0x202B8 -- 0x202C7 VT_J2BYTE_INS_R[22][1] -- VT_J2BYTE_INS_R[22][16] VT_J2BYTE_INS(12)(1)[7:0] -- VT_J2BYTE_INS(12)(16)[7:0] Channel 13 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(13)(1)[7:0] -- VT_J2BYTE_INS(13)(16)[7:0] Channel 14 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(14)(1)[7:0] -- VT_J2BYTE_INS(14)(16)[7:0] Channel 15 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(15)(1)[7:0] -- VT_J2BYTE_INS(15)(16)[7:0] Channel 16 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(16)(1)[7:0] -- VT_J2BYTE_INS(16)(16)[7:0] Channel 17 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(17)(1)[7:0] -- VT_J2BYTE_INS(17)(16)[7:0] Channel 18 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(18)(1)[7:0] -- VT_J2BYTE_INS(18)(16)[7:0] Channel 19 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(19)(1)[7:0] -- VT_J2BYTE_INS(19)(16)[7:0] Channel 20 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(20)(1)[7:0] -- VT_J2BYTE_INS(20)(16)[7:0] Channel 21 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(21)(1)[7:0] -- VT_J2BYTE_INS(21)(16)[7:0] Channel 22 Transmit J2 Value Parameters--R/W Agere Systems Inc. VT_J2BYTE_INS(22)(1)[7:0] -- VT_J2BYTE_INS(22)(16)[7:0] 185 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Channel 23 Transmit J2 Value Parameters--R/W 0x202C8 -- 0x202D7 VT_J2BYTE_INS_R[23][1] -- VT_J2BYTE_INS_R[23][16] 0x202D8 -- 0x202E7 VT_J2BYTE_INS_R[24][1] -- VT_J2BYTE_INS_R[24][16] 0x202E8 -- 0x202F7 VT_J2BYTE_INS_R[25][1] -- VT_J2BYTE_INS_R[25][16] 0x202F8 -- 0x20307 VT_J2BYTE_INS_R[26][1] -- VT_J2BYTE_INS_R[26][16] 0x20308 -- 0x20317 VT_J2BYTE_INS_R[27][1] -- VT_J2BYTE_INS_R[27][16] 0x20318 -- 0x20327 VT_J2BYTE_INS[28][1] -- VT_J2BYTE_INS[28][16] VT_J2BYTE_INS(23)(1)[7:0] -- VT_J2BYTE_INS(23)(16)[7:0] Channel 24 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(24)(1)[7:0] -- VT_J2BYTE_INS(24)(16)[7:0] Channel 25 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(25)(1)[7:0] -- VT_J2BYTE_INS(25)(16)[7:0] Channel 26 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(26)(1)[7:0] -- VT_J2BYTE_INS(26)(16)[7:0] Channel 27 Transmit J2 Value Parameters--R/W VT_J2BYTE_INS(27)(1)[7:0] -- VT_J2BYTE_INS(27)(16)[7:0] Channel 28 Transmit J2 Value Parameters--R/W 186 VT_J2BYTE_INS(28)(1)[7:0] -- VT_J2BYTE_INS(28)(16)[7:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive Control Parameters--R/W 0x20328 VT_RCTL1 VT_SF_ESF1 VT_WR_FBIT1 VT_SYNC_PBIT1 VT_RXSIG_CH_SEL(1)[4:0] VT_J2MON_MODE(1)[2:0] VT_RX_ERDI_EN1 VT_RX_MAPTYPE(1)[3:0] 0x20329 VT_RCTL2 VT_SF_ESF2 VT_WR_FBIT2 VT_SYNC_PBIT2 VT_RXSIG_CH_SEL(2)[4:0] VT_J2MON_MODE(2)[2:0] VT_RX_ERDI_EN2 VT_RX_MAPTYPE(2)[3:0] 0x2032A VT_RCTL3 VT_SF_ESF3 VT_WR_FBIT3 VT_SYNC_PBIT3 VT_RXSIG_CH_SEL(3)[4:0] VT_J2MON_MODE(3)[2:0] VT_RX_ERDI_EN3 VT_RX_MAPTYPE(3)[3:0] 0x2032B VT_RCTL4 VT_SF_ESF4 VT_WR_FBIT4 VT_SYNC_PBIT4 VT_RXSIG_CH_SEL(4)[4:0] VT_J2MON_MODE(4)[2:0] VT_RX_ERDI_EN4 VT_RX_MAPTYPE(4)[3:0] 0x2032C VT_RCTL5 VT_SF_ESF5 VT_WR_FBIT5 VT_SYNC_PBIT5 VT_RXSIG_CH_SEL(5)[4:0] VT_J2MON_MODE(5)[2:0] VT_RX_ERDI_EN5 VT_RX_MAPTYPE(5)[3:0] 0x2032D VT_RCTL6 VT_SF_ESF6 VT_WR_FBIT6 VT_SYNC_PBIT6 VT_RXSIG_CH_SEL(6)[4:0] VT_J2MON_MODE(6)[2:0] VT_RX_ERDI_EN6 VT_RX_MAPTYPE(6)[3:0] 0x2032E VT_RCTL7 VT_SF_ESF7 VT_WR_FBIT7 VT_SYNC_PBIT7 VT_RXSIG_CH_SEL(7)[4:0] VT_J2MON_MODE(7)[2:0] VT_RX_ERDI_EN7 VT_RX_MAPTYPE(7)[3:0] 0x2032F VT_RCTL8 VT_SF_ESF8 VT_WR_FBIT8 VT_SYNC_PBIT8 VT_RXSIG_CH_SEL(8)[4:0] VT_J2MON_MODE(8)[2:0] VT_RX_ERDI_EN8 VT_RX_MAPTYPE(8)[3:0] 0x20330 VT_RCTL9 VT_SF_ESF9 VT_WR_FBIT9 VT_SYNC_PBIT9 VT_RXSIG_CH_SEL(9)[4:0] VT_J2MON_MODE(9)[2:0] VT_RX_ERDI_EN9 VT_RX_MAPTYPE(9)[3:0] 0x20331 VT_RCTL10 VT_SF_ESF10 VT_WR_FBIT10 VT_SYNC_PBIT10 VT_RXSIG_CH_SEL(10)[4:0] VT_J2MON_MODE(10)[2:0] VT_RX_ERDI_EN10 VT_RX_MAPTYPE(10)[3:0] 0x20332 VT_RCTL11 VT_SF_ESF11 VT_WR_FBIT11 VT_SYNC_PBIT11 VT_RXSIG_CH_SEL(11)[4:0] VT_J2MON_MODE(11)[2:0] VT_RX_ERDI_EN11 VT_RX_MAPTYPE(11)[3:0] 0x20333 VT_RCTL12 VT_SF_ESF12 VT_WR_FBIT12 VT_SYNC_PBIT12 VT_RXSIG_CH_SEL(12)[4:0] VT_J2MON_MODE(12)[2:0] VT_RX_ERDI_EN12 VT_RX_MAPTYPE(12)[3:0] 0x20334 VT_RCTL13 VT_SF_ESF13 VT_WR_FBIT13 VT_SYNC_PBIT13 VT_RXSIG_CH_SEL(13)[4:0] VT_J2MON_MODE(13)[2:0] VT_RX_ERDI_EN13 VT_RX_MAPTYPE(13)[3:0] 0x20335 VT_RCTL14 VT_SF_ESF14 VT_WR_FBIT14 VT_SYNC_PBIT14 VT_RXSIG_CH_SEL(14)[4:0] VT_J2MON_MODE(14)[2:0] VT_RX_ERDI_EN14 VT_RX_MAPTYPE(14)[3:0] 0x20336 VT_RCTL15 VT_SF_ESF15 VT_WR_FBIT15 VT_SYNC_PBIT15 VT_RXSIG_CH_SEL(15)[4:0] VT_J2MON_MODE(15)[2:0] VT_RX_ERDI_EN15 VT_RX_MAPTYPE(15)[3:0] 0x20337 VT_RCTL16 VT_SF_ESF16 VT_WR_FBIT16 VT_SYNC_PBIT16 VT_RXSIG_CH_SEL(16)[4:0] VT_J2MON_MODE(16)[2:0] VT_RX_ERDI_EN16 VT_RX_MAPTYPE(16)[3:0] 0x20338 VT_RCTL17 VT_SF_ESF17 VT_WR_FBIT17 VT_SYNC_PBIT17 VT_RXSIG_CH_SEL(17)[4:0] VT_J2MON_MODE(17)[2:0] VT_RX_ERDI_EN17 VT_RX_MAPTYPE(17)[3:0] 0x20339 VT_RCTL18 VT_SF_ESF18 VT_WR_FBIT18 VT_SYNC_PBIT18 VT_RXSIG_CH_SEL(18)[4:0] VT_J2MON_MODE(18)[2:0] VT_RX_ERDI_EN18 VT_RX_MAPTYPE(18)[3:0] 0x2033A VT_RCTL19 VT_SF_ESF19 VT_WR_FBIT19 VT_SYNC_PBIT19 VT_RXSIG_CH_SEL(19)[4:0] VT_J2MON_MODE(19)[2:0] VT_RX_ERDI_EN19 VT_RX_MAPTYPE(19)[3:0] 0x2033B VT_RCTL20 VT_SF_ESF20 VT_WR_FBIT20 VT_SYNC_PBIT20 VT_RXSIG_CH_SEL(20)[4:0] VT_J2MON_MODE(20)[2:0] VT_RX_ERDI_EN20 VT_RX_MAPTYPE(20)[3:0] 0x2033C VT_RCTL21 VT_SF_ESF21 VT_WR_FBIT21 VT_SYNC_PBIT21 VT_RXSIG_CH_SEL(21)[4:0] VT_J2MON_MODE(21)[2:0] VT_RX_ERDI_EN21 VT_RX_MAPTYPE(21)[3:0] 0x2033D VT_RCTL22 VT_SF_ESF22 VT_WR_FBIT22 VT_SYNC_PBIT22 VT_RXSIG_CH_SEL(22)[4:0] VT_J2MON_MODE(22)[2:0] VT_RX_ERDI_EN22 VT_RX_MAPTYPE(22)[3:0] 0x2033E VT_RCTL23 VT_SF_ESF23 VT_WR_FBIT23 VT_SYNC_PBIT23 VT_RXSIG_CH_SEL(23)[4:0] VT_J2MON_MODE(23)[2:0] VT_RX_ERDI_EN23 VT_RX_MAPTYPE(23)[3:0] 0x2033F VT_RCTL24 VT_SF_ESF24 VT_WR_FBIT24 VT_SYNC_PBIT24 VT_RXSIG_CH_SEL(24)[4:0] VT_J2MON_MODE(24)[2:0] VT_RX_ERDI_EN24 VT_RX_MAPTYPE(24)[3:0] 0x20340 VT_RCTL25 VT_SF_ESF25 VT_WR_FBIT25 VT_SYNC_PBIT25 VT_RXSIG_CH_SEL(25)[4:0] VT_J2MON_MODE(25)[2:0] VT_RX_ERDI_EN25 VT_RX_MAPTYPE(25)[3:0] 0x20341 VT_RCTL26 VT_SF_ESF26 VT_WR_FBIT26 VT_SYNC_PBIT26 VT_RXSIG_CH_SEL(26)[4:0] VT_J2MON_MODE(26)[2:0] VT_RX_ERDI_EN26 VT_RX_MAPTYPE(26)[3:0] 0x20342 VT_RCTL27 VT_SF_ESF27 VT_WR_FBIT27 VT_SYNC_PBIT27 VT_RXSIG_CH_SEL(27)[4:0] VT_J2MON_MODE(27)[2:0] VT_RX_ERDI_EN27 VT_RX_MAPTYPE(27)[3:0] 0x20343 VT_RCTL28 VT_SF_ESF28 VT_WR_FBIT28 VT_SYNC_PBIT28 VT_RXSIG_CH_SEL(28)[4:0] VT_J2MON_MODE(28)[2:0] VT_RX_ERDI_EN28 VT_RX_MAPTYPE(28)[3:0] Agere Systems Inc. 187 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive TU Overhead--RO 0x20344 VT_RTUOH_CTL1 VT_Z6_BYTE(1)[7:0] VT_OBITS(1)[7:0] 0x20345 VT_RTUOH_CTL2 VT_Z6_BYTE(2)[7:0] VT_OBITS(2)[7:0] 0x20346 VT_RTUOH_CTL3 VT_Z6_BYTE(3)[7:0] VT_OBITS(3)[7:0] 0x20347 VT_RTUOH_CTL4 VT_Z6_BYTE(4)[7:0] VT_OBITS(4)[7:0] 0x20348 VT_RTUOH_CTL5 VT_Z6_BYTE(5)[7:0] VT_OBITS(5)[7:0] 0x20349 VT_RTUOH_CTL6 VT_Z6_BYTE(6)[7:0] VT_OBITS(6)[7:0] 0x2034A VT_RTUOH_CTL7 VT_Z6_BYTE(7)[7:0] VT_OBITS(7)[7:0] 0x2034B VT_RTUOH_CTL8 VT_Z6_BYTE(8)[7:0] VT_OBITS(8)[7:0] 0x2034C VT_RTUOH_CTL9 VT_Z6_BYTE(9)[7:0] VT_OBITS(9)[7:0] 0x2034D VT_RTUOH_CTL10 VT_Z6_BYTE(10)[7:0] VT_OBITS(10)[7:0] 0x2034E VT_RTUOH_CTL11 VT_Z6_BYTE(11)[7:0] VT_OBITS(11)[7:0] 0x2034F VT_RTUOH_CTL12 VT_Z6_BYTE(12)[7:0] VT_OBITS(12)[7:0] 0x20350 VT_RTUOH_CTL13 VT_Z6_BYTE(13)[7:0] VT_OBITS(13)[7:0] 0x20351 VT_RTUOH_CTL14 VT_Z6_BYTE(14)[7:0] VT_OBITS(14)[7:0] 0x20352 VT_RTUOH_CTL15 VT_Z6_BYTE(15)[7:0] VT_OBITS(15)[7:0] 0x20353 VT_RTUOH_CTL16 VT_Z6_BYTE(16)[7:0] VT_OBITS(16)[7:0] 0x20354 VT_RTUOH_CTL17 VT_Z6_BYTE(17)[7:0] VT_OBITS(17)[7:0] 0x20355 VT_RTUOH_CTL18 VT_Z6_BYTE(18)[7:0] VT_OBITS(18)[7:0] 0x20356 VT_RTUOH_CTL19 VT_Z6_BYTE(19)[7:0] VT_OBITS(19)[7:0] 0x20357 VT_RTUOH_CTL20 VT_Z6_BYTE(20)[7:0] VT_OBITS(20)[7:0] 0x20358 VT_RTUOH_CTL21 VT_Z6_BYTE(21)[7:0] VT_OBITS(21)[7:0] 0x20359 VT_RTUOH_CTL22 VT_Z6_BYTE(22)[7:0] VT_OBITS(22)[7:0] 0x2035A VT_RTUOH_CTL23 VT_Z6_BYTE(23)[7:0] VT_OBITS(23)[7:0] 0x2035B VT_RTUOH_CTL24 VT_Z6_BYTE(24)[7:0] VT_OBITS(24)[7:0] 0x2035C VT_RTUOH_CTL25 VT_Z6_BYTE(25)[7:0] VT_OBITS(25)[7:0] 0x2035D VT_RTUOH_CTL26 VT_Z6_BYTE(26)[7:0] VT_OBITS(26)[7:0] 0x2035E VT_RTUOH_CTL27 VT_Z6_BYTE(27)[7:0] VT_OBITS(27)[7:0] 0x2035F VT_RTUOH_CTL28 VT_Z6_BYTE(28)[7:0] VT_OBITS(28)[7:0] 188 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive BIP-2 Error Count Values--RO 0x20360 VT_RBIP2_CNT1 VT_BIP2ERR_CNT(1)[11:0] 0x20361 VT_RBIP2_CNT2 VT_BIP2ERR_CNT(2)[11:0] 0x20362 VT_RBIP2_CNT3 VT_BIP2ERR_CNT(3)[11:0] 0x20363 VT_RBIP2_CNT4 VT_BIP2ERR_CNT(4)[11:0] 0x20364 VT_RBIP2_CNT5 VT_BIP2ERR_CNT(5)[11:0] 0x20365 VT_RBIP2_CNT6 VT_BIP2ERR_CNT(6)[11:0] 0x20366 VT_RBIP2_CNT7 VT_BIP2ERR_CNT(7)[11:0] 0x20367 VT_RBIP2_CNT8 VT_BIP2ERR_CNT(8)[11:0] 0x20368 VT_RBIP2_CNT9 VT_BIP2ERR_CNT(9)[11:0] 0x20369 VT_RBIP2_CNT10 VT_BIP2ERR_CNT(10)[11:0] 0x2036A VT_RBIP2_CNT11 VT_BIP2ERR_CNT(11)[11:0] 0x2036B VT_RBIP2_CNT12 VT_BIP2ERR_CNT(12)[11:0] 0x2036C VT_RBIP2_CNT13 VT_BIP2ERR_CNT(13)[11:0] 0x2036D VT_RBIP2_CNT14 VT_BIP2ERR_CNT(14)[11:0] 0x2036E VT_RBIP2_CNT15 VT_BIP2ERR_CNT(15)[11:0] 0x2036F VT_RBIP2_CNT16 VT_BIP2ERR_CNT(16)[11:0] 0x20370 VT_RBIP2_CNT17 VT_BIP2ERR_CNT(17)[11:0] 0x20371 VT_RBIP2_CNT18 VT_BIP2ERR_CNT(18)[11:0] 0x20372 VT_RBIP2_CNT19 VT_BIP2ERR_CNT(19)[11:0] 0x20373 VT_RBIP2_CNT20 VT_BIP2ERR_CNT(20)[11:0] 0x20374 VT_RBIP2_CNT21 VT_BIP2ERR_CNT(21)[11:0] 0x20375 VT_RBIP2_CNT22 VT_BIP2ERR_CNT(22)[11:0] 0x20376 VT_RBIP2_CNT23 VT_BIP2ERR_CNT(23)[11:0] 0x20377 VT_RBIP2_CNT24 VT_BIP2ERR_CNT(24)[11:0] 0x20378 VT_RBIP2_CNT25 VT_BIP2ERR_CNT(25)[11:0] 0x20379 VT_RBIP2_CNT26 VT_BIP2ERR_CNT(26)[11:0] 0x2037A VT_RBIP2_CNT27 VT_BIP2ERR_CNT(27)[11:0] 0x2037B VT_RBIP2_CNT28 VT_BIP2ERR_CNT(28)[11:0] Agere Systems Inc. 189 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive REI-V Count Values--RO 0x2037C VT_RREIV_CNT1 VT_REI_CNT(1)[10:0] 0x2037D VT_RREIV_CNT2 VT_REI_CNT(2)[10:0] 0x2037E VT_RREIV_CNT3 VT_REI_CNT(3)[10:0] 0x2037F VT_RREIV_CNT4 VT_REI_CNT(4)[10:0] 0x20380 VT_RREIV_CNT5 VT_REI_CNT(5)[10:0] 0x20381 VT_RREIV_CNT6 VT_REI_CNT(6)[10:0] 0x20382 VT_RREIV_CNT7 VT_REI_CNT(7)[10:0] 0x20383 VT_RREIV_CNT8 VT_REI_CNT(8)[10:0] 0x20384 VT_RREIV_CNT9 VT_REI_CNT(9)[10:0] 0x20385 VT_RREIV_CNT10 VT_REI_CNT(10)[10:0] 0x20386 VT_RREIV_CNT11 VT_REI_CNT(11)[10:0] 0x20387 VT_RREIV_CNT12 VT_REI_CNT(12)[10:0] 0x20388 VT_RREIV_CNT13 VT_REI_CNT(13)[10:0] 0x20389 VT_RREIV_CNT14 VT_REI_CNT(14)[10:0] 0x2038A VT_RREIV_CNT15 VT_REI_CNT(15)[10:0] 0x2038B VT_RREIV_CNT16 VT_REI_CNT(16)[10:0] 0x2038C VT_RREIV_CNT17 VT_REI_CNT(17)[10:0] 0x2038D VT_RREIV_CNT18 VT_REI_CNT(18)[10:0] 0x2038E VT_RREIV_CNT19 VT_REI_CNT(19)[10:0] 0x2038F VT_RREIV_CNT20 VT_REI_CNT(20)[10:0] 0x20390 VT_RREIV_CNT21 VT_REI_CNT(21)[10:0] 0x20391 VT_RREIV_CNT22 VT_REI_CNT(22)[10:0] 0x20392 VT_RREIV_CNT23 VT_REI_CNT(23)[10:0] 0x20393 VT_RREIV_CNT24 VT_REI_CNT(24)[10:0] 0x20394 VT_RREIV_CNT25 VT_REI_CNT(25)[10:0] 0x20395 VT_RREIV_CNT26 VT_REI_CNT(26)[10:0] 0x20396 VT_RREIV_CNT27 VT_REI_CNT(27)[10:0] 0x20397 VT_RREIV_CNT28 VT_REI_CNT(28)[10:0] 190 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive VT Pointer and Count Values--RO 0x20398 VT_RPTR_CNT1 VT_STORED_VTPTR(1)[7:0] VT_PTR_DEC(1)[3:0] VT_PTR_INC(1)[3:0] 0x20399 VT_RPTR_CNT2 VT_STORED_VTPTR(2)[7:0] VT_PTR_DEC(2)[3:0] VT_PTR_INC(2)[3:0] 0x2039A VT_RPTR_CNT3 VT_STORED_VTPTR(3)[7:0] VT_PTR_DEC(3)[3:0] VT_PTR_INC(3)[3:0] 0x2039B VT_RPTR_CNT4 VT_STORED_VTPTR(4)[7:0] VT_PTR_DEC(4)[3:0] VT_PTR_INC(4)[3:0] 0x2039C VT_RPTR_CNT5 VT_STORED_VTPTR(5)[7:0] VT_PTR_DEC(5)[3:0] VT_PTR_INC(5)[3:0] 0x2039D VT_RPTR_CNT6 VT_STORED_VTPTR(6)[7:0] VT_PTR_DEC(6)[3:0] VT_PTR_INC(6)[3:0] 0x2039E VT_RPTR_CNT7 VT_STORED_VTPTR(7)[7:0] VT_PTR_DEC(7)[3:0] VT_PTR_INC(7)[3:0] 0x2039F VT_RPTR_CNT8 VT_STORED_VTPTR(8)[7:0] VT_PTR_DEC(8)[3:0] VT_PTR_INC(8)[3:0] 0x203A0 VT_RPTR_CNT9 VT_STORED_VTPTR(9)[7:0] VT_PTR_DEC(9)[3:0] VT_PTR_INC(9)[3:0] 0x203A1 VT_RPTR_CNT10 VT_STORED_VTPTR(10)[7:0] VT_PTR_DEC(10)[3:0] VT_PTR_INC(10)[3:0] 0x203A2 VT_RPTR_CNT11 VT_STORED_VTPTR(11)[7:0] VT_PTR_DEC(11)[3:0] VT_PTR_INC(11)[3:0] 0x203A3 VT_RPTR_CNT12 VT_STORED_VTPTR(12)[7:0] VT_PTR_DEC(12)[3:0] VT_PTR_INC(12)[3:0] 0x203A4 VT_RPTR_CNT13 VT_STORED_VTPTR(13)[7:0] VT_PTR_DEC(13)[3:0] VT_PTR_INC(13)[3:0] 0x203A5 VT_RPTR_CNT14 VT_STORED_VTPTR(14)[7:0] VT_PTR_DEC(14)[3:0] VT_PTR_INC(14)[3:0] 0x203A6 VT_RPTR_CNT15 VT_STORED_VTPTR(15)[7:0] VT_PTR_DEC(15)[3:0] VT_PTR_INC(15)[3:0] 0x203A7 VT_RPTR_CNT16 VT_STORED_VTPTR(16)[7:0] VT_PTR_DEC(16)[3:0] VT_PTR_INC(16)[3:0] 0x203A8 VT_RPTR_CNT17 VT_STORED_VTPTR(17)[7:0] VT_PTR_DEC(17)[3:0] VT_PTR_INC(17)[3:0] 0x203A9 VT_RPTR_CNT18 VT_STORED_VTPTR(18)[7:0] VT_PTR_DEC(18)[3:0] VT_PTR_INC(18)[3:0] 0x203AA VT_RPTR_CNT19 VT_STORED_VTPTR(19)[7:0] VT_PTR_DEC(19)[3:0] VT_PTR_INC(19)[3:0] 0x203AB VT_RPTR_CNT20 VT_STORED_VTPTR(20)[7:0] VT_PTR_DEC(20)[3:0] VT_PTR_INC(20)[3:0] 0x203AC VT_RPTR_CNT21 VT_STORED_VTPTR(21)[7:0] VT_PTR_DEC(21)[3:0] VT_PTR_INC(21)[3:0] 0x203AD VT_RPTR_CNT22 VT_STORED_VTPTR(22)[7:0] VT_PTR_DEC(22)[3:0] VT_PTR_INC(22)[3:0] 0x203AE VT_RPTR_CNT23 VT_STORED_VTPTR(23)[7:0] VT_PTR_DEC(23)[3:0] VT_PTR_INC(23)[3:0] 0x203AF VT_RPTR_CNT24 VT_STORED_VTPTR(24)[7:0] VT_PTR_DEC(24)[3:0] VT_PTR_INC(24)[3:0] 0x203B0 VT_RPTR_CNT25 VT_STORED_VTPTR(25)[7:0] VT_PTR_DEC(25)[3:0] VT_PTR_INC(25)[3:0] 0x203B1 VT_RPTR_CNT26 VT_STORED_VTPTR(26)[7:0] VT_PTR_DEC(26)[3:0] VT_PTR_INC(26)[3:0] 0x203B2 VT_RPTR_CNT27 VT_STORED_VTPTR(27)[7:0] VT_PTR_DEC(27)[3:0] VT_PTR_INC(27)[3:0] 0x203B3 VT_RPTR_CNT28 VT_STORED_VTPTR(28)[7:0] VT_PTR_DEC(28)[3:0] VT_PTR_INC(28)[3:0] Agere Systems Inc. 191 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Channel 1 Receive J2 Expected/Monitor Values--R/W, RO 0x203B4 -- 0x203C3 VT_J2BYTE_EXP_R[1][1] -- VT_J2BYTE_EXP_R[1][16] VT_J2BYTE_EXP(1)(1)[7:0] -- VT_J2BYTE_EXP(1)(16)[7:0] 0x203C4 -- 0x203D3 VT_J2BYTE_EXP_R[2][1] -- VT_J2BYTE_EXP_R[2][16] VT_J2BYTE_EXP(2)(1)[7:0] -- VT_J2BYTE_EXP(2)(16)[7:0] 0x203D4 -- 0x203E3 VT_J2BYTE_EXP_R[3][1] -- VT_J2BYTE_EXP_R[3][16] VT_J2BYTE_EXP(3)(1)[7:0] -- VT_J2BYTE_EXP(3)(16)[7:0] 0x203E4 -- 0x203F3 VT_J2BYTE_EXP_R[4][1] -- VT_J2BYTE_EXP_R[4][16] VT_J2BYTE_EXP(4)(1)[7:0] -- VT_J2BYTE_EXP(4)(16)[7:0] 0x203F4 -- 0x20403 VT_J2BYTE_EXP_R[5][1] -- VT_J2BYTE_EXP_R[5][16] VT_J2BYTE_EXP(5)(1)[7:0] -- VT_J2BYTE_EXP(5)(16)[7:0] 0x20404 -- 0x20413 VT_J2BYTE_EXP_R[6][1] -- VT_J2BYTE_EXP_R[6][16] VT_J2BYTE_EXP(6)(1)[7:0] -- VT_J2BYTE_EXP(6)(16)[7:0] 0x20414 -- 0x20423 VT_J2BYTE_EXP_R[7][1] -- VT_J2BYTE_EXP_R[7][16] VT_J2BYTE_EXP(7)(1)[7:0] -- VT_J2BYTE_EXP(7)(16)[7:0] 0x20424 -- 0x20433 VT_J2BYTE_EXP_R[8][1] -- VT_J2BYTE_EXP_R[8][16] VT_J2BYTE_EXP(8)(1)[7:0] -- VT_J2BYTE_EXP(8)(16)[7:0] 0x20434 -- 0x20443 VT_J2BYTE_EXP_R[9][1] -- VT_J2BYTE_EXP_R[9][16] VT_J2BYTE_EXP(9)(1)[7:0] -- VT_J2BYTE_EXP(9)(16)[7:0] 0x20444 -- 0x20453 VT_J2BYTE_EXP_R[10][1] -- VT_J2BYTE_EXP_R[10][16] VT_J2BYTE_EXP(10)(1)[7:0] -- VT_J2BYTE_EXP(10)(16)[7:0] 0x20454 -- 0x20463 VT_J2BYTE_EXP_R[11][1] -- VT_J2BYTE_EXP_R[11][16] VT_J2BYTE_EXP(11)(1)[7:0] -- VT_J2BYTE_EXP(11)(16)[7:0] VT_J2BYTE_DET(1)(1)[7:0] -- VT_J2BYTE_DET(1)(16)[7:0] Channel 2 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(2)(1)[7:0] -- VT_J2BYTE_DET(2)(16)[7:0] Channel 3 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(3)(1)[7:0] -- VT_J2BYTE_DET(3)(16)[7:0] Channel 4 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(4)(1)[7:0] -- VT_J2BYTE_DET(4)(16)[7:0] Channel 5 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(5)(1)[7:0] -- VT_J2BYTE_DET(5)(16)[7:0] Channel 6 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(6)(1)[7:0] -- VT_J2BYTE_DET(6)(16)[7:0] Channel 7 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(7)(1)[7:0] -- VT_J2BYTE_DET(7)(16)[7:0] Channel 8 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(8)(1)[7:0] -- VT_J2BYTE_DET(8)(16)[7:0] Channel 9 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(9)(1)[7:0] -- VT_J2BYTE_DET(9)(16)[7:0] Channel 10 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(10)(1)[7:0] -- VT_J2BYTE_DET(10)(16)[7:0] Channel 11 Receive J2 Expected/Monitor Values--R/W, RO 192 VT_J2BYTE_DET(11)(1)[7:0] -- VT_J2BYTE_DET(11)(16)[7:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Channel 12 Receive J2 Expected/Monitor Values--R/W, RO 0x20464 -- 0x20473 VT_J2BYTE_EXP_R[12][1] -- VT_J2BYTE_EXP_R[12][16] VT_J2BYTE_EXP(12)(1)[7:0] -- VT_J2BYTE_EXP(12)(16)[7:0] 0x20474 -- 0x20483 VT_J2BYTE_EXP_R[13][1] -- VT_J2BYTE_EXP_R[13][16] VT_J2BYTE_EXP(13)(1)[7:0] -- VT_J2BYTE_EXP(13)(16)[7:0] 0x20484 -- 0x20493 VT_J2BYTE_EXP_R[14][1] -- VT_J2BYTE_EXP_R[14][16] VT_J2BYTE_EXP(14)(1)[7:0] -- VT_J2BYTE_EXP(14)(16)[7:0] 0x20494 -- 0x204A3 VT_J2BYTE_EXP_R[15][1] -- VT_J2BYTE_EXP_R[15][16] VT_J2BYTE_EXP(15)(1)[7:0] -- VT_J2BYTE_EXP(15)(16)[7:0] 0x204A4 -- 0x204B3 VT_J2BYTE_EXP_R[16][1] -- VT_J2BYTE_EXP_R[16][16] VT_J2BYTE_EXP(16)(1)[7:0] -- VT_J2BYTE_EXP(16)(16)[7:0] 0x204B4 -- 0x204C3 VT_J2BYTE_EXP_R[17][1] -- VT_J2BYTE_EXP_R[17][16] VT_J2BYTE_EXP(17)(1)[7:0] -- VT_J2BYTE_EXP(17)(16)[7:0] 0x204C4 -- 0x204D3 VT_J2BYTE_EXP_R[18][1] -- VT_J2BYTE_EXP_R[18][16] VT_J2BYTE_EXP(18)(1)[7:0] -- VT_J2BYTE_EXP(18)(16)[7:0] 0x204D4 -- 0x204E3 VT_J2BYTE_EXP_R[19][1] -- VT_J2BYTE_EXP_R[19][16] VT_J2BYTE_EXP(19)(1)[7:0] -- VT_J2BYTE_EXP(19)(16)[7:0] 0x204E4 -- 0x204F3 VT_J2BYTE_EXP_R[20][1] -- VT_J2BYTE_EXP_R[20][16] VT_J2BYTE_EXP(20)(1)[7:0] -- VT_J2BYTE_EXP(20)(16)[7:0] 0x204F4 -- 0x20503 VT_J2BYTE_EXP_R[21][1] -- VT_J2BYTE_EXP_R[21][16] VT_J2BYTE_EXP(21)(1)[7:0] -- VT_J2BYTE_EXP(21)(16)[7:0] 0x20504 -- 0x20513 VT_J2BYTE_EXP_R[22][1] -- VT_J2BYTE_EXP_R[22][16] VT_J2BYTE_EXP(22)(1)[7:0] -- VT_J2BYTE_EXP(22)(16)[7:0] VT_J2BYTE_DET(12)(1)[7:0] -- VT_J2BYTE_DET(12)(16)[7:0] Channel 13 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(13)(1)[7:0] -- VT_J2BYTE_DET(13)(16)[7:0] Channel 14 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(14)(1)[7:0] -- VT_J2BYTE_DET()14(16)[7:0] Channel 15 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(15)(1)[7:0] -- VT_J2BYTE_DET(15)(16)[7:0] Channel 16 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(16)(1)[7:0] -- VT_J2BYTE_DET(16)(16)[7:0] Channel 17 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(17)(1)[7:0] -- VT_J2BYTE_DET(17)(16)[7:0] Channel 18 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(18)(1)[7:0] -- VT_J2BYTE_DET(18)(16)[7:0] Channel 19 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(19)(1)[7:0] -- VT_J2BYTE_DET(19)(16)[7:0] Channel 20 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(20)(1)[7:0] -- VT_J2BYTE_DET(20)(16)[7:0] Channel 21 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(21)(1)[7:0] -- VT_J2BYTE_DET(21)(16)[7:0] Channel 22 Receive J2 Expected/Monitor Values--R/W, RO Agere Systems Inc. VT_J2BYTE_DET(22)(1)[7:0] -- VT_J2BYTE_DET(22)(16)[7:0] 193 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Channel 23 Receive J2 Expected/Monitor Values--R/W, RO 0x20514 -- 0x20523 VT_J2BYTE_EXP_R[23][1] -- VT_J2BYTE_EXP_R[23][16] VT_J2BYTE_EXP(23)(1)[7:0] -- VT_J2BYTE_EXP(23)(16)[7:0] 0x20524 -- 0x20533 VT_J2BYTE_EXP_R[24][1] -- VT_J2BYTE_EXP_R[24][16] VT_J2BYTE_EXP(24)(1)[7:0] -- VT_J2BYTE_EXP(24)(16)[7:0] 0x20534 -- 0x20543 VT_J2BYTE_EXP_R[25][1] -- VT_J2BYTE_EXP_R[25][16] VT_J2BYTE_EXP(25)(1)[7:0] -- VT_J2BYTE_EXP(25)(16)[7:0] 0x20544 -- 0x20553 VT_J2BYTE_EXP_R[26][1] -- VT_J2BYTE_EXP_R[26][16] VT_J2BYTE_EXP(26)(1)[7:0] -- VT_J2BYTE_EXP(26)(16)[7:0] 0x20554 -- 0x20563 VT_J2BYTE_EXP_R[27][1] -- VT_J2BYTE_EXP_R[27][16] VT_J2BYTE_EXP(27)(1)[7:0] -- VT_J2BYTE_EXP(27)(16)[7:0] 0x20564 -- 0x20573 VT_J2BYTE_EXP_R[28][1] -- VT_J2BYTE_EXP_R[28][16] VT_J2BYTE_EXP(28)(1)[7:0] -- VT_J2BYTE_EXP(28)(16)[7:0] VT_J2BYTE_DET(23)(1)[7:0] -- VT_J2BYTE_DET(23)(16)[7:0] Channel 24 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(24)(1)[7:0] -- VT_J2BYTE_DET(24)(16)[7:0] Channel 25 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(25)(1)[7:0] -- VT_J2BYTE_DET(25)(16)[7:0] Channel 26 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(26)(1)[7:0] -- VT_J2BYTE_DET(26)(16)[7:0] Channel 27 Receive J2 Expected/Monitor Values--R/W, RO VT_J2BYTE_DET(27)(1)[7:0] -- VT_J2BYTE_DET(27)(16)[7:0] Channel 28 Receive J2 Expected/Monitor Values--R/W, RO 194 VT_J2BYTE_DET(28)(1)[7:0] -- VT_J2BYTE_DET(28)(16)[7:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 10 VT/TU Mapper Registers (continued) Table 211. VT/TU Mapper Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Elastic Store Threshold Control--R/W 0x20574 VT_THRES_CTL1 VT_HIGH_THRES(1)[6:0] VT_LOW_THRES(1)[6:0] 0x20575 VT_THRES_CTL2 VT_HIGH_THRES(2)[6:0] VT_LOW_THRES(2)[6:0] 0x20576 VT_THRES_CTL3 VT_HIGH_THRES(3)[6:0] VT_LOW_THRES(3)[6:0] 0x20577 VT_THRES_CTL4 VT_HIGH_THRES(4)[6:0] VT_LOW_THRES(4)[6:0] 0x20578 VT_THRES_CTL5 VT_HIGH_THRES(5)[6:0] VT_LOW_THRES(5)[6:0] 0x20579 VT_THRES_CTL6 VT_HIGH_THRES(6)[6:0] VT_LOW_THRES(6)[6:0] 0x2057A VT_THRES_CTL7 VT_HIGH_THRES(7)[6:0] VT_LOW_THRES(7)[6:0] 0x2057B VT_THRES_CTL8 VT_HIGH_THRES(8)[6:0] VT_LOW_THRES(8)[6:0] 0x2057C VT_THRES_CTL9 VT_HIGH_THRES(9)[6:0] VT_LOW_THRES(9)[6:0] 0x2057D VT_THRES_CTL10 VT_HIGH_THRES(10)[6:0] VT_LOW_THRES(10)[6:0] 0x2057E VT_THRES_CTL11 VT_HIGH_THRES(11)[6:0] VT_LOW_THRES(11)[6:0] 0x2057F VT_THRES_CTL12 VT_HIGH_THRES(12)[6:0] VT_LOW_THRES(12)[6:0] 0x20580 VT_THRES_CTL13 VT_HIGH_THRES(13)[6:0] VT_LOW_THRES(13)[6:0] 0x20581 VT_THRES_CTL14 VT_HIGH_THRES(14)[6:0] VT_LOW_THRES(14)[6:0] 0x20582 VT_THRES_CTL15 VT_HIGH_THRES(15)[6:0] VT_LOW_THRES(15)[6:0] 0x20583 VT_THRES_CTL16 VT_HIGH_THRES(16)[6:0] VT_LOW_THRES(16)[6:0] 0x20584 VT_THRES_CTL17 VT_HIGH_THRES(17)[6:0] VT_LOW_THRES(17)[6:0] 0x20585 VT_THRES_CTL18 VT_HIGH_THRES(18)[6:0] VT_LOW_THRES(18)[6:0] 0x20586 VT_THRES_CTL19 VT_HIGH_THRES(19)[6:0] VT_LOW_THRES(19)[6:0] 0x20587 VT_THRES_CTL20 VT_HIGH_THRES(20)[6:0] VT_LOW_THRES(20)[6:0] 0x20588 VT_THRES_CTL21 VT_HIGH_THRES(21)[6:0] VT_LOW_THRES(21)[6:0] 0x20589 VT_THRES_CTL22 VT_HIGH_THRES(22)[6:0] VT_LOW_THRES(22)[6:0] 0x2058A VT_THRES_CTL23 VT_HIGH_THRES(23)[6:0] VT_LOW_THRES(23)[6:0] 0x2058B VT_THRES_CTL24 VT_HIGH_THRES(24)[6:0] VT_LOW_THRES(24)[6:0] 0x2058C VT_THRES_CTL25 VT_HIGH_THRES(25)[6:0] VT_LOW_THRES(25)[6:0] 0x2058D VT_THRES_CTL26 VT_HIGH_THRES(26)[6:0] VT_LOW_THRES(26)[6:0] 0x2058E VT_THRES_CTL27 VT_HIGH_THRES(27)[6:0] VT_LOW_THRES(27)[6:0] 0x2058F VT_THRES_CTL28 VT_HIGH_THRES(28)[6:0] VT_LOW_THRES(28)[6:0] Note: Registers from 0x20590 to 0x20969 are reserved and should not be read. Agere Systems Inc. 195 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers Table of Contents Contents Page 11 M13/M23 MUX/DeMUX Registers .................................................................................................................. 196 11.1 M13 Block Register Descriptions ............................................................................................................ 198 11.2 M13 Register Map .................................................................................................................................. 228 Tables Page Table 212. Table 213. Table 214. Table 215. Table 216. Table 217. Table 218. Table 219. Table 220. Table 221. Table 222. Table 223. Table 224. Table 225. Table 226. Table 227. Table 228. Table 229. Table 230. Table 231. Table 232. Table 233. Table 234. Table 235. Table 236. Table 237. Table 238. Table 239. Table 240. Table 241. Table 242. Table 243. Table 244. Table 245. Table 246. Table 247. Table 248. Table 249. Table 250. M13_ID_R, M13 Block Identification (RO) ......................................................................................... 198 M13_VERSION_R, M13 Version (RO) .............................................................................................. 198 M13_DELTA1, Delta (RO) ................................................................................................................. 199 M13_DELTA2, Delta (RO)................................................................................................................. 200 M13_DELTA3, Delta (RO)................................................................................................................. 200 M13_DELTA4, Delta (RO) ................................................................................................................. 201 M13_DELTA5, Delta (RO) ................................................................................................................. 202 M13_MASK1, Mask (R/W) ................................................................................................................ 202 M13_MASK2, Mask (R/W) ................................................................................................................ 203 M13_MASK3, Mask (R/W) ................................................................................................................ 203 M13_MASK4, Mask (R/W) ................................................................................................................ 204 M13_MASK5, Mask (R/W) ................................................................................................................ 205 M13_DS3_STATUS1, Status (RO) ................................................................................................... 205 M13_DS3_STATUS2, Status (RO) ................................................................................................... 206 M13_XC_DS2_LOCD_R, DS2 Loss of Clock Delta (RO) ................................................................. 206 M13_XC_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detection Delta (RO) .......................... 206 M13_DS2_OOFD_R, DS2 Out of Frame Delta (RO) ........................................................................ 207 M13_DS2_LOFD_R, DS2 Loss of Frame Delta (RO) ....................................................................... 207 M13_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detect Delta (RO) ...................................... 207 M13_DS2_RAI_DETD_R, DS2 Remote Alarm Indication Detection Delta (RO) .............................. 207 M13_DS2_LB_DETD_R, DS2 Loopback Detect Delta (RO) ............................................................. 208 M13_DS2_RSV_RCVD_R, DS2 Receive Reserved Bit Delta (RO) .................................................. 208 M13_DS2DMX_LOCD_R, DS2 DeMUX Loss of Clock Delta (RO) ................................................... 208 M13_DS1_LOCD_R[1--4], DS1 Loss of Clock Delta Registers (RO) .............................................. 208 M13_DS1_AIS_DETD_R[1--4], DS1 Alarm Indication Signal Delta Registers (RO) ........................ 209 M13_DS1_LB_DETD_R[1--4], DS1 Loopback Detect Delta Registers (RO) ................................... 209 M13__XC_DS2_LOC_R, DS2 Loss of Clock Status (RO) ................................................................ 209 M13_XC_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO) ................................ 209 M13_DS2_OOF_R, DS2 Out of Frame Status (RO) ......................................................................... 210 M13_DS2_LOF_R, DS2 Loss of Frame Status (RO) ........................................................................ 210 M13_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO) ....................................... 210 M13_DS2_RAI_DET_R, DS2 Remote Alarm Indication Detect Status (RO) .................................... 210 M13_DS2_LB_DET_R, DS2 Loopback Detect Status (RO) ............................................................. 211 M13_DS2_RSV_RCV_R, DS2 Receive Reserved Bit Delta Status (RO) ......................................... 211 M13_DS2DMX_LOC_R, DS2 DeMUX Loss of Clock Status (RO) ................................................... 211 M13_DS1_LOC_R[1--4], DS1 Loss of Clock Status Registers (RO) ............................................... 211 M13_DS1_AIS_DET_R[1--4], DS1 Alarm Indication Signal Detect Status Registers (RO) ............. 212 M13_DS1_LB_DET_R[1--4], DS1 Loopback Detect Status Registers (RO) .................................... 212 M13_DS1_FEAC_LB_DETD_R[1--4], DS1 Far-End Alarm and Control Loopback Detect Delta Registers (RO) ................................................................................................................................... 213 Table 251. M13_DS1_FEAC_LB_DET_R[1--4], DS1 Far-End Alarm and Control Loopback Detect Status Registers (RO) ....................................................................................................................... 213 Table 252. M13_RFEAC_CODE_R, Receive Far-End Alarm and Control Code Status (RO) ............................ 214 196 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table of Contents (continued) Tables Page Table 253. M13_RDL_STATUS, Receive Data-Link Status (RO) ....................................................................... 214 Table 254. M13_RDL_DATA_R, Receive Data-Link Data (RO) ......................................................................... 214 Table 255. M13_RDL_FRAME_SIZE_R, Receive Data-Link Frame Size (RO) .................................................. 214 Table 256. M13_RHDLC_STATUS_R, Receive High-Level Data-Link Control Status (RO) .............................. 215 Table 257. M13_DS2_FORCE_OOF_R, DS2 Force Out of Frame (One Shot R/W) .......................................... 215 Table 258. M13_CONTROL1, Control 1 (One Shot R/W) ................................................................................... 215 Table 259. M13_CONTROL2, Control 2 (R/W) ................................................................................................... 215 Table 260. M13_CONTROL3, Control 3 (R/W) .................................................................................................. 216 Table 261. M13_SP_OFFSET_R, Sync Pulse Offset (R/W) ............................................................................... 216 Table 262. M13_SP_D_OFFSET_R, Sync Pulse D Offset (R/W) ....................................................................... 216 Table 263. M13_M12_MUX_CONTROL1_R[1--7], M12 MUX CONTROL 1 Registers [1--7] (R/W) ................ 217 Table 264. M13_M12_MUX_CONTROL2_R[1--7], M12 MUX CONTROL 2 Registers [1--7] (R/W) ................ 217 Table 265. M13_DS2_RAI_SEND_R, DS2 Remote Alarm Indication Send (R/W) ............................................. 217 Table 266. M13_DS2_RSV_SEND_R, DS2 Reserve Bit Send (R/W) ................................................................ 217 Table 267. M13_DS2_MPINV_R, DS2 M Frame Alignment or Parity Error (R/W) ............................................. 218 Table 268. M13_DS2_FINV_R, DS2 Frame Error (R/W) .................................................................................... 218 Table 269. M13_DS2_P_BER_R, Parity Bit Error Rate (R/W) ............................................................................ 218 Table 270. M13_DS2M12_EDGE_R, DS2 M12 Edge (R/W) .............................................................................. 218 Table 271. M13_DS2_FORCE_AIS_R, DS2 Force Alarm Indication Signal (R/W) ............................................ 218 Table 272. M13_M12_DEMUX_CONTROL1_R[1--7], M12 DeMUX Control 1 Registers [1--7] (R/W) ............ 219 Table 273. M13_M12_DEMUX_CONTROL2_R[1--7], M12 DeMUX Control 2 Registers [1--7] (R/W) ............ 219 Table 274. M13_M12_DEMUX_CONTROL3, DS2 M12 DeMUX Control 3 (R/W) ............................................. 219 Table 275. M13_DMDS2_EDGE_R, DS2 Edge for M12 DeMUX (R/W) ............................................................. 220 Table 276. M13_DS3_CONTROL1, DS3 Control 1 (R/W) .................................................................................. 220 Table 277. M13_DS3_CONTROL2, DS3 Control 2 (R/W) .................................................................................. 221 Table 278. M13_TFEAC_CONTROL, Tx FEAC Control (R/W) ........................................................................... 221 Table 279. M13_THDLC_CONTROL1, Tx HDLC Control 1 (R/W) ..................................................................... 222 Table 280. M13_THDLC_CONTROL2, Tx HDLC Control 2 (R/W) ..................................................................... 222 Table 281. M13_DS2_LB_REQ_R, DS2 Loopback Request (R/W) ................................................................... 222 Table 282. M13_SEL_DS2_LB_R, Select DS2 Loopback (R/W) ........................................................................ 223 Table 283. M13_RDS2_EDGE_R[1--2], Rx DS2 Edge Registers [1--2](R/W) .................................................. 223 Table 284. M13_DS2_OUT_IDLE_R, DS2 Output Idle (R/W) ............................................................................ 223 Table 285. M13_DS2_OUT_AIS_R, DS2 Output Alarm Indication Signal (R/W) ................................................ 223 Table 286. M13_TDS2_EDGE_R, Tx DS2 Edge (R/W) ...................................................................................... 224 Table 287. M13_RDL_CONTROL, RDL Control (R/W) ....................................................................................... 224 Table 288. M13_PM_CNT_ACT_R, Performance Counter (RO) ........................................................................ 224 Table 289. M13_DS3_FERR_CNT_R[1--2], DS3 F-Bit Error Registers (RO) .................................................... 224 Table 290. M13_DS3_FEBE_CNT_R[1--2], DS3 Far-End Block Error Registers (RO) ..................................... 225 Table 291. M13_DS3_CPERR_CNT_R[1--2], DS3 C-Bit Parity Error Registers (RO) ...................................... 225 Table 292. M13_DS3_PERR_CNT_R[1--2], DS3 P-Bit Error Registers (RO) ................................................... 225 Table 293. M13_DS2_PERR_CNT[7--1]_R[1--2], P-Bit Error Counter Status Registers (RO) ......................... 225 Table 294. M13_DS2_FERR_CNT[7--1]_R, F-Bit Error Counter Status Registers (RO) ................................... 226 Table 295. M13_BPV_CNT_R[1--3], Bipolar Violation Counter Status Registers (RO) ..................................... 226 Table 296. M13_EXZ_CNT_R[1--3], Bipolar Violation Counter Status Registers (RO) ..................................... 227 Table 297. M13_TDL_BUFFER_R, Tx Data-Link Buffer Control (R/W) .............................................................. 227 Table 298. M13_TDL_0DATA_R[0--63], Tx Data for Path Maintenence Data-Link Buffer 0 Registers (64 Bytes x 8 Bits) (R/W) ................................................................................................................... 227 Table 299. M13_TDL_1DATA_R[0--63], Tx Data for Path Maintenence Data-Link Buffer 1 Registers (64 Bytes x 8 Bits) (R/W) ................................................................................................................... 227 Table 300. Register Address Map ....................................................................................................................... 228 Agere Systems Inc. 197 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) 11.1 M13 Block Register Descriptions The following tables describe the functions of all bits. For each address, the register bits are indicated as either read/write (R/W) or read only (RO), and the value of the bits on reset is given. Table 212. M13_ID_R, M13 Block Identification (RO) Address Bit Name 0x10000 15:8 7:0 -- M13_ID[7:0] Function Reserved. The M13_ID_R register returns a fixed value (0x01) when read. Reset Default 0x00 0x01 Table 213. M13_VERSION_R, M13 Version (RO) Address Bit 0x10001 15:3 2:0 198 Name Function -- Reserved. M13_VERSION[2:0] These bits identify the version number of the M13. Reset Default 0x000 0x0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 214. M13_DELTA1, Delta (RO) Address Bit 0x10004 15:8 7 6 5 4 3 2 1 0 Name Reserved. This delta bit is set if M13_RDL_IDLE (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_DS3_LOFD This delta bit is set if M13_DS3_LOF (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_DS3_OOFD This delta bit is set if M13_DS3_OOF (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_DS3_C1_DETD This delta bit is set if M13_DS3_C1_DET (Table 224) changes state. It is cleared when read, and it is not set to 1 again until another state transition occurs. M13_DS3_RAI_DETD This delta bit is set if M13_DS3_RAI_DET (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_DS3_AISPAT_DETD This delta bit is set if M13_DS3_AISPAT_DET (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_DS3_IDLEPAT_DETD This delta bit is set if M13_DS3_IDLEPAT_DET (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_DS3_CBZ_DETD This delta bit is set if M13_DS3_CBZ_DET (Table 224) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. Agere Systems Inc. -- M13_RDL_IDLED Function Reset Default 0x00 0 0 0 0 0 0 0 0 199 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 215. M13_DELTA2, Delta (RO) Address Bit 0x10005 15:8 7 6 5 4 3 2 1 0 Name Function -- M13_DS1_LB_SD Reserved. This delta bit summarizes the state of M13_DS1_LB_DETD[28:1] (Table 237) bits. M13_DS1_AIS_SD This delta bit is set if any M13_DS1_AIS_DETD[28:1] (Table 236) bit is high. M13_DS1_LOC_SD This delta bit is set if any M13_DS1_LOCD[28:1] (Table 235) bit is high. M13_RDS3_SEFD This delta bit is set if M13_RDS3_SEF (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_RDS3_ALL1_DETD This delta bit is set if M13_RDS3_ALL1_DET (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_RDS3_LOSD This delta bit is set if M13_RDS3_LOS (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_TDS3_LOCD This delta bit is set if M13_TDS3_LOC (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_RDS3_LOCD This delta bit is set if M13_RDS3_LOC (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. Reset Default 0x00 0 0 0 0 0 0 0 0 Table 216. M13_DELTA3, Delta (RO) Address Bit 0x10006 15:8 7 6 5 4 3 2 1 0 200 Name -- M13_DS2_RSV_SD Function Reserved. This delta bit is high if any M13_DS2_RSV_RCVD[7:1] (Table 233) bit is high. M13_DS2_LB_SD This delta bit summarizes the state of M13_DS2_LB_DETD[7:1] (Table 232). M13_DS2_RAI_SD This delta bit summarizes the state of M13_DS2_RAI_DETD[7:1] (Table 231). M13_DS2_AIS_SD This delta bit summarizes the state of M13_DS2_AIS_DETD[7:1] (Table 230). M13_DS2_LOF_SD This delta bit is high if any M13_DS2_LOFD[7:1] (Table 229) bit is high. M13_DS2_OOF_SD This delta bit is high if any M13_DS2_OOFD[7:1] (Table 228) bit is high. M13_XC_DS2_AIS_SD This delta bit is set if any M13_XC_DS2_AIS_DETD[7:1] (Table 227) bit is high. M13_XC_DS2_LOC_SD This delta bit is set if any M13_XC_DS2_LOCD[7:1] (Table 226) bit is high. Reset Default 0x00 0 0 0 0 0 0 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 217. M13_DELTA4, Delta (RO) Address Bit 0x10007 15:8 7 6 5 4 3 2 1 0 Name Reserved. This bit is set when the M13 completes transmission of a sequence of FEAC control code. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. M13_TDL_DONE This bit is set when the M13 completes transmission of a data-link frame. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. M13_TDL_BUF1_INT This bit is set when the device completes transmission of M13_TDL_1DATA63[7:0] (Table 299) (the last byte of buffer 1). It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. M13_TDL_BUF0_INT This bit is set when the device completes transmission of M13_TDL_0DATA63[7:0] (Table 298) (the last byte of buffer 0). It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. M13_RDL_FIFO_AFD This delta bit is set if M13_RDL_FIFO_AF (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. M13_RDL_FRM_INT This bit indicates that a new data-link frame closing flag or an abort byte has been received. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. M13_RFEAC_ALM_INT This bit indicates that a new DS3 FEAC alarm codeword has been received. The new codeword is available in register M13_RFEAC_CODE_R (Table 252). For loopback codewords, the appropriate M13_DS1_FEAC_LB_DETx (Table 251) and M13_DS3_FLB_DET (Table 251) bits in registers 0x2F through 0x32 will be set or cleared. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. M13_RFEAC_LB_INT This bit indicates that a new DS3 FEAC loopback codeword has been received. The new codeword is available in register M13_RFEAC_CODE_R. For loopback codewords, the appropriate M13_DS1_FEAC_LB_DETx and M13_DS3_FLB_DET bits will be set or cleared. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until the event reoccurs. Agere Systems Inc. -- M13_TFEAC_DONE Function Reset Default 0x00 0 0 0 0 0 0 0 0 201 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 218. M13_DELTA5, Delta (RO) Address Bit 0x10008 15:2 1 0 Name -- Function Reset Default Reserved. 0x0000 M13_DS2DMX_LOC_SD This delta bit is set if any M13_DS2DMX_LOCD[7:0] (Table 234) bit register is high. M13_RDL_FIFO_UFD This delta bit is set if bit M13_RDL_FIFO_UF (Table 225) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. 0 0 Table 219. M13_MASK1, Mask (R/W) Address Bit 0x1000A 15:8 -- Function Reset Default Reserved. 0x00 7 M13_RDL_IDLEM Setting this mask bit high prevents the delta M13_RDL_IDLED (Table 214) from causing the block output interrupt (INT) to be active. 1 6 M13_DS3_LOFM Setting this mask bit high prevents the delta M13_DS3_LOFD (Table 214) from causing the block output INT to be active. 1 5 M13_DS3_OOFM Setting this mask bit high prevents the delta M13_DS3_OOFD (Table 214) from causing the block output INT to be active. 1 4 M13_DS3_C1_DETM Setting this mask bit high prevents the delta M13_DS3_C1_DETD (Table 214) from causing the block output INT to be active. 1 3 M13_DS3_RAI_DETM Setting this mask bit high prevents the delta M13_DS3_RAI_DETD (Table 214) from causing the block output INT to be active. 1 2 M13_DS3_AISPAT_DETM Setting this mask bit high prevents the delta M13_DS3_AISPAT_DETD (Table 214) from causing the block output INT to be Active. 1 1 0 202 Name M13_DS3_IDLEPAT_DETM Setting this mask bit high prevents the delta M13_DS3_IDLEPAT_DETD (Table 214) from causing the block output INT to be active. M13_DS3_CBZ_DETM Setting this mask bit high prevents the delta M13_DS3_CBZ_DETD (Table 214) from causing the block output INT to be active. 1 1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 220. M13_MASK2, Mask (R/W) Address Bit Name 0x1000B 15:8 -- Function Reserved. Reset Default 0x00 7 M13_DS1_LB_SM Setting this mask bit high prevents the summary delta M13_DS1_LB_SD (Table 215) from causing the block output interrupt (INT) to be active. 1 6 M13_DS1_AIS_SM Setting this mask bit high prevents the summary delta M13_DS1_AIS_SD (Table 215) from causing the block output INT to be active. 1 5 M13_DS1_LOC_SM Setting this mask bit high prevents the summary delta M13_DS1_LOC_SD (Table 215) from causing the block output INT to be active. 1 4 M13_RDS3_SEFM Setting this mask bit high prevents the delta M13_RDS3_SEFD (Table 215) from causing the block output INT to be active. 1 3 M13_RDS3_ALL1_DETM Setting this mask bit high prevents the delta M13_RDS3_ALL1_DETD (Table 215) from causing the block output INT to be active. 1 2 M13_RDS3_LOSM Setting this mask bit high prevents the delta M13_RDS3_LOSD (Table 215) from causing the block output INT to be active. 1 1 M13_TDS3_LOCM Setting this mask bit high prevents the delta M13_TDS3_LOCD (Table 215) from causing the block output INT to be active. 1 0 M13_RDS3_LOCM Setting this mask bit high prevents the delta M13_RDS3_LOCD (Table 215) from causing the block output INT to be active. 1 Name Function -- M13_DS2_RSV_SM Reserved. Setting this mask bit high prevents the summary delta M13_DS2_RSV_SD (Table 216) from causing the block output interrupt (INT) to be active. Setting this mask bit high prevents the summary delta M13_DS2_LB_SD (Table 216) from causing the block output INT to be active. Setting this mask bit high prevents the summary delta M13_DS2_RAI_SD (Table 216) from causing the block output INT to be active. Setting this mask bit high prevents the summary delta M13_DS2_AIS_SD (Table 216) from causing the block output INT to be active. Setting this mask bit high prevents the summary delta M13_DS2_LOF_SD (Table 216) from causing the block output INT to be active. Reset Default 0x00 1 Table 221. M13_MASK3, Mask (R/W) Address Bit 0x1000C 15:8 7 6 M13_DS2_LB_SM 5 M13_DS2_RAI_SM 4 M13_DS2_AIS_SM 3 M13_DS2_LOF_SM Agere Systems Inc. 1 1 1 1 203 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 221. M13_MASK3, Mask (R/W) (continued) Address Bit Name 0x1000C 2 M13_DS2_OOF_SM 1 0 Function Setting this mask bit high prevents the summary delta M13_DS2_OOF_SD (Table 216) from causing the block output INT to be active. M13_XC_DS2_AIS_SM Setting this mask bit high prevents the summary delta M13_XC_DS2_AIS_SD (Table 216) from causing the block output INT to be active. M13_XC_DS2_LOC_SM Setting this mask bit high prevents the summary delta M13_XC_DS2_LOC_SD (Table 216) from causing the block output INT to be active. Reset Default 1 1 1 Table 222. M13_MASK4, Mask (R/W) Address Bit 0x1000D 15:8 7 6 5 4 3 2 1 0 204 Name -- M13_TFEAC_DONEM Function Reserved. Setting this mask bit high prevents M13_TFEAC_DONE (Table 217) from causing the block output interrupt (INT) to be active. M13_TDL_DONEM Setting this mask bit high prevents M13_TDL_DONE (Table 217) from causing the block output INT to be active. M13_TDL_BUF1_INTM Setting this mask bit high prevents M13_TDL_BUF1_INT (Table 217) from causing the block output INT to be active. M13_TDL_BUF0_INTM Setting this mask bit high prevents M13_TDL_BUF0_INT (Table 217) from causing the block output INT to be active. M13_RDL_FIFO_AFM Setting this mask bit high prevents M13_RDL_FIFO_AFD (Table 217) from causing the block output INT to be active. M13_RDL_FRM_INTM Setting this mask bit high prevents M13_RDL_FRM_INT (Table 217) from causing the block output INT to be active. M13_RFEAC_ALM_INTM Setting this mask bit high prevents M13_RFEAC_ALM_INT (Table 217) from causing the block output INT to be active. M13_RFEAC_LB_INTM Setting this mask bit high prevents M13_RFEAC_LB_INT (Table 217) from causing the block output INT to be active. Reset Default 0x00 1 1 1 1 1 1 1 1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 223. M13_MASK5, Mask (R/W) Address Bit Name 0x1000E 15:2 1 0 -- Function Reserved. M13_DS2DMX_LOC_SM Setting this mask bit high prevents the summary delta M13_DS2DMX_LOC_SD (Table 218) from causing the block output interrupt (INT) to be active. M13_RDL_FIFO_UFM Setting this mask bit high prevents M13_RDL_FIFO_UFD (Table 218) from causing the block output INT to be active. Reset Default 000000 000000 00 1 1 Table 224. M13_DS3_STATUS1, Status (RO) Address Bit 0x1000F 15:8 7 6 5 4 3 2 1 0 Name Reserved. This bit is set if 15 consecutive ones are received on the path maintenance data link. it is cleared when a flag byte is received. M13_DS3_LOF This bit is set if M13_DS3_OOF is high continuously for 28 frame periods (approximately 3 ms). Once set, M13_DS3_LOF is not cleared until M13_DS3_OOF is continuously low for 28 frame periods. M13_DS3_OOF The DS3 framer out-of-frame state bit. (See DS3 Framer on page 469) This bit is high while out-of-frame. M13_DS3_C1_DET This bit is set if the first C bit of each DS3 frame is received high for 8 consecutive frames. Once M13_DS3_C1_DET is set, 3 consecutive frames with C1 = 0 must be received before it is cleared. M13_DS3_RAI_DET If both X bits in 2 consecutive frames are received as 0, the M13 sets this bit to 1. Once it is set, it is not cleared until both X bits in 2 consecutive frames are received as 1. M13_DS3_AISPAT_DET The 4704 information bits in each M frame are checked for the presence of the AIS (1010) pattern. A pattern detection bit is set if fewer than 5 pattern errors are received in each of 2 consecutive frames. Once a bit is set, it is not cleared until at least 16 pattern errors are received in each of 2 consecutive frames. M13_DS3_IDLEPAT_DET The 4704 information bits in each M frame are checked for the presence of the idle (1100) pattern. A pattern detection bit is set if fewer than 5 pattern errors are received in each of 2 consecutive frames. Once a bit is set, it is not cleared until at least 16 pattern errors are received in each of 2 consecutive frames. M13_DS3_CBZ_DET This bit is set if every C bit in 3 consecutive DS3 frames is 0. It is cleared if the three C bits in a single M-subframe are all 1. Agere Systems Inc. -- M13_RDL_IDLE Function Reset Default 0x00 1 0 1 0 0 0 0 0 205 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 225. M13_DS3_STATUS2, Status (RO) Address Bit 0x10010 15:7 6 5 4 3 2 1 0 Name -- Function Reserved. M13_RDL_FIFO_UF M13_RDL_FIFO_AF This bit is 1 if the receive HDLC FIFO is underflow. This bit is 1 if the number of unread bytes in the receive HDLC FIFO is greater than the fill-up level set by bits M13_RDL_FILL[1:0] (Table 287). M13_RDS3_SEF This bit is 1 if there are three or more F-bit errors in 16 consecutive F bits. It is not terminated until the signal is in-frame and there are less than three F-bit errors in 16 consecutive F bits. M13_RDS3_ALL1_DET This bit is 1 if the input data is 0 for fewer than 9 out of 8192 clock periods. M13_RDS3_LOS This bit is 1 if there are 175 75 contiguous pulse positions with no pulses of either positive or negative polarity at the DS3 Input. An LOS is cleared upon detecting an average pulse density of at least 33% over a period of 175 75 contiguous pulse positions, starting with the receipt of a pulse. M13_TDS3_LOC This bit is 1 if the SMPR_TDS3CLK signal fails to have transitions for at least 10 periods of SMPR_RDS3CLK. A single transition on SMPR_TDS3CLK resets this bit. M13_RDS3_LOC This bit is 1 if the SMPR_RDS3CLK signal fails to have transitions for at least 10 periods of SMPR_TDS3CLK. A single transition on SMPR_RDS3CLK resets this bit. Reset Default 000000 000 0 0 1 0 0 0 0 Table 226. M13_XC_DS2_LOCD_R, DS2 Loss of Clock Delta (RO) Address Bit 0x10011 15:7 6:0 Name Function -- M13_XC_DS2_ LOCD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_XC_DS2_LOC[7:1] (Table 238) transitioning either from 0 to 1 or from 1 to 0. They can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Table 227. M13_XC_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detection Delta (RO) Address Bit 0x10012 15:7 6:0 206 Name Function -- M13_XC_DS2_ AIS_DETD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_XC_DS2_AIS_DET[7:1] (Table 239) transitioning either from 0 to 1 or from 1 to 0. They can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 228. M13_DS2_OOFD_R, DS2 Out of Frame Delta (RO) Address Bit Name Function 0x10013 15:7 -- Reserved. 6:0 M13_DS2_OOFD[7:1] These individual delta bits are set as the result of the corresponding state bits M13_DS2_OOF[7:1] (Table 240) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Table 229. M13_DS2_LOFD_R, DS2 Loss of Frame Delta (RO) Address Bit Name Function 0x10014 15:7 -- Reserved. 6:0 M13_DS2_LOFD[7:1] These individual delta bits are set as the result of the corresponding state bits M13_DS2_LOF[7:1] (Table 241) transitioning either from 0 to 1 or from 1 to 0. They can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Table 230. M13_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detect Delta (RO) Address Bit 0x10015 15:7 6:0 Name Function -- M13_DS2_AIS_ DETD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_DS2_AIS_DET[7:1] (Table 242) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Table 231. M13_DS2_RAI_DETD_R, DS2 Remote Alarm Indication Detection Delta (RO) Address Bit 0x10016 15:7 6:0 Agere Systems Inc. Name Function -- M13_DS2_ RAI_DETD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_DS2_RAI_DET[7:1] (Table 243) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 207 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 232. M13_DS2_LB_DETD_R, DS2 Loopback Detect Delta (RO) Address Bit 0x10017 15:7 6:0 Name Function -- M13_DS2_LB_ DETD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_DS2_LB_DET[7:1] (Table 244) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Table 233. M13_DS2_RSV_RCVD_R, DS2 Receive Reserved Bit Delta (RO) Address Bit 0x10018 15:7 6:0 Name Function -- M13_DS2_RSV_ RCVD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_DS2_RSV_RCV[7:1] (Table 245) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. (G.747). Reset Default 0x000 0x00 Table 234. M13_DS2DMX_LOCD_R, DS2 DeMUX Loss of Clock Delta (RO) Address Bit 0x10019 15:7 6:0 Name Function -- M13_DS2DMX_ LOCD[7:1] Reserved. These individual delta bits are set as the result of the corresponding state bits M13_DS2DMX_LOC[7:1] (Table 246) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 Table 235. M13_DS1_LOCD_R[1--4], DS1 Loss of Clock Delta Registers (RO) Address Bit Name 0x1001E 0x1001F-- 0x10021 0x1001E 15:4 15:8 -- -- 3:0 M13_DS1_LOCD[28:25] 0x1001F 7:0 M13_DS1_LOCD[24:17] 0x10020 7:0 M13_DS1_LOCD[16:9] 0x10021 7:0 M13_DS1_LOCD[8:1] 208 Function Reset Default 0x000 0x00 These individual delta bits are set as the result of the corresponding state bits M13_DS1_LOC[28:1] (Table 247) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. 0x00 Reserved. Reserved. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 236. M13_DS1_AIS_DETD_R[1--4], DS1 Alarm Indication Signal Delta Registers (RO) Address Bit 0x10022 15:4 0x10023-- 15:8 0x10025 0x10022 3:0 Name -- -- Function Reset Default 0x000 0x00 These individual delta bits are set as the result of the corresponding state bits M13_DS1_AIS_DET[28:1] (Table 248) transitioning either from 0 to 1 or from 1 to 0. Delta bits can be programmed to be either clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. 0x00 Reserved. Reserved. M13_DS1_AIS_DETD[28:25] 0x10023 7:0 M13_DS1_AIS_DETD[24:17] 0x10024 7:0 M13_DS1_AIS_DETD[16:9] 0x10025 7:0 M13_DS1_AIS_DETD[8:1] Table 237. M13_DS1_LB_DETD_R[1--4], DS1 Loopback Detect Delta Registers (RO) Address Bit 0x10026 15:4 0x10027-- 15:8 0x10029 3:0 0x10026 0x10027 7:0 0x10028 7:0 0x10029 7:0 Name -- -- Function Reserved. Reserved. M13_DS1_LB_DETD[28:25] These individual delta bits are set as the result of the M13_DS1_LB_DETD[24:17] corresponding state bits M13_DS1_LB_DET[28:1] (Table 249) transitioning either from 0 to 1 or From 1 M13_DS1_LB_DETD[16:9] to 0. Delta bits can be programmed to be either clear M13_DS1_LB_DETD[8:1] on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. Reset Default 0x000 0x00 0x00 Table 238. M13__XC_DS2_LOC_R, DS2 Loss of Clock Status (RO) Address Bit 0x1002F 15:7 6:0 Name -- M13_XC_DS2_ LOC[7:1] Function Reserved. A logic 1 of M13_XC_DS2_LOCy bit indicates that loss of clock is detected on the DS2 clock input. Reset Default 0x000 0x00 Table 239. M13_XC_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO) Address Bit 0x10030 15:7 6:0 Agere Systems Inc. Name Function -- M13_XC_DS2_ AIS_DET[7:1] Reserved. The M13_XC_DS2_AIS_DETy bit is set high if the input XC_DS2M23DATAy is 0 for fewer than 5 clock cycles in each of two consecutive 840 clock periods, And cleared if there are more than four zeros in each of two consecutive 840-bit periods. Reset Default 0x000 0x00 209 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 240. M13_DS2_OOF_R, DS2 Out of Frame Status (RO) Address Bit 0x10031 15:7 6:0 Name -- M13_DS2_OOF[7:1] Function Reserved. This register contains the state bits for the DS2 framers. A 1 indicates out-of-frame. Reset Default 000000 000 0x7F Table 241. M13_DS2_LOF_R, DS2 Loss of Frame Status (RO) Address Bit 0x10032 15:7 6:0 Name -- M13_DS2_LOF[7:1] Function Reset Default Reserved. -- 0x00 The M13_DS2_LOFy bit is set if M13_DS2_OOFy (Table 240) is high continuously for 28 DS3 frame periods (approximately 3 ms). Once set, M13_DS2_LOFy is not cleared until M13_DS2_OOFy is continuously low for 28 DS3 frame periods. DS3 frame periods are not counted while M13_DS3_OOF = 1 (Table 224). Table 242. M13_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO) Address Bit 0x10033 15:7 6:0 Name Function -- M13_DS2_AIS_ DET[7:1] Reserved. The M13_DS2_AIS_DETy bit is set high if the input to the yth M12 demultiplexer is logic 0 for fewer than 5 clock cycles in each of two consecutive 840 clock periods and cleared if there are more than four zeros in each of two consecutive 840-bit periods. Reset Default 0x000 0x00 Table 243. M13_DS2_RAI_DET_R, DS2 Remote Alarm Indication Detect Status (RO) Address Bit 0x10034 15:7 6:0 210 Name -- M13_DS2_RAI_ DET[7:1] Function Reset Default Reserved. 0x000 The M13_DS2_RAI_DETy bit changes state only after the X bit 0x00 in the DS1 mode (M13_DS1_E1Ny = 1 (Table 263)), or the RAI bit in the E1 mode is received as the same value for four consecutive DS2 frames. DS2 frame periods are not counted while M13_DS3_OOF = 1 (Table 224). In the DS1 mode, M13_DS2_RAI_DETy is set to the inverse of the X bit. In the E1 mode, it is set equal to the RAI bit. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 244. M13_DS2_LB_DET_R, DS2 Loopback Detect Status (RO) Address Bit 0x10035 15:7 6:0 Name -- M13_DS2_LB_ DET[7:1] Function Reset Default Reserved. 0x000 0x00 In the M23 mode (M13_M23_CBP = 1 (Table 260)), the C bits in each received DS3 M-subframe are checked for loopback requests. If the third C bit differs from the first and second C bits in the yth M-subframe for 5 successive DS3 frames, M13_DS2_LB_DETy is set to 1. M13_DS2_LB_DETy is cleared when the third C bit does not differ from the first two C bits in subframe y for 5 successive DS3 frames. In the C-bit parity mode, M13_DS2_LB_DETy is fixed at 0. Table 245. M13_DS2_RSV_RCV_R, DS2 Receive Reserved Bit Delta Status (RO) Address Bit 0x10036 15:7 6:0 Name Function -- M13_DS2_RSV_ RCV[7:1] Reserved. The M13_DS2_RSV_RCVy bit changes state only after the reserved bit in the E1 mode (M13_DS1_E1Ny = 0) is received as the same value for 4 consecutive DS2 frames. DS2 frame periods are not counted while M13_DS3_OOF = 1. It is set equal to the reserved bit. Reset Default 0x000 0x00 Table 246. M13_DS2DMX_LOC_R, DS2 DeMUX Loss of Clock Status (RO) Address Bit 0x10037 15:7 6:0 Name -- M13_DS2DMX_ LOC[7:1] Function Reserved. A logic 1 of M13_DS2DMX_LOCy bit indicates that loss of clock is detected on the DS2 clock input, XC_DS2DMXCLKy. Reset Default 0x000 0x00 Table 247. M13_DS1_LOC_R[1--4], DS1 Loss of Clock Status Registers (RO) Address Bit Name Function 0x1003C 15:4 -- Reserved. Reset Default 0x000 0x1003D 15:8 -- Reserved. 0x00 0x1003E 15:8 -- Reserved. 0x00 0x1003F 15:8 -- Reserved. 0x00 The M13_DS1_LOCx bits indicate when loss of clock is detected on a low-speed clock input, XC_DS1CLKx. 0x0 0x1003C 3:0 M13_DS1_LOC[28:25] 0x1003D 7:0 M13_DS1_LOC[24:17] 0x1003E 7:0 M13_DS1_LOC[16:9] 0x00 0x1003F 7:0 M13_DS1_LOC[8:1] 0x00 Agere Systems Inc. 0x00 211 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 248. M13_DS1_AIS_DET_R[1--4], DS1 Alarm Indication Signal Detect Status Registers (RO) Address Bit 0x10040 15:4 -- Reserved. Reset Default 0x000 0x10041 15:8 -- Reserved. 0x00 0x10042 15:8 -- Reserved. 0x00 0x10043 15:8 -- Reserved. 0x00 0x10040 3:0 0x10041 Name Function 7:0 M13_DS1_AIS_DET[28:25] The M13_DS1_AIS_DETx bits indicate when AIS is M13_DS1_AIS_DET[24:17] detected on a low-speed data input, XC_DS1DATAx. 0x00 0x10042 7:0 M13_DS1_AIS_DET[16:9] 0x00 0x10043 7:0 M13_DS1_AIS_DET[8:1] 0x00 0x0 Table 249. M13_DS1_LB_DET_R[1--4], DS1 Loopback Detect Status Registers (RO) Address Bit Name 0x10044 15:4 -- Reserved. Reset Default 0x000 0x10045 15:8 -- Reserved. 0x00 0x10046 15:8 -- Reserved. 0x00 0x10047 15:8 -- Reserved. 0x00 The M13_DS1_LB_DETx bits indicate when a loopback request has been received through inversion of the third C bit in received DS2 frames. 0x0 0x10044 3:0 M13_DS1_LB_DET[28:25] 0x10045 7:0 M13_DS1_LB_DET[24:17] 0x10046 7:0 M13_DS1_LB_DET[16:9] 0x10047 7:0 M13_DS1_LB_DET[8:1] 212 Function 0x00 0x00 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 250. M13_DS1_FEAC_LB_DETD_R[1--4], DS1 Far-End Alarm and Control Loopback Detect Delta Registers (RO) Address Bit Name Function Reset Default 0x00 0x0 -- This delta bit is set if M13_DS3_FLB_DET (Table 251) changes state. It can be programmed to be either clear on read (COR) or clear on write (COW), and it is not set to 1 again until another state transition occurs. Reserved. 6:4 -- Reserved. 000 0x1004A 15:8 -- Reserved. 0x00 0x1004B 15:8 -- Reserved. 0x00 0x10049 15:8 0x10049 0x10049 -- 7 M13_DS3_FLB_DETD Reserved. 0x00 0x1004C 15:8 0x10049 3:0 0x1004A 7:0 0x1004B 7:0 0x1004C 7:0 These individual delta bits are set as the M13_DS1_FEAC_LB_DETD[28:25] result of the corresponding state bits M13_DS1_FEAC_LB_DETD[24:17] M13_DS1_FEAC_LB_DET[28:1] (Table 251) transitioning either from 0 to 1 or from 1 to 0. M13_DS1_FEAC_LB_DETD[16:9] Delta bits can be programmed to be either M13_DS1_FEAC_LB_DETD[8:1] clear on read (COR) or clear on write (COW), and they are not set to 1 again until the event reoccurs. 0x0 0x00 0x00 0x00 Table 251. M13_DS1_FEAC_LB_DET_R[1--4], DS1 Far-End Alarm and Control Loopback Detect Status Registers (RO) Address Bit 0x1004D 15:8 Name Function -- Reserved. When an FEAC loopback activate codeword for DS3 is received four consecutive times, the bit is set high. The bit is cleared when a loopback deactivate codeword is received four consecutive times. Reserved. Reserved. Reserved. Reserved. 0x1004D 7 M13_DS3_FLB_DET 0x1004D 6:4 -- 0x1004E 15:8 -- 0x1004F 15:8 -- 0x10050 15:8 -- 0x1004D 3:0 0x1004E 7:0 0x1004F 7:0 0x10050 7:0 M13_DS1_FEAC_LB_DET[28:25] When an FEAC loopback activate codeword for M13_DS1_FEAC_LB_DET[24:17] DS1 is received four consecutive times, the appropriate bit(s) is set high. The bit(s) is cleared when a M13_DS1_FEAC_LB_DET[16:9] loopback deactivate codeword for that channel(s) is M13_DS1_FEAC_LB_DET[8:1] received four consecutive times. Agere Systems Inc. Reset Default 0x00 0 000 0x00 0x00 0x00 0x0 0x00 0x00 0x00 213 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 252. M13_RFEAC_CODE_R, Receive Far-End Alarm and Control Code Status (RO) Address Bit 0x10051 15:6 5:0 Name -- Function Reserved. M13_RFEAC_CODE[5:0] When the same codeword is received through the FEAC channel four consecutive times, the M13 will set M13_RFEAC_CODE[5:0] = x5x4x3x2x1x0, where the received FEAC codeword is 0x5x4x3x2x1x0 0 11111111, and it is received right to left. Reset Default 000000 0000 0x3F Table 253. M13_RDL_STATUS, Receive Data-Link Status (RO) Address Bit 0x10052 15:5 4 3 2 1 0 Name Function -- M13_RDL_FLAG Reserved. This bit is high if the closing flag or an abort byte has been received. M13_RDL_ABORT This bit is high if the frame was ended with an abort byte rather than a closing flag. M13_RDL_NOT_BYTE This bit is set if the number of bits in the frame (after removal of stuffed zeros) is not a multiple of 8. M13_RDL_OVFL This bit is set if at least 1 byte of the frame was overwritten by a byte from a succeeding frame before being read. M13_RDL_FCS_ERR This bit is set if the CRC-16 check fails and M13_RDL_FCS = 1 (Table 287). Reset Default 0x000 0 0 0 0 0 Table 254. M13_RDL_DATA_R, Receive Data-Link Data (RO) Address Bit 0x10053 15:8 7:0 Name Function -- Reserved. M13_RDL_DATA[7:0] Bytes received via the path maintenance data link are stored in a 128-byte FIFO. They can be read out of the FIFO through this register, M13_RDL_DATA_R. On reset, the FIFO is emptied, and reading from this register returns an undetermined value. Reset Default 0x00 0xXX Table 255. M13_RDL_FRAME_SIZE_R, Receive Data-Link Frame Size (RO) Address Bit 0x10054 15:7 6:0 214 Name Function -- M13_RDL_FRAME_ SIZE[6:0] Reserved. The number of bytes in the frame modulo-128 is indicated by this register. This is the number of bytes from the frame that have been written into the FIFO, not the number of bytes remaining in the FIFO. All bytes between the opening flag and the FCS bytes are included (unless M13_RDL_FCS (Table 287) is low, in which case the FCS bytes are included in the count). Reset Default 0x000 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 256. M13_RHDLC_STATUS_R, Receive High-Level Data-Link Control Status (RO) Address Bit Name 0x10055 15:8 7:0 -- M13_RHDLC_ STATUS[7:0] Function Reset Default Reserved. 0x00 0x00 This register provides information on the earliest HDLC frame still in the FIFO. A value of 1 in bit 7 indicates that the closing flag or an abort byte for the current frame has been received; a 1 in bit 6 indicates the current frame is corrupted; bits 5 to 1 indicate the size of the current frame modulo-32; and bit 0 is set to 1 if there are less than 32 bytes of the earliest frame left in the FIFO. Table 257. M13_DS2_FORCE_OOF_R, DS2 Force Out of Frame (One Shot R/W) Address Bit 0x10059 15:7 6:0 Name -- M13_DS2_FORCE_ OOF[7:1] Function Reserved. When M13_DS2_FORCE_OOFy transitions from 0 to 1, the DS2 framer in M12 demultiplexer Y is forced out of frame. Table 258. M13_CONTROL1, Control 1 (One Shot R/W) Address Bit Name Reset Default 0x000 0x00 Function Reset Default 0x1005A 15:3 -- Reserved. 0x000 0 2 M13_RDL_FRM_CLR If M13_RDL_FRM_CLR is set to 1, the portion of the earliest frame still in the receive HDLC FIFO will be deleted. The user must reset M13_RDL_FRM_CLR before another frame can be deleted. If M13_RDL_FRM_CLR is set before the closing flag of the frame currently being read from the FIFO has been received, all subsequent bytes of the frame will be discarded without being written into the FIFO. 1 M13_DS3_FORCE_OOF When this bit transitions from 0 to 1, the DS3 framer is 0 forced out-of-frame. 0 M13_BIPOL_ERR A single bipolar violation error is transmitted each time this 0 bit transitions from 0 to 1. Table 259. M13_CONTROL2, Control 2 (R/W) Address Bit 0x1005C 15:8 7 6 5 4 Reset Default -- Reserved. 0x00 M13_BPV_IN If this bit is 1, the SMPR_RDS3NEG_BPV input is used as an 0 external B3ZS bipolar violation indication instead of a negative input pulse. M13_LOOP_TIME The M23 multiplexer uses the SMPR_TDS3CLK if this bit is 0, 0 otherwise, the SMPR_RDS3CLK is used. M13_LOOP_T_TO_R Setting this bit to 1 causes the M23 MUX output to be looped 0 back to the M23 DEMUX input. M13_LOOP_R_TO_T Setting this bit to 1 causes the received DS3 input to be 0 looped back to the transmit DS3 output. Agere Systems Inc. Name Function 215 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 259. M13_CONTROL2, Control 2 (R/W) (continued) Address Bit 0x1005C 3 2 1 0 Name Function M13_AUTO_AIS_LOF If this bit is 1, the M13 will automatically insert AIS in all DS2 outputs of the M23 demultiplexer when M13_DS3_LOF = 1 (Table 224), and it will automatically insert AIS in all DS1 or E1 outputs of M12 demultiplexer Y when M13_DS2_LOFy = 1 (Table 241). M13_AUTO_AIS_OOF If this bit is 1, the M13 will automatically insert AIS in all DS2 outputs of the M23 demultiplexer when M13_DS3_OOF = 1 (Table 224), and it will automatically insert AIS in all DS1 or E1 outputs of M12 demultiplexer Y when M13_DS2_OOFy = 1 (Table 240). M13_AUTO_FLB If this bit Is 1, the device will automatically loop the received DS3 input to the transmit DS3 output when M13_DS3_FLB_DET = 1 (Table 251), and it will automatically select DS1/E1 output x from an M12 demultiplexer in place of the DS1/E1 output from input selector x when M13_DS1_FEAC_LB_DETx = 1 (Table 251). M13_AUTO_LB When M13_AUTO_LB = 1, loopback of DS1 channel x is activated if M13_DS1_LB_DETx = 1 (Table 249). Reset Default 1 1 0 0 Table 260. M13_CONTROL3, Control 3 (R/W) Address Bit 0x1005D 15:2 1 0 Name -- M13_M23_CBP M13_BIPOLAR Function Reserved. If this Bit Is 1, the M13 Operates in the M23 mode. Otherwise, it is in the C-Bit Parity Mode. The M13 Performs B3ZS Encoding And Decoding if this Bit is High. Reset Default 0x0000 0 0 Table 261. M13_SP_OFFSET_R, Sync Pulse Offset (R/W) Address Bit 0x1005E 15:8 7:0 Name Function -- M13_NSMI_SP_ OFFSET[7:0] Reserved. The Register Determines the Offset Value (0--255) for the Transmit NSMI sync Pulse ahead of the M1 Bit In a DS3 Frame. Reset Default 0x00 0x00 Table 262. M13_SP_D_OFFSET_R, Sync Pulse D Offset (R/W) Address Bit 0x1005F 15:8 7:0 216 Name Function -- M13_NSMI_SP_D_ OFFSET[7:0] Reserved. The Register Determines the Offset Value (0--255) for the Receive NSMI Sync Pulse ahead of the M1 Bit In a DS3 Frame. Reset Default 0x00 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 263. M13_M12_MUX_CONTROL1_R[1--7], M12 MUX CONTROL 1 Registers [1--7] (R/W) Address Bit 0x10060 15:8 0x10062 7:6 0x10064 0x10066 0x10068 0x1006A 0x1006C 5 4 3:0 Name Function -- M13_M12_ MODE[1--7][1:0] Reserved. 00 = The M12 MUX Operates as the First Stage Of M13 Multiplexing. The DS1/E1 clocks are inputs to the block. 01 = The M12 MUX operates as an independent multiplexer. The DS1/E1 clocks are inputs to the block. 10 = The M12 MUX operates as an independent multiplexer. The DS1/E1 clocks are outputs from the block. 11 = The M12 is idle. M13_MUXCH2_4_ If these bits are 1, the second and fourth DS1 inputs to the INV[1--7] M12 multiplexers are inverted before they are MUXed into DS2 signals. M13_DS1_E1N[1--7] If these bits are 1, the M12 multiplexers operate on DS1 inputs; otherwise, they operate on E1 inputs. M13_DS1_LB_ If these bits are 1, the third C bit for DS1 or E1 channels is REQ[1:28] inverted in the generated DS2 frames to indicate loopback requests. Reset Default 0x00 00 1 1 0x0 Table 264. M13_M12_MUX_CONTROL2_R[1--7], M12 MUX CONTROL 2 Registers [1--7] (R/W) Address Bit 0x10061 15:8 0x10063 7:4 0x10065 0x10067 3:0 0x10069 Name -- M13_SEL_DS1_ LB[1:28] M13_RDS1_ EDGE[1:28] Function Reserved. A 1 in these bits will force DeMUXed DS1 or E1 signals to be looped back. A 1 in these bits means that the received DS1/E1 signals are retimed by the rising edge of the associated clocks; a logic 0 means that the data is retimed by the falling edge. Reset Default 0x00 0x0 0x0 0x1006B 0x1006D Table 265. M13_DS2_RAI_SEND_R, DS2 Remote Alarm Indication Send (R/W) Address Bit 0x1006E 15:7 6:0 Name -- M13_DS2_RAI_ SEND[7:1] Function Reset Default Reserved. 0x000 The Remote Alarm Indication is Activated if These Bits are 0x00 Set to 1. Table 266. M13_DS2_RSV_SEND_R, DS2 Reserve Bit Send (R/W) Address Bit 0x1006F 15:7 6:0 Agere Systems Inc. Name -- M13_DS2_RSV_ SEND[7:1] Function Reset Default Reserved. 0x000 In the E1 Mode, the Reserved Bit Of DS2 is set to the Value 0x00 of These Bits. 217 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 267. M13_DS2_MPINV_R, DS2 M Frame Alignment or Parity Error (R/W) Address Bit 0x10070 15:7 6:0 Name -- M13_DS2_ MPINV[7:1] Function Reset Default Reserved. 0x000 These Bits Determine whether the DS2 M frame Alignment 0x00 Signals in the DS1 Mode, or the DS2 Parity Bits In the E1 Mode are Generated in Error. Table 268. M13_DS2_FINV_R, DS2 Frame Error (R/W) Address Bit 0x10071 15:7 6:0 Name Function Reset Default -- Reserved. 0x000 M13_DS2_FINV[7:1] These Bits Determine whether the DS2 M-Subframe Align- 0x00 ment Signals in the DS1 Mode, or the Frame Alignment Signal in the E1 Mode are Generated in Error. Table 269. M13_DS2_P_BER_R, Parity Bit Error Rate (R/W) Address Bit 0x10072 15:7 6:0 Name -- M13_DS2_P_ BER[7:1] Function Reset Default Reserved. 0x000 The DS2 Parity Bits in the E1 Mode Immediately Following 0x00 Each 0 to 1 Transition of the Input SMPR_BER_INSRT (Table 65) are Inverted if these Register Bits are Set to 1. Table 270. M13_DS2M12_EDGE_R, DS2 M12 Edge (R/W) Address Bit 0x10073 15:7 6:0 Name -- M13_DS2M12_ EDGE[7:1] Function Reset Default Reserved. 0x000 A 1 in these Bits Means that the Output DS2 Signals From 0x00 M12 MUXs are Retimed by the Rising Edge of the Associated Clocks; A 0 Means that the Data is Retimed by the Falling Edge. Table 271. M13_DS2_FORCE_AIS_R, DS2 Force Alarm Indication Signal (R/W) Address Bit 0x10074 15:7 6:0 218 Name -- M13_DS2_FORCE_ AIS[7:1] Function Reset Default Reserved. 0x000 A 1 in these Bits Means that the Output DS2 Signals From 0x00 M12 MUXs are Forced to be AIS (All Ones). Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 272. M13_M12_DEMUX_CONTROL1_R[1--7], M12 DeMUX Control 1 Registers [1--7] (R/W) Address Bit 0x1007B 15:8 7:6 0x1007D 0x1007F Name Function -- M13_M12DMX_ MODE[1--7][1:0] Reserved. 00 = The M12 DeMUX Receives DS2 Signal From the M23 DeMUX. 01 = The M12 deMUX operates as an independent demultiplexer. 10/11 = The M12 deMUX is idle and outputs are held low. The Second and Fourth DS1 Outputs from the M12 Demultiplexers are Inverted if these Bits are 1. Each DS1/E1 Output Selector Number, x, can be Expressed as Either 4y - 3, 4y - 2, 4y - 1, or 4y, where y Ranges From 1 to 7. For a given y, the 4 selectors in the group output DS1 signals if M13_OUT_TYPEy = 1, or E1 signals if M13_OUT_TYPEy = 0. The Transmit DS1/E1 Signals are Retimed by the Rising Edge of the Associated Clocks if these Bits are Set High; Otherwise, the Data is Retimed By the Falling Edge. 0x10081 0x10083 0x10085 5 0x10087 4 3:0 M13_DEMUXCH2_ 4_INV[1--7] M13_OUT_ TYPE[1--7] M13_TDS1_ EDGE[28:1] Reset Default 0x00 00 1 1 0xF Table 273. M13_M12_DEMUX_CONTROL2_R[1--7], M12 DeMUX Control 2 Registers [1--7] (R/W) Address Bit 0x1007C 15:4 0x1007E 3:0 0x10080 Name -- M13_DS1_OUT_ AIS[28:1] Function Reset Default Reserved. 0x000 A logic 1 of these bits will cause the corresponding DS1 output 0x0 all ones AIS. 0x10082 0x10084 0x10086 0x10088 Table 274. M13_M12_DEMUX_CONTROL3, DS2 M12 DeMUX Control 3 (R/W) Address Bit 0x10089 15:2 1 0 Agere Systems Inc. Name Function -- M13_DS2_MODE Reserved. This Bit Controls the DS2 Framing Algorithm In the DS1 Mode Only. Out of frame is declared if the F bits contain two errors in 4 bits if M13_DS2_MODE = 0, or at least 1 F-bit error in four consecutive M-subframe pairs if M13_DS2_MODE = 1. This Bit Controls Frame Error Counting for the M12 Demultiplexers in the E1 Mode Only. If this bit is 0, the frame error counters increment for each frame alignment signal bit error. Otherwise, the counter increments once for each frame alignment signal that contains at least 1 bit error. M13_DS2_FERR_ MODE Reset Default 0x0000 0 0 219 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 275. M13_DMDS2_EDGE_R, DS2 Edge for M12 DeMUX (R/W) Address Bit 0x1008A 15:7 6:0 Name -- M13_DMDS2_ EDGE[7:1] Function Reset Default Reserved. 0x000 A logic 1 of these bits means that the input DS2 signals to M12 0x00 demultiplexers are retimed by the rising edge of the associated clocks; a logic 0 means that the data is retimed by the falling edge. Table 276. M13_DS3_CONTROL1, DS3 Control 1 (R/W) Address Reset Default 0x10092 15:8 -- Reserved. 0x00 7 M13_DS3_FINV For testing purposes, this bit is high to allow the F bit to be 0 generated with errors. 6 M13_DS3_MINV For testing purposes, this bit is high to allow the M bit to 0 be generated with errors. 5 M13_DS3_PINV For testing purposes, this bit is high to allow the P Bit to 0 be generated with errors. 4 M13_DS3_FORCE_AIS This bit causes the M13 to generate DS3 AIS in place of 0 the transmit DS3 signal from the M23 multiplexer. 3 M13_DS3_FORCE_IDLE This bit causes the M13 to generate DS3 idle (unless 0 M13_DS3_FORCE_AIS (Table 276) is also set) in place of the transmit DS3 signal from the M23 multiplexer. 2 M13_TDS3_FORCE_ALL1 This bit causes the M13 to generate unframed all ones 0 DS3 output. 0 1 M13_M23CLK_MODE If this bit is 1, DS2 clocks associated with DS2 signals being MUXed into DS3 are outputs from the block; otherwise, they are inputs to the block. 0 -- Reserved. 0 220 Bit Name Function Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 277. M13_DS3_CONTROL2, DS3 Control 2 (R/W) Address Bit 0x10093 15:7 6 5 4 3 2 1 0 Name Function -- M23_STUFF_MODE Reserved. A Logic 0 on this Bit Will Cause the M23 Stuffing to be Determined by the External Stuff Request; Otherwise, Fixed Stuffing is Used. M13_NSMI_MODE A Logic 1 of this Bit will Enable M13 to Receive and Output Ds3 Payload Through a Serial Link. M13_DS3_P_BER The P Bits and, in CBP Mode, the CP Bits in the DS3 Frame Immediately Following Each 0 to 1 Transition of the Input SMPR_BER_INSERT (Table 65), are Inverted if this Bit is Set to 1. M13_CBIT2_ACT This Bit is Used Only in the C-Bit Parity Mode. In this mode, if it is 0, the second c-bit of each ds3 frame, c2, Is Set To 1. Otherwise, the transmit value of C2 is input through pin TCBDATA (E12). M13_UNUSED_ACT This Bit is Used Only in the C-Bit Parity Mode. In this mode, if it is 0, the unused C bits of each DS3 frame (the fourth through sixth and the sixteenth through twenty-first) are set to 1. Otherwise, the transmit values of these bits are input through pin TCBDATA (E12). M13_DS3_RAI_SEND The Transmitted DS3 X Bits are Set to the Inverse of this Bit During Normal Transmission. M13_FEBE_ERR This Bit is Used to Force Errors in the Transmitted DS3 FEBE Indication. If the Bit is Set, all DS3 Frames are Transmitted with the FEBE Bits Set to 000. Reset Default 0x000 0 0 0 0 0 0 0 Table 278. M13_TFEAC_CONTROL, Tx FEAC Control (R/W) Address Bit 0x10094 15:8 7:6 Name Function -- Reserved. M13_TFEAC_CTL[1:0] The User Can Provision the M13 to Transmit Continuous Ones by Setting M13_TFEAC_CTL to 00. 5:0 M13_TFEAC_CODE[5:0] FEAC Signals. TFEAC signals are transmitted continuously by setting M13_TFEAC_CTL to 01, and M13_TFEAC_CODE = x5x4x3x2x1x0, where x5x4x3x2x1x0 Is the appropriate value for the alarm or status codeword. In order to activate a loopback, the user may set M13_TFEAC_CTL = 11, And M13_TFEAC_CODE = x5x4x3x2x1x0, where x5x4x3x2x1x0 Is the Appropriate value for the loopback codeword. The M13 will then transmit 10 repetitions of the activate codeword, 0 000111 0 11111111, followed by 10 repetitions of 0 x5x4x3x2x1x0 0 11111111. After transmitting this 40 octet sequence, it will set M13_TFEAC_DONE (Table 217) to 1. In order to deactivate a loopback, the user may set M13_TFEAC_CTL = 10, and M13_TFEAC_CODE = x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropriate value for the loopback codeword. The M13 will then transmit 10 repetitions of the deactivate codeword, 0 011100 0 11111111, followed by 10 repetitions of 0 x5x4x3x2x1x0 0 11111111. After transmitting this 40 octet sequence, it will set M13_TFEAC_DONE to 1. Agere Systems Inc. Reset Default 0x00 0x0 0x00 221 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 279. M13_THDLC_CONTROL1, Tx HDLC Control 1 (R/W) Address Bit Name Function Reset Default 0x10095 15:6 -- Reserved. 0x000 0 5 M13_TDL_BUF1_END If this Bit is 0, all Bytes from HDLC Buffer 1 and at Least One Byte from HDLC Buffer 0 are Transmitted. If it is 1, bytes from buffer 1 are transmitted sequentially up to and including the byte set by M13_TDL_BYTE_END[5:0] (Table 280). 4 M13_TDL_BUF0_END If this Bit is 0, all Bytes from HDLC Buffer 0 and at Least 0 One Byte from HDLC Buffer 1 are Transmitted. If it is 1, bytes from buffer 0 are transmitted sequentially up to and including the byte set by M13_TDL_BYTE_END[5:0]. 3 M13_TDL_ACT If the Data Link is not Used, the User Should set 0 M13_TDL_ACT to 0, Which Causes all Ones to be Transmitted. Otherwise, this bit should be set to 1. 2 M13_TDL_NTRNL If M13_TDL_NTRNL = 0, the Data Transmitted on the 0 Data Link Comes Directly from the M13 Input Pin TDLDATA (E8); Otherwise (M13_TDL_NTRNL = 1), the Data Link is Controlled by the Internal HDLC Transmitter. This bit is valid only when M13_TDL_ACT = 1 (Table 279). 0 1 M13_TDL_NTRNL_ACT Once M13_TDL_NTRNL_ACT is Set to 1, the HDLC Transmitter Begins Transmitting the First Byte of the First Data Buffer Following the Completion of the Next Flag Byte. The user may abort the transmission of an HDLC frame by clearing M13_TDL_NTRNL_ACT to 0 prior to completing transmission of the last byte from the data buffers. If so, the HDLC controller will stop transmission from the buffers and send an abort byte (01111111). The abort byte will then be followed by flag bytes until M13_TDL_NTRNL_ACT is again set to 1, starting transmission of a new frame. 1 0 M13_TDL_FCS If M13_TDL_FCS = 1, the HDLC Controller Appends the Two-Byte ITU-T FCS with the Necessary Zero Stuffing Before Sending the Closing Flag; Otherwise, no FCS Bytes will be Transmitted. Table 280. M13_THDLC_CONTROL2, Tx HDLC Control 2 (R/W) Address Bit 0x10096 15:6 5:0 Name -- M13_TDL_BYTE_ END[5:0] Function Reserved. These Bits Define the Position of the Last Byte to be Transmitted from the Buffer. Reset Default 0x000 0x00 Table 281. M13_DS2_LB_REQ_R, DS2 Loopback Request (R/W) Address Bit 0x10097 15:7 6:0 222 Name Function -- M13_DS2_LB_ REQ[7:1] Reserved. If M13_DS2_LB_REQy = 1, the Third C Bit in the yth DS3 M-Subframe is Transmitted as the Inverse of the First Two C Bits (Which Indicates a Loopback Request for DS2 Channel y). Reset Default 0x000 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 282. M13_SEL_DS2_LB_R, Select DS2 Loopback (R/W) Address Bit 0x10098 15:7 6:0 Name -- M13_SEL_DS2_ LB[7:1] Function Reset Default Reserved. 0x000 If M13_SEL_DS2_LBy = 1, the DS2 Signal from Time Slot y 0x00 in the Received DS3 Signal is Looped Back into Time Slot y of the Transmitted DS3 Signal. Table 283. M13_RDS2_EDGE_R[1--2], Rx DS2 Edge Registers [1--2](R/W) Address Bit Name Function 0x10099 15:7 6:0 -- M13_RDS2_ EDGE[7:1] 0x1009A 15:7 6:0 -- M13_DS2ALCO_ RTM_EDGE[7:1] Reserved. A logic 1 of these Bits Means that the Received DS2 Signals are Retimed by the Rising Edge of the Associated Clocks. A logic 0 means that the data is retimed by the falling edge. When used in the demand clocking mode of the M23 mapping, M13_RDS2_EDGE[7:1] = 1 should be set if the delay from the output clock to the incoming data (the maximum should be less than 8 STS-1 clock cycles) is less than 4 STS-1 clock cycles; otherwise, M13_RDS2_EDGE[7:1] = 0 should be used. Reserved. In the Demand Clocking Mode of the M23 Mapping, this Register Provides an Extra Clock Edge Selection Capability, in Addition to M13_RDS2_EDGE[7:1], for Retiming Input DS2 Data. It should normally be set to logic 1 (default). A logic 0 is suggested only to be used with M13_RDS2_EDGE[7:1] = 0 when necessary. Reset Default 0x000 0x00 0x000 0x7F Table 284. M13_DS2_OUT_IDLE_R, DS2 Output Idle (R/W) Address Bit 0x1009E 15:7 6:0 Name -- M13_DS2_OUT_ IDLE[7:1] Function Reserved. If M13_DS2_OUT_IDLEy = 1, the Output from DS2 Output Selection Block y is Held Low. Reset Default 0x000 0x00 Table 285. M13_DS2_OUT_AIS_R, DS2 Output Alarm Indication Signal (R/W) Address Bit 0x1009F 15:7 6:0 Agere Systems Inc. Name Function -- M13_DS2_OUT_ AIS[7:1] Reserved. If M13_DS2_OUT_IDLEy = 0 (Table 284), a Logic 1 of this Bit Causes DS2 AIS to be Output From the DS2 Output Selector y; Otherwise, the DS2 Signal From Time Slot y in the Received DS3 Signal will be Output. Reset Default 0x000 0x00 223 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 286. M13_TDS2_EDGE_R, Tx DS2 Edge (R/W) Address Bit 0x100A0 15:7 6:0 Name -- Function Reserved. M13_TDS2_EDGE[7:1] A logic 1 of these Bits Means that the Transmit DS2 Signals are Retimed by the Rising Edge of the Associated Clocks. A logic 0 means that the data is retimed by the falling edge. Reset Default 000000 000 0x7F Table 287. M13_RDL_CONTROL, RDL Control (R/W) Address Bit 0x100A1 15:5 4:3 Name -- M13_RDL_FILL[1:0] 2 M13_RDL_FCS 1 M13_DS3_MODE 0 M13_RDS3_EDGE Function Reserved. 00 = sets the receive HDLC FIFO fill level to 16 bytes. 01 = sets the receive HDLC FIFO fill level to 32 bytes. 10 = sets the receive HDLC FIFO fill level to 64 bytes. 11 = sets the receive HDLC FIFO fill level to 96 bytes. The M13_RDL_FIFO_AF (Table 225) bit is set if the buffer reaches the fill level. If M13_RDL_FCS = 1, the FCS Bytes will be Checked at HDLC Receiver. Otherwise, the FCS is not checked and the last 2 bytes of the HDLC frame are written into the FIFO. This Bit Controls the DS3 Framing Algorithm. Out-of-frame is declared if the F bits contain 3 errors in 16 bits if M13_DS3_MODE = 0, or at least 1 F-bit error in four consecutive M-subframes if M13_DS3_MODE = 1. A logic 1 of this Bit Means that the Received DS3 Data is Retimed by the Rising Edge of the Associated Clock. A logic 0 means the data is retimed by the falling edge. Reset Default 0x000 00 1 0 0 Table 288. M13_PM_CNT_ACT_R, Performance Counter (RO) Address Bit 0x100A5 15:1 0 Name -- M13_PM_CNT_ACT Function Reserved. This Bit Returns a 0 When Read if all Performance Counter Values are 0; Otherwise, it's Set to 1. Reset Default 0x0000 0 Table 289. M13_DS3_FERR_CNT_R[1--2], DS3 F-Bit Error Registers (RO) Address Name Function 0x100A6 15:4 0x100A7 15:8 0x100A6 3:0 -- -- M13_DS3_FERR_CNT[11:8] 0x100A7 M13_DS3_FERR_CNT[7:0] Reserved. Reserved. This Register Holds the Results from a Counter that Increments each Time an Error is Detected in Either a DS3 F Bit, or M Bit. 224 Bit 7:0 Reset Default 0x000 0x00 0x0 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 290. M13_DS3_FEBE_CNT_R[1--2], DS3 Far-End Block Error Registers (RO) Address Bit Name Function 0x100A8 15:6 0x100A9 15:8 0x100A8 5:0 -- -- M13_DS3_FEBE_CNT[13:8] 0x100A9 M13_DS3_FEBE_CNT[7:0] Reserved. Reserved. This Register Holds the Results from a Counter that Accumulates FEBE Error Indications (1 Error Indication for each DS3 Frame with at Least One FEBE Bit Equal to Zero). 7:0 Reset Default 0x000 0x00 0x00 0x00 Table 291. M13_DS3_CPERR_CNT_R[1--2], DS3 C-Bit Parity Error Registers (RO) Address Bit Name Function 0x100AA 15:6 -- Reserved. 0x100AB 15:8 -- Reserved. 0x100AA 5:0 M13_DS3_CPERR_CNT[13:8] This Register is Used Only in the C-Bit Parity 0x100AB 7:0 M13_DS3_CPERR_CNT[7:0] Mode. It indicates the number of frames with two or more C-bit parity errors. Reset Default 0x000 0x00 0x00 0x00 Table 292. M13_DS3_PERR_CNT_R[1--2], DS3 P-Bit Error Registers (RO) Address Bit Name 0x100AC 15:6 0x100AD 15:8 0x100AC 5:0 -- -- M13_DS3_PERR_CNT[13:8] 0x100AD M13_DS3_PERR_CNT[7:0] 7:0 Function Reserved. Reserved. This Register Indicates the Number of Frames with at Least One P Bit that Disagrees with the Parity of the Previous Frame. Reset Default 0x000 0x00 0x00 0x00 Table 293. M13_DS2_PERR_CNT[7--1]_R[1--2], P-Bit Error Counter Status Registers (RO) Address Bit 0x100B2 15:5 Name -- Function Reserved. Reset Default 0x000 0x100B3 15:8 0x100B4 15:5 0x100B5 15:8 0x100B6 15:5 0x100B7 15:8 0x100B8 15:5 0x100B9 15:8 0x100BA 15:5 0x100BB 15:8 0x100BC 15:5 0x100BD 15:8 0x100BE 15:5 0x100BF 15:8 Agere Systems Inc. 225 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 293. M13_DS2_PERR_CNT[7--1]_R[1--2], P-Bit Error Counter Status Registers (RO) (continued) Address Bit Name Function Reset Default 0x00 0x100B2 4:0 M13_DS2_PERR_CNT7[12:8] 0x100B3 0x100B4 7:0 4:0 M13_DS2_PERR_CNT7[7:0] M13_DS2_PERR_CNT6[12:8] 0x100B5 0x100B6 7:0 4:0 M13_DS2_PERR_CNT6[7:0] M13_DS2_PERR_CNT5[12:8] These Registers are Used by M12 Demultiplexers that Operate in the G.747 (E1) mode. They indicate the number of received DS2 frames with P-bit errors. 0x100B7 0x100B8 7:0 4:0 M13_DS2_PERR_CNT5[7:0] M13_DS2_PERR_CNT4[12:8] 0x00 0x00 0x100B9 0x100BA 7:0 4:0 M13_DS2_PERR_CNT4[7:0] M13_DS2_PERR_CNT3[12:8] 0x00 0x00 0x100BB 0x100BC 7:0 4:0 M13_DS2_PERR_CNT3[7:0] M13_DS2_PERR_CNT2[12:8] 0x00 0x00 0x100BD 0x100BE 7:0 4:0 M13_DS2_PERR_CNT2[7:0] M13_DS2_PERR_CNT1[12:8] 0x00 0x00 0x100BF 7:0 M13_DS2_PERR_CNT1[7:0] 0x00 0x00 0x00 0x00 0x00 Table 294. M13_DS2_FERR_CNT[7--1]_R, F-Bit Error Counter Status Registers (RO) Address Bit 0x100C6 15:8 -- 0x100CC 0x100C6 7:0 -- 0x100CC Name -- Function Reset Default 0x00 Reserved. M13_DS2_FERR_CNT[7--1][7:0] These Registers Hold the Results From DS2 Frame Alignment Signal Error Counters. In the DS1 mode, these counters increment each time an error is detected in either an F bit or M bit. In the E1 mode, the counters increment either for each frame alignment signal bit error (if M13_DS2_FERR_MODE (Table 274) is 0), or once for each frame alignment signal that contains at least one bit error (if M13_DS2_FERR_MODE = 1). 0x00 Table 295. M13_BPV_CNT_R[1--3], Bipolar Violation Counter Status Registers (RO) Address Bit 0x100CD 15:8 -- 0x100CF 0x100CD 7:0 -- 0x100CF 226 Name -- M13_BPV_CNT[23:0] Function Reset Default 0x00 This Register is Only Used In the DS3 Bipolar Mode. It holds the results from a counter that increments each time a received B3ZS bipolar coding violation is detected. 0x00 Reserved. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 296. M13_EXZ_CNT_R[1--3], Bipolar Violation Counter Status Registers (RO) Address Bit Name Function 0x100D0 15:8 -- Reserved. -- 0x100D2 0x100D0 7:0 M13_EXZ_CNT[23:0] This Register is only Used in the DS3 Bipolar Mode. It -- holds the results from a counter that increments each time an 0x100D2 excessive zeros string is detected. Reset Default 0x00 0x00 Table 297. M13_TDL_BUFFER_R, Tx Data-Link Buffer Control (R/W) Address Bit 0x100FF 15:1 0 Name Function -- Reserved. M13_TDL_BUFFER If this Bit is 0, Data Written to Registers M13_TDL_0DATA_R[0--63] Address 0x10100--0x1013F (Table 297) is Stored in the Path Maintenance Data-Link Buffer 0. Otherwise, the data is written to buffer 1. Reset Default 0x0000 0 Table 298. M13_TDL_0DATA_R[0--63], Tx Data for Path Maintenance Data-Link Buffer 0 Registers (64 Bytes x 8 Bits) (R/W) Address Bit 0x10100 15:8 -- 0x1013F 0x10100 7:0 -- 0x1013F Name -- M13_TDL_ 0DATA[0--63][7:0] Function Reset Default 0x00 This 64-Byte Buffer for the Transmit Path Maintenance Data Link is Accessible when M13_TDL_BUFFER = 0 (Table 297). On reset, reading from these registers returns an undetermined value. 0xXX Reserved. Table 299. M13_TDL_1DATA_R[0--63], Tx Data for Path Maintenance Data-Link Buffer 1 Registers (64 Bytes x 8 Bits) (R/W) Address Bit 0x10100 15:8 -- 0x1013F 0x10100 7:0 -- 0x1013F Agere Systems Inc. Name -- M13_TDL_ 1DATA[0--63][7:0] Function Reserved. This 64-Byte Buffer for the Transmit Path Maintenance Data Link is Accessible when M13_TDL_BUFFER = 1. On reset, reading from these registers returns an undetermined value. Reset Default 0x00 0xXX 227 Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) 11.2 M13 Register Map Table 300. Register Address Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr Symbol Bits [15:8] Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block-level Status--RO 0x10000 M13_ID_R 0x10001 M13_VERSION_R M13_ID[7:0] 0x10002 0x10003 -- 0x10004 M13_DELTA1 M13_RDL_IDLED M13_DS3_LOFD M13_DS3_OOFD M13_DS3_C1_DETD M13_DS3_RAI_DETD 0x10005 M13_DELTA2 M13_DS1_LB_SD M13_DS1_AIS_SD M13_DS1_LOC_SD M13_RDS3_SEFD M13_RDS3_ALL1_DETD M13_RDS3_LOSD M13_TDS3_LOCD M13_RDS3_LOCD 0x10006 M13_DELTA3 M13_DS2_RSV_SD M13_DS2_LB_SD M13_DS2_RAI_SD M13_DS2_AIS_SD M13_DS2_LOF_SD M13_DS2_OOF_SD M13_XC_DS2_AIS_SD M13_XC_DS2_LOC_SD 0x10007 M13_DELTA4 M13_TFEAC_DONE M13_TDL_DONE M13_TDL_BUF1_INT M13_TDL_BUF0_INT M13_RDL_FIFO_AFD M13_RDL_FRM_INT 0x10008 M13_DELTA5 0x10009 -- 0x1000A M13_MASK1 M13_RDL_IDLEM M13_DS3_LOFM M13_DS3_OOFM M13_DS3_C1_DETM M13_DS3_RAI_DETM 0x1000B M13_MASK2 M13_DS1_LB_SM M13_DS1_AIS_SM M13_DS1_LOC_SM M13_RDS3_SEFM M13_RDS3_ALL1_DETM M13_RDS3_LOSM M13_TDS3_LOCM M13_RDS3_LOCM 0x1000C M13_MASK3 M13_DS2_RSV_SM M13_DS2_LB_SM M13_DS2_RAI_SM M13_DS2_AIS_SM M13_DS2_LOF_SM M13_DS2_OOF_SM M13_XC_DS2_AIS_SM M13_XC_DS2_LOC_SM 0x1000D M13_MASK4 M13_TFEAC_DONEM M13_TDL_DONEM M13_RDL_FIFO_AFM M13_RDL_FRM_INTM M13_RFEAC_ALM_INTM M13_RFEAC_LB_INTM 0x1000E M13_MASK5 M13_DS2DMX_LOC_SM M13_RDL_FIFO_UFM M13_VERSION[2:0] DS3 Deltas, Summary Deltas, FEAC, and DL Interrupts--RO M13_DS3_AISPAT_DETD M13_DS3_IDLEPAT_DETD M13_DS3_CBZ_DETD M13_RFEAC_ALM_INT M13_RFEAC_LB_INT M13_DS2DMX_LOC_SD M13_RDL_FIFO_UFD Interrupt Masks--R/W M13_TDL_BUF1_INTM M13_TDL_BUF0_INTM M13_DS3_AISPAT_DETM M13_DS3_IDLEPAT_DETM M13_DS3_CBZ_DETM DS3 Status--RO 0x1000F M13_DS3_STATUS1 0x10010 M13_DS3_STATUS2 Lucent Technologies Inc. M13_RDL_IDLE M13_DS3_LOF M13_DS3_OOF M13_DS3_C1_DET M13_DS3_RAI_DET M13_DS3_AISPAT_DET M13_DS3_IDLEPAT_DET M13_DS3_CBZ_DET M13_RDL_FIFO_UF M13_RDL_FIFO_AF M13_RDS3_SEF M13_RDS3_ALL1_DET M13_RDS3_LOS M13_TDS3_LOC M13_RDS3_LOC 228 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Individual DS2 and DS1 Deltas--RO 0x10011 M13_XC_DS2_LOCD_R 0x10012 M13_XC_DS2_AIS_DETD_R M13_XC_DS2_LOCD[7:1] M13_XC_DS2_AIS_DETD[7:1] 0x10013 M13_DS2_OOFD_R 0x10014 M13_DS2_LOFD_R M13_DS2_OOFD[7:1] M13_DS2_LOFD[7:1] 0x10015 M13_DS2_AIS_DETD_R M13_DS2_AIS_DETD[7:1] 0x10016 M13_DS2_RAI_DETD_R M13_DS2_RAI_DETD[7:1] 0x10017 M13_DS2_LB_DETD_R M13_DS2_LB_DETD[7:1] 0x10018 M13_DS2_RSV_RCVD_R M13_DS2_RSV_RCVD[7:1] 0x10019 M13_DS2DMX_LOCD_R M13_DS2DMX_LOCD[7:1] 0x1001A -- -- 0x1001D 0x1001E M13_DS1_LOCD_R1 0x1001F M13_DS1_LOCD_R2 M13_DS1_LOCD[24:17] M13_DS1_LOCD[28:25] 0x10020 M13_DS1_LOCD_R3 M13_DS1_LOCD[16:9] 0x10021 M13_DS1_LOCD_R4 M13_DS1_LOCD[8:1] 0x10022 M13_DS1_AIS_DETD_R1 0x10023 M13_DS1_AIS_DETD_R2 M13_DS1_AIS_DETD[24:17] M13_DS1_AIS_DETD[28:25] 0x10024 M13_DS1_AIS_DETD_R3 M13_DS1_AIS_DETD[16:9] 0x10025 M13_DS1_AIS_DETD_R4 M13_DS1_AIS_DETD[8:1] 0x10026 M13_DS1_LB_DETD_R1 229 M13_DS1_LB_DETD[28:25] Lucent Technologies Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Addr Symbol 0x10027 M13_DS1_LB_DETD_R2 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 M13_DS1_LB_DETD[24:17] Bit 4 Bit 3 0x10028 M13_DS1_LB_DETD_R3 M13_DS1_LB_DETD[16:9] 0x10029 M13_DS1_LB_DETD_R4 M13_DS1_LB_DETD[8:1] 0x1002A -- -- Bit 2 Bit 1 Bit 0 0x1002E DS2 and DS1 Status--RO 0x1002F M13_XC_DS2_LOC_R 0x10030 M13_XC_DS2_AIS_DET_R M13_XC_DS2_LOC[7:1] M13_XC_DS2_AIS_DET[7:1] 0x10031 M13_DS2_OOF_R 0x10032 M13_DS2_LOF_R M13_DS2_OOF[7:1] M13_DS2_LOF[7:1] 0x10033 M13_DS2_AIS_DET_R M13_DS2_AIS_DET[7:1] 0x10034 M13_DS2_RAI_DET_R M13_DS2_RAI_DET[7:1] 0x10035 M13_DS2_LB_DET_R M13_DS2_LB_DET[7:1] 0x10036 M13_DS2_RSV_RCV_R M13_DS2_RSV_RCV[7:1] 0x10037 M13_DS2DMX_LOC_R M13_DS2DMX_LOC[7:1] 0x10038 -- -- 0x1003B 0x1003C M13_DS1_LOC_R1 0x1003D M13_DS1_LOC_R2 M13_DS1_LOC[24:17] 0x1003E M13_DS1_LOC_R3 M13_DS1_LOC[16:9] 0x1003F M13_DS1_LOC_R4 M13_DS1_LOC[8:1] 0x10040 M13_DS1_AIS_DET_R1 Lucent Technologies Inc. M13_DS1_LOC[28:25] M13_DS1_AIS_DET[28:25] 230 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Addr Symbol 0x10041 M13_DS1_AIS_DET_R2 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 M13_DS1_AIS_DET[24:17] Bit 4 Bit 3 0x10042 M13_DS1_AIS_DET_R3 M13_DS1_AIS_DET[16:9] 0x10043 M13_DS1_LB_DET_R4 M13_DS1_AIS_DET[8:1] 0x10044 M13_DS1_LB_DET_R1 0x10045 M13_DS1_LB_DET_R2 M13_DS1_LB_DET[24:17] Bit 2 Bit 1 Bit 0 M13_DS1_LB_DET[28:25] 0x10046 M13_DS1_LB_DET_R3 M13_DS1_LB_DET[16:9] 0x10047 M13_DS1_LB_DET_R4 M13_DS1_LB_DET[8:1] 0x10048 -- FEAC Loopback Individual Deltas--RO 0x10049 M13_DS1_FEAC_LB_DETD_R1 M13_DS3_FLB_DETD M13_DS1_FEAC_LB_DETD[28:25] 0x1004A M13_DS1_FEAC_LB_DETD_R2 M13_DS1_FEAC_LB_DETD[24:17] 0x1004B M13_DS1_FEAC_LB_DETD_R3 M13_DS1_FEAC_LB_DETD[16:9] 0x1004C M13_DS1_FEAC_LB_DETD_R4 M13_DS1_FEAC_LB_DETD[8:1] FEAC Status, RDL Status, and RDL FIFO-- RO 0x1004D M13_DS1_FEAC_LB_DET_R1 0x1004E M13_DS1_FEAC_LB_DET_R2 M13_DS1_FEAC_LB_DET[24:17] 0x1004F M13_DS1_FEAC_LB_DET_R3 M13_DS1_FEAC_LB_DET[16:9] 0x10050 M13_DS1_FEAC_LB_DET_R4 M13_DS1_FEAC_LB_DET[8:1] 0x10051 M13_RFEAC_CODE_R 231 M13_DS3_FLB_DET M13_DS1_FEAC_LB_DET[28:25] M13_RFEAC_CODE[5:0] Lucent Technologies Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Addr Symbol 0x10052 M13_RDL_STATUS 0x10053 M13_RDL_DATA_R 0x10054 M13_RDL_FRAME_SIZE_R 0x10055 M13_RHDLC_STATUS_R 0x10056 -- -- Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 M13_RDL_FLAG M13_RDL_ABOR M13_RDL_NOT_ M13_RDL_OVFL M13_RDL_FCS_ T BYTE ERR M13_RDL_DATA[7:0] M13_RDL_FRAME_SIZE[6:0] M13_RHDLC_STATUS[7:0] 0x10058 One Shot Signals--R/Wl 0x10059 M13_DS2_FORCE_OOF_R 0x1005A M13_CONTROL1 0x1005B -- 0x1005C M13_CONTROL2 M13_DS2_FORCE_OOF[7:1] M13_RDL_FRM_ M13_DS3_FORC M13_BIPOL_ER CLR E_OOF R Block-level Controls--R/W 0x1005D M13_CONTROL3 0x1005E M13_SP_OFFSET_R 0x1005F M13_SP_D_OFFSET_R M13_BPV_IN M13_LOOP_TIME M13_LOOP_T_T M13_LOOP_R_T M13_AUTO_AIS_ M13_AUTO_AIS_ M13_AUTO_FLB O_R O_T LOF OOF M13_AUTO_LB M13_M23_CBP M13_BIPOLAR M13_SP__OFFSET[7:0] M13_SP_D_OFFSET[7:0] M12 MUX's Control--R/W 0x10060 M13_M12_MUX_CONTROL1_R1 0x10061 M13_M12_MUX_CONTROL2_R1 0x10062 M13_M12_MUX_CONTROL1_R2 0x10063 M13_M12_MUX_CONTROL2_R2 0x10064 M13_M12_MUX_CONTROL1_R3 Lucent Technologies Inc. M13_M12_MODE1[1:0] M13_MUXCH2_4 _INV1 M13_DS1_E1N1 M13_DS1_LB_REQ[4:1] M13_DS1_E1N2 M13_DS1_LB_REQ[8:5] M13_DS1_E1N3 M13_DS1_LB_REQ[12:9] M13_SEL_DS1_LB[4:1] M13_M12_MODE2[1:0] M13_MUXCH2_4 _INV2 M13_RDS1_EDGE[4:1] M13_SEL_DS1_LB[8:5] M13_M12_MODE3[1:0] M13_MUXCH2_4 _INV3 M13_RDS1_EDGE[8:5] 232 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0x10065 M13_M12_MUX_CONTROL2_R3 0x10066 M13_M12_MUX_CONTROL1_R4 0x10067 M13_M12_MUX_CONTROL2_R4 0x10068 M13_M12_MUX_CONTROL1_R5 0x10069 M13_M12_MUX_CONTROL2_R5 0x1006A M13_M12_MUX_CONTROL1_R6 0x1006B M13_M12_MUX_CONTROL2_R6 0x1006C M13_M12_MUX_CONTROL1_R7 0x1006D M13_M12_MUX_CONTROL2_R7 Bit 4 Bit 3 M13_SEL_DS1_LB[12:9] M13_M12_MODE4[1:0] M13_MUXCH2_4_INV4 M13_MUXCH2_4_INV5 M13_DS1_LB_REQ[16:13] M13_DS1_E1N5 M13_DS1_LB_REQ[20:17] M13_MUXCH2_4_INV6 M13_DS1_E1N6 M13_DS1_LB_REQ[24:21] M13_DS1_E1N7 M13_DS1_LB_REQ[28:25] M13_RDS1_EDGE[20:17] M13_SEL_DS1_LB[24:21] M13_M12_MODE7[1:0] M13_MUXCH2_4_INV7 M13_RDS1_EDGE[24:21] M13_SEL_DS1_LB[28:25] M13_RDS1_EDGE[28:25] 0x1006E M13_DS2_RAI_SEND_R M13_DS2_RAI_SEND[7:1] 0x1006F M13_DS2_RSV_SEND_R M13_DS2_RSV_SEND[7:1] 0x10070 M13_DS2_MPINV_R M13_DS2_MPINV[7:1] 0x10071 M13_DS2_FINV_R M13_DS2_FINV[7:1] 0x10072 M13_DS2_P_BER_R M13_DS2_P_BER[7:1] 0x10073 M13_DS2M12_EDGE_R M13_DS2M12_EDGE[7:1] 0x10074 M13_DS2_FORCE_AIS_R M13_DS2_FORCE_AIS[7:1] 0x10075 -- 0x1007A -- 233 Bit 0 M13_RDS1_EDGE[16:13] M13_SEL_DS1_LB[20:17] M13_M12_MODE6[1:0] Bit 1 M13_DS1_E1N4 M13_SEL_DS1_LB[16:13] M13_M12_MODE5[1:0] Bit 2 M13_RDS1_EDGE[12:9] Lucent Technologies Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 M12 DeMUX's Control--R/W 0x1007B M13_M12_DEMUX_CONTROL1_R1 M13_M12DMX_MODE1[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE1 INV1 M13_DS1_OUT_AIS[4:1] 0x1007C M13_M12_DEMUX_CONTROL2_R1 0x1007D M13_M12_DEMUX_CONTROL1_R2 M13_M12DMX_MODE2[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE2 INV2 0x1007E M13_M12_DEMUX_CONTROL2_R2 0x1007F M13_M12_DEMUX_CONTROL1_R3 0x10088 M13_M12_DEMUX_CONTROL2_R7 0x10089 M13_M12_DEMUX_CONTROL3 Lucent Technologies Inc. M13_TDS1_EDGE[20:17] M13_DS1_OUT_AIS[20:17] M13_M12DMX_MODE6[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE6 INV6 0x10086 M13_M12_DEMUX_CONTROL2_R6 0x10087 M13_M12_DEMUX_CONTROL1_R7 M13_TDS1_EDGE[16:13] M13_DS1_OUT_AIS[16:13] M13_M12DMX_MODE5[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE5 INV5 0x10084 M13_M12_DEMUX_CONTROL2_R5 0x10085 M13_M12_DEMUX_CONTROL1_R6 M13_TDS1_EDGE[12:9] M13_DS1_OUT_AIS[12:9] M13_M12DMX_MODE4[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE4 INV4 0x10082 M13_M12_DEMUX_CONTROL2_R4 0x10083 M13_M12_DEMUX_CONTROL1_R5 M13_TDS1_EDGE[8:5] M13_DS1_OUT_AIS[8:5] M13_M12DMX_MODE3[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE3 INV3 0x10080 M13_M12_DEMUX_CONTROL2_R3 0x10081 M13_M12_DEMUX_CONTROL1_R4 M13_TDS1_EDGE[4:1] M13_TDS1_EDGE[24:21] M13_DS1_OUT_AIS[24:21] M13_M12DMX_MODE7[1:0] M13_DEMUXCH2_4_ M13_OUT_TYPE7 INV7 M13_TDS1_EDGE[28:25] M13_DS1_OUT_AIS[28:25] M13_DS2_MODE M13_DS2_FERR_MODE 234 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Address Symbol 0x1008A M13_DMDS2_EDGE_R 0x1008B -- Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 M13_TDS3_ FORCE_ALL1 M13_M23CLK_ MODE Bit 0 M13_DMDS2_EDGE[7:1] -- 0x10091 M23 MUX Controls--R/W 0x10092 M13_DS3_CONTROL1 0x10093 M13_DS3_CONTROL2 0x10094 M13_TFEAC_CONTROL 0x10095 M13_THDLC_CONTROL1 M13_DS3_FINV M13_DS3_MINV M13_DS3_PINV M13_NSMI_MODE M13_DS3_P_BER M13_CBIT2_ACT M13_UNUSED_AC T M13_TFEAC_CTL[1:0] M13_DS3_RAI_ SEND M13_FEBE_ERR M13_TDL_ NTRNL_ACT M13_TDL_FCS M13_TFEAC_CODE[5:0] M13_TDL_BUF1_ M13_TDL_BUF0_ END END 0x10096 M13_THDLC_CONTROL2 0x10097 M13_DS3_FORCE M13_DS3_FORCE _AIS _IDLE M13_TDL_ACT M13_TDL_NTRNL M13_TDL_BYTE_END[5:0] M13_DS2_LB_REQ_R M13_DS2_LB_REQ[7:1] 0x10098 M13_SEL_DS2_LB_R M13_SEL_DS2_LB[7:1] 0x10099 M13_RDS2_EDGE_R1 M13_RDS2_EDGE[7:1] 0x1009A M13_RDS2_EDGE_R2 M13_DS2ALCO_RTM_EDGE[7:1] 0x1009B -- 0x1009D -- 0x1009E M13_DS2_OUT_IDLE_R M13_DS2_OUT_IDLE[7:1] 0x1009F M13_DS2_OUT_AIS_R M13_DS2_OUT_AIS[7:1] 0x100A0 M13_TDS2_EDGE_R 0x100A1 M13_RDL_CONTROL 0x100A2 -- 0x100A4 -- M23 DeMUX Controls--R/W 235 M13_TDS2_EDGE[7:1] M13_RDL_FILL[1:0] M13_RDL_FCS M13_DS3_MODE M13_RDS3_EDGE Lucent Technologies Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Performance Monitoring Counters--RO 0x100A5 M13_PM_CNT_ACT_R 0x100A6 M13_DS3_FERR_CNT_R1 0x100A7 M13_DS3_FERR_CNT_R2 0x100A8 M13_DS3_FEBE_CNT_R1 0x100A9 M13_DS3_FEBE_CNT_R2 0x100AA M13_DS3_CPERR_CNT_R1 0x100AB M13_DS3_CPERR_CNT_R2 0x100AC M13_DS3_PERR_CNT_R1 0x100AD M13_DS3_PERR_CNT_R2 0x100AE -- 0x100B1 -- 0x100B2 M13_DS2_PERR_CNT7_R1 0x100B3 M13_DS2_PERR_CNT7_R2 0x100B4 M13_DS2_PERR_CNT6_R1 0x100B5 M13_DS2_PERR_CNT6_R2 0x100B6 M13_DS2_PERR_CNT5_R1 0x100B7 M13_DS2_PERR_CNT5_R2 0x100B8 M13_DS2_PERR_CNT4_R1 0x100B9 M13_DS2_PERR_CNT4_R2 0x100BA M13_DS2_PERR_CNT3_R1 0x100BB M13_DS2_PERR_CNT3_R2 Lucent Technologies Inc. M13_PM_C NT_ACT M13_DS3_FERR_CNT[11:8] M13_DS3_FERR_CNT[7:0] M13_DS3_FEBE_CNT[13:8] M13_DS3_FEBE_CNT[7:0] M13_DS3_CPERR_CNT[13:8] M13_DS3_CPERR_CNT[7:0] M13_DS3_PERR_CNT[13:8] M13_DS3_PERR_CNT[7:0] M13_DS2_PERR_CNT7[12:8] M13_DS2_PERR_CNT7[7:0] M13_DS2_PERR_CNT6[12:8] M13_DS2_PERR_CNT6[7:0] M13_DS2_PERR_CNT5[12:8] M13_DS2_PERR_CNT5[7:0] M13_DS2_PERR_CNT4[12:8] M13_DS2_PERR_CNT4[7:0] vDS2_PERR_CNT3[12:8] M13_DS2_PERR_CNT3[7:0] 236 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Address Symbol 0x100BC M13_DS2_PERR_CNT2_R1 0x100BD M13_DS2_PERR_CNT2_R2 0x100BE M13_DS2_PERR_CNT1_R1 0x100BF M13_DS2_PERR_CNT1_R2 0x100C0 -- 0x100C5 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 M13_DS2_PERR_CNT2[7:0] M13_DS2_PERR_CNT1[12:8] M13_DS2_PERR_CNT1[7:0] -- 0x100C6 M13_DS2_FERR_CNT7_R M13_DS2_FERR_CNT7[7:0] 0x100C7 M13_DS2_FERR_CNT6_R M13_DS2_FERR_CNT6[7:0] 0x100C8 M13_DS2_FERR_CNT5_R M13_DS2_FERR_CNT5[7:0] 0x100C9 M13_DS2_FERR_CNT4_R M13_DS2_FERR_CNT4[7:0] 0x100CA M13_DS2_FERR_CNT3_R M13_DS2_FERR_CNT3[7:0] 0x100CB M13_DS2_FERR_CNT2_R M13_DS2_FERR_CNT2[7:0] 0x100CC M13_DS2_FERR_CNT1_R M13_DS2_FERR_CNT1[7:0] 0x100CD M13_BPV_CNT_R1 M13_BPV_CNT[23:16] 0x100CE M13_BPV_CNT_R2 M13_BPV_CNT[15:8] 0x100CF M13_BPV_CNT_R3 M13_BPV_CNT[7:0] 0x100D0 M13_EXZ_CNT_R1 M13_EXZ_CNT[23:16] 0x100D1 M13_EXZ_CNT_R2 M13_EXZ_CNT[15:8] 0x100D2 M13_EXZ_CNT_R3 M13_EXZ_CNT[7:0] 0x100D3 -- 0x100FE -- 237 Bit 2 M13_DS2_PERR_CNT2[12:8] Lucent Technologies Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 11 M13/M23 MUX/DeMUX Registers (continued) Table 300. Register Address Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TDL Buffer Selection--R/W 0x100FF M13_TDL_BUFFER_R M13_TDL_B UFFER TDL Buffers--R/W When M13_TDL_BUFFER = 0 M13_TDL_0DATA[0--63][7:0] 0x10100 M13_TDL_0DATA_R[0--63] -- 0x1013F When M13_TDL_BUFFER = 1 0x10100 M13_TDL_1DATA_R[0--63] -- 0x1013F 0x10140 -- 0x101FF M13_TDL_1DATA[0--63][7:0] -- Lucent Technologies Inc. 238 Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers Table of Contents Contents Page 12 28-Channel Framer Registers ........................................................................................................................ 239 12.1 Framer Global Register Descriptions ..................................................................................................... 243 12.2 Arbiter (Framer) Global Registers .......................................................................................................... 245 12.3 Performance Monitor Global Registers .................................................................................................. 247 12.4 HDLC Global Configuration and Status Registers .................................................................................. 253 12.5 System Interface Global Registers ......................................................................................................... 257 12.6 Signaling Global Registers ..................................................................................................................... 262 12.7 Frame Formatter (Transmit Framer) Global Register ............................................................................. 266 12.8 Facility Data Link Global Registers ......................................................................................................... 267 12.9 Super Mapper Framer Per Link Configuration and Status Registers ..................................................... 267 12.9.1 Signaling Per Link Registers ........................................................................................................ 267 12.10 Performance Monitor Per Link Registers .............................................................................................. 273 12.11 Receive Facility Data Link Configuration and Status Registers ........................................................... 288 12.12 Transmit Facility Data Link Configuration and Status Registers .......................................................... 290 12.13 System Interface, Arbiter, and Frame Formatter Mapping ................................................................... 292 12.14 System Interface Per Link Registers .................................................................................................... 293 12.15 Arbiter Framer Per Link Registers ........................................................................................................ 295 12.16 Frame Formatter Per Link Registers .................................................................................................... 300 12.17 Line Decoder/Encoder Per Link Registers ........................................................................................... 302 12.18 Line Encoder/Decoder Per Link Registers ........................................................................................... 303 12.19 HDLC Per Channel Configuration and Status Registers ...................................................................... 304 12.20 28-Channel Framer Block Register Map .............................................................................................. 311 Tables Table 301. Table 302. Table 303. Table 304. Table 305. Table 306. Table 307. Table 308. Table 309. Table 310. Table 311. Table 312. Table 313. Table 314. Table 315. Table 316. Table 317. Table 318. Table 319. Table 320. Table 321. Table 322. Table 323. Table 324. Page FRM_SFGR1, Superframer Global Register 1 (R/W) ........................................................................ 243 FRM_SFGR2, Superframer Global Register 2 (R/W) ........................................................................ 244 FRM_SFGR3, Superframer Global Register 3 (RO) ......................................................................... 245 FRM_SFGSR4, Superframer Global Register 4 (R/W) ..................................................................... 245 FRM_FGR1, Framer Global Register 1 (R/W) .................................................................................. 245 FRM_FGR2, Framer Global Register 2 (R/W) .................................................................................. 246 FRM_FGR3, Framer Global Register 3 (R/W) .................................................................................. 246 FRM_FGR4, Framer Global Register 4 (COR) ................................................................................. 246 FRM_FGR5, Framer Global Register 5 (COR) ................................................................................. 247 FRM_PMGR1_B, Performance Monitor Global Register 1_B (R/W) ................................................ 247 FRM_PMGR1, Performance Monitor Global Register 1 (COR) ........................................................ 247 FRM_PMGR2, Performance Monitor Global Register 2 (COR) ........................................................ 248 FRM_PMGR3, Performance Monitor Global Register 3 (R/W) ......................................................... 248 FRM_PMGR4, Performance Monitor Global Register 4 (R/W) ......................................................... 249 FRM_PMGR5, Performance Monitor Global Register 5--PMGR5 (R/W) ......................................... 249 FRM_PMGR6, Performance Monitor Global Register 6 (R/W) ......................................................... 249 FRM_PMGR7, Performance Monitor Global Register 7 (R/W) ......................................................... 249 FRM_PMGR8, Performance Monitor Global Register 8 (R/W) ......................................................... 250 FRM_PMGR9, Performance Monitor Global Register 9 (R/W) ......................................................... 250 FRM_PMGR10, Performance Monitor Global Register 10 (R/W) ..................................................... 250 FRM_PMGR11, Performance Monitor Global Register 11 (R/W) ..................................................... 250 FRM_PMGR12, Performance Monitor Global Register 12 (R/W) ..................................................... 251 FRM_PMGR13, Performance Monitor Global Register 13 (R/W) ..................................................... 251 FRM_PMGR14, Performance Monitor Global Register 14 (R/W) ..................................................... 252 Agere Systems Inc. 239 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table of Contents (continued) Tables Page Table 325. FRM_PMGR15, Performance Monitor Global Register 15 (R/W) ..................................................... 252 Table 326. FRM_PMGR16, Performance Monitor Global Register 16 (R/W) ..................................................... 252 Table 327. FRM_HGR1, Transmit HDLC Global Register 1 (R/W) ..................................................................... 253 Table 328. FRM_HGR2, Transmit HDLC Global Register 2 (R/W) ..................................................................... 253 Table 329. FRM_HGR3, Transmit HDLC Global Register 3 (R/W) ..................................................................... 253 Table 330. FRM_HGR4, Transmit HDLC Global Register 4 (R/W) ..................................................................... 253 Table 331. FRM_HGR5, Transmit HDLC Global Register 5 (R/W) ..................................................................... 254 Table 332. FRM_HGR6, Transmit HDLC Global Register 6 (R/W) ..................................................................... 254 Table 333. FRM_HGR7, Transmit HDLC Global Register 7 (R/W) ..................................................................... 254 Table 334. FRM_HGR8, Transmit HDLC Global Register 8 (R/W) ..................................................................... 254 Table 335. FRM_HGR9, Transmit HDLC Global Register 9 (R/W) ..................................................................... 254 Table 336. FRM_HGR10, Transmit HDLC Global Register 10 (R/W) ................................................................. 255 Table 337. FRM_HGR11, Transmit HDLC Global Register 11 (RO) .................................................................. 255 Table 338. FRM_HGR12, Transmit HDLC Global Register 12 (R/W) ................................................................. 255 Table 339. FRM_HGR13, Transmit HDLC Global Register 13 (R/W) ................................................................. 255 Table 340. FRM_HGR14, Transmit HDLC Global Register 14 (R/W) ................................................................. 255 Table 341. FRM_HGR15, Receive HDLC Global Register 15 (R/W) .................................................................. 255 Table 342. FRM_HGR16, Receive HDLC Global Register 16 (R/W) .................................................................. 256 Table 343. FRM_HGR17, Receive HDLC Global Register 17 (R/W) .................................................................. 256 Table 344. FRM_HGR18, Receive HDLC Global Register 18 (R/W) .................................................................. 256 Table 345. FRM_HGR19, Receive HDLC Global Register 19 (R/W) .................................................................. 256 Table 346. FRM_HGR20, Receive HDLC Global Register 20 (R/W) .................................................................. 256 Table 347. FRM_SYSGR1, System Interface Global Register 1 (R/W) .............................................................. 257 Table 348. FRM_SYSGR2, System Interface Global Register 2 (R/W) .............................................................. 258 Table 349. FRM_SYSGR3, System Interface Global Register 3 (R/W) .............................................................. 259 Table 350. FRM_SYSGR4, System Interface Global Register 4 (R/W) .............................................................. 259 Table 351. FRM_SYSGR5, System Interface Global Register 5 (R/W) .............................................................. 259 Table 352. FRM_SYSGR6, System Interface Global Register 6 (COR) ............................................................. 259 Table 353. FRM_SYSGR7, System Interface Global Register 7 (COR) ............................................................. 260 Table 354. FRM_SYSGR8, System Interface Global Register 8 (R/W) .............................................................. 260 Table 355. FRM_SYSGR9, System Interface Global Register 9 (R/W) .............................................................. 260 Table 356. FRM_SYSGR10--FRM_SYSGR14, System Interface Global Register 10--14 (R/W) .................... 261 Table 357. FRM_SYSGR15, System Interface Global Register 15 (COR) ......................................................... 261 Table 358. FRM_SYSGR16, System Interface Global Register 16 (R/W) .......................................................... 261 Table 359. FRM_SGR1, Receive Signaling Global Register 1 (R/W) ................................................................. 262 Table 360. FRM_SGR2, Receive Signaling Global Register 2 (R/W) ................................................................. 262 Table 361. FRM_SGR3, Receive Signaling Global Register 3 (R/W) ................................................................. 263 Table 362. FRM_SGR4, Receive Signaling Global Register 4 (RO) ................................................................... 263 Table 363. FRM_SGR5, Receive Signaling Global Register 5 (RO) ................................................................... 263 Table 364. FRM_SGR6, Receive Signaling Global Register 6 .......................................................................... 264 Table 365. FRM_SGR7, Receive Signaling Global Register 7 (R/W) ................................................................. 264 Table 366. FRM_SGR8, Transmit Signaling Global Register 8 (R/W) ................................................................ 265 Table 367. FRM_FFGR1, Transmit Framer Global Register 1 (R/W) ................................................................. 266 Table 368. FRM_FDLGR1, Receive Facility Data Link Global Register 1 (R/W) ................................................ 267 Table 369. FRM_FDLGR2, Transmit Facility Data Link Global Register 2 (R/W) ............................................... 267 Table 370. Receive Path Signaling Register Addressing Map ............................................................................ 267 Table 371. Receive Path Signaling Registers Address Indexing ........................................................................ 267 Table 372. FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W) ............................... 268 Table 373. FRM_RSLR32, Receive Signaling Link Register 32 (COR) .............................................................. 269 240 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table of Contents (continued) Tables Page Table 374. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) ............................................................... 269 Table 375. Transmit Path Signaling Register Addressing Map ........................................................................... 270 Table 376. Transmit Path Signaling Registers Address Indexing ....................................................................... 270 Table 377. FRM_TSLR0--FRM_TSLR31, Transmit Signaling Link Registers 0--31 (R/W) .............................. 271 Table 378. FRM_TSLR32, Transmit Signaling Link Register 32 (R/W) .............................................................. 272 Table 379. FRM_TSLR33, Transmit Signaling Link Register 33 (COR) ............................................................. 273 Table 380. Performance Monitor Per Link Register Addressing Map ................................................................. 273 Table 381. Performance Monitor Per Link Register Address Indexing ................................................................ 274 Table 382. FRM_PMLR1, Performance Monitor Link Register 1 (R/W) .............................................................. 274 Table 383. FRM_PMLR2, Performance Monitor Link Register 2 (R/W) .............................................................. 274 Table 384. FRM_PMLR3, Performance Monitor Link Register 3 (R/W) .............................................................. 275 Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) ............................................................. 275 Table 386. FRM_PMLR5, Performance Monitor Link Register 5 (COR) ............................................................. 282 Table 387. FRM_PMLR6, Performance Monitor Link Register 6 (COR) ............................................................. 284 Table 388. FRM_PMLR7, Performance Monitor Link Register 7 (COR) ............................................................. 284 Table 389. FRM_PMLR8, Performance Monitor Link Register 8 (COR) ............................................................. 285 Table 390. FRM_PMLR9, Performance Monitor Link Register 9 (COR) ............................................................. 285 Table 391. FRM_PMLR10, Performance Monitor Link Register 10 (COR) ......................................................... 285 Table 392. FRM_PMLR11, Performance Monitor Link Register 11 (COR) ......................................................... 285 Table 393. FRM_PMLR12, Performance Monitor Link Register 12 (COR) ......................................................... 285 Table 394. FRM_PMLR13, Performance Monitor Link Register 13 (COR) ......................................................... 286 Table 395. FRM_PMLR14, Performance Monitor Link Register 14 (COR). ........................................................ 287 Table 396. FRM_PMLR15, Performance Monitor Link Register 15 (COR) ......................................................... 287 Table 397. FRM_PMLR16, Performance Monitor Link Register 16 (COR) ......................................................... 287 Table 398. FRM_PMLR17, Performance Monitor Link Register 17 (COR) ......................................................... 287 Table 399. FRM_PMLR18, Performance Monitor Link Register 18 (COR) ......................................................... 287 Table 400. FRM_PMLR19, Performance Monitor Link Register 19 (COR) ......................................................... 288 Table 401. FRM_PMLR20, Performance Monitor Link Register 20 (COR) ......................................................... 288 Table 402. Receive Facility Data Link Register Addressing Map ........................................................................ 288 Table 403. Receive Path Facility Data Link Registers Address Indexing ............................................................ 289 Table 404. FRM_RFDLLR1--FRM_RFDLLR5, Receive FDL Link Registers 1--5 (RO) ................................... 289 Table 405. FRM_RFDLLR6, Receive FDL Link Register 6 (R/W) ....................................................................... 289 Table 406. FRM_RFDLLR7, Receive FDL Link Register 7 (RO) ........................................................................ 289 Table 407. FRM_RFDLLR8, Receive FDL Link Register 8 (COR) ...................................................................... 290 Table 408. FRM_RFDLLR9, Receive FDL Link Register 9 (R/W) ....................................................................... 290 Table 409. Transmit Facility Data Link Register Addressing Map ....................................................................... 290 Table 410. Transmit Path Facility Data Link Registers Address Indexing ........................................................... 290 Table 411. FRM_TFDLLR1--FRM_TFDLR5, Transmit FDL Link Registers 1--5 (COR) ................................... 290 Table 412. FRM_TFDLLR6, Transmit FDL Link Register 6 (R/W) ...................................................................... 291 Table 413. FRM_TFDLLR7, Transmit FDL Link Register 7 (R/W) ...................................................................... 291 Table 414. FRM_TFDLLR8, Transmit FDL Link Register 8 (RO/COW) .............................................................. 292 Table 415. FRM_TFDLLR9, Transmit FDL Link Register 9 (R/W) ...................................................................... 292 Table 416. System Interface, Arbiter, and Frame Formatter Link Register Addressing Map .............................. 292 Table 417. System Interface, Arbiter, and Frame Formatter Link Register Address Indexing ............................ 293 Table 418. FRM_SYSLR1, System Interface Link Register 1 (R/W) ................................................................... 293 Table 419. FRM_SYSLR2, System Interface Link Register 2 (R/W) ................................................................... 294 Table 420. FRM_SYSLR3--FRM_SYSLR6, System Interface Link Registers 3--6 (R/W) ................................ 294 Table 421. FRM_ARLR1, Arbiter Link Register 1 (R/W) ..................................................................................... 295 Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) ..................................................................................... 296 Agere Systems Inc. 241 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table of Contents (continued) Tables Page Table 423. FRM_ARLR3, Arbiter Link Register 3 (R/W) ..................................................................................... 299 Table 424. FRM_FFLR1, Frame Formatter Link Register 1 (R/W) ..................................................................... 300 Table 425. FRM_FFLR2, Frame Formatter Link Register 2 (R/W) ..................................................................... 301 Table 426. Line Decoder Per LInk Register Addressing Map ............................................................................. 302 Table 427. Line Decoder Per Link Registers Address Indexing .......................................................................... 302 Table 428. Line Encoder Per Link Register Addressing Map .............................................................................. 302 Table 429. Line Encoder Per Link Registers Address Indexing .......................................................................... 302 Table 430. FRM_LDLR1, Line Decoder Link Register 1 (R/W) ........................................................................... 303 Table 431. FRM_LDLR2, Line Encoder Link Register 2 (R/W) ........................................................................... 303 Table 432. HDLC Per Channel Register Addressing Map .................................................................................. 304 Table 433. FRM_HCR1, Transmit HDLC Channel Register 1 (R/W) .................................................................. 304 Table 434. FRM_HCR2, Transmit HDLC Channel Register 2 (R/W) .................................................................. 304 Table 435. FRM_HCR3, Transmit HDLC Channel Register 3 (R/W) .................................................................. 305 Table 436. FRM_HCR4, Transmit HDLC Channel Register 4 (RO) .................................................................... 306 Table 437. FRM_HCR5, Transmit HDLC Channel Register 5 (R/W) .................................................................. 306 Table 438. FRM_HCR6, Transmit HDLC Channel Register 6 (WO) ................................................................... 307 Table 439. FRM_HCR7, Transmit HDLC Channel Register 7 (RO) .................................................................... 307 Table 440. FRM_HCR8, Receive HDLC Channel Register 8 (R/W) ................................................................... 307 Table 441. FRM_HCR9, Receive HDLC Channel Register 9 (R/W) ................................................................... 307 Table 442. FRM_HCR10, Receive HDLC Channel Register 10 (R/W) ............................................................... 308 Table 443. FRM_HCR11, Receive HDLC Channel Register 11 (RO) ................................................................. 308 Table 444. FRM_HCR12, Receive HDLC Channel Register 12 (R/W) ............................................................... 309 Table 445. FRM_HCR13, Receive HDLC Channel Register 13 (RO) ................................................................. 310 Table 446. FRM_HGR14, Receive HDLC Channel Register 14 (COR) .............................................................. 310 Table 447. Framer Register Map ......................................................................................................................... 311 242 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.1 Framer Global Register Descriptions Table 301. FRM_SFGR1, Superframer Global Register 1 (R/W) Address 0x80000 Bit 15 Name Function Reset Default 0 FRM_SW_TRN Superframer Configuration Modes. 0 = Transport mode. 1 = Switching mode. 14:13 FRM_LC_ Line Encoder/Decoder Control. 00 CNTRL[1:0] 00 = Line encoder and line decoder blocks are not used in either the framer Tx or Rx paths. This setting is used in the following switching modes: STS-3/STS-1/DS3/DS2 to CHI/parallel system bus/SMI. STS-3/STS-1/DS3 to line data rate mode. 01 = Line decoder is used in the Rx path and line encoder is used in the Tx path. This setting is used in the framer-only switching modes: DS1 to CHI/parallel system bus/SMI channelized. 10 = Line decoder is used in the Tx path and line encoder is used in the Rx path. This setting is used in the following transport modes: 12 FRM_LOOP_ TIMING 11 FRM_DS1_ CEPTN 10 9:1 0 DS1 to DS2/DS3/STS-1/STS-3. 11 = Reserved. Loop Timing. 0 = Superframer is programmed for normal mode. 1 = Superframer is programmed for loop timing; i.e., all received line clocks are looped back to the corresponding transmit line clocks. DS1/CEPT Terminal Count. 0 1 0 = Superframer is programmed for CEPT mode, which has a maximum of 21 operational links. Links 22 to 28 are disabled. 1 = Superframer is programmed for DS1 mode, which has a maximum of 28 operational links. Note: For fewer links or DS1/CEPT mixed modes, use FRM_TC_EN and FRM_TC[7:0] (Table 306) parameters to select an accurate link count. FRM_PLL_ PLL Bypass. BYPAS 0 = Internal PLL is used to generate the line clock in the transmit path. 1 = The PLL is bypassed. External line clock is required in this mode. Reserved. Must write to 0. -- FRM_LG_BUF_ HDLC Buffer Mode. MODE 0 = HDLC channel buffers are configured for 128-byte storage. Up to 64 (32) channels can be supported in the switching (transport) mode. 0 0 0 1 = HDLC channel buffers are combined for 512-byte storage. Up to 16 (8) channels can be supported in the switching (transport) mode. Agere Systems Inc. 243 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 302. FRM_SFGR2, Superframer Global Register 2 (R/W) Address Bit 0x80001 15:14 244 Name -- Function Reset Default Reserved. Must write to 0. 0 13 FRM_TP_SIG_PWDN Transmit Path Receive Signaling Powerdown. When set to 0, the transmit path receive signaling block for the transport mode is powered down. 1 12 FRM_RP_SIG_PWDN Receive Path Transmit Signaling Powerdown. When set to 0, the receive path transmit signaling block for the transport mode is powered down. 1 11 FRM_TP_RDL_PWDN Transmit Path Receive Datalink Powerdown. When set to 0, the transmit path receive data link block for the transport mode is powered down. 1 10 FRM_RP_TDL_PWDN Receive Path Transmit Datalink Powerdown. When set to 0, the receive path transmit data link block for the transport mode is powered down. 1 9 FRM_TP_RH_PWDN Transmit Path Receive HDLC Powerdown. When set to 0, the transmit path receive HDLC block for the transport mode is powered down. 1 8 FRM_RP_TH_PWDN Receive Path Transmit HDLC Powerdown. When set to 0, the receive path transmit HDLC block for the transport mode is powered down. 1 7 FRM_TS_PWDN Transmit Path System Block Powerdown. When set to 0, the transmit path system block is powered down. 1 6 FRM_RS_PWDN Receive Path System Block Powerdown. When set to 0, the receive path system block is powered down. 1 5 FRM_TP_PM_PWDN Transmit Path Performance Monitor Powerdown. When set to 0, the transmit path performance monitor block is powered down. 1 4 FRM_RP_FF_PWDN Receive Path Frame Formatter Powerdown. When set to 0, the receive path frame formatter block is powered down. 1 3 FRM_TP_RA_PWDN Transmit Path Receive Aligner Powerdown. When set to 0, the transmit path receive aligner block is powered down. 1 2:0 -- Reserved. Must write to 0. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 303. FRM_SFGR3, Superframer Global Register 3 (RO) Address Bit Name Function Reset Default 0x80002 15 FRM_RP_SIG A 1 indicates the change of signaling state FIFO contains state change information. 0 14 FRM_AR_IS A 1 indicates the FRM_AR_IS block has generated an interrupt. 0 13 FRM_TP_RDL_IS A 1 indicates the FRM_TP_RDL_IS block has generated an interrupt. 0 12 FRM_TP_TDL_IS A 1 indicates the FRM_TP_TDL_IS block has generated an interrupt. 0 11 FRM_RH_IS A 1 indicates the FRM_RH_IS block has generated an interrupt. 0 10 FRM_TH_IS A 1 indicates the FRM_TH_IS block has generated an interrupt 0 9 FRM_TS_IS A 1 indicates the FRM_TS_IS block has generated an interrupt. 0 8 FRM_RS_IS A 1 indicates the FRM_RS_IS block has generated an interrupt. 0 7 FRM_TP_PM_IS A 1 indicates the FRM_TP_PM_IS block has generated an interrupt. 0 6 FRM_RP_PM_IS A 1 indicates the FRM_RP_PM_IS block has generated an interrupt. 0 5 FRM_RP_RDL_IS A 1 indicates the FRM_RP_RDL_IS block has generated an interrupt. 0 4 FRM_RP_TDL_IS A 1 indicates the FRM_RP_TDL_IS block has generated an interrupt. 0 3:0 -- Reserved. Reads 0. 0 Table 304. FRM_SFGSR4, Superframer Global Register 4 (R/W) Address Bit Name 0x80003 15 -- 14:12 11:0 Function Reserved. Must write to 0. FRM_VERSION[2:0] Superframer Version Number. -- Reserved. Must write to 0. Reset Default 0 000 0x000 12.2 Arbiter (Framer) Global Registers Table 305. FRM_FGR1, Framer Global Register 1 (R/W) Address Bit 0x80010 15:8 7:0 Agere Systems Inc. Name Function Reserved. Must write to 0. -- FRM_TO[7:0] Time-Out Count. The number of frames to wait before declaring a time out. See FRM_OPT[1:0] (Table 422). The default is 40 frames (5 ms). Reset Default 000000000 00101000 245 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 306. FRM_FGR2, Framer Global Register 2 (R/W) Address Bit 0x80011 15 Name Function Reset Default 0 FRM_TC_EN Terminal Count Enable. 0 = Terminal count disabled use defaults. 14:8 7:0 1 = Terminal count enabled. Reserved. Must write to 0. -- 0000000 00000000 FRM_TC[7:0] Terminal Count. When enabled, the link counter will count from 1 to the terminal count. The terminal count determines the number of links available for use. The operational links are link 1 to the link determined by the terminal count. By default, the count is determined by the option bit, FRM_DS1_CEPTN (Table 301). In an application, where there is a mix of DS1 and CEPT links or a small number of links, the terminal count may be set by enabling FRM_TC_EN and setting the terminal count, FRM_TC[7:0]. Table 307. FRM_FGR3, Framer Global Register 3 (R/W) Address Bit 0x80012 15 Name Function Reset Default FRM_TPSSE_IM Transmit Path System Synchronization Error Interrupt Mask. A transmit path system synchronization error interrupt is generated when synchronization is lost between the receive system interface and the transmit path line clock. FRM_TPSSE_IM is a global mask for the interrupt status from each link. The individual link transmit path system error interrupt status bits, FRM_TPSSEI[28:1] are summarized in FRM_AR_IS bit 14 of FRM_SFGR3 (Table 303). 1 0 = Allows any synchronization error, as reported in the synchronization status registers, to generate an interrupt. 1 = Masks any synchronization error, as reported in the synchronization status registers, from generating an interrupt. 14:0 -- Reserved. Must write to 0. 000000000 000000 Table 308. FRM_FGR4, Framer Global Register 4 (COR) Address Bit 0x80014 15:0 Name Function Reset Default FRM_TPSSEI[16:1] Transmit Path System Synchronization Error Interrupt. 00X0000 1 = Indicates a transmit path system synchronization error on links 16 to 1. 246 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 309. FRM_FGR5, Framer Global Register 5 (COR) Address Bit Name 0x80015 15:12 -- 11:0 Function Reserved. Must write to 0. Reset Default 000 FRM_TPSSEI[28:17] Transmit Path System Synchronization Error Inter- 000000000 rupt. 000 1 = Indicates a transmit path system synchronization error on links 28 to 17. 12.3 Performance Monitor Global Registers Table 310. FRM_PMGR1_B, Performance Monitor Global Register 1_B (R/W) Address* Bit Name 0x80P20 15 FRM_SEC_SEL Function Framer PMRESET Source. The source of the performance monitoring interval (generally one second) may be selected to be internal to the framer block or external to the framer block. Reset Default 0 0 = External. 1 = Internal. 14:13 -- Reserved. Must write to 0. 000 12:0 FRM_CT125[12:0] Framer Terminal Count. This is the terminal count for an inter- 0x1950 nal 125 s timer that is multiplied by 8000 to determine the internal performance monitoring interval. This count is based on the TDM clock speed. The default count is based on a 51.84 MHz clock. This terminal count is calculated by the following equation. Timer terminal count = (125 s)(fTDM clock). * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 311. FRM_PMGR1, Performance Monitor Global Register 1 (COR) Address* Bit Name 0x80P30 15:2 1 -- FRM_DETECT 0 Function Reserved. Must write to 0. Test-Pattern Detect. A 1 indicates the pattern detector has locked onto the pattern specified by the FRM_PTRN_SEL[3:0] (Table 324) configuration bits. There is only one test-pattern detector. See O.151 Section 2. Both framed and unframed testpattern generation/detection are supported. FRM_PTRNBER Test-Pattern Bit Error. A 1 indicates the receive framer pattern detector has found one or more single-bit errors in the pattern that it is currently locked on to. There is only one test-pattern BER counter for all links. Reset Default 0x0000 0 0 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Agere Systems Inc. 247 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 312. FRM_PMGR2, Performance Monitor Global Register 2 (COR) Address* Bit 0x80P31 15:0 Name Function Reset Default FRM_TPERR_CT[15:0] Test Pattern Error Count Register. This register contains the 16-bit count of test-pattern errors. 0 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 313. FRM_PMGR3, Performance Monitor Global Register 3 (R/W) Address* Bit Name 0x80P32 15:14 13:11 10:8 -- FRM_RAC[2:0] FRM_RDC[2:0] 7 6 5 4:3 2 1 0 Function Reserved. Must write to 0. CEPT Mode RAI Activation Count. CEPT Mode RAI Deactivation Count. RAC and RDC can be set to meet various standards. FRM_FSFBEEN FS Frame Bit Error Enable. Allows a signaling frame (FS) bit error to set the FBE status bit, FRM_FBE ( Table 386). In DDS, a 0 means do not count TS24 framing and F S as FBEs; a 1 means count TS24 framing and Fs as FBEs. 0 = F S bit errors disabled. 1 = F S bit errors enabled. FRM_CMFRFEN CEPT Multiframe Reframe Enable. 0 = CEPT CRC-4 multiframe reframe disabled. 1 = CEPT CRC-4 multiframe reframe enabled. A research for multiframe alignment is initiated upon a loss of CEPT CRC-4 multiframe alignment. FRM_CRCRFEN CRC Reframe Enable. 0 = CRC errors do not cause a reframe or LOF condition. 1 = The receive performance monitor will force a reframe and LOF condition on excessive CRC errors. FRM_CEPTAISM[1:0] CEPT AIS Mode. 00 = Option 0: G.775 section I.2; G.965 section 16.1.2. 01 = Option 1: G.775 section 5.2. 10 = Option 2: G.775 section I.2. 11 = Option 3: G.775 section I.2. FRM_DS1AISM DS1 AIS Mode. 0 = Option 0: T1.231 section 6.1.2.2.3, T1.403 section H, G.775 section 5.4. 1 = Option 1: G.775 section I.2. FRM_ESFRAIM ESF RAI Mode. 0 = Alternating eight ones followed by eight zeros. 1 = All ones. FRM_RAICLR Clear RAI on Reception of DS1 Idle Signal. 0 = Ignore DS1 idle signal for RAI clearing. 1 = Clear failure on reception of DS1 idle signal: ANSI T1.231 section 6.2.2.2.1. Reset Default 00 001 001 0 0 1 01 1 0 0 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. FRM_RACFRM_RDC Standard. 248 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 314. FRM_PMGR4, Performance Monitor Global Register 4 (R/W) Address* Bit Name 0x80P33 15:0 Function Reset Default FRM_SFSEST[15:0] SF Severely Errored Second Threshold for All SF Format- 0x0140 ted Channels. Note: A bursty errored second will be recorded if the number of events is greater than the errored second threshold but less than the severely errored second threshold. There is a separate threshold for ESF and SF because of the bit error provisioning in ESF (F t or Fs). * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 315. FRM_PMGR5, Performance Monitor Global Register 5--PMGR5 (R/W) Address* Bit Name 0x80P34 15:0 Function FRM_DCT[15:0] DS1 Excessive CRC Threshold--Default 320. This register sets the one second CRC threshold at which an excessive CRC error condition is reported and the one second CRC threshold at which a reframe may be forced. Reset Default 0x0140 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 316. FRM_PMGR6, Performance Monitor Global Register 6 (R/W) Address* Bit Name 0x80P35 15:0 Function FRM_ESFSEST[15:0] ESF Severely Errored Second Threshold for All ESF Formatted Channels. A bursty errored second will be recorded if the number of events is greater than the errored second threshold but less than the severely errored second threshold. Reset Default 0x0140 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 317. FRM_PMGR7, Performance Monitor Global Register 7 (R/W) These bits enable the errored events used to determine errored and severely errored seconds in the DS1 modes. Address* Bit 0x80P36 15:9 8 7 6 5 4 3 2 1 0 Name -- FRM_DSEF FRM_DLFA FRM_DRFA FRM_DSLIP FRM_DLOS FRM_DAIS FRM_DCRC FRM_DFS FRM_DFT Function Reserved. Must write to 0. DS1 Severely Errored Frame Enable. See FRM_SEFS (Table 400). DS1 Loss of Frame Alignment Enable. DS1 Remote Frame Alarm Enable. DS1 Slip Enable. DS1 Loss of Signal Enable. DS1 Alarm Indication Signal Enable. DS1 CRC-6 Error Enable. DS1 Fs Framing Bit Error Enable (SF Only). DS1 Ft Framing Bit Error Enable (SF and ESF). Reset Default 0x00 0 0 0 0 0 0 0 0 0 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Agere Systems Inc. 249 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 318. FRM_PMGR8, Performance Monitor Global Register 8 (R/W) Address* Bit Name Function 0x80P37 15:0 FRM_CCT[15:0] CEPT Excessive CRC Threshold--Default 915. This register sets the one second CRC threshold at which an excessive CRC error condition is reported and the one second CRC threshold at which a reframe may be forced. Reset Default 0x0393 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 319. FRM_PMGR9, Performance Monitor Global Register 9 (R/W) Address* 0x80P38 Bit Name Function Reset Default 15:0 FRM_CSEST[15:0] CEPT Severely Errored Second Threshold for All CEPT Formatted Channels. 0x0000 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 320. FRM_PMGR10, Performance Monitor Global Register 10 (R/W) These bits enable the errored events used to determine errored and severely errored seconds in the CEPT modes. Address* Bit Name 0x80P39 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FRM_CSA6_F FRM_CSA6_E FRM_CSA6_C FRM_CSA6_8 FRM_CSA6_1X FRM_CSA6_X1 FRM_CEBIT FRM_CLMFA FRM_CLFA FRM_CRFA FRM_CSLIP FRM_CLOS FRM_CAIS FRM_CCRC FRM_CNOTFAS FRM_CFAS Function Reset Default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CEPT Sa6 = F Enable and Sa5 = 1. (Reception of AIS.) CEPT Sa6 = E Enable and Sa5 = 1. (FC3 and FC4.) CEPT Sa6 = C Enable and Sa5 = 1. (LOS/LFA.) CEPT Sa6 = 8 Enable and Sa5 = 1. (Loss of power.) CEPT Sa6 = 001x Event Enable. CEPT Sa6 = 00x1 Event Enable. CEPT E bit = 0 Event Enable. CEPT Loss of Multiframe Alignment Enable. CEPT Loss of Frame Alignment Enable. CEPT Remote Frame Alarm Enable. CEPT Slip Enable. CEPT Loss of Signal Enable. CEPT Alarm Indication Signal Enable. CEPT CRC-4 Error Enable. CEPT Non-FAS Bit Error Enable. CEPT FAS Bit Error Enable. * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 321. FRM_PMGR11, Performance Monitor Global Register 11 (R/W) Address* Bit 0x80P3A 15:0 Name Function FRM_CRET[15:0] Continuous Received E-Bit Threshold--Default 991. This register sets the five second continuous E-bit threshold for setting the CRE bit status indication. Reset Default 0x03DF * P = 0x0 for the receive path, and P = 0x1 for the transmit path. 250 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 322. FRM_PMGR12, Performance Monitor Global Register 12 (R/W) Address* Bit 0x80P3B Name Function Reset Default 15 FRM_CRAI_AIS Send RAI Upon Detection of AIS Enable in CEPT Mode. 0 14 FRM_CRAI_OOF Send RAI Upon Detection of OOF Enable in CEPT Mode. 0 13 FRM_CRAI_LOS Send RAI Upon Detection of LOS Enable in CEPT Mode. 0 12 FRM_CRAI_SA6EQC Send RAI Upon Detection of Sa6 = (0xC) Enable in CEPT 0 Mode. 11 FRM_CRAI_SA6EQ8 Send RAI Upon Detection of Sa6 = (0x8) Enable in CEPT 0 Mode. 10 FRM_CRAI_CRCTX Send RAI Upon Detection of CRCTX Enable in CEPT 0 Mode. 0 9 FRM_CRAI_LTS0MFA Send RAI Upon Detection of LTS0MFA Enable in CEPT Mode. 8 FRM_CRAI_LTS16MFA Send RAI Upon Detection of LTS16MFA Enable in CEPT 0 Mode. 7 FRM_CRAI_8MSEX Send RAI Upon Detection of 8 ms Timer Expiration 0 Enable in CEPT Mode. 6:3 -- Reserved. Must write to 0. 0 2 FRM_DSRAI_LOS Send RAI Upon Detection of LOS Enable in DS1 Mode. 0 1 FRM_DSRAI_OOF Send RAI Upon Detection of OOF Enable in DS1 Mode. 0 0 FRM_DSRAI_AIS Send RAI Upon Detection of AIS Enable in DS1 Mode. 0 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 323. FRM_PMGR13, Performance Monitor Global Register 13 (R/W) Address* Bit Name 0x80P3C 15:4 3 -- FRM_CFBE_MODE 2 1 0 Function Reserved. Must write to 0. CEPT FBE Mode. 0 = Count only FBEs received in FAS frame. 1 = Count FBEs received in both FAS and NOTFAS frames. FRM_CEBIT_LTS0MFA Set E Bits Upon Detection of LTS0MFA Enable (CEPT Only). FRM_CEBIT_ESMF Set E Bits Upon Detection of an Errored CEPT_CRC4 SMF (Submultiframe) Enable. FRM_CEBIT_CRCTX Set E Bits Upon Detection of CRCTX Enable (CEPT Only). Reset Default 0x000 0 0 0 0 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Agere Systems Inc. 251 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 324. FRM_PMGR14, Performance Monitor Global Register 14 (R/W) Address* Bit Name 0x80P3D 15:12 11 -- FRM_PTRN_EN 10 9 8:4 3:0 Function Reserved. Must write to 0. Enables the Detector Circuitry. FRM_PTRN_LNK[4:0] should be set to 1 before enabling the detection circuitry. FRM_PTRN_INV Receive Pattern Normal/Invert Mode. Selects whether to check for the selected pattern or its inverse. 0 = Selected pattern. 1 = Inverse. FRM_PTRN_FRMT Receive Pattern Framed/Unframed Mode. Selects monitoring for either framed or unframed test pattern. 0 = Unframed. 1 = Framed. FRM_PTRN_LNK[4:0] Pattern Detector Link Select. 5-bit link selection to indicate which link to monitor for test patterns. FRM_PTRN_SEL[3:0] Receive Pattern Select. 0000 = Pattern detector deactivate. 0001 = MARK (all ones AIS). 0010 = QRSS (2 20 - 1 with zero suppression). 0011 = 25 - 1. 0100 = 63(2 6 - 1). 0101 = 511(2 9 - 1) (V.52). 0110 = 29 - 1. 0111 = 2047(2 11 - 1) (O.151). 1000 = 211 - 1 (reversed). 1001 = 215 - 1 (O.151). 1010 = 220 - 1 (V.57). 1011 = 220 - 1 (CB113/CB114). 1100 = 223 - 1 (O.151). 1101 = 1:1 (alternating). Reset Default 0x0 0 0 0 0 0x00 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 325. FRM_PMGR15, Performance Monitor Global Register 15 (R/W) Address* Bit 0x80P3E 15:0 Name Function FRM_LN_IS[16:1] Per-Link PM Summary Interrupts for Links 16 Down to 1. Reset Default 0x0000 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. Table 326. FRM_PMGR16, Performance Monitor Global Register 16 (R/W) Address* Bit Name Function 0x80P3F 15:12 -- Reserved. Must write to 0. 11:0 FRM_LN_IS[28:17] Per-Link PM Summary Interrupts for Links 28 Down to 17. Reset Default 0x0 0x000 * P = 0x0 for the receive path, and P = 0x1 for the transmit path. 252 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.4 HDLC Global Configuration and Status Registers Table 327. FRM_HGR1, Transmit HDLC Global Register 1 (R/W) Address 0x80140 Bit Name Function Reserved. Must write to 0. 15:10 -- 9:0 FRM_HTTHRSH0[9:0] HDLC Transmit FIFO Threshold 0. These bits indicate the threshold levels for the Tx FIFOs. When a channel is enabled and the number of bytes in its FIFO decrements to this value, its FRM_HTTHRSH (Table 436) bit is set (optionally causes interrupt). FRM_HTTHRSH0[9:0] or FRM_HTTHRSH1[9:0] is selected on a per-channel basis with the FRM_HTTHRSEL (Table 436) parameter. Reset Default 0x00 0x000 Table 328. FRM_HGR2, Transmit HDLC Global Register 2 (R/W) Address 0x80141 Bit Name Function 15:10 -- Reserved. Must write to 0. 9:0 FRM_HTTHRSH1[9:0] HDLC Transmit FIFO Threshold 1. These bits indicate the threshold levels for the Tx FIFOs. When a channel is enabled and the number of bytes in its FIFO decrements to this value, its FRM_HTTHRSH bit is set (optionally causes interrupt). FRM_HTTHRSH0[9:0] or FRM_HTTHRSH1[9:0] is selected on a per-channel basis with the FRM_HTTHRSEL (Table 436) parameter. Reset Default 0x00 0x000 Table 329. FRM_HGR3, Transmit HDLC Global Register 3 (R/W) Address Bit 0x80142 15:8 7:0 Name Function -- Reserved. Must write to 0. FRM_TXICHAR0[7:0] Transparent Mode Transmit Idle Char 0. These bits are used in transparent mode. They represent the first 8-bit pattern the transmitter should send when there is no data available in the FIFO. One of the four patterns can be selected on a per-channel basis with the FRM_HXPIDLE[1:0] (Table 436) parameter. Reset Default 0x00 0x00 Table 330. FRM_HGR4, Transmit HDLC Global Register 4 (R/W) Address Bit 0x80143 15:8 7:0 Agere Systems Inc. Name Function -- Reserved. Must write to 0. FRM_TXICHAR1[7:0] Transparent Mode Transmit Idle Char 1. These bits are used in transparent mode. They represent the second 8-bit pattern the transmitter will send when there is no data available in the FIFO. One of the four patterns can be selected on a per-channel basis with the FRM_HXPIDLE[1:0] (Table 436) parameter. Reset Default 0x00 0x00 253 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 331. FRM_HGR5, Transmit HDLC Global Register 5 (R/W) Address Bit 0x80144 15:8 7:0 Name Function -- Reserved. Must write to 0. FRM_TXICHAR2[7:0] Transparent Mode Transmit Idle Char 2. These bits are used in transparent mode. They represent the third 8-bit pattern the transmitter will send when there is no data available in the FIFO. One of the four patterns can be selected on a per-channel basis with the FRM_HXPIDLE[1:0] (Table 435) parameter. Reset Default 0x00 0x00 Table 332. FRM_HGR6, Transmit HDLC Global Register 6 (R/W) Address Bit 0x80145 15:8 7:0 Name Function -- Reserved. Must write to 0. FRM_TXICHAR3[7:0] Transparent Mode Transmit Idle Char 3. These bits are used in transparent mode. They represent the fourth 8-bit pattern the transmitter will send when there is no data available in the FIFO. One of the four patterns can be selected on a per-channel basis with the FRM_HXPIDLE[1:0] (Table 435) parameter. Reset Default 0x00 0x00 Table 333. FRM_HGR7, Transmit HDLC Global Register 7 (R/W) Address Bit Name 0x80146 15:5 -- 4:0 Function Reset Default Reserved. Must write to 0. 0x000 FRM_FCNT0[4:0] HDLC Flag Count 0. These values are the number of additional idle flags to be sent between HDLC packets. One of the four values can be selected on a per-channel basis with the FRM_CFLAGS[1:0] (Table 435) parameter. 00000 Table 334. FRM_HGR8, Transmit HDLC Global Register 8 (R/W) Address Bit Name 0x80147 15:5 -- 4:0 Function Reset Default Reserved. Must write to 0. 0x000 FRM_FCNT1[4:0] HDLC Flag Count 1. These values are the number of additional idle flags to be sent between HDLC packets. One of the four values can be selected on a per-channel basis with the FRM_CFLAGS[1:0] parameter. 00000 Table 335. FRM_HGR9, Transmit HDLC Global Register 9 (R/W) Address Bit 0x80148 15:5 4:0 254 Name Function -- Reserved. Must write to 0. FRM_FCNT2[4:0] HDLC Flag Count 2. These values are the number of additional idle flags to be sent between HDLC packets. One of the four values can be selected on a per-channel basis with the FRM_CFLAGS[1:0] (Table 435) parameter. Reset Default 0x000 00000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 336. FRM_HGR10, Transmit HDLC Global Register 10 (R/W) Address Bit 0x80149 15:5 4:0 Name Function -- Reserved. Must write to 0. FRM_FCNT3[4:0] HDLC Flag Count 3. These values are the number of additional idle flags to be sent between HDLC packets. One of the four values can be selected on a per-channel basis with the FRM_CFLAGS[1:0] parameter. Reset Default 0x000 00000 Table 337. FRM_HGR11, Transmit HDLC Global Register 11 (RO) Address Bit Name 0x8014A 15:0 FRM_TH_IS[15:0] Function Transmit HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 15--0 to bits 15:0. Reset Default 0x0000 Table 338. FRM_HGR12, Transmit HDLC Global Register 12 (R/W) Address Bit Name 0x8014B 15:0 FRM_TH_IS[31:16] Function Transmit HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 31--16 to bits 15:0. Reset Default 0x0000 Table 339. FRM_HGR13, Transmit HDLC Global Register 13 (R/W) Address Bit Name 0x8014C 15:0 FRM_TH_IS[47:32] Function Transmit HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 47--32 to bits 15:0. Reset Default 0x0000 Table 340. FRM_HGR14, Transmit HDLC Global Register 14 (R/W) Address Bit Name 0x8014D 15:0 FRM_TH_IS[63:48] Function Transmit HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 63--48 to bits 15:0. Reset Default 0x0000 Table 341. FRM_HGR15, Receive HDLC Global Register 15 (R/W) Address Bit 0x80040 15:10 9:0 Agere Systems Inc. Name Function -- Reserved. Must write to 0. FRM_HRTHRSH0[9:0] Indicates the Threshold Levels for the Rx FIFOs. When a channel is enabled and its FIFO count increments to this value, its FRM_HRTHRSH (Table 443) status bit is set. FRM_HRTHRSH0 or FRM_HRTHRSH1 is selected on a per-channel basis with the FRM_RTHRSEL (Table 442) parameter. Reset Default 0x00 0x000 255 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 342. FRM_HGR16, Receive HDLC Global Register 16 (R/W) Address Bit 0x80041 15:10 9:0 Name Function -- Reserved. Must write to 0. FRM_HRTHRSH1[9:0] Indicates the Threshold Levels for the Rx FIFOs. When a channel is enabled and its FIFO count increments to this value, its FRM_HRTHRSH status bit is set. FRM_HRTHRSH0[9:0] or FRM_HRTHRSH1[9:0] is selected on a per-channel basis with the FRM_RTHRSEL (Table 442) parameter. Reset Default 0x00 0x000 Table 343. FRM_HGR17, Receive HDLC Global Register 17 (R/W) Address Bit Name 0x80042 15:0 FRM_RH_IS[15:0] Function Receive HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 15--0 to bits 15:0. Reset Default 0 Table 344. FRM_HGR18, Receive HDLC Global Register 18 (R/W) Address Bit Name Function 0x80043 15:0 FRM_RH_IS[31:16] Receive HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 31--16 to bits 15:0. Reset Default 0 Table 345. FRM_HGR19, Receive HDLC Global Register 19 (R/W) Address Bit Name Function 0x80044 15:0 FRM_RH_IS[47:32] Receive HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 47--32 to bits 15:0. Reset Default 0 Table 346. FRM_HGR20, Receive HDLC Global Register 20 (R/W) Address Bit Name Function 0x80045 15:0 FRM_RH_IS[63:48] Receive HDLC Interrupt Summary. This bitmap shows what channels have interrupts. This register maps channels 63--48 to bits 15:0. 256 Reset Default 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.5 System Interface Global Registers Table 347. FRM_SYSGR1, System Interface Global Register 1 (R/W) Address 0x80050 Bit Name Function 15:12 FRM_SYSMOD[3:0] System Interface Mode Associated Signaling Mode. 0000 = 2.048 Mbits/s CHI. 0001 = 4.096 Mbits/s CHI. 0010 = 8.192 Mbits/s CHI. 0100 = 19.44 Mbits/s PSB (device 0 mode). 0101 = 19.44 Mbits/s PSB (device 1 mode). 0110 = 19.44 Mbits/s PSB (device 2 mode). 1000 = SMI. All others: Reserved. 11 FRM_ASM System Interface Mode Associated Signaling Mode. 0 = CHI is configured to carry payload data only. Reset Default 0000 0 In PSB mode, transmit signaling is 3-stated, and receive signaling ignored. 1 = CHI is configured to carry both payload data and signaling information. Each time slot consists of 16 bits where 8 bits are data and the remaining 8 bits are signaling information. CHI must be programmed for 4.096 Mbits/s or 8.192 Mbits/s modes. 10 FRM_CMS In PSB mode, transmit signaling is driven and receive signaling is forwarded to the signaling block. CHI Clock Mode. This bit is only applicable in the CHI mode. Otherwise, it should be set to 0. 0 0 = CHI clock and CHI data have the same rate. 1 = CHI clock is twice the rate of CHI data. 9 FRM_CHIDTS CHI Dual Time-Slot Mode. This bit is only applicable in the CHI 4.096 Mbits/s (no ASM) and 8.192 Mbits/s (without ASM) modes. 0 0 = Enables 32 contiguous time slots. 1 = Enables double time slot mode in which the transmit CHI drives data for one time slot and 3-states for the subsequent time slot. 8 FRM_STUFFL/ FRM_LNKSTART Stuff Position/Link Start. CHI modes only: determines the position of the stuffed time slots in conjunction with the byte offset. 0 = SDDDSDDDSDDDS.. . . . . . . (TS0--TS31). 1 1 = SDDDDDD. . . . . . . SSSSSSS (TS0--TS31). NSMI modes only: this bit determines how links are numbered on the NSMI. Internally, links are numbered starting at 1. 0 = NSMI link numbering starts at 0. 1 = NSMI link numbering starts at 1. Agere Systems Inc. 257 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 347. FRM_SYSGR1, System Interface Global Register 1 (R/W) (continued) Address Bit Name 0x80050 7 FRM_AISLFA 6 5 Function System AIS on Loss of Frame Alignment. 0 = No action. 1 = System AIS is transmitted when the receive framer or the mapper loss of frame alignment (MFA for DS1, BFA for CEPT) is detected. FRM_AISCRCT System AIS on CEPT Timer Expiration. 0 = No action. 1 = System AIS is transmitted when the receive framer loss of multiframe alignment timer expiration is detected. (CEPT only.) FRM_DNOTFAS CEPT Dual Not FAS. This bit is applicable in all system modes. Reset Default 0 0 0 0 = FAS and NOTFAS time slots are transmitted to the system. The receive system interface expects both FAS and NOTFAS time slots. 4 FRM_TFSCKE 1 = NOTFAS is transmitted twice to the system (in the NOTFAS and FAS time slots). The receive system expects time slots 0 to carry NOTFAS that is repeated twice. System Interface Transmit Frame Sync Clock Edge Select. 0 0 = Transmit frame sync is sampled on the falling edge of transmit clock. 1 = Transmit frame sync is sampled on the rising edge of transmit clock. 3 FRM_FSPOL In PSB mode, this bit also determines the clock edge used to drive data. The sampling point of transmit frame sync defines the zero offset for CHI mode. Frame Sync Polarity. 0 0 = Transmit and receive frame sync is active low. 2:0 -- 1 = Transmit and receive frame sync is active-high. Reserved. Must write to 0. 0 Table 348. FRM_SYSGR2, System Interface Global Register 2 (R/W) Address Bit 0x80051 15 Name Function FRM_HWYENA Transmit System Interface Highway Enable. 0 = Transmit data is forced into a high-impedance state for all transmitted time slots. Receive system ignores receive data and inserts the idle code in all time slots transmitted to the line. This allows the framer to be fully configured before transmission. Reset Default 0 1 = Transmit and receive data is enabled. 14 0 FRM_RSTDONE Framer Reset Status. 0 = Indicates internal reset is still in process. (Read Only) 1 = Indicates internal reset is complete. 13:0 258 -- Generally, the FRM_HWYENA bit should not be set to1 until this bit reads 1. Reserved. Must write to 0. 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 349. FRM_SYSGR3, System Interface Global Register 3 (R/W) Address Bit 0x80052 15:8 7:0 Name Function FRM_STUFF[7:0] Stuffed Time-Slot Code. FRM_IDLE[7:0] CHI Time-Slot Loopback Idle Code. Reset Default 7F 7F Table 350. FRM_SYSGR4, System Interface Global Register 4 (R/W) Address Bit Name 0x80053 15 FRM_STSSLB CHI Time Slot System Loopback FRM_STSLLB 0 = No action. 1 = Receive CHI time slot is looped back to the system. Idle code, FRM_IDLE[7:0] (Table 349), is inserted in place of the looped back time slot to the line. CHI Time-Slot Line Loop Back. 14 Function Reset Default 0 0 0 = No action. 13 12:8 7:5 4:0 1 = Transmit CHI time slot is looped back to the line. Idle code, FRM_IDLE[7:0], is inserted in place of the looped back time slot to the system. Reserved. Must write to 0. -- FRM_TSLBA[4:0] CHI Time-Slot Loopback Address. Reserved. Must write to 0. -- FRM_TSLBL[4:0] CHI Time-Slot Loopback Link Number. 0 00000 0 00000 Table 351. FRM_SYSGR5, System Interface Global Register 5 (R/W) Address Bit 0x80054 15 14 13:0 Name Function FRM_TS_DPAR Transmit PSB Data Parity. This bit is only applicable in the parallel system bus mode. Otherwise, it should be set to zero. 0 = Odd data parity is transmitted by the system. 1 = Even data parity is transmitted by the system. FRM_TS_SPAR Transmit Signaling Parity. This bit applies to the signaling information in the parallel system bus mode. It also determines the parity for CHI ASM mode. Otherwise, it should be set to 0. 0 = Odd signaling parity is transmitted by the system. 1 = Even signaling parity is transmitted by the system. Reserved. Must write to 0. -- Reset Default 0 0 0 Table 352. FRM_SYSGR6, System Interface Global Register 6 (COR) Address Bit Name 0x80055 15:0 -- Agere Systems Inc. Function Reserved. Must write to 0. Reset Default 0x0000 259 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 353. FRM_SYSGR7, System Interface Global Register 7 (COR) Address Bit Name Function 0x80056 15:1 0 -- FRM_TPSB_FS_IS Reset Default Reserved. Must write to 0. 0x0 0 Transmit PSB Frame Sync Error Interrupt. A 1 indicates a frame sync error was detected in PSB mode. The frame sync was either detected when it should not have been (misplaced) or was not detected when it should have (missing). This bit is cleared on read/ write unless the condition that set it still exists after the read. Table 354. FRM_SYSGR8, System Interface Global Register 8 (R/W) Address Bit Name 0x80057 15:1 0 -- FRM_PSB_FS_IM Function Reserved. Must write to 0. Transmit PSB Frame Sync Interrupt Mask. A 1 prevents the FRM_TPSB_FS_IS (Table 353) status from causing an interrupt. A 0 allows the interrupt. Reset Default 0 1 Table 355. FRM_SYSGR9, System Interface Global Register 9 (R/W) Address Bit 0x80150 15 14 13 12:0 260 Name Function FRM_RS_DPAR Receive PSB Data Parity Select. This bit is only applicable in the parallel system bus interface mode. Otherwise, it should be set to 0. 0 = Odd data parity is expected by the receive system. 1 = Even data parity is expected by the receive system. FRM_RS_SPAR Receive Signaling Parity Select. This bit applies to the signaling information in the parallel system bus mode. It also determines the parity for CHI ASM mode. Otherwise, it should be set to 0. 0 = Odd signaling parity is expected by the receive system. 1 = Even signaling parity is expected by the receive system. FRM_RFSCKE System Interface Receive Frame Sync Clock Edge Select. 0 = Receive frame sync (and data) is sampled on the falling edge of receive clock. 1 = Receive frame sync (and data) is sample on the rising edge of receive clock. In parallel system bus mode, this bit also determines the clock edge used to sample data. In CHI mode, the sample point of frame sync defines the zero offset for the CHI. -- Reserved. Must write to 0. Reset Default 0 0 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 356. FRM_SYSGR10--FRM_SYSGR14, System Interface Global Register 10--14 (R/W) Address Bit Name 0x80151 -- 0x80155 15:0 -- Function Reserved. Must write to 0. Reset Default 0x0000 Table 357. FRM_SYSGR15, System Interface Global Register 15 (COR) Address Bit Name 0x80156 15 FRM_DPAR_IS 14 FRM_SPAR_IS 13:1 0 -- FRM_PSB_FS_IS Function Reset Default Data Parity Interrupt. In PSB mode, a 1 indicates a data parity 0 error was detected. This bit is cleared on read unless the condition that set it still exists after the read. 0 Signaling Parity Interrupt. In PSB mode, a 1 indicates a signaling parity error was detected. In CHI ASM mode, a 1 indicates a parity error was detected. This bit is cleared on read unless the condition that set it still exists after the read. Reserved. Must write to 0. 0 0 Receive PSB frame Sync Interrupt. A 1 indicates a frame sync error was detected in PSB mode. The frame sync was either detected when it should not have been (misplaced) or was not detected when it should have (missing). This bit is cleared on read unless the condition that set it still exists after the read. Table 358. FRM_SYSGR16, System Interface Global Register 16 (R/W) Address Bit Name 0x80157 15 FRM_DPAR_IM 14 13:1 0 Agere Systems Inc. Function Data Parity Interrupt Mask. A 1 prevents the FRM_DPAR_IS status from causing an interrupt. A 0 allows the interrupt. FRM_SPAR_IM Signaling Parity Interrupt Mask. A 1 prevents the FRM_SPAR_IS status from causing an interrupt. A 0 allows the interrupt. -- Reserved. Must write to 0. FRM_PSB_FS_IM Receive PSB frame Sync Interrupt Mask. A 1 prevents the FRM_PSB_FS_IS status from causing an interrupt. A 0 allows the interrupt. Reset Default 1 1 0 1 261 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) 12.6 Signaling Global Registers Table 359. FRM_SGR1, Receive Signaling Global Register 1 (R/W) Address Bit Name 0x80060 15 FRM_R_TSAISHG 14:10 9 8:6 5:2 1 0 Function System AIS for Handling Groups. When set to 1, this configuration bit forces AIS to the system interface for those signaling bits which correspond to a handling group, which is out of alignment. A 0 disables this feature. This feature is only applied to those links which are enabled for byte sync mapping and handling groups using the per-link signaling configuration registers. FRM_R_LINKCNT[4:0] Receive Link Count. Indicates the number of links serviced by the signaling block. This value should be set to 28 when the Super Mapper is interfacing with only DS1 links; it should be set to the actual number of links active for mixed mode applications. -- Reserved. Must write to 0. FRM_TEST_BIT[2:0] Test Bits. -- Reserved. Must write to 0. FRM_R_AFZFBE Automatic Signaling Freeze on Framing Bit Errors. Set to 1 in order to freeze signaling register updates based on framing bit errors. -- Reserved. Must write to 0. Reset Default 0 28 0 000 0 0 Table 360. FRM_SGR2, Receive Signaling Global Register 2 (R/W) Address Bit 0x80061 15 14:10 9:0 262 Name Function Reset Default 0 FRM_R_SCOSEN Receive Signaling Change of State FIFO Enable. When set to 1, this configuration bit enables the maintenance of the signaling change of state FIFO. When set to 0, no entries will be made into the FIFO. This bit applies to all of the links. If an individual time slot is programmed for no signaling, then no entries will be made for that time slot. Also, if the signaling source in the receive path is set to host, then no entries will be made for that time slot. -- Reserved. Must write to 0. 0 0 FRM_R_ Receive Signaling Change of State FIFO Depth Threshold. SCOSDTH[9:0] This number can be programmed from 0 to 672. If the number of entries in the signaling change of state FIFO exceeds the value programmed here, then the associated interrupt status bit will be set. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 361. FRM_SGR3, Receive Signaling Global Register 3 (R/W) Address Bit 0x80062 15:0 Name Function Reset Default 0x0000 FRM_ Receive Signaling Change of State FIFO Timer Threshold. R_SCOSTTH[15:0] This number can be programmed from 0 to 0xFFFF. The value indicates the number of 125 s increments that the timer counts before interrupting the processor. The associated interrupt status bit will be set only if there are valid entries in the FIFO. When set to 0, the timer is disabled and no interrupt will be generated. The maximum timer setting is 8 s. Table 362. FRM_SGR4, Receive Signaling Global Register 4 (RO) Address Bit Name 0x80063 15:14 FRM_ R_COSFIFOS[1:0] 13:9 8:4 3:0 Function Receive Signaling Change of State FIFO Status. These bits are located at the address for the signaling change of state FIFO. These status bits have the following definitions: 01 = The entry being read is the last valid entry. 11 = The entry being read is not the last valid entry. 00 = The entry being read is not valid and should be ignored. FRM_ COS Link Number. These bits are located at the address for R_COSFIFOL[4:0] the signaling change of state FIFO. This number indicates the particular link from which a signaling change of state has been detected. FRM_ COS Time-Slot Number. These bits are located at the R_COSFIFOTS[4:0] address for the signaling change of state FIFO. This number indicates the particular time slot in which a signaling change of state has been detected. FRM_ New Signaling Code. These bits are located at the address R_COSFIFOSIG[3:0] for the signaling change of state FIFO. This value indicates the new signaling state received. Reset Default 0 0 0 0 Table 363. FRM_SGR5, Receive Signaling Global Register 5 (RO) Address Bit Name Function 0x80064 15:1 0 -- FRM_ R_COSDTHS Reserved. Receive Signaling Change of State FIFO Depth Threshold Overflow Status. This status bit reflects the actual depth of the FIFO entries as compared to the threshold programmed by the host. When set to 1, the threshold is currently exceeded. When set to 0, the number of FIFO entries is less than the programmed threshold. Agere Systems Inc. Reset Default 0X0000 0 263 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 364. FRM_SGR6, Receive Signaling Global Register 6 Address Bit 0x80065 15:3 2 1 0 Name Function Reserved. Reads 0. -- FRM_R_COSDTHI Receive Signaling Change of State FIFO Depth Threshold Overflow Interrupt. This interrupt status bit will be set when the programmed threshold for the FIFO capacity has been exceeded. This interrupt bit can be reset based on a clear-onread protocol, which is provisioned in the Super Mapper global registers. FRM_R_COSTTHI Receive Signaling Change of State FIFO Timer Threshold Interrupt. This interrupt status bit will be set when the programmed interrupt timer has expired and there are valid entries in the FIFO to be processed. This interrupt bit can be reset based on a clear-on-read protocol, which is provisioned in the Super Mapper global registers. FRM_R_COSOFI Receive Signaling Change of State FIFO Overflow Interrupt. This interrupt status bit will be set when the signaling change of state FIFO overflows. The contents of the FIFO will be lost and programmed threshold for the FIFO capacity has been exceeded. This interrupt bit can be reset based on a clear-on-read protocol, which is provisioned in the Super Mapper global registers. Reset Default 0 0 0 0 Table 365. FRM_SGR7, Receive Signaling Global Register 7 (R/W) Address Bit 0x80066 15:3 2 1 0 264 Name Function Reserved. Reads 0. -- FRM_ Receive Signaling Change of State FIFO Depth Threshold R_COSDTHM Overflow Interrupt Mask. The corresponding interrupt status bit will cause a processor interrupt if this bit is set to 0. The corresponding interrupt status bit will be masked from causing a processor interrupt if this bit is set to 1. FRM_ Receive Signaling Change of State FIFO Timer Threshold R_COSTTHM Interrupt Mask. The corresponding interrupt status bit will cause a processor interrupt if this bit is set to 0. The corresponding interrupt status bit will be masked from causing a processor interrupt if this bit is set to 1. FRM_ Receive Signaling Change of State FIFO Overflow Interrupt R_COSOFM Mask. The corresponding interrupt status bit will cause a processor interrupt if this bit is set to 0. The corresponding interrupt status bit will be masked from causing a processor interrupt if this bit is set to 1. Reset Default 0 1 1 1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 366. FRM_SGR8, Transmit Signaling Global Register 8 (R/W) Address Bit Name 0x80160 15 -- Function Reset Default Reserved. Must write to 0. 0 14:10 FRM_T_LINKCNT[4:0] Transmit Link Count. Indicates the number of links serviced by the signaling block. This value should be set to 28 when the Super Mapper is interfacing with only DS1 links; it should be set to the actual number of links active for mixed mode applications. 28 9:6 -- 5 FRM_T_SUBZERO 4 Reserved. Must write to 0. 0000 Substitute Zero. A 1 forces signaling data to be 0000 for those time slots which have a signaling state mode of no signaling. This only applies to the signaling data transferred to the VT mapper. 0 FRM_T_FAS_NOTFAS FAS/NOTFAS Transmission. Used to force alignment of the CEPT TS16 multiframe to a FAS or NOTFAS frame. A 0 indicates alignment to a FAS frame. A 1 indicates alignment to a NOTFAS frame. 0 3:2 -- 1 FRM_T_AFZFBE 0 -- Agere Systems Inc. Reserved. Must write to 0. 00 Automatic Signaling Freeze on Framing Bit Errors. Set to 1 in order to freeze signaling register updates based on framing bit errors. 0 Reserved. Must write to 0. 0 265 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) 12.7 Frame Formatter (Transmit Framer) Global Register Table 367. FRM_FFGR1, Transmit Framer Global Register 1 (R/W) Address Bit Name 0x80170 15 FRM_TXFSOOF 14:12 11 10 9 8:4 3:0 266 Function Transmit Frame Sync when Out-Of-Frame Valid in Transport Modes Only. 0 = Do not transmit FS when out-of-frame. (FS is present when in frame.) 1 = Transmit an arbitrary FS when out-of-frame. -- Reserved. Must write to 0. FRM_PTRN_EN Transmit Pattern. 0 = Pattern generator off. 1 = Pattern generator on. FRM_PTRN_INV Transmit Pattern Normal/Invert Mode. This bit inverts the pattern. 0 = Normal. 1 = Invert. FRM_PTRN_FRMT Transmit Pattern Framed/Unframed Mode. This bit selects either a framed (1) or unframed (0) pattern. FRM_PTRN_LNK[4:0] Pattern Generator Link Select. 5-bit link selection to indicate link for pattern insertion. FRM_PTRN_SEL[3:0] Transmit Pattern Select. 0000 = Pattern generator deactivated. 0001 = MARK (all ones AIS). 0010 = QRSS (2 20 - 1 with zero suppression). 0011 = 25 - 1. 0100 = 63 (2 65 - 1). 0101 = 511(2 9 - 1)(V.52). 0110 = 29 - 1. 0111 = 2047 (2 11 - 1) (O.151). 1000 = 211 - 1 (reversed). 1001 = 215 - 1 (O.151). 1010 = 220 - 1 (V.57). 1011 = 220 - 1 (CB113/CB114). 1100 = 223 - 1 (O.151). 1101 = 1:1 (alternating). 1110 = Reserved. 1111 = Reserved. Reset Default 0 0 0 0 0 00001 0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.8 Facility Data Link Global Registers Table 368. FRM_FDLGR1, Receive Facility Data Link Global Register 1 (R/W) Address Bit Name 0x80090 15:0 -- Function Reset Default 0x0000 Reserved. Must write to 0. Table 369. FRM_FDLGR2, Transmit Facility Data Link Global Register 2 (R/W) Address Bit Name 0x801A1 15:0 -- Function Reset Default 0x0000 Reserved. Must write to 0. 12.9 Super Mapper Framer Per Link Configuration and Status Registers 12.9.1 Signaling Per Link Registers Table 370. Receive Path Signaling Register Addressing Map Address Pins (ADDR15--ADDR0) 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0 L* R* -- 15 0 * L and R represent hexidecimal digits used for absolute addressing in Table 372, Table 373, and Table 374. Table 371. Receive Path Signaling Registers Address Indexing Read: for link 1, the hexidecimal digit L is 0x0 and the hexidecimal digit R is 0x2. Link L R Link L R Link L R Link L R 1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0 2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2 3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4 4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6 5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8 6 0x0 0xC 13 0x1 0xA 21 0x2 0xA -- -- -- 7 0x0 0xE 14 0x1 0xC 22 0x2 0xC -- -- -- -- -- -- 15 0x1 0xE 23 0x2 0xE -- -- -- Agere Systems Inc. 267 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 372. FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W) Address* Bit Name 0x8LR00 0x8LR01 0x8LR02 0x8LR03 0x8LR04 0x8LR05 0x8LR06 0x8LR07 0x8LR08 0x8LR09 0x8LR0A 0x8LR0B 0x8LR0C 0x8LR0D 0x8LR0E 0x8LR0F 0x8LR10 0x8LR11 0x8LR12 0x8LR13 0x8LR14 0x8LR15 0x8LR16 0x8LR17 0x8LR18 0x8LR19 0x8LR1A 0x8LR1B 0x8LR1C 0x8LR1D 0x8LR1E 0x8LR1F 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 FRM_RPSR0[6:0] FRM_RPSR1[6:0] FRM_RPSR2[6:0] FRM_RPSR3[6:0] FRM_RPSR4[6:0] FRM_RPSR5[6:0] FRM_RPSR6[6:0] FRM_RPSR7[6:0] FRM_RPSR8[6:0] FRM_RPSR9[6:0] FRM_RPSR10[6:0] FRM_RPSR11[6:0] FRM_RPSR12[6:0] FRM_RPSR13[6:0] FRM_RPSR14[6:0] FRM_RPSR15[6:0] FRM_RPSR16[6:0] FRM_RPSR17[6:0] FRM_RPSR18[6:0] FRM_RPSR19[6:0] FRM_RPSR20[6:0] FRM_RPSR21[6:0] FRM_RPSR22[6:0] FRM_RPSR23[6:0] FRM_RPSR24[6:0] FRM_RPSR25[6:0] FRM_RPSR26[6:0] FRM_RPSR27[6:0] FRM_RPSR28[6:0] FRM_RPSR29[6:0] FRM_RPSR30[6:0] FRM_RPSR31[6:0] Function Reset Default 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 Time Slot 0 Receive Signaling Data. Time Slot 1 Receive Signaling Data. Time Slot 2 Receive Signaling Data. Time Slot 3 Receive Signaling Data. Time Slot 4 Receive Signaling Data. Time Slot 5 Receive Signaling Data. Time Slot 6 Receive Signaling Data. Time Slot 7 Receive Signaling Data. Time Slot 8 Receive Signaling Data. Time Slot 9 Receive Signaling Data. Time Slot 10 Receive Signaling Data. Time Slot 11 Receive Signaling Data. Time Slot 12 Receive Signaling Data. Time Slot 13 Receive Signaling Data. Time Slot 14 Receive Signaling Data. Time Slot 15 Receive Signaling Data. Time Slot 16 Receive Signaling Data. Time Slot 17 Receive Signaling Data. Time Slot 18 Receive Signaling Data. Time Slot 19 Receive Signaling Data. Time Slot 20 Receive Signaling Data. Time Slot 21 Receive Signaling Data. Time Slot 22 Receive Signaling Data. Time Slot 23 Receive Signaling Data. Time Slot 24 Receive Signaling Data. Time Slot 25 Receive Signaling Data. Time Slot 26 Receive Signaling Data. Time Slot 27 Receive Signaling Data. Time Slot 28 Receive Signaling Data. Time Slot 29 Receive Signaling Data. Time Slot 30 Receive Signaling Data. Time Slot 31 Receive Signaling Data. * See Table 371 for values of L and R. Notes:Bit 0 = A, bit 1 = B, bit 2 = C, bit 3 = D, bit 5 = F, and bit 6 = G. Register includes the following bits: F, G--selects 2, 4, 16 or no state signaling mode; A, B, C, D--signaling data. For DS1 links, address locations 1 through 24 will contain valid data. For CEPT links, locations 1 through 15 and 17 through 31 will contain valid data. Writes from the system interface to address 0 and 16 will be accepted and stored in signaling registers. 268 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 373. FRM_RSLR32, Receive Signaling Link Register 32 (COR) Address* Bit Name 0x8LR20 15:12 11:8 7:4 3 2 1:0 Function FRM_R_HGAIS[3:0] HG AIS Detection. Indicates the detection of AIS in the corresponding HG. FRM_R_HGA[3:0] HG Alignment. Indicates the alignment status for the corresponding HG. A 0 indicates no alignment. A 1 indicates alignment for the corresponding group. FRM_R_HGRDI[3:0] HG RDI. Indicates the detection of three consecutive zeros in the Sp bit position of the corresponding HG. FRM_R_TS16A Time Slot 16 Multiframe Alignment Status. A 0 indicates that currently, time slot 16 multiframe alignment is not established. A1 indicates that currently, time slot 16 multiframe alignment has been established. FRM_R_TS16AIS Time Slot 16 AIS Detection Status. If time slot 16 multiframe alignment is lost, this bit will reflect the detection of AIS in time slot 16. -- Reserved. Must write to 0. Reset Default 0000 0000 0000 0 0 0 * See Table 371 for values of L and R. Table 374. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) Address* Bit 0x8LR21 Name Function 15 FRM_R_FZCON 14:9 8 -- FRM_R_SIGI 7 FRM_R_RXSTOMP 6 5 -- FRM_R_SIGDEB 4 FRM_R_HGEN 3 FRM_R_MSIGFZ Freeze Conversion. When set to1, this enables the conversion of certain signaling codes when the signaling buffers have been frozen. The code translation is 00 to 01 and 0000 to 0101 for 4-state and 16-state signaling, respectively. Reserved. Must write to 0. Signaling Insertion. A 1 enables the insertion of signaling data into the Tx line. A 0 disables the insertion of signaling data into the Tx line. This bit is valid in the Rx path only when in transport mode; otherwise, it should be set to 0. Rx Path Stomping. For DS1 links, this bit indicates to stomp all robbed bit signaling on voice time slots on the corresponding link. Stomping of time slot 16 for CEPT links is performed in the system interface block. 1 = Will enable stomping. 0 = Will disable stomping for the corresponding link. Reserved. Must write to 0. Signaling Debounce.This bit enables signal debounce on signaling when extracted from the Rx line. Handling Group Enable. When set to 1 in combination with selecting the source of signaling data to be the VT mapper, this indicates to the signaling block that the signaling for this link is byte sync mapped and uses the handling group format. Manual Signaling Freeze. Used to manually halt the signaling register updates when the source of signaling data is either the VT mapper or when the signaling is extracted from the Rx line. A 1 halts the updates. Agere Systems Inc. Reset Default 0 0 0 0 0 0 269 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet June May 2001 12 28-Channel Framer Registers (continued) Table 374. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) (continued) Address* Bit 0x8LR21 2 1:0 Name Function FRM_R_FGSRC F and G Source. Indicates which entity will be the source for the F and G values used in handling the ABCD bits. 0 = Host programmed. 1 = Implied by the Tx path ASM. The Tx path option can only be selected when the Tx path is configured with an ASM CHI or parallel system bus interface. Also, the Tx path option can only be selected when the Rx path is extracting data from the receive line interface vs. byte sync VT mapped mode. FRM_R_SIGSRC[1:0] Signaling Data Source. Indicates which of the entities will be the source for the ABCD bits. 00 = Signaling programmed by the host. 01 = Signaling extracted from the Rx line. 10 = Signaling read from VT mapper in byte sync mode (valid only for DS1). Reset Default 0 00 * See Table 371 for values of L and R. Table 375. Transmit Path Signaling Register Addressing Map 15 0 14 0 Address Pins (ADDR15--ADDR0) 13 12 11 10 9 8 7 6 5 4 3 LNK4 LNK3 LNK2 LNK1 LNK0 TXP=1 0 SIG6 SIG5 SIG4 SIG3 L* T* -- 2 1 0 SIG2 SIG1 SIG0 * L and T represent hexidecimal digits used for absolute addressing in Table 377, Table 378, and Table 379. Read: for link 1 (pertaining to Table 376), the hexidecimal digit L is 0x0 and the hexidecimal digit T is 0x3 . Table 376. Transmit Path Signaling Registers Address Indexing Link L T Link L T Link L T Link L T 1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1 2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3 3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5 4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7 5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9 6 0x0 0xD 13 0x1 0xB 21 0x2 0xB -- -- -- 7 0x0 0xF 14 0x1 0xD 22 0x2 0xD -- -- -- -- -- -- 15 0x1 0xF 23 0x2 0xF -- -- -- 270 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 377. FRM_TSLR0--FRM_TSLR31, Transmit Signaling Link Registers 0--31 (R/W) Address* Bit Name 0x8LT00 0x8LT01 0x8LT02 0x8LT03 0x8LT04 0x8LT05 0x8LT06 0x8LT07 0x8LT08 0x8LT09 0x8LT0A 0x8LT0B 0x8LT0C 0x8LT0D 0x8LT0E 0x8LT0F 0x8LT10 0x8LT11 0x8LT12 0x8LT13 0x8LT14 0x8LT15 0x8LT16 0x8LT17 0x8LT18 0x8LT19 0x8LT1A 0x8LT1B 0x8LT1C 0x8LT1D 0x8LT1E 0x8LT1F 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 6:0 FRM_TPSR0[6:0] FRM_TPSR1[6:0] FRM_TPSR2[6:0] FRM_TPSR3[6:0] FRM_TPSR4[6:0] FRM_TPSR5[6:0] FRM_TPSR6[6:0] FRM_TPSR7[6:0] FRM_TPSR8[6:0] FRM_TPSR9[6:0] FRM_TPSR10[6:0] FRM_TPSR11[6:0] FRM_TPSR12[6:0] FRM_TPSR13[6:0] FRM_TPSR14[6:0] FRM_TPSR15[6:0] FRM_TPSR16[6:0] FRM_TPSR17[6:0] FRM_TPSR18[6:0] FRM_TPSR19[6:0] FRM_TPSR20[6:0] FRM_TPSR21[6:0] FRM_TPSR22[6:0] FRM_TPSR23[6:0] FRM_TPSR24[6:0] FRM_TPSR25[6:0] FRM_TPSR26[6:0] FRM_TPSR27[6:0] FRM_TPSR28[6:0] FRM_TPSR29[6:0] FRM_TPSR30[6:0] FRM_TPSR31[6:0] Function Time Slot 0 Transmit Signaling Data. Time Slot 1 Transmit Signaling Data. Time Slot 2 Transmit Signaling Data. Time Slot 3 Transmit Signaling Data. Time Slot 4 Transmit Signaling Data. Time Slot 5 Transmit Signaling Data. Time Slot 6 Transmit Signaling Data. Time Slot 7 Transmit Signaling Data. Time Slot 8 Transmit Signaling Data. Time Slot 9 Transmit Signaling Data. Time Slot 10 Transmit Signaling Data. Time Slot 11 Transmit Signaling Data. Time Slot 12 Transmit Signaling Data. Time Slot 13 Transmit Signaling Data. Time Slot 14 Transmit Signaling Data. Time Slot 15 Transmit Signaling Data. Time Slot 16 Transmit Signaling Data. Time Slot 17 Transmit Signaling Data. Time Slot 18 Transmit Signaling Data. Time Slot 19 Transmit Signaling Data. Time Slot 20 Transmit Signaling Data. Time Slot 21 Transmit Signaling Data. Time Slot 22 Transmit Signaling Data. Time Slot 23 Transmit Signaling Data. Time Slot 24 Transmit Signaling Data. Time Slot 25 Transmit Signaling Data. Time Slot 26 Transmit Signaling Data. Time Slot 27 Transmit Signaling Data. Time Slot 28 Transmit Signaling Data. Time Slot 29 Transmit Signaling Data. Time Slot 30 Transmit Signaling Data. Time Slot 31 Transmit Signaling Data. Reset Default 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 * See Table 376 for values of L and T. Notes:Bit 0 = A, bit 1 = B, bit 2 = C, bit 3 = D, bit 5 = F, and bit 6 = G. Register includes the following bits: F, G--selects 2, 4, 16 or no state signaling mode; A, B, C, D--signaling data. For DS1 links, address locations 1 through 24 will contain valid data. For CEPT links, locations 1 through 15 and 17 through 31 will contain valid data. Writes from the system interface to address 0 and 16 will be accepted and stored in signaling registers. For CEPT links, inserted time slot 16 X bits are written to locates 0. Agere Systems Inc. 271 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 378. FRM_TSLR32, Transmit Signaling Link Register 32 (R/W) Address* Bit Name Function 0x8LT21 15 14 -- FRM_T_ATS16RFA 13 12 -- FRM_T_ASPLB 11 FRM_T_MSP 10 FRM_T_ZCSM 9 FRM_T_VTSIGE 8 FRM_T_SIGI 7 6 -- FRM_T_TXSTOMP 5 4 -- FRM_T_HGEN 3 FRM_T_MSIGFZ Reserved. Must write to 0. Automatic TS16 Remote Frame Alarm. Enables automatic transmission of a 1 in theY-bit position in the transmit path when the receive path has lost TS16 alignment. Reserved. Must write to 0. Automatic Sp Loopback. When set, the Sp bit transmitted for each individual HG will be set to 0 when the HG alignment is lost in the Rx path. Each Sp in the Tx path corresponds to the same HG in the Rx path. Manual Sp. Used to manually force the transmission of a 0 in each of the Sp bits of the HGs on each link. Zero Code Suppression Mode. When set to 1, the signaling block will give an indication to the frame formatter for each of the data channels. This indication should disable the zero-code suppression for the associated time slot. Signaling insertion must be enabled for FRM_T_ZCSM to take effect. FRM_T_ZCSM will not work when byte sync mapping is enabled. VT Signaling Enable. A 1 enables the transport of signaling to the VT mapper from the programmed signaling source in byte sync mode. Byte sync mode cannot be enabled in conjunction with signaling insertion (bit 8, FRM_T_SIGI). The robbed-bit positions can be stomped while in byte sync mode but no signaling data can be inserted. Signaling Insertion. A 1 enables the insertion of signaling data into the Tx line. A 0 disables the insertion of signaling data into the Tx line. Reserved. Must write to 0. Tx Path Stomping. For DS1 links, this bit indicates to stomp all robbed-bit signaling on voice time slots on the corresponding link to 0. Stomping time slot 16 for CEPT links is done by inserting all ones using the signaling registers. A 1 will enable stomping. A 0 will disable stomping for the corresponding link. Reserved. Must write to 0. Handling Group Enable. When set to 1 in combination with (bit 9, FRM_T_VTSIGE), this bit indicates to the signaling block that the signaling for this link is byte sync mapped and uses the handling group format. Manual Signaling Freeze. Used to manually halt the signaling register updates when the source of signaling data is either the Rx system or the Rx line. A 1 halts the updates. Reset Default 0 0 0 0 0 0 0 0 0 0 0 0 0 * See Table 376 for values of L and T. 272 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 378. FRM_TSLR32, Transmit Signaling Link Register 32 (R/W) (continued) Address* Bit Name 0x8LT21 2 FRM_T_FGSRC 1:0 Function F and G Source. Indicates which entity will be the source for the F and G values used in handling the ABCD bits. 0 = Host programmed. 1 = Sourced from the Rx system interface. The F and G programming can be implied by the system interface only when using the ASM CHI or the parallel system interface. FRM_T_SIGSRC[1:0] Signaling Data Source. Indicates which of the entities will be the source for the ABCD bits. 00 = Signaling programmed by the host. 01 = Signaling extracted from the Rx line. 10 = Signaling received from the system interface. Reset Default 0 00 * See Table 376 for values of L and T. Table 379. FRM_TSLR33, Transmit Signaling Link Register 33 (COR) Address* Bit Name 0x8LT20 15:4 3 -- FRM_T_TS16A 2 1:0 Function Reserved. Must write to 0. Time Slot 16 Multiframe Alignment Status. A 0 indicates that currently, time slot 16 multiframe alignment is not established. A1 indicates that currently, time slot 16 multiframe alignment has been established. FRM_T_TS16AIS Time Slot 16 AIS Detection Status. If time slot 16 multiframe alignment is lost, this bit will reflect the detection of AIS in time slot 16. -- Reserved. Must write to 0. Reset Default 0x000 0 0 00 * See Table 376 for values of L and T. 12.10 Performance Monitor Per Link Registers The following tables describe the functions of all bits in the register map. Counters are programmable to either rollover or saturate, and may be programmed to clear on read. Registers are only provisionable to clear-on-read (COR). For each address, the register bits are identified as either read/write (R/W) or read only (RO), and the value of the bits on reset are given. Table 380. Performance Monitor Per Link Register Addressing Map 15 0 Address Pins (ADDR15--ADDR0) 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0 1 0 PM5 PM4 PM3 PM2 PM1 PM0 TXP = 1 L* P* -- * L and P represent hexidecimal digits used for absolute addressing in Table 382 through Table 401. Agere Systems Inc. 273 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 381. Performance Monitor Per Link Register Address Indexing Read: for link 1 on the receive path, the hexidecimal digit L is 0x0 and the hexidecimal digit P is 0x2. Link L P Link 1 2 3 4 5 6 7 -- 0x0 0x0 0x0 0x0 0x0 0x0 0x0 -- 0x2 0x4 0x6 0x8 0xA 0xC 0xE -- 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 -- 0x0 0x0 0x0 0x0 0x0 0x0 0x0 -- 0x3 0x5 0x7 0x9 0xB 0xD 0xF -- 8 9 10 11 12 13 14 15 L P Link L Receive Path (P is even) 0x1 0x0 16 0x2 0x1 0x2 17 0x2 0x1 0x4 18 0x2 0x1 0x6 19 0x2 0x1 0x8 20 0x2 0x1 0xA 21 0x2 0x1 0xC 22 0x2 0x1 0xE 23 0x2 Transmit Path (P is odd)) 0x1 0x1 16 0x2 0x1 0x3 17 0x2 0x1 0x5 18 0x2 0x1 0x7 19 0x2 0x1 0x9 20 0x2 0x1 0xB 21 0x2 0x1 0xD 22 0x2 0x1 0xF 23 0x2 P Link L P 0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE 24 25 26 27 28 -- -- -- 0x3 0x3 0x3 0x3 0x3 -- -- -- 0x0 0x2 0x4 0x6 0x8 -- -- -- 0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF 24 25 26 27 28 -- -- -- 0x3 0x3 0x3 0x3 0x3 -- -- -- 0x1 0x3 0x5 0x7 0x9 -- -- -- Table 382. FRM_PMLR1, Performance Monitor Link Register 1 (R/W) Address* Bit Name 0x8LP80 15:0 FRM_PM_IM4[15:0] Function Performance Monitoring Register FRM_PMLR4 Interrupt Mask. A 1 masks the corresponding status bit in the interrupt status registers (Table 386) from generating an interrupt. A 0 allows an interrupt to be generated. Reset Default 0xFFFF * See Table 381 for values of L and P. Table 383. FRM_PMLR2, Performance Monitor Link Register 2 (R/W) Address* Bit Name Function 0x8LP81 15:0 FRM_PM_IM5[15:0] Performance Monitor Register FRM_PMLR5 Interrupt Mask. A 1 masks the corresponding status bit in interrupt status registers (Table 386) from generating an interrupt. A 0 allows an interrupt to be generated. Reset Default 0xFFFF * See Table 381 for values of L and P. 274 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 384. FRM_PMLR3, Performance Monitor Link Register 3 (R/W) Address* 0x8LP82 Bit Name Function Reset Default 00000 0xF 15:11 -- Reserved. Must write to 0. 10:7 FRM_MHGALIGN[3:0] Handling Group Alignment Interrupt Mask. A 1 masks the corresponding status bit in the interrupt status register (Table 400) from generating an interrupt. A 0 allows an interrupt to be generated. 6 FRM_MSEFS Severely Errored Frame Interrupt Mask. A 1 masks the 1 corresponding status bit in the interrupt status register (Table 400) from generating an interrupt. A 0 allows an interrupt to be generated. 5 FRM_MFE CEPT Functional Element Status Interrupt Mask. A 1 1 masks any and all of the FE status bits in Table 394 and Table 395 from generating an interrupt. A 0 allows an interrupt to be generated. 4:0 FRM_PM_IM6[15:0] Performance Monitor Register FRM_PMLR6 Interrupt 0x001F Mask. A 1 masks the corresponding status bit in the interrupt status register (Table 387) from generating an interrupt. A 0 allows an interrupt to be generated. * See Table 381 for values of L and P. Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) Address* Bit Name Function 0x8LP83 15 FRM_SLIPO 14 FRM_SLIPU 13 FRM_OOF Receive Elastic Store Slip Overflow. A 1 indicates that the receive elastic store performed a control slip due to an elastic store overflow condition. This signal is set when the error occurs and is cleared when it is read, if there is not another error during the read. Receive Elastic Store Slip Underflow. A 1 indicates that the receive elastic store performed a control slip due to an elastic store underflow condition. This signal is set when the error occurs and is cleared when it is read, if there is not another error during the read. Out Of Frame. A 1 indicates that the receive framer has lost frame alignment and is currently searching for a new frame alignment. Section 21.6.1 Loss of Frame Alignment Criteria on page 488 lists the loss of frame criteria for the framing bit. (T1.231 section 6.1.2.2.1, G.706 section 4.1). Excessive (exceeding the provisionable CRC error count) CRC errors may optionally cause a reframe. Reset Default 0 0 0 In ESF or J-ESF, more than 320 CRC-6 errors in 1 second result in loss of frame alignment. The CRC error count is provisionable. In the CEPT CRC-4 multiframe formats, more than 915 CRC-4 errors in 1 second result in loss of frame alignment. (G.706 section 4.3.2). The CRC error count is provisionable. Agere Systems Inc. 275 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet June May 2001 12 28-Channel Framer Registers (continued) Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued) Address* Bit Name Function 0x8LP83 12 FRM_LSFA Loss of Signaling Frame Alignment. DS1: A 1 indicates that the receive framer is in a loss of signaling superframe alignment in the SLC-96 framing format. This bit is a 0 in all other DS1 framing modes. SLC-96 signaling alignment is assumed to have been lost when multiframe alignment is lost. 11 FRM_OAIS CEPT: A 1 indicates that the loss of the CEPT time slot 16 channel associated signaling multiframe structure. CEPT time slot 16 multiframe alignment is assumed lost when two consecutive time slot 16 multiframe alignment patterns (0000) are received in error, or when time slot 16 is all zeros for one or two multiframes. Time slot 16 multiframe alignment is assumed to have occurred when the first time slot 16 multiframe alignment pattern is found in time slot 16 and optionally, the preceding time slot 16 contained at least one. (G.732 section 5.2; O.162 section 2.1.3.) This is the time slot 16 align input from the signaling block. Other Alarm Indication Signals. DS1 AIS-CI: A 1 indicates the receive framer detected alarm indication signal customer installation (AIS-CI). AIS-CI is a repetitive pattern with a 1.26 s period. It consists of 1.11 s of unframed all ones interleaved with 0.15 s of all ones modified by the AIS-CI signature pattern. The AIS signature pattern is 01111100 11111111 (transmitted right-to-left at 386-bit intervals). It takes 4 ms to detect AIS-CI. (T1.231 section D.1.3.) Reset Default 0 0 CEPT RTS16AIS: A 1 indicates the receive framer detected time slot 16 AIS. Time slot 16 AIS is defined to be fewer than three zeros in each of two consecutive time slot 16 multiframe periods, (G775 section 5.1.1). This is the time slot 16 AIS input from the signaling block. * See Table 381 for values of L and P. 276 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued) Address* Bit Name 0x8LP83 10 FRM_AIS Function Alarm Indication Signal. A 1 indicates the framer is currently receiving an AIS pattern or receiving an AIS indication on the TDM bus from the mapper. Reset Default 0 DS1: Option 0: AIS occurs upon detection of an unframed signal with a ones density of at least 99.9% for a time between 3 ms and 75 ms. AIS is removed if the signal does not meet the 99.9% ones density or the unframed criteria for a period between 3 ms and 75 ms. (ANSI T1.231 section 6.1.2.2.3, T1.403 section H, G.775 section 5.4.) Option 1: AIS is detected if the signal has one or less zeros in 24 frames (3 ms/4632 bits). AIS is removed if the signal has two or more zeros in 24 frames. ( ANSI G.775 section I.2.) CEPT: Option 0:AIS is detected when loss of frame alignment occurs and there are two or less zeros in a double frame period (512 bits per double frame period). AIS is cleared on receipt of a signal not conforming to the AIS defect criteria. (ANSI G.775 section I.2; G.965 section 16.1.2.) Option 1: AIS is detected when there are two or fewer zeros in each of two consecutive double frame periods (512 bits per double frame period). AIS is cleared when each of two consecutive double frame periods contain three or more zeros or the frame alignment signal (FAS) is found. ( ANSI G.775 section 5.2.) Option 2: AIS is detected when there are three or less zeros in a four frame period (0.5 ms/1024 bits) and the signal is out of frame. AIS is cleared if there are four or more zeros in a fourframe period or the signal is in frame alignment. ( ANSI G.775 section I.2.) Option 3: AIS is detected when there are one or fewer zeros in each of two consecutive double frame periods (512 bits per double frame period) and the FAS is not detected. AIS is cleared when each of two consecutive double frame periods contain three or more zeros or the frame alignment signal (FAS) is found. ( ANSI G.775 section I.2.) * See Table 381 for values of L and P. Agere Systems Inc. 277 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued) Address* Bit Name Function 0x8LP83 9 FRM_ORAI Other Remote Alarm Indication. A 1 indicates the receive framer detected an other remote (yellow) alarm. This bit is a 0 in the modes not indicated below. This bit is set when the alarm is detected, and is cleared on a read of this register if the alarm is not detected during the read. Reset Default 0 J-D4 RJYA: The frame bit in frame 12 is a 1 two out of three consecutive times. ESF, J-ESF RAI-CI: Option 0: A 1 indicates the receive framer detected remote alarm indication customer installation (RAI-CI) in the ESF data link. RAI-CI is a repetitive pattern with a 1.08 second period. It consists of 0.99 s of the unscheduled message 00000000 11111111 (RAI in the data link) interleaved with 0.09 s of the RAI-CI signature pattern. The RAI-CI signature pattern is 00111110 11111111 (transmitted right-to-left). (ANSI T1.231 section D.1.2.) Option 1: A 1 indicates the receive framer detected RAI-CI in the ESF data link. RAI-CI is a repetitive pattern with a 1.08 second period. It consists of 0.99 s of all ones (RAI in the data link) interleaved with 0.09 s of the RAI-CI signature pattern. The RAICI signature pattern is 00111110 11111111 (transmitted rightto-left). (ANSI T1.231 section D.1.2.) CEPT RTS16MFA: Bit 6 of time slot 16 of signaling frame 0 is a 1 for three consecutive occurrences. The alarm is considered inactive when bit 6 of time slot 16 of signaling frame 0 is 1 in less than two consecutive occasions. This is true if time slot 16 is not carrying a payload, e.g., common channel signaling. If time slot 16 is used for common channel signaling, bit 6 will be continuously 1. In this case, it will be possible to inhibit the remote alarm to prevent false alarm conditions. (O.162 section 2.1.5.) This is the y-bit input from the signaling block. * See Table 381 for values of L and P. 278 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued) Address* Bit Name Function 0x8LP83 8 FRM_RAI Remote Alarm Indication. A 1 indicates the receive framer detected a remote (yellow) alarm or detected an RAI indication on the TDM bus from the mapper. Reset Default 0 D4: Bit 2 of all time slots is a 0 for one frame. (ANSI T1.403 section 9.1.) DDS: Bit 6 of time slot 24 is a 0 for 12 frames. ESF: Option 0: An alternating pattern of eight ones followed by eight zeros in the ESF data link for 10 consecutive times. (ANSI T1.403 section 9.1.) Option 1: A pattern of all ones in the ESF data link for 10 consecutive times. CEPT Basic Frame: RAI is activated when bit 3 of the NOTFAS frame is 1 RAC consecutive times. RAI is deactivated when bit 3 of the NOTFAS frame is a 0 RDC consecutive times. RAI activation count (RAC) and RAI deactivation count (RDC) are provisionable in Section Table 313. FRM_PMGR3, Performance Monitor Global Register 3 (R/W) on page 248. Option 0: Bit 3 of the NOTFAS frame is a 1 one consecutive time. RAI is inactive when bit 3 is set to a 0. Option 1: RAI is set on three consecutive ones and deactivated on three consecutive zeros. Option 2: Bit 3 of the NOTFAS frame is a 1 four consecutive times. RAI is inactive when bit 3 is set to a 1 in less than two consecutive occasions. (O.162 section 2.1.4.) Option 3: RAI is set on five consecutive ones and deactivated on five consecutive zeros. (ETS 300.417-1-1.) 7 6 CEPT CRC-4 Multiframe: Reception of 1 bit A with a content of 1. (G.965 section 16.1.2) FRM_SA600X1E Sa6 = 00x1 Event. This bit indicates detection of an Sa6 = 00x1 event. The Sa6 code is detected synchronously to the CRC-4 multiframe and is not counted during loss of CRC-4 multiframe alignment. This detection is not qualified by Sa5 = 1, unlike bits 6 and 8 of Section Table 394. FRM_PMLR13, Performance Monitor Link Register 13 (COR) on page 286. FRM_SA6001XE Sa6 = 001x Event. This bit indicates detection of an Sa6 = 001x event. The Sa6 code is detected synchronously to the CRC-4 multiframe and is not counted during loss of CRC-4 multiframe alignment. This detection is not qualified by Sa5 = 1, unlike bits 7 and 8 of Table 394. 0 0 * See Table 381 for values of L and P. Agere Systems Inc. 279 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued) Address* Bit Name Function 0x8LP83 5 FRM_CRCTX 4 FRM_LTS0MFA CRC-4 Multiframe Alignment Timer Expired. A 1 indicates that either the 100 ms or the 400 ms interworking timer expired. It is only active immediately after basic frame alignment is found in CEPT CRC-4 modes. This signal is set when the error occurs, and is cleared when it is read if there is not another error during the read. Loss of Time Slot 0 CRC-4 Multiframe Alignment. A 1 indicates the absence of CRC-4 multiframe alignment. This bit is set when basic frame alignment has been found and multiframe alignment is being searched for, or when multiframe alignment is lost but basic frame alignment remains good, or when multiframe alignment is lost. Reset Default 0 0 Note: This is a stored version of the status. It is cleared after one good multiframe bit is seen. CRC-4 multiframe alignment is assumed lost when there are three consecutive errors in the CRC-4 multiframe alignment bits (bit 0 of not-FAS frames 1, 3, 5, 7, 9, and 11). Loss of CRC-4 multiframe alignment may optionally cause a research for CRC4 multiframe alignment without affecting the current basic frame alignment. 3 2 CEPT with CRC-4 only. In all other modes, this bit is a 0. FRM_TS0MFABE Time Slot 0 Multiframe Alignment Signal Bit Error. A 1 indicates that the receive framer detected an error in the CRC-4 multiframe alignment signal. A 0 indicates no errors. Bit 0 of NOTFAS frames (1, 3, 5, 7, 9, and 11). FRM_SES Severely Errored Second (G.826 Annex B). A 1 indicates the receive framer detected a severely errored second. The events that can cause an errored second are provisionable for DS1 links in Table 317 and for CEPT links in Table 320. The severely errored second threshold is provisionable; DS1-SF links in Table 314 on page249 , DS1-ESF links in Table 316 on page 249 and CEPT links in Table 319. 0 0 * See Table 381 for values of L and P. 280 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued) Address* Bit Name Function Reset Default 0x8LP83 1 FRM_BES Bursty Errored Second. A 1 indicates the receive framer detected a bursty errored second. The events that can cause an errored second are provisionable for DS1 links in Table 317 on page 249 and for CEPT links in Table 320 on page 250. The severely errored second threshold is provisionable; DS1-SF links in Table 314 on page249 , DS1-ESF links in Table 316 on page 249 and CEPT links in Table 319 on page250 . 0 BES is not valid in any CEPT mode. Note: The SES threshold must always be greater than the ES threshold because BES lies in between (i.e., ES < BES < SES). 0 FRM_ES Errored Second (G.826 Annex B). A 1 indicates the receive framer detected an errored second. The events that can cause an errored second are provisionable for DS1 links in Section Table 317. FRM_PMGR7, Performance Monitor Global Register 7 (R/W) on page 249 and for CEPT links in Section Table 320. FRM_PMGR10, Performance Monitor Global Register 10 (R/W) on page 250. 0 * See Table 381 for values of L and P. Agere Systems Inc. 281 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 386. FRM_PMLR5, Performance Monitor Link Register 5 (COR) Address* Bit 0x8LP84 15:14 13 12 11 10 9 8 7 6 Name Function Reset Default -- Reserved. Must write to 0. 0 0 FRM_LFV Line Format Violation. A 1 indicates the receive framer detected a bipolar line coding or excessive zeros violation. The performance monitor counts all pulses on the BPV signal from the frame aligner block. This signal is set when the error occurs and is cleared when it is read, if there is not another error during the read. (G.703 Annex A and O.161 section 2.) FRM_FBE Frame-Bit Errored. A 1 indicates the receive framer detected a 0 frame bit or frame alignment pattern error. For SF formats, either FT, or FT and FS bits are used and are programmable. This signal is set when the error occurs and is cleared when it is read, if there is not another error during the read. In DDS, FT and FS are always counted as FBEs. The PMON is, however, configurable as to whether TS24 is also counted as a FBE. In CEPT, FAS words can only generate one FBE. 0 FRM_CRCE CRC Errored. A 1 indicates the receive framer detected a CRC error. It is the occurrence of a received CRC code that is not identical to the locally calculated code. This signal is set when the error occurs and is cleared when it is read, if there is not another error during the read. This signal is only valid in ESF(G.704 section A.1) and CEPT CRC-4 (G.704 section A.3) modes. 0 FRM_ECRCE Excessive CRC Errors. A 1 indicates the receive framer detected an excessive CRC error condition. This signal is set when the error occurs and is cleared when it is read, if there is not another error during the read. This signal is only valid in ESF and CEPT CRC-4 modes. The CRC error count is provisionable. In ESF, an excessive CRC error is defined as 320 CRC errors in one second. In CEPT, an excessive CRC error is defined as 915 CRC errors in one second. FRM_REBIT Received E Bit = 0. A 1 indicates the receive framer detected an 0 E bit = 0 in the CEPT CRC-4 modes. This signal is set when the error occurs and is cleared when it is read if there is not another error during the read. This signal is only valid in CEPT CRC-4 modes. FRM_CREBIT Continuous Received E Bits. A 1 indicates the detection of a five 0 second interval containing 991 E bit = 0 events in each second. The E-bit error count is provisionable. The defaults of 991 are shown. 0 FRM_LTFA Loss of Transmit Frame Alignment. DS1: Always 0. CEPT FRM_LTFA: A 1 indicates that the CEPT biframe alignment pattern (alternating 0, 1 in bit 2 of time slot 0) received from the system is in error. This alignment pattern is required when transmitting the Si or Sa bits transparently. Detection of this condition may optionally be disabled. FRM_NFA New Frame Alignment. A 1 indicates the receive framer has 0 reframed. * See Table 381 for values of L and P. 282 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 386. FRM_PMLR5, Performance Monitor Link Register 5 (COR) (continued) Address* Bit 0x8LP84 5 4 3 2 0x8LP84 1 Name Reset Default FRM_SA7LID Sa7 Link Identification. A 1 indicates that a sequence was found 0 such that two out of three Sa7 bits are 0. (G.965 section 16.1.2.) FRM_LLBON Line Loopback On Code Detect. A 1 indicates the receive framer 0 detected the DS1 line loopback enable code. The activation signal consists of repetitions on the pattern 00001 with the framing bits replacing the pattern bits. (T1.403 section 9.3.1.1.) Only applicable in DS1 SF formats. FRM_LLBOFF Line Loopback Off Code Detect. A 1 indicates the receive framer 0 detected the DS1 line loopback disable code. The deactivation signal consists of repetitions on the pattern 001 with the framing bits replacing the pattern bits. (T1.403 section 9.3.1.2.) Only applicable in DS1 SF formats. 0 FRM_AUXP Auxiliary Pattern. DS1 IDLEID: Each of the 24 time slots in a frame contain the DS1 idle signal, 00010111. (T1.231 section 6.4.8.) FRM_LOS Function CEPT AUXP: A 1 indicates the detection of a valid auxiliary pattern (unframed 10 . . . pattern) in the CEPT mode. When in loss of frame alignment state, an auxiliary pattern is detected when more than 255 10 patterns are detected in a 512-bit interval. The alarm is disabled when three or more non-10 patterns are detected in a 512-bit interval. The search for AUXP is synchronized to the first alternating 10 pattern found. (ETS 300 233 section 8.2.2.2, O.151 section 2.4.) Loss of Signal. A 1 indicates that the receive line decoder has detected a loss of signal condition. This status is only valid in the dual-rail mode of operation. 0 DS1: Loss of signal occurs when, for 100 contiguous pulse positions, there are no pulses of either the positive or negative polarity at the line interface. The loss of signal defect is removed upon detecting 13 pulses over 100 pulse positions following the receipt of a pulse, and there is no 100 pulse position interval where there were no pulses. (T1.231 section 6.1.2.1.1, G.775 section 4.3.) 0 FRM_BOMR CEPT: Loss of signal occurs when, for 100 consecutive pulse positions, there are no pulses of either the positive or negative polarity at the line interface. The loss of signal defect is removed when there are pulses in a 100 consecutive pulse position period (G.775 section 4.2.). Note that the defect is set and cleared at the end defined sample period. Bit Oriented Message Received. A 1 indicates a BOM has been received in the ESF data link bits and FRM_RBOM[7:0] (Table 399) should be read. A BOM is defined in ANSI T1.403 as a 0xxxxxx0 11111111 pattern (received right-to-left) repeated 10 consecutive times. The 0xxxxxx0 pattern is saved in the FRM_RBOM[7:0] register (Table 399 on page287 ) upon the 10th occurrence of the BOM message. 0 * See Table 381 for values of L and P. Agere Systems Inc. 283 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 387. FRM_PMLR6, Performance Monitor Link Register 6 (COR) Address* Bit Name 0x8LP85 15:5 4 -- FRM_FDL_RAI 3 2 1 0 Function Reserved. ESF_FDL_RAI/Yellow Alarm. A 1 indicates the receive framer detected the ESF_FDL_RAI/yellow alarm code in the payload. This code is defined in ANSI T1.403-1995 as a 00000000 11111111 pattern in the facility data link (received right-to-left). This signal is set when the pattern is detected (10 consecutive times) and is cleared when it is read if the pattern is no longer being detected. FRM_FDL_PLBON ESF_FDL Payload Loopback Enable. A 1 indicates the receive framer detected the ESF_FDL payload loopback enable code in the payload. This code is defined in ANSI T1.403-1995 as a 00010100 11111111 pattern in the facility data link (received right-to-left). This signal is set when the pattern is detected (10 consecutive times) and is cleared when it is read if the pattern is no longer being detected. This could also be set by FF_PLB (manual PLB indication) input. FRM_FDL_PLBOFF ESF_FDL Payload Loopback Disable. A 1 indicates the receive framer detected the ESF_FDL payload loopback disable code in the payload. This code is defined in ANSI T1.403-1995 as a 00110010 11111111 pattern in the facility data link (received right-to-left). This signal is set when the pattern is detected (10 consecutive times) and is cleared when it is read if the pattern is no longer being detected. FRM_FDL_LLBON ESF_FDL Line Loopback Enable. A 1 indicates the receive framer detected the ESF_FDL line loopback enable code in the payload. This code is defined in ANSI T1.403-1995 as a 00001110 11111111 pattern in the facility data link (received right-to-left). This signal is set when the pattern is detected (10 consecutive times) and is cleared when it is read if the pattern is no longer being detected. FRM_FDL_LLBOFF ESF_FDL Line Loopback Disable. A 1 indicates the receive framer detected the ESF_FDL line loopback disable code in the payload. This code is defined in ANSI T1.403-1995 as a 00111000 11111111 pattern in the facility data link (received right-to-left). This signal is set when the pattern is detected (10 consecutive times) and is cleared when it is read if the pattern is no longer being detected. Reset Default 0 0 0 0 0 0 * See Table 381 for values of L and P. Table 388. FRM_PMLR7, Performance Monitor Link Register 7 (COR) Address* Bit Name 0x8LP86 15:0 FRM_BPV[15:0] Function Reset Default Bipolar Violation Counter. This register contains the 16-bit count of received bipolar violations, line code violations, and excessive zeros. 0x0 * See Table 381 for values of L and P. 284 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 389. FRM_PMLR8, Performance Monitor Link Register 8 (COR) Address* 0x8LP87 Bit Name Function 15:0 FRM_FBEC[15:0] Frame Bit Error Counter. Reset Default 0x0 DS1: This register contains the 16-bit count of received framing bit errors. Framing bit errors are not counted during loss of frame alignment. (T1.231 section 6.1.1.2.2.) CEPT: This register contains the 16-bit count of received frame alignment signal errors. Optionally, bit 2 of non-FAS frames can be counted. Note: A FAS with errors in two or more bit positions is only counted once. * See Table 381 for values of L and P. Table 390. FRM_PMLR9, Performance Monitor Link Register 9 (COR) Address* 0x8LP88 Bit Name Function 15:0 FRM_CEC[15:0] CRC Error Counter. This register contains the 16-bit count of received CRC errors. CRC errors are not counted during loss of CRC multiframe alignment. Reset Default 0x0 * See Table 381 for values of L and P. Table 391. FRM_PMLR10, Performance Monitor Link Register 10 (COR) Address* 0x8LP89 Bit Name Function 15:0 FRM_REC[15:0] Receive E-bit Counter. This register contains the 16-bit count of received E bit = 0 events. E bit = 0 events are not counted during loss of CEPT CRC-4 multiframe alignment. Reset Default 0x0 * See Table 381 for values of L and P. Table 392. FRM_PMLR11, Performance Monitor Link Register 11 (COR) Address* 0x8LP8A Bit Name Function 15:0 FRM_CETE[15:0] Sa6 = 00x1 Event Counter. This register contains the 16-bit count of received Sa6 = 00x1 events. The Sa6 code is detected synchronously to the CRC-4 multiframe and is not counted during loss of CRC-4 multiframe alignment. This detection is not qualified by Sa5 = 1. Reset Default 0x0000 * See Table 381 for values of L and P. Table 393. FRM_PMLR12, Performance Monitor Link Register 12 (COR) Address* 0x8LP8B Bit Name Function Reset Default 15:0 FRM_CENT[15:0] Sa6 = 001x Event Counter. This register contains the 0x0000 16-bit count of received Sa6 = 001x events. The Sa6 code is detected synchronously to the CRC-4 multiframe and is not counted during loss of CRC-4 multiframe alignment. This detection is not qualified by Sa5 = 1. * See Table 381 for values of L and P. Agere Systems Inc. 285 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) The register in Table 394 provides a status indication of functional elements (FE) exchanged between the access digital section and the exchange termination (ET) as defined in ETS 300 233 section 9.3 and Table 2. These are decoded from the A, Sa5, and Sa6 bits. The Sa6 code words are synchronized to the CRC-4 multiframe. Table 394. FRM_PMLR13, Performance Monitor Link Register 13 (COR) Address* 0x8LP8C Bit Name Function (A, SA5, SA6[1:4]) 15:14 -- Reserved. Must write to 0. 13 FRM_FE_OP Defect FCET in the ET or FCDLd in the Digital Link Between V3 and V3 or Defect FCDLu Between the V3 and V3. AIS. 12 FRM_FE_N Reception of AIS at V3 Reference Point of LT and FC4 Simultaneously. (0, 1, 1111.) 11 FRM_FE_M Reception of AIS at V3 Reference Point of LT (Reaction to FCDL or FCET). (1, 1, 1111.) 10 FRM_FE_L LOS at Line Side of LT (FC1). AUXP. 9 FRM_FE_K Loss of Power at NT1 and LOS/LFA at TE Simultaneously. (1, 1, 1000.) 8 FRM_FE_I Loss of Power at NTT. (0, 1, 1000.) 7 FRM_FE_H Simultaneous FC3 and FC4. (0, 1, 1110.) 6 FRM_FE_G LOS/LFA at T Reference Point of NT1. (0, 1, 1100.) 5 FRM_FE_F LOS/LFA at V3 Reference Point of ET. (1, 0, 0000.) 4 FRM_FE_E LOS at Line Side of NT1 or at V3 Reference Point of LT Only. (1, 1, 1110.) 3 FRM_FE_D LOS/LFA at TE. (1, 1, 00xx.) 2 FRM_FE_C Unintentional Loopback. (x, 0, xxxx.) 1 FRM_FE_B Normal Operation of the ET. (x, 0, 0000.) 0 FRM_FE_A Normal Operation of the DS. (x, 1, 00xx.) Reset Default 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * See Table 381 for values of L and P. 286 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) The register in Table 395 provides a status indication of functional elements (FE) exchanged between the access digital section and the exchange termination (ET) as defined in ETS 300 233 section 9.3 and Tables 3 and 4 . Table 395. FRM_PMLR14, Performance Monitor Link Register 14 (COR) Address* Bit Name 0x8LP8D 15:9 8 7 6 5 4 3 2 1 0 -- FRM_FE_Y FRM_FE_X FRM_FE_W FRM_FE_V FRM_FE_U FRM_FE_T FRM_FE_S FRM_FE_R FRM_FE_Q Function (A, Sa5, Sa6[1:4], E) Reserved. Must write to 0. Simultaneous Occurrence of FE_W and FE_X. (x, 1, 0011, x.) CRC Error Detected at T Reference Point of NT1. (x, 1, 0010, x.) CRC Error Reported from TE. (x, 1, 0001, x.) CRC Error Information from ET. (x, 0, 0000, 0.) CRC Error Report from NT1 Line Side. (x, 1, xxxx, 0.) Loopback Release Command. (x, 0, 0000, x.) Loopback Acknowledge. (1, 0, xxxx, x.) Loopback 2 Command. (1, 0, 1010, x.) Loopback 1 Command. (1, 0, 1111, x.) Reset Default 0x000 0 0 0 0 0 0 0 0 0 * See Table 381 for values of L and P. Table 396. FRM_PMLR15, Performance Monitor Link Register 15 (COR) Address* Bit 0x8LP8E 15:0 Name Function Reset Default FRM_ESC[15:0] Errored Second Counter. This register contains the 16-bit count 0x0000 of errored seconds. * See Table 381 for values of L and P. Table 397. FRM_PMLR16, Performance Monitor Link Register 16 (COR) Address* 0x8LP8F Bit Name Function 15:0 FRM_BESC[15:0] Bursts Errored Second Counter. This register contains the 16-bit count of bursty errored seconds. Reset Default 0x0000 * See Table 381 for values of L and P. Table 398. FRM_PMLR17, Performance Monitor Link Register 17 (COR) Address* Bit Name Function 0x8LP90 15:0 FRM_SESC[15:0] Severely Errored Second Counter. This register contains the 16-bit count of severely errored seconds. Reset Default 0x0000 * See Table 381 for values of L and P. Table 399. FRM_PMLR18, Performance Monitor Link Register 18 (COR) Address* 0x8LP91 Bit Name Function 15:8 -- Reserved. Must write to 0. 7:0 FRM_RBOM[7:0] Received Bit-Oriented Message (0xxxxxx0). Note that only storing the 8 bits that contain actual data, the first eight ones are not stored. Reset Default 0x00 0x00 * See Table 381 for values of L and P. Agere Systems Inc. 287 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 400. FRM_PMLR19, Performance Monitor Link Register 19 (COR) This register applies to the receive path only. Address* Bit 0x8LP92 15:5 4:1 0 Name Function -- Reserved. Must write to 0. FRM_HGALIGN[3:0] Indicates HG Alignment for the Associated HG on Each Link. The status will be given for a particular link any time that link appears on the TDM bus. A 1 in any bit position indicates that alignment has been achieved. 0 indicates alignment is lost or handling groups are disabled. FRM_SEFS Severely Errored Frame Status. (See ANSI T1.403 9.4.2.2.2 for ESF and T1.231 6.1.2.2.2 for SF.) Reset Default 0x000 0000 0 * See Table 381 for values of L and P. Table 401. FRM_PMLR20, Performance Monitor Link Register 20 (COR) Address* Bit Name 0x8LP93 15:13 12:7 6 5 4 3 2 1 0 -- FRM_G[6:1] FRM_SE FRM_FE FRM_LV FRM_SL FRM_LB FRM_N1 FRM_N0 Function Reset Default 000 0 0 0 0 0 0 0 0 Reserved. Must write to 0. PRM Message Bit G6--G1. PRM Message Bit SE. PRM Message Bit FE. PRM Message Bit LV. PRM Message Bit SL. PRM Message Bit LB. PRM Message Bit N1. PRM Message Bit N0. * See Table 381 for values of L and P. 12.11 Receive Facility Data Link Configuration and Status Registers Table 402. Receive Facility Data Link Register Addressing Map 15 0 14 0 Address Pins (ADDR15--ADDR0) 13 12 11 10 9 8 7 6 5 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0 1 1 0 L* R* 4 0 3 2 1 0 RDL3 RDL2 RDL1 RDL0 -- * L and R represent hexidecimal digits used for absolute addressing in Table 404 through Table 408. 288 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 403. Receive Path Facility Data Link Registers Address Indexing Read: for link 1, the hexidecimal digit L is 0x0 and the hexidecimal digit R is 0x2. Link L R Link L R Link L R Link L R 1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0 2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2 3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4 4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6 5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8 6 0x0 0xC 13 0x1 0xA 21 0x2 0xA -- -- -- 7 0x0 0xE 14 0x1 0xC 22 0x2 0xC -- -- -- -- -- -- 15 0x1 0xE 23 0x2 0xE -- -- -- Table 404. FRM_RFDLLR1--FRM_RFDLLR5, Receive FDL Link Registers 1--5 (RO) Address* Bit Name 0x8LRC0 0x8LRC1 0x8LRC2 0x8LRC3 0x8LRC4 15:0 15:0 15:0 15:0 15:0 FRM_RXS0[15:0] FRM_RXS1[15:0] FRM_RXS2[15:0] FRM_RXS3[15:0] FRM_RXS4[15:0] Function Reset Default 0x0 0x0 0x0 0x0 0x0 Reset Default 0x0 0 Rx Stack Data 0. Rx Stack Data 1. Rx Stack Data 2. Rx Stack Data 3. Rx Stack Data 4. * See Table 403 for values of L and R. Table 405. FRM_RFDLLR6, Receive FDL Link Register 6 (R/W) Address* Bit Name Function 0x8LRC5 15:1 0 -- FRM_RXCRCSM Reserved. Must write to 0. CEPT CRC-4 Stack Mode. When set to 0, the Sa bits will be stored based on multiframe alignment. If multiframe alignment is lost, the stack will not be made available to the host. When set to 1, the Sa bits will be stored based on an arbitrary multiframe alignment when only basic frame alignment can be established. * See Table 403 for values of L and R. Table 406. FRM_RFDLLR7, Receive FDL Link Register 7 (RO) Address* Bit 0x8LRC6 15:1 0 Name Function -- Reserved. Reads 0. FRM_RXSA Rx Stack Available. A 1 indicates that the Rx stack is available for reading. 0 indicates that the stack is being updated and should not be read. In order to prevent a mix of old and new data being read the host should verify that this bit is set to 1 before continuing to read the stack. Reset Default 0x0 0 * See Table 403 for values of L and R. Agere Systems Inc. 289 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 407. FRM_RFDLLR8, Receive FDL Link Register 8 (COR) Address* Bit 0x8LRC7 Name Function Reset Default 0x0 0 15:1 -- Reserved. Reads 0. 0 FRM_RXSR_IS Rx Stack Ready Interrupt. A 1 indicates that the Rx stack has been filled with data following the format of the associated link. * See Table 403 for values of L and R. Table 408. FRM_RFDLLR9, Receive FDL Link Register 9 (R/W) Address* Bit 0x8LRC8 15:1 0 Name Function Reset Default 0x0 1 -- Reserved. Must write to 0. FRM_MRXSR Mask Rx Stack Ready Interrupt. A 1 masks the Rx stack ready interrupt. * See Table 403 for values of L and R. 12.12 Transmit Facility Data Link Configuration and Status Registers Table 409. Transmit Facility Data Link Register Addressing Map Address Pins (ADDR15--ADDR0) 15 14 0 0 13 12 11 10 9 LNK4 LNK3 LNK2 LNK1 LNK0 L* 8 7 6 5 4 TXP = 1 1 1 0 1 T* 3 2 TDL3 TDL2 1 0 TDL1 TDL0 -- * L and R represent hexidecimal digits used for absolute addressing in Table 411 through Table 415. Table 410. Transmit Path Facility Data Link Registers Address Indexing Read: for link 1, the hexidecimal digit L is 0x0 and the hexidecimal digit T is 0x3. Link 1 2 3 4 5 6 7 -- L 0x0 0x0 0x0 0x0 0x0 0x0 0x0 -- T 0x3 0x5 0x7 0x9 0xB 0xD 0xF -- Link 8 9 10 11 12 13 14 15 L 0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1 T 0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF Link 16 17 18 19 20 21 22 23 L 0x2 0x2 0x2 0x2 0x2 0x2 0x2 0x2 T 0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF Link 24 25 26 27 28 -- -- -- L 0x3 0x3 0x3 0x3 0x3 -- -- -- T 0x1 0x3 0x5 0x7 0x9 -- -- -- Table 411. FRM_TFDLLR1--FRM_TFDLR5, Transmit FDL Link Registers 1--5 (COR) Address* 0x8LTD0 0x8LTD1 0x8LTD2 0x8LTD3 0x8LTD4 Bit 15:0 15:0 15:0 15:0 15:0 Name FRM_TXS0[15:0] FRM_TXS1[15:0] FRM_TXS2[15:0] FRM_TXS3[15:0] FRM_TXS4[15:0] Function Tx Stack Data 0. Tx Stack Data 1. Tx Stack Data 2. Tx Stack Data 3. Tx Stack Data 4. Reset Default 0x0000 0x0000 0x0000 0x0000 0x0000 * See Table 410 for values of L and T. 290 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 412. FRM_TFDLLR6, Transmit FDL Link Register 6 (R/W) Address* Bit Name 0x8LTD5 15:8 -- 7 FRM_SA8SC Sa8 Source Control. A 1 indicates that Sa8 is sourced from this block. 0 indicates that Sa8 is sourced from the framer Sa stack. 0 6 FRM_SA7SC Sa7 Source Control. A 1 indicates that Sa7 is sourced from this block. 0 indicates that Sa7 is sourced from the framer Sa stack. 0 5 FRM_SA6SC Sa6 Source Control. A 1 indicates that Sa6 is sourced from this block. 0 indicates that Sa6 is sourced from the framer Sa stack. 0 4 FRM_SA5SC Sa5 Source Control. A 1 indicates that Sa5 is sourced from this block. 0 indicates that Sa5 is sourced from the framer Sa stack. 0 3 FRM_SA4SC Sa4 Source Control. A 1 indicates that Sa4 is sourced from this block. 0 indicates that Sa4 is sourced from the framer Sa stack. 0 FRM_TXCRCSM CEPT CRC-4 Stack Mode. When set to 0, the Sa bits will be transmitted based on being active. If MFA is lost, the stack will not be transmitted. When set to 1, the Sa bits will be transmitted based on BFA only. 0 2 Function Reserved. Must write to 0. Reset Default 0x0 1 FRM_ASRC Alignment Source. A 1 indicates that the MFA and BFA will be used to determine if a BOM or stack is transmitted. A 0 indicates that, when enabled for insertion, BOMs and stacks will be inserted whenever the TDM data is requested. 0 0 FRM_DS1I DS1 Insertion. A 1 enables this block to insert the contents of the stack into the associated DS1 link. For SLC-96 links, D bits will be inserted given the associated stack format. For DDS links, data-link bits will be inserted given the associated stack format. For other DS1 link types, this bit has no effect. A 0 disables this block from inserting D bits or data link bits into the associated link. 0 * See Table 410 for values of L and T. Table 413. FRM_TFDLLR7, Transmit FDL Link Register 7 (R/W) Address* Bit 0x8LTD6 15:7 6 Name -- FRM_BOME Function Reserved. Must write to 0. Transmit Bit Oriented Message Enable. A 1 indicates that the BOM message register has been initialized and should be transmitted on the data link of the ESF frame. The pattern will continue to be transmitted until the enable is removed. When set to 0, the BOM transmission will stop immediately without completing the current pattern transmission or without completing the series of 10 patterns. 5:0 FRM_TBOM[5:0] Transmit Bit Oriented Message. Indicates the contents of the BOM to be transmitted when enabled with FRM_BOME. A pattern of 111110 implies a BOM of 0111110011111111 with the right most bit being transmitted first. Reset Default 0x000 0 0 * See Table 410 for values of L and T. Agere Systems Inc. 291 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 414. FRM_TFDLLR8, Transmit FDL Link Register 8 (RO/COW) Address* Bit Name 0x8LTD7 15:2 -- 1 0 Function Reserved. Must write to 0. FRM_BOMC_IS BOM Complete Interrupt. (Clear on write.) A 1 indicates that the BOM register contents have been transmitted 10 times over the data link of the ESF frame. FRM_TXSE_IS Tx Stack Empty Interrupt. (Clear on write.) A 1 indicates that the Tx stack is empty. 0 indicates that the host has finished updating the stack. The Tx data link block sets this bit when the stack is empty and needs to be filled if the D bits or Sa bits require changing. If the stack is not refilled, the old data will be retransmitted.The new data can be written anytime without interfering with the current transmission. The stack needs to be updated within 9 ms for a SLC-96 link or 4 ms for a CEPT link in order for the new information to be transmitted in the next double multiframe. Reset Default 0000000 0000000 0 1 * See Table 410 for values of L and T. Table 415. FRM_TFDLLR9, Transmit FDL Link Register 9 (R/W) Address* Bit Name 0x8LTD8 15:2 -- 1 0 Function Reserved. Must write to 0. FRM_BOMC_IM Mask BOM Complete Interrupt. A 1 masks the BOM complete interrupt, FRM_BOMC. FRM_TXSE_IM Mask Tx Stack Empty Interrupt. A 1 masks the Tx stack empty interrupt, FRM_TXSE. Reset Default 0000000 0000000 1 1 * See Table 410 for values of L and T. 12.13 System Interface, Arbiter, and Frame Formatter Mapping Table 416. System Interface, Arbiter, and Frame Formatter Link Register Addressing Map 15 0 14 0 Address Pins (ADDR15--ADDR0) 13 12 11 10 9 8 7 6 LNK4 LNK3 LNK2 LNK1 LNK0 RXP=0/TXP=1 1 1 L* P* 5 1 4 0 3 0 2 1 0 SYS2 SYS1 SYS0 -- * L and P represent hexidecimal digits used for absolute addressing in Table 419 through Table 425. 292 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 417. System Interface, Arbiter, and Frame Formatter Link Register Address Indexing Read: for link 1 on the receive path, the hexidecimal digit L is 0x0 and the hexidecimal digit P is 0x2. Link L P Link L P Link L P Link L P Receive Path (P is even) 1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0 2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2 3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4 4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6 5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8 6 0x0 0xC 13 0x1 0xA 21 0x2 0xA -- -- -- 7 0x0 0xE 14 0x1 0xC 22 0x2 0xC -- -- -- -- -- -- 15 0x1 0xE 23 0x2 0xE -- -- -- Transmit Path (P is odd)) 1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1 2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3 3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5 4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7 5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9 6 0x0 0xD 13 0x1 0xB 21 0x2 0xB -- -- -- 7 0x0 0xF 14 0x1 0xD 22 0x2 0xD -- -- -- -- -- -- 15 0x1 0xF 23 0x2 0xF -- -- -- 12.14 System Interface Per Link Registers Table 418. FRM_SYSLR1, System Interface Link Register 1 (R/W) Address* Bit Name 0x8LPE0 15 -- 14:8 Function Reserved. Must write to 0. Reset Default 0 FRM_BYOFF[6:0] CHI Byte Offset. This bit is only applicable in the CHI mode. 0000000 7 -- 6:4 FRM_OFF[2:0] 3:2 -- 1 0 Reserved. Must write to 0. CHI Bit Offset. 0 000 Reserved. Must write to 0. 0 FRM_HALFOFF Half Bit Offset. When set to 1, an offset of 1/2 bit is added to offsets. 0 FRM_QUAROFF Quarter Bit Offset. When set to 1, an offset of 1/4 bit is added to the offsets. CHI CMS mode only. 0 * See Table 417 for values of L and P. Agere Systems Inc. 293 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 419. FRM_SYSLR2, System Interface Link Register 2 (R/W) This register applies to the receive path only, inserted in the transmit system interface on demand. Address* Bit Name 0x8LPE1 15 FRM_CEPTMAIS 14 13 12 11:0 Function Transmit CEPT TS16 AIS. 0 = No action. 1 = Time slot 16 is forced to all ones. FRM_CEPTAAIS Transmit CEPT TS16 AIS on Loss of MFA. 0 = No action. 1 = Time slot 16 is forced to all ones when time slot 16 multiframe alignment is lost. FRM_MANAIS Transmit System AIS. 0 = No action. 1 = Transmit system AIS to the system. FRM_CEPTSTMP Transmit System CEPT TS16 Stomp. 0 = No action. 1 = If upper or lower nibble of time slot 16 is 0000 then it is changed to 1111 toward the transmit system interface. -- Reserved. Must write to 0. Reset Default 0 0 0 0 0x000 * See Table 417 for values of L and P. Table 420. FRM_SYSLR3--FRM_SYSLR6, System Interface Link Registers 3--6 (R/W) Address* Bit Name 0x8LPE2 0x8LPE3 0x8LPE4 0x8LPE5 15:0 15:0 15:0 15:0 -- -- -- -- Function Reserved. Must write to 0. Reserved. Must write to 0. Reserved. Must write to 0. Reserved. Must write to 0. Reset Default 0x0000 0x0000 0x0000 0x0000 * See Table 417 for values of L and P. 294 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.15 Arbiter Framer Per Link Registers Table 421. FRM_ARLR1, Arbiter Link Register 1 (R/W) Address* Bit Name 0x8LPF0 15 FRM_LNK_ENA Function Link Enable. Reset Default 1 0 = Link is disabled. 14 FRM_LNK_TRANSP 1 = Link is enabled. Transparent Mode Selection. 0 Switching: 0 = The link is in a nontransparent mode. (Regenerate framing bits and CRC bits.) 1 = The link is in transparent mode. (Flow through framing bits and CRC bits.) Transport: 0 = Nontransparent mode (regenerate CRC bits and flow through framing bits). 13 1 = Transparent mode (flow through framing bits and CRC bits). FRM_LNK_RESTARTN Restart Link. 0 0 = Restart the link. 12 FRM_LNK_REFRAME 1 = Normal operational mode for the link. Force Reframe. 0 0 = Normal operational mode for the link. 11:10 9 -- FRM_ICKEDGE 1 = Link is forced to reframe. Reserved. Must write to 0. Input Clock Edge Selection. 0 0 0 = Sample data on rising edge of input clock. 8:0 -- 1 = Sample data on falling edge of input clock. Reserved. Must write to 0. 000 * See Table 417 for values of L and P. Agere Systems Inc. 295 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) Address* Bit Name 0x8LPF1 15 FRM_ESF_CRC_EN Function Reset Default 0 CRC Framing Enable. DS1 Modes: ESF CRC framing algorithm enable: 0 = ESF CRC framing disabled. 1 = ESF CRC framing enabled. (Enables inclusion of CRC in the frame search algorithm.) CEPT Modes: CRC-4 Multiframe: 0 = Multiframe reframe disabled. 14 FRM_FAST 1 = Multiframe reframe enabled. (Enables the inclusion of the following criteria to the CEPT loss of multiframe criteria. Three consecutive multiframe alignment pattern bit errors will cause a search for a new multiframe alignment. Basic frame alignment is not lost.) Fast Frame Mode. 0 DS1 Modes: 0 = Disable quick frame recovery. 1 = Enable quick frame recovery as follows: D4 and J-D4: 36 fewer frame bits are checked. SLC-96: Eighteen fewer FT bits are checked during the search for FT framing. DDS: No change. CEPT Modes: 0 = Disable quick frame recovery. 1 = This bit enables the (n + 2) framing research algorithm as defined in the note in Recommendation G.706 section 4.1.2. When an FAS is found in frame n, frame (n + 1) is checked to ensure that it is a non-FAS frame and frame (n + 2) is checked for FAS. Failure to meet either of these conditions results in a new search in frame (n + 2). * See Table 417 for values of L and P. 296 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued) Address* Bit Name 0x8LPF1 13:12 FRM_OPT[1:0] Function Frame Options. Reset Default 0 DS1 Mode: 00 = The frame aligner will not frame up until all mimics are gone. 01 = Time-out algorithm is enabled. A counter is started when, for the first time, one of the 193-bit positions contains a sequence long enough to declare frame but is prevented from doing so by the presence of a mimic. The provisionable counter sets a time limit for mimics to go away. If there are still mimics, a candidate bit position that has met the minimum framing requirements is chosen and frame alignment is made to that position. See FRM_TO[7:0] (Table 305). Others reserved. CEPT Mode: 00 = No change. 01 = Enables an extra NOTFAS frame check. This can prevent frame alignment on PRBS patterns which contain a pseudoframing pattern. The CEPT framing sequence now becomes: Find FAS (n). Verify NOTFAS frame (n + 1). Verify second FAS in frame (n + 2). Verify second NOTFAS frame (n + 3). 11 FRM_FBE_MODE Others reserved. DDS FBE Mode. 0 0 = Allows two FBEs to be detected in a frame in DDS mode. One FBE for the frame bit (FT and FS) and one FBE for the time slot 24 frame alignment signal. 1 = Only 1 FBE is detected in a frame in DDS mode. * See Table 417 for values of L and P. Agere Systems Inc. 297 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued) Address* Bit Name 0x8LPF1 10:8 FRM_LF_CRT[2:0] Function Reset Default 0 Loss of Frame Criteria. DS1 Mode: 000 = 2 errored framing bits out of 4 FT and FS bits. 001 = 2 errored framing bits out of 5 FT and FS bits. 010 = 2 errored framing bits out of 6 FT and FS bits. 011 = 3 errored framing bits out of 12 FT, Fs, and channel 24 FAS bits (DDS only). 100 = 2 errored framing bits out of 4 FT bits only. 101 = 2 errored framing bits out of 5 FT bits only. 110 = 2 errored framing bits out of 6 FT bits only. 111 = 4 errored framing bits out of 12 FT, FS, and channel 24 FAS bits (DDS only). CEPT Mode: 7 6 -- FRM_AUTO_AIS 000 = 3 consecutive errored FAS patterns. x01 = 3 consecutive errored FAS patterns or 3 consecutive errored NOTFAS bits (bit 2). x10 = 3 consecutive errored frames (FAS and NOTFAS). Others reserved. Reserved. Must write to 0. Auto AIS. 0 0 0 = Auto AIS is disabled. 1 = Auto AIS is enabled. 5:4 When auto AIS is enabled, the receive arbiter data is forced to 1 when out of frame. FRM_RAIL3_DEC[1:0] Third Rail Option. 0 00 = Third input signal to the frame aligner is ignored. 01 = Third input is bipolar violations (in the CMI mode, CRVs are also included on the RBPV input, but not passed through the frame aligner). 10 = Third rail is frame sync used to indicate time slot alignment. The multiframe alignment is determined by the frame sync. 11 = Third rail is frame sync used to indicate framing bit position. Multiframe alignment is searched for expedited by the frame sync. * See Table 417 for values of L and P. 298 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued) Address* Bit Name Function 0x8LPF1 3:0 FRM_MODE[3:0] Framing Mode. 0000 = Nonalign 256 bit. 0001 = CEPT basic frame. 0010 = CEPT with CRC-4 and 100 ms timer. 0011 = CMI. 0100 = CEPT with CRC-4 and 400 ms timer. 0101 = Reserved. (Future J2 - G.704.) 0110 = Reserved. (Future J2 - NTT Y.) 0111 = Reserved. 1000 = Nonalign 193 bits. 1001 = SF (FT bits only). 1010 = J-ESF. 1011 = ESF. 1100 = D4. 1101 = J-D4 (SF with Japanese Yellow Alarm). 1110 = DDS. 1111 = SLC-96. Reset Default 1011 * See Table 417 for values of L and P. Table 423. FRM_ARLR3, Arbiter Link Register 3 (R/W) This register applies to the transmit path only. Address* 0x8LPF2 Bit 15 Name FRM_TP_CK_ SRC_EN 14 FRM_TP_CK_ SRC 13 FRM_TP_DD_ SRC 12:1 0 -- FRM_SYSFSM Function Reset Default Framer Transmit Path Clock Source Enable. 0 0 = FRM_TP_CK_SRC bit is disabled. FRM_SW_TRN (Table 301) bit controls clock source. 1 = FRM_TP_CK_SRC bit is enabled. FRM_SW_TRN bit is ignored. Transmit path clock and data is selected with bits FRM_TP_CK_SRC and FRM_TP_DD_SRC. Transmit Path Clock Source. 1 0 = Transmit clock comes from the frame aligner (transport applications). 1 = Transmit clock comes from the system interface (switching applications). Transmit Path Default Data Source. 1 0 = Transmit data comes from the frame aligner (transport applications). 1 = Transmit data comes from the system interface (switching applications). Reserved. Must write to 0. 0000 System Frame Sync Mask. A 1 masks the system frame synchronization signal in the transmit framer formatter. Note: For those applications that have jitter on the transmit clock signal relative to the system clock signal, enable this bit so that the jitter is isolated from the transmit framer. * See Table 417 for values of L and P. Agere Systems Inc. 299 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) 12.16 Frame Formatter Per Link Registers Table 424. FRM_FFLR1, Frame Formatter Link Register 1 (R/W) Address* Bit Name 0x8LPF4 15:12 11 -- FRM_ESFRAMD Function Reset Default 0000 0 Reserved. Must write to 0. ESF Remote Alarm Indicator Mode. 0 = Data link remote alarm sequence is 1111 1111 0000 0000. 10:8 1 = Data link remote alarm is all ones. FRM_ZCSMD[2:0] Zero Code Suppression Modes. 000 000 = ZCS off. 001 = Set bit 6 (numbered 0--7) of all time slots. 011 = Set bit 6 of all 0-byte time slots. 101 = Set bit 6 of all voice time slots. 111 = Set bit 6 of all 0-byte voice time slots. 110 = Set 0-byte time slots to 1001 1000. 100, 010 = Reserved. 7 6 (Signaling F and G bits identify voice time slots.) -- Reserved. Must write to 0. FRM_OCKEDGE Output Clock Edge Selection. 0 0 0 = Data clocked out on rising clock edge. 5:4 3 -- FRM_AUTOPLB 1 = Data clocked out on falling clock edge. Reserved. Must write to 0. Automatic Payload Loopback (ESF Framing Only). 0 0 0 = Ignore received payload loopback requests. 2 FRM_AUTOLLB 1 = Automatically start payload loopback when payload loopback signal is received. Automatic Line Loopback (SF and ESF Framing Only). 0 0 = Ignore received line loopback requests. 1 FRM_AUTOEBIT 1 = Automatically start line loopback when line loopback signal is received. Automatic E-Bit Insertion (CEPT Framing Only). 0 0 = Ignore E-bit insertion requests from PM. 0 FRM_AUTORAI 1 = Automatically insert E bits when indicated by PM. Automatic RAI Insertion. 0 0 = Ignore RAI insertion requests from PM. 1 = Automatically insert RAI when indicated by PM. * See Table 417 for values of L and P. 300 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 425. FRM_FFLR2, Frame Formatter Link Register 2 (R/W) Address* 0x8LPF5 Bit Name Function 15:14 FRM_TXLBMD[1:0] Transmit Loopback Modes. Reset Default 00 00 = Loopbacks off. 01 = Line loopback. 10 = Payload line loopback pass through. (The received payload data, the CRC bits, and the frame alignment bits are loopback to the line. The data link bits are inserted.) 13:10 9 -- FRM_TXLLBOFF 11 = Payload line loopback regenerate. (The received payload data is looped back to the line. The CRC bits, the frame alignment bits, and data link bits are regenerated and inserted.) Reserved. Must write to 0. Transmit D4 SF Line Loopback Off Code. 0000 0 0 = Do not transmit the D4 SF line loopback off code. 8 FRM_TXLLBON 1 = Transmit the D4 SF line loopback off code. (Repeated 001 patterns with the framing bits overwriting the pattern T1.403 section 9.3.1.2.) Transmit D4 SF Line Loopback On Code. 0 0 = Do not transmit the D4 SF line loopback on code. 7:6 5 4 3 2 1 0 -- FRM_TXIID 1 = Transmit the D4 SF line loopback on code. (Repeated 00001 patterns with the framing bits overwriting the pattern T1.403 section 9.3.1.1.) Reserved. Must write to 0. Transmit DS1 Idle ID (Fixed pattern defined inT1.403 section D.2). 0 0 FRM_TXAUXP 0 = On demand idle ID off. 1 = On demand idle ID on (send idle ID). Transmit AUXP. 0 FRM_TXRAICI 0 = On demand AUXP off. 1 = On demand AUXP on (send AUXP). Transmit RAI-CI (ESF modes only). 0 0 = On demand RAI-CI off. 1 = On demand RAI-CI on (send RAI-CI). Transmit RAI. 0 0 = On demand RAI off. 1 = On demand RAI on (send RAI). Transmit AIS-CI (ESF modes only). 0 0 = On demand AIS-CI off. 1 = On demand AIS-CI on (send AIS-CI). Transmit AIS. 0 FRM_TXRAI FRM_TXAISCI FRM_TXAIS 0 = On demand AIS off. 1 = On demand AIS on (send AIS). * See Table 417 for values of L and P. Agere Systems Inc. 301 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) 12.17 Line Decoder/Encoder Per Link Registers Table 426. Line Decoder Per LInk Register Addressing Map 15 0 14 0 Address Pins (ADDR15--ADDR0) 13 12 11 10 9 8 7 6 5 LNK4 LNK3 LNK2 LNK1 LNK0 TXP=1 1 1 1 L* T* 4 1 3 1 -- 2 1 1 0 0 0 * L and R represent hexadecimal digits used for absolute addressing in Table 411 through Table 415. Table 427. Line Decoder Per Link Registers Address Indexing Read: for link 1, the hexadecimal digit L is 0x0 and the hexadecimal digit T is 0x3. Link 1 2 3 4 5 6 7 -- L 0x0 0x0 0x0 0x0 0x0 0x0 0x0 -- T 0x3 0x5 0x7 0x9 0xB 0xD 0xF -- Link 8 9 10 11 12 13 14 15 L 0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1 T 0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF Link 16 17 18 19 20 21 22 23 L 0x2 0x2 0x2 0x2 0x2 0x2 0x2 0x2 T 0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF Link 24 25 26 27 28 -- -- -- L 0x3 0x3 0x3 0x3 0x3 -- -- -- T 0x1 0x3 0x5 0x7 0x9 -- -- -- Table 428. Line Encoder Per Link Register Addressing Map 15 0 14 0 Address Pins (ADDR15--ADDR0) 13 12 11 10 9 8 7 6 5 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0 1 1 1 L* R* 4 1 3 1 2 1 1 0 0 0 -- * L and R represent hexadecimal digits used for absolute addressing in Table 404 through Table 408. Table 429. Line Encoder Per Link Registers Address Indexing Read: for link 1, the hexadecimal digit L is 0x0 and the hexidecimal digit R is 0x2. Link 1 2 3 4 5 6 7 -- 302 L 0x0 0x0 0x0 0x0 0x0 0x0 0x0 -- R 0x2 0x4 0x6 0x8 0xA 0xC 0xE -- Link 8 9 10 11 12 13 14 15 L 0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1 R 0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE Link 16 17 18 19 20 21 22 23 L 0x2 0x2 0x2 0x2 0x2 0x2 0x2 0x2 R 0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE Link 24 25 26 27 28 -- -- -- L 0x3 0x3 0x3 0x3 0x3 -- -- -- R 0x0 0x2 0x4 0x6 0x8 -- -- -- Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.18 Line Encoder/Decoder Per Link Registers Table 430. FRM_LDLR1, Line Decoder Link Register 1 (R/W) Address* Bit Name 0x8LTFC 15:6 5 -- FRM_EXCZERO Function Reserved. Must write to 0. Line Format Violation Option. Reset Default 0x000 0 0 = Excessive zeros are not included in bipolar violations. 4 1 = Excessive zeros are included in bipolar violations. FRM_RLCLK_EDGE Receive Line Clock Edge Select. 0 0 = Data and bipolar violations are latched in on the positive edge of the receive line interface clock (RLCLK). 3 2:0 1 = Data and bipolar violations are latched in on the negative edge of the receive line interface clock (RLCLK0). -- Reserved. Must write to 0. FRM_LD_MODE[2:0] Line Decoder Mode. 0 000 000 = Single rail (CMI use single rail). 001 = HDB3. 010 = B8ZS. 011 = AMI. 100 = Reserved. 101 = Reserved. 110 = Reserved. 111 = Reserved. * See Table 427 for values of L and T. Table 431. FRM_LDLR2, Line Encoder Link Register 2 (R/W) Address* Bit Name 0x8LRFC 15:5 4 -- FRM_TLCLK_EDGE Function Reserved. Must write to 0. Transmit Line Clock Edge Select. Reset Default 0x000 0 0 = Data and frame sync are latched out on the positive edge of the transmit line interface clock (TL_CLK). 3 2:0 1 = Data and frame sync are latched out on the negative edge of the transmit line interface clock (TL_CLK). -- Reserved. Must write to 0. FRM_LE_MODE[2:0] Line Encoder Mode. 0 000 000 = Single rail (CMI use single rail). 001 = HDB3. 010 = B8ZS. 011 = AMI. 100 = Reserved. 101 = Reserved. 110 = Reserved. 111 = Reserved. * See Table 429 for values of L and R. Agere Systems Inc. 303 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) 12.19 HDLC Per Channel Configuration and Status Registers Table 432. HDLC Per Channel Register Addressing Map Address Pins (ADDR15--ADDR0) 15 14 13 12 11 10 9 8 7 6 5 0 1 HDLC Channels 1--64 (000000--111111) RXP= 0/ 0 0 TXP = 1 HDL9 HDL8 HDL7 HDL6 HDL5 HDL4 H* P* 4 0 3 2 1 0 Per Channel Register HDL3 HDL2 HDL1 HDL0 -- * H and P represent hexidecimal digits used for absolute addressing in Table 433 through Table 446. Table 433. FRM_HCR1, Transmit HDLC Channel Register 1 (R/W) Address* Bit 0x8HP80 15:13 12:8 7:0 Name Function Reset Default 000 0x0 Reserved. Must write to 0. -- FRM_TTIMESLOT[4:0] Transmit HDLC Time-Slot. FRM_TBIT_IM[7:0] These bits indicate (in binary) the time slot number assigned to this channel. Transmit HDLC Bit Assignment. 0x00 These bits indicate which bits of a time slot are to be assigned to this channel (1 = bit assigned). In loopback mode, set as follows: 00000000 = slowest (~6 kbits/s at 52MHz) 10000000 = faster (~2x above) 11000000 = faster still (~4x slowest rate) .... 11111111 = fastest (~1.5 Mbits/s at 52MHz) Note: If running a mix of loopback and nonloopback channels, the loopback speed should not be set faster than 11100000. * See Table 432 for mapping of H andP. Table 434. FRM_HCR2, Transmit HDLC Channel Register 2 (R/W) Address* Bit 0x8HP81 15:14 13:5 4:0 Name FRM_TFRAME_ SEL[1:0] -- FRM_TLINK[4:0] Function Reset Default 00 Transmit HDLC Frame Select. These bits are encoded to select odd and/or even numbered frames assigned to this channel. 00 = No data selected. 01 = Data to even frames selected (F S, FAS). 10 = Data to odd frames selected (F T, NOTFAS, ESF-DL). 11 = Data to all (even and odd) frames selected. Reserved. Must write to 0. Transmit HDLC Link Select. 0x000 00000 These bits indicate (in binary) the link number assigned to this channel. * See Table 432 for mapping of H andP . 304 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 435. FRM_HCR3, Transmit HDLC Channel Register 3 (R/W ) Address* Bit Name Function 0x8HP82 15 FRM_THC_RESET Transmit HDLC Reset. When this bit is 1, the channel is held in reset. 14 FRM_TENABL This clears status for the channel, disables the channel, and clears the FIFO for the channel. Transmit HDLC Enable. When this bit is 0, and written to 1, the channel is reinitialized and enabled. When this bit is 1, and written to 0, no further data will be transmitted and any partial data being serialized will be lost. The channel is disabled. The user should reset the FIFO to prevent partial packets from being transmitted once re-enabled. Writing the same value as currently programmed has no effect. 13:11 -- Reserved. Must write to 0. Bits 10:0, 3, 1:0 can only be written as the channel is being enabled, (i.e., bit 14 held 0 and is now being written to 1). 0x8HP82 10:9 FRM_CFLAGS[1:0] Closing Flags. Only valid in HDLC mode. These bits select one of four values (00 = FRM_FCNT0[4:0], 01 = FRM_FCNT1[4:0], 10 = FRM_FCNT2[4:0], 11 = FRM_FCNT3[4:0] (Table 333--Table 336)). This value indicates the number of additional closing flags inserted after an HDLC packet (e.g., if FRM_FCNT2[4:0] is selected and it is set to 00100, then five flags are inserted). 8 FRM_PRMEN PRM Enable. When 1, this channel is enabled to send PRM packets automatically. When 0, this feature is disabled. (Bit only for channels 1--28, or else reserved.) When enabled, PRMs will not be sent until all four seconds of PRM information are valid. 7 FRM_TLOOP HDLC Controller Loopback. When this bit is set to 1, the channel will operate in loopback mode. When 0, the channel operates normally. 6 FRM_C_R 5 FRM_HTTHRSEL 4 FRM_IFCS Note: The corresponding Rx channel should be enabled before enabling the Tx channel for loopback. PRM C/R Bit. This bit is inserted as the C/R bit when sending a PRM packet on this channel. (Bit only for channels 0--27, or else reserved.) Transmit Threshold Select. This bit selects which of the two programmable FIFO threshold values to use for this channel (0 selects FRM_HTTHRSH0 (Table 327), 1 selects FRM_HTTHRSH1 (Table 328)). FCS Insert. Only valid in HDLC mode. When 0, this bit indicates the FCS at the end of an HDLC packet should be inserted. A 1 indicates that the internally computed FCS will not be inserted at the end of the packet. Reset Default 0 0 000 00 0 0 0 0 0 * See Table 432 for mapping of H andP . Agere Systems Inc. 305 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 435. FRM_HCR3, Transmit HDLC Channel Register 3 (R/W) (continued) Address* Bit 0x8HP82 3 2 1:0 Name Function Reset Default FRM_HTIDLE HDLC Idle Select. Only valid in HDLC mode. This bit indicates 0 the idle fill character when the Tx FIFO is empty. A 0 means fill with flags (01111110). A 1 means fill with idle (11111111). FRM_HTMODE Transmit Channel Mode Select. A 0 indicates the channel is 0 in HDLC mode. A 1 indicates the channel is in transparent mode. 00 FRM_HXPIDLE[1:0] Transparent Idle Mode Character Select. Only valid in transparent mode. These bits indicate one of the four possible 8-bit patterns to be sent when the Tx FIFO is empty. (00 selects TXICHAR0 (Table 329), 01 selects TXICHAR1 (Table 330), etc.) * See Table 432 for mapping of H andP. Table 436. FRM_HCR4, Transmit HDLC Channel Register 4 (RO) Address* Bit Name 0x8HP83 15:3 2 -- FRM_HTUND 1 0 Function Reserved. Reads 0. Transmit FIFO Underrun. A 1 indicates this channel has run out of data in the middle of an HDLC packet. In transparent mode, it simply means the channel has run out of data. FRM_HTDONE Transmit Done. A 1 indicates a complete packet has been sent on this channel. FRM_HTTHRSH Transmit FIFO Threshold Interrupt. A 1 indicates this channels FIFO level has dropped below the programmed threshold value. Reset Default 0x000 0 0 0 * See Table 432 for mapping of H andP. Table 437. FRM_HCR5, Transmit HDLC Channel Register 5 (R/W) Address* Bit Name 0x8HP84 15:3 2 -- FRM_MHTUND 1 0 Function Reserved. Must write to 0. Transmit FIFO Underrun Interrupt Mask. A 1 masks the corresponding channel's FRM_HTUND status from causing an interrupt. FRM_MHTDONE Transmit Done Interrupt Mask. A 1 masks the corresponding channel's FRM_HTDONE status from causing an interrupt. FRM_MHTTHRSH Transmit FIFO Threshold Interrupt Mask. A 1 masks the corresponding channel's FRM_HTTHRSH status from causing an interrupt. Reset Default 0x0 0 0 0 * See Table 432 for mapping of H andP . 306 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 438. FRM_HCR6, Transmit HDLC Channel Register 6 (WO) Address* 0x8HP85 Bit Name Function Reserved. Must write to 0. 15:10 -- 9:8 FRM_HTFUNC[1:0] Transmit Data Function. These two bits indicate the action to be taken by writing this register: 00 = Add DATA to the Tx FIFO (non-EOP). 01 = Add DATA to the Tx FIFO as EOP data (i.e., last byte of packet). 10 = Abort last incomplete data packet in FIFO. (If written after an EOP byte, this may abort the previous packet.) 11 = Reserved. 7:0 FRM_HTDATA[7:0] Transmit Data Register. When FRM_HTFUNC[1:0] = 00 or 01, then these bits contain a byte of data to be written to the FIFO. Reset Default 0x00 00 0x00 * See Table 432 for mapping of H andP. Table 439. FRM_HCR7, Transmit HDLC Channel Register 7 (RO) Address* Bit Name Function Reserved. Must write to 0. 0x8HP86 15:10 -- 9:0 FRM_HTCOUNT[9:0] Transmit FIFO Byte Count. These bits indicate the number of bytes available to be filled in the Tx FIFO for the specific channel. Reset Default 0x0 x80 (x200 in large buffer mode) * See Table 432 for mapping of H andP. Table 440. FRM_HCR8, Receive HDLC Channel Register 8 (R/W) Address* 0x8HP00 Bit Name Function Reserved. Must write to 0. 15:13 -- 12:8 FRM_RTIMESLOT[4:0] Received HDLC Time Slot. These bits indicate (in binary) the time slot number assigned to this channel. 7:0 FRM_RBIT_IM[7:0] Received HDLC Bit Assignment. These bits indicate which bits of a time slot are to be assigned to this channel (1 = bit assigned). Reset Default 000 00000 0x00 * See Table 432 for mapping of H andP. Table 441. FRM_HCR9, Receive HDLC Channel Register 9 (R/W) Address* Bit Name Function 0x8HP01 15:14 FRM_RFRAME_ SEL[1:0] 13:5 4:0 -- FRM_RLINK[4:0] Receive HDLC Frame Select. These bits are encoded to select odd and/or even numbered frames assigned to this channel. 00 = No data selected. (Use for loopback mode.) 01 = Data from even frames selected (Fs, FAS). 10 = Data from odd frames selected (FT, NOTFAS, ESF-DL). 11 = Data from all (even and odd) frames selected. Reserved. Must write to 0. Receive HDLC Link Select. These bits indicate (in binary) the link number assigned to this channel. Reset Default 000 0x0 00000 * See Table 432 for mapping of H andP . Agere Systems Inc. 307 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 442. FRM_HCR10, Receive HDLC Channel Register 10 (R/W) Address* Bit 0x8HP02 15 Name Function Reset Default 0 FRM_RHC_RESET Receive HDLC Reset. When this bit is 1, the channel is held in reset. 14 -- Reserved. Must write to 0. 0 0 13 FRM_RENABL Receive HDLC Enable. When this bit is 0 and written to 1, the channel is reinitialized (i.e., HDLC searching for opening flag, transparent searching for alignment character if so programmed) and enabled. When this bit is 1 and written to 0, any current HDLC packet will be aborted and the channel disabled. Writing the same value as currently programmed has no effect. Reserved. Must write to 0. 12 -- 0 Bits 11:0 can only be written as the channel is being enabled, (i.e., bit 13 held 0 and is now being written to 1). 11 FRM_RTHRSEL Receive FIFO Threshold Select. This bit selects which of 0 the two programmable FIFO threshold values to use for this channel. (0 selects FRM_HRTHRSH0[9:0] (Table 341), 1 selects FRM_HRTHRSH1[9:0] (Table 342)). 10 FRM_RFCS Receive FCS Option. Only valid in HDLC mode. When 1, 0 this bit indicates the FCS at the end of an HDLC packet should be removed. A 0 indicates it should kept as part of the packet. 9 FRM_HRMODE Receive Channel Mode Select. A 0 indicates the channel 0 is in HDLC mode. A 1 indicates the channel is in transparent mode. 8 FRM_BYTAL Byte Alignment. This bit is only used in transparent mode 0 (forced to 1 in HDLC mode). A 0 indicates no byte alignment is done by the receiver. A 1 indicates that byte alignment will be done by the receiver once the FRM_MATCH[7:0] code is found. 7:0 FRM_MATCH[7:0] Transparent Mode Pattern Match. Only valid in transpar0x0 ent mode with byte alignment. These bits indicate the pattern to match to begin receiving transparent data (forced to ones in HDLC mode). * See Table 432 for mapping of H andP. Table 443. FRM_HCR11, Receive HDLC Channel Register 11 (RO) Address* Bit Name 0x8HP03 15:4 3 -- FRM_RIDLE 2 1 0 Function Reserved. Reads 0. Receive Channel Idle. A 1 indicates this channel has been detected as idle. FRM_OVR Receive FIFO Overflow. A 1 indicates this channel's FIFO has overflowed. FRM_EOP End of Packet. A 1 indicates an end-of-packet has been detected on this channel. FRM_HRTHRSH Receive FIFO Threshold Interrupt. A 1 indicates this channel's FIFO has exceeded the programmed threshold value. Reset Default 0x000 0 0 0 0 * See Table 432 for mapping of H andP . 308 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 444. FRM_HCR12, Receive HDLC Channel Register 12 (R/W) Address* Bit Name 0x8HP04 15:4 3 -- FRM_MIDLE 2 1 0 Function Reserved. Must write to 0. Receive Channel Idle Interrupt Mask. A 1 masks this channel's idle detection interrupt. FRM_MOVR Receive FIFO Overflow Interrupt Mask. A 1 masks this channel's FIFO overflow interrupt. FRM_MEOP End of Packet Interrupt Mask. A 1 masks this channel's end-of-packet interrupt. FRM_MHRTHRSH Receive FIFO Threshold Interrupt Mask. A 1 masks this channel's exceeded FIFO threshold interrupt. Reset Default 0x000 1 1 1 1 * See Table 432 for mapping of H andP . Agere Systems Inc. 309 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 445. FRM_HCR13, Receive HDLC Channel Register 13 (RO) Address* Bit Name 0x8HP05 15:11 10 -- FRM_HMDA 9 8 7:0 7 6 5 4 3 2:0 Function Reserved. Reads 0. More Data Available. A 1 indicates that if the FIFO is read again, valid data will be returned. A 0 indicates no more data is available. FRM_HRVALID Receive FIFO Valid Data. A 1 indicates the information read from the FIFO is valid. A 0 indicates the FIFO was empty and no information was available. FRM_HRTYPE Receive FIFO Data Type. A 0 indicates FRM_HR_DATA[7:0] is data. A 1 indicates FRM_HR_DATA[7:0] is status information. FRM_HR_DATA[7:0] Receive FIFO Data. When FRM_HRTYPE = 0, these bits contain a byte of data. When FRM_HRTYPE = 1, the bits are defined below. FRM_HOVR FIFO Overflow. A 1 indicates the FIFO overflowed. FRM_HEOP End of Packet. A 1 indicates end of packet (normal packet). FRM_HCRCERR HDLC CRC Error. A 1 indicates a CRC error was detected. FRM_HABRT HDLC Abort. A 1 indicates an abort was received. FRM_HIDL HDLC Idle. A 1 indicates idle (as defined by HDLC protocol) condition detected. FRM_HBIT[2:0] Complete Byte Status. 111 indicates the last data received was a complete byte. These bits should be ignored if EOP is 0. Reset Default 00000 0 0 0 0 0 0 0 0 0 0 * See Table 432 for mapping of H andP. Table 446. FRM_HGR14, Receive HDLC Channel Register 14 (COR) Address* Bit 0x8HP06 15:10 9:0 Name Function Reserved. Must write to 0. -- FRM_HRCOUNT[9:0] Receive FIFO Byte Count. These bits indicate the number of valid bytes contained in the Rx FIFO for the specific channel. Reset Default 0x00 0x000 * See Table 432 for mapping of H andP . 310 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) 12.20 28-Channel Framer Block Register Map Table 447. Framer Register Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Superframer Global Registers--R/W 0x80000 FRM_SFGR1 FRM_ SW_TRN 0x80001 FRM_SFGR2 0x80002 FRM_SFGR3 (RO) 0x80003 FRM_SFGR4 0x80004 -- 0x80009 -- 0x80010 FRM_FGR1 0x80011 FRM_FGR2 FRM_TC_ EN 0x80012 FRM_FGR3 FRM_ TPSSE_IM 0x80014 FRM_FGR4 (COR) 0x80015 FRM_FGR5 (COR) 0 FRM_LC_CNTRL[1:0] FRM_AR_IS FRM_LOOP_ TIMING FRM_DS1_ CEPTN FRM_PLL_ BYPAS FRM_ LG_BUF_M ODE FRM_TP_ SIG_PWDN FRM_RP_ SIG_PWDN FRM_TP_ RDL_PWDN FRM_RP_ FRM_TP_R FRM_RP_T TDL_PWDN H_PWDN H_PWDN FRM_TS_ PWDN FRM_RS_ PWDN FRM_TP_P FRM_RP_F FRM_TP_ M_PWDN F_PWDN RA_PWDN FRM_TP_ RDL_IS FRM_TP_ TDL_IS FRM_RH_IS FRM_TH_IS FRM_TP_ PM_IS FRM_RP_ PM_IS FRM_RP_R FRM_RP_T DL_IS DL_IS FRM_TS_ IS FRM_RS_ IS 0 0 0 0 FRM_VERSION[2:0] Arbiter (Framer) Global Registers--R/W FRM_TO[7:0] Agere Systems Inc. FRM_TC[7:0] FRM_TPSSEI[16:1] FRM_TPSSEI[28:17] 311 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FRM_ DETECT FRM_ PTRNBER FRM_ DS1AISM FRM_ ESFRAIM FRM_ RAICLR Performance Monitor Global Registers--R/W 0x80P20 FRM_PMGR1_ B FRM_ SEC_SEL FRM_CT125[11:0] 0x80P30 FRM_PMGR1 (COR) 0x80P31 FRM_PMGR2 0x80P32 FRM_PMGR3 0x80P33 FRM_PMGR4 0x80P34 FRM_PMGR5 FRM_DCT[15:0] 0x80P35 FRM_PMGR6 FRM_ESFSEST[15:0] 0x80P36 FRM_PMGR7 0x80P37 FRM_PMGR8 FRM_CCT[15:0] 0x80P38 FRM_PMGR9 FRM_CSEST[15:0] 0x80P39 FRM_PMGR10 FRM_TPERR_CT[15:0] FRM_RAC[2:0] FRM_RDC[2:0] FRM_ CMFRFEN FRM_ CRCRFEN FRM_ DSEF FRM_ CSA6_F FRM_ CSA6_E FRM_ CSA6_C FRM_ CRAI_AIS FRM_ CRAI_OOF FRM_ CRAI_LOS FRM_ CSA6_8 FRM_ CSA6_1X FRM_ CSA6_X1 FRM_ CEBIT FRM_ CLMFA FRM_DLFA FRM_DRFA FRM_CLFA FRM_CRFA FRM_ DSLIP FRM_ DLOS FRM_DAIS FRM_ DCRC FRM_DFS FRM_DFT FRM_ CSLIP FRM_ CLOS FRM_CAIS FRM_ CCRC FRM_ CNOTFAS FRM_ CFAS FRM_DSR AI_LOS FRM_DSR AI_OOF FRM_DSR AI_AIS FRM_ CEBIT_ LTS0MFA FRM_ CEBIT_ ESMF FRM_ CEBIT_ CRCTX FRM_CRET[15:0] FRM_CRAI_S FRM_CRAI_ FRM_CRAI_C FRM_CRAI FRM_CRAI FRM_CRAI_ A6EQC SA6EQ8 RCTX _LTS0MFA _LTS16MFA 8MSEX 0x80P3C FRM_PMGR13 0x80P3D FRM_PMGR14 0x80P3E FRM_PMGR15 0x80P3F FRM_PMGR16 312 FRM_CEPTAISM[1:0] FRM_SFSEST[15:0] 0x80P3A FRM_PMGR11 0x80P3B FRM_PMGR12 FRM_ FSFBEEN FRM_CFBE _MODE FRM_PTRN_ FRM_PTRN_ FRM_PTRN EN INV _FRMT FRM_PTRN_LNK[4:0] FRM_PTRN_SEL[3:0] FRM_LN_IS[16:1] FRM_LN_IS[28:17] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 HDLC Global Configuration and Status Registers--R/W Transmit HDLC Global Registers 0x80140 FRM_HGR1 FRM_HTTHRSH0[9:0] 0x80141 FRM_HGR2 FRM_HTTHRSH1[9:0] 0x80142 FRM_HGR3 FRM_TXICHAR0[7:0] 0x80143 FRM_HGR4 FRM_TXICHAR1[7:0] 0x80144 FRM_HGR5 FRM_TXICHAR2[7:0] 0x80145 FRM_HGR6 FRM_TXICHAR3[7:0] 0x80146 FRM_HGR7 FRM_FCNT0[4:0] 0x80147 FRM_HGR8 FRM_FCNT1[4:0] 0x80148 FRM_HGR9 FRM_FCNT2[4:0] 0x80149 FRM_HGR10 0x8014A FRM_HGR11 FRM_TH_IS[15:0] FRM_FCNT3[4:0] 0x8014B FRM_HGR12 FRM_TH_IS[31:16] 0x8014C FRM_HGR13 FRM_TH_IS[47:32] 0x8014D FRM_HGR14 FRM_TH_IS[63:48] Receive HDLC Global Registers 0x80040 FRM_HGR15 0x80041 FRM_HGR16 0x80042 FRM_HGR17 FRM_RH_IS[15:0] 0x80043 FRM_HGR18 FRM_RH_IS[31:16] 0x80044 FRM_HGR19 FRM_RH_IS[47:32] 0x80045 FRM_HGR20 FRM_RH_IS[63:48] Agere Systems Inc. FRM_HRTHRSH0[9:0] FRM_HRTHRSH1[9:0] 313 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 FRM_ AISLFA FRM_ AISCRCT FRM_ DNOTFAS FRM_ TFSCKE FRM_ FSPOL Bit 2 Bit 1 Bit 0 System Interface Global Registers--R/W Receive System Interface Global Registers 0x80050 FRM_SYSGR1 FRM_SYSMOD[3:0] FRM_ASM FRM_CMS FRM_ CHIDTS FRM_ STUFFL or FRM_ LNKSTART 0x80051 FRM_SYSGR2 FRM_HWYE FRM_RSTDO NA NE (read only) 0x80052 FRM_SYSGR3 0x80053 FRM_SYSGR4 FRM_ STSSLB FRM_ STSLLB 0x80054 FRM_SYSGR5 FRM_TS_ DPAR FRM_TS_ SPAR 0x80055 FRM_SYSGR6 0x80056 FRM_SYSGR7 FRM_TPSB _FS_IS (COR) 0x80057 FRMSYSGR8 FRM_PSB_ FS_IM 0x80150 FRM_SYSGR9 0x80151 FRM_SYSGR1 0 0x80152 FRM_SYSGR1 1 0x80153 FRM_SYSGR1 2 0x80154 FRM_SYSGR1 3 0x80155 FRM_SYSGR1 4 0x80156 0x80157 FRM_STUFF[7:0] FRM_IDLE[7:0] FRM_TSLBA[4:0] FRM_TLSBL[4:0] Transmit System Interface Global Registers 314 FRM_RS_ DPAR FRM_RS_ SPAR FRM_ RFSCKE FRM_SYSGR1 5 FRM_ DPAR_IS FRM_ SPAR_IS FRM_PSB_ FS_IS FRM_SYSGR1 6 FRM_ DPAR_IM FRM_ SPAR_IM FRM_PSM _FS_IM Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Signaling Global Registers--R/W 0x80060 FRM_SGR1 FRM_R_ TSAISHG FRM_R_LINKCNT[4:0] FRM_TEST_BIT[2:0] FRM_R_ AFZFBE 0x80061 FRM_SGR2 FRM_R_ SCOSEN 0x80062 FRM_SGR3 0x80063 FRM_SGR4 (RO) 0x80064 FRM_SGR5 (RO) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? FRM_R_ COSDTHS 0x80065 FRM_SGR6 (COR) 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_R_ COSDTHI FRM_R_ COSTTHI FRM_R_ COSOFI 0x80066 FRM_SGR7 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_R_C FRM_R_ OSDTHM COSTTHM FRM_R_ COSOFM 0x80160 FRM_SGR8 0x80170 FRM_FFGR1 0x80090 FRM_FDLGR1 0x801A1 FRM_FDLGR2 FRM_R_SCOSDTH[9:0] FRM_R_SCOSTTH[15:0] FRM_R_COSFIFO[1:0] FRM_R_COSFIFOL[4:0] FRM_R_COSFIFOTS[4:0] FRM_T_LINKCNT[4:0] FRM_R_COSFIFOSIG[3:0] FRM_T_ FRM_T_FA SUBZERO S_NOTFAS FRM_T_ AFZFBE Frame Formatter Global Register--R/W FRM_ TXSOOF FRM_ PTRN_EN FRM_ PTRN_INV FRM_PTRN _FRMT FRM_PTRN_LNK[4:0] FRM_PTRN_SEL[3:0] Facility Data Link Global Registers--R/W Agere Systems Inc. 315 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive Signaling Link Registers--R/W See Table 370 for Values of L and R in the Register Address Field 0x8LR00 FRM_RSLR0 FRM_RPSR0[6:0] 0x8LR01 FRM_RSLR1 FRM_RPSR1[6:0] 0x8LR02 FRM_RSLR2 FRM_RPSR2[6:0] 0x8LR03 FRM_RSLR3 FRM_RPSR3[6:0] 0x8LR04 FRM_RSLR4 FRM_RPSR4[6:0] 0x8LR05 FRM_RSLR5 FRM_RPSR5[6:0] 0x8LR06 FRM_RSLR6 FRM_RPSR6[6:0] 0x8LR07 FRM_RSLR7 FRM_RPSR7[6:0] 0x8LR08 FRM_RSLR8 FRM_RPSR8[6:0] 0x8LR09 FRM_RSLR9 FRM_RPSR9[6:0] 0x8LR0A FRM_RSLR10 FRM_RPSR10[6:0] 0x8LR0B FRM_RSLR11 FRM_RPSR11[6:0] 0x8LR0C FRM_RSLR12 FRM_RPSR12[6:0] 0x8LR0D FRM_RSLR13 FRM_RPSR13[6:0] 0x8LR0E FRM_RSLR14 FRM_RPSR14[6:0] 0x8LR0F FRM_RSLR15 FRM_RPSR15[6:0] 0x8LR10 FRM_RSLR16 FRM_RPSR16[6:0] 0x8LR11 FRM_RSLR17 FRM_RPSR17[6:0] 0x8LR12 FRM_RSLR18 FRM_RPSR18[6:0] 0x8LR13 FRM_RSLR19 FRM_RPSR19[6:0] 0x8LR14 FRM_RSLR20 FRM_RPSR20[6:0] 0x8LR15 FRM_RSLR21 FRM_RPSR21[6:0] 0x8LR16 FRM_RSLR22 FRM_RPSR22[6:0] 0x8LR17 FRM_RSLR23 FRM_RPSR23[6:0] 0x8LR18 FRM_RSLR24 FRM_RPSR24[6:0] 0x8LR19 FRM_RSLR25 FRM_RPSR25[6:0] 0x8LR1A FRM_RSLR26 FRM_RPSR26[6:0] 0x8LR1B FRM_RSLR27 FRM_RPSR27[6:0] 0x8LR1C FRM_RSLR28 FRM_RPSR28[6:0] 0x8LR1D FRM_RSLR29 FRM_RPSR29[6:0] 0x8LR1E FRM_RSLR30 FRM_RPSR30[6:0] 0x8LR1F FRM_RSLR31 0x8LR21 FRM_RSLR32 0x8LR20 FRM_RSLR33 316 FRM_RPSR31[6:0] FRM_R_ FZCON FRM_R_ SIGI FRM_R_HGAIS[3:0] FRM_R_HGA[3:0] FRM_R_ RXSTOMP FRM_R_ SIGDEB FRM_R_HGRDI[3:0] FRM_R_ HGEN FRM_R_ MSIGFZ FRM_R_ FGSRC FRM_R_ TS16A FRM_R_ TS16AIS FRM_R_SIGSRC[1:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit Signaling Link Registers--R/W See Table 375 for Values of L and T in the Register Address Field 0x8LT00 FRM_TSLR0 FRM_TPSR0[6:0] 0x8LT01 FRM_TSLR1 FRM_TPSR1[6:0] 0x8LT02 FRM_TSLR2 FRM_TPSR2[6:0] 0x8LT03 FRM_TSLR3 FRM_TPSR3[6:0] 0x8LT04 FRM_TSLR4 FRM_TPSR4[6:0] 0x8LT05 FRM_TSLR5 FRM_TPSR5[6:0] 0x8LT06 FRM_TSLR6 FRM_TPSR6[6:0] 0x8LT07 FRM_TSLR7 FRM_TPSR7[6:0] 0x8LT08 FRM_TSLR8 FRM_TPSR8[6:0] 0x8LT09 FRM_TSLR9 FRM_TPSR9[6:0] 0x8LT0A FRM_TSLR10 FRM_TPSR10[6:0] 0x8LT0B FRM_TSLR11 FRM_TPSR11[6:0] 0x8LT0C FRM_TSLR12 FRM_TPSR12[6:0] 0x8LT0D FRM_TSLR13 FRM_TPSR13[6:0] 0x8LT0E FRM_TSLR14 FRM_TPSR14[6:0] 0x8LT0F FRM_TSLR15 FRM_TPSR15[6:0] 0x8LT10 FRM_TSLR16 FRM_TPSR16[6:0] 0x8LT11 FRM_TSLR17 FRM_TPSR17[6:0] 0x8LT12 FRM_TSLR18 FRM_TPSR18[6:0] 0x8LT13 FRM_TSLR19 FRM_TPSR19[6:0] 0x8LT14 FRM_TSLR20 FRM_TPSR20[6:0] 0x8LT15 FRM_TSLR21 FRM_TPSR21[6:0] 0x8LT16 FRM_TSLR22 FRM_TPSR22[6:0] 0x8LT17 FRM_TSLR23 FRM_TPSR23[6:0] 0x8LT18 FRM_TSLR24 FRM_TPSR24[6:0] 0x8LT19 FRM_TSLR25 FRM_TPSR25[6:0] 0x8LT1A FRM_TSLR26 FRM_TPSR26[6:0] 0x8LT1B FRM_TSLR27 FRM_TPSR27[6:0] 0x8LT1C FRM_TSLR28 FRM_TPSR28[6:0] 0x8LT1D FRM_TSLR29 FRM_TPSR29[6:0] 0x8LT1E FRM_TSLR30 FRM_TPSR30[6:0] 0x8LT1F FRM_TSLR31 0x8LT21 FRM_TSLR32 0x8LT20 FRM_TSLR33 Agere Systems Inc. FRM_TPSR31[6:0] FRM_T_ ATS16RFA FRM_T_ ASPLB FRM_T_MSP FRM_T_ ZCSM FRM_T_ VTSIGE FRM_T_ SIGI FRM_T_ TXSTOMP FRM_T_ HGEN FRM_T_ MSIGFZ FRM_T_ FGSRC FRM_T_ TS16A FRM_T_ TS16AIS FRM_T_SIGSRC[1:0] 317 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 FRM_ MSEFS FRM_MFE Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FRM_BES FRM_ES FRM_LOS FRM_ BOMR Performance Monitor Link Registers--COR See Table 381 for Values of L and P in the Register Address Field 0x8LP80 FRM_PMLR1 (R/W) FRM_PM_IM4[15:0] 0x8LP81 FRM_PMLR2 (R/W) FRM_PM_IM5[15:0] 0x8LP82 FRM_PMLR3 (R/W) 0x8LP83 FRM_PMLR4 0x8LP84 FRM_PMLR5 0x8LP85 FRM_PMLR6 0x8LP86 FRM_PMLR7 FRM_BPV[15:0] 0x8LP87 FRM_PMLR8 FRM_FBEC[15:0] 0x8LP88 FRM_PMLR9 FRM_CEC[15:0] 0x8LP89 FRM_PMLR10 FRM_REC[15:0] 0x8LP8A FRM_PMLR11 FRM_CETE[15:0] 0x8LP8B FRM_PMLR12 0x8LP8C FRM_PMLR13 FRM_MHGALIGN[3:0] FRM_SLIPO FRM_SLIPU FRM_OOF FRM_LSFA FRM_OAIS FRM_AIS FRM_LFV FRM_FBE FRM_CRCE FRM_ECRCE FRM_PM_IM6[4:0] FRM_ORAI FRM_RAI FRM_ SA600X1E FRM_ SA6001XE FRM_ CRCTX FRM_ LTS0MFA FRM_ REBIT FRM_ CREBIT FRM_LTFA FRM_NFA FRM_ SA7LID FRM_ LLBON FRM_ FDL_RAI FRM_ FRM_SES TS0MFABE FRM_ LLBOFF FRM_AUX P FRM_FDL_ FRM_FDL_ FRM_FDL_ FRM_FDL_ PLBON PLBOFF LLBON LLBOFF FRM_CENT[15:0] FRM_FE_OP FRM_FE_N FRM_FE_M FRM_FE_L FRM_FE_K FRM_FE_I FRM_FE_H FRM_FE_G FRM_FE_F FRM_FE_E FRM_FE_D FRM_FE_C FRM_FE_B FRM_FE_A 0x8LP8D FRM_PMLR14 FRM_FE_Y FRM_FE_X FRM_FE_W FRM_FE_V FRM_FE_U FRM_FE_T FRM_FE_S FRM_FE_R FRM_FE_Q 0x8LP8E FRM_PMLR15 FRM_ESC[15:0] 0x8LP8F FRM_PMLR16 FRM_BESC[15:0] 0x8LP90 FRM_PMLR17 FRM_SESC[15:0] 0x8LP91 FRM_PMLR18 0x8LP92 FRM_PMLR19 0x8LP93 FRM_PMLR20 318 FRM_RBOM[7:0] FRM_HGALIGN[3:0] FRM_G6 FRM_G5 FRM_G4 FRM_G3 FRM_G2 FRM_G1 FRM_SE FRM_FE FRM_LV FRM_SL FRM_LB FRM_SEFS FRM_N1 FRM_N0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Receive FDL Link Registers--R/W See Table 403 for Values of L and R in the Register Address Field 0x8LRC0 FM_RFDLLR1 FRM_RXS0[15:0] 0x8LRC1 FM_RFDLLR2 FRM_RXS1[15:0] 0x8LRC2 FM_RFDLLR3 FRM_RXS2[15:0] 0x8LRC3 FM_RFDLLR4 FRM_RXS3[15:0] 0x8LRC4 FM_RFDLLR5 FRM_RXS4[15:0] 0x8LRC5 FM_RFDLLR6 0x8LRC6 FM_RFDLLR7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_ RXSA 0x8LRC7 FM_RFDLLR8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_ RXSR_IS 0x8LRC8 FM_RFDLLR9 FRM_RXC RCSM FRM_ RXSR_IM Transmit FDL Link Registers--R/W See Table 410 for Values of L and T in the Register Address Field 0x8LTD0 FM_TFDLLR1 FRM_TXS0[15:0] 0x8LTD1 FM_TFDLLR2 FRM_TXS1[15:0] 0x8LTD2 FM_TFDLLR3 FRM_TXS2[15:0] 0x8LTD3 FM_TFDLLR4 FRM_TXS3[15:0] 0x8LTD4 FM_TFDLLR5 0x8LTD5 FM_TFDLLR6 FRM_TXS4[15:0] FRM_ ABITSRC FRM_ MBITSRC FRM_ SBITSRC FRM_ CBITSRC FRM_ SA8SC FRM_ SA7SC FRM_ SA6SC FRM_BOME FRM_ SA5SC FRM_ SA4SC FRM_ TXCRCSM FRM_ ASRC FRM_DS1I 0x8LTD6 FM_TFDLLR7 0x8LTD7 FM_TFDLLR8 (RO/COW) FRM_TBOM[5:0] FRM_ BOMC_IS FRM_ TXSE_IS 0x8LTD8 FM_TFDLLR9 FRM_ BOMC_IM FRM_ TXSE_IM FRM_ HALFOFF FRM_ QUAROFF System Interface Link Registers--R/W See Table 417 for Values of L and P in the Register Address Field FRM_BYOFF[6:0] 0x8LPE0 FRM_SYSLR1 0x8LPE1 FRM_SYSLR2 FRM_CEPT FRM_CEPTA FRM_MANAI FRM_CEPTS MAIS AIS S TMP 0x8LPE2 FRM_SYSLR3 0x8LPE3 FRM_SYSLR4 0x8LPE4 FRM_SYSLR5 0x8LPE5 FRM_SYSLR6 Agere Systems Inc. FRM_OFF[2:0] 319 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 12 28-Channel Framer Registers (continued) Table 447. Framer Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Arbiter Link Registers--R/W See Table 417 for Values of L and T in the Register Address Field 0x8LPF0 FRM_ARLR1 FRM_ LNK_ENA FRM_LNK_ TRANSP 0x8LPF1 FRM_ARLR2 FRM_ESF_ CRC_EN FRM_FAST 0x8LPF2 FRM_ARLR3 FRM_TP_C K_SRC_EN FRM_TP_ CK_SRC FRM_LNK_ RESTARTN FRM_LNK_ REFRAME FRM_OPT[1:0] FRM_ ICKEDGE FRM_FBE_ MODE FRM_LF_CRT[2:0] FRM_AUTO _AIS FRM_RAIL3_DEC[1:0] FRM_MODE[3:0] FRM_TP_ DD_SRC Frame Formatter Link Registers--R/W See Table 417 for Values of L and T in the Register Address Field 0x8LPF4 FRM_FFLR1 0x8LPF5 FRM_FFLR2 FRM_ ESFRAMD FRM_ZCSMD[2:0] FRM_TXLBMD[1:0] FRM_ TXLLBOFF FRM_ OCKEDGE FRM_ TXLLBON FRM_TXIID FRM_ TXAUXP FRM_ AUTOPLB FRM_ AUTOLLB FRM_ AUTOEBIT FRM_ AUTORAI FRM_ TXRAICI FRM_ TXRAI FRM_ TXAISCI FRM_ TXAIS Line Decoder/Encoder Link Registers--R/W See Table 427 and Tabl e429 for Values of L and T in the Register Address Field 0x8TPFC FRM_LDLR1 FRM_ FRM_RLCL EXCZERO K_EDGE FRM_LD_MODE[2:0] 0x8LPFD FRM_LDLR2 FRM_TLCL K_EDGE FRM_LE_MODE[2:0] HDLC Channel Registers--R/W See Table 432 for Mapping of H and P in the Register Address Field Transmit HDLC Channel Registers 0x8HP80 FRM_HCR1 FRM_TTIMESLOT[4:0] 0x8HP81 FRM_HCR2 0x8HP82 FRM_HCR3 FRM_THC_ RESET FRM_ TENABL 0x8HP83 FRM_HCR4 (RO) 0 0 0x8HP84 FRM_HCR5 0x8HP85 FRM_HCR6 (WO) 0x8HP86 FRM_HCR7 FRM_TBIT_IM[7:0] FRM_TFRAME_SEL[1:0] FRM_TLINK[4:0] FRM_CFLAGS[1:0] 0 0 0 0 0 FRM_ PRMEN FRM_ TLOOP FRM_C_R 0 0 0 FRM_ FRM_IFCS HTTHRSEL 0 0 FRM_ HTIDLE FRM_ HTMODE 0 FRM_ HTUND FRM_ MHTUND FRM_HTFUNC[1:0] FRM_HXPIDLE[1:0] FRM_ HTDONE FRM_ HTTHRSH FRM_ FRM_MHT MHTDONE THRSH FRM_HTDATA[7:0] FRM_HTCOUNT[9:0] Receive HDLC Channel Registers 0x8HP00 FRM_HCR8 0x8HP01 FRM_HCR9 0x8HP02 FRM_HCR10 FRM_RHC_ RESET 0x8HP03 FRM_HCR11 (RO) 0 0x8HP04 FRM_HCR12 0x8HP05 FRM_HCR13 (RO) 0x8HP06 320 FRM_HCR14 (COR) FRM_RTIMESLOT[4:0] FRM_RBIT_IM[7:0] FRM_RFRAME_SEL[1:0] FRM_RLINK[4:0] FRM_ RENABL 0 0 0 FRM_ RTHRSEL FRM_RFCS FRM_ HRMODE FRM_ BYTAL 0 0 0 0 FRM_MATCH[7:0] 0 0 0 0 FRM_ RIDLE FRM_ MIDLE 0 0 0 0 0 FRM_HMDA FRM_ HRVALID FRM_ HRTYPE FRM_OVR FRM_EOP FRM_ MOVR FRM_ MEOP FRM_ HRTHRSH FRM_MHR THRSH FRM_HR_DATA[7:0] FRM_HOVR FRM_HEOP FRM_ HCRCERR FRM_ HABRT FRM_HIDL FRM_HBIT[2:0] FRM_HRCOUNT[9:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 13 Cross Connect (XC) Registers Table of Contents Contents Page 13 Cross Connect (XC) Registers ....................................................................................................................... 321 13.1 Cross Connect Register Descriptions ..................................................................................................... 322 13.2 Cross Connect Register Map ................................................................................................................. 328 Tables Page Table 448. XC_ID_R, XC Global Register 1 (RO) ............................................................................................... 322 Table 449. XC_CHI_MODE1_R, XC System Interface Global Register 1 (R/W) ................................................ 322 Table 450. XC_CHI_MODE2_R, XC System Interface Global Register 2 (R/W) ................................................ 322 Table 451. XC_PIND_SRC[1--15], XC1 External I/O TXDATA and TXCLK Source Configuration (R/W) ......... 323 Table 452. XC_FRP_SRC[1--14], XC1 Framer Receive Path Data Source Configuration (R/W) ..................... 323 Table 453. XC_M13_SRC[1--14], XC1 M13 Data Source Configuration (R/W) ................................................. 323 Table 454. XC_VT_SRC[1--14], XC1 VT Mapper Source Configuration (R/W) ................................................. 324 Table 455. XC_DJA_SRC[1--14], XC1 Digital Jitter Attenuator Source Configuration (R/W) ............................ 324 Table 456. XC_FTP_SRC[1--14], XC1 Framer Transmit Path Data Source Configuration (R/W) ..................... 324 Table 457. XC_FRS_SRC[1--14], XC1 Framer Receive System Interface Source Configuration (R/W) .......... 324 Table 458. XC_TPM_SRC[1--4], XC1 Test-Pattern Monitor Source Configuration (R/W) ................................. 325 Table 459. XC2_M12_SRC[1--7], XC2 M12 DS2 Clock and Data Source Configuration (R/W) ........................ 325 Table 460. XC2_M23_SRC[1--7], XC2 M23 DS2 Data Source Configuration (R/W) ......................................... 325 Table 461. XC2_TPM_SRC, XC2 Test-Pattern Monitor Source Configuration (R/W) ........................................ 326 Table 462. XC_MISC, XC Global Register 2 (R/W) ............................................................................................ 326 Table 463. XC3_TPM_SRC, XC3 Test-Pattern Monitor Source Configuration (R/W) ........................................ 326 Table 464. XC3_MDS3_SRC, XC3 DS3 Source Configuration (R/W) ................................................................ 327 Table 465. XC_PINS_SRC[1--15], XC1 External I/O TXSYNC Source Configuration (R/W) ............................ 327 Table 466. XC_ALCO_SRC[1--15], XC1 External I/O RXCLK Clock Out Source Configuration (R/W) ............. 327 Table 467. Register Address Map ....................................................................................................................... 328 Agere Systems Inc. 321 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 13 Cross Connect (XC) Registers (continued) 13.1 Cross Connect Register Descriptions Table 448. XC_ID_R, XC Global Register 1 (RO) Address Bit Name Function 0x50000 15:11 10:8 7:0 -- XC_VERSION[2:0] XC_ID[7:0] Reserved. Version. These bits identify the version number of the XC. XC_ID. XC_ID register returns a fixed value (0x05) when read. Reset Default 0x0005 Table 449. XC_CHI_MODE1_R, XC System Interface Global Register 1 (R/W) Address Bit 0x5000E 15:3 2 1 0 Name Function -- Reserved. -- Reserved. Must write to 0. XC_SYNC_FOR_DATA Sync For Data. This bit should set to 1 if the transmit system interface is in use (CHI, PSB, and NSMI). Setting this bit allows the external I/O pins LINETXSYNC[29--1] to output transmit system data. Otherwise, set to 0. XC_SI_CHI PSB/CHI. This bit should be set to 1 if the transmit system interface is in PSB mode; otherwise, 0 in CHI mode. Reset Default 0x0000 Table 450. XC_CHI_MODE2_R, XC System Interface Global Register 2 (R/W) Address Bit Name Function 0x5000F 15:14 13:0 -- XC_CHI_MODE [1--7][1:0] Reserved. CHI Mode. The 28 transmit system links are broken down into seven groups of four. Each group is controlled by two bits XC_CHI_MODE[1--7][1:0]. XC_CHI_MODE[1--7][1:0] controls the group of links 4i - 3, 4i - 2, 4i - 1, and 4i, where i = 1 to 7. The definition of CHI_MODE[1--7][1:0] is as follows: Reset Default 0x0000 00 = All four links within the group are normal outputs at 2 Mbits/s or 4 Mbits/s. 01 = Links 4i - 3 and 4i - 2 are normal outputs; links 4i - 1 and 4i are combined into a single output on 4i; and output 4i - 1 is used as T1/E1 line output. 10 = Links 4i - 1 and 4i are combined into a single output on 4i; links 4i - 3 and 4i - 2 are combined into a single output on 4i - 2; and outputs 4i - 1 and 4i - 3 are used as T1/E1 line outputs. 11 = All four links are combined into a single output on 4i; and the other three outputs are used as T1/E1 line outputs. DS1/E1 crosspoint connectivity is determined by a set of source identifiers (SOURCE_IDs), one for each channel leaving the crosspoint switch. A DS1/E1 SOURCE_ID is therefore defined as follows: Bit SOURCE_ID 322 7 6 SOURCE_BLOCK[2:0] 5 4 3 2 1 0 CHANNEL_ID[4:0] Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 13 Cross Connect (XC) Registers (continued) The SOURCE_BLOCK is defined as: Index 000 001 010 011 Block Identifier TPG (Test-Pattern Generator)/Special PIN (External I/O) FRM TP (Superframer) M13 (M13 MUX) Index 100 101 110 111 Block Identifier VTMPR (VT Mapper) DJA (Jitter Attenuator) FRM RP (Framer Line Interface) FRM TS (Framer System Interface) The CHANNEL_ID typically ranges from 1 to 28 (29 for external). Values 0, 30, and 31 (and usually 29 as well) are unused. The above definition is valid for XC_PDATA[1--29], XC_RP_RDATA[1--28], XC_MDS1DATA[1--29] (Table 453), XC_VDATA[1--28] (Table 454), XC_SYNC[1--29] (Table 465), and XC_ALCO[1--29] (Table 466). Table 451. XC_PIND_SRC[1--15], XC1 External I/O TXDATA and TXCLK Source Configuration (R/W) Address Bit Name 0x50010 -- 0x5001D 15:8 XC_PDATA [2, 4, . . . 28][7:0] 0x5001E 0x50010 -- 0x5001E 15:8 7:0 (SOURCE_ID) -- XC_PDATA [1, 3, . . . 29][7:0] (SOURCE_ID) Function Source Identifier for External I/O Pin LINETXDATA and LINETXCLK Connection. External I/O DS1/E1 data and clock (even channels). Reserved. Source Identifier for External I/O Pin LINETXDATA and LINETXCLK Connection. External I/O DS1/E1 data and clock (odd channels). Reset Default 0x1E (invalid) 0x00 0x1E (invalid) Note: External I/O has 29 channels. Table 452. XC_FRP_SRC[1--14], XC1 Framer Receive Path Data Source Configuration (R/W) Address Bit Name Function 0x50020 -- 0x5002D 15:8 XC_RP_RDATA [2, 4, . . . 28][7:0] Source Identifier for Framer Receive Path Connection. Framer receive path DS1/E1 input signals RP_RDATA, RP_RCLK, RP_RFS, RP_AIS, and RP_RAI (even channels). 0x50020 -- 0x5002D 7:0 (SOURCE_ID) XC_RP_RDATA [1, 3, . . . 27][7:0] (SOURCE_ID) Source Identifier for Framer Receive Path Connection. Framer receive path DS1/E1 input signals RP_RDATA, RP_RCLK, RP_RFS, RP_AIS, and RP_RAI (odd channels). Reset Default 0xFF (invalid) 0xFF (invalid) Table 453. XC_M13_SRC[1--14], XC1 M13 Data Source Configuration (R/W) Address Bit Name 0x50030 -- 0x5003D 15:8 XC_MDS1DATA [2, 4, . . . 28][7:0] 0x50030 -- 0x5003D 7:0 Agere Systems Inc. (SOURCE_ID) XC_MDS1DATA [1, 3, . . . 27][7:0] (SOURCE_ID) Function Source Identifier for M13 MUX Connection. M13 DS1/E1 data and clock inputs (even channels). Also for stuff request inputs if operating in LOW_CLOCK_OUT mode. Source Identifier for M13 MUX Connection. M13 DS1/E1 data and clock inputs (odd channels). Also for stuff request inputs if operating in LOW_CLOCK_OUT mode. Reset Default 0xFF (invalid) 0xFF (invalid) 323 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 13 Cross Connect (XC) Registers (continued) Table 454. XC_VT_SRC[1--14], XC1 VT Mapper Source Configuration (R/W) Address Bit Name Function 0x50040 -- 0x5004D 15:8 XC_VDATA [2, 4, . . . 28][7:0] Source Identifier for VT Mapper Connection. VT mapper DS1/E1 data, clock, sync, and RAI inputs (even channels). 0x50040 -- 0x5004D 7:0 (SOURCE_ID) XC_VDATA [1, 3, . . . 27][7:0] Source Identifier for VT Mapper Connection. VT mapper DS1/E1 data, clock, sync, and RAI inputs (odd channels). Reset Default 0xFF (invalid) 0xFF (invalid) (SOURCE_ID) Table 455. XC_DJA_SRC[1--14], XC1 Digital Jitter Attenuator Source Configuration (R/W) Address Bit Name 0x50050 -- 0x5005D 15:8 XC_JDATA [2, 4, . . . 28][7:0] 0x50050 -- 0x5005D 7:0 (SOURCE_ID) XC_JDATA [1, 3, . . . 27][7:0] (SOURCE_ID) Function Source Identifier for Jitter Attenuator Connection. DJA DS1/E1 data, clock, pointer adjustment, and autoAIS inputs (even channels). Source Identifier for Jitter Attenuator Connection. DJA DS1/E1 data, clock, pointer adjustment, and autoAIS inputs (odd channels). Reset Default 0xFF (invalid) 0xFF (invalid) Table 456. XC_FTP_SRC[1--14], XC1 Framer Transmit Path Data Source Configuration (R/W) Address Bit Name Function 0x50060 -- 0x5006D 15:8 XC_TP_RDATA [2, 4, . . . 28][7:0] Source Identifier for Framer Transmit Path Connection. Framer transmit path DS1/E1 input signals (even channels). Reset Default 0xFF (invalid) 0x50060 -- 0x5006D 7:0 (SOURCE_ID) XC_TP_RDATA [1, 3, . . . 27][7:0] Source Identifier for Framer Transmit Path Connection. Framer transmit path DS1/E1 input signals (odd channels). 0xFF (invalid) (SOURCE_ID) Table 457. XC_FRS_SRC[1--14], XC1 Framer Receive System Interface Source Configuration (R/W) Address Bit Name 0x50070 -- 0x5007D 15:8 XC_RS_D [2, 4, . . . 28][7:0] 0x50070 -- 0x5007D 7:0 324 (SOURCE_ID) XC_RS_D [1, 3, . . . 27][7:0] (SOURCE_ID) Function Source Identifier for Framer Receive System Interface Connection. Framer receive system (RS) data input (even channels). Source Identifier for Framer Receive System Interface Connection. Framer receive system (RS) data input (odd channels). Reset Default 0x00 (invalid) 0x00 (invalid) Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 13 Cross Connect (XC) Registers (continued) Table 458. XC_TPM_SRC[1--4], XC1 Test-Pattern Monitor Source Configuration (R/W) Address Bit 0x50080 15:8 -- Reserved. 7:0 XC_TPM_DS1_DATA[7:0] Source Identifier for TPM DS1 Data Pattern. Source identifier for test-pattern monitor (TPM) DS1 test channel (SOURCE_ID) inputs. 15:8 -- Reserved. 7:0 XC_TPM_DS1_IDLE[7:0] Source Identifier for TPM DS1 Idle Pattern. Source identifier for TPM DS1 idle channel inputs. (SOURCE_ID) 0x50081 Name 0x50082 15:8 7:0 -- XC_TPM_E1_DATA[7:0] 0x50083 15:0 (SOURCE_ID) -- Function Reset Default 0x00 0xFF (invalid) 0x00 0xFF (invalid) Reserved. Source Identifier for TPM E1 Data Pattern. Source identifier for TPM E1 test channel inputs. 0x00 0xFF (invalid) Reserved. 0x0000 The DS2 crosspoint's connectivity is determined by a smaller set of source2 identifiers (SOURCE2_IDs), one for each channel leaving the DS2 crosspoint switch XC2. A DS2 SOURCE2_ID is therefore defined as follows: Bit SOURCE2_ID 7 0 6 5 SOURCE2_BLOCK[1:0] 4 3 2 1 CHANNEL2_ID[4:0] 0 The SOURCE2_BLOCK is defined as follows: Index 00 01 10 11 Block2 Identifier TPG (DS2 Test-Pattern Generator) M13:M12 MUX M13:M23 DeMUX External I/O The CHANNEL2_ID typically ranges from 1 to 7. For test data (SOURCE2_BLOCK = 0), value 4 represents the DS2 test pattern. For DS2 signals routed from external pins to the input of M23 MUX or TPM, the CHANNEL2_ID can range from 1 to 29. Table 459. XC2_M12_SRC[1--7], XC2 M12 DS2 Clock and Data Source Configuration (R/W) Address Bit Name 0x50090 -- 0x50096 15:8 XC2_DS2M12CLK [1--7][7:0] 0x50090 -- 0x50096 7:0 (SOURCE_ID) XC2_M21[1--7][7:0] (SOURCE_ID) Function Source Identifier for High-speed DS2 Clock Input to M12 Multiplexers Connection. DS2 clock input to M12 multiplexers. Refer to M12 MUX section for more details. Reset Default 0x0040 (invalid) Source Identifier for High-speed DS2 Data and Clock Connection. DS2 data and clock inputs to M12 demultiplexers. Refer to M12 deMUX section for more details. Table 460. XC2_M23_SRC[1--7], XC2 M23 DS2 Data Source Configuration (R/W) Address Bit Name 0x500A0 -- 0x500A6 15:8 7:0 -- XC2_MDS2M23DATA [1--7][7:0] (SOURCE2_ID) Agere Systems Inc. Function Reserved. Source Identifier for M23 Input DS2 Signals Connection. When SOURCE2_BLOCK = 11, CHANNEL2_ID can range from 1 to 29. Reset Default 0x0040 (invalid) 325 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 13 Cross Connect (XC) Registers (continued) Table 461. XC2_TPM_SRC, XC2 Test-Pattern Monitor Source Configuration (R/W) Address Bit Name Function 0x500A8 15:8 -- Reserved. 7:0 XC2_TSOURCE_ID[7:0] XC2 TPM Source Connection. Source2 identifier for TPM DS2 test data. When external I/O is selected (SOURCE2_BLOCK = 11), CHANNEL2_ID can range from 1 to 29. Reset Default 0x0000 (invalid) Table 462. XC_MISC, XC Global Register 2 (R/W) Address Bit Name Function 0x500C0 15:6 5 -- XC_DS2ALCOEN 4 XC_DS1ALCOEN 3 XC_RPOAC_EN 2 XC_TPOAC_EN 1 XC_RSTS1_TUG3 0 XC_TSTS1_TUG3 Reserved. M23 DS2 Clock Out. Setting this bit to 1 enables DS2 low clock-out mode from M23. Setting this bit to 0 selects the normal DS2 clock and data input mode. M12/M13 DS1 Clock Out. Setting this bit to 1 enables DS1 low clock-out mode from M12/M13. Setting this bit to 0 selects the normal DS1 clock and data input mode. Receive POAC Enable. Setting this bit to 1 enables RPOAC channel output and 0 to disable. Transmit POAC Enable. Setting this bit to 1 enables TPOAC channel output and 0 to disable. Receive POAC Channel Select. Selector for TMUX (logic 1)/ SPEMPR (logic 0) receive POAC channel. Transmit POAC Channel Select. Selector for TMUX (logic 1)/ SPEMPR (logic 0) transmit POAC channel. Reset Default 0 0 0 0 0 0 0 Table 463. XC3_TPM_SRC, XC3 Test-Pattern Monitor Source Configuration (R/W) Address Bit Name Function 0x500D3 15:8 -- Reserved. 7 -- Reserved. Must write to 0. 6:5 XC3_TSOURCE_ID[1:0] TPG/TPM DS3 Source. Source identifier for TPM DS3 test data. 00 = TPM receives DS3 from external pins. 01 = TPG and TPM are connected to M13 through NSMI interface. 10 = TPM receives DS3 from SPE. 11 = Reserved. 4:0 -- Reserved. Must write to 0. 326 Reset Default 0x0000 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 13 Cross Connect (XC) Registers (continued) Table 464. XC3_MDS3_SRC, XC3 DS3 Source Configuration (R/W) Address Bit Name Function 0x500D4 15:2 -- Reserved. 1:0 XC3_SOURCE_ID[1:0] DS3 Level Connections. This register defines the connectivity at DS3 level among external I/O, M13, and SPE. 00 = M13 inputs/outputs DS3 through external pins. 01 = M13 and SPE pass data to each other. 10 = SPE inputs/outputs DS3 through external pins and M13 is used as a monitor for the transmit DS3. 11 = SPE inputs/outputs DS3 through external pins and M13 is used as a monitor for the receive DS3. Reset Default 0x0000 Table 465. XC_PINS_SRC[1--15], XC1 External I/O TXSYNC Source Configuration (R/W) Address Bit Name Function 0x500E0 15:8 -- 0x500ED XC_SYNC [2, 4, . . . 28][7:0] 0x500EE 15:8 0x500E0 7:0 -- 0x500EE -- XC_SYNC [1, 3, . . . 29][7:0] Source Identifier for External I/O Pin LINETXSYNC. (Even channels.) In the LIU mode, these registers must be programmed the same as XC_PIND_SRC[1--15] (Table 451) registers; in the system interface mode (CHI, PSB, and framer only), these registers will be programmed separately to ensure the system data output properly. Reserved. Source Identifier for External I/O Pin LINETXSYNC (Odd channels). Note: External I/O has 29 channels. (SOURCE_ID) (SOURCE_ID) Reset Default 0xFF (invalid) 0x00 0xFF (invalid) Table 466. XC_ALCO_SRC[1--15], XC1 External I/O RXCLK Clock Out Source Configuration (R/W) Address Bit Name 0x500F0 15:8 -- 0x500FD XC_ALCO [2, 4, . . . 28][7:0] 0x500FE 0x500F0 -- 0x500FE -- XC_ALCO [1, 3, . . . 29][7:0] 15:8 7:0 (SOURCE_ID) (SOURCE_ID) Function Source Identifier for External I/O Pin LINERXCLK when Operating in Low Clock Output Mode. (Either DS1/E1 or DS2.) For DS1/E1 channels, the programmed value of these registers should be consistent with those of registers XC_PIND_SRC[1--15] (Table 451) to ensure that clock and data for the same channel always will be routed together; while for DS2 channels, the value of these registers should match those of registers XC2_M23_SRC[1--7] (Table 460) (even channels). Reserved. Source Identifier for External I/O Pin LINERXCLK when Operating in Low Clock Output Mode. (Either DS1/E1 or DS2.) For DS1/E1 channels, the programmed value of these registers should be consistent with those of registers XC_PIND_SRC[1--15] (Table 451) to ensure that clock and data for the same channel will always be routed together; while for DS2 channels, the value of these registers should match those of registers XC2_M23_SRC[1--7] (odd channels). Reset Default 0xFF (invalid) 0x00 0xFF (invalid) Note: External I/O has 29 channels. Agere Systems Inc. 327 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 13 Cross Connect (XC) Registers (continued) 13.2 Cross Connect Register Map Table 467. Register Address Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Cross Connect Global--RO 0x50000 XC_ID_R 0x50001 -- 0x5000D -- XC_VERSION[2:0] XC_ID[7:0] Framer System Interface Control--R/W 0x5000E XC_CHI_MODE1_ R 0x5000F XC_CHI_MODE2_ R 0 XC_CHI_MODE7[1:0] XC_CHI_MODE6[1:0] XC_CHI_MODE5[1:0] XC_CHI_MODE4[1:0] XC_CHI_MODE3[1:0] XC_SYNC_ XC_SI_CHI FOR_DATA XC_CHI_MODE2[1:0] XC_CHI_MODE1[1:0] DS1/E1 Crosspoint Configuration--R/W External I/O (LINETXDATA[1--29] and LINETXCLK[1--29] Pins) Data and Clock Output Selects 0x50010 XC_PIND_SRC[1-- -- 14] 0x5001D XC_PDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_PDATA29[7:0] Source_ID 0x5001E XC_PIND_SRC15 0x5001F XC_PDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID -- DS1/E1 Crosspoint Configuration--R/W Framer Receive Path Selects 0x50020 XC_FRP_SRC[1-- -- 14] 0x5002D XC_RP_RDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_RP_RDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID 0x5002E 0x5002F DS1/E1 Crosspoint Configuration--R/W M13 MUX Selects 0x50030 XC_M13_SRC[1-- -- 14] 0x5003D XC_MDS1DATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_MDS1DATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID 0x5003E 0x5003F DS1/E1 Crosspoint Configuration--R/W VT Mapper Selects 0x50040 -- 0x5004D XC_VT_SRC[1-- 14] XC_VDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_VDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID 0x5004E 0x5004F 328 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 13 Cross Connect (XC) Registers (continued) Table 467. Register Address Map (continued) Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DS1/E1 Crosspoint Configuration--R/W Jitter Attenuation Selects 0x50050 XC_DJA_SRC[1-- -- 14] 0x5005D 0x5005E -- 0x5005F -- XC_JDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_JDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID DS1/E1 Crosspoint Configuration--R/W Framer Transmit Path Selects 0x50060 XC_FTP_SRC[1-- -- 14] 0x5006D 0x5006E -- 0x5006F XC_TP_RDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_TP_RDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID -- DS1/E1 Crosspoint Configuration--R/W Framer RS (System Interface) Selects 0x50070 XC_FRS_SRC[1-- -- 14] 0x5007D XC_RS_D[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_RS_D[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID 0x5007E -- 0x5007F -- 0x50080 XC_TPM_SRC1 XC_TPM_DS1_DATA[7:0] Source_ID 0x50081 XC_TPM_SRC2 XC_TPM_DS1_IDLE[7:0] Source_ID 0x50082 XC_TPM_SRC3 XC_TPM_E1_DATA[7:0] Source_ID 0x50083 XC_TPM_SRC4 0x50084 0x5008F -- Test-Pattern Monitor (TPM) Inputs DS2 Crosspoint Configuration--R/W M12 MUX/DeMUX Selects 0x50090 XC2_M12_SRC[1-- -- 7] 0x50096 0x50097 -- 0x5009F XC2_DS2M12CLK[1--7][7:0] Source_ID XC2_M21_[1--7][7:0] Source_ID -- Agere Systems Inc. 329 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 13 Cross Connect (XC) Registers (continued) Table 467. Register Address Map (continued) Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DS2 Crosspoint Configuration--R/W M23 MUX Selects 0x500A0 XC2_M23_SRC[1-- -- 7] 0x500A6 0x500A7 XC2_MDS2M23DATA[1--7][7:0] Source2_ID -- DS2 Crosspoint Configuration--R/W Test-Pattern Monitor (TPM) Inputs 0x500A8 XC2_TPM_SRC 0x500A9 -- 0x500BF -- 0x500C0 XC_MISC 0x500C1 -- 0x500D2 -- 0x500D3 XC3_TPM_SRC XC2_TSOURCE_ID[7:0] Data Source2_ID Miscellaneous XC_DS2 ALCOEN XC_DS1 ALCOEN XC_RPOAC XC_TPOAC XC_RSTS1_ XC_TSTS1_ _EN _EN TUG3 TUG3 DS3 Crosspoint Configuration--R/W 0 XC3_TSOURCE_ID[1:0] 0 0 0x500D4 XC3_MDS3_SRC 0x500D5 -- 0x500DF 0 0 0 XC3_SOURCE_ID[1:0] -- DS1/E1 Crosspoint Configuration--R/W External I/O (LINETXSYNC Pins) Sync Selects 0x500E0 XC_PINS_SRC[1-- -- 14] 0x500ED XC_SYNC[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] SOURCE ID XC_SYNC29[7:0] SOURCE_ID 0x500EE XC_PINS_SRC15 0x500EF XC_SYNC[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] SOURCE_ID -- DS1/E1 Crosspoint Configuration--R/W Low Clock Out Selects 0x500F0 XC_ALCO_SRC[1 -- --14] 0x500FD 0x500FE XC_ALCO_SRC15 0x500FF 330 XC_ALCO[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_ALCO[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID XC_ALCO29 Source_ID -- Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 14 Digital Jitter Attenuation Controller Registers Table of Contents Contents Page 14 Digital Jitter Attenuation Controller Registers ................................................................................................. 331 14.1 Digital Jitter Attenuation Controller Register Descriptions ....................................................................... 332 14.2 Digital Jitter Attenuation Controller Register Map ................................................................................... 335 Tables Page Table 468. DJA_VERSION, DJA Version and Identification (RO) .......................................................................332 Table 469. DJA_EVENT1--DJA_EVENT2, Loss of Clock and Overflow/Underflow Delta (COR/COW) .......................................................................................................................................332 Table 470. DJA_MASK1--DJA_MASK2, Loss of Clock and Overflow/Underflow Masks (R/W) .........................332 Table 471. DJA_STATE1--DJA_STATE2, Loss of Clock and VT Pointer Adjustment Indicators (R/W) ..................................................................................................................................................333 Table 472. DJA_E1GAINH--DJA_E1GAINL, E1 Accumulator Gain Threshold (R/W) ........................................333 Table 473. DJA_DS1GAINH--DJA_DS1GAINL, DS1 Accumulator Gain Threshold (R/W) ................................333 Table 474. DJA_E1SCALE, E1 Scale Factor (R/W) ............................................................................................333 Table 475. DJA_DS1SCALE, DS1 Scale Factor (R/W) .......................................................................................333 Table 476. DJA_E1PTRH--DJA_E1PTRL, E1 First-Order Loop Counter (R/W) ...............................................334 Table 477. DJA_DS1PTRH--DJA_DS1PTRL, DS1 First-Order Loop Counter (R/W) ........................................334 Table 478. DJA_DS1SELH--DJA_DS1SELL, DS1 E1 Mode Select (R/W) .......................................................334 Table 479. DJA_CLK_CTL1--DJA_CLK_CTL4, Reference Clock Rate and Edge Transitions (R/W) ...............334 Table 480. DJA Register Map ..............................................................................................................................335 Agere Systems Inc. 331 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 14 Digital Jitter Attenuation Controller Registers (continued) 14.1 Digital Jitter Attenuation Controller Register Descriptions This section gives a brief description of each register bit and its functionality. The abbreviations after each register indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W). Table 468. DJA_VERSION, DJA Version and Identification (RO) Address Bit Name 0x70000 15:11 10:8 -- DJA_VERSION[2:0] 7:0 DJA_ID[7:0] Function Reserved. Block Version Number. Block version register will change each time the device is changed. Block ID Number. Reset Default 00000 0x0 0x7 Table 469. DJA_EVENT1--DJA_EVENT2, Loss of Clock and Overflow/Underflow Delta (COR/COW) Address Bit Name 0x70003 15 14 13 12 11:0 15:0 DJA_G_DS1_DLT DJA_DS1_DLT DJA_G_E1_DLT DJA_E1_DLT DJA_ESOVFL[28:17] DJA_ESOVFL[16:1] 0x70003 0x70004 Function Reset Default 0 0 0 0 0x0 G_PIN_DS1XCLK Loss of Clock Delta. PIN_DS1XCLK Loss of Clock Delta. G_PIN_E1XCLK Loss of Clock Delta. PIN_E1XCLK Loss of Clock Delta. Elastic Store Overflow/Underflow Event. Table 470. DJA_MASK1--DJA_MASK2, Loss of Clock and Overflow/Underflow Masks (R/W) Address Bit Name Function 0x70006 15 DJA_G_DS1_MSK 14 DJA_DS1_MSK 13 DJA_G_E1_MSK 12 11:0 15:0 DJA_E1_MSK DJA_ESOVFL_MSK[28:17] DJA_ESOVFL_MSK[16:1] G_PIN_DS1XCLK Loss of Clock Indication Mask. PIN_DS1XCLK Loss of Clock Indication Mask. G_PIN_E1XCLK Loss of Clock Indication Mask. PIN_E1XCLK Loss of Clock Indication Mask. Elastic Store Over/Underflow Indication Mask. 0x70006 0x70007 332 Reset Default 1 1 1 1 0xFFFFFFF Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 14 Digital Jitter Attenuation Controller Registers (continued) Table 471. DJA_STATE1--DJA_STATE2, Loss of Clock and VT Pointer Adjustment Indicators (R/W) Address Bit Name Function 0x70009 15 DJA_G_DS1LOC G_PIN_DS1XCLK Loss of Clock Indication. (1 = LOC.) 14 DJA_DS1LOC PIN_DS1XCLK Loss of Clock Indication. (1 = LOC.) 13 DJA_G_E1LOC G_PIN_E1XCLK Loss of Clock Indication. (1 = LOC.) 12 DJA_E1LOC PIN_E1XCLK Loss of Clock Indication. (1 = LOC.) 15:11 -- Reserved. 11:0 DJA_PTRADJS[28:17] VT Pointer Adjustment Indicator State. When this state 0x7000A 15:0 DJA_PTRADJS[16:1] is high, the associated PLL has experienced a VT pointer adjustment within the last PTRADJCNT register specified time interval. Reset Default 0 0 0 0 0 Table 472. DJA_E1GAINH--DJA_E1GAINL, E1 Accumulator Gain Threshold (R/W) Address Bit 0x7000B 15:11 10:0 0x7000C 15:0 Name Function -- DJA_E1GAIN[26:16] DJA_E1GAIN[15:0] Reserved. E1 Gain. Accumulator gain threshold at which a clock adjustment takes place for E1 signals (see Table 622, PLL Bandwidth Control Parameters on page573 ). Reset Default 0x7FFFFFF Table 473. DJA_DS1GAINH--DJA_DS1GAINL, DS1 Accumulator Gain Threshold (R/W) Address Bit 0x7000D 15:11 10:0 0x7000E 15:0 Name Function -- DJA_DS1GAINTHR[26:16] DJA_DS1GAINTHR[15:0] Reserved. DS1 Gain. Accumulator gain threshold at which a clock adjustment takes place for DS1 signals (see Table 622). Reset Default 0x7FFFFFF Table 474. DJA_E1SCALE, E1 Scale Factor (R/W) Address Bit Name Function 0x7000F 15:0 DJA_E1SCALE[15:0] E1 Scale. Scale factor that controls clock adjustment rates for E1 signals (see Table 622). Reset Default 0xFFFF Table 475. DJA_DS1SCALE, DS1 Scale Factor (R/W) Address Bit Name 0x70010 15:0 DJA_DS1SCALE[15:0] Agere Systems Inc. Function DS1 Scale. Scale factor that controls clock adjustment rates for DS1 signals (see Table 622). Reset Default 0xFFFF 333 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 14 Digital Jitter Attenuation Controller Registers (continued) Table 476. DJA_E1PTRH--DJA_E1PTRL, E1 First-Order Loop Counter (R/W) Address Bit Name Function 0x70011 15:5 4:0 15:0 -- DJA_E1PTRADJCNT[20:16] DJA_E1PTRADJCNT[15:0] Reserved. E1 First-Order Loop Count. Count value that determines the amount of time spent as a firstorder loop following a VT pointer adjustment in E1 mode (see Table 623, First-Order Mode Duration Control on page573 ). 0x70012 Reset Default 0x177000 Table 477. DJA_DS1PTRH--DJA_DS1PTRL, DS1 First-Order Loop Counter (R/W) Address 0x70013 0x70014 Bit Name Function 15:5 -- Reserved. 4:0 DJA_DS1PTRADJCNT[20:16] DS1 First-Order Loop Count. Count value that 15:0 DJA_DS1PTRADJCNT[15:0] determines the amount of time spent as a firstorder loop following a VT pointer adjustment in DS1 mode (see Table 623). Reset Default 0x11AB70 Table 478. DJA_DS1SELH--DJA_DS1SELL, DS1 E1 Mode Select (R/W) Address Bit Name Function 0x70015 15:12 11:0 15:0 -- DJA_DS1SEL[28:17] DJA_DS1SEL[16:1] Reserved. DS1 E1 Mode Select. Control signal that determines the operating mode of each jitter attenuation block (1 = DS1, 0 = E1). 0x70016 Reset Default 0xFFFFFFF Table 479. DJA_CLK_CTL1--DJA_CLK_CTL4, Reference Clock Rate and Edge Transitions (R/W) Address Bit Name 0x70017 15:14 13:12 -- DJA_BLUECLKD1[1:0] 0x70017 0x70018 11:0 15:0 DJA_TXEDGE[28:17] DJA_TXEDGE[16:1] 15:12 11:0 0x7001A 15:0 -- DJA_RXEDGE[28:17] DJA_RXEDGE[16:1] 0x70019 334 Function Reset Default Reserved. 111 Reference Clock Rate. Control signal that indicates that the input XCLK runs at 32 X (11) or 16 X (01) the line rate or exactly the line rate (00). Transmit Edge Select. Control signal that deter- 0xFFFFFFF mines on which edge of the clock the output DS1/E1 data transitions (1 = rising edge). 0xFFFFFFF Reserved. Receive Edge Select. Control signal that determines on which edge of the clock the input DS1/E1 data is retimed (1 = rising edge). Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 14 Digital Jitter Attenuation Controller Registers (continued) 14.2 Digital Jitter Attenuation Controller Register Map The register bank architecture of the microprocessor interface is shown in Table 76 on page73 . Table 480. DJA Register Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ID and Interrupt Registers (RO) 0x70000 DJA_VERSION 0x70001 0x70002 -- 0x70003 DJA_EVENT1 0x70004 DJA_EVENT2 0x70005 -- 0x70006 DJA_MASK1 0x70007 DJA_MASK2 0x70008 -- 0x70009 DJA_STATE1 0x7000A DJA_STATE2 DJA_VERSION[2:0] DJA_ID[7:0] Delta and Event Parameters (COR/COW) DJA_G_DS1DLT DJA_G_E1DLT DJA_DS1DLT DJA_E1DLT DJA_ESOVFL[28:17] ESOVFL[16:1] Interrupt Mask Parameters for INT Pins (R/W) DJA_G_DS1MSK DJA_G_E1MS K DJA_DS1MS K DJA_E1MSK DJA_ESOVFL[28:17] ESOVFL[16:1] State and Value Parameters (RO) DJA_G_DS1LOC DJA_G_E1LO C DJA_DS1LOC DJA_E1LOC DJA_PTRADJS[28:17] DJA_PTRADJS[16:1] Control Parameters for PLL Bandwidth and Mode (R/W) 0x7000B DJA_E1GAINH 0x7000C DJA_E1GAINL 0x7000D DJA_DS1GAINH 0x7000E DJA_DS1GAINH DJA_E1GAIN[26:16] DJA_E1GAIN[15:0] DJA_DS1GAIN[26:16] DJA_DS1GAIN[15:0] 0x7000F DJA_E1SCALE DJA_E1SCALE[15:0] 0x70010 DJA_DS1SCAL E DJA_DS1SCALE[15:0] 0x70011 DJA_E1PTRH 0x70012 DJA_E1PTRL 0x70013 DJA_DS1PTRH 0x70014 DJA_DS1PTRL 0x70015 DJA_DS1SELH 0x70016 DJA_DS1SELL 0x70017 DJA_TXEDGEH 0x70018 DJA_TXEDGEL 0x70019 DJA_RXEDGEH 0x7001A DJA_RXEDGEL 0x7001B -- 0x700FF -- Agere Systems Inc. DJA_E1PTRADJCNT[20:16] DJA_E1PTRADJCNT[15:0] DJA_DS1PTRADJCNT[20:16] DJA_DS1PTRADJCNT[15:0] DJA_DS1SEL[28:17] DJA_DS1SEL[16:1] DJA_BLUECLKD[1:0] DJA_TXEDGE[28:17] DJA_TXEDGE[16:1] DJA_RXEDGE[28:17] DJA_RXEDGE[16:1] 335 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers Table of Contents Contents Page 15 Test-Pattern Generation/Detection Registers ................................................................................................. 336 15.1 Test-Pattern Generation/Detection Register Descriptions ...................................................................... 337 15.2 Test-Pattern Generation/Detection Register Map .................................................................................. 350 Tables Page Table 481. TPG_ID, Status Register (RO) .......................................................................................................... 337 Table 482. TPG_ISRC_OOFD, Delta Register (RO) ........................................................................................... 337 Table 483. TPG_ISRC_OOSD, Delta Register (RO) .......................................................................................... 337 Table 484. TPG_ISRC_BERE, Event Register (RO) .......................................................................................... 338 Table 485. TPG_ISRC_FERE, Event Register (RO) ........................................................................................... 338 Table 486. TPG_ISRC_BPVE, Event Register (RO) ........................................................................................... 338 Table 487. TPG_ISRC_AISD, Delta Register (RO) ............................................................................................. 339 Table 488. TPG_ISRC_CRCE, Event Register (RO) .......................................................................................... 339 Table 489. TPG_IMSK_OOFD, Register (R/W) .................................................................................................. 339 Table 490. TPG_IMSK_OOSD, Register (R/W) .................................................................................................. 339 Table 491. TPG_IMSK_BERE, Register (R/W) ................................................................................................... 340 Table 492. TPG_IMSK_FERE, Register (R/W) ................................................................................................... 340 Table 493. TPG_IMSK_BPV, Register (R/W) ..................................................................................................... 340 Table 494. TPG_IMSK_AISD, Register (R/W) .................................................................................................... 341 Table 495. TPG_IMSK_CRCE, Register (R/W) .................................................................................................. 341 Table 496. TPG_VAL_OOF, Register (RO) ........................................................................................................ 341 Table 497. TPG_VAL_OOS, Register (RO) ........................................................................................................ 342 Table 498. TPG_VAL_AIS, Register (RO) .......................................................................................................... 342 Table 499. TPG_VAL_FER, Register (RO) ......................................................................................................... 342 Table 500. TPG_VAL_CRCE, Register (RO) ...................................................................................................... 343 Table 501. TPG_BER_INSRT, Register (R/W) ................................................................................................... 343 Table 502. TPG_FER_INSRT, Register (R/W) ................................................................................................... 343 Table 503. TPG_CRCE_INSRT, Register (R/W) ................................................................................................ 343 Table 504. TPG_ESFDL_TX, Register (R/W) ..................................................................................................... 344 Table 505. TPG_E1SA_TX12, Register (R/W) .................................................................................................... 344 Table 506. TPG_E1SA_TX34, Register (R/W) .................................................................................................... 344 Table 507. TPG_CONFIG0, Register (R/W) ....................................................................................................... 345 Table 508. TPG_CONFIG2, Register (R/W) ....................................................................................................... 346 Table 509. TPG_CONFIG4, Register (R/W) ....................................................................................................... 347 Table 510. TPG_CONFIG5, Register (R/W) ....................................................................................................... 348 Table 511. TPG_USER, Register (R/W) ............................................................................................................. 348 Table 512. TPM_USER, Register (R/W) ............................................................................................................. 348 Table 513. TPG_BERCNT0, Register (RO) ........................................................................................................ 348 Table 514. TPG_BERCNT2, Register (RO) ........................................................................................................ 349 Table 515. TPG_BERCNT4, Register (RO) ........................................................................................................ 349 Table 516. TPG_BERCNT5, Register (RO) ........................................................................................................ 349 Table 517. TPM_ESFDL_RX, Register (RO) ...................................................................................................... 349 Table 518. TPM_E1SA_RX12, Register (RO) ..................................................................................................... 349 Table 519. TPM_E1SA_RX34, Register (RO) ..................................................................................................... 349 Table 520. Test-Pattern Generation/Detection Register Map ............................................................................. 350 336 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) 15.1 Test-Pattern Generation/Detection Register Descriptions The following tables describe the functions of all bits in the microprocessor register map. For each address, the register bits are indicated as either read/write (R/W) or read only (RO), and the value of the bits on reset is given. Table 481. TPG_ID, Status Register (RO) Address Bit Name 0x60000 15 14:11 10:8 TPG_READY -- TPG_ VERSION[2:0] TPG_ID[7:0] 7:0 Function This bit signifies that TPG reset/initialization is complete. Reserved. These bits identify the version number of the TPG. TPG_ID returns a fixed value (0x06) when read. Reset Default 1 0x0 0x0 0x06 Table 482. TPG_ISRC_OOFD, Delta Register (RO) Address Bit Name Function 0x60004 15:3 2 -- TPM_OOF2D 1 0 -- TPM_OOF0D Reserved. This bit is set when the TPM monitor E1 test signal out-of-frame detector changes state (transitions). Reserved. This bit is set when the TPM monitor DS1 test signal out-of-frame detector changes state (transitions). Reset Default 0x0000 0 0 0 Table 483. TPG_ISRC_OOSD, Delta Register (RO) Address Bit Name Function 0x60005 15:6 5 -- TPM_OOS5D 4 TPM_OOS4D 3 2 -- TPM_OOS2D 1 0 -- TPM_OOS0D Reserved. This bit is set when the TPM monitor DS3 test signal out-of-sync detector changes state (transitions). This bit is set when the TPM monitor DS3 test signal out-of-sync detector changes state (transitions). Reserved. This bit is set when the TPM monitor E1 test signal out-of-sync detector changes state (transitions). Reserved. This bit is set when the TPM monitor DS1 test signal out-of-sync detector changes state (transitions). Agere Systems Inc. Reset Default 0x000 0 0 0 0 0 0 337 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 484. TPG_ISRC_BERE, Event Register (RO) Address Bit Name 0x60006 15:6 5 -- TPM_BERE5 4 TPM_BERE4 3 2 -- TPM_BERE2 1 0 -- TPM_BERE0 Function Reserved. This bit is set when the TPM monitor determines ing DS3 test signal has a single bit error. This bit is set when the TPM monitor determines ing DS2 test signal has a single bit error. Reserved. This bit is set when the TPM monitor determines ing E1 test signal has a single bit error. Reserved. This bit is set when the TPM monitor determines ing DS1 test signal has a single bit error. that the incom- Reset Default 0x000 0 that the incom- 0 that the incom- 0 0 that the incom- 0 0 Table 485. TPG_ISRC_FERE, Event Register (RO) Address Bit Name Function 0x60007 15:3 2 -- TPM_FERE2 1 0 -- TPM_FERE0 Reserved. This bit is set when the TPM monitor determines that the incoming E1 test signal has a framing error. Reserved. This bit is set when the TPM monitor determines that the incoming DS1 test signal has a framing error. Reset Default 0x000 0 0 0 Table 486. TPG_ISRC_BPVE, Event Register (RO) Address Bit Name Function 0x60008 15:3 2 -- TPM_BPVE2 1 0 -- TPM_BPVE0 Reserved. This bit is set when the TPM monitor determines that the incoming E1 test signal has a bipolar violation error. Reserved. This bit is set when the TPM monitor determines that the incoming DS1 test signal has a bipolar violation error. 338 Reset Default 0x0000 0 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 487. TPG_ISRC_AISD, Delta Register (RO) Address Bit Name 0x60009 15:6 5 -- TPM_AIS5D 4 TPM_AIS4D 3 2 -- TPM_AIS2D 1 0 -- TPM_AIS0D Function Reset Default Reserved. 0x000 This bit is set when the TPM monitors DS3 test signal AIS detec0 tor changes state (transitions). This bit is set when the TPM monitors DS2 test signal AIS detec0 tor changes state (transitions). Reserved. 0 This bit is set when the TPM monitors E1 test signal AIS detector 0 changes state (transitions). Reserved. 0 This bit is set when the TPM monitors DS1 test signal AIS detec0 tor changes state (transitions). Table 488. TPG_ISRC_CRCE, Event Register (RO) Address Bit Name 0x6000A 15:3 2 1 0 -- TPM_CRCE2 -- TPM_CRCE0 Function Reserved. This bit is set when the TPM monitors E1 CRC errors. Reserved. This bit is set when the TPM monitors DS1 CRC errors. Reset Default 0x000 0 0 0 Table 489. TPG_IMSK_OOFD, Register (R/W) Address Bit Name 0x60010 15:3 2 -- TPM_OOF2DM 1 0 -- TPM_OOF0DM Function Reset Default Reserved. 0x000 This mask bit is set to suppress an interrupt when the TPM moni1 tor E1 test signal out-of-frame indicator changes. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor DS1 test signal out-of-frame indicator changes. Table 490. TPG_IMSK_OOSD, Register (R/W) Address Bit Name 0x60011 15:6 5 -- TPM_OOS5DM 4 TPM_OOS4DM 3 2 -- TPM_OOS2DM 1 0 -- TPM_OOS0DM Agere Systems Inc. Function Reset Default Reserved. 0x000 This mask bit is set to suppress an interrupt when the TPM moni1 tor DS3 test signal out-of-sync indicator changes. This mask bit is set to suppress an interrupt when the TPM moni1 tor DS2 test signal out-of-sync indicator changes. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor E1 test signal out-of-sync indicator changes. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor DS1 test signal out-of-sync indicator changes. 339 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 491. TPG_IMSK_BERE, Register (R/W) Address Bit Name 0x60012 15:6 5 -- TPM_BERE5M 4 TPM_BERE4M 3 2 -- TPM_BERE2M 1 0 -- TPM_BERE0M Function Reset Default Reserved. 0x000 This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the incoming DS3 test signal has a bit error. This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the incoming DS2 test signal has a bit error. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the incoming E1 test signal has a bit error. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the incoming DS1 test signal has a bit error. Table 492. TPG_IMSK_FERE, Register (R/W) Address Bit Name 0x60013 15:3 2 -- TPM_FERE2M 1 0 -- TPM_FERE0M Function Reset Default Reserved. 0x0000 This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the E1 test signal has a framing error. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the DS1 test signal has a framing error. Table 493. TPG_IMSK_BPV, Register (R/W) Address Bit Name 0x60014 15:3 2 -- TPM_BPV2M 1 0 -- TPM_BPV0M 340 Function Reset Default Reserved. 0x0000 This mask bit is set to suppress an interrupt when the TPM moni1 tor determines that the E1 test signal has a bipolar violation error. Reserved. 0 1 This mask bit is set to suppress an interrupt when the TPM monitor determines that the DS1 test signal has a bipolar violation error. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 494. TPG_IMSK_AISD, Register (R/W) Address Bit Name 0x60015 15:6 5 -- TPM_AIS5DM 4 TPM_AIS4DM 3 2 -- TPM_AIS2DM 1 0 -- TPM_AIS0DM Function Reset Default Reserved. 0x000 This mask bit is set to suppress an interrupt when the TPM moni1 tor DS3 test signal AIS indicator changes. This mask bit is set to suppress an interrupt when the TPM moni1 tor DS2 test signal AIS indicator changes. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor E1 test signal AIS indicator changes. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor DS1 test signal AIS indicator changes. Table 495. TPG_IMSK_CRCE, Register (R/W) Address Bit Name 0x60016 15:3 2 -- TPM_CRCE2M 1 0 -- TPM_CRCE0M Function Reset Default Reserved. 0x0000 This mask bit is set to suppress an interrupt when the TPM moni1 tor detects an E1 test signal CRC-4 error. Reserved. 0 This mask bit is set to suppress an interrupt when the TPM moni1 tor detects a DS1 test signal CRC-6 error. Table 496. TPG_VAL_OOF, Register (RO) Address Bit Name 0x60020 15:3 2 -- TPM_OOF2 1 0 -- TPM_OOF0 Agere Systems Inc. Function Reserved. This status bit is set whenever the TPM E1 test monitor has encountered an out-of-frame condition. Reserved. This status bit is set whenever the TPM DS1 test monitor has encountered an out-of-frame condition. Reset Default 0x0000 1 0 1 341 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 497. TPG_VAL_OOS, Register (RO) Address Bit Name 0x60021 15:6 5 -- TPM_OOS5 4 TPM_OOS4 3 2 -- TPM_OOS2 1 0 -- TPM_OOS0 Function Reserved. This status bit is set whenever the TPM DS3 test monitor has encountered an out-of-sync condition. This status bit is set whenever the TPM DS2 test monitor has encountered an out-of-sync condition. Reserved. This status bit is set whenever the TPM E1 test monitor has encountered an out-of-sync condition. Reserved. This status bit is set whenever the TPM DS1 test monitor has encountered an out-of-sync condition. Reset Default 0x000 1 1 0 1 0 1 Table 498. TPG_VAL_AIS, Register (RO) Address Bit Name 0x60022 15:6 5 -- TPM_AIS5 4 TPM_AIS4 3 2 -- TPM_AIS2 1 0 -- TPM_AIS0 Function Reserved. This status bit is set whenever the encountered an AIS condition. This status bit is set whenever the encountered an AIS condition. Reserved. This status bit is set whenever the encountered an AIS condition. Reserved. This status bit is set whenever the encountered an AIS condition. TPM DS3 test monitor has Reset Default 0x000 0 TPM DS2 test monitor has 0 TPM E1 test monitor has 0 0 TPM DS1 test monitor has 0 0 Table 499. TPG_VAL_FER, Register (RO) Address Bit Name 0x60023 15:3 2 -- TPM_FER2 1 0 -- TPM_FER0 342 Function Reserved. This status bit is set whenever the TPM E1 test monitor has encountered an FER condition. Reserved. This status bit is set whenever the TPM DS1 test monitor has encountered an FER condition. Reset Default 0x0000 0 0 0 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 500. TPG_VAL_CRCE, Register (RO) Address 0x60024 Bit Name Function 15:3 -- Reserved. 2 TPG_CRCEINS2 This bit is set when the user desires to inject a single CRC error into the E1 test signal (via 0 to 1 transition). 1 -- Reserved. 0 TPG_CRCEINS0 This bit is set when the user desires to inject a single CRC error into the DS1 test signal (Via 0 to 1 transition). Reset Default 0x0000 0 0 0 Table 501. TPG_BER_INSRT, Register (R/W) Address Bit Name Function 0x60028 15 TPG_BER_EN 14:6 5 -- TPG_BERINS5 4 TPG_BERINS4 3 2 -- TPG_BERINS2 1 0 -- TPG_BERINS0 This bit, when set, allows automatic bit error insertion by the microprocessor. Reserved. This bit is set when the user desires to inject a single bit error into the DS3 test signal via SMPR_BER_INSRT (Table 65, SMPR_GTR, Global Trigger Register (RW) on pag e66). This bit is set when the user desires to inject a single bit error into the DS2 test signal via SMPR_BER_INSRT. Reserved. This bit is set when the user desires to inject a single bit error into the E1 test signal via SMPR_BER_INSRT. Reserved. This bit is set when the user desires to inject a single bit error into the DS1 test signal via SMPR_BER_INSRT. Reset Default 0 0x000 0 0 0 0 0 0 Table 502. TPG_FER_INSRT, Register (R/W) Address Bit Name 0x60029 15:3 2 -- TPG_FERINS2 1 0 -- TPG_FERINS0 Function Reset Default Reserved. 0x0000 This bit injects a single framing error into the E1 test signal (via 0 0 to 1 transition). Reserved. 0 This bit injects a single framing error into the DS1 test signal (via 0 0 to 1 transition). Table 503. TPG_CRCE_INSRT, Register (R/W) Address Bit Name 0x6002A 15:3 2 -- TPG_ CRC4EINS2 -- TPG_ CRC6EINS0 1 0 Agere Systems Inc. Function Reset Default Reserved. 0x0000 This bit is set when the user desires to inject a single CRC-4 error 0 into the E1 test signal (via 0 to 1 transition). Reserved. 0 This bit is set when the user desires to inject a single 0 CRC-6 error Into the DS1 test signal (via 0 to 1 transition). 343 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 504. TPG_ESFDL_TX, Register (R/W) Address 0x6002C Bit Name Function 15:0 TPG_ESFDL[15:0] Data-Link Field to be Sent with Each DS1 Idle Frame. Reset Default 0x7E7E Table 505. TPG_E1SA_TX12, Register (R/W) Address Bit Name Function 0x6002E 15:13 -- Reserved. 12:8 TPG_E1SA2[4:0] Sa (spare bits [8:4]) to be Sent with E1 Idle Frame. 7:5 -- Reserved. 4:0 TPG_E1SA1[4:0] Sa (spare bits [8:4]) to be Sent with E1 Idle Frame. Reset Default 0x0 0x00 0x0 0x00 Table 506. TPG_E1SA_TX34, Register (R/W) Address 0x6002F 344 Bit Name Function 15:13 -- Reserved. 12:8 TPG_E1SA4[4:0] Sa (spare bits [8:4]) to be Sent with E1 Test Frame. 7:5 -- Reserved. 4:0 TPG_E1SA3[4:0] Sa (spare bits [8:4]) to be Sent with E1 Test Frame. Reset Default 0x0 0x00 0x0 0x00 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 507. TPG_CONFIG0, Register (R/W) Address Bit Name Function 0x60030 15:13 TPM_SEQ0[2:0] 12 11 10 TPM_TPINV0 TPG_TPINV0 TPM_EDGE0 9 TPG_EDGE0 8 TPG_TPM_ ESF_0 TPG_TPM_ CODE0[1:0] These bits select the test pattern to be monitored by the TPG on the DS1 test input. This bit, if set, inverts the received data for DS1 test signals. This bit, if set, inverts the transmitted data for DS1 test signals. This bit, if set, selects the rising edge of XC_TCLK[0] for use as the retiming clock edge; or else selects falling edge. This bit, if set, selects the rising edge of TPG_CLK[0] for use as the transmit clock edge; or else selects falling edge. This bit selects extended superframe mode for DS1 Test signals. 7:6 Don't Use Line Coding/decoding when 00. Reset Default 000 0 0 1 1 0 00 Use HDB3 coding/decoding when 01. Use B8ZS coding/decoding when 10. Use AMI coding/decoding when 11. 5 4 TPM_FRAME0 TPG_FINV0 3 TPG_FRAME0 2:0 TPG_SEQ0[2:0] This code is common to the generator and monitor sides. This bit is set to select a framed DS1 Test pattern in the monitor. If this bit is set, the frame bit in the 12th frame of each superframe is inverted in the DS1 test pattern. This bit is set to select a framed DS1 test pattern in the generator. These Bits Select the Test Pattern to be Generated and Transmitted by the TPG on the DS1 Test Output. 0 0 0 000 000 = PRBS15 001 = PRBS20 010 = QRSS 011 = PRBS23 100 = Alternating 01 101 = All ones 110 = Unused 111 = User defined Agere Systems Inc. 345 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 508. TPG_CONFIG2, Register (R/W) Address Bit Name Function 0x60032 15:13 TPM_SEQ2[2:0] 12 11 TPM_TPINV2 TPG_TPINV2 10 TPM_EDGE2 9 TPG_EDGE2 8 TPG_TPM_ CRC4_EN2 These Bits Select the Test Pattern to be Monitored by the TPG on the E1 Test Input. This Bit, if Set, Inverts the Received Data for E1 Test Signals. This Bit, if Set, Inverts the Transmitted Data for E1 Test Signals. This Bit, if Set, Selects the Rising Edge of XC_TCLK[2] for Use as the Retiming Clock Edge; or Else Selects Falling Edge. This Bit, if Set, Selects the Rising Edge of TPG_CLK[2] for Use as the Transmit Clock Edge; or Else Selects Falling Edge. This Bit, if Set, Enables CRC-4 Insertion if E1 Framing is Selected. 7:6 TPG_TPM_ CODE2[1:0] This bit is common to the generator and monitor sides. Don't uSe Line Coding/decoding when 00. Reset Default 000 0 0 1 1 0 00 Use HDB3 coding/decoding when 01. Use B8ZS coding/decoding when 10. Use AMI coding/decoding when 11. 5 4 TPM_FRAME2 TPG_FINV2 3 2:0 TPG_FRAME2 TPG_SEQ2[2:0] This code is common to the generator and monitor sides. This Bit is Set to Select a Framed E1 Test Pattern. If this Bit is Set, the Frame Alignment Sequence (Normally 0011011) is Transmitted with the Last Bit Inverted (0011010). This Bit is Set to Select a Framed E1 Test Pattern. These Bits Select the Test Pattern to Be Generated and Transmitted by the TPG on the E1 Test Output (TPG_DATA[2]). 0 0 0 000 000 = PRBS15 001 = PRBS20 010 = QRSS 011 = PRBS23 100 = Alternating 01 101 = All ones 110 = Unused 111 = User defined 346 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 509. TPG_CONFIG4, Register (R/W) Address Bit Name Function 0x60034 15:13 TPM_SEQ4[2:0] 12 TPM_TPINV4 11 TPG_TPINV4 10 TPM_EDGE4 9 TPG_EDGE4 2:0 TPG_SEQ4[2:0] These Bits Select the Test Pattern to be Monitored by the TPG on the DS2 Test Input. This Bit, if Set, Inverts the Received Data for DS2 Test Signals. This Bit, if Set, Inverts the Transmitted Data for DS2 Test Signals. This Bit, if Set, Selects the Rising Edge of XC_TCLK[4] for Use as the Retiming Clock Edge; or Else Selects Falling Edge. This Bit, if Set, Selects the Rising Edge of TPG_CLK[4] for Use as the Transmit Clock Edge; or Else Selects Falling Edge. These Bits Select the Test Pattern to be Generated and Transmitted by the TPG on the DS2 Output (TPG_DATA[4]). Reset Default 000 0 0 1 1 0 000 = PRBS15 001 = PRBS20 010 = QRSS 011 = PRBS23 100 = Alternating 01 101 = All ones 110 = Unused 111 = User defined Agere Systems Inc. 347 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 510. TPG_CONFIG5, Register (R/W) Address Bit Name Function 0x60035 15:13 TPM_SEQ5[2:0] 12 TPM_TPINV5 11 TPG_TPINV5 10 TPM_EDGE5 9 TPG_EDGE5 8:3 2:0 -- TPG_SEQ5[2:0] These Bits Select the Test Pattern to be Monitored by the TPG on the DS3 Test Input. This Bit, if Set, Inverts the Received Data for DS3 Test Signals. This Bit, if Set, Inverts the Transmitted Data for DS3 Test Signals. This Bit, if Set, Selects the Rising Edge of XC_TCLK[5] for Use as the Retiming Clock Edge; or Else Selects Falling Edge. This Bit, if Set, Selects the Rising Edge of TPG_CLK[5] for Use as the Transmit Clock Edge; or Else Selects Falling Edge. Reserved. These Bits Select the Test Pattern to be Generated and Transmitted by the TPG on the DS3 Output (TPG_DATA[5]). Reset Default 000 0 0 1 1 -- 0 000 = PRBS15 001 = PRBS20 010 = QRSS 011 = PRBS23 100 = Alternating 01 101 = All ones 110 = Unused 111 = User defined Table 511. TPG_USER, Register (R/W) Address Bit 0x60036 15:0 Name Function TPG_USER[15:0] User Programmed Test Pattern Generator Data. Reset Default 0xDEAD Table 512. TPM_USER, Register (R/W) Address 0x60037 Bit Name Function 15:0 TPM_USER[15:0] User Programmed Test Pattern Monitor Data. Reset Default 0xBEEF Table 513. TPG_BERCNT0, Register (RO) Address Bit 0x60040 15:0 348 Name Function Reset Default TPM_CNT0[15:0] This Field Holds the Current Counter Value for DS1 Test Pat- 0x0000 tern Bit Errors as Detected by the TPM. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 514. TPG_BERCNT2, Register (RO) Address Bit 0x60042 15:0 Name Function TPM_CNT2[15:0] This Field Holds the Current Counter Value for E1 Test Pattern Bit Errors as Detected by the TPM. Reset Default 0x0000 Table 515. TPG_BERCNT4, Register (RO) Address Bit 0x60044 15:0 Name Function Reset Default TPM_CNT4[15:0] This Field Holds the Current Counter Value for DS2 Test Pat- 0x0000 tern Bit Errors as Detected by the TPM. Table 516. TPG_BERCNT5, Register (RO) Address Bit 0x60045 15:0 Name Function Reset Default TPM_CNT5[15:0] This Field Holds the Current Counter Value for DS3 Test Pat- 0x0000 tern Bit Errors as Detected by the TPM. Table 517. TPM_ESFDL_RX, Register (RO) Address Bit Name 0x6004C 15:0 TPM_ ESFDL[15:0] Function Data-Link Field Received from Last DS1 Idle Frame. Reset Default 0x0000 Table 518. TPM_E1SA_RX12, Register (RO) Address Bit Name Function 0x6004E 15:13 -- Reserved. 12:8 TPM_E1SA2[4:0] Sa (spare bits [4:8]) Received from E1 Frame. 7:5 -- Reserved. 4:0 TPM_E1SA1[4:0] Sa (spare bits [4:8]) Received from E1 Frame. Reset Default 0x0 0x00 0x0 0x00 Table 519. TPM_E1SA_RX34, Register (RO) Address 0x6004F Bit Name Function 15:13 -- Reserved. 12:8 TPM_E1SA4[4:0] Sa (spare bits [4:8]) Received from E1 Frame. 7:5 -- Reserved. 4:0 TPM_E1SA3[4:0] Sa (spare bits [4:8]) Received from E1 Frame. Agere Systems Inc. Reset Default 0x0 0x00 0x0 0x00 349 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) 15.2 Test-Pattern Generation/Detection Register Map Table 520. Test-Pattern Generation/Detection Register Map Note: The reset default of all reserved bits is 0. Shading denotes reserved bits. Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0x60000 TPG_ID TPG_ READY 0 0 0 0 0x60001 -- 0x60003 -- 0x60004 TPG_ISRC_ OOFD 0x60005 TPG_ISRC_ OOSD TPM_ OOS5D 0x60006 TPG_ISRC_ BERE TPM_ BERE5 0x60007 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block-Level Status--RO TPG_VERSION[2:0] TPG_ID[7:0] TPM Interrupt Sources (Deltas and Events)--RO TPM_ OOF2D TPM_ OOF0D TPM_ OOS4D TPM_ OOS2D TPM_ OOS0D TPM_ BERE4 TPM_ BERE2 TPM_ BERE0 TPG_ISRC_ FERE TPM_ FERE2 TPM_ FERE0 0x60008 TPG_ISRC_ BPVE TPM_ BPV2 TPM_ BPV0 0x60009 TPG_ISRC_ AISDE TPM_ AIS2D TPM_ AIS0D 0x6000A TPG_ISRC_ CRCE TPM_ CRCE2 TPM_ CRCE0 0x6000B -- 0x6000F -- 0x60010 TPG_IMSK_ OOFD TPM_ OOF2DM TPM_ OOF0DM 0x60011 TPG_IMSK_ OOSD TPM_ OOS5DM TPM_ OOS4DM TPM_ OOS2DM TPM_ OOS0DM 0x60012 TPG_IMSK_ BERE TPM_ BERE5M TPM_ BERE4M TPM_ BERE2M TPM_ BERE0M 0x60013 TPG_IMSK_ FERE TPM_ FERE2M TPM_ FERE0M 0x60014 TPG_IMSK_ BPV TPM_ BPV2M TPM_ BPV0M 0x60015 TPG_IMSK_ AISD TPM_ AIS2DM TPM_ AIS0DM TPM_ AIS5D TPM_ AIS4D TPM Interrupt Masks--R/W and Edge Controls 350 TPM_ AIS5DM TPM_ AIS4DM Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 520. Test-Pattern Generation/Detection Register Map (continued) Address Symbol 0x60016 TPG_IMSK_ CRCE Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0x60017 -- 0x6001F -- 0x60020 TPG_VAL_ OOF 0x60021 TPG_VAL_ OOS TPM_ OOS5 0x60022 TPG_VAL_ AIS TPM_ AIS5 0x60023 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TPM_ CRCE2M TPM_ CRCE0M TPM_ OOF2 TPM_ OOF0 TPM_ OOS4 TPM_ OOS2 TPM_ OOS0 TPM_ AIS4 TPM_ AIS2 TPM_ AIS0 TPG_VAL_ FER TPM_ FER2 TPM_ FER0 0x60024 TPG_VAL_ CRCE TPG_CR CEINS2 TPG_CR CEINS0 0x60025 -- 0x60027 -- TPG_ BERINS2 TPG_ BERINS0 TPM State and Value Parameters--RO TPG Error Insert Enables--R/W (Error injection triggered by SMPR_BER_INSRT (Table 65, SMPR_GTR, Global Trigger Register (RW) on page 66)) 0x60028 TPG_BER_ INSRT TPG_ BERINS5 TPG_ BER_EN TPG_ BERINS4 TPG Error Insert Triggers (rising edge)--R/W 0x60029 TPG_FER_ INSRT TPG_ FERINS2 TPG_ FERINS0 0x6002A TPG_CRCE_ INSRT TPG_ CRC4EIN S2 TPG_ CRC6EIN S0 0x6002B -- 0x6002C TPG_ ESFDL_TX TPG (Transmit) ESF Data Link and E1 SA-Bits Contents--R/W TPG_ESFDL[15:0] 0x6002D -- 0x6002E TPG_E1SA_ TX12 TPG_E1SA2[4:8] TPG_E1SA1[4:8] 0x6002F TPG_E1SA_ TX34 TPG_E1SA4[4:8] TPG_E1SA3[4:8] Agere Systems Inc. 351 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 15 Test-Pattern Generation/Detection Registers (continued) Table 520. Test-Pattern Generation/Detection Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TPG/TPM Configuration--R/W (Test Channels Only) 0x60030 TPG_ CONFIG0 0x60031 -- 0x60032 TPG_ CONFIG2 TPM_SEQ0[2:0] TPM_ TPINV0 TPG_ TPINV0 TPM_ EDGE0 TPG_ EDGE0 TPG_ TPM_ ESF_0 TPG_TPM_ CODE0[1:0] TPM_ FRAME0 TPG_ FINV0 TPG_ FRAME0 TPG_ SEQ0[2:0] TPM_ SEQ2[2:0] TPM_ TPINV2 TPG_ TPINV2 TPM_ EDGE2 TPG_ EDGE2 TPG_ TPM_ CRC4_ EN2 TPG_TPM_ CODE2[1:0] TPM_ FRAME2 TPG_ FINV2 TPG_ FRAME2 TPG_SEQ2[2:0] 0x60033 -- 0x60034 TPG_ CONFIG4 TPM_SEQ4[2:0] TPM_ TPINV4 TPG_ TPINV4 TPM_ EDGE4 TPG_ EDGE4 TPG_SEQ4[2:0] 0x60035 TPG_ CONFIG5 TPM_SEQ5[2:0] TPM_ TPINV5 TPG_ TPINV5 TPM_ EDGE5 TPG_ EDGE5 TPG_SEQ5[2:0] 0x60036 TPG_USER TPG_USER[15:0] 0x60037 TPM_USER TPM_USER[15:0] 0x60038 -- 0x6003F -- TPM Bit Error Counters--RO (see also PMRST (Table 3, High-speed I/O Pin Descriptions on page 29), SMPR_SAT_ROLLOVER and SMPR_COR_COW (Table 67, SMPR_GCR, Global Control Register (RW) on page 68)) 0x60040 TPG_ BERCNT0 0x60041 -- 0x60042 TPG_ BERCNT2 TPM_CNT0[15:0] TPM_CNT2[15:0] 0x60043 -- 0x60044 TPG_ BERCNT4 TPM_CNT4[15:0] 0x60045 TPG_ BERCNT5 TPM_CNT5[15:0] 0x60046 -- 0x6004B -- 352 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 15 Test-Pattern Generation/Detection Registers (continued) Table 520. Test-Pattern Generation/Detection Register Map (continued) Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TPM Received DS1-ESF Data Link and E1 Sa-Bits Contents--RO 0x6004C TPM_ ESFDL_RX TPM_ESFDL0[15:0] 0x6004D -- 0x6004E TPM_E1SA_ RX12 TPM_E1SA2[4:8] TPM_E1SA1[4:8] 0x6004F TPM_E1SA_ RX34 TPM_E1SA4[4:8] TPM_E1SA3[4:8] 0x60050 -- 0x600FF -- Agere Systems Inc. 353 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 Functional Descriptions 16 Microprocessor Interface Functional Description Table of Contents Contents Page 16 Microprocessor Interface Functional Description ........................................................................................... 354 16.1 Introduction ............................................................................................................................................. 355 16.2 Features ................................................................................................................................................. 355 16.3 Microprocessor Interface ........................................................................................................................ 355 16.4 MPU Block Diagram ............................................................................................................................... 356 16.5 Super Mapper Register Address Mapping ............................................................................................. 356 16.6 Performance Monitoring (PM) Counters Operation ................................................................................ 356 16.7 Super Mapper Global Interrupt Status and Control ................................................................................ 358 16.8 Global Control ......................................................................................................................................... 358 Figures Page Figure 18. Microprocessor Interface..................................................................................................................... 356 Figure 19. PM Reset Counter ............................................................................................................................... 357 Figure 20. PM Reset Signal Generation ............................................................................................................... 357 Tables Page Table 521. Super Mapper Register Address Mapping ........................................................................................ 356 354 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 16 Microprocessor Interface Functional Description (continued) 16.1 Introduction The Super Mapper microprocessor interface consists of a 20-bit address and a 16-bit data bus. In addition, this block contains global control and status registers. These registers include the summary of interrupt status of major functional blocks and the control to enable them or power them down. 16.2 Features 20-bit address/16-bit data bus microprocessor interface. Synchronous (16 MHz to 66 MHz)/asynchronous microprocessor interface modes. Microprocessor data bus parity monitoring. Summary of interrupts from major functional blocks/maskable. Separate device interrupt outputs for automatic protection switch and the Super Mapper global interrupt. Global configuration of network performance monitoring counters operation. Global software resets. Global enabling and powering down of major functional blocks. Miscellaneous global configuration and control. 16.3 Microprocessor Interface This device is equipped with a generic 20-bit address/16-bit data microprocessor interface that allows operation with most commercially available microprocessors. Device input pin MPMODE (pin AD17) is used to configure this interface into one of two possible modes (synchronous or asynchronous). In synchronous mode (MPMODE = 1), the microprocessor interface can operate at speeds from 16 MHz up to 66 MHz. In asynchronous mode (MPMODE = 0), a 16 MHz to 66 MHz clock is required on the MPCLK (pin AE17) pin for proper operation. Two parity detectors are provided for the microprocessor data bus, one for the higher-order byte and one for the lower-order byte. The parity sense is programmed as even or odd with register bit SMPR_PARITY_EVEN_ODD (Table 67 on page68 ). The composite status of both parity detectors is indicated in register bit SMPR_PARITY_IS (Table 63 on page64 ). The interrupt from this status indicator may be masked with register bit SMPR_PARITY_IM (Table 64 on page65 ). A bad parity event does not inhibit a data transfer. The microprocessor interface is fully functional without parity supplied by the host processor. The interrupt status from each of the major blocks, the automatic protection switch, and the microprocessor data bus parity are summarized in Table 63 on page 64. Each interrupt is maskable with the complementary bit set in the interrupt mask register, see Table 64 on page65 . Agere Systems Inc. 355 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 16 Microprocessor Interface Functional Description (continued) 16.4 MPU Block Diagram MPCLK ADDR[19:0] INTERNAL ADDRESS CSN ADSN INTERNAL DATA DSN INTERNAL CONTROL RWN DATA[15:0] DTN PAR[1:0] MPMODE INTN APS_INTN 5-9039(F)r.2 Figure 18. Microprocessor Interface 16.5 Super Mapper Register Address Mapping Each of the Super Mapper's major functional blocks is selected with an address mapping of the highest order nibble, device pins ADDR[19:16], and allocated a 16-bit address range, pins ADDR[15:0], as defined in Table 521. Table 521. Super Mapper Register Address Mapping ADDR[19:16] 0000 0001 0010 0011 0100 0101 0110 0111 1000 Block ID 0 1 2 3 4 5 6 7 8 Block Name TOP M13 VTMPR SPEMPR TMUX XC TPG DJA FRAMER ADDR [15:0] [15:0] [15:0] [15:0] [15:0] [15:0] [15:0] [15:0] [15:0] 16.6 Performance Monitoring (PM) Counters Operation PM counters are error counters or other statistics counters. In general, two internal registers are needed to implement a PM counter: a running count register (1), maintained by the core logic, which is incremented by 1, every time an error (or statistics event) happens. At a defined interval, one second for example, the content of the running counter is transferred to a holding register (2), while the running count register is reset to 0 and starts to count anew. The count holding register holds the data that microprocessor actually reads. 356 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 16 Microprocessor Interface Functional Description (continued) PM COUNTER CONTROL PM COUNTER MPU READ HOLDING REGISTER RESET PM COUNT EVENT RUNNING COUNTER ENABLE HOLDING COUNTER BUFFERED MPUCLK MPU READABLE (ONE PER BLOCK) PM COUNT EVENT CLOCK 5-9040(F)r.3 Figure 19. PM Reset Counter The PM counter control signal controls the transfer and reset of all performance monitoring registers (collecting events/statistics). The source of this signal is configurable and can come from external pin (PMRST pin T25), an internal timer, or be controlled by software, depending on the SMPR_PMMODE[1:0] bits (Table 67, bits 9:8), described as follows: SMPR_PMMODE[1:0] = 00, 10: PM counter control is sourced from external pin PMRST. SMPR_PMMODE[1:0] = 01: PM counter control is sourced from internal 1 second timer. Writing a logic one to the SMPR_PMRESET bit (Table 65, bit 8) will reset the timer so that a transition occurs on the internal PM counter control signal within 10 MPCLK clock cycles. The timer is based on the period of the MPCLK and the programmed value of the registers in Table 72 and Table 73. Once initially reset and synchronized, the PM counter reset interval is determined by the combined delay of the programmed registers. The device pin, PMRST, is enabled as an output. SMPR_PMMODE[1:0] = 11: The PM counter control signal is software controlled. Writing a logic one to the SMPR_PMRESET bit will cause a PM reset within 10 MPCLK cycle times after writing. This pulse will be 100 cycles high and 100 cycles low at the MPCLK frequency. During this 200 cycle time, writing to PM bit will have no effect. The device pin, PMRST, is enabled as an output. EXTERNAL (SMPR_PMMODE[1:0] = 00, 10) PMRSTI PMRST (TO BLOCKS) SMPR_PMRESET (REGISTER SMPR_GTR bit 8) SOFTWARE CONTROLLED (SMPR_PMMODE[1:0] = 11) PMRSTO MPUCLK DELAY SMPR_PMRESET_HIGH_COUNT SMPR_PMRESET_LOW_COUNT MPUCLK FREE RUNNING (SMPR_PMMODE[1:0] = 01) OUTPUT ENABLED SMPR_PMMODE[1:0] = 01, 11 OUTPUT DISABLED SMPR_PMMODE[1:0] = 00, 10 1/2 SECOND COUNTERS SMPR_PMMODE (REGISTER SMPR_GCR bits[9:8]) MPU BLOCK 5-9931(F) Figure 20. PM Reset Signal Generation Agere Systems Inc. 357 TMXF28155 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 16 Microprocessor Interface Functional Description (continued) 16.7 Super Mapper Global Interrupt Status and Control The Super Mapper provides two hardware interrupt output pins: one global (INTN pin AB24) and one for the SONET automatic protection switching (APS_INTN pin AC25). Both interrupt pins are active-low and are opendrain outputs to allow a wired OR with complementary devices. Interrupt status for major functional blocks are summarized in Table 63 and maskable in Table 64. 16.8 Global Control Several registers in this block provide global control of Super Mapper features. The register descriptions are selfexplanatory, but some highlights are listed as follows: Global enabling and powering down of major functional blocks is shown in Table 71 SMPR_CPCR, Clock and Power Control Register (RW) on page 71. Software resets for major functional blocks are shown in Table 66 SMPR_MSRR, Block Software Reset Register (RW) on page66 . Global reset of the Super Mapper is controlled with SMPR_SWRS, bit 8 in Table 65 SMPR_GTR, Global Trigger Register (RW) on page 66. 358 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description Table of Contents Contents Page 17 TMUX Functional Description ......................................................................................................................... 359 17.1 TMUX Introduction .................................................................................................................................. 361 17.2 TMUX Features ...................................................................................................................................... 361 17.3 TMUX Receive Path Overview ............................................................................................................... 362 17.3.1 Receive Line Framer and Transport Overhead Termination ....................................................... 362 17.3.2 Receive Transport Overhead Monitor and RTOAC Drop ............................................................ 362 17.3.3 Receive MSP 1 + 1 Payload Switch ............................................................................................. 363 17.3.4 Receive Pointer Interpreter .......................................................................................................... 363 17.3.5 Receive High-Order Path Overhead Termination and RPOAC Drop .......................................... 363 17.3.6 Receive Byte Interleave Demultiplexer ........................................................................................ 363 17.3.7 Receive Telecom Bus .................................................................................................................. 363 17.4 TMUX Transmit Path Overview .............................................................................................................. 364 17.4.1 Transmit Telecom Bus ................................................................................................................. 364 17.5 Receive Direction (Receive Path from Sonet Global/SDH) .................................................................... 368 17.5.1 Input Clock and Loss-of-Signal Monitoring .................................................................................. 369 17.5.2 High-Speed Loopback Select Logic ............................................................................................. 369 17.5.3 Frame Alignment--STS-3/STM-1 (AU-4) Framing or STS-1 Framing ......................................... 369 17.5.4 B1 BIP-8 Check ........................................................................................................................... 369 17.5.5 J0 Monitor .................................................................................................................................... 370 17.5.6 Descrambler ................................................................................................................................. 370 17.5.7 F1 Monitor .................................................................................................................................... 371 17.5.8 B2 BIP-8 Check ........................................................................................................................... 371 17.5.9 Automatic Protection Switch (APS) Monitor ................................................................................. 371 17.5.10 K2 Monitor, AIS-L and RDI-L Detect .......................................................................................... 371 17.5.11 M1 REI-L Detect ........................................................................................................................ 372 17.5.12 Sync Status Monitor ................................................................................................................... 372 17.5.13 Receive Transport Overhead Access Channel (RTOAC) .......................................................... 372 17.5.14 MSP 1 + 1 Payload Switch ......................................................................................................... 374 17.5.15 Pointer Interpreter ...................................................................................................................... 374 17.5.16 Path Monitoring Functions ......................................................................................................... 377 17.6 Transmit Direction (Transmit Path to SONET/SDH Line) ....................................................................... 386 17.6.1 Transmit Side Telecom Bus Interface .......................................................................................... 386 17.6.2 Transmit Path and Transport Overhead Insertion Diagram ......................................................... 386 17.6.3 POAC Insert ................................................................................................................................. 388 17.6.4 AIS Path Generation .................................................................................................................... 389 17.6.5 J1 Insert Control ........................................................................................................................... 389 17.6.6 B3 BIP-8 Calculation and Insert ................................................................................................... 389 17.6.7 C2 Signal Label Byte Insert ......................................................................................................... 389 17.6.8 Path RDI (RDI-P) Insert ............................................................................................................... 390 17.6.9 REI-P: G1(7:4) Insert ................................................................................................................... 390 17.6.10 F2 Byte Insert ............................................................................................................................. 391 17.6.11 H4 Insert Control ........................................................................................................................ 391 17.6.12 F3 Byte Insert ............................................................................................................................. 391 17.6.13 K3 Byte Insert ............................................................................................................................ 391 17.6.14 N1 Byte Insert ............................................................................................................................ 391 17.6.15 MSP 1 + 1 Payload Switch ......................................................................................................... 391 17.6.16 Transmit Transport Overhead Access Channel (TTOAC) ......................................................... 391 17.6.17 Sync Status Byte (S1) Insert ...................................................................................................... 393 17.6.18 REI-L: M1 Insert ......................................................................................................................... 393 Agere Systems Inc. 359 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) Table of Contents (continued) Contents Page 17.6.19 APS Value and K2 Insert Control Parameters ........................................................................... 393 17.6.20 Criteria for Insert Line RDI ......................................................................................................... 394 17.6.21 Line AIS Generation ................................................................................................................... 394 17.6.22 B2 BIP-8 Calculation and Insert ................................................................................................. 394 17.6.23 F1 Byte Insert ............................................................................................................................. 394 17.6.24 B1 Generate and Error Insert ..................................................................................................... 395 17.6.25 Scrambler ................................................................................................................................... 395 17.6.26 J0 Insert Control ......................................................................................................................... 395 17.6.27 Z0-2, Z0-3 Insert Control ............................................................................................................ 395 17.6.28 A2 Error Insert ............................................................................................................................ 395 Figures Page Figure 21. TMUX RTOAC Timing Diagram .......................................................................................................... 362 Figure 22. TMUX TTOAC and RTOAC Timing Diagram ...................................................................................... 365 Figure 23. High-Level TMUX Interconnect ........................................................................................................... 365 Figure 24. Detailed Block Diagram of the TMUX .................................................................................................. 366 Figure 25. Receive Direction Functional Block Diagram ...................................................................................... 367 Figure 26. Pointer Interpretation State Diagram................................................................................................... 374 Figure 27. Receive Low-Speed Bus Interface Signals for STS-3/STM-1 Signals ................................................ 385 Figure 28. Transmit Low-Speed Bus Interface Signals for STS-3/STM-1 Signals ............................................... 386 Figure 29. Transmit Direction POH and TOH Insertion Diagram ......................................................................... 387 Tables Page Table 522. Receive TOAC Modes ....................................................................................................................... 373 Table 523. Transport Overhead Byte Access--Receive Direction ...................................................................... 373 Table 524. STS Signal Label Defect Conditions ................................................................................................. 379 Table 525. STS-1 P-REI Interpretation ................................................................................................................ 380 Table 526. Signal Degrade (SD) Parameters ...................................................................................................... 382 Table 527. Signal Fail Parameters ...................................................................................................................... 383 Table 528. Signal Fail or Signal Degrade Recommended Programming Values ................................................ 384 Table 529. Path Overhead Byte Access .............................................................................................................. 384 Table 530. Path Overhead Byte Access--Transmit Direction ............................................................................. 388 Table 531. TPOAC Control Bits ........................................................................................................................... 389 Table 532. RDI-P Defects for Enhanced RDI-P Mode ........................................................................................ 390 Table 533. Transmit TOAC Modes ...................................................................................................................... 392 Table 534. Transmit Transport Overhead Byte Full Access Mode ...................................................................... 392 Table 535. TTOAC Control Bits in Full Access Mode .......................................................................................... 393 360 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) 17.1 TMUX Introduction The TMUX multiplexer block implements SDH/SONET-compliant, byte-interleave multiplexing/demultiplexing, overhead insertion and termination, multiplex section protection (MSP) 1 + 1 switch capability, and serializer/deserializer for 155.52 Mbits/s and 51.84 Mbits/s traffic. As shown in Figure 23 on page 365, the TMUX provides three modes of operation: STS-3 mode, STM-1 mode, and STS-1 mode. In STS-3 mode, the TMUX implements the functions necessary to multiplex and demultiplex up to three STS-1 signals to/from a SONET STS-3 signal. In STM-1 (VC-4) mode, the TMUX provides the functionality to multiplex and demultiplex up to three TUG-3 signals to/from an STM-1(VC-4) signal. The device can also build/ extract up to three AU-3 signals to/from an STM-1(VC-3) stream. In STS-1 mode, the TMUX implements the functions necessary to interface a single STS-1 to/from an external serial link. On the high-speed side or line side, the block can be configured for either a 155.52 Mbits/s (STS-3/STM-1) or 51.84 Mbits/s (STS-1) serial data interface. On the low-speed side or tributary side, the TMUX provides a byte-wide bus that can communicate with up to three STS-1/TUG-3/AU-3 devices at a 19.44 MHz rate. If single STS-1 mode is employed, the bus rate will be 6.48 MHz. The TMUX therefore provides complete multiplexing/demultiplexing to/from an STS-3/STM-1 signal for up to 84 DS1, 84 JT1, or 63 E1 signals. In STS-1 mode, the TMUX provides multiplexing/demultiplexing for up to 28 DS1, 28 JT1, or 21 E1 streams. In STS-3/STM-1 mode, the TMUX from only one device is required. The TMUX in other connected devices may be powered down to reduce consumed power. This architecture allows flexible and modular growth in equipment capacity for both 51.84 Mbits/s and 155.52 Mbits/s links. 17.2 TMUX Features Multiplexes three STS-1 signals into a SONET STS-3 signal. Multiplexes three VC-3 signals into an SDH STM-1 (AU-4) signal via a TUG-3 construction. Multiplexes three VC-3 signals into an SDH STM-1 (AU-3) signal. Demultiplexes three STS-1 signals from a SONET STS-3 signal. Demultiplexes three VC-3 signals from an SDH STM-1 (AU-4) signal via a TUG-3 deconstruction. Demultiplexes three VC-3 signals from an SDH STM-1 (AU-3) signal. Provides STS-1-only mode for receive and transmit directions. Provides complete functionality for SDH MSP 1 + 1 protection switching. Detects STS-3/STM-1 loss-of-signal (LOS) conditions. Detects STS-3/STM-1 out-of-frame and loss-of-frame (OOF/LOF) conditions. Provides an 8-bit parallel bus interface that can accommodate up to three STS-1/AU-3s. Provides STS-3/STM-1/STS-1 selectable scrambler/descrambler functions and B1/B2/B3 generation/detection. Provides STS-3/STM-1/STS-1 pointer interpretation. Detects AIS-P and LOP. Complies with GR-253-CORE, T1.105, G.707, G.783, G.806, G.821, and ETSI 417-1-1. Agere Systems Inc. 361 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) 17.3 TMUX Receive Path Overview A detailed drawing of the TMUX receive path is provided in the bottom half of Figure 24 on page366 . For the receive path, the TMUX implements two serial inputs for both the work and protect streams of an MSP 1 + 1 network interface. Synchronous data (SDH/SONET) framers are implemented to frame on the incoming receive data streams. One or both may be employed depending on system architecture. The incoming traffic is converted from serial to byte-wide parallel. The transport overhead bytes of the incoming traffic are monitored and dropped via the receive path TOAC drop interface. A multiplexer implements the receive MSP 1 + 1 payload switch and only one of the incoming streams is passed to the downstream processing blocks. The pointer interpreter passes pointer information to the 1:3 demultiplexer logic, and bus control circuitry provides functions necessary to manage traffic on the telecom bus drop interface which drops traffic from up to three STS-1/TUG-3 paths on the TMUX receive path. The path overhead bytes are monitored by the path overhead monitor and are dropped via the receive path POAC drop interface. 17.3.1 Receive Line Framer and Transport Overhead Termination Input receive data is received at the TMUX synchronous data framer from the high-speed line interface block. The framer performs a multitude of functions including frame alignment (STS-3/STM-1 or STS-1), B1 BIP-8 check, J0 byte monitoring, descrambling, F1 byte monitoring, B2 BIP-8 check, automatic protection switch (APS) and K2 byte monitoring, AIS-L and RDI-L detection, M1 byte REI-L detection, S1 byte sync status monitoring, and receive transport overhead access channel (RTOAC) drop. The states of the framer as well as all state changes are reported, and, if not masked, cause an interrupt. The B1 and B2 byte parity check supports bit and block modes. The TMUX implements internal performance monitor counters. These counters can count up to one second worth of BIP errors. The counters operate in either a saturation mode, such that the maximum value is retained once reached, or in a rollover mode. These counters should be optimally read (and cleared) at least once per second. The J0 monitor supports non-framed, SONET-framed, and SDH-framed 16-byte sequences as well as single J0 byte monitoring mode. APS monitoring is performed on bytes K1[7:0] and K2[7:3]. The value of each is stored and changes are reported. Bits [2:0] of the K2 byte are monitored independently. Line AIS (AIS-L/MS-AIS) and RDI-L/MS-RDI are monitored separately and changes are reported. This AIS-L/MS-AIS and RDI-L/MS-RDI information is also sent to the protection device for add/drop multiplex (ADM) applications. The M1 byte monitor operates either in bit or block mode and allows access to the REI-L/MS-REI errored bit count. The S1 byte can be monitored in two modes: as an entire 8-bit word or as one 4-bit nibble (bits 7 to 4). Continuous N-times detection counters are implemented for these monitoring functions. All automatic receive monitoring functions can be configured to provide an interrupt to the control system, or the device can be operated in a polled mode. 17.3.2 Receive Transport Overhead Monitor and RTOAC Drop The receive RTOAC provides access to all of the line section overhead bytes. Even or odd parity is calculated over all bytes. It has a data rate of 5.184 Mbits/s and consists of a clock, data, and an 8 kHz sync pulse. In an alternate operating mode, the data communication channel bytes D1--D3 or D4--D12 may transmit a serial 192 kbits/s or a 576 kbits/s data stream onto the RTOAC drop channel. rtoac clk rtoac sync rtoac data 0783(F) Figure 21. TMUX RTOAC Timing Diagram 362 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) 17.3.3 Receive MSP 1 + 1 Payload Switch Output from both receive framer blocks provides the input to the MSP 1 + 1 payload switch.This portion of the TMUX implements a payload 1 + 1 protection switch. In the receive direction, this occurs prior to pointer interpretation. If the protection switch is activated, then the data is selected from the receive protection interface rather than from the high-speed input path. Only the selected input traffic is provided downstream to the pointer interpreter. The interface consists of a 155.52 MHz or 51.84 MHz clock, data, and sync pulse. 17.3.4 Receive Pointer Interpreter The pointer interpreter is implemented via a state machine which implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996 -Annex B. The pointer interpreter evaluates the current pointer state for the normal state, path AIS state, or LOP conditions, as well as pointer increments and decrements. The current pointer state and any changes in pointer condition are reported to the control system. The number of consecutive frames for invalid pointer and invalid concatenation indication is fixed at nine. 17.3.5 Receive High-Order Path Overhead Termination and RPOAC Drop Path overhead (POH) termination is performed in the receive path on either all three STS-1s or on the VC-4 POH only. The receive POH circuitry includes: J1 byte monitoring, B3 byte BIP-8 checking, C2 byte signal label monitoring, REI-P and RDI-P detection, H4 byte multiframe monitoring; F2, F3, and K3 byte APS monitoring, N1 byte tandem connection monitoring (TCM), signal degrade BER and signal fail BER detection; receive path overhead access channel (RPOAC) drop, and AIS-P/HO-AIS insertion and automatic AIS generation (with individual inhibit). The J1 monitor provides five modes of operation for a programmable length (1 byte to 64 bytes) of the trace identifier. These five modes are comprised of: cyclic checking against the last received sequence, compare against a programmed sequence, SONET framing mode, SDH framing mode, and consecutive consistent occurrences of a new pattern. B3 is monitored either in bit or block mode. Provisionable N-times detection counters are implemented for the C2, F2, F3, N1, and K3 bytes. The K3 APS byte and N1 TCM byte can be monitored as an entire 8-bit word or two 4-bit nibbles. The receive RPOAC provides access to all the path overhead bytes. Even or odd parity is calculated over all bytes. The RPOAC has a data rate of 9 bytes per 8 kHz frame and consists of clock, data, and an 8 kHz sync pulse. 17.3.6 Receive Byte Interleave Demultiplexer The byte interleave demultiplexer accepts serial traffic and demultiplexes that information into one (STS-1 mode) or three (STS-3/STM-1 mode) traffic streams for input via the telecom bus to the VT/VC mapper. The demultiplexer takes the bytes in the order they are presented and places that traffic onto the telecom bus. 17.3.7 Receive Telecom Bus The TMUX can communicate with up to three SPE mappers via the telecom bus interface. In typical applications, since one SPE mapper is included in the Super Mapper device, two external SPE mappers reside on the telecom bus. The bus operates at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode. In the receive direction, the Super Mapper outputs one parallel clock at 19.44 MHz, three sync signals (SPE, J0J1V1, and V1), an 8-bit data bus, and an odd/even parity bit. The data bus carries either three STS-1/TUG-3 signals, each in their own time slot, or it carries one STS-1 signal. A 51.84 MHz low-speed clock and sync signal is also output from this circuit. Agere Systems Inc. 363 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) 17.4 TMUX Transmit Path Overview The TMUX transmit path is depicted in the top half of Figure 24 on page366 . The transmit path of the TMUX implements the inverse function to the receive path. Transmit input traffic at the telecom bus interface from up to three STS-1/TUG-3 paths is managed via the transmit path bus control circuitry. Transmit traffic, alarms, or unequipped indication information is inserted as needed depending on the status and provisioning of the device. The 3:1 multiplexer provides byte interleave multiplexing of the incoming traffic and insertion of the path overhead bytes. A serial path provides input for the transmit protection traffic and the framer and serial-to-parallel converter formats this traffic for input to the transmit MSP 1 + 1 payload switch. The selected output from the transmit MSP 1 + 1 switch is input to the transport overhead insert block and the parallel to serial converter sends a serial stream to the device output. The TMUX transmit path provides path overhead byte insertion and transport overhead byte insertion via the respective POAC insert and TOAC insert interfaces. Local clock and frame generation control circuitry is implemented in the TMUX for controlling the STS-1, STS-3, and STM-1 termination and generation functions. Internal loopbacks in the TMUX provide near-end line loopback and far-end line loopback capability. 17.4.1 Transmit Telecom Bus The transmit side of Super Mapper drives a clock and three sync signals (SPE, J0J1V1, and V1) onto the telecom bus. These signals control when the internal SPE mapper or one of the mate devices talks on the data bus. Because it is on the receive side, the transmit telecom bus operates at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode. The TMUX communicates with up to three VT/VC mappers, via an 8-bit data word and an odd/even parity bit from the telecom bus. The data consists of the STS-1/TUG-3 from up to three mappers; each in its own time slot, or it carries one single STS-1 signal. A 51.84 MHz low-speed clock and sync are also output. Transmit High-Order Path Overhead Generation and TPOAC Insert. In the transmit direction, J1 path trace byte insertion, B3 byte calculation and insertion, C2 signal label byte insertion, REI-P and RDI-P insertion; F2 byte insertion, H4 multiframe byte insertion, F3 path user byte insertion, K3 byte insertion, N1 byte insertion, and AIS-P insertion via POAC or software control is supported. The transmit TPOAC allows insertion of all overhead bytes other than the B3 byte, which is automatically calculated. Even or odd parity is checked over all bytes. Bytes which are not enabled for insertion are set to an all-ones or all-zeros stuff value. Transport path overhead bytes are added to the payload stream during multiplexing in the byte interleave multiplexer. Transmit Byte Interleave Multiplexer. In STS-3/STM-1 mode, the transmit byte interleave multiplexer block multiplexes up to three STS-1/TUG3 signals to form a SONET/SDH STS-3/STM-1 structured signal. The STS-3/STM-1 multiplexer function processes the input bytes in the order in which they are presented on the transmit telecom bus and multiplexes these bytes into a single high-speed stream. Grooming of the VTs/VCs is performed in the SPE mapper of each of the three devices. High-order path overhead bytes are interleaved with the data traffic during the byte interleave multiplexing. Transmit Payload Framer and MSP 1 + 1 Payload Switch. In the transmit direction, the MSP 1 + 1 switch function incorporates dual MSP 1 + 1 payload switch structures. In operation, the traffic from the transmit byte interleave multiplexer are presented to both MSP 1 + 1 payload switches. The output of the signal from the 3:1 multiplex is broadcast to both switch paths, and the output of the receive payload framers is also input respectively to one of the two switch paths. For normal operation, one of the two outputs from the two MSP 1 + 1 blocks is selected. The path from the receive framer to the MSP switch structures provides a means to perform far-end loopback. Transmit Transport Overhead Generation and TTOAC Insert. The transmit transport overhead generator performs TTOAC byte insertion, sync status byte (S1) insertion, M0/M1--REI-L insertion, K1 and K2 byte insertion, AIS-L insertion, B2 byte calculation and insertion, F1 byte insertion, B1 byte generation and error insertion, scrambling, J0 byte insertion control, and A2 byte error insertion. All insert control functions that are inhibited will insert optionally either an all-zeros or an all-ones word. 364 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) The transmit TTOAC allows the users to insert the following overhead bytes: E1, F1, D1--D3, D4--D12, S1, and E2. Even or odd parity is checked over all bytes. Bytes which are not enabled for insertion are set to an all-ones or all-zeros stuff value. The data communication channels D1--D3 or D4--D12 may also be received via the TTOAC interface. In this mode, the TTOAC channel will comprise a serial 192 kbits/s or a 576 kbits/s data stream. The insertion (overwrite by TOAC) of programmed S1, F1, J0, Z0-2, and Z0-3 bytes can be enabled via registers. Automatic insertion of M0/M1 may also be inhibited via registers. A protection switch selects the REI-L value for insertion to be taken from the protection board rather than from the receive side. The entire APS value or K2[2:0] can be inserted via writable registers. Automatic RDI insertion is supported with individual inhibit for each contributor. A protection switch selects the RDI-L value for insertion to be taken from the protection board rather than from the receive side. B1 and B2 BIP-8 values are calculated and inserted. Both values can be optionally inverted. ttoac clk ttoac sync ttoac data 0784(F) Figure 22. TMUX TTOAC and RTOAC Timing Diagram HIGH-SPEED S O N E T/SD H IN TE R FA C E TMUX TM U X R D I_ P , RE I_ P T M U X R D I_ L , R EI_ L S TS -3 /STM -1 O R STS -1 TELECOM BU S S TS-1 /TU G -3 (TIM E S L O T # 1 ) S TS -1 /TU G -3 S TS -1 /TU G -3 (TIM E SL O T # 2 ) (TIM E SL O T # 3 ) SPE MAPPER DS3 M 13 TU G -2 V T/TU M A PP E R V T M PR R D I_ L , R E I_ L V T M PR R D I_ P , R E I_ P D EV IC E # 1 D E VIC E # 2 D E VIC E #3 5-9004(F) Figure 23. High-Level TMUX Interconnect Agere Systems Inc. 365 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) THSC THSSYNC RPSSYNC155 (FROM RECEIVE SIDE) RPSC155 TPSMUXSEL2 TPSC155 LOCAL CLOCK AND FRAME GENERATION MSP 1+1 PAYLOAD SWITCH 3 TLSCLK52 TLSSYNC52 STS#1 PAIS, UEQ INSERT TLSPAR BUS CONTROL TLSCLK (19.44 MHz) TLSDATA[7:0] LOC, OOF, LOF, B2E STS#2 P AIS , UE Q IN S ER T 3:1 MUX LOGIC AND POH INSERT MSP 1+1 PAYLOAD SWITCH 2 STS#3 P A IS , UE Q INS ER T TLSSPE TPSD155 B2 ERR INSERT, L-REI INS P/S STM-1 TOH INSERT P/S THSD TOAC INSERT TLSJ0J1V1 TLSV1 TTOACCLKO, TTOACSYNCO, TTOACDATI POAC INSERT TPOACCLK, TPOACSYNC, TPOACDATA VTMPR RDI_L, REI_L LINE RDI LINE REI TRANSMIT DIRECTION VTMPR RDI_P, REI_P LOC, OOF, LOF, B2E RLSCLK52 STS#1 RLSSYNC52 RLSCLK (19.44 MHz) RLSPAR STS#2 RLSV1 1:3 DEMUX LOGIC MSP 1+1 PAYLOAD SWITCH 1 POH MONITOR RLSSPE RLSJ0J1V1 FRAMER, S/P, AND B2 MON, L-REI MON POINTER INTERPRETER BUS CONTROL RLSDATA[7:0] RPSSYNC155 PATH RDI PATH REI STS#3 FRAMER AND S/P AUTO_AISO[1--3] POAC DROP RPSD155 RPSC155 RHSD RHSC TOH MONITOR TIMING SIGNALS TO T X SIDE TOAC DROP RTPOACCLK, RTPOACSYNC, RTPOACDATA RTOACCLK, RTOACSYNC, RTOACDATA RECEIVE DIRECTION 5-9005(F)r.1 Figure 24. Detailed Block Diagram of the TMUX 366 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) The following block diagram describes the receive side transport overhead functions. Data is received from the high-speed interface at 155 Mbits/s (51.84 Mbits/s for STS-1 mode) and the output is driven onto the low-speed telecom bus in a parallel format. The TOH receive side functional blocks are shown in Figure 25. RECEIVE DATA FRAME ALIGN DESCRAMBLER J0 INPUT MONITOR OOF LOF MONITOR LOS DETECTOR F1 J0 MONITOR B1 BIP-8 CHECK F1 MONITOR K1 K2 B2 B2 BIP N CHECK B1 K2 K1/K2 APS MONITOR TOAC DROP BER ALGORITHM AIS-L RDI-L DETECT H1, H2, H3 MONITOR M1 S1 SYNC STATUS MONITOR M1 REI-L DETECT M1 REI COUNTER POINTER INTERPRETER INSERT AIS-P F2 F2 MONITOR F3 F3 MONITOR C2 J1 C2 MONITOR N1 J1 MONITOR N1 MONITOR BER ALGORITHM B3 B3 BIP N CHECK K3 K3 APS MONITOR G1 G1 RDI-P DETECT POAC DROP G1 G1 REI-L DETECT TELECOM BUS G1 REI COUNTER 5-9006(F)r.2 Figure 25. Receive Direction Functional Block Diagram Agere Systems Inc. 367 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) 17.5 Receive Direction (Receive Path from Sonet Global/SDH) All functions supported by the TMUX in the receive direction are summarized here: Input clock monitoring and loss-of-signal monitoring High-speed loopback Frame alignment Receive side frame sync output B1 BIP-8 check J0 monitor Descrambler F1 monitor B2 BIP-8 check APS (automatic protection switch) monitor K2 monitor, AIS-L and RDI-L detect M1 REI-L detect Sync status monitor Receive transport overhead access channel (RTOAC) MSP 1 + 1 payload switch Pointer interpreter J1 monitor B3 BIP-8 check Signal label C2 byte monitor RDI-P detect REI-P detect Path user byte F2 monitor H4 multiframe indicator Path user byte F3 monitor K3 byte monitor N1 tandem connection byte monitor Signal degrade BER algorithm Signal fail BER algorithm Path overhead access channel (POAC) drop AIS-P insertion and AUTO_AISO[1--3] generation Receive side telecom bus interface 368 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) 17.5.1 Input Clock and Loss-of-Signal Monitoring The TMUX detects and reports the loss of the 155 MHz input clock for STS-3 mode and the loss of the 51.84 MHz clock for STS-1 mode with register bits TMUX_RHSILOC--state (Table 91, starting on page92 ), TMUX_RHSILOCD--delta state (Table 91, starting on page 92), TMUX_RHSILOCM--interrupt mask (Table 91, starting on page 92). LOC is determined by a stuck high or stuck low for a time greater than 10 s and uses the microprocessor clock as its reference. The TMUX will detect and report a loss-of-signal condition with register bits TMUX_RHSLOS--state (Table 91 on page 92), TMUX_RHSLOSD--delta state (Table 91, starting on pag e92), TMUX_RHSLOSM--interrupt mask (Table 86 on page88 ), by monitoring the external input signal pin, LOSEXT (pin AE5), or detecting a continuous all-zeros/ones pattern for 51.44 ns to 105 s in 51.44 ns steps before data is descrambled. The detection time is determined by the value programmed in register bits, TMUX_LOSDETCNT[10:0] (Table 97 on pag e97). The LOS state will clear after reception of two consecutive receive frames with the correct framing pattern spaced 125 s apart without an incoming LOS all-zeros/ones pattern. This recovery applies to both internal and external LOS failure causes. 17.5.2 High-Speed Loopback Select Logic The device can be configured to loopback the transmit STS-3/STM-1 (AU-4) TMUX_THS2RHSLB = 1 (Table 93 on page 94) or accept the local STS-3/STM-1 (AU-4) signal TMUX_THS2RHSLB = 0. 17.5.3 Frame Alignment--STS-3/STM-1 (AU-4) Framing or STS-1 Framing The device will frame on the incoming signal. The state of the framer, out of frame (OOF) (register bit TMUX_RHSOOF, see Table 91 on page92 ) as well as any changes to this state (register bits TMUX_RHSOOFD-- delta state, see Table 91, starting on pag e92 and TMUX_RHSOOFM--interrupt mask; see Table 86 on page88 ) will be reported. The 32-bit (A1-2, A1-3, A2-1, and A2-2) framing pattern will be used in the frame detection for the STS-3/STM-1 case and a 16-bit pattern will be used for the STS-1 case. The device will be considered out of frame until two successive framing patterns separated in time by 125 s occur without framing byte errors. The device will be considered in frame until five successive frames, separated in time by 125 s, occur with errored framing patterns. If the framer transitions to the out of frame state, the framer will remain synchronized to the last known frame boundary or the latest detected unerrored framing pattern. A loss of frame (LOF) (register bit TMUX_RHSLOF; see Table 91 on page 92) state bit as well as any changes to this state (register bits TMUX_RHSLOFD--delta state, see Table 91, starting on page92 , TMUX_RHSLOFM-- interrupt mask; see Table 86 on page88 ) will be reported. These state and mask and delta bits are the same for both types of input data, STS-3/STM-1 or STS-1. The device will be considered in the LOF state when an OOF condition persists for 24 consecutive frames (3 ms). The device will transition out of the LOF state after receiving 24 consecutive frames with the correct framing patterns spaced 125 s apart and the OOF condition is clear. 17.5.4 B1 BIP-8 Check A BIP-8 even parity will be computed over all the incoming bits of the STS-3/STM-1 frame (STS-1 frame in STS-1 mode), which are scrambled (except for the bits in the A1, A2, and J0/Z0 bytes) and compared to the B1 byte received in the next frame. The total number of B1 BIP-8 bit errors (raw count), or block errors (as determined by register bit TMUX_BITBLKB1; see Table 95 on page 95), are counted. Upon the assertion of the performance monitor control signal as configured in the microprocessor interface block, the raw count will be reset to zero and the value transferred to a 16-bit counter for B1 error counts B1ECNT[15:0] (Table 124 on pag e118). Agere Systems Inc. 369 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) In case of overflow, depending on the value programmed in the microprocessor interface register bit SMPR_SAT_ROLLOVER (Table 67 SMPR_GCR, Global Control Register (RW) on page 68), the B1 error counter will either roll over or saturate at the maximum value until cleared. 17.5.5 J0 Monitor J0 (section trace overhead) monitoring is done via register bits TMUX_J0MONMODE[2:0] (Table 95 on pag e95). This J0 monitoring has six different monitoring modes, as follows: TMUX_J0MONMODE[2:0] = 000: the TMUX latches the value of the J0 byte every frame for a total of 16 bytes into registers TMUX_J0DMON[16--1][7:0]; see Table 132 on page121 . The TMUX compares the incoming J0 byte with the next expected value (the expected value is obtained by cycling through the previously stored 16 received bytes in round-robin fashion) and, if different, setting the section trace identifier mismatch state register bit, TMUX_RTIMS, see Table 91 on page92 . Any change to TMUX_RTIMS will be reported via delta and interrupt register bits TMUX_RTIMSD; see Table 82, starting on pag e79 and TMUX_RTIMSM; see Table 86 on page88 . TMUX_J0MONMODE[2:0] = 001: this is the SONET framing mode. The hardware looks for a 0x0A character to indicate that the next byte is the first byte of the path trace message. The J0 byte message is continuously written into TMUX_J0DMON[1--16][7:0] registers with the first byte residing at the first address. If any received byte does not match the previously received byte for its location, then the state register bit, TMUX_RTIMS, is set. Any change to RTIMS will be reported via delta and interrupt mask register bits TMUX_RTIMSD and TMUX_RTIMSM. TMUX_J0MONMODE[2:0] = 010: this is the SDH framing mode. The hardware looks for the byte with the most significant bit (MSB) set to one, which indicates that the next byte is the second byte of the message. The rest of operation is the same as in SONET framing mode. TMUX_J0MONMODE[2:0] = 011: a new J0 byte (TMUX_J0DMON[1][7:0]) will be detected after the number of consecutive consistent occurrences of a new pattern in the J0 overhead byte as determined by the values in registers TMUX_CNTDJ0[3:0]; see Table 98 on page98 . Any changes to this byte are reported via delta and interrupt mask registers TMUX_RTIMSD and TMUX_RTIMSM. The TMUX_RTIMSD delta bit in this mode indicates a change in state for the TMUX_J0DMON[1][7:0] byte and the state register bit, TMUX_RTIMS, is not used. TMUX_J0MONMODE[2:0] = 100: the user will program the 16 expected values of J0 in the SONET frame into registers TMUX_EXPJ0DMON[1--16][7:0]; see Table 131 on page 121. The first expected byte, the byte following the 0x0A character, is written into the first location TMUX_J0DMON[1][7:0]. The TMUX compares the incoming J0 sequence with the stored expected value and sets the state register bit, TMUX_RTIMS ( Table 91 on page 92), if they are different. Any change to TMUX_RTIMS is reported via register bits TMUX_RTIMSD (delta state) and TMUX_RTIMSM (interrupt mask). TMUX_J0MONMODE[1:0] = 101: the user will program the 16 expected values of J0 in the SDH frame in registers TMUX_EXPJ0DMON[1--16][7:0]. The first byte of the message has the MSB set to 1. The TMUX compares the incoming J0 sequence with the stored expected value, setting the state register bit, TMUX_RTIMS, if they are different. Any change to TMUX_RTIMS will be reported via register bits TMUX_RTIMSD (delta state) and TMUX_RTIMSM (interrupt mask). TMUX_J0MONMODE[1:0] = 110 and 111 are currently undefined. 17.5.6 Descrambler A frame synchronous descrambler of length 127 and generating polynomial x7 + x6 + 1 will descramble the entire STS-3/STM-1 (or STS-1) signal except for the first row of overhead. The scrambler will be set to 1111111 on the first byte following the last section overhead byte in the first row (i.e., after byte J0 for STS-1). The descrambler operates in a byte-wide mode. The frame descrambler can be enabled or disabled using register bit TMUX_RHSDSCR (Table 93 on page94 ). 370 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) 17.5.7 F1 Monitor The TMUX monitors the fault location byte TMUX_RF1MON0[7:0] (Table 101 on page 100). A new fault location state will be detected after the number of consecutive consistent occurrences of a new pattern in the F1 overhead byte as determined by the value programmed in TMUX_CNTDF1[3:0] ( Table 98 on pag e98). The TMUX maintains a history of the previous, valid F1 byte in TMUX_RF1MON1[7:0] (Table 101 on pag e100), and any changes will be reported via TMUX_RF1MOND (delta state) (Table 82, starting on pag e79) and TMUX_RF1MONM-- (interrupt mask) (Table 86 on page88 ). This continuous N-times detection counter will be reset to 0 upon the transition of the framer into the out of frame state. 17.5.8 B2 BIP-8 Check A B2 BIP-8 even parity is computed over all the incoming bits (except for the nine section overhead bytes) of the STS-1 frame after descrambling, and compared to the B2 byte received in the next frame. The total number of B2 BIP-8 bit errors (raw count), or block errors (as determined by TMUX_BITBLKB2; Table 94 on page 94), is counted. Upon the assertion of the performance monitor control signal as configured in the microprocessor interface, the raw count will be reset to zero and the value transferred to an 18-bit holding register for B2 error counts (TMUX_B2ECNT[17:0]; see Table 125 on page119 ). In case of overflow, depending on the value programmed in the microprocessor interface register bit SMPR_SAT_ROLLOVER (Table 67 on pag e68), the B2 error counter will either roll over or saturate at the maximum value until cleared. 17.5.9 Automatic Protection Switch (APS) Monitor The TMUX monitors the receive APS value (the K1 byte, and the five most significant bits of the K2 byte) and stores this value in TMUX_RAPSMON[12:0] (Table 102 on page100 ). This register is updated after the reception of a programmed number of identical consecutive frames as determined by the value in TMUX_CNTDK1K2[3:0] (Table 98 on page98 ). Whenever the contents of TMUX_RAPSMON[12:0] changes, a delta bit, TMUX_RAPSMOND will be set (Table 82, starting on page 79) and the interrupt can be masked using TMUX_RAPSMONM (Table 86 on pag e88). This indication also contributes to a separate device interrupt indication specifically intended for automatic protection switching. The TMUX monitors this same 13-bit APS value (K1[7:0], K2[7:3]) in the receive direction and reports when the APS value is inconsistent, using TMUX_RAPSBABE--Receive APS Babble Event (Table 82 on pag e79) and TMUX_RAPSBABM--Receive APS Babble Mask (Table 86 on page 88). Inconsistent APS bytes are defined as the number of successive frames of ASP data where no frames satisfy the criteria for updating the TMUX_RAPSMON register (Table 102 on page100 ). The number of inconsistent frames allowed before reporting is programmed in TMUX_CNTDK1K2FRAME[3:0] (default = 12, see Table 98 on page98 ). This continuous Ntimes detection counter will be reset to 0 upon the transition of the framer into the out-of-frame state or upon the detection of a B1 error. 17.5.10 K2 Monitor, AIS-L and RDI-L Detect The three least significant bits of K2 are independently monitored and the current value is stored in TMUX_K2MON[2:0] (Table 102 on page100 ). The register will be updated after the programmed number of consecutive identical K2[2:0] bits. This number is programmed by the value in TMUX_CNTDK2[3:0] (Table 98 on page 98). Whenever the contents of TMUX_K2MON[2:0] changes, a delta bit, TMUX_RK2MOND will be set (Table 82, starting on page79 ), and the interrupt can be masked using TMUX_RK2MONM (Table 86 on pag e88). The TMUX monitors for line AIS (AIS-L/MS-AIS) in the K2[2:0] bits (K2[2:0] = 111). When line AIS is detected, TMUX_RLAISMON (Table 91 on page92 ) will be set to 1 after a number of consecutive occurrences of line AIS as determined by the value programmed in TMUX_CNTDK2[3:0]. Once set, AIS-L will be cleared after a number of consecutive frames of no line AIS as determined by this same value in TMUX_CNTDK2[3:0]. Agere Systems Inc. 371 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) Any change to TMUX_RLAISMON will be reported in TMUX_RLAISMOND (Table 82, starting on page 79) and the interrupt can be masked using TMUX_RLAISMONM (Table 86 on page 88). The TMUX monitors for a remote defect indication (RDI-L/MS-RDI) condition in the K2[2:0] bits (K2[2:0] = 110) .A line RDI condition will be detected and TMUX_RLRDIMON (Table 91 on page92 ) will be set to 1 after a number of consecutive occurrences of RDI as determined by the value in TMUX_CNTDK2[3:0]. Once set, RDI-L will be cleared after a number of consecutive frames of no RDI as determined by this same value programmed in TMUX_CNTDK2[3:0]. Any change to TMUX_RLRDIMON, will be reported in TMUX_RLRDIMOND (Table 82, starting on page79 ) and the interrupt can be masked using TMUX_RLRDIMONM (Table 86 on page 88). This continuous N-times detection counter will be reset to 0 upon the transition of the framer into the out-of-frame state. 17.5.11 M1 REI-L Detect One byte (M1) is allocated for use as a line remote error indication function (REI-L). For STS-3/STM-1 signals, all eight bits of the M1 byte are allocated for REI-L information. The REI-L value reflects the error count detected by the line terminating equipment (LTE) (using the line BIP-8 code) back to its peer LTE. For STS-3/STM-1 signals, the value of the error count can be up to 24. A value of 25 and above will be interpreted as no errors. If TMUX_R_M1_BIT7 (Table 96 on pag e96) is 1, then the most significant bit of the byte is ignored. The TMUX allows access to the accumulated M1-REI errored bit count from the M1 byte via TMUX_M1ECNT[17:0] (Table 126 on page 119). The counter will count in bit or block mode, depending upon the value of TMUX_BITBLKM1 (Table 94 on page94 ). At the selected performance monitor (PM) interval, the value of the internal running raw counter is placed into a holding register, TMUX_M1ECNT[17:0], and then cleared. Depending on the value of SMPR_SAT_ROLLOVER (Table 67 on pag e68) in the microprocessor interface, the internal counter will either roll over or saturate at its maximum value until cleared. 17.5.12 Sync Status Monitor The S1 byte is allocated for synchronization status. S1 bits [7:4] are used to convey a 4-bit code of which only six patterns are defined with the remaining codes reserved for quality levels defined by individual administrations. The S1 byte can be monitored in two modes: (1) as an entire 8-bit word or (2) as one 4-bit nibble (bits [7:4]), as programmed by TMUX_S1MODE4 (Table 95 on page 95). TMUX_S1MODE4 = 0 the associated state, delta, and mask registers are TMUX_RS1MON[7:0] (Table 103 on page 100), TMUX_RS1MOND (Table 82, starting on page79 ), and TMUX_RS1MONM (Table 86 on page 88), respectively. TMUX_S1MODE4 = 1 the associated state, delta, and mask registers are TMUX_RS1MON[7:4], TMUX_RS1MOND, and TMUX_RS1MONM. A new value will be detected after a programmed number of consecutive occurrences of a consistent new value in the incoming S1 byte as determine by the value in TMUX_CNTDS1[3:0] (Table 98 on page98 ). A maskable event, TMUX_RS1BABE (Table 82, starting on page79 ), is set if a programmed number of consecutive frames pass without a validated message occurring as determined by the value in TMUX_CNTDS1FRAME[3:0] ( Table 98). In 8-bit mode, the entire value is monitored for an inconsistent value, while in 4-bit mode, only the most significant nibble is monitored for an inconsistent value. This continuous N-times detection counter will be reset to 0 upon the transition of the framer into the out-of-frame state. 17.5.13 Receive Transport Overhead Access Channel (RTOAC) A transport overhead access channel (TOAC) is provided on-chip to drop the transport overhead (TOH) portion of the incoming SDH or SONET frame. The TOAC channel supports three modes of operation based on the configuration of TMUX_RTOAC_D13MODE and TMUX_RTOAC_D412MODE (Table 117 on page113 ). 372 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) The TOAC channel consists of the following signals: A clock signal sourced by the device pin, RTOACCLK (external output pin AD1). The clock frequency depends on the values of TMUX_RTOAC_D13MODE and TMUX_RTOAC_D412MODE. See Table 522 below. A data signal out of RTOACDATA (external output pin AD3). The data rate and the values transmitted depend on the values of TMUX_RTOAC_D13MODE and TMUX_RTOAC_D412MODE. See Table 522 below. An 8 kHz synchronization signal, out to output pin, RTOACSYNC (external output pin AA5). The sync signal is normally low. During the last clock period of each frame coincident with the least significant bit of the last byte (the eighty-first byte for all TOH modes), the sync signal is driven high. Table 522. Receive TOAC Modes TOAC Mode TMUX_RTOAC_D13MODE TMUX_RTOAC_D412MODE Value Value DCC1--DCC3 1 X DCC4--DCC12 0 1 Full TOH Mode 0 0 Number of Data Bytes per Frame 3 9 81 Clock Rate 192 KHz 576 KHz 5.184 MHz Receive TOAC DCC1--DCC3 Mode. In this mode, DCC bytes 1 to 3 are transmitted serially on the data pin. The clock rate is 192 KHz. The data bytes are transmitted MSB first, and the data bytes are driven out in sequential order: DCC1, DCC2, and DCC3. The data signal is partitioned into frames of 3 bytes with a repetition rate of 8 kHz. Receive TOAC DCC4--DCC12 Mode. In this mode, DCC bytes 4 --12 are transmitted serially on the data output. The clock rate is 576 KHz. The data bytes are transmitted MSB first, and the data bytes are driven out in sequential order: DCC4, DCC5, DCC6, DCC7, DCC8, DCC9, DCC10, DCC11, and DCC12. The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Receive TOAC Full TOH Access Mode. In this mode, the data signal is partitioned into frames of 81 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the 648 bits of the previous frame. The remaining 7 bits of this byte are not specified. Bytes shown in Table 523 below summarize the access capabilities of the receive TAOC in full access mode. The transport overhead bytes shown in this table are always dropped by the receive side. There is programmability on the transmit side regarding the insertion of these bytes. Bytes indicated in bold type are not specified in the standard, but are available on the receive TOAC data signal. Table 523. Transport Overhead Byte Access--Receive Direction OH Parity B1 D1 H1-1 B2-1 D4 D7 D10 S1 A1-2 B1-2 D1-2 H1-2 B2-2 D4-2 D7-2 D10-2 Z1-2 Agere Systems Inc. A1-3 B1-3 D1-3 H1-3 B2-3 D4-3 D7-3 D10-3 Z1-3 A2-1 E1 D2 H2 K1 D5 D8 D11 Z2-1 A2-2 E1-2 D2-2 H2-2 K1-2 D5-2 D8-2 D11-2 Z2-2 A2-3 E1-3 D2-3 H2-3 K1-3 D5-3 D8-3 D11-3 M1 J0 F1 D3 H3 K2 D6 D9 D12 E2 Z0-2 F1-2 D3-2 H3-2 K2-2 D6-2 D9-2 D12-2 E2-2 Z0-3 F1-3 D3-3 H3-3 K2-3 D6-3 D9-3 D12-3 E2-3 373 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) Receive TOAC--OH Parity. Even or odd parity can be inserted into the first bit of the MSB byte of the TOAC outgoing frame by programming TMUX_RTOAC_OEPINS (Table 117 on pag e113). 17.5.14 MSP 1 + 1 Payload Switch The TMUX supports a payload 1 + 1 protection switch. In the receive direction, this occurs prior to pointer interpretation. If TMUX_RPSMUXSEL1 = 1 ( Table 93), then the input receive data and clock are selected from the protection path: device pins RPSD155P/N (pins AD10/AE10) and RPSC155P/N (pins AC10/AD11), rather than from the normal (working) path device pins, RHSDP/N (pins AF7/AE7) and RHSCP/N (pins AC7/AD8). 17.5.15 Pointer Interpreter The STS-3/STM-1 pointer interpreter logic block performs all necessary functions to support STS-3/STM-1, as well as STS-1, pointer interpretation. The pointer interpreter operates as one machine in STM-1 mode and as three independent machines in STS-3 mode. The following features are implemented: The pointer interpreter consists of the following states: -- LOP: loss of pointer -- AIS: alarm indiction signal (all ones in H1 and H2) -- NDF: new data flag enabled (1001,0001,1101,1011, and 1000) -- NORM: normal (disabled NDF, normal pointer) -- INC: increment (inverted I bits) -- DEC: decrement (inverted D bits) NDF ENABLE INC DEC 3 NEW POINTERS 3 ANY POINTERS 3 ANY POINTERS NDF DECREMENT INDICATION ENABLE INCREMENT INDICATION 3 NEW POINTERS 3 NEW POINTERS NORM 3 ANY POINTERS NDF NDF ENABLE NDF ENABLE 8 INVALID POINTERS FROM ALL STATES 8 INVALID POINTERS* FROM ALL STATES 3 AIS INDICATIONS NDF ENABLE 3 NEW POINTERS LOP 8 INVALID POINTERS AIS 8 NDF ENABLE * This state diagram is based on the ETS-417-1-1 pointer interpretation state diagram (Figure B.1). Transitions of eight invalid pointers from the INC, DEC, and NDF states into the LOP state have been added. 5-9007(F) Figure 26. Pointer Interpretation State Diagram 374 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) The pointer interpreter transitions into the LOP state based on the following conditions: -- Continuous NDF. If NDF (1001, 0001, 1101, 1011, and 1000) is received in 8, 9, or 10 consecutive frames, as determined by the value in TMUX_CTDLOPCNT[1:0] (Table 98 on page98 ), then LOP will be declared. -- Invalid pointer values. If 8, 9, or 10 consecutive frames (determined by TMUX_CTDLOPCNT[1:0]) are received with a pointer that is not a normal value, NDF, AIS, increment, or decrement, then LOP will be declared. The pointer interpreter will transition out of the LOP state based on the following conditions: -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition from the LOP state into the AIS state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the LOP state into the NORM state. -- The pointer interpreter will not transition from the LOP state into the NDF state. The pointer interpreter will transition into the AIS state based on the following conditions: -- Following three consecutive frames with all ones in the H1 and H2 bytes, AIS will be declared. The pointer interpreter will transition out of the AIS state based on the following conditions: -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the AIS state into the NORM state. -- Following eight consecutive invalid pointers, the pointer interpreter will transition from the AIS state into the LOP state. -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the AIS state into the NDF state. The pointer interpreter will transition into the NDF state based on the following condition: -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM, NDF, AIS, INC, and DEC states into the NDF state. The pointer interpreter will transition out of the NDF state based on the following conditions: -- Continuous NDF. If NDF (1001, 0001, 1101, 1011, and 1000) is received for eight consecutive frames, the pointer interpreter will transition from the NDF state into the LOP state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the NDF state into the NORM state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition from the NDF state into the AIS state. -- Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition from the NDF state into the NORM state. -- Following eight consecutive invalid pointers, the pointer interpreter will transition from the NDF state into the LOP state. The pointer interpreter will transition into the NORM state based on the following conditions: -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition into the NORM state, i.e., transitioning from the INC, DEC, and NDF states. Agere Systems Inc. 375 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) The pointer interpreter will transition out of the NORM state based on the following conditions: -- Following eight consecutive invalid pointers, the pointer interpreter will transition from the NORM state into the LOP state. -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the NDF state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the AIS state. -- When operating in the 8 of 10 mode, controlled by TMUX_8ORMAJORITY = 1 ( Table 95 on page95 ), if 8 of the 10 I and D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the DEC state. -- When operating in the 8 of 10 mode (TMUX_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the INC state.The pointer interpreter will transition into the INC state based on the following conditions: -- When operating in the 8 of 10 mode (TMUX_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition into the INC state. The pointer interpreter will transition out of the INC state based on the following conditions: -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the INC state into the NDF state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition from the INC state into the AIS state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the INC state into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the INC state into the NORM state. -- Following eight consecutive invalid pointers, the pointer interpreter will transition from the INC state into the LOP state. The pointer interpreter will transition into the DEC state based on the following conditions: -- When operating in the 8 of 10 mode (TMUX_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition into the DEC state. The pointer interpreter will transition out of the DEC state based on the following conditions: -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the DEC state into the NDF state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition from the DEC state into the AIS state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the DEC state into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the DEC state into the NORM state. -- Following eight consecutive invalid pointers, the pointer interpreter will transition from the DEC state into the LOP state. 376 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) Pointer increments and decrements will be counted and presented to the microprocessor as follows: -- Pointer increments and decrements will be monitored and counted internally. -- The internal and latched counts will be forced to clear (0x00) if TMUX_RLOP[3--1] = 1 (Table 92 on page 92) or TMUX_RPAIS[3--1] = 1 (Table 92), where [3--1] designates the tributary number. -- Upon the configured performance monitoring interval, raw counts are transferred to holding registers for pointer increments (TMUX_RPTR_INC[1--3][10:0] (Table 129 on page121 )) and decrements TMUX_RPTR_DEC[1--3][10:0] (Table 130), allowing access by the microprocessor. The raw counters will reset (to 0x00). -- Depending on the value of SMPR_SAT_ROLLOVER (Table 67 on page68 ) in the microprocessor interface block, the internal running counts saturate at their maximum value or rollover. -- However, increment and decrement event indications should be ignored during LOP station. The current pointer state is read from TMUX_RLOP[3--1] and TMUX_RPAIS[3--1]. Any changes in pointer condition are read from the delta state bits TMUX_RLOPD[3--1] and TMUX_RPAISD[3--1] (Table 83). The associated interrupt mask bits are TMUX_RLOPM[3--1] (Table 87 on page89 ) and TMUX_RPAISM[3--1] (Table 87). When the device is receiving a concatenated signal (STM-1(AU-3)), the receive concatenation mode register bit, TMUX_RCONCATMODE (Table 95 on page 95), must be set for the concatenation state machines (register bits TMUX_CONCAT_STATE[3--2][1:0] (Table 92 on page92 )) on ports 2 and 3 to contribute to pointer evaluation. This state machine implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996 - Annex B. 17.5.16 Path Monitoring Functions The following sections describe the path monitoring functions. For STM-1 signals, the values corresponding to STS-1 #1 are the relevant signals. For STS-3 input data, there are three versions of each path monitor, one corresponding to each STS-1. The mode bits are applied to the monitors of all three STS-1s. J1 Monitor. J1 (path trace) monitoring has six different monitoring modes controlled by TMUX_J1MONMODE[2:0] (Table 95 on page95 ). The J1 monitoring mode for all three STS-1s within an STS-3 signal is the same. TMUX_J1MONMODE[2:0] = 000: The TMUX latches the value of the J1 byte every frame for a total of 64 bytes in TMUX_J1DMON[1--3][1--64][7:0] (Table 137 on page122 , Table 138, and Table 139). The TMUX compares the incoming J1 byte with the next expected value (the expected value is obtained by cycling through the previous stored 64 received bytes in round-robin fashion) and setting the path trace identifier state register bit(s), TMUX_RTIMP[1--3] (Table 92 on page92 ), if different. Any change to the path trace identifier is reported in TMUX_RTIMPD[1--3] (Table 83), with interrupt mask bits, TMUX_RTIMPM[1--3] (Table 87 on page89 ). TMUX_J1MONMODE[2:0] = 001: This is the SONET framing mode. The hardware looks for the 0x0A character to indicate that the next byte is the first byte of the path trace message. The J1 byte message is continuously written into registers, TMUX_J1DMON[1--3][1--64][7:0], with the first byte residing at the first address. If any received byte does not match the previously received byte for its location, then the state bit(s), TMUX_RTIMP[1--3], is set. Any change to the path trace identifier is reported in TMUX_RTIMPD[1--3], with interrupt masks bits, TMUX_RTIMPM[1--3]. TMUX_J1MONMODE[2:0] = 010: This is the SDH framing mode. The hardware looks for the byte with the MSB set to one, which indicates that the next byte is the second byte of the message. The rest of operation is the same as in SONET framing mode, except that there are 16 bytes instead of 64. TMUX_J1MONMODE[2:0] = 011: A new J1 byte (TMUX_J1DMON[1][7:0]) will be detected after a number of consecutive consistent occurrences of a new pattern (determined by the value in TMUX_CNTDJ1[3:0] (Table 99 on pag e99)) in the J1 overhead byte. Any changes to this byte must be reported in TMUX_RTIMPD[1--3], with the interrupt mask bits, TMUX_RTIMPM[1--3]. The delta bit(s) in this mode indicate a change in state for the TMUX_J1DMON[1][7:0] byte, and the state bits, TMUX_RTIMP[1--3], are not used. Agere Systems Inc. 377 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) TMUX_J1MONMODE[1:0] = 100: The user will program the 64 expected values of J1 in TMUX_EXPJ1DMON[1--3][1--64][7:0] (Table 134 on page122 , Table 135, and Table 136), in SONET framing mode, where the first expected byte, the byte following the 0x0A character, is written into the first location of TMUX_EXPJ1DMON[1][7:0]. The TMUX will compare the incoming J1 sequence with the stored expected value, setting the path trace identifier state bit(s), TMUX_RTIMP[1--3] if they are different. Any change to the path trace identifier is reported in TMUX_RTIMPD[1--3], with interrupt mask bits, TMUX_RTIMPM[1--3]. TMUX_J1MONMODE[1:0] = 101: The user will program the 16 expected values of J1 in EXPJ1DMON[1--16][7:0] in SDH framing mode, where the first byte of the message has the MSB set to 1. The TMUX compares the incoming J1 sequence with the stored expected value, setting the state register bit(s), TMUX_RTIMP[1--3], if they are different. Any change to path trace identifier is reported in register bits, TMUX_RTIMPD[1--3], with interrupt mask bits, TMUX_RTIMPM[1--3]. TMUX_J1MONMODE[1:0] = 110 and 111 are currently undefined. B3 BIP-8 Check. A B3 BIP-8 even parity is computed over all the incoming synchronous payload envelope bits of the STS-3/STM-1/STS-1 signal after descrambling, and compared to the B3 byte received in the next frame. The total number of B3 BIP-8 bit errors (raw count), or block errors (as determined by TMUX_BITBLKB3 (Table 95 on page 95), is counted. Upon the configured performance monitor (PM) interval, the value of the internal running counter is placed into holding registers TMUX_B3ECNT[1--3][15:0] (Table 126 on page119 ) and then cleared. Depending on the value of SMPR_SAT_ROLLOVER (Table 67 on pa ge68) in the microprocessor interface block, the internal counter will either roll over or stay at its maximum value until cleared. Signal Label C2 Byte Monitor. The C2 byte per STS-1/STM-1 is stored in TMUX_C2MON[1--3][7:0] (Table 104 on page101 ). Each register will be updated after a number, determined by the value in TMUX_CNTDC2[3:0] (Table 99 on pag e99), of consecutive frames of identical C2 bytes for a given STS-1/STM-1, i.e., the 8-bit pattern must be identical for a programmed number frames prior to updating the C2 register. Any change to C2 byte monitor is reported via the corresponding delta and mask register bits, TMUX_RC2MOND[1--3] (Table 83) and TMUX_RC2MONM[1--3] (Table 87 on pag e89). In addition, there are programmable expected value(s) for the C2 bytes of each STS-1/STM-1 in TMUX_C2EXP[1--3][7:0] (Table 100 on page100 ). If the current value of a C2 byte in TMUX_C2MON[1--3][7:0] does not equal the expected C2 value in TMUX_C2EXP[1--3][7:0]), then a payload label mismatch defect may be declared for that STS-1/STM-1 in TMUX_RPLMP[1--3] (Table 92 on page92 ). Also, if the current value of a C2 byte is all 0s, then the corresponding unequipped defect is declared in TMUX_RUNEQP[1--3] ( Table 92). Note: The payload label mismatch and unequipped defects are mutually exclusive and unequipped takes priority. The following table describes the conditions for generating payload label mismatch (TMUX_RPLMP[1--3]) and unequipped defects (TMUX_RUNEQP). 378 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) Table 524. STS Signal Label Defect Conditions Provisioned STS PTE Functionality, Expected C2 Any Equipped Functionality Any Equipped Functionality Equipped--Nonspecific Any Payload Specific Code Any Payload Specific Code Equipped--Nonspecific (01) or VT-Structured STS-1 (02) Any Payload Specific Code Except VT-Structured STS-1 (02) Any Equipped Functionality Any Equipped Functionality Received Payload Label (C2 in hex) Unequipped (00) Equipped--Nonspecific (01) Any Value (02 to E0, FD to FE) The Same Payload Specific Code (02 to E0, FD to FE) A Different Payload Specific Code (02 to E0, FD to FE) PDI, 1 to 27 VTx Defects (E1 to FB) PDI, 1 to 27 VTx Defects (E1 to FB) PDI, 28 VT1.5 Defects or 1 Non-VT Payload Defect (FC) Reserved (FF) Defect TMUX_FORCEC2DEF = 1 (Table 97) TMUX_RUNEQP No Change None No Change None No Change None No Change TMUX_RPLMP No Change None TMUX_RPLMP TMUX_RPLMP No Change None TMUX_RPLMP None TMUX_RPLMP TMUX_FORCEC2DEF[2:0] will force path payload label mismatch defects on those conditions that are shown on in Table 524 above. The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state. RDI-P Detection. A remote defect indication-path (RDI-P) signal indicates to STS path terminating equipment (PTE) that its peer STS PTE has detected a defect on the signal that it originated. The TMUX supports a 1-bit RDI-P code as well as a 3-bit enhanced RDI-P code; the mode is selectable using the TMUX_REPRDI_MODE (Table 95 on page95 ). If TMUX_REPRDI_MODE = 0, then the 1-bit code is supported, and if TMUX_REPRDI_MODE = 1, then the 3-bit enhanced path RDI code is supported. The TMUX monitors for a 1-bit RDI-P code in G1[3] or a 3-bit enhanced remote defect indication (RDI-P) condition in G1[3:1]. The current value of the path RDI state will be detected after a number of consecutive occurrences determined by the value in TMUX_CNTDRDIP[3:0] (Table 99 on page 99). The current value(s) will be stored in TMUX_RDIPMON[1--3][2:0]] (Table 104 on page 101), for nonenhanced RDI-P mode, and the current value(s) will be stored in TMUX_RDIPMON[1--3][2:0], for enhanced RDI-P mode. Any change to TMUX_RDIPMON[1--3][2:0] will be reported in TMUX_RRDIPD[1--3] with interrupt mask bits,TMUX_RRDIPM[1--3] (Table 87 on page89 ). The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state. REI-P Detection. Bits [7:4] of the G1 byte are allocated for use as a path remote error indication function (REI-P). For STS-1 and STM-1 signals, bits [7:4] of the G1 byte are allocated for REI-P which conveys the error count detected by the PTE (using the path BIP-8 code B3) back to its peer PTE as shown in Table 525. Agere Systems Inc. 379 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) Table 525. STS-1 P-REI Interpretation G1[7:4] Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 ... 1111 Code Interpretation 0 (no errors) 1 2 3 4 5 6 7 8 0 (no errors) ... 0 (no errors) The TMUX allows access to the G1-REI errored bit count for each STS-1/STM-1 in TMUX_G1ECNT[1--3][15:0] (Table 128 on page 120), which is the accumulated error count from G1[3:0] byte of the STS-1/STM-1 signal. The counter(s) will count in bit or block mode, depending on the value of TMUX_BITBLKG1 (Table 95 on page95 ). Upon the configured performance monitor (PM) interval, the value of the internal running counter is placed into the holding registers TMUX_G1ECNT[1--3][15:0] and then cleared. Depending on the value of SMPR_SAT_ROLLOVER (Table 67 on pag e68) in the microprocessor interface block, the internal counter will either roll over or stay at its maximum value until cleared. Path User Byte F2 Monitor. The TMUX monitors the path user channel in the F2 byte of each STS-1/STM-1. The F2 byte(s) will be stored in TMUX_F2MON0[1--3][7:0] (Table 104, starting on page 101). Each register will be updated after a number of consecutive frames of identical F2[7:0] as determined by the value in TMUX_CNTDF2[3:0] (Table 99 on page 99). That is, the 8-bit pattern must be identical for the programmed number of frames prior to updating the F2 register. Any change to F2 monitor registers will be reported in TMUX_RF2MOND[1--3] (Table 83), with interrupt mask bits, TMUX_RF2MONM[1--3] (Table 87 on page89 ). The TMUX also maintains a history of the previous valid F2 byte in TMUX_F2MON1[1--3][7:0] (Table 104). The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state. H4 Multiframe Indicator. The H4 byte is allocated for use as a mapping specific indicator byte. For VT-structured SPEs, this byte is used as a multiframe indicator. The TMUX passes the H4 byte of each STS-1 onto the low-speed telecom bus so that it can be monitored by the VT mapper block. The TMUX also indicates when the H4 byte(s) has a value of 0x01 by asserting the RLSV1 output pin (pin number W4) on the telecom bus during that frame. Note: The three H4 bytes of an STS-3 signal can occur at any time with respect to one another within a frame. Path User Byte F3 Monitor. The TMUX monitors the second path user channel in the F3 byte for each STS-1/STM-1. The F3 byte(s) for each STS-1/STM-1 is stored in TMUX_F3MON0[1--3][7:0] (Table 104 on page 101). Each register will be updated after a number determined by the value in TMUX_CNTDF3[3:0] (Table 99 on pag e99) of consecutive frames of identical F3[7:0] monitor bytes on that particular STS-1. That is, the 8-bit pattern must be identical for the programmed number of frames prior to updating the F3 register. 380 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) Any change to F3 byte monitor registers is reported in TMUX_RF3MOND[1--3] (Table 83), with interrupt mask bits, TMUX_RF3MONM[1--3] (Table 87 on page89 ). The TMUX also maintains a history of the previous valid F3 byte in TMUX_F3MON1[1--3][7:0] (Table 104 on page 101). The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state. K3 Byte Monitor. The TMUX monitors the K3 byte for each STS-1/STM-1. The K3 byte(s) are stored in TMUX_K3MON[1--3][7:0] (Table 104). Each register will be updated after a number determined by the value in TMUX_CNTDK3[3:0] (Table 99 on page99 ) of consecutive frames of identical K3[7:0] for that particular STS-1/STM-1. That is, the 8-bit pattern must be identical for a number of frames prior to updating the K3 register. Any change to K3 monitor registers is reported in TMUX_RK3MOND[1--3] (Table 83), with interrupt mask bits, TMUX_RK3MONM[1--3] (Table 87 on page89 ). The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state. N1 Byte Monitor. The TMUX monitors the N1 byte for each STS-1/STM-1. The N1 byte(s) are stored in TMUX_N1MON[1--3][7:0] (Table 104 on page101 ). Each register will be updated after a number determined by the value in TMUX_CNTDN1[3:0] (Table 99 on page 99) of consecutive frames of identical N1[7:0] for that particular STS-1/STM-1. That is, the 8-bit pattern must be identical for a number of frames prior to updating the N1 register. Any change to N1 monitor registers will be reported in TMUX_RN1MOND[1--3] (Table 83), with interrupt mask bits, TMUX_RN1MONM[1--3] (Table 87 on page89 ). The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state. Signal Degrade BER Algorithm. A signal degrade state in register bit TMUX_RHSSD (Table 91 on page 92) and change of state indication is reported in register bit, TMUX_RHSSDD (Table 82, starting on page79 ), with the interrupt mask bit, TMUX_RHSSDM (Table 87 on page 89). This bit error rate algorithm can operate on either B1 or B2 errors, determined by the value of TMUX_SDB1B2SEL (Table 95 on page95 ). Each B3 monitor has an independent signal degrade function as well in TMUX_RSDB3[1--3] (Table 92 on page92 ). Declaring the signal degrade state requires the definition of two measurement windows, a monitoring block consisting of a number of frames in TMUX_SDNSSET[18:0] (Table 120 on page116 ) and a measurement interval consisting of a number of monitoring blocks in TMUX_SDBSET[11:0] (Table 120). A block is determined bad when the number of bit errors equals or exceeds a threshold set in TMUX_SDLSET[3:0] (Table 120). Signal degrade is declared when a number of bad monitoring blocks equals or exceeds the threshold in TMUX_SDMSET[7:0] (Table 526) for the measurement interval. Clearing the signal degrade state requires the definition of two measurement windows, a monitoring block consisting of a number of frames in TMUX_SDNSCLEAR[18:0] (Table 120) and a measurement interval consisting of a number of monitoring blocks in TMUX_SDBCLEAR[11:0] (Table 120). A block is determined good when the number of bit errors is less than a threshold set in TMUX_SDLCLEAR[3:0] (Table 120). Signal degrade is cleared when a number of good monitoring blocks equals or exceeds the threshold in TMUX_SDMCLEAR[7:0] (Table 120) for the measurement interval. The set parameters are used when the signal degrade state is clear, and the clear parameters are used when the signal degrade state is declared. The signal degrade state may be forced to the declared state with TMUX_SDSET (Table 78 on page 77) and forced to the cleared state with TMUX_SDCLEAR (Table 78). One shot signal must be provided to force the BER algorithm into the failed state or normal state, respectively. The algorithm described above can detect bit error rates from 1 x 10-3 to 1 x 10-9. Agere Systems Inc. 381 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) Table 526. Signal Degrade (SD) Parameters Name TMUX_SDNSSET[18:0] (Table 120) TMUX_SDLSET[3:0] (Table 120) Function Signal Degrade Ns Set. Number of frames in a monitoring block for SD. Signal Degrade L Set. Error threshold for determining if a monitoring block is bad. TMUX_SDMSET[7:0] (Table 120) Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. TMUX_SDBSET[15:0] (Table 120) Signal Degrade B Set. Number of monitoring blocks in a measurement interval. TMUX_SDNSCLEAR[18:0] Signal Degrade Ns Clear. Number of frames in a monitoring block for (Table 120) SD. TMUX_SDLCLEAR[3:0] (Table 120) Signal Degrade L Clear. Error threshold for determining if a monitoring block is bad. TMUX_SDMCLEAR[7:0] (Table 120) Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. TMUX_SDBCLEAR[15:0] (Table 120) Signal Degrade B Clear. Number of monitoring blocks in a measurement interval. TMUX_SDSET (Table 78) Signal Degrade Set. Allows the signal degrade algorithm to be forced into the failed state (active 0 to 1). TMUX_SDCLEAR (Table 78) Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state (active 0 to 1). TMUX_SDB1B2SEL (Table 95) Signal Degrade B1/B2 Error Count Select. Control bit, when set to a logic 0, causes the signal fail bit error rate algorithm to use B1 errors; otherwise, B2 errors are used to calculate the error rate. TMUX_RHSSD (Table 91) Signal Degrade BER Algorithm State Bit. TMUX_RHSSDD (Table 82) Signal Degrade BER Algorithm Delta Bit. TMUX_RHSSDM (Table 86) Signal Degrade BER Algorithm Mask Bit. Note: The thresholds written by the control system will be one less than the desired number, except for the TMUX_SDLSET[3:0] and TMUX_SDLCLEAR[3:0] parameters. Signal Fail BER Algorithm. A signal degrade state in register bit TMUX_RHSSF (Table 91) and change of state indication is reported in register bit, TMUX_RHSSFD (Table 82, starting on page79 ), with the interrupt mask bit, TMUX_RHSSFM (Table 86 on page88 ). This bit error rate algorithm can operate on either B1 or B2 errors selected with register bit, TMUX_SDB1B2SEL (Table 95 on pag e95). Each B3 monitor has its own bit error rate algorithm as well with the failure indicated in TMUX_RSFB3[1--3] (Table 92 on pag e92). Declaring the signal degrade state requires the definition of two measurement windows, a monitoring block consisting of a number of frames in TMUX_SFNSSET[18:0] (Table 121 on page117 ) and a measurement interval consisting of a number of monitoring blocks in TMUX_SFBSET[11:0] (Table 121). A block is determined bad when the number of bit errors equals or exceeds a threshold set in TMUX_SFLSET[3:0] (Table 121). Signal degrade is declared when a number of bad monitoring blocks equals or exceeds the threshold in TMUX_SFMSET[7:0] (Table 121) for the measurement interval. Clearing the signal degrade state requires the definition of two measurement windows, a monitoring block consisting of a number of frames in TMUX_SFNSCLEAR[18:0] (Table 121) and a measurement interval consisting of a number of monitoring blocks in TMUX_SFBCLEAR[11:0] (Table 121). A block is determined good when the number of bit errors is less than a threshold set in TMUX_SFLCLEAR[3:0] (Table 121). 382 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) Signal degrade is cleared when a number of good monitoring blocks equals or exceeds the threshold in TMUX_SFMCLEAR[7:0] (Table 121) for the measurement interval. The set parameters are used when the signal fail state is clear, and the clear parameters are used when the signal fail state is declared. The signal degrade state may be forced to the declared state with TMUX_SFSET (Table 78) and forced to the cleared state with TMUX_SFCLEAR (Table 78). One shot signal must be provided to force the BER algorithm into the failed state or normal state, respectively. The above algorithm can detect bit error rates from 1 x 10 -3 to 1 x 10 -9. Table 527. Signal Fail Parameters Name TMUX_SFNSSET[18:0] (Table 121) TMUX_SFLSET[3:0] (Table 121) TMUX_SFMSET[7:0] (Table 121) TMUX_SFBSET[15:0] (Table 121) TMUX_SFNSCLEAR[18:0] (Table 121) TMUX_SFLCLEAR[3:0] (Table 121) Function Signal Fail Ns Set. Number of frames in a monitoring block for SF. Signal Fail L Set. Error threshold for determining if a monitoring block is bad. Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. Signal Fail B Set. Number of monitoring blocks. Signal Fail Ns Clear. Number of frames in a monitoring block for SF. Signal Fail L Clear. Error threshold for determining if a monitoring block is bad. TMUX_SFMCLEAR[7:0] (Table 121) Signal Fail M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. TMUX_SFBCLEAR[15:0] (Table 121) Signal Fail B Clear. Number of monitoring blocks. TMUX_SFB1B2SEL (Table 95) Signal Fail B1/B2 Error Count Select. Control bit, when set to a logic 0, causes the signal fail bit error rate algorithm to use B1 errors; when set to a logic 1, causes the signal fail bit error rate algorithm to use B2 errors. TMUX_SFSET (Table 78) Signal Fail Set. Allows the signal degrade algorithm to be forced into the failed state (active 0 to 1). TMUX_SFCLEAR (Table 78) Signal Fail Clear. Allows the signal degrade algorithm to be forced into the normal state. (active 0 to 1). TMUX_RHSSF (Table 91) Signal Fail BER Algorithm State Bit. TMUX_RHSSFD (Table 82) Signal Fail BER Algorithm Delta Bit. TMUX_RHSSFM (Table 86) Signal Fail BER Algorithm Mask Bit. Note: The thresholds written by the control system will be one less than the desired number, except for the TMUX_SFLSET[3:0] and TMUX_SFLCLEAR[3:0] parameters. Agere Systems Inc. 383 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) Table 528. Signal Fail or Signal Degrade Recommended Programming Values Set Threshold 1x10-3 1x10-4 1x10-5 1x10-6 1x10-7 1x10-8 1x10-9 NsSet LSet MSet BSet 0x00001 0x00006 0x00030 0x001E0 0x01275 0x0B5A4 0x3F7A0 0x5 0x8 0x6 0x6 0x6 0x6 0x4 0x3D 0x03 0x03 0x03 0x04 0x04 0x05 0x003D 0x0007 0x0007 0x0007 0x0009 0x0009 0x0013 Clear Threshold 1x10-4 1x10-5 1x10-6 1x10-7 1x10-8 1x10-9 1x10-10 NsClear LClear MClear BClear 0x00001 0x00006 0x00030 0x001E0 0x01275 0x0B5A4 0x3F7A0 0x6 0x2 0x2 0x2 0x2 0x2 0x2 0x03 0x03 0x03 0x03 0x04 0x03 0x02 0x0007 0x0007 0x0007 0x0007 0x0009 0x0009 0x000F Path Overhead Access Channel (POAC) Drop. The TMUX provides one path overhead access channel (POAC output channel). The TMUX can receive up to three STS-1 signals. There are two register bits, TMUX_RPOAC_SEL[1:0] (Table 118 on page 115), to designate which STS-1s POH will be dropped onto the POAC channel. TMUX_RPOAC_SEL[1:0] = 01 designates STS-1 #1, TMUX_RPOAC_SEL[1:0] = 10 designates STS-1 #2, and TMUX_RPOAC_SEL[1:0] = 11 designates STS-1 #3. TMUX_RPOAC_SEL[1:0] = 00 designates that the RPOAC channel is not driven by the TMUX. The POAC channel consists of the following signals: A 576 kHz inverted clock signal sourced by the TMUX (RPOACCLK, pin AE3). A 576 kbits/s data signal sourced by the TMUX (RPOACDATA, pin AD4). An 8 kHz synchronization signal, sourced by the TMUX (RPOACSYNC, pin AF4). The sync signal is normally low. During the last clock period of each frame coincident with the least significant bit of the last byte, the sync signal is high. The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first. The MSB of the second byte of each frame contains an odd/even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. Bytes shown in Table 529 summarize the access capabilities of the receive POAC. Table 529. Path Overhead Byte Access J1 POH Parity C2 G1 F2 H4 F3 K3 N1 Even or odd parity can be inserted into the first bit of the MSB byte of the POAC outgoing frame. Parity is selected with TMUX_RPOAC_OEPINS (Table 118 on page115 ). AIS-P Insertion and AUTO_AISO Generation. Upon detecting certain failure conditions, the TMUX asserts the external output signals named AUTO_AIS[1--3] (pins AD6, AE6, and AC6). The AUTO_AIS[1--3] signals, one per STS-1, also informs the other blocks within the Super Mapper to insert AIS downstream due to detected failures. The following conditions can cause AUTO_AISO[1--3] signals to be asserted: line AIS, LOC (STS-1 mode only), LOS, LOF, OOF, LOP-P, SF (B1, B2, or B3), SD (B1, B2, or B3), payload label mismatch, or payload unequipped. Each condition can be individually inhibited from contributing to the internal AUTO_AISO[1--3] signals. For concatenated signals (STS-3c or STM-1), all AUTO_AISO[1--3] signals should be driven coincidentally. In STS-3 mode, each STS-1 signal has a corresponding AUTO_AISO signal. 384 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) The following boolean expression is the criteria for AUTO_AIS and send path AIS. The expressions represent combinations of signal status states register bits and inhibit state register bits that form the criteria. Criteria for AUTO_AISO = ((TMUX_RLAISMON AND TMUX_RLAISMON_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RILOC AND TMUX_RILOC_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RHSLOS AND TMUX_RHSLOS_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RHSLOF AND TMUX_RHSLOF_AISINH) OR (TMUX_RHSOOF AND TMUX_RHSOOF_AISINH) OR (TMUX_RLOP AND TMUX_RLOP_AISINH) OR (TMUX_RHSSF AND TMUX_RHSSF_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RHSSD AND TMUX_RHSSD_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RSFB3 AND TMUX_RSFB3_AISINH) OR (TMUX_RSDB3 AND TMUX_RSDB3_AISINH) OR (TMUX_RPLMP AND TMUX_RHPLMP_AISINH) OR (TMUX_RUNEQP AND TMUX_RUNEQP_AISINH) OR (TMUX_RTIMP AND TMUX_RTIMP_AISINH) OR (TMUX_RPAIS_INS)) In addition to generating the external AUTO_AIS signal, the TMUX can insert path AIS into the received signal prior to driving it onto the low-speed telecom bus. The conditions for sending path AIS include some of the above conditions. The same inhibit bits are used as above. Note that the above AUTO_AISO[1--3] signal generation is on a per STS-1 basis, while sending path AIS occurs on the complete STS-3/STM-1 signal (or STS-1 for STS-1 only mode). Criteria for Send Path AIS = ((TMUX_RLAISMON AND TMUX_RLAISMON_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RHSLOS AND TMUX_RHSLOS_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RHSLOF AND TMUX_RHSLOF_AISINH) OR (TMUX_RHSOOF AND TMUX_RHSOOF_AISINH) OR (TMUX_RLOP AND TMUX_RLOP_AISINH) OR (TMUX_RHSSF AND TMUX_RHSSF_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RHSSD AND TMUX_RHSSD_AISINH AND TMUX_RPSMUXSEL) OR (TMUX_RPAIS_INS)) Receive Side Telecom Bus Interface. The TMUX outputs one parallel clock (RLSCLK, pin V4), three sync signals (RLSSPE, RLSJ0J1V1, and RLSV1; pin numbers V1, V3, and W4), an 8-bit data bus (RLSDATA[7:0], pins R1, R3, T4, T2, T3, U4, U2, and U3), and an odd/even (RLSPAR, pin V2) parity signal. The data bus carries either three STS-1/TUG-3 signals, each in their own time slot, or it carries one STS-1 signal where the parallel clock operates at 6.48 MHz instead of 19.44 MHz. RLSCLK RLSSPE RLSJ0J1V1 RLSV1 A1 RLSDATA[7:0] A2 J0 J1 V1 A1-1 A1-2 A1-3 A2-1 A2-2 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3 3 BYTES 3 BYTES 3 BYTES 3 BYTES 3 BYTES 5-9008(F) Figure 27. Receive Low-Speed Bus Interface Signals for STS-3/STM-1 Signals Agere Systems Inc. 385 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) 17.6 Transmit Direction (Transmit Path to SONET/SDH Line) All functions supported by TMUX in the transmit direction are summarized below: Transmit side telecom bus interface Path overhead access channel (POAC) insert Path overhead insertion functions MSP 1 + 1 payload switch Transport overhead access channel (TOAC) insert Section and line overhead insertion functions 17.6.1 Transmit Side Telecom Bus Interface The TMUX transmit side drives a parallel clock (TLSCLK, pin AA2) and three sync signals (TLSSPE, TLSJ0J1V1, and TLSV1; pins AB2, AB4, and AB3) onto the telecom bus. From these sync signals, the SPE mappers can determine when to drive data onto the bus. The TMUX receives an 8-bit data bus (TLSDATA[7:0], pins W2, W1, W3, Y4, Y2, Y1, Y3, and AA4), and an odd/even (TLSPAR, pin AA3) parity signal from the telecom bus. The data consists of the SPE for up to 3 STS-1s. The parallel clock operates at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode. TLSCLK TLSSPE TLSJ0J1V1 TLSV1 A1 TLSDATA[7:0] A2 J0 J1 V1 A1-1 A1-2 A1-3 A2-1 A2-2 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3 3 BYTES 3 BYTES 3 BYTES 3 BYTES 3 BYTES 5-9009(F) Figure 28. Transmit Low-Speed Bus Interface Signals for STS-3/STM-1 Signals 17.6.2 Transmit Path and Transport Overhead Insertion Diagram The transmit block consists of two overhead insertion sections. The first section inserts the path overhead (POH) bytes into the payload data to create an STS-3/STM-1/STS-1 SPE. After POH insertion, there is an MSP 1 + 1 protection switch on the payload. After the switch selection is made, the transport overhead bytes are added to the SPE to generate a complete SONET/SDH frame. 386 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) TRANSMIT PATH TO SONET/SDH LINE (TRANSMIT DIRECTION) TRANSMIT DATA INSERT J0 SCRAM. A1/A2 INSERT SECTION/RSOH B1 B1 GENERATE INSERT AIS MSOH INSERT LINE/MSOH F1 B2 B2 GENERATE F1 INSERT B1, E1, F1, D1--3 INSERT POAC INSERT F2, F3, C2, N1, AND J1 K3 APS INSERT J1 K3 K2 [2:0] K1/K2 APS RDI-L INSERT M0 M0 REI-L S1 SYNC STATUS TOAC INSERT D4--D12 AND E2 MSP 1+1 SWITCH INSERT AIS-P B3 INSERT INSERT J1 K1 K2 TRANSMIT PROTECTION SWITCH BUS DATA B3 GENERATE G1 RDI-P INSERT G1 REI-P INSERT INSERT N1 INSERT C2 INSERT F3 G1 G1 N1 C2 F3 INSERT F2 F2 INSERT H4 H4 TELECOM BUS INSERT PATH OVERHEAD BYTES 5-9010(F)r.2 Figure 29. Transmit Direction POH and TOH Insertion Diagram The first section, which is the path overhead section, is broken down into the following functional parts: J1 path trace insert B3 calculation and insert C2 signal label insert REI-P and RDI-P insert Path user byte F2 insert H4 multiframe insert Path user byte F3 insert K3 insert Tandem connection byte N1 insert AIS-P Insert Agere Systems Inc. 387 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) The second section after the switch, the transport overhead section, is broken down into the following functional parts: TOAC insert Sync status byte (S1) insert M0/M1--REI-L Insert K1 and K2 insert AIS-L insert B2 calculation and insert F1 byte insert B1 generate and error insert Scrambler J0 insert control A2 error insert All insert control functions that are inhibited will insert all zeros or all ones, depending on the value of microprocessor register bit, SMPR_OH_DEFLT (Table 67 on pag e68). 17.6.3 POAC Insert One path overhead access channel (POAC) is provided on-chip to provision the path overhead (POH) portion of the outgoing frame. The TMUX transmits up to three STS-1s. The register bits TMUX_TPOAC_SEL[1:0] (Table 118 on page115 ) designate which STS-1s POH is inserted from the transmit POAC channel. TMUX_TPOAC_SEL[1:0] = 00 designates no TMUX_TPOAC insertion, TMUX_TPOAC_SEL[1:0] = 01 designates STS-1 #1, TMUX_TPOAC_SEL[1:0] = 10 designates STS-1 #2, and TMUX_TPOAC_SEL[1:0] = 11 designates STS-1 #3. A POAC channel consists of the following signals: A 576 kHz inverted clock signal sourced by the TMUX (TPOACCLK, pin AE4). A 576 kbits/s serial data signal received by the TMUX in the transmit direction (TPOACDATA, pin AD5). An 8 kHz synchronization signal (TPOACSYNC, pin AC5), sourced by the TMUX. The sync signal is normally low. During the last clock period of each frame, coincident with the least significant bit of the eighth byte, the sync signal is high. The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. The B3, G1, and H4 transmit path overhead bytes are not provisionable via the POAC channel. Bytes shown in Table 530 summarize the access capabilities of the transmit POAC channel. X indicates a don't care. Table 530. Path Overhead Byte Access--Transmit Direction 388 J1 X F3 POH Parity F2 K3 C2 X N1 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) An event indication TMUX_TPOAC_PE (Table 80 on page78 ), interrupt mask bit TMUX_TPOAC_PM (Table 84 on page 87), is provided to indicate parity errors for the POAC channel. Odd (logic 0)/even (logic 1) parity is checked and is configured with TMUX_TPOAC_OEPMON (Table 117 on page113 ). Table 531 summarizes the insertion options for the specified overhead bytes for POAC. The TMUX allows a fixed default value (all zeros or all ones) to be inserted on the corresponding POAC value. All control signals are activehigh. Table 531. TPOAC Control Bits Overhead Bytes Register Control Bits J1 TMUX_TPOAC_J1 (Table 118) C2 TMUX_TPOAC_C2 (Table 118) F2 TMUX_TPOAC_F2 (Table 118) F3 TMUX_TPOAC_F3 (Table 118) K3 TMUX_TPOAC_K3 (Table 118) N1 TMUX_TPOAC_N1 (Table 118) Values 0 (Default Value) 1 SMPR_OH_DEFLT (00000000/11111111) TPOAC Data 17.6.4 AIS Path Generation Path AIS is specified as all ones in the entire STS-1 signal before scrambling, excluding the transport overhead (section and line overhead). Path AIS can be inserted for each STS-1 in the STS-3 using register bits, TMUX_TLS_PAISINS[3:1] (Table 105 on page 102). 17.6.5 J1 Insert Control A 64-byte sequence stored in TMUX_TJ1DINS[1--3][1--64][7:0] (Table 140 on page123 , Table 141, and Table 142), will be inserted into the outgoing J1 byte if TMUX_THSJ1INS (Table 108 on page105 ) is set to 1. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_J1 (Table 118 on page 115) is a logic 1, or the default value is inserted when TMUX_TPOAC_J1 is logic 0. 17.6.6 B3 BIP-8 Calculation and Insert The B3 bytes are allocated for a path overhead error monitoring function. This function will be a bit interleaved parity 8 code (BIP-8) using even parity. The BIP-8 is computed before scrambling over all bits of the previous STS-1 frame except for the first three columns consisting of the section and line overhead and is placed in byte B3 of the current frame, also before scrambling. A bit error rate can be inserted on any B3 byte with TMUX_THSB3ERRINS[1--3] ( Table 115 on page112 ) and microprocessor interface block SMPR_BER_INSRT (Table 65 on page 66) bit. When TMUX_THSB3ERRINS[1--3] is asserted, the corresponding B3 byte is inverted each time the SMPR_BER_INSRT bit is asserted. 17.6.7 C2 Signal Label Byte Insert When TMUX_THSC2INS[1--3] = 1 (Table 108 on page 105), the value in TMUX_TC2INS[1--3][7:0] (Table 124 on page 118) is inserted into the C2 byte of the outgoing signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_C2 = 1 (Table 118 on page115 ). If both TMUX_THSC2INS and TMUX_TPOAC_C2 = 0, then the value inserted depends on the microprocessor interface block, SMPR_OH_DEFLT (Table 67 on page68 ) bit value. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. Agere Systems Inc. 389 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) 17.6.8 Path RDI (RDI-P) Insert When TMUX_THSRDIPINS = 1 (Table 108 on page 105), then data from TMUX_TRDIPINS[1--3][2:0] (Table 114 on page110 ) is written into the corresponding three STS-1 G1 byte output bits (G1[3:1]). For STS-3 mode, each STS-1 signal carries its own G1 value. For STM-1 mode, only TMUX_TRDIPINS1[2:0] is written into the first STS-1 location. When TMUX_THSRDIPINS = 0, hardware insert is enabled for RDI-P insertion. Each defect contribution to the RDI-P outgoing code can be inhibited. There are two modes supported for path RDI insertion. One mode conforms to the earlier one-bit version of the standard. The other mode, enhanced RDI-P mode, uses a 3-bit RDI-P code and conforms to the current version of the standard. When TMUX_TEPRDI_MODE = 0 (Table 110 on page 109), the TMUX sends a 3-bit code that conforms to the earlier 1-bit version of the standards. If TMUX_TEPRDI_MODE = 1, the TMUX will send a 3-bit code conforming to the current enhanced path RDI encoding. Note that for non-enhanced RDI-P mode, the relevant defects are AIS-P and LOP-P. For enhanced RDI-P mode, the relevant defects are AIS-P, LOP-P, PLM-P, and UNEQ-P. When a failure condition exists that will cause RDI-P to be generated via hardware, the generation of RDI-P must last for at least 20 frames before clearing, even if the original failure cause has cleared in less than 20 frames. Table 532 describes the encoding of the path RDI defects. Table 532. RDI-P Defects for Enhanced RDI-P Mode Bit 3 0 0 0 0 1 1 1 1 G1 Bit 2 0 0 1 1 0 0 1 1 Triggers Bit 1 0 1 0 1 0 1 0 1 No defects (nonenhanced RDI-P mode). No defects (enhanced RDI-P mode). LCD-P, PLM-P (LCD-P not supported in Super Mapper). No defects (nonenhanced RDI-P mode). AIS-P, LOP-P (nonenhanced RDI-P mode). AIS-P, LOP-P (enhanced RDI-P mode). TIM-P, UNEQ-P (enhanced RDI-P mode). AIS-P, LOP-P (nonenhanced RDI-P mode). The TMUX provides a protection switch MUX for RDI-P insertion. The MUX is controlled by TMUX_TPREIRDISEL (Table 107 on page 103). If TMUX_TPREIRDISEL = 1, then the RDI-P value for insertion is taken from the value on the protection board rather than from the receive side of the same TMUX. 17.6.9 REI-P: G1(7:4) Insert Four bits of the G1 byte G1(7:4) are allocated for use as path remote error indication (REI). For STS-1 signals and for STM-1 signals, these bits convey the count (in the range of 0 to 8) of interleaved bit blocks that have been detected in error by the BIP-8 (B3) detector on the received signal. The automatic insertion of path REI can be inhibited on an STS-1 basis by programming the corresponding register bits TMUX_TPREIINS[1:3] (Table 115) to 1. For STM-1 mode, only TMUX_TPREIINS[1] is relevant. If the register bit(s) TMUX_TPREIINS[1:3] are programmed to 1, then one error is inserted into the G1 byte for that particular STS-1(s) each time the microprocessor interface block SMPR_BER_INSRT (Table 65 on page66 ) bit is asserted. The TMUX provides a protection switch MUX for REI-P insertion. The MUX is controlled by TMUX_TPREIRDISEL (Table 107 on page 103). If TMUX_TPREIRDISEL = 1, then the REI-P value for insertion is taken from the value on the protection board rather than from the receive side of the same TMUX. 390 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) 17.6.10 F2 Byte Insert When TMUX_THSF2INS = 1 (Table 108 on page 105), the value in TMUX_TF2INS[1--3][7:0] ( Table 114 on page 110) is inserted into the outgoing signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_F2 = 1 (Table 118 on page115 ). If both TMUX_THSF2INS and TMUX_TPOAC_F2 = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on pag e68) bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.11 H4 Insert Control A 4-byte sequence (0, 1, 2, and 3) will be inserted into the outgoing H4 bytes. Note that the assertion of pin TLSV1 (pin AB3) occurs after the J1 byte(s) during the frame where the H4 count equals one. 17.6.12 F3 Byte Insert When TMUX_THSF3INS = 1 (Table 108), the value in TMUX_TF3INS[1--3][7:0] (Table 114 on page110 ) is inserted into the outgoing signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_F3 = 1 (Table 118 on page 115). If both TMUX_THSF3INS and TMUX_TPOAC_F3 = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on page68 ) bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.13 K3 Byte Insert When TMUX_THSK3INS = 1 (Table 108 on page105 ), the value in TMUX_TK3INS[1--3][7:0] (Table 114) is inserted into the outgoing signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_K3 = 1 (Table 118 on page 115). If both TMUX_THSK3INS and TMUX_TPOAC_K3 = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67) bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.14 N1 Byte Insert When TMUX_THSN1INS = 1 (Table 108 on page 105), the value in TMUX_TN1INS[1--3][7:0] (Table 114 on page 110) is inserted into the outgoing signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_N1 = 1 (Table 118). If both TMUX_THSN1INS and TMUX_TPOAC_N1 = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on page68 ) bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.15 MSP 1 + 1 Payload Switch For the working transmit high-speed data output (THSDP/N, pins AF9/AE9), it is possible to select the normal transmit path low-speed data by setting TMUX_TPSMUXSEL2 = 0 (Table 106 on page 103) or the receive-side protection input data by setting TMUX_TPSMUXSEL2 = 1. Note that if the receive-side protection input is selected, then the local clock and frame sync are generated based on the receive-side protection inputs as well. To create the transmit high-speed protection outputs (TPSD155P/N and TPSC155P/N; pins AF13/AE13 and AC12/AD13), it is possible to select the normal transmit path low-speed input data with TMUX_TPSMUXSEL3 = 0 (Table 106 on page 103) or the receive-side working inputs with TMUX_TPSMUXSEL3 = 1. Note: Clocks and timing signals are selected by TMUX_TPSMUXSEL3 as well as the parallel data. 17.6.16 Transmit Transport Overhead Access Channel (TTOAC) The TMUX provides a transmit transport overhead access channel (TTOAC) to provision the TOH portion of the outgoing frame. The TTOAC channel supports three modes of operation based on values in TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE (Table 117 on page113 ). Agere Systems Inc. 391 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) The TTOAC channel consists of the following signals: A data signal received by the TMUX in the transmit direction (TTOACDATA, pin AE2). The data bytes per frame received depend on the values of TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE. See Table 533 below. A clock signal sourced by the TMUX (TTOACCLK, pin AB6). The clock frequency depends on the values of TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE. See Table 533 below. An 8 kHz synchronization signal (TTOACSYNC, pin AF3) is sourced by the TMUX. This sync signal is normally low; during the last clock period of each frame, coincident with the least significant bit of the last byte, the sync signal is high. Table 533. Transmit TOAC Modes TOAC Mode DCC1--DCC3 DCC4--DCC12 Full TOH mode TMUX_TTOAC_ D13MODE Value 1 0 0 TMUX_TTOAC_ D412MODE Value X 1 0 Data Bytes per Frame 3 9 81 Clock Rate 192 kHz 576 kHz 5.184 MHz Transmit TOAC--DCC1 through DCC3 Mode. In this mode, DCC bytes 1 to 3 are received serially on the data pin. The clock rate is 192 kHz. The data bytes are received MSB first, and the sequence of data bytes is DCC1, DCC2, and DCC3. The data signal is partitioned into frames of 3 bytes. The frame repetition rate is 8 kHz. Transmit TOAC--DCC4 through DCC12 Mode. In this mode, DCC bytes 4 to 12 are received serially on the data output. The clock rate is 576 kHz. The data bytes are received MSB first, and the sequence of data bytes is DCC4, DCC5, DCC6, DCC7, DCC8, DCC9, DCC10, DCC11, and DCC12. The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Transmit TOAC--Full TOH Access Mode. In this mode, where TMUX_TTOAC_D13MODE = 0 and TMUX_TTOAC_D412MODE = 0 (Table 117 on page113 ), the data signal (TTOACDATA, pin AE2) is partitioned into frames of 81 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the 648 bits of the previous frame. The remaining 7 bits of this byte are not specified. Bytes shown in Table 534 summarize the access capabilities of the transmit TOAC. This table describes the possible bytes in the outgoing frame that can be provisioned from the values on the TOAC channel. There are additional mode bits described in Table 535 that must be programmed to allow insertion from the TOAC channel. Bytes indicated in bold type below are not specified in the standard, but are available for insertion into the outgoing frame via the register bit, TMUX_TTOAC_AVAIL (Table 117). An X in Table 534 indicates bytes that are don't cares; the values of these bytes in the outgoing transmit frame are not related to the values on the TTOAC channel. Table 534. Transmit Transport Overhead Byte Full Access Mode OH Parity X D1 X X D4 D7 D10 S1 392 X B1-2 D1-2 X X D4-2 D7-2 D10-2 Z1-2 X B1-3 D1-3 X X D4-3 D7-3 D10-3 Z1-3 X E1 D2 X X D5 D8 D11 Z2 X E1-2 D2-2 X K1-2 D5-2 D8-2 D11-2 Z2-2 X E1-3 D2-3 X K1-3 D5-3 D8-3 D11-3 X X F1 D3 X X D6 D9 D12 E2 X F1-2 D3-2 X K2-2 D6-2 D9-2 D12-2 E2-2 X F1-3 D3-3 X K2-3 D6-3 D9-3 D12-3 E2-3 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) Table 535 summarizes the insertion options for the specified overhead bytes for TOAC in full TOH access mode. The TMUX allows a default value (all zeros if microprocessor interface block SMPR_OH_DEFLT = 0 (Table 67 on page 68), and all ones if SMPR_OH_DEFLT = 1) to be inserted on the corresponding TOAC value. All control signals are active-high. Table 535. TTOAC Control Bits in Full Access Mode Overhead Bytes Register Control Bits E1 TMUX_TTOAC_E1 (Table 117) F1 TMUX_TTOAC_F1 (Table 117) D1--D3 TMUX_TTOAC_D1TO3 (Table 117) D4--D12 TMUX_TTOAC_D4TO12 (Table 117) S1 TMUX_TTOAC_S1 (Table 117) E2 TMUX_TTOAC_E2 (Table 117) All remaining bytes in Table 534 TMUX_TTOAC_AVAIL (Table 117) Value of the Register Control Bits 0 (Default Value) 1 SMPR_OH_DEFLT (00000000 or 11111111) TOAC Data An event indication must be provided to indicate parity errors for the TOAC channel. Odd or even parity is checked depending on TMUX_TTOAC_OEPMON (Table 117 on page 113); 0 selects odd parity and 1 selects even parity. A parity error is reported in status register bit TMUX_TTOAC_PE (Table 80 on pag e78), and the interrupt is maskable with TMUX_TTOAC_PM (Table 84 on page87 ). 17.6.17 Sync Status Byte (S1) Insert When TMUX_THSS1INS = 1 (Table 107 on page 103), the value in TMUX_TS1INS[7:0] (Table 112 on page 110) is inserted into the S1 byte of the outgoing signal; otherwise, the associated TOAC value is inserted when TMUX_TTOAC_S1 = 1 (Table 117 on pag e113). If both TMUX_THSS1INS and TMUX_TTOAC_S1 are a logic 0, then the value inserted depends on the value of the microprocessor interface block SMPR_OH_DEFLT (Table 67 on page68 ) bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.18 REI-L: M1 Insert For STS-3/STM-1 modes, the M1 byte is allocated for use as a line remote error indication (REI). For STS-1, bits 0 to 3 of the M0 byte are used. The M0 or M1 bytes convey the count of interleaved bit blocks that have been detected in error by the line BIP-8 (B2) detector on the received signal. This function can be inhibited by asserting TMUX_THSLREIINH (Table 107 on page103 ). A bit error in the M0/M1 byte can be inserted under user control. When TMUX_TLREIINS (Table 115 on page112 ) is asserted the corresponding M0 or M1 byte will indicate one error each time the microprocessor interface block SMPR_BER_INSRT (Table 65) bit is asserted. The TMUX provides a protection switch MUX for REI-L insertion, controlled by TMUX_TLREIRDISEL (Table 107). If TMUX_TLREIRDISEL = 1, then the REI-L value for insertion is taken from the value on the protection board rather than from the receive side of the same TMUX. 17.6.19 APS Value and K2 Insert Control Parameters When TMUX_THSAPSINS = 1 (Table 107), the K1 byte and the five most significant bits of the K2 byte are written from TMUX_TAPSINS[12:0] (Table 113). When TMUX_THSAPSINS = 0, either all 0s or all ones will be written, depending on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67) bit. Agere Systems Inc. 393 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 17 TMUX Functional Description (continued) An APS babbling test is controlled with TMUX_TAPSBABINS (Table 116 on page113 ). Setting TMUX_TAPSBABINS = 1 forces the K1[7:0], K2[7:3) to an inconsistent state; no three consecutive values are continuously the same. When the transmit K2 software insert bit TMUX_THSK2INS = 1 (Table 107 on page103 ), data from bits TMUX_TK2INS[2:0] (Table 113 on page110 ) is written into the K2[2:0] output bits. When TMUX_THSK2INS = 0, hardware insertion of RDI-L is enabled. 17.6.20 Criteria for Insert Line RDI Hardware insertion of line RDI is generated using the following equation. Each defect contribution to line RDI can be individually inhibited. (TMUX_RILOC AND TMUX_TRILOC_LRDIINH) OR (TMUX_RHSLOS AND TMUX_TRLOS_LRDIINH) OR (TMUX_RHSLOF AND TMUX_TRLOF_LRDIINH) OR (TMUX_RHSOOF AND TMUX_TROOF_LRDIINH) OR (TMUX_RLAISMON AND TMUX_TRLAISMON_LRDIINH) OR (TMUX_RHSSF AND TMUX_TRSF_LRDIINH) OR (TMUX_RHSSD AND TMUX_TRSD_LRDIINH) When a failure condition exists that will cause RDI-L to be generated, the generation of RDI-L must last for at least 20 frames before clearing, even if the original failure cause has cleared in less than 20 frames. The TMUX provides a protection switch MUX for RDI-L insertion. The MUX is controlled by TMUX_TLREIRDISEL (Table 107). If TMUX_TLREIRDISEL = 1, then the RDI-L value for insertion is taken from the value on the protection board rather than from the receive side of the same TMUX. 17.6.21 Line AIS Generation Line AIS is specified as all ones in the entire STS/STM signal before scrambling, excluding the section overhead. Line AIS can be generated by setting TMUX_THSLAISINS = 1 (Table 107). 17.6.22 B2 BIP-8 Calculation and Insert The B2 byte is allocated for a line overhead error monitoring function. This function will be a bit interleaved parity-8 code (BIP-8) using even parity. The BIP-8 is computed before scrambling, over all the bits of the previous STS-1 frame (except for the 9 bytes of section overhead) and is placed in byte B2 of the current frame also before scrambling. A bit error rate can be inserted on any B2 byte. When bit(s) TMUX_THSB2ERRINS[1--3] (Table 115 on page112 ) is (are) asserted, the corresponding B2 byte is inverted each time the microprocessor interface block SMPR_BER_INSRT (Table 65 on page66 ) bit is asserted. 17.6.23 F1 Byte Insert When TMUX_THSF1INS = 1 (Table 107 on page 103), the value in TMUX_TF1INS[7:0] (Table 112 on page 110) is inserted into the F1 byte of the outgoing signal. Otherwise, the associated TOAC value is inserted when TMUX_TTOAC_F1 = 1 (Table 117 on page113 ). If both TMUX_THSF1INS and TMUX_TTOAC_F1 = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on page 68) bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 394 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 17 TMUX Functional Description (continued) 17.6.24 B1 Generate and Error Insert The section bit interleaved parity code (BIP-8) byte (even parity) is used to check for transmission errors over a section. Its value is calculated over all bits in the previous frame after scrambling and placed in the B1 byte of time slot 1 before scrambling. A bit error rate can be inserted on the B1 byte. When TMUX_THSB1ERRINS = 1 (Table 115 on page 112), the B1 byte is inverted each time the microprocessor interface block SMPR_BER_INSRT (Table 65 on page66 ) bit is asserted. 17.6.25 Scrambler The outgoing frame will be scrambled with the frame synchronous scrambler of length 127 and generating polynomial x7 + x6 + 1. The entire STS/STM signal will be scrambled except for the first row of overhead. The scrambler will be set to 1111111 on the first byte following the last overhead byte in the first row. For test purposes, the scrambler will be disabled when TMUX_THSSCR = 0 (Table 106 on page 103). 17.6.26 J0 Insert Control A 16-byte sequence stored in TMUX_TJ0DINS[1--16][7:0] (Table 133 on page121 ) will be inserted into the outgoing J0 byte if TMUX_THSJ0INS = 1 (Table 107 on pag e103). If TMUX_THSJ0INS = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67) bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.27 Z0-2, Z0-3 Insert Control The 2 bytes, Z0-2 and Z0-3, that follow J0 are not scrambled. If TMUX_THSZ0INS = 1 (Table 107), then the values stored in TMUX_TZ02INS[7:0] (Table 111 on pag e110) and TMUX_TZ03INS[7:0] (Table 111) will be inserted. If TMUX_THSZ0INS = 0, then the value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted. 17.6.28 A2 Error Insert The TMUX allows, under software control, from 1 to 32 continuous frames to have an inverted A2-1 (0x28 to 0xD7) pattern in the outgoing frame. The value in TMUX_TA2ERRINS[4:0] (Table 106) specifies the number of frames to insert errors into while assertion of microprocessor interface block, SMPR_BER_INSRT bit, starts the error insertion process. Agere Systems Inc. 395 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description Table of Contents Contents Page 18 SPE Mapper Functional Description ............................................................................................................... 396 18.1 Introduction ............................................................................................................................................. 398 18.2 Features ................................................................................................................................................. 398 18.3 SPE Mapper Functional Block Diagrams ............................................................................................... 399 18.4 TUG-2 to AU-3/STS-1 SPE Mapping (Used in North American Systems) ............................................. 402 18.5 TUG-2 to TUG-3 Mapping (Used in ITU/ETSI Standard Based Systems) ............................................. 402 18.6 DS3 to AU-3/STS-1 SPE Mapping (Used in Telcordia/ANSI Standards Based Systems) ..................... 403 18.7 DS3 to TUG-3 Mapping (Used in ITU/ETSI Standard Based Systems) ................................................. 403 18.8 SPE Mapper Basic Configuration ........................................................................................................... 403 18.9 DS3 Configuration .................................................................................................................................. 403 18.9.1 DS3 M13 ...................................................................................................................................... 404 18.9.2 DS3 Loopback Channel ............................................................................................................... 404 18.9.3 DS3 Clear Channel from External Pins ........................................................................................ 404 18.10 Phase Detector for External DS3 PLL .................................................................................................. 404 18.11 Serial STS-1 SPE Channel (NSMI) ...................................................................................................... 405 18.12 TMUX Interface to the SPE Mapper ..................................................................................................... 406 18.13 PATH Termination Block ...................................................................................................................... 406 18.13.1 Pointer Interpretation Block ....................................................................................................... 407 18.14 SPE Mapper Receive Direction Requirements ..................................................................................... 410 18.14.1 Loss of Clock and Loss of Sync Monitors ................................................................................. 411 18.14.2 J1 Monitor .................................................................................................................................. 411 18.14.3 B3 BIP-8 Check ......................................................................................................................... 412 18.14.4 Signal Label C2 Byte Monitor .................................................................................................... 412 18.14.5 Path User Byte F2 Monitor ........................................................................................................ 413 18.14.6 Path User Byte F3 Monitor ........................................................................................................ 414 18.14.7 N1 Monitor ................................................................................................................................. 414 18.14.8 K3 Byte Monitor ......................................................................................................................... 415 18.14.9 AIS-P and RDI-P Detect ............................................................................................................ 415 18.14.10 REI-P Detect ........................................................................................................................... 416 18.14.11 Signal Degrade BER Algorithm ............................................................................................... 416 18.14.12 Signal Fail BER Algorithm ....................................................................................................... 417 18.14.13 POAC Drop ............................................................................................................................. 418 18.14.14 Insertion of AIS-P .................................................................................................................... 419 18.15 Transmit Direction (to SONET/SDH Line) ............................................................................................ 420 18.15.1 PATH Insertion Block ................................................................................................................ 420 18.15.2 Loss of Clock and Loss of Sync Detectors ................................................................................ 421 18.15.3 J1 Byte Insert ............................................................................................................................ 421 18.15.4 B3 BIP-8 Calculation and Insert ................................................................................................ 421 18.15.5 C2 Signal Label Byte Insert ....................................................................................................... 421 18.15.6 REI-P G1(7:4) Insert .................................................................................................................. 421 18.15.7 Path RDI (RDI-P) Insert ............................................................................................................. 422 18.15.8 F2 Byte Insert ............................................................................................................................ 422 18.15.9 H4 Insert Control ....................................................................................................................... 422 18.15.10 F3 Byte Insert .......................................................................................................................... 422 18.15.11 K3 Insert Control Parameters .................................................................................................. 422 18.15.12 N1 Insert Control Parameters .................................................................................................. 423 18.16 POAC Insert ......................................................................................................................................... 423 18.17 AIS Path Generation ............................................................................................................................. 424 396 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) Table of Contents (continued) Figures Page Figure 30. SPE Mapper Block with Connections to External Pins and Other Blocks in the Device ..................... 399 Figure 31. Basic Functional Flow of the SPE Mapper Transmit Section .............................................................. 400 Figure 32. Basic Functional Flow of the SPE Mapper Receive Section ............................................................... 401 Figure 33. STS-1 NSMI Receive Operation ......................................................................................................... 405 Figure 34. STS-1 NSMI Transmit Operation ........................................................................................................ 406 Figure 35. Receive Direction Path Termination Block .......................................................................................... 407 Figure 36. Pointer Interpretation State Diagram................................................................................................... 408 Figure 37. Transmit Direction Path Insertion Block .............................................................................................. 420 Tables Table 536. Table 537. Table 538. Table 539. Table 540. Table 541. Table 542. Table 543. Table 544. Table 545. Table 546. Table 547. Table 548. Table 549. Table 550. Page J1 Monitor .......................................................................................................................................... 412 STS Signal Label Defect Conditions ................................................................................................. 412 C2MON Processing ........................................................................................................................... 413 F2 Monitor ......................................................................................................................................... 414 F3 Monitor ......................................................................................................................................... 414 N1 Monitor ......................................................................................................................................... 414 K3 Monitor ......................................................................................................................................... 415 AIS-P and RDI-P Detect .................................................................................................................... 415 STS-1 P-REI Interpretation ................................................................................................................ 416 Signal Degrade Parameters .............................................................................................................. 417 Signal Fail Parameters ...................................................................................................................... 418 Path Overhead Byte Access .............................................................................................................. 419 RDI-P Defects for Enhanced RDI-P Mode ........................................................................................ 422 Path Overhead Byte Access--Transmit Direction ............................................................................. 423 TPOAC Control Bits .......................................................................................................................... 424 Agere Systems Inc. 397 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) 18.1 Introduction This section describes the functions of the SPE mapper block. The SPE mapper is highly configurable; it can operate in two different modes, as an AU-3/STS-1 mapper or as a TUG-3 mapper. In both modes, it can map/demap data from/to either the VT mapper block, the M13 MUX/deMUX block, the DS3 clear channel, or the DS3 loopback channel. The SPE mapper supports numerous automatic monitoring functions. It can provide interrupts to the control system, or it can be operated in a polled mode. Additionally, this block has a built-in auxiliary channel known as the path overhead access channel (POAC). This channel is mainly used for path overhead insertion and drop functions. 18.2 Features The SPE mapper accepts/delivers TUG-2 data from/to the VT mapper. The TUG-2 data is mapped/demapped either to/from an AU-3/STS-1 signal for the North American digital systems or to/from a TUG-3 signal for the European digital systems. Flexibility down to TUG-2 level is provided for choosing which TUG-2s (between 1 and 7) are mapped into which TUG-3s (between 1 and 3) for generating STM-1 signals. Similarly, any TUG-2s (up to 7) may be dropped/terminated from the 21 TUG-2s of an STM-1 signal. The SPE mapper accepts/delivers DS3 data from/to the M13 MUX/deMUX. The DS3 data is mapped/demapped either to/from an AU-3/STS-1 signal for the North American digital systems or to/from a TUG-3 signal for the European digital systems. The SPE mapper accepts/delivers a clear DS3 signal at 44.736 Mbits/s rate. The clear DS3 signal is mapped/ demapped essentially the same way as M13 signal described above. The SPE mapper has a DS3 loopback circuit placed for the functions of demapping and remapping a DS3 signal. It is particularly useful in cases where a DS3 signal mapped as an AU-3/STS-1 signal is needed to be remapped as a TUG-3 signal or vice versa. The SPE mapper supports a path overhead access channel more commonly known as the POAC channel. Seven path overhead bytes namely J1, C2, F2, H4, F3, K3, and N1 may be inserted/dropped through this channel. This channel works as the master which means that this channel provides a clock in both transmit and receive directions and POH data may be inserted by the user on the transmit side or dropped by the block in the receive side. Path overhead byte B3 (BIP error) generation/detection and programmable BIP-2 bit error rate insertion. Programmable clear on read/clear on write registers. Signal fail and signal degrade indicators available to report bit error rates above a certain programmable threshold. Capable of detecting/inserting alarm indication signals (AIS), remote defect indication signals (RDI) and remote error indication signals (REI). Numerous monitoring functions provided on all the TUG-3 path overhead bytes. Supports unidirectional path switch ring (UPSR) applications. N1 tandem connection support is provided. Complies with GR-253-CORE, T1.105, ITU-T G.707, ITU-T G.831, G.783, ETS 300 417-1-1. 398 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) 18.3 SPE Mapper Functional Block Diagrams MICRO INTERFACE MISC SIGNALS RPOAC DATA, CLK, SYNC TRANSMIT PATH OVERHEAD INSERT POAC CHANNEL TPOAC DATA, CLK, SYNC SPE MAPPER TRANSMIT SECTION TRANSMIT TELECOM BUS TMUX TRANSMIT SECTION REI RDI RECEIVE PATH OVERHEAD EXTRACT POAC CHANNEL TRANSMIT DATA, CLK, CONTROL M13 MAPPER TRANSMIT SECTION RECEIVE DATA, CLK, CONTROL M13 MAPPER RECEIVE SECTION DS3 LOOPBACK DS3DATAINCLK DS3POSDATAIN TMUX RECEIVE SECTION SPE MAPPER RECEIVE SECTION RECEIVE TELECOM BUS DS3NEGDATAIN PHASEDETUP DS3 CLEAR INPUT TRANSMIT PINS PHASEDETDOWN AUTO_AIS DS3NEGDATAOUT DS3POSDATAOUT DS3DATAOUTCLK TRANSMIT CLK, DATA RECEIVE CLK, DATA VT MAPPER TRANSMIT SECTION DS3 CLEAR INPUT RECEIVE PINS AUTO_AIS, RDI, REI VT MAPPER RECEIVE SECTION 5-9065(F) Figure 30. SPE Mapper Block with Connections to External Pins and Other Blocks in the Devic e Agere Systems Inc. 399 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) TO/FROM TMUX TRANSMIT SIDE TELECOM BUS DATA[7:0], CLOCK, PARITY, SYNC (19.44 MHz OR 6.48 MHz) 51.84 MHz CLOCK FROM TMUX 51.84 MHz CLOCK, CONTROL FROM TMUX STS3_TIMESLOT TU11_TU12 TUG-3 OR AU-3 OUTPUT (87 x 9 bytes) CONTROL CIRCUITRY TUG2_NO[2:0] TUG3_NO[1:0] AU3_TUG3 VT_DS3 MPUCLK 87 x 9 bytes MICROINTERFACE AU3_TUG3 MUX 87 x 9 bytes AU3_TUG3 AU-3 MAPPER ADD 2 COLUMNS OF FIXED STUFFING VT_DS3 TUG-2 FIFO MUX C-3 84 x 9 bytes VT_DS3 DS3_SRC_TYPE TUG-3 MAPPER ADD 1 COLUMN OF FIXED STUFFING & TU-3 PTR BYTES AU3_TUG3 85 x 9 bytes DS3 MAPPED AS CONTAINER C-3 VT_DS3 87 x 9 bytes 84 x 9 bytes PATH OVERHEAD INSERTION AU3_TUG3 VT_DS3 84 x 9 bytes VT_DS3 DS3 INPUT CONTROL & SERIAL-TO-PARALLEL CONVERSION TUG-2 INPUT CONTROL VT_DS3 TELECOM BUS CLOCK TDS3_BIPOLAR M13 MAPPER TX_POACINH TX_POACDATA TX_POACSYNC SYNC_V1 TUG-2_DATA CLK_6MHz VT/TU MAPPER TX_POACCLKO LOOPBACK_DATA DS3 POS_DATA DS3 NEG_DATA DS3 _EXT_CLK LOOPBACK_CLK LOOPBACK_CLK_EN B3ZS DECODE DS3 CLK MUX DS3 CLK_EN MUX DS3 DATA DS3CLK DS3_SRC_TYPE PATH OVERHEAD INSERT POAC CHANNEL VT_DS3 5-9066(F) Figure 31. Basic Functional Flow of the SPE Mapper Transmit Section 400 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) FROM TMUX RECEIVE SIDE TELECOM BUS DATA[7:0], CLOCK, PARITY, SYNC (19.44 MHz OR 6.48 MHz) 51.84 MHz CLOCK, CONTROL FROM TMUX AUTO AIS SIGNAL FROM TMUX STS3_TIMESLOT TU11_TU12 TUG-3 OR AU-3 INPUT (87 x 9 BYTES) CONTROL CIRCUITRY TUG2_NO[2:0] 87 x 9 bytes 87 x 9 bytes TUG-3 DEMAPPER REMOVE 1 COLUMN OF FIXED STUFFING & TU-3 PTR BYTES AU-3 DEMAPPER REMOVE 2 COLUMNS OF FIXED STUFFING C-3 DE MAPPED AS AS DS3 POINTER INTERPRETER C-3 TELECOM BUS CLOCK DS3 84 x 9 bytes M13 DEMAPPER RX_POACSINH RX_POACDINH RX_POACCINH RX_POACSYNCO RX_POACCLKO PATH OVERHEAD EXTRACT POAC CHANNEL TUG-2 VT_DS3 VT_DS3 RX_POACDATAO DS3 _LOOPBACK_CLK LOOPBACK_CLK_EN DS3 _LOOPBACK_DATA PHASE_DET_DOWN DS3 _EXT_CLK DS3 POS_DATA PHASE_DET_UP DS3_BIPOLAR TUG3MPR_DS3_AIS DS3 DATA DS3 CLK DS3 CLK_EN VT_DS3 DS3 NEG_DATA 84 x 9 bytes PATH OVERHEAD EXTRACTION/ TERMINATION DS3 OUTPUT CONTROL & PARALLEL-TO-SERIAL CONVERSION DS3_OUT_TYPE B3ZS ENCODER 85 x 9 bytes VC-3 FIFO DS3CLK VT_DS3 AU3_TUG3 MUX VT_DS3 VT_DS3 85 x 9 bytes 85 x 9 bytes VT_DS3 AU3_TUG3 TUG-2 OUTPUT CONTROL VT_DS3 SYNC_V1 AU3_TUG3 VT_DS3 TUG-2_DATA MICRO INTERFACE AU3_TUG3 CLK_6MHz MPUCLK TUG3_NO[1:0] VT/TU DEMAPPER 5-9067(F)r.1 Figure 32. Basic Functional Flow of the SPE Mapper Receive Section Agere Systems Inc. 401 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) The SPE mapper basically interfaces to three other blocks within the Super Mapper device: The VT mapper. The M13 MUX/deMUX. The TMUX. The interface between the SPE mapper and the VT mapper consists of clock, parallel data, sync, and control type interfaces and is completely internal to the Super Mapper device. The interface between the SPE mapper and the M13 MUX/deMUX consists of a serial clock, serial data, and clock enable type interface and is also completely internal to the Super Mapper device. The interface between the SPE mapper and the TMUX consists of the telecom bus and every signal that flows between these two blocks is also brought in/out through external device pins connected to the telecom bus. As outlined in the features, the SPE mapper can map/demap seven TUG-2 or a DS3 to/from AU3/STS-1 or TUG-3. Each TUG-2 assembled/disassembled by the VT mapper consist of three TU-12 (E1) or four TU-11 (DS1) virtual tributaries. The following is a brief description of the supported standards based mappings. For greater details, please refer to the appropriate standard. 18.4 TUG-2 to AU-3/STS-1 SPE Mapping (Used in North American Systems) A TUG-2 payload capacity, which is 9 rows by 12 columns or 108 bytes, may contain four TU-11s or three TU-12s byte interleavingly multiplexed. The 27-byte capacity of a TU-11 is equivalent to three-column capacity in an STS-1 frame of 125 s. Four TU-11s are byte interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a VC-3. The VC-3 has a structure of 9 rows by 85 columns: one column is VC-3 path overhead and the other 84 columns are seven TUG-2s evenly distributed within the payload. Two columns of fixed stuffing are then added to the payload to build the complete STS-1 SPE frame of 9 rows by 87 columns. The 36-byte capacity of a TU-12 is equivalent to four-column capacity in an STS-1 frame of 125 s. Three TU-12s are byte interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a VC-3. The VC-3 has a structure of 9 rows by 85 columns: one column is VC-3 path overhead and the other 84 columns are seven TUG-2s evenly distributed within the payload. Two columns of fixed stuffing are then added to the payload to build the complete STS-1 SPE frame of nine rows by 87 columns. 18.5 TUG-2 to TUG-3 Mapping (Used in ITU/ETSI Standard Based Systems) A TUG-2 payload capacity, which is nine rows by 12 columns or 108 bytes, may contain four TU-11s or three TU-12s byte interleavingly multiplexed. The 27-byte capacity of a TU-11 is equivalent to three-column capacity in an STM-1 frame of 125 s. Four TU-11s are byte interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a TUG-3. The TUG-3 has a structure of nine rows by 86 columns: one column of NPI (null pointer indication) plus fixed stuffing bytes, one column of fixed stuffing and the other 84 columns are seven TUG-2s evenly distributed within the TUG-3 payload. The 36-byte capacity of a TU-12 is equivalent to four-column capacity in an STM-1 frame of 125 s. Three TU-12s are byte interleaving multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a TUG-3. 402 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) The TUG-3 has a structure of 9 rows by 86 columns: one column of null pointer indication (NPI) plus fixed stuffing bytes, one column of fixed stuffing, and the other 84 columns are seven TUG-2s evenly distributed within the TUG-3 payload. 18.6 DS3 to AU-3/STS-1 SPE Mapping (Used in Telcordia/ANSI Standards Based Systems) DS3 is an asynchronous signal with a rate of 44.736 Mbits/s. This payload with other information bits (total 3.648 Mbits/s) is used to form the container C-3 (48.384 Mbits/s) which occupies 84 columns of an STS-1 frame. One column of path overhead bytes is added to the C-3 container to make a VC-3. Finally, two columns of fixed stuffing (column numbers 30 and 59) are added to VC-3 to form an STS-1 SPE (87 columns). Stuffing (S bits) is used to rate adapt the DS3 payload to the SPE. Nine stuffing S bits are included in the C-3 container. When no stuffing is used, the STS-1 SPE can accommodate a rate of 44.712 Mbits/s. When all nine stuffing S bits are used, the STS-1 SPE can accommodate 44.784 Mbits/s. Since the DS3 coming from the M13 has a nominal rate of 44.736 Mbits/s, stuffing is used for every third row of an STS-1 frame; or in other words, three S bits per 125 s are used for stuffing to achieve the DS3 rate. 18.7 DS3 to TUG-3 Mapping (Used in ITU/ETSI Standard Based Systems) DS3 is an asynchronous signal with a rate of 44.736 Mbits/s. This payload with other information bits (total 3.648 Mbits/s) is used to form the container C-3 (48.384 Mbits/s) which occupies 84 columns of an STM-1 frame. One column of path overhead bytes are added to the C-3 container to make a VC-3 (85 columns). Now a TUG-3 signal consists of 86 columns by 9 rows, therefore 3 bytes of TU-3 pointer (H1, H2, and H3 bytes) are placed on rows 1 through 3 of the newly added column and fixed stuffing bits are placed on the remaining rows. Thus, a TUG-3 frame of 9 rows by 86 columns is formed. Three TUG-3s are byte interleavingly multiplexed by the TMUX to form an STM-1 signal. Stuffing (S bits) is used to rate adapt the DS3 payload to the TUG-3. Nine stuffing Sbits are included in the C-3 container. When no stuffing is used, the TUG-3 payload can accommodate a rate of 44.712 Mbits/s. When all nine stuffing S bits are used, the TUG-3 payload can accommodate 44.784 Mbits/s. Since the DS3 coming from the M13 has a nominal rate of 44.736 Mbits/s, stuffing is used for every third row of a TUG-3 frame; or in other words, three S bits per 125 s are used for stuffing to achieve the DS3 rate. 18.8 SPE Mapper Basic Configuration SPE mapper configuration programming is provided through registers SPE_MAP_CTL1--SPE_MAP_CTL3 (Table 153 on page 140). When mapping to a STS-3/STM-1 rate, the SPE mapper requires configuration to select one of the three time slots on the telecom bus that interfaces the TMUX. The register bits for selection are SPE_TSTS3TMSLOT[1:0] and SPE_RSTS3TMSLOT[1:0] (Table 153). Selection of AU-3/STS-1 or TUG-3 mapping is provided through bits SPE_T_AU3_TUG3 and SPE_R_AU3_TUG3 (Table 153). TUG-2 (virtual tributary) or DS3 data is selected with bits, SPE_T_AU3_TUG3 and SPE_R_AU3_TUG3. 18.9 DS3 Configuration The SPE mapper is configured to select the source and destination of the DS3 signals. The configuration is determined with register bits, SPE_TDS3SRCTYP[1:0] and SPE_RDS3OUTTYP[1:0] (Table 153). DS3 source/destination may be selected as loopback, external device pins, or M13. Agere Systems Inc. 403 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) 18.9.1 DS3 M13 The SPE mapper is configured to/from the M13 MUX/deMUX as the source/destination of data by setting bits, SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 00 or 01. 18.9.2 DS3 Loopback Channel The DS3 loopback circuit is placed in the SPE mapper to allow demapping and remapping of a DS3 signal. When SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 10, the SPE mapper extracts the asynchronous DS3 data and clock from the received payload. The recovered DS3 is looped back to the transmit path and either mapped as AU-3/STS-1 SPE signal for the North American digital systems or mapped as TUG-3 for the European digital systems. It is particularly useful in cases where a DS3 signal mapped as an AU-3/STS-1 signal is needed to be remapped as a TUG-3 signal or vice versa. 18.9.3 DS3 Clear Channel from External Pins The SPE mapper is configured for a DS3 signal at 44.736 MHz rate from external device pins by setting SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 11. The DS3 data can either be unipolar or bipolar. Unipolar data and clock is selected (device pins DS3POSDATAIN, DS3DATAINCLK, DS3POSDATAOUT, and DS3DATAOUTCLK (pins M22, J22, R22, and N22, respectively)) when bits SPE_TDS3_BIPOLAR and SPE_RDS3_BIPOLAR = 0 (Table 153). Bipolar data and clock is selected (device pins DS3POSDATAIN, DS3NEGDATAIN, DS3DATAINCLK, DS3POSDATAOUT, DS3NEGDATAOUT, and DS3DATAOUTCLK (pins M22, K22, J22, R22, P22, and N22, respectively)) when bits SPE_TDS3_BIPOLAR and SPE_RDS3_BIPOLAR = 1. When bipolar data is selected for the transmit path (SPE_TDS3_BIPOLAR = 1), the data received from the external pins is expected to be B3ZS encoded. A B3ZS decoder is used to recover the DS3 data prior to being mapped into a container. The B3ZS decoder also checks for bipolar coding violations. The SPE mapper contains a counter that increments on each occurrence of a received bipolar coding violation (BPV). It also monitors the occurrence of excessive zeros (EXZ), which is defined as any zero string length equal to or greater than three. These are part of the performance monitoring counters that can be sampled and simultaneously reset. Their last sampled values are available through SPE_BIPOL_CNT[23:0] and SPE_EXZ_CNT[23:0] (Table 160). When bipolar data is selected for the receive path (SPE_RDS3_BIPOLAR = 1), the data out from the external pins will be B3ZS encoded. A single bipolar violation may be inserted in the data when SPE_BIPOL_ERR is asserted (Table 145). The clock edge for sampling the transmit path data (device pin DS3DATAINCLK (pin J22)) is selected with SPE_TDS3CLK_EDGE (Table 153). 18.10 Phase Detector for External DS3 PLL The receive section of the SPE mapper has a phase detector circuit built inside the device. This phase detector circuit generates the necessary up and down signals (device pins PHASEDETUP and PHASEDETDOWN (pins V22 and U22, respectively)) for an external phase-lock loop (PLL) circuit to generate a smooth DS3 clock at 44.736 MHz rate. The logic sense of the phase detector up and down outputs may be inverted with bits SPE_PHDETUP_INV (Table 153) and SPE_PHDETDN_INV, respectively. 404 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) 18.11 Serial STS-1 SPE Channel (NSMI) The SPE mapper has the capability of accepting a clear serial STS-1 SPE signal at 51.84 MHz rate. The intent is to map/demap the network serial multiplexed interface (NSMI) interface data. The receive section of the SPE mapper outputs a serial data at 51.84 MHz rate, a clock enable signal inhibited during overhead insertion times, and a sync signal whose position within the STS-1 frame is programmable to a certain extent (is programmable to occupy any STS-1 column position (numbers 0--89) within a fixed row (# 8)), through bits SPE_R_NSMI_BIT[2:0] (Table 153) and SPE_R_NSMI_COL[6:0] (Table 153). The transmit section of the SPE mapper inputs serial data at 51.84 MHz rate, outputs a clock enable signal inhibited during overhead insertion times and a sync signal whose position within the STS-1 frame is programmable to a certain extent (is programmable to occupy any STS-1 column position (numbers 0--89) within a fixed row (#8)), through bits, SPE_T_NSMI_BIT[2:0] and SPE_T_NSMI_COL[6:0] (Table 153). The STS-1 SPE data is then mapped as AU-3 signal for the North American digital systems. LINE_RXCLK29 RXDATAEN VARIABLE RXSYNC (OPTIONAL) LINE_RXDATA29 UNUSED 0786(F)(F) Figure 33. STS-1 NSMI Receive Operation Agere Systems Inc. 405 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) LINE_TXCLK29 TXDATAEN VARIABLE TXSYNC (OPTIONAL) UNUSED LINE_TXDATA29 0785(F)(F) Figure 34. STS-1 NSMI Transmit Operation 18.12 TMUX Interface to the SPE Mapper The SPE mapper sends/receives data mapped as an AU-3/STS-1 SPE signal or as a TUG-3 signal to/from the TMUX. The interface required for this exchange of data, clock, and control signals is called the high-speed telecom bus. The high-speed telecom bus is accessible from external pins so that the TMUX can send/receive data to/from other external Super Mapper devices in the system. The TMUX can byte interleavingly multiplex three STS-1s or three TUG-3 signals, receiving through the telecom bus, to form one STS-3 or STM-1 signal, respectively. The high-speed telecom bus consists of a byte-wide data bus running at 19.44 Mbits/s for STS-3/STM-1 mode, or 6.48 Mbits/s for STS-1 stand-alone mode. It also consists of a parity bit line, a clock line which is 19.44 MHz or 6.48 MHz depending on STS-3/STM-1 or STS-1 mode, respectively; one sync line and two sync control lines. The sync line outputs the J0, J1, and V1 time slot signals of the STS-3/STM-1 frame and the two sync control signals distinguishes between the three sync bytes. The sync signals are used to synchronize the byte counters in the SPE mapper, and the information is also passed along to the VT mapper for synchronizing the V1 counters. The TMUX also provides through the external pins one 51.84 MHz serial clock and one clock control signal which synchronizes the 51.84 MHz to the J0 byte of the STS-3/STM-1 frame. This serial clock is required for the M13 MUX/deMUX because of its serial mode of working. In the case where the SPE mapper has to drive the telecom bus in the transmit side, there is a 3-state control signal (active-high) which is an output from the SPE mapper. This signal enables the 3-state drivers on the high-speed telecom bus at the time period when the clock is low. 18.13 PATH Termination Block The path termination block of the SPE mapper is shown below. The block consists of a pointer interpreter which monitors the TU-3 pointer bytes H1, H2, and H3, and interprets the beginning of the path overhead bytes for the TUG-3 frames. After monitoring and terminating the path overhead bytes, the TUG-3 payload is passed on to the output blocks. 406 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) TUG-2 DATA TUG-3 DATA H1, H2, H3 MONITOR POINTER INTERPRETER VC-3 DATA INSERT AIS-P F2 F2 MONITOR F3 F3 MONITOR C2 C2 MONITOR J1 N1 J1 MONITOR N1 MONITOR B3 K3 B3 BIP N CHECK POAC DATA K3 APS MONITOR POAC DROP G1 AIS-P RDI-P DETECT G1 G1 REI-L DETECT G1 REI COUNTER PATH TERMINATE MUX PAYLOAD DATA TO OUTPUT BLOCKS 5-9068(F) Figure 35. Receive Direction Path Termination Block 18.13.1 Pointer Interpretation Block The TUG-3 pointer interpreter logic block performs all necessary functions to support TU-3 pointer interpretation. The following features are implemented: The pointer interpreter consists of the following states: -- LOP-TU3--loss of pointer -- AIS-TU3--TUG-3-AIS (all ones in H1 and H2) -- NDF--NDF enabled (1001, 0001, 1101, 1011, 1000) -- NORM--normal (disabled NDF, normal pointer) -- INC--increment (inverted I bits) -- DEC--decrement (inverted D bits) The SPE mapper includes event or change of state indicators for pointer interpreter states except the NORM state. States NDF, DEC, and INC are reported with event status bits SPE_RNDFE ( Table 146 on page134 ), SPE_RDECE (Table 146), and SPE_RINCE (Table 146), respectively. States AIS and LOP are reported with change of state (delta) status bits SPE_RAISD (Table 146) and SPE_RLOPD (Table 146), respectively. Interrupts for each event or delta state may be masked with bits SPE_RNDFM, SPE_RDECM, SPE_RINCM, SPE_RAISM, and SPE_RLOPM (all in Table 147 on page136 ). Agere Systems Inc. 407 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) NDF ENABLE INC DEC 3 NEW POINTERS 3 ANY POINTERS 3 ANY POINTERS NDF DECREMENT INDICATION ENABLE INCREMENT INDICATION 3 NEW POINTERS 3 NEW POINTERS NORM 3 ANY POINTERS NDF NDF ENABLE NDF ENABLE 8 INVALID POINTERS FROM ALL STATES 8 INVALID POINTERS* FROM ALL STATES 3 AIS INDICATIONS NDF ENABLE 3 NEW POINTERS LOP 8 INVALID POINTERS AIS 8 NDF ENABLE 5-9007(F) * This state diagram is based on the ETS 417-1-1 pointer interpretation state diagram (Figure B.1). Transitions of eight invalid pointers from the INC, DEC, and NDF states into the LOP state have been added. Figure 36. Pointer Interpretation State Diagram The pointer interpreter transitions into the LOP-TU3 state based on the following conditions: -- Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive frames (determined by the value programmed in bits SPE_CNTDLOPCNT[1:0] ( Table 149)), then LOP-TU3 is declared. -- Invalid pointer values. If the number of consecutive frames (determined by the value programmed in SPE_CNTDLOPCNT[1:0]) are received with a pointer that is not a normal value, NDF, AIS-TU3, increment, or decrement, then LOP-TU3 is declared. The pointer interpreter transitions out of the LOP-TU3 state based on the following conditions: -- Following three consecutive frames with all ones in the H1 and H2 bytes the pointer interpreter transitions from the LOP-TU3 state into the AIS-TU3 state. -- Following three new consecutive, consistent, valid pointers the pointer interpreter transitions from the LOP-TU3 state into the NORM state. -- The pointer interpreter will not transition from the LOP-TU3 state into the NDF state. The pointer interpreter transitions into the AIS-TU3 state based on the following conditions: -- Following three consecutive frames with all ones in the H1 and H2 bytes AIS-TU3 is declared. The pointer interpreter transitions out of the AIS-TU3 state based on the following conditions: -- Following three new consecutive, consistent, valid pointers the pointer interpreter transitions from the AIS-TU3 state into the NORM state. -- Following the number of consecutive invalid pointers (determined by the value programmed in SPE_CNTDLOPCNT[1:0]) the pointer interpreter transitions from the AIS-TU3 state into the LOP-TU3 state. -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the AIS-TU3 state into the NDF state. 408 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) The pointer interpreter transitions into the NDF state based on the following conditions: -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM, NDF, AIS, INC, and DEC states into the NDF state. The pointer interpreter transitions out of the NDF state based on the following conditions: -- Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive frames (determined by the value programmed in SPE_CNTDLOPCNT[1:0] (Table 149)), the pointer interpreter transitions from the NDF state into the LOP-TU3 state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the NDF state into the NORM state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from the NDF state into the AIS-TU3 state. -- Following three new, consecutive, consistent, and valid pointers, the pointer interpreter transitions from the NDF state into the NORM state. -- Following the number of consecutive invalid pointers (determined by the value programmed in SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the NDF state into the LOP-TU3 state. The pointer interpreter transitions into the NORM state based on the following conditions: -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter transitions into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions into the NORM state. i.e., transitioning from the INC, DEC, and NDF states. The pointer interpreter transitions out of the NORM state based on the following conditions: -- Following the number of consecutive invalid pointers (determined by the value programmed in SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the NORM state into the LOP-TU3 state. -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the NDF state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the AIS-TU3 state. -- When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1 ( Table 149)), if 8 of the 10 I and D bits are correct for a pointer decrement on the incoming H1 and H2 bytes the pointer interpreter transitions from the NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the DEC state. -- When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the INC state. The pointer interpreter transitions into the INC state based on the following conditions: -- When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer increment on the incoming H1 and H2 bytes the pointer interpreter transitions into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter transitions into the INC state. The pointer interpreter transitions out of the INC state based on the following conditions: -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the INC state into the NDF state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from the INC state into the AIS-TU3 state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter transitions from the INC state into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the INC state into the NORM state. -- Following the number of consecutive invalid pointers (determined by the value programmed in SPE_CNTDLOPCNT[1:0] (Table 149)), the pointer interpreter transitions from the INC state into the LOP-TU3 state. Agere Systems Inc. 409 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) The pointer interpreter transitions into the DEC state based on the following conditions: -- When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1 ( Table 149)), if 8 of the 10 I and D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter transitions into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming H1 and H2 bytes the pointer interpreter transitions into the DEC state. The pointer interpreter transitions out of the DEC state based on the following conditions: -- If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the DEC state into the NDF state. -- Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from the DEC state into the AIS-TU3 state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter transitions from the DEC state into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the DEC state into the NORM state. -- Following the number of consecutive invalid pointers (determined by the value programmed in SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the DEC state into the LOP-TU3 state. Pointer increments and decrements will be counted and presented to the microprocessor as follows: -- Pointer increments and decrements will be monitored and counted internally. -- The internal and latched counts will be forced to 0x00 if device pin AUTO_AIS (AC6, AE6, and AD6) = 1 (from TMUX), bit SPE_RLOP = 1 (Table 148), or bit SPE_RAIS = 1 (Table 148). -- Latched counts, SPE_RPTR_INC[10:0] (Table 161) and SPE_RPTR_DEC[10:0] (Table 161), will be updated coincident with the end of a performance monitor interval. -- The internal counters will reset to 0x00 coincident with the end of a performance monitor interval. -- If SMPR_SAT_ROLLOVER = 1 (Table 67), the internal running counts will hold at their maximum value. Otherwise, the counts will roll over. -- However, increment and decrement event indications should be ignored during LOP state. LOP-TU3 (TU-3 path LOP) and AIS-TU3 (TU-3 path AIS) will be detected and reported to the microprocessor. Both the LOP-TU3 and AIS-TU3 conditions will contribute to the AUTO AIS control signal from the SPE mapper to the VT mapper. Any change in state of SPE_RLOP ( Table 148) or SPE_RAIS (Table 148) will be reported to the microprocessor via SPE_RLOPD (Table 146) and SPE_RAISD (Table 146). Unless the appropriate mask bit is set (SPE_RLOPM/SPE_RAISM (Table 147)), SPE_RLOPD = 1 or SPE_RAISD = 1 will generate an interrupt. The current TU-3 pointer value is stored in SPE_STORED_PTR[9:0] ( Table 161). 18.14 SPE Mapper Receive Direction Requirements All monitoring functions supported by the SPE mapper in the receive direction are summarized here: Loss of CLOCK and loss of sync monitors J1 monitor B3 BIP-8 check C2 signal label monitor F2 monitor F3 monitor N1 monitor K3 monitor AIS-P and RDI-P detect REI-P detect Signal degrade BER algorithm Signal fail BER algorithm Path overhead access channel (POAC) drop Insertion of AIS-P 410 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) Whenever the continuous N-times detect signals are defined, they require not only that the monitored signal be consistent for N consecutive frames, but also that the frame bytes be error free for all N frames before the status can be updated. If there are any errors in the framing pattern, then the consecutive N-times detection counters must be reset to 0. N can range from 1 to 15. Programming a CNTD block with any value less than 1 will set the CNTD to 1 time detect. 18.14.1 Loss of Clock and Loss of Sync Monitors The SPE mapper detects and reports loss of the input clocks state for RLSCLK (pin V4) (19 MHz clock) in bit SPE_RLSLOC (Table 148 on page 137), RLSC52 (pin AC2) (52 MHz clock) in bit SPE_RC52LOC (Table 148), and DS3DATAINCLK (pin J22) (DS3 external clock) in bit SPE_RDS3LOC (Table 148), as determined by stuck high or stuck low for time T. The detection time T will be greater than 10 s but less than 125 s. The function uses the microprocessor clock as its reference. The device will report changes in the states using bits, SPE_RLSLOCD (Table 146 on page 134), SPE_RC52LOCD (Table 146), and SPE_RDS3LOCD (Table 146); interrupt mask bits SPE_RLSLOCM (Table 147), SPE_RC52LOCM (Table 147), and SPE_RDS3LOCM (Table 147 on page136 ), respectively. The SPE mapper will detect loss-of-sync conditions for the telecom bus sync signals. The states are reported in the bits, SPE_RSY52LOS (Table 148), SPE_RJ0J1V1LOS (Table 148), SPE_RSPELOS (Table 148), and SPE_RV1LOS (Table 148). The device will report changes in the states in bits SPE_RSY52LOSD (Table 146), SPE_RJ0J1V1LOSD (Table 146), SPE_RSPELOSD (Table 146), SPE_RV1LOSD (Table 146); interrupt mask bits SPE_RSY52LOSM (Table 147), SPE_RJ0J1V1LOSM (Table 147), SPE_RSPELOSM (Table 147), and SPE_RV1LOSM (Table 147), respectively. 18.14.2 J1 Monitor J1 (path trace) monitoring has six different monitoring modes controlled by bits SPE_J1MONMODE[2:0] (Table 149): SPE_J1MONMODE[2:0] = 000: the SPE mapper will latch the value of the J1 byte every frame for a total 64 bytes in SPE_RJ1DMON[1--64][7:0] (Table 162). The SPE mapper compares the incoming J1 byte with the next expected value (the expected value is obtained by cycling through the previous stored 64 received bytes in round-robin fashion) and setting the path trace identifier state bit, SPE_RTIM (Table 148), if different. Any change in state is reported in bit, SPE_RTIMD (Table 146), using interrupt mask bit SPE_RTIMM (Table 147). CRC is not checked by the hardware. SPE_J1MONMODE[2:0] = 001: this is the SONET framing mode. The hardware looks for 0x0D and then the 0x0DA characters to indicate that the next byte is the first byte of the path trace message. The J1 byte message is continuously written into SPE_RJ1DMON[1--64][7:0] with the first byte residing at the first address. If any received byte does not match the previously received byte for its location, then the state bit SPE_RTIM is set. Any change in state is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM. SPE_J1MONMODE[2:0] = 010: this is the SDH framing mode. The hardware looks for the byte with the most significant bit (MSB) set to one, which indicates that the next byte is the second byte of the message. The rest of operation is the same as in SONET framing mode. SPE_J1MONMODE[2:0] = 011: a new J1 byte (SPE_RJ1DMON[1][7:0]) will be detected after a number of consecutive consistent occurrences (SPE_CNTDJ1[3:0] (Table 150)) of a new pattern in the J1 overhead byte. Any changes to this byte is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM. The delta bit in this mode indicates a change in state for the J1 byte, and the bit SPE_RTIM is not used. SPE_J1MONMODE[2:0] = 100: the user will program the 64 expected values of J1 in registers, SPE_RJ1DEXP[1--64][7:0] (Table 164), in SONET framing mode, where the first expected byte, the byte following the 0x0A character, is written into the first register location, SPE_RJ1DEXP[1][7:0]. The SPE mapper compares the incoming J1 sequence with the stored expected value, setting the SPE_RTIM state bit if they are different. Any changes in the state is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM. Agere Systems Inc. 411 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) SPE_J1MONMODE[2:0] = 101: the user will program the 16 expected values of J1 in SPE_RJ1DEXP[1--16][7:0] in SDH framing mode, where the first byte of the message has the MSB set to 1. The SPE mapper compares the incoming J1 sequence with the stored expected value, setting the state bit, SPE_RTIM if they're different. Any change in state is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM. SPE_J1MONMODE[1:0] = 110 and 111 are currently undefined. Unless bit PAIS_TIMINH (Table 149) is set, bit SPE_RTIMD contributes to the AUTO AIS control signal from the SPE mapper to the VT mapper). Unless mask bit SPE_RTIMM is set, bit SPE_RTIMD can generate an interrupt. Table 536. J1 Monitor Name SPE_J1MONMODE[2:0] (Table 149) SPE_RJ1DEXP[1--64][7:0] (Table 164) SPE_RJ1DMON[1--64][7:0] (Table 162) SPE_CNTDJ1[3:0] (Table 150) SPE_RTIM (Table 148) SPE_RTIMD (Table 146) SPE_RTIMM (Table 147) Function J1 Monitoring Type. J1 Expected Data Storage (64/1 Byte). J1 Received Data Storage (64/1 Byte). Continuous Times Detect Value. J1 Mismatch State Bit. J1 Mismatch Delta Bit, Active-High. J1 Mismatch Mask Bit, Active-High. 18.14.3 B3 BIP-8 Check A B3 BIP-8 even parity is computed over all the incoming bits of the TUG-3 frame, after descrambling, and compared to the B3 byte received in the next frame. The total number of B3 BIP-8 bit errors (raw count) or block errors is counted (selected through SPE_B3BITBLKCNT (Table 149)). Upon a performance monitor (PM) interval, the internal running counter is placed into SPE_B3ECNT[15:0] (Table 160) and then cleared. Depending on the value of microprocessor bit SMPR_SAT_ROLLOVER (Table 67), the internal counter will roll over or stay at its maximum value until cleared. 18.14.4 Signal Label C2 Byte Monitor Table 537. STS Signal Label Defect Conditions Provisioned STS PTE Functionality, Expected C2 Any Equipped Functionality Any Equipped Functionality Equipped--Nonspecific Any Payload Specific Code Any Payload Specific Code Equipped--Nonspecific (01) or VT-Structured STS-1 (02) Any Payload Specific Code Except VT-Structured STS-1 (02) Any Equipped Functionality Any Equipped Functionality 412 Received Payload Label (C2 in hex) Unequipped (00) Equipped--Nonspecific (01) Any Value (02 to E0, FD to FE) The Same Payload Specific Code (02 to E0, FD to FE) A Different Payload Specific Code (02 to E0, FD to FE) PDI, 1 to 27 VTx Defects (E1 to FB) PDI, 1 to 27 VTx Defects (E1 to FB) PDI, 28 VT1.5 Defects or 1 Non-VT Payload Defect (FC) Reserved (FF) Defect TMUX_FORCEC2DEF = 1 (Table 97) TMUX_RUNEQP No Change None No Change None No Change None No Change TMUX_RPLMP No Change None TMUX_RPLMP TMUX_RPLMP No Change None TMUX_RPLMP None TMUX_RPLMP Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) The C2 byte is stored in SPE_C2DMON[7:0] (Table 152 on page140 ). This is updated after a number of consecutive frames (determined by the value programmed in SPE_CNTDC2[3:0] (Table 150 on page139 )) of identical C2 bytes, i.e., the 8-bit pattern must be identical for the number of frames in the programmed SPE_CNTDC2[3:0] prior to updating SPE_C2DMON[7:0]. Whenever the contents of the C2 byte monitor SPE_C2DMON[7:0] changes, a delta bit SPE_C2DMOND (Table 146 on page 134) is set and bit SPE_C2DMONM (Table 147 on page136 ) is the interrupt mask bit. The SPE mapper maintains a programmable expected value of the C2 byte in SPE_C2DEXP[7:0] ( Table 151 on page 140). If the current value of the C2 byte (SPE_C2DMON[7:0]) does not equal the expected C2 value (C2DEXP[7:0]), then a payload label mismatch (PLM-P) defect is declared and reported in SPE_RPLM (Table 148). The change in PLM-P state is reported in SPE_RPLMD (Table 146) with an interrupt mask bit SPE_RPLMM (Table 147). Also if the current value of the C2 byte (SPE_C2DMON[7:0]) is all 0s, then an unequipped (UNEQ-P) defect is declared and reported in SPE_RUNEQ (Table 148). The change in UNEQ-P state is reported in SPE_RUNEQD (Table 146) with an interrupt mask SPE_RUNEQM (Table 147). Table 538. C2MON Processing Name Function SPE_C2DMON[7:0] (Table 152) C2 Current Data Monitor. SPE_C2DEXP[7:0] (Table 151) Expected Value of C2 Byte. SPE_CNTDC2[3:0] (Table 150) Continuous Times Detect Count Value for C2. SPE_C2DMOND (Table 146) C2 Data Monitor Event Bit. SPE_C2DMONM (Table 147) C2 Data Monitor Mask Bit. SPE_RPLM (Table 148) Payload Label Mismatch State. SPE_RPLMD (Table 146) Payload Label Mismatch Delta Bit. SPE_RPLMM (Table 147) Payload Label Mismatch Mask Bit. SPE_RUNEQ (Table 148) Unequipped Path State. SPE_RUNEQD (Table 146) Unequipped Path Delta Bit. SPE_RUNEQD (Table 147) Unequipped Path Mask Bit. 18.14.5 Path User Byte F2 Monitor The SPE mapper monitors the path user channel in the F2 byte. The current value of the F2 byte is stored in SPE_F2DMON0[7:0] (Table 152) after a number of consecutive frames (determined by the value programmed in SPE_CNTDF2[3:0] (Table 150)) of identical F2 byte has been received, i.e., the 8-bit pattern must be identical for a number of frames equal to the value of SPE_CNTDF2[3:0] prior to updating SPE_F2DMON0[7:0]. Whenever the contents of the F2 byte monitor (SPE_F2DMON0[7:0]) changes, a delta bit SPE_F2DMOND (Table 146) is set. The interrupt mask is SPE_F2DMONM (Table 147). The SPE mapper maintains a history of the previous valid F2 byte in SPE_F2DMON1[7:0] (Table 152). Agere Systems Inc. 413 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) Table 539. F2 Monitor Name SPE_F2DMON0[7:0] (Table 152) SPE_F2DMON1[7:0] (Table 152) SPE_CNTDF2[3:0] (Table 150) SPE_F2DMOND (Table 146) SPE_F2DMONM (Table 147) Function Fault Location Current Consistent Value. Fault Location Previous Consistent Value. Continuous N-Times Detect (3--15). F2 Data Monitor Delta Bit. F2 Data Monitor Mask Bit. 18.14.6 Path User Byte F3 Monitor The SPE mapper monitors the second path user channel in the F3 byte. The current value of the F3 byte is stored in SPE_F3DMON0[7:0] (Table 152 on page140 ) after a number of consecutive frames (determined by the value programmed in SPE_CNTDF3[3:0] (Table 150)) of identical F3 bytes has been received, i.e., the 8-bit pattern must be identical for a number of frames, determined by SPE_CNTDF3[3:0], prior to updating SPE_F3DMON0[7:0]. Whenever the contents of the F3 byte monitor (SPE_F3DMON0[7:0]) changes, a delta bit SPE_F3DMOND (Table 146) is set. The interrupt mask is in register bit SPE_F3DMONM (Table 147). The SPE mapper maintains a history of the previous valid F3 byte in SPE_F3DMON1[7:0] (Table 152). Table 540. F3 Monitor Name SPE_F3DMON0[7:0] (Table 152) SPE_F3DMON1[7:0] (Table 152) SPE_CNTDF3[3:0] (Table 150) SPE_F3DMOND (Table 146) SPE_F3DMONM (Table 147) Function User Channel Current Consistent Value. User Channel Previous Consistent Value. Continuous N-Times Detect (3--15). F3 Data Monitor Delta Bit. F3 Data Monitor Mask Bit. 18.14.7 N1 Monitor The SPE mapper stores the current value of the N1 byte in SPE_N1DMON[7:0] (Table 152). This is updated after a number of consecutive frames (determined by the value programmed in bits SPE_CNTDN1[3:0] (Table 150)) of identical N1 bytes, i.e., the 8-bit pattern must be identical for a number frames determined by the value in register bits SPE_CNTDN1[3:0] prior to updating the N1 register. Whenever the contents of the N1 byte monitor (SPE_N1DMON[7:0]) changes, a delta bit SPE_N1DMOND (Table 146) is set. The interrupt generated by SPE_N1DMOND can be masked off by SPE_N1DMONM (Table 147). Table 541. N1 Monitor Name SPE_N1DMON[7:0] (Table 152) SPE_CNTDN1[3:0] (Table 150) SPE_N1DMOND (Table 146) SPE_N1DMONM (Table 147) 414 Function Fault Location Current Consistent Value. Continuous N-Times Detect (3--15). N1 Data Monitor Delta Bit. N1 Data Monitor Mask Bit. Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) 18.14.8 K3 Byte Monitor The SPE mapper stores the current value of the K3 byte in SPE_K3DMON[7:0] (Table 152 on pag e140). This is updated after a number of consecutive frames (determined by the value programmed in bits SPE_CNTDK3[3:0] (Table 150 on page139 )) of identical K3 bytes, i.e., the 8-bit pattern must be identical for a number of frames determined by the value of SPE_CNTDK3[3:0] prior to updating the K3 register. Whenever the contents of the K3 byte monitor (SPE_K3DMON[7:0]) changes, a delta bit SPE_K3DMOND (Table 146 on page 134) is set. The interrupt generated by SPE_K3DMOND can be masked off by the SPE_K3DMONM (Table 147 on page 136). Table 542. K3 Monitor Name SPE_K3DMON[7:0] (Table 152) SPE_CNTDK3[3:0] (Table 150) SPE_K3DMOND (Table 146) SPE_K3DMONM (Table 147) Function Fault Location Current Consistent Value. Continuous N-Times Detect (3--15). K3 Data Monitor Delta Bit. K3 Data Monitor Mask Bit. 18.14.9 AIS-P and RDI-P Detect The SPE mapper monitors for path AIS in the H1 and H2 bytes (all H1 and H2 bits = 1) of the TUG-3 pointer. When path AIS is detected, SPE_RAIS (Table 148 on page137 ) will be set to 1 after three consecutive occurrences. Any changes to SPE_RAIS will be reported in SPE_RAISD (Table 146 on page134 ) and the interrupt can be masked, using SPE_RAISM (Table 147 on page136 ). A remote defect indication-path (RDI-P) signal indicates to STS PTE that its peer STS PTE has detected a defect on the signal that it originated. The SPE mapper supports both the single bit RDI-P and the 3-bit enhanced RDI-P; the mode is selectable using bit SPE_RPRDI_MODE (Table 149 on page138 ). When SPE_RPRDI_MODE = 0, 1-bit code is supported and when SPE_RPRDI_MODE = 1, 3-bit enhanced RDI-P code is supported. Three bits of the G1 byte (G1[3:1]) are reserved for the RDI-P signal. The SPE mapper monitors for a 1-bit RDI-P code in G1[3] bit or a 3-bit enhanced remote defect indication (RDI-P) condition in the G1[3:1] bits and stores the current value in bits SPE_PRDIDMON[2:0] (Table 152 on page140 ). The current value is updated after a number of consecutive frames (determined by the value of bits SPE_CNTDPRDI[3:0] (Table 150)) of identical G1[3:1], i.e., the 3-bit pattern must be identical for a number of frames, determined by the value of SPE_CNTDPRDI[3:0] prior to updating SPE_PRDIDMON[2:0]. Whenever the contents of SPE_PRDIDMON[2:0] changes, a delta bit SPE_PRDIDMOND (Table 146 on page 134) is set. The interrupt generated by SPE_PRDIDMOND can be masked off by SPE_PRDIDMONM (Table 147). Table 543. AIS-P and RDI-P Detect Name SPE_CNTDPRDI[3:0] (Table 150) SPE_PRDIDMOND (Table 146) SPE_PRDIDMONM (Table 147) Agere Systems Inc. Function Continuous Times Detect Count Value for G1[3:1] Bits (3--15). Path RDI Delta Bit. Path RDI Mask Bit. 415 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) 18.14.10 REI-P Detect Bits 7 through 4 of the G1 byte are allocated for use as a path remote error indication function (REI-P). For STS-1 signals, bits 7 through 4 of the G1 byte are allocated for REI-P which conveys the error count detected by the PTE (using the path BIP-8 code B3) back to its peer PTE as follows. Table 544. STS-1 P-REI Interpretation G1[7:4] Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001--1111 Code Interpretation 0 (no errors) 1 2 3 4 5 6 7 8 0 (no errors) The SPE mapper provides a counter to accumulate G1-REI errored bit count in SPE_G1ECNT[15:0] (Table 160 on page 147) from G1[7:4]. This counter will hold at its maximum value or roll over (depending on the value of microprocessor bit SMPR_SAT_ROLLOVER (Table 67 on page 68)) and update upon the performance monitoring interval. 18.14.11 Signal Degrade BER Algorithm A signal degrade state bit is SPE_SDB3 (Table 148 on page 137) with a change of state indication reported in delta bit SPE_SDB3D (Table 146 on page134 ) and the interrupt mask bit is SPE_SDB3M (Table 147). This bit error rate algorithm operates on B3 errors. Declaring the signal degrade state requires the definition of two measurement windows. A monitoring block consisting of a number of frames, Ns (SPE_SDNSSET[18:0] (Table 158 on page 146)), and a measurement interval consisting of a number of monitoring blocks, B (SPE_SDBSET[11:0] (Table 158)). A block is determined bad when the number of bit errors equals or exceeds a threshold, L (SPE_SDLSET[3:0] (Table 158)). Signal degrade is declared when a number of bad monitoring blocks equals or exceeds the threshold, M (SPE_SDMSET[7:0] (Table 158)), for the measurement interval. Clearing the signal degrade state requires the definition of two measurement windows. A monitoring block consisting of a number of frames, Ns (SPE_SDNSCLEAR[18:0] (Table 158)), and a measurement interval consisting of a number of monitoring blocks, B (SPE_SDBCLEAR[11:0] (Table 158)). A block is determined good when the number of bit errors is less than a threshold, L (SPE_SDLCLEAR[3:0] (Table 158)). Signal degrade is cleared when a number of good monitoring blocks equals or exceeds the threshold, M (SPE_SDMCLEAR[7:0] (Table 158)), for the measurement interval. The set parameters are used when the signal degrade state is clear, and the clear parameters are used when the signal degrade state is declared. The signal degrade state may be forced to the declared state with bit SPE_SDSET (Table 145 on page134 ) and forced to the cleared state with bit SPE_SDCLEAR (Table 145). The controls are provided to force the BER algorithm into the failed state or normal state, respectively. The above algorithm can detect bit error rates from 1 x 10 -3 to 1 x 10 -9. 416 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) Table 545. Signal Degrade Parameters Name SPE_SDNSSET[18:0] (Table 158) SPE_SDLSET[3:0] (Table 158) Function Signal Degrade Ns Set. Number of frames in a monitoring block for SD. Signal Degrade L Set. Error threshold for determining if a monitoring block is bad. SPE_SDMSET[7:0] (Table 158) Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. SPE_SDBSET[15:0] (Table 158) Signal Degrade B Set. Number of monitoring blocks in a measurement interval. SPE_SDNSCLEAR[18:0] (Table 158) Signal Degrade Ns Clear. Number of frames in a monitoring block for SD. SPE_SDLCLEAR[3:0] (Table 158) Signal Degrade L Clear. Error threshold for determining if a monitoring block is bad. SPE_SDMCLEAR[7:0] (Table 158) Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SD is cleared. SPE_SDBCLEAR[15:0] (Table 158) Signal Degrade B Clear. Number of monitoring blocks in a measurement interval. SPE_SDSET (Table 145) Signal Degrade Set. Allows the signal degrade algorithm to be forced into the failed state (active 0 to 1). SPE_SDCLEAR (Table 145) Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state (active 0 to 1). SPE_SDB3 (Table 148) Signal Degrade BER Algorithm State Bit. SPE_SDB3D (Table 146) Signal Degrade BER Algorithm Delta Bit. SPE_SDB3M (Table 147) Signal Degrade BER Algorithm Mask Bit. Note: The threshold written by the control system is one less than the desired number, except for the SPE_SDLSET[3:0]/SDLCLEAR[3 :0] parameter. 18.14.12 Signal Fail BER Algorithm A signal fail state is reported by bit SPE_SFB3 (Table 148 on pag e137) and change of state in bit SPE_SFB3D (Table 146) with the interrupt mask bit SPE_SFB3M (Table 147). This bit error rate algorithm operates on B3 errors. Declaring the signal fail state requires the definition of two measurement windows, a monitoring block consisting of a number of frames, Ns (SPE_SFNSSET[18:0] (Table 159 on page146 )), and a measurement interval consisting of a number of monitoring blocks, B (SPE_SFBSET[15:0] (Table 159)). A block is determined to be bad when the number of bit errors equals or exceeds a threshold, L (SPE_SFLSET[3:0] (v)). Signal fail is declared when the number of bad monitoring blocks equals or exceeds the threshold, M (SPE_SFMSET[7:0] (Table 159)), for the measurement interval. Clearing the signal fail state requires the definition of two measurement windows, a monitoring block consisting of a number of frames, Ns (SPE_SFNSCLEAR[18:0] (Table 159)), and a measurement interval consisting of a number of monitoring blocks, B (SPE_SFBCLEAR[11:0] (v)). A block is determined to be good when the number of bit errors is less than a threshold, L (SPE_SFLCLEAR[3:0] (Table 159)). Signal fail is cleared when a number of good monitoring blocks equals or exceeds the threshold, M (SPE_SFMCLEAR[7:0] (v)), for the measurement interval. The set parameters are used when the signal fail state is clear, and the clear parameters are used when the signal fail state is declared. The signal fail state may be forced to the declared state with bit SPE_SFSET (Table 145 on page134 ) and forced to the cleared state with bit SPE_SFCLEAR (Table 145). The above algorithm can detect bit error rates from 1 x 10 -3 to 1 x 10 -9. Agere Systems Inc. 417 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) Table 546. Signal Fail Parameters Name SPE_SFNSSET[18:0] (Table 159) SPE_SFLSET[3:0] (Table 159) Function Signal Fail Ns Set. Number of frames in a monitoring block forSF. Signal Fail L Set. Error threshold for determining if a monitoring block is bad. SPE_SFMSET[7:0] (Table 159) Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. SPE_SFBSET[15:0] (Table 159) Signal Fail B Set. Number of monitoring blocks. SPE_SFNSCLEAR[18:0] (Table 159) Signal Fail Ns Clear. Number of frames in a monitoring block forSF. SPE_SFLCLEAR[3:0] (Table 159) Signal Fail L Clear. Error threshold for determining if a monitoring block is bad. SPE_SFMCLEAR[7:0] (Table 159) Signal Fail M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF is cleared. SPE_SFBCLEAR[15:0] (Table 159) Signal Fail B Clear. Number of monitoring blocks. SPE_SFSET (Table 145) Signal Fail Set. Allows the signal degrade algorithm to be forced into the failed state (active 0 to 1). SPE_SFCLEAR (Table 145) Signal Fail Clear. Allows the signal degrade algorithm to be forced into the normal state (active 0 to 1). SPE_SFB3 (Table 148) Signal Fail BER Algorithm State Bit. SPE_SFB3D (Table 146) Signal Fail BER Algorithm Delta Bit. SPE_SFB3M (Table 147) Signal Fail BER Algorithm Mask Bit. Note: The threshold written by the control system is one less than the desired number, except for the SPE_SFLSET[3:0]/SFLCLEAR[3 :0] parameter. 18.14.13 POAC Drop The SPE mapper accommodates one path overhead access channel (POAC output channel). The POAC channel consists of the following signals: A 576 kHz inverted clock signal sourced by the TMUX (RPOACCLK, pin AE3). A 576 kbits/s data signal sourced by the TMUX (RPOACDATA, pin AD4). An 8 kHz synchronization signal, sourced by the TMUX (RPOACSYNC, pin AF4). The sync signal is normally low; during the last clock period of each frame coincident with the least significant bit of the last byte, the sync signal is high. The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first (MSB). The MSB of the second byte of each frame contains an odd/even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. Bytes shown in Table 547 summarize the access capabilities of the receive POAC. 418 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) Table 547. Path Overhead Byte Access J1 POH Parity C2 G1 F2 H4 F3 K3 N1 Even or odd parity can be inserted into the first bit of the second byte of the POAC outgoing frame. Parity is selected with register bit, SPE_RPOAC_OEPINS (Table 149 on page138 ). 18.14.14 Insertion of AIS-P The SPE mapper automatically generates AIS path (AIS-P) when: The pointer interpreter declares the receive AIS state (SPE_RAIS in Table 148 on page137 ) or receive loss of pointer state (SPE_RLOP (Table 148)) and the appropriate inhibit signals are inactive. AIS is requested by signals from the TMUX interface. AIS is forced by setting bit SPE_PAISINS (Table 149). Any one of the loss-of-clock or loss-of-sync bits are active and their corresponding inhibit bits are inactive. Any of bits SPE_RUNEQ, SPE_RPLM, and SPE_RTIM (all are in Table 148) are active, and the appropriate inhibit signals are inactive. Criteria for PATH_AIS_GENERATE = ((SPE_RLOP AND (SPE_PAIS_LOPINH)) OR (SPE_RAIS AND (SPE_PAIS_AISINH)) OR (SPE_RUNEQ AND (SPE_PAIS_UNEQINH)) OR (SPE_RPLM AND (SPE_PAIS_PLMINH)) OR (SPE_RTIM AND (SPE_PAIS_TIMINH)) OR (SPE_SFB3 AND (SPE_PAIS_SFB3INH)) OR (SPE_SDB3 AND (SPE_PAIS_SDB3INH)) OR (SPE_RSY52LOS AND (SPE_AIS_LOSSY52INH)) OR (SPE_RV1LOS AND (SPE_AIS_LOSV1INH)) OR (SPE_RSPELOS AND (SPE_AIS_LOSSPEINH)) OR (SPE_RJ0J1V1LOS AND (SPE_AIS_LOSJ0J1V1INH)) OR (SPE_RDS3LOC AND (SPE_AIS_LOCDS3INH)) OR (SPE_RC52LOC AND (SPE_AIS_LOC52INH)) OR (SPE_RLSLOC AND (SPE_AIS_LOCINH)) OR SPE_PAISINS OR RAUTO_AIS (signal from TMUX)) The SPE mapper starts/stops generating AIS-P within 125 s of the detection/absence of a failure condition. AIS-P consists of writing all ones into the H1, H2, and H3 bytes and into the entire payload. Agere Systems Inc. 419 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) 18.15 Transmit Direction (to SONET/SDH Line) The transmit block inserts the path overhead (POH) bytes to the payload data and outputs an STS-1 SPE or a TUG-3 payload as required. The transmit section is broken down into the following functional parts: Loss of clock and loss of sync detectors N1 insert K3 insert Path user byte F3 insert Path user byte F2 insert AIS-P insert REI-P insert RDI-P insert C2 signal label insert B3 calculation and insert J1 path trace insert All insert control functions that are inhibited will insert all zeros or all ones into the outgoing bytes depending on the value of microprocessor register bit SMPR_OH_DEFLT (Table 67). 18.15.1 PATH Insertion Block POAC INSERT F2, F3, C2, N1, AND J1 TUG-3 DATA B3 INSERT MUX The path overhead insertion block of the SPE mapper is shown below. The block computes and inserts the B3 BIP error bytes and the rest of the path overhead bytes to form a TUG-3 frame. INSERT AIS-P TO TMUX INTERFACE BLOCK B3 GENERATE INSERT J1 K3 APS INSERT G1 RDI-P INSERT G1 REI-P INSERT INSERT N1 INSERT C2 J1 K3 G1 G1 N1 C2 INSERT F3 F3 INSERT F2 F2 INSERT PATH OVERHEAD BYTES INSERT H4 FIXED VAL H4 VC-3 DATA 5-9069(F) Figure 37. Transmit Direction Path Insertion Block 420 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) 18.15.2 Loss of Clock and Loss of Sync Detectors The SPE mapper detects and reports the loss of the input clocks for the transmit telecom bus clock, device pin TLSCLK (AA2), in bit SPE_TLSLOC (Table 148 on page137 ); the 51.84 MHz transmit low-speed clock, device pin TLSC52 (AC3), in bit SPE_TC52LOC (Table 148), and the external DS3 clock, device pin DS3DATAINCLK (J22), in bit SPE_TDS3LOC (Table 148). Loss of clock is determined by stuck high or stuck low for time T. The detection time T will be greater than 10 s but less than 125 s. The function uses the microprocessor clock as its reference. The device will report a change in the loss of clock state for the monitored clocks using bits SPE_TLSLOCD (Table 146 on page 134), SPE_TC52LOCD (Table 146), and SPE_TDS3LOCD (Table 146), respectively. The microprocessor interrupt may be masked using bits SPE_TLSLOCM (Table 147 on pag e136), SPE_TC52LOCM (Table 147), and SPE_TDS3LOCM (Table 147), respectively. The SPE mapper detects loss-of-sync conditions for the telecom bus sync signals, device pins TLSSYNC52 (AD2), TLSJ0J1V1 (AB4), TLSSPE (AB2), and TLSV1 (AB3). The loss of sync states are reported in bits SPE_TSY52LOS (Table 148), SPE_TJ0J1V1LOS (Table 148), SPE_TSPELOS (Table 148), and SPE_TV1LOS (Table 148), respectively. The device will report a change in the loss of sync state for the monitored sync signals in bits SPE_TSY52LOSD (Table 146), SPE_TJ0J1V1LOSD (Table 146), SPE_TSPELOSD (Table 146), and SPE_TV1LOSD (Table 146), respectively. The microprocessor interrupt may be masked using bits SPE_TSY52LOSM (Table 147), SPE_TJ0J1V1LOSM (Table 147), SPE_TSPELOSM (Table 147), and SPE_TV1LOSM (Table 147), respectively. 18.15.3 J1 Byte Insert A 64-byte sequence stored in SPE_TJ1DINS[1--64][7:0] (Table 163 on page 148) will be inserted into the outgoing J1 byte when bit SPE_TJ1INS = 1 ( Table 154 on page143 ); otherwise, the associated POAC value is inserted when bit SPE_TPOAC_J1 = 1 (Table 154) or the default value, determined by the value of microprocessor bit SMPR_OH_DEFLT (Table 67 on pag e68), is inserted when SPE_TPOAC_J1 = 0. The CRC for the J1 trace has to be programmed into the J1 bytes by the user. 18.15.4 B3 BIP-8 Calculation and Insert The B3 bytes are allocated for path overhead error monitoring function. This function is a bit interleaved parity 8 code (BIP-8) using even parity. The BIP-8 is computed before scrambling over all bits of the previous AU-3/TUG-3 frame, and is placed in byte B3 of the current frame also before scrambling. When enabled with control bit, SPE_TB3ERRINS (Table 156), a single B3 byte can be inverted each time bit SPE_BERR_INS (Table 156) is asserted. 18.15.5 C2 Signal Label Byte Insert When bit SPE_TC2INS = 1 (Table 154), the value in SPE_TC2DINS[7:0] ( Table 157) is inserted into the outgoing C2 byte; otherwise, insert the associated POAC value when SPE_TPOAC_C2 = 1 (Table 154) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when bit SPE_TPOAC_C2 = 0. 18.15.6 REI-P G1(7:4) Insert Four bits of the G1 byte G1(7:4) are allocated for use as a path remote error indication (REI). For AU-3/TUG-3 signals, these bits convey the count (in the range of 0 to 8) of interleaved bit blocks that have been detected in error by the BIP-8 (B3) detector on the received signal. This function can be inhibited with bit SPE_TREIP_INH (Table 155) and the value in SPE_TG1DINS[7:4] (Table 157) is inserted in G1(7:4) bits. A continuous error in the G1 byte can be transmitted using control bit SPE_TREIERRINS (Table 156). A value of 0x03 will be inserted when SPE_TREIERRINS = 1, subject to SPE_BERR_INS and SMPR_BER_INSRT being enabled. Agere Systems Inc. 421 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) 18.15.7 Path RDI (RDI-P) Insert When transmit RDI software insert control bit SPE_TPRDIINS = 1 (Table 155), data from SPE_TG1DINS[3:1] (Table 157) is written into the G1[3:1] output bits. When SPE_TPRDIINS = 0, hardware insert is enabled for RDI-P insertion. Each defect contribution to the RDI-P outgoing code can be inhibited. There are two modes supported for path RDI Insertion. One mode conforms to the earlier 1-bit version of the standard. The other mode, enhanced RDI-P mode, uses a 3-bit RDI-P code and conforms to the current version of the standard. When the mode selection bit SPE_TPRDI_MODE = 0 (Table 155), the SPE mapper sends a 3-bit code that conforms to the earlier 1-bit version of the standards. When SPE_TPRDI_MODE = 1, the SPE mapper sends a 3-bit code conforming to the current enhanced path RDI encoding. Note that for nonenhanced RDI-P mode, the relevant defects are AIS-P and LOP-P. For enhanced RDI-P mode, the relevant defects are AIS-P, LOP-P, TIM-P, PLM-P, and UNEQ-P, and TIM-P. When a failure condition exists that will cause RDI-P to be generated via hardware, the generation of RDI-P must last for at least 20 frames before clearing, even if the original failure cause has cleared in less than 20 frames. The following table describes the encoding of the path-RDI defects. Table 548. RDI-P Defects for Enhanced RDI-P Mode Bit 3 0 0 0 0 1 1 1 1 G1 Bit 2 0 0 1 1 0 0 1 1 Triggers Bit 1 0 1 0 1 0 1 0 1 No defects (nonenhanced RDI-P mode) No defects (enhanced RDI-P mode) LCD-P, PLM-P (LCD-P not supported in Super Mapper) No defects (nonenhanced RDI-P mode) AIS-P, LOP-P (nonenhanced RDI-P mode) AIS-P, LOP-P (enhanced RDI-P mode) TIM-P, UNEQ-P (enhanced RDI-P mode) AIS-P, LOP-P (nonenhanced RDI-P mode) 18.15.8 F2 Byte Insert When control bit SPE_TF2INS = 1 (Table 154), insert the value in SPE_TF2DINS[7:0] (Table 157) in the outgoing F2 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_F2 = 1 ( Table 154) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT (Table 67) when SPE_TPOAC_F2 = 0. 18.15.9 H4 Insert Control When control bit SPE_TH4INS = 1 (v), insert the value in SPE_TH4DINS[7:0] (Table 157) in the outgoing H4 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_H4 = 1 (Table 154) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when SPE_TPOAC_H4 = 0. 18.15.10 F3 Byte Insert When control bit SPE_TF3INS = 1 (Table 154), insert the value in SPE_TF3DINS[7:0] (Table 157) in the outgoing F3 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_F3 = 1 ( Table 154) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT (Table 67) when SPE_TPOAC_F3 = 0. 18.15.11 K3 Insert Control Parameters When control bit SPE_TK3INS = 1 (Table 154), insert the value in SPE_TK3DINS[7:0] (Table 157) in the outgoing K3 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_K3 = 1 ( Table 154) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when SPE_TPOAC_K3 = 0. 422 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 18 SPE Mapper Functional Description (continued) 18.15.12 N1 Insert Control Parameters When control bit SPE_TN1INS = 1 (Table 154), insert the value in SPE_TN1DINS[7:0] (Table 157) in the outgoing N1 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_N1 = 1 (Table 154) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when SPE_TPOAC_N1 = 0. 18.16 POAC Insert One overhead access channel (POAC) is provided on-chip to provision the path overhead portion of the outgoing frame. A POAC channel consists of the following signals: A 576 kHz inverted clock signal sourced by the SPE mapper (TPOACCLK, pin AE4). A 576 kbits/s data signal received by the SPE mapper in the transmit direction (TPOACDATA, pin AD5). An 8 kHz synchronization signal (TPOACSYNC, pin AC5), sourced by the SPE mapper. The sync signal is normally low; during the first clock period of each frame coincident with the most significant bit of the first byte, the sync signal is high. The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first. The MSB of the second byte of each frame contains an odd/ even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. The POAC input has full access to all the path overhead bytes of the STS-1 frame. Bytes shown in the table below summarize the access capabilities of the transmit POAC channel. Table 549. Path Overhead Byte Access--Transmit Direction J1 POH Parity C2 G1 F2 H4 F3 K3 N1 An event indication is provided to indicate parity errors for the POAC channel. Monitoring of odd or even parity is selected with bit SPE_TPOAC_OEPMON (Table 154 on page143 ). Parity errors are reported with bit SPE_TPOAC_PE (Table 146). The interrupt can be masked with bit SPE_TPOAC_PM (Table 147 on page136 ). Table 550 summarizes the insertion options for the specified overhead bytes for POAC. The SPE mapper allows a predefined default value determined by the value of the microprocessor bit SMPR_OH_DEFLT (Table 67) to be inserted on the corresponding POAC value. Agere Systems Inc. 423 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 18 SPE Mapper Functional Description (continued) Table 550. TPOAC Control Bits Overhead Bytes J1 H4 F2 F3 C2 K3 N1 Control Bits (Table 154) SPE_TPOAC_J1 SPE_TPOAC_H4 SPE_TPOAC_F2 SPE_TPOAC_F3 SPE_TPOAC_C2 SPE_TPOAC_K3 SPE_TPOAC_N1 Values 0 (Default Value) SMPR_OH_DEFLT 1 TPOAC Data 18.17 AIS Path Generation Path AIS is specified as all ones in the entire STS-1 SPE/TUG-3 frame. Path AIS can be forced by setting bit SPE_TAISPINS = 1 (Table 154 on page143 ). 424 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description Table of Contents Contents Page 19 VT/TU Mapper Functional Description ........................................................................................................... 425 19.1 VT/TU Mapper Introduction .................................................................................................................... 427 19.2 VT/TU Mapper Features ......................................................................................................................... 427 19.3 VT/TU Mapper Functional Block Diagram .............................................................................................. 428 19.4 VT/TU Mappings ..................................................................................................................................... 430 19.5 VT/TU Locations ..................................................................................................................................... 431 19.6 VT/TU Mapper Receive Path Description ............................................................................................... 432 19.7 VT Demultiplexer (VTDEMUX) ............................................................................................................... 432 19.8 VT Pointer Interpreter (VTPI) .................................................................................................................. 432 19.9 VT Termination (VTTERM) ..................................................................................................................... 435 19.9.1 V5 Termination ............................................................................................................................. 435 19.9.2 Z6/N2 Termination ....................................................................................................................... 436 19.9.3 Z7/K4 Termination ....................................................................................................................... 436 19.9.4 Payload Termination .................................................................................................................... 437 19.10 Output Signal Selection (OUTSEL) ...................................................................................................... 437 19.11 J2 Byte Monitor and Termination (J2MON) .......................................................................................... 438 19.12 Receive Signaling (RX_VTSIG) ............................................................................................................ 439 19.13 Receive Lower-Order Path Overhead (RX_LOPOH) ........................................................................... 440 19.14 VT/TU Mapper Transmit Path Requirements ....................................................................................... 440 19.14.1 Input Selector (INSEL) .............................................................................................................. 441 19.14.2 Transmit Elastic Store (TES) ..................................................................................................... 442 19.14.3 Virtual Tributary Generator (VTGEN) ........................................................................................ 442 19.14.4 Pointer Generation .................................................................................................................... 442 19.14.5 VT Multiplexer (VTMUX) ........................................................................................................... 450 19.14.6 Transmit Signaling (TX_VTSIG) ................................................................................................ 450 19.14.7 Transmit Lower Path Overhead (TX_LOPOH) .......................................................................... 450 19.15 VT Mapper System Interface Timing .................................................................................................... 451 19.15.1 VT Mapper DS1/E1 Receive Interface (to System Interface) .................................................... 451 19.15.2 VT Mapper DS1/E1 Transmit Interface (from System Interface) ............................................... 452 19.16 VT Mapper Lower-Order Path Overhead Interface Timing ................................................................... 452 19.16.1 VT Mapper Receive Path Overhead Interface Description ....................................................... 452 19.16.2 VT Mapper Transmit Path Overhead Interface Description ...................................................... 453 Figures Page Figure 38. VT Mapper Interface Diagram ............................................................................................................. 428 Figure 39. VT Mapper Functional Block Diagram................................................................................................. 429 Figure 40. Pointer Interpretation State Diagram................................................................................................... 433 Figure 41. DS1 Mode Gapped Clocking Scheme................................................................................................. 451 Figure 42. E1 Mode Gapped Clocking Scheme ................................................................................................... 451 Figure 43. DS1 Interface ...................................................................................................................................... 451 Figure 44. E1 Interface ......................................................................................................................................... 452 Figure 45. VT Mapper Receive Path Overhead Serial Access Channel .............................................................. 452 Figure 46. VT Mapper Transmit Path Overhead Serial Access Channel ............................................................. 453 Agere Systems Inc. 425 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) Table of Contents (continued) Tables Table 551. Table 552. Table 553. Table 554. Table 555. Table 556. Table 557. Table 558. Table 559. Table 560. Table 561. Table 562. Table 563. Table 564. Table 565. Table 566. Table 567. Table 568. Table 569. Table 570. Table 571. Table 572. Table 573. Table 574. 426 Page VT2/TU-12 Payload Mapping ............................................................................................................ 430 VT1.5/TU-11 Payload Mapping ......................................................................................................... 430 VT2/TU-12 Locations ......................................................................................................................... 431 VT1.5/TU-11 Locations ...................................................................................................................... 431 Receive VT/TU Demapping Selection ............................................................................................... 437 Rx Signaling Behavior per Channel ................................................................................................... 439 Data Type Header Definitions ........................................................................................................... 440 Transmit VT/TU Mapping Selection per Channel, VT_TX_MAPTYPE[1--28][3:0] ........................... 441 V5 Overhead Byte Format ................................................................................................................. 443 BIP-2 Error Insertion Modes .............................................................................................................. 443 RDI-V, RFI-V, and REI-V Automatic Generation ............................................................................... 444 VT Signal Label Definition ................................................................................................................. 445 J2 Overhead Byte Insertion Modes Per Channel .............................................................................. 445 Z6/N2 Overhead Byte Insertion Modes Per Channel ........................................................................ 445 Z7/K4 Overhead Byte Insertion Modes Per Channel ........................................................................ 446 O-Bit Insertion Modes Per Channel ................................................................................................... 446 Asynchronous VT1.5 ......................................................................................................................... 447 Bit Synchronous VT1.5 ...................................................................................................................... 447 Byte Synchronous VT1.5 ................................................................................................................... 447 Asynchronous VT2 ............................................................................................................................ 448 Bit Synchronous VT2 ......................................................................................................................... 448 Byte Synchronous VT2 ...................................................................................................................... 448 VC-11 to TU-12 Conversion .............................................................................................................. 449 Framing Byte Generation Per Channel ............................................................................................. 450 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) 19.1 VT/TU Mapper Introduction This section describes the requirements of the SONET/SDH virtual tributary payload mapping block. This block supports the following mappings: 28 asynchronous, byte synchronous, or bit synchronous DS1 signals into seven virtual tributary groups (VTGs). 28 asynchronous, byte synchronous, or bit synchronous DS1 signals into seven tributary unit groups (TUG-2s). 28 asynchronous, byte synchronous, or bit synchronous J1 signals into seven virtual tributary groups (VTGs). 28 asynchronous, byte synchronous, or bit synchronous J1 signals into seven tributary unit groups (TUG-2s). 21 asynchronous, byte synchronous, or bit synchronous E1 signals into seven tributary unit groups (TUG-2s). Any valid DS1/E1 combination resulting in mixed VTGs and TUG-2s. Additionally, this block has two auxiliary channels: one for DS1/E1 signaling insertion and drop, and another for low-order path overhead (LOPOH) insertion and drop. Control inputs and outputs for each internal block are specified, along with appropriate control register bit definitions. 19.2 VT/TU Mapper Features Maps T1/E1/J1 into VT/TU structures: -- T1 into VT1.5/TU-11/TU-12. -- J1 into VT1.5/TU-11/TU-12. -- E1 into VT2/TU-12. Supports asynchronous, byte synchronous, and bit synchronous mappings. Supports automatic generation or microprocessor overwrite of one bit RDI and one bit RFI. Supports automatic generation or microprocessor overwrite of enhanced RDI. Supports ADM applications via tributary loopback and tributary pointer processing. Supports unidirectional path switch ring (UPSR) applications via low-order path overhead access channel. Supports five J2 trace identifier modes. Programmable BIP-2 error insertion. Monitors BIP-2 bit error rate. Programmable clear-on-read/clear-on-write registers. Supports automatic AIS generation for downstream devices. VC-BIP-2, VC-REI one second error counters. Programmable saturation or rollover of internal counters. Complies with GR-253-CORE, G.707, T1.105, G.704, G.783, JT-G707, GR-499, ETS 300 417-1-1. Agere Systems Inc. 427 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 19.3 VT/TU Mapper Functional Block Diagram The following block diagram shows a high-level view of the VT/TU mapper block and the interface to the T1/E1 framer, cross connect, SPE mapper (SPEMPR), digital jitter attenuator (DJA), and control (microprocessor interface). LOPOHVALIDOUT DJA LOPOHDATAOUT RDI, REI PATH, AND LINE ALARMS RECEIVE TMUX SPEMPR RDI, REI RX PATH SIGNALING DATA CLOCK ALARM CONTROL DATA CLOCK FSYNC ALARM RECEIVE VT/TU MAPPER RECEIVE SPE SPEMPR [28:1] FRAMER CROSS CONNECT TRIBUTARY LOOPBACK RDI-V REI-V DATA DATA CLOCK FSYNC ALARM TRANSMIT SPE SPEMPR [28:1] TRANSMIT VT/TU MAPPER CLOCK CONTROL TX PATH SIGNALING TUG3 RDI, REI CONTROL INTERFACE E1XCLK DS1XCLK LOPOHDATAIN LOPOHCLKIN LOPOHVALIDIN RDI, REI PATH, AND LINE ALARMS TRANSMIT TMUX 5-9011(F)r.2 Figure 38. VT Mapper Interface Diagram 428 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) SPE MAPPER RDI_L REI_L[4:0] RDI_P[2:0] REI_P[3:0] TMUX RDI[2:0] REI[3:0] RECEIVE PATH SIGNALING TO FRAMERS LOPOHVALIDOUT LOPOHDATAOUT DEVICE I/O RX_LOPOH RX_VTSIG SPE MAPPER J0TIME DS1/E1 TO CROSS CONNECT J2MON RAI[28:1] AUTO_AIS[28:1] DATA[28:1] VTDEMUX OUTSEL CLK[28:1] VTRXDATA[7:0] VTTERM x28 FSYNC[28:1] DEVICE I/O DS1XCLK J1TIME RX_EN CLK7M_RX VTPI X28 E1XCLK VT LOOPBACK (VTLBSEL = 1) CLK7M_TX V1TIME TX_EN DS1/E1 FROM CROSS CONNECT DATA[28:1] CLK[28:1] FSYNC[28:1] VTMUX INSEL X28 TES X28 VTTXDATA[7:0] VTGEN X28 RAI[28:1] DEVICE I/O RDI[2:0] REI[3:0] RDI_L REI_L[4:0] TRANSMIT PATH SIGNALING FROM FRAMERS TX_LOPOH TUG3_RDI[2:0] TUG3_REI[3:0] 16-BIT MICROPROCESSOR INTERFACE TX_VTSIG LOPOHCLKIN LOPOHDATAIN LOPOHVALIDIN SOFTWARE REGISTERS TMUX SPE MAPPER 5-9012(F) Figure 39. VT Mapper Functional Block Diagram Agere Systems Inc. 429 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 19.4 VT/TU Mappings Table 551. VT2/TU-12 Payload Mapping Column X 1 2 *** J1 V T 2 # 1 B3 C2 V *** T 2 # 2 G1 2 2 2 *** 0 1 2 V T 2 # 2 0 V T 2 # 2 1 V *** T 2 # 1 2 X 2 *** 8 9 V T 2 # 7 F I X E D V *** T 2 # 8 4 4 4 *** 1 2 3 V T 2 # 2 0 V T 2 # 2 1 V *** T 2 # 1 5 X 5 *** 6 7 V T 2 # 1 4 S T U F F F2 H4 Z3 F I X E D V *** T 2 # 1 5 6 6 *** 3 4 V T 2 # 2 1 8 8 3 4 V *** T 2 # 1 V T 2 # 2 1 V T 2 # 2 0 S T U F F Z4 Z5 Table 552. VT1.5/TU-11 Payload Mapping Column X 1 2 *** 2 7 2 8 X 2 9 3 0 *** 5 5 5 6 X 5 7 5 8 *** 8 3 J1 V T 1 . 5 # 1 V T 1 . 5 # 2 *** v T 1 . 5 # 2 7 V T 1 . 5 # 2 8 F I X E D V T 1 . 5 # S 1 T U F F V T 1 . 5 # 2 *** V T 1 . 5 # 2 7 V T 1 . 5 # 2 8 F I X E D V T 1 . 5 # S 1 T U F F V T 1 . 5 # 2 *** V V T T 1 1 . . 5 5 # # 2 2 7 8 B3 C2 G1 F2 H4 Z3 8 4 Z4 Z5 430 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) 19.5 VT/TU Locations Table 554. VT1.5/TU-11 Locations Table 553. VT2/TU-12 Locations VTG VT E1* Columns 1 1 1 1, 22, 43, 64 2 1 2 2, 23, 44, 65 3 1 3 3, 24, 45, 66 4 1 4 4, 25, 46, 67 5 1 5 5, 26, 47, 68 6 1 6 6, 27, 48, 69 7 1 7 7, 28, 49, 70 1 2 8 8, 29, 50, 71 2 2 9 9, 30, 51, 72 3 2 10 10, 31, 52, 73 4 2 11 11, 32, 53, 74 5 2 12 12, 33, 54, 75 6 2 13 13, 34, 55, 76 7 2 14 14, 35, 56, 77 1 3 15 15, 36, 57, 78 2 3 16 16, 37, 58, 79 3 3 17 17, 38, 59, 80 4 3 18 18, 39, 60, 81 5 3 19 19, 40, 61, 82 6 3 20 20, 41, 62, 83 7 3 21 21, 42, 63, 84 * This column is for the I/O of the VTMPR. The cross connect can be provisioned to map any external E1 to any VT2. See VT2/TU-12 Payload Mapping on page 430. VTG VT DS1* Columns 1 1 1 1, 29, 57 2 1 2 2, 30, 58 3 1 3 3, 31, 59 4 1 4 4, 32, 60 5 1 5 5, 33, 61 6 1 6 6, 34, 62 7 1 7 7, 35, 63 1 2 8 8, 36, 64 2 2 9 9, 37, 65 3 2 10 10, 38, 66 4 2 11 11, 39, 67 5 2 12 12, 40, 68 6 2 13 13, 41, 69 7 2 14 14, 42, 70 1 3 15 15, 43, 71 2 3 16 16, 44, 72 3 3 17 17, 45, 73 4 3 18 18, 46, 74 5 3 19 19, 47, 75 6 3 20 20, 48, 76 7 3 21 21, 49, 77 1 4 22 22, 50, 78 2 4 23 23, 51, 79 3 4 24 24, 52, 80 4 4 25 25, 53, 81 5 4 26 26, 54, 82 6 4 27 27, 55, 83 7 4 28 28, 56, 84 * This column is for the I/O of the VTMPR. The cross connect can be provisioned to map any external DS1 to any VT1.5. See VT1.5/TU-11 Payload Mapping on page 430. Agere Systems Inc. 431 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 19.6 VT/TU Mapper Receive Path Description This section describes all necessary functions of the receive logic (see Figure 39, right to left): Virtual tributary demultiplexor (VTDEMUX) Virtual tributary pointer interpreter (VTPI) Virtual tributary terminator (VTTERM) Output selector (OUTSEL) J2 16-byte sequence monitor (J2MON) Receive VT/TU signaling (RX_VTSIG) Receive low-order path overhead (RX_LOPOH) 19.7 VT Demultiplexer (VTDEMUX) The VTDEMUX logic block (in Figure 39 on page429 ) will perform all necessary functions to decode which virtual tributary (VT) is active on the data bus. This block monitors the H4 byte and frames on the H4 multiframe indication. In frame (VT_H4LOMF = 0 (Table 176)) will be declared following two consecutive, nonerrored multiframe indications. A multiframe indication consists of four consecutive frames containing a (00, 01, 10, 11) pattern in the two LSBs of the H4 byte. Once framed, H4 loss of multiframe (VT_H4LOMF = 1) will be declared following the number of consecutive mismatches in the H4 multiframe indication programmed into bits VT_H4_NTIME[3:0] (Table 182). Loss of H4 multiframe alignment will generate AIS downstream. A change in H4 multiframe alignment is indicated by bit VT_H4LOMF_D (Table 168) and will generate an interrupt unless the mask is set (VT_H4LOMF_M = 1 (Table 180)). Bits VT_RX_GRP_TYPE[6:0] (Table 180) are programmed to determine whether the incoming tributary is a VT1.5/TU-11 or a VT2/TU-12. See Table 551 through Table 554 on page 430 through page 431 for VT/TU mapping formats. 19.8 VT Pointer Interpreter (VTPI) The VTPI logic block (in Figure 39 on page429 ) will perform all necessary functions to support VT/TU pointer interpretation. The following features are implemented: The pointer interpreter consists of the following states: Loss of pointer (LOP-V) VT-AIS (AIS-V) (all ones in V1 and V2) NDF enabled (NDF) (1001, 0001, 1101, 1011, 1000) Normal (NORM) (disabled NDF, normal pointer) Increment (INC) (inverted I bits) Decrement (DEC) (inverted D bits) 432 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) NDF ENABLE INC DEC 3 NEW POINTERS 3 ANY POINTERS 3 ANY POINTERS NDF DECREMENT INDICATION ENABLE INCREMENT INDICATION 3 NEW POINTERS 3 NEW POINTERS NORM 3 ANY POINTERS NDF NDF ENABLE NDF ENABLE 8 INVALID POINTERS FROM ALL STATES 8 INVALID POINTERS* FROM ALL STATES 3 AIS INDICATIONS NDF ENABLE 3 NEW POINTERS LOP * 8 INVALID POINTERS AIS 8 NDF ENABLE 5-9007(F) * This state diagram is based on the ETS 417-1-1 pointer interpretation state diagram (Figure B.1). Transitions of eight invalid pointers from the INC, DEC, and NDF states into the LOP state have been added. Figure 40. Pointer Interpretation State Diagram The pointer interpreter will transition into the LOP-V state based on the following conditions: -- Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive superframes programmed in bits VT_NDF_NTIME[3:0] (Table 183), then LOP-V will be declared. -- Invalid pointer values. If the number of consecutive superframes programmed in register bits VT_INV_NTIME[3:0] (Table 183) are received with a pointer that is not a normal value, NDF, AIS-V, increment, or decrement, then LOP-V will be declared. The SS bits contribute to an invalid pointer indication. The pointer interpreter will transition out of the LOP-V state based on the following conditions: -- Following three consecutive superframes with all ones in the V1 and V2 bytes the pointer interpreter will transition from the LOP-V state into the AIS-V state. -- Following three new consecutive, consistent, and valid pointers the pointer interpreter will transition from the LOP-V state into the NORM state. -- The pointer interpreter does not transition from the LOP-V state into the NDF state. The pointer interpreter will transition into the AIS-V state based on the following conditions: -- Following three consecutive superframes with all ones in the V1 and V2 bytes AIS-V will be declared. The pointer interpreter will transition out of the AIS-V state based on the following conditions: -- Following three new consecutive, consistent, and valid pointers the pointer interpreter will transition from the AIS-V state into the NORM state. -- Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0], the pointer interpreter will transition from the AIS-V state into the LOP-V state. -- If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the AIS-V state into the NDF state. Agere Systems Inc. 433 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) The pointer interpreter will transition into the NDF state based on the following conditions: -- If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM, NDF, AIS, INC, and DEC states into the NDF state. The pointer interpreter will transition out of the NDF state based on the following conditions: -- Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive superframes programmed in bits VT_NDF_NTIME[3:0] (Table 183), the pointer interpreter will transition from the NDF state into the LOP-V state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the NDF state into the NORM state. -- Following three consecutive superframes with all ones in the V1 and V2 bytes, the pointer interpreter will transition from the NDF state into the AIS-V state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the NDF state into the NORM state. -- Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0] (Table 183), the pointer interpreter will transition from the NDF state into the LOP-V state. The pointer interpreter will transition into the NORM state based on the following conditions: -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition into the NORM state. i.e., transitioning from the INC, DEC, and NDF states. The pointer interpreter will transition out of the NORM state based on the following conditions: -- Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0], the pointer interpreter will transition from the NORM state into the LOP-V state. -- If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the NDF state. -- Following three consecutive superframes with all ones in the V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the AIS-V state. -- When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1 (Table 181)), if 8 of the 10 I and D bits are correct for a pointer decrement on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the DEC state. -- When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer increment on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the INC state. The pointer interpreter will transition into the INC state based on the following conditions: -- When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer increment on the incoming V1 and V2 bytes, the pointer interpreter will transition into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming V1 and V2 bytes, the pointer interpreter will transition into the INC state. The pointer interpreter will transition out of the INC state based on the following conditions: -- If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the INC state into the NDF state. -- Following three consecutive superframes with all ones in the V1 and V2 bytes, the pointer interpreter will transition from the INC state into the AIS-V state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the INC state into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the INC state into the NORM state. -- Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0], the pointer interpreter will transition from the INC state into the LOP-V state. 434 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) The pointer interpreter will transition into the DEC state based on the following conditions: -- When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1 (Table 181)), if 8 of the 10 I and D bits are correct for a pointer decrement on the incoming V1 and V2 bytes, the pointer interpreter will transition into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming V1 and V2 bytes, the pointer interpreter will transition into the DEC state. The pointer interpreter will transition out of the DEC state based on the following conditions: -- If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the DEC state into the NDF state. -- Following three consecutive superframes with all ones in the V1 and V2 bytes, the pointer interpreter will transition from the DEC state into the AIS-V state. -- Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the DEC state into the NORM state. -- Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the DEC state into the NORM state. -- Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0] (Table 183), the pointer interpreter will transition from the DEC state into the LOP-V state. Pointer increments and decrements are monitored and counted internally. The performance monitoring reset signal transfers the count to the holding registers for pointer increment (VT_PTR_INC[1--28][3:0] (Table 208)), and pointer decrement (VT_PTR_DEC[1--28][3:0] (Table 208)) for microprocessor read and resets the running count registers to 0. When SMPR_SAT_ROLLOVER = 1 (Table 67), the internal running counts will hold at their maximum value. Otherwise, the counts will roll over. The running count and holding register counts will be forced to 0, if the SPE mapper is requesting AUTO AIS or VT_LOP[1--28] = 1 (loss of pointer) (Table 177) or VT_AIS[1--28] = 1 (VT AIS) (Table 177) (or VT_H4LOMF = 1 (loss of H4 multiframe alignment) (Table 176)). LOP-V (VT_LOP) and AIS-V (VT_AIS) will be detected and reported to the microprocessor. Both the LOP-V and AIS-V conditions will contribute to the VT/TU mapper automatic AIS generation that is driven over a 28-bit internal output bus to the cross connect (XC). Any change in state of VT_LOP or VT_AIS will be reported to the microprocessor via VT_LOP_D[1--28] and VT_AIS_D[1--28] (Table 169). Unless the appropriate mask bit is set (VT_LOP_M[1--28] or VT_AIS_M[1--28]) (Table 173), VT_LOP_D[1--28] = 1 or VT_AIS_D[1--28] = 1 will generate an interrupt. A check for VT/TU size mismatches is performed by comparing the expected VT/TU size bits (VT1.5 = 11, VT2 = 10) with the actual received SS bits in the V1 byte. After three consecutive mismatches, size errors will be reported with bit VT_SIZERR[1--28] (Table 177). Any change in state of VT_SIZERR[1--28] will be reported with bit VT_SIZERR_D[1--28] (Table 169). Unless the VT_SIZERR_M[1--28] (Table 173) mask bit is set, VT_SIZERR_D[1--28] = 1 will generate an interrupt. The accepted pointer is stored and accessible by the microprocessor. This block supports tributary loopback. 19.9 VT Termination (VTTERM) The VTTERM logic block (in Figure 39) will perform all necessary functions to support complete VT/TU termination. The following features are implemented. 19.9.1 V5 Termination The V5 byte is checked for BIP-2 errors. If BIP-2 errors are detected, REI-V is transmitted in the V5 byte of the corresponding transmit VT, if enabled by bit VT_REI_EN[1--28] = 1 (Table 198). BIP-2 errors and reception of REI-V in the V5 byte is counted on a per-superframe basis. BIP-2 errors can counted on either a bit or block basis selected by bit, VT_BIT_BLOCK_CNT (1 = bit, 0 = block) (Table 181). Agere Systems Inc. 435 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) BIP-2 errors and REI-V reception are monitored and counted internally. The performance monitoring reset signal transfers the count to the holding registers for BIP-2 error count (VT_BIP2ERR_CNT[1--28][11:0]; Table 206), and REI-V count (VT_REI_CNT[1--28][10:0] (Table 207)) for microprocessor read, and resets the running count registers to 0. When SMPR_SAT_ROLLOVER = 1 (Table 67), the internal running counts will hold at their maximum value. Otherwise, the counts will roll over. The running count and holding register counts will be forced to 0, if the SPE mapper is requesting AUTO AIS, VT_LOP[1--28] = 1 (loss of pointer), VT_AIS[1--28] = 1 (VT AIS) (Table 177) or VT_H4LOMF = 1 (loss of H4 multiframe alignment) (Table 176). The V5 byte will be checked for received RFI-V via VT_RFI[1--28] bits (Table 177). New values will be latched into the register after the number of consecutive values programmed in bits VT_RDI_NTIME[3:0] (Table 184) have been received. A VT_RFI[1--28] change of state is reported by bit VT_RFI_D[1--28] (Table 169). When operating in the DS1 byte synchronous mode, RFI-V = 1 will force DS1 RAI downstream to the framer. Unless the VT_RFI_M mask bit (Table 173) is set, VT_RFI_D[1--28] = 1 will generate and cause an interrupt. When operating in normal RDI-V mode (VT_RX_ERDI_EN[1--28] = 1 (Table 204, starting on page168 )), the V5 byte will be checked for received RDI-V and reported via VT_RDI[1--28] bits (Table 177). New values will be latched to this register after VT_RDI_NTIME[3:0] consecutive values have been received. A VT_RDI[1--28] change of state is reported via VT_RDI_D[1--28] (Table 169). Unless the VT_RDI_M[1--28] (Table 173) mask bit is set, VT_RDI_D[1--28] = 1 will generate and cause an interrupt. When operating in enhanced RDI-V mode (VT_RX_ERDI_EN[1--28] = 0 (Table 204, starting on page168 )), the V5 byte will be checked for received RDI-V and reported via VT_RDI[1--28] bit (Table 177). New values will be latched to this register after VT_ERDI_NTIME[3:0] (Table 184) consecutive ERDI-V values (V5 bit 8 and Z7 bits 5--7) have been received. A VT_ERDI[1--28][2:0] change of state is reported via VT_ERDI_D[1--28] (Table 169). Unless the VT_ERDI_M[1--28] mask bit (Table 173) is set, VT_ERDI_D[1--28] = 1 will generate and cause an interrupt. The V5 byte VT/TU signal label will be monitored and reported to the microprocessor using bits VT_LAB[1--28][2:0] (Table 177). New values will be latched to the microprocessor after the number of consecutive values programmed in bits VT_LAB_NTIME[3:0] (Table 184) have been received. An all zeros signal label will set bit VT_UNEQ[1--28] (Table 177). Any change in state of VT_UNEQ[1--28] will be reported to the microprocessor via bit VT_UNEQ_D[1--28] (Table 169). Unless the VT_UNEQ_M[1--28] (Table 173) mask bit is set, VT_UNEQ_D[1--28] = 1 will generate an interrupt. VT_UNEQ[1--28] will contribute to automatic AIS generation. The latched signal label will be compared to the expected signal label. If the expected signal label is 001 or if VT_UNEQ[1--28] is detected, the detection of PLM-V is disabled. Otherwise, any mismatch is reported to the microprocessor via bit VT_PLM[1--28] (Table 177). Any change in state of VT_PLM[1--28] will be reported to the microprocessor via bit VT_PLM_D[1--28] (Table 169). Unless the VT_PLM_M[1--28] mask bit is set (Table 173), VT_PLM_D[1--28] = 1 will generate an interrupt. 19.9.2 Z6/N2 Termination For SONET applications, the Z6 byte is monitored and presented to the microprocessor using bits VT_Z6_BYTE[1--28][7:0] (Table 205) for growth and monitoring purposes only. The Z6 byte is updated to when three consecutive consistent bytes are received. N2 is defined for tandem connection applications per ETS 300 417-1-1 and ITU-T G.707/G.783. Low-order tandem connection is not supported. 19.9.3 Z7/K4 Termination This termination will support enhanced RDI when bit VT_RX_ERDI_EN[1--28] = 1(Table 204, starting on page 168). The Z7/K4[3:1] byte will be monitored and reported to the microprocessor with bits VT_ERDI[1--28][2:0] (Table 177). New values will be latched to the microprocessor after the number of consecutive values programmed in register bits VT_ERDI_NTIME[3:0] (Table 184) have been received. A change of state is reported using bit VT_ERDI_D[1--28] (Table 169). Unless the VT_ERDI_M[1--28] (Table 173) mask bit is set, VT_ERDI_D[1--28] = 1 will generate an interrupt. 436 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) The Z7/K4[7:4] byte will be monitored and reported to the microprocessor via bits VT_APS[1--28][3:0] (Table 178). New values will be latched to the microprocessor after the number of consecutive values programmed in bits VT_APS_NTIME[3:0] (Table 184) have been received. A change of state is reported using bit VT_APS_D[1--28] (Table 169). Unless the VT_APS_M[1--28] (Table 173) mask bit is set, VT_APS_D[1--28] = 1 will generate an interrupt. 19.9.4 Payload Termination Payload termination will support asynchronous, byte synchronous, and bit synchronous demappings for SONET VT1.5s and VT2s per Bellcore GR-253 and ANSI T1.105. Payload termination will support asynchronous, byte synchronous, and bit synchronous demappings for SDH TU11s and TU12s per ITU-T G.707 and ETS 300 417-4-1. Demapping modes are selected with bits VT_RX_MAPTYPE[1--28][3:0] ( Table 204, starting on page168 ), as defined in Table 555. Table 555. Receive VT/TU Demapping Selection VT_RX_MAPTYPE[1--28][3:0] (See Table 204.) Description 0 0 0 0 Asynchronous VT1.5/TU-11 (DS1 output) 0 0 0 1 Asynchronous VT2/TU-12 (E1 output) 0 0 1 0 Byte synchronous VT1.5/TU-11 (DS1 output) 0 0 1 1 Byte synchronous VT2/TU-12 (E1 output) 0 1 0 0 Bit synchronous VT1.5/TU-11 (DS1 output) 0 1 0 1 Bit synchronous VT2/TU-12 (E1 output) 0110--0111 Undefined, generates AIS 1 0 0 0 Asynchronous VT2/TU-12 (DS1 output) 1 0 0 1 Byte synchronous VT2/TU-12 (DS1 output) 1 0 1 0 Bit synchronous VT2/TU-12 (DS1 output) 1011--1111 Undefined, generates AIS The payload termination provides an elastic store for rate adoption. An elastic store overflow is indicated in bit VT_RX_ESOVFL_D[1--28] (Table 169). Unless the VT_RX_ESOVFL_M[1--28] mask bit is set (Table 173), VT_RX_ESOVFL_D[1--28] = 1 will generate an interrupt. When an overflow condition exists, the read/write count will be forced to the center of the FIFO. The FIFO is 64 bits deep. The payload termination circuitry will generate a gapped DS1/E1 clock (VT_TERM_CLK). Figure 41 and Figure 42 on page451 describe the DS1 and E1 gapped clocking schemes, respectively. A frame sync is generated and transmitted from the device coincident with the frame bit for DS1 and the MSB of time slot 0 for E1 when demapping a byte synchronous payload. 19.10 Output Signal Selection (OUTSEL) The OUTSEL logic block (in Figure 39 on page429 ) will perform all necessary functions to overwrite the outgoing DS1/E1 signals with the appropriate AIS clock, data, and frame synchronization. Agere Systems Inc. 437 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) VT/TU mapper automatic AIS, which is driven over a 28-bit internal output bus to the cross connect (XC), is generated according to the following equation: SPEMPR_AUTO_AIS or VT_LOP[1--28] or VT_AIS[1--28] or (VT_H4LOMF and (VT_LOMF_AIS_INH)) or (VT_UNEQ[1--28] and (VT_UNEQ_AIS_INH)) or (VT_PLM[1--28] and (VT_PLM_AIS_INH)) or (VT_J2TIM[1--28] and (VT_J2TIM_AIS_INH)) or (VT_LOPS[1--28] and VT_LOPS_AIS_INH)) The output of the VT/TU mapper receive path will be as shown in Figure 43 on page451 and Figure 44 on page 452. 19.11 J2 Byte Monitor and Termination (J2MON) The J2MON logic block (in Figure 39 on page429 ) will perform all necessary functions to monitor the incoming J2 trace identifier. The following features are implemented: J2 monitoring will support five different monitoring modes defined by VT_J2MON_MODE[1--28][2:0] Table 204 on pag e168: -- VT_J2MON_MODE[1--28][2:0] = 000: this mode captures an incoming 16-byte sequence and stores it in VT_J2BYTE_DET[1--28][1--16][7:0] (Table 209). TIM-V is disabled for this mode. -- VT_J2MON_MODE[1--28][2:0] = 001: this mode captures an incoming 16-byte sequence with SDH framing and stores it in VT_J2BYTE_DET[1--28][1--16][7:0]. TIM-V is disabled for this mode. -- VT_J2MON_MODE[1--28][2:0] = 010: this mode captures a constant 1-byte sequence and stores it in VT_J2BYTE_DET[1--28][1][7:0]. TIM-V is disabled for this mode. -- VT_J2MON_MODE[1--28][2:0] = 011: this mode monitors a 16-byte sequence with SDH framing and compares it to a programmable expected value. The expected value is programmed by the user using register bits VT_J2BYTE_EXP[1--28][1--16][7:0] (Table 209). The hardware frames by looking for the byte with the MSB set to one, which indicates that the next byte is the second byte of the message. CRC is verified based on the value programmed in VT_J2BYTE_EXP[1--28][1--16][7:0]. TIM-V is enabled for this mode. -- VT_J2MON_MODE[1--28][2:0] = 100: this mode monitors a constant 1-byte sequence and compares it to an programmable expected value. The expected value is programmed by the user using register bits VT_J2BYTE_EXP[1--28][1][7:0]. TIM-V is enabled for this mode. Trace identifier mismatch (TIM-V) will be detected following the number of consecutively errored sequences (1-byte or 16-byte sequences) programmed in bits, VT_J2_NTIME[3:0] (Table 183), and reported to the microprocessor via bit VT_J2TIM[1--28] (Table 177). If TIM-V is detected, the J2 byte monitor will transition into the capture mode and start searching for two consecutive consistent 1-byte or 16-byte sequences. Once two consecutive consistent sequences are detected, the J2 byte monitor will transition into the monitor mode and start searching for the number of consecutive mismatches programmed in register bits VT_J2_NTIME[3:0], on a per 1-byte or 16-byte sequence basis. Once the hardware finds synchronization (VT_J2TIM[1--28] = 0), the new sequence is latched into VT_J2BYTE_DET[1--28][1--16][7:0] (Table 209). The synchronization algorithm used will not allow single bit errors to pass through to VT_J2BYTE_DET[1--28][1--16][7:0]. 438 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) Unless bit VT_J2TIM_AIS_INH (Table 181) is set to a 1, VT_J2TIM[1--28] will contribute to automatic AIS generation. Any change in state of VT_J2TIM[1--28][1--16][7:0] will be reported in bit VT_J2TIM_D[1--28] (Table 169). Unless the VT_J2TIM_M[1--28] (Table 173) mask bit is set, VT_J2TIM_D[1--28] = 1 will generate an interrupt. 19.12 Receive Signaling (RX_VTSIG) The RX_VTSIG logic block (in Figure 39 on page429 ) will perform all necessary functions to extract and transmit the received signaling bits when operating in DS1 byte-synchronous mode. The following features are implemented: The signaling is sent to the appropriate framer link selected by bits VT_RXSIG_CH_SEL[1--28][4:0] Table ( 204). VT_RXSIG_CH_SEL[1--28][4:0] is a necessary duplication of the routing information programmed within the cross connect (XC) block. When VT_SYNC_PBIT[1--28] = 1 (Table 204 on page168 ), the RX_VTSIG block will synchronize to the incoming VT/TU phase indication (P1, P0). Otherwise, VT_LOPS[1--28] (Table 177) and VT_LOPS_D[1--28] (Table 169) will be forced to 0. P-bit phase synchronization (VT_LOPS[1--28] = 0) is declared following two consecutive nonerrored multiframes (48 frames). Loss of phase synchronization (VT_LOPS[1--28] = 1) is declared following the number of consecutive errored multiframes programmed in bits VT_LOPS_NTIME[3:0] (Table 182). Any change in VT_LOPS[1--28] state will be detected and reported to the microprocessor with bit VT_LOPS_D[1--28]. If the loss of phase synchronization (VT_LOPS[1--28] = 1) condition exists and VT_LOPS_AIS_INH = 0, DS1 AIS is transmitted downstream and the signaling bits will be forced to the value in SMPR_OH_DEFLT (Table 67) in the MPU block. Otherwise (VT_LOPS[1--28] = 0), the VT_RX_VTSIG logic block will behave as described in Table 556 below. Unless VT_LOPS_M[1--28] (Table 173) mask bit is set, VT_LOPS_D[1--28] will generate an interrupt. See Table 556 below for signaling behavior based on the receive status and control. Table 556. Rx Signaling Behavior per Channel VT_SYNC_PBIT [1--28] (Table 204) VT_WR_FBIT [1--28] (Table 204) VT_SF_ESF [1--28] (Table 204) VT_LOPS [1--28] (Table 177) Action 0 0 X X Pass F-bit transparently. 0 1 0* X Overwrite outgoing F bit with ESF pattern. 0 1 1 X Overwrite outgoing F bit with SF pattern. 1 1 0 0 Overwrite outgoing F bit with ESF pattern. 1 1 1 0 Overwrite outgoing F bit with SF pattern. 1 X X 1 Transmit DS1 AIS downstream. * If the P1 and P0 bits are not used for phase indication and the F bit is not passed transparently, the F bit is overwritten with the appropriate SF or ESF framing pattern based on a random starting position. Robbed-bit signaling will not be accessible under such a condition. When operating in the ESF mode, the Ft bits will be overwritten with the ESF frame and the C and M bits passed transparently. Agere Systems Inc. 439 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 19.13 Receive Lower-Order Path Overhead (RX_LOPOH) The RX_LOPOH logic block (in Figure 39 on page429 ) will perform all necessary functions to store and transmit the overhead associated with each VT/TU, specifically, V5, J2, Z6/N2, Z7/K4, and the O bits. The following features will be implemented: V5, J2, Z6/N2, Z7/K4, and the 0 bits, on a per VT basis, are stored for one complete superframe and transmitted during the next superframe. REI and RDI values received from the SPEMPR and TMUX are stored on a perframe basis and transmitted during the next frame. REI and RDI values are latched during the A1 time of the of the received SONET frame. When operating in UPSR mode (bit VT_UPSR = 1 ( Table 173)), REI, RDI, and ERDI values in the V5 and Z7 bytes will be modified based on the receive status. See Table 561 on page444 for automatic generation requirements. The REI and RDI received from the SPEMPR and TMUX blocks is the first data type transmitted in each frame as a burst of 34 bits on the rising edge of the SPE mapper Rx clock (6.48 MHz). All other data types are transmitted as a burst of 224 bits on the rising edge of the SPE mapper Rx clock. Note: The number of valid bits transmitted is dependent upon the VT/TU group types. i.e., full VT2 equals 168 bits. The first frame of the four frame multiframe contains data types 001, 010, 011, and 100, respectively. The second frame of the multiframe contains data types 001, 101, and 110, respectively. The remaining frames contain only data type 001. Data type headers will be defined as shown in Table 557 below. All data types must be transmitted within 500 s. Table 557. Data Type Header Definitions 0 0 0 0 1 1 1 1 Header 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Description Reserved. TMUX and SPE mapper RDI/REI. V5 byte, 28/21 bytes starting with VT 1*. J2 byte, 28/21 bytes starting with VT 1. Z6/N2 byte, 28/21 bytes starting with VT 1. Z7/K4 byte, 28/21 bytes starting with VT 1. O bits, 28/21 bytes starting with VT 1. Reserved. Data will be ignored. * All overhead bytes will be transmitted from MSB to LSB. O bits are received in the byte following J2 and the byte following Z6/N2 in asynchronous mode. The O bits will be transmitted ni the order of which they are received within a VT, starting with the MSB of the nibble following the J2 byte. Figure 45 on pag e452, contains the RX_LOPOH block serial channel format and timing. 19.14 VT/TU Mapper Transmit Path Requirements This section describes all necessary functions of the transmit logic (see Figure 39 on page429 , left to right). Input selector (INSEL) Transmit elastic store (TES) Virtual tributary generator (VTGEN) Virtual tributary multiplexer (VTMUX) Transmit DS1/E1 signaling (TX_VTSIG) Transmit low-order path overhead (TX_LOPOH) 440 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) 19.14.1 Input Selector (INSEL) The INSEL logic block (in Figure 39 on page429 ) will perform loss of clock (LOC), AIS, and loss of frame sync detection. The following features will be implemented: The incoming DS1/E1 signal will be retimed immediately using the selected DS1/E1 clock edge (VT_TX_CLKEDGE[1--28] (Table 198)). If VT_TX_CLKEDGE[1--28] = 1, the rising edge of the incoming DS1/E1 CLOCK is used to retime the signal; otherwise, the falling edge is used. The incoming DS1/E1 signals will be checked for a digital loss of clock (LOC) condition and reported with bit VT_TX_LOC[1--28] (Table 179). Any change in state of VT_TX_LOC[1--28] will be reported to the microprocessor via bit VT_TX_LOC_D[1--28] (Table 171). Unless the VT_TX_LOC_M[1--28] (Table 175) mask bit is set, VT_TX_LOC_D = 1 will generate an interrupt. If LOC is detected (VT_TX_LOC[1--28] = 1), DS1/E1 AIS will be inserted in the appropriate transmit path VT. DS1/E1 AIS consists of a valid VT/TU pointer, valid VT/TU overhead, and an all ones payload. In the byte-synchronous mode, the incoming DS1/E1 frame sync is monitored for the loss of frame sync condition (LOFS) and reported in bit VT_LOFS[1--28] (Table 179). In frame sync, (VT_LOFS[1--28] = 0) is declared following three consecutive valid frame sync pulses (375 s). Loss of frame sync (VT_LOFS[1--28] = 1) is declared following six consecutive frame sync mismatches (750 s). Any change in state of VT_LOFS[1--28] will be reported in bit VT_LOFS_D[1--28] (Table 171). Unless the VT_LOFS_M[1--28] (Table 175) mask bit is set, VT_LOFS_D[1--28] = 1 will generate an interrupt. If LOFS is detected (VT_LOFS[1--28] = 1), AIS-V is inserted in the appropriate VT location. AIS-V consists of writing an all ones pattern into the entire VT, including V1~4. The incoming DS1/E1 signal will be checked for the AIS condition and reported in bit VT_TX_AIS[1--28] (Table 179). Any change in state of VT_TX_AIS[1--28] is reported in bit VT_TX_AIS_D[1--28] (Table 171). Unless the VT_TX_AIS_M[1--28] (Table 175) mask bit is set, VT_TX_AIS_D[1--28] = 1 will generate an interrupt. If the incoming data is DS1, AIS will be declared if there are less than nine zeros out of 8192 clock periods. If the incoming data is E1, AIS will be declared if there are less than three zeros in each of two consecutive 512-bit periods and cleared when each of two consecutive 512-bit periods contain more than two zeros. Transmit mapping modes are shown in Table 558 below. Table 558. Transmit VT/TU Mapping Selection per Channel, VT_TX_MAPTYPE[1--28][3:0] VT_TX_MAPTYPE[1--28][3:0] (See Table 198.) Description 0 0 0 0 Asynchronous VT1.5/TU-11 (DS1 input). 0 0 0 1 Asynchronous VT2/TU-12 (E1 input). 0 0 1 0 Byte synchronous VT1.5/TU-11 (DS1 input). 0 0 1 1 Byte synchronous VT2/TU-12 (E1 input). 0 1 0 0 Bit synchronous VT1.5/TU-11 (DS1 input). 0 1 0 1 Bit synchronous VT2/TU-12 (E1 input). 0110--0111 Undefined, generates VT1.5/TU-11 UNEQ-V. 1 0 0 0 Asynchronous VT2/TU-12 (DS1 input). 1 0 0 1 Byte synchronous VT2/TU-12 (DS1 input). 1 0 1 0 Bit synchronous VT2/TU-12 (DS1 input). 1011--1111 Agere Systems Inc. Undefined, generates VT2/TU-12 UNEQ-V. 441 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 19.14.2 Transmit Elastic Store (TES) The TES logic block (in Figure 39 on pag e429) will perform all functions necessary to synchronize the incoming DS1/E1 or VT1.5/VT2 signals to the local STS-1/STS-3 clock. This logic block will support the following modes of operation: -- Asynchronous, bit synchronous, and byte synchronous mapping from DS1/E1 input. -- Asynchronous, bit synchronous, and byte synchronous mapping from loopback VT1.5/VT2 input. The TES logic block has programmable stuffing thresholds. The value programmed in the VT_HIGH_THRES[6:0] (Table 210) controls positive justification. The value programmed in the VT_LOW_THRES[6:0] (Table 210) controls negative justification. The recommended values for nontributary loopback (VT_LB_SEL[1--28] = 0 (Table 198)) are VT_HIGH_THRES[6:0] = 0x28 and VT_LOW_THRES[6:0] = 0x27. Otherwise (VT_LB_SEL[1--28] = 1), the recommended values are VT_HIGH_THRES[6:0] = 0x05 and VT_LOW_THRES[6:0] = 0x04. The TES logic block monitors for elastic store overflow conditions and reports with bit VT_TX_ESOVFL_E[1--28] (Table 171). Unless the VT_TX_ESOVFL_M[1--28] (Table 175) mask bit is set, VT_TX_ESOVFL_E[1--28] = 1 will generate and interrupt. 19.14.3 Virtual Tributary Generator (VTGEN) The VTGEN logic block (in Figure 39 on page429 ) performs all functions necessary to map all possible DS1/E1 inputs to the appropriate VT/TU structure. This includes VT/TU pointer generation, positive/negative stuffing, VT/TU overhead generation/insertion and DS1/E1 data insertion. The following features will be implemented: This logic block will support the following modes of operation: -- Asynchronous -- Byte synchronous -- Bit synchronous 19.14.4 Pointer Generation The pointer generator will support the following features when operating in asynchronous or bit synchronous mode: -- If transmit AIS-V is not requested, the following requirements apply: 1. A fixed pointer value of decimal 78 is generated for VT1.5/TU-11 mappings. 2. A fixed pointer value of decimal 105 is generated for VT2/TU-12 mappings. 3. The VT size field will be set to binary 11 for VT1.5/TU-11 mappings. 4. The VT size field will be set to binary 10 for VT2/TU-12 mappings. 5. The new data flag (NDF) set to binary 0110 for VT1.5/VT2 mappings. 6. V3 and V4 is set to the selected overhead default (SMPR_OH_DEFLT (Table 67) in the microprocessor interface block) for all mappings: -- If transmit AIS-V is requested, V1~V4 will be forced to 0xFF. -- Bit stuffing, using the C and S bits, will be performed based on the fullness of the elastic store. The pointer generation will support the following features when operating in byte synchronous mode: -- If transmit AIS-V is not requested, the following requirements apply: 1. The pointer value is generated based on the location of the incoming frame sync for VT1.5/VT2 mappings. 2. The VT size field is set to 11 for VT1.5/TU-11 mappings. 3. The VT size field is set to 10 for VT2/TU-12 mappings. 4. The new data flag (NDF) is set to 0110 for normal VT1.5/VT2 mappings. If a NDF is requested, the NDF will be set to 1001 (binary). 442 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) 5. If an increment is requested, the pointer bytes, V1 and V2, are programmed with the I-bits inverted. The pointer action byte, V3, will be programmed to the selected default (microprocessor bit SMPR_FXD_STFF_DEFLT (Table 67)), as well as the byte directly following V3. However, when incrementing from 139 to 0 for VT2 mapping, the pointer generator sends out NDF-V indication with the correct pointer (0) instead of the increment indication. 6. If a decrement is requested, the pointer bytes, V1 and V2, will be programmed with the D bits inverted. The pointer action byte, V3, will be programmed to actual customer data. However, when decrementing from 0 to 139 for VT2 mapping, the pointer generator sends out NDF-V indication with the correct pointer (139) instead of the decrement indication. 7. The V4 byte will be programmed to the selected overhead default (microprocessor bit SMPR_OH_DEFLT) for all mappings. -- If transmit AIS-V is requested, V1~V4 will be forced to 0xFF. Overhead Byte Generation (V5, J2, Z6/N2, Z7/K4, and O bits). This portion of the VTGEN logic block will generate and insert the V5, J2, Z6/N2, and Z7/K4 overhead bytes into the appropriate virtual tributary. O bits are only accessible in the asynchronous and bit synchronous modes. V5 Overhead Byte Format/Generation. The V5 overhead byte will be mapped as defined in Table 559. Table 559. V5 Overhead Byte Format Bit 1 Bit 2 BIP-2 Bit 3 Bit 4 REI-V RFI-V Bit 5 Bit 6 Bit 7 SIGNAL LABEL Bit 8 RDI-V The following features are supported: When operating in tributary loopback mode (bit VT_LB_SEL[1--28] = 1 ( Table 198)), all bits are simply passed through transparently. When operating in UPSR mode VT_V5_INS[1--28] = 1 ( Table 199), only a new BIP-2 and signal label is generated and inserted while all other bits are programmed from the received LOPOH serial access channel storage. BIP-2 will be automatically calculated and inserted. The signal label is determined based on bits VT_TX_MAPTYPE[1--28][3:0] (Table 198) and automatically inserted. AIS-V is forced by setting bit, VT_AIS_INS[1--28] (Table 198) to a 1. AIS-V consists of overwriting the entire VT, including V1~4, with all ones. Bits VT_TX_MAPTYPE[1--28][3:0] may be programmed to insert an UNEQ-V signal label. See Table 562, VT Signal Label Definition on page445 . User-controlled bits VT_BIP2ERR_INS[1--28][1:0] (Table 199) will force BIP-2 errors for troubleshooting purposes. See Table 560 below for error insertion modes. Table 560. BIP-2 Error Insertion Modes VT_BIP2ERR_INS[1--28][1:0] (See Table 199.) Agere Systems Inc. Action 00 No BIP-2 errors inserted. 01 Insert continuous BIP-2 errors. 10 Insert BIP-2 errors based on microprocessor register bit SMPR_BER_INSRT (Table 65). 11 No BIP-2 errors inserted. 443 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) When operating in UPSR mode VT_V5_INS[1--28] = 1, REI-V is set to the value in the received LOPOH serial access channel storage when enabled by bit, VT_REI_EN[1--28] =1 (Table 198). When operating in normal mode VT_V5_INS[1--28] = 0, REI-V is set to 1 for any detected BIP-2 errors in the corresponding received VT when enabled by bit, VT_REI_EN = 1. Otherwise, the REI-V bit is set to 0. RFI-V is supported. Manual control of the RFI-V bit is enabled with bit VT_RFI_EN[1--28] = 1 (Table 198). The RFI-V bit is programmed with the value of bit VT_RFI_INS[1--28] (Table 200). When VT_RFI_EN[1--28] = 0 and operating in UPSR mode VT_V5_INS[1--28] = 1, RFI-V is set to the value in the received LOPOH serial access channel storage. Otherwise, RFI-V is automatically generated and inserted as defined in Table 561 on page 444. When operating in byte synchronous mode, RFI-V is also based on the incoming DS1 RAI from the framer. One bit RDI-V is supported when bit VT_TX_ERDI_EN[1--28] = 0 (Table 198). Manual control of the RDI-V bit is enabled with bit VT_RDI_EN[1--28] =1 (Table 198). The RDI_V bit is programed with the value of bit VT_RDI_INS[1--28] (Table 200). When VT_RDI_EN[1--28] = 0 and operating in UPSR mode VT_V5_INS[1--28] = 1 (Table 199), RDI-V is set to the value in the received LOPOH serial access channel storage. Otherwise, RDI-V is automatically generated and inserted as defined in Table 561 below. Enhanced RDI will be supported when bit VT_TX_ERDI_EN[1--28] = 1. Manual control of the ERDI bits 5, 6, and 7 of the Z7 byte is enabled with bit VT_ERDI_EN[1--28] = 1 (Table 198). The ERDI bits, in bit positions 5, 6, and 7 of the Z7 byte are programed with the value of bits VT_ERDI_INS[1--28][2:0] (Table 200), respectively. When VT_ERDI_EN[1--28] = 0 and operating in UPSR mode VT_V5_INS[1--28] = 1 (Table 199), ERDI-V is set to the value in the received LOPOH serial access channel storage. Otherwise, bits 5, 6, and 7 of the Z7 byte are automatically generated and inserted as defined in Table 561 below. Table 561. RDI-V, RFI-V, and REI-V Automatic Generation Remote Error Indication REI-V Anomaly/defect. 0 No BIP-2 errors detected. 1 BIP-2 errors detected. One Bit Remote Failure Indication RFI-V Anomaly/defect. 0 No alarms. 1 AIS-V, LOP-V, UNEQ-V, PLM-V or automatic AIS detected from SPEMPR. One Bit Remote Defect Indication RDI-V Anomaly/defect. 0 No alarms. 1 AIS-V, LOP-V, UNEQ-V, or TIM-V. Enhanced Remote Defect Indication ( Bellcore GR-253) RDI-V (V5 bit 8) RDI-V (Z7 bit 5) RDI-V (Z7 bit 6) RDI-V (Z7 bit 7) 0 0 0 1 No defects. 0 0 1 0 PLM-V (VT payload mismatch). 1 1 0 1 AIS-V or LOP-V. 1 1 1 0 UNEQUIP-V or TIM-V. 444 Anomaly/defect Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) The signal label will be automatically generated based on bits VT_TX_MAPTYPE[1--28][3:0] (Table 198). The values supported are defined in Table 562. Table 562. VT Signal Label Definition V5(5) V5(6) V5(7) 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 Others 0 1 0 0 1 1 0 0 Description Unequipped Equipped Nonspecific Asynchronous DS1 Asynchronous E1 Bit synchronous DS1 Bit synchronous E1 Byte synchronous DS1 Byte synchronous E1 Undefined J2 Overhead Byte Insertion. Three modes of programming the J2 byte as defined in Table 563 will be supported. Table 563. J2 Overhead Byte Insertion Modes Per Channel VT_J2_INS[1--28][1:0] (See Table 199.) Insertion Mode 00 Default based on SMPR_OH_DEFLT (Table 67). 01 Microprocessor insert (VT_J2BYTE_INS[1--28][1--16][7:0] (Table 203)). 10 LOPOH serial access channel insert. 11 Default based on SMPR_OH_DEFLT. Z6/N2 Overhead Byte Insertion. The modes of programming the Z6/N2 byte, defined in Table 564 are supported. Table 564. Z6/N2 Overhead Byte Insertion Modes Per Channel VT_Z6_INS[1--28][1:0] (See Table 199.) Insertion Mode 00 Default based on SMPR_OH_DEFLT. 01 Insert from bits VT_Z6BYTE_INS[1--28][7:0] (Table 201). 10 LOPOH serial access channel insert. 11 Reserved. Agere Systems Inc. 445 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) Z7/K4 Overhead Byte Insertion. Three modes of programming the Z7/K4 APS bits are supported and controlled by register bits VT_Z7_INS[1--28][1:0] (Table 199) as defined in Table 565. Table 565. Z7/K4 Overhead Byte Insertion Modes Per Channel VT_Z7_INS[1--28][1:0] (See Table 199.) Insertion Mode 00 Default based on microprocessor bits SMPR_OH_DEFLT (Table 67). 01 Insert from bits VT_APS_INS[1--28][3:0] (Table 200) and VT_ERDI_INS[1--28][2:0] (Table 200). 10 LOPOH serial access channel insert. 11 Default based on microprocessor bits SMPR_OH_DEFLT. Note: When bits Z7_INS[1--28] [1:0] = 01, the APS bits in the Z7/K4 byte (bits 1:4) are based on VT_APS_INS[1--28][3:0] (Table 200) , while Z7/K4 bits 5:7 are either automatically inserted (when VT_ERDI_EN[1--28] = 0 (Table 198)and VT_TX_ERDI_EN[1--28] = 1 (Table 198) ) or inserted based on VT_ERDI_INS[1--28][2:0] (Table 200) (when VT_ERDI_EN[1--28] = 1). In all other modes, all bits are overwritten. O-bit Insertion (Asynchronous/Bit Synchronous Modes Only). Three modes of programming the O bits, defined in Table 566 will be supported. Table 566. O-Bit Insertion Modes Per Channel Insertion Mode VT_O_INS[1--28][1:0] (See Table 199.) 00 Default based on microprocessor bits SMPR_OH_DEFLT. 01 Insert from bits VT_OBIT_INS[1--28][7:0] (Table 201). 10 LOPOH serial access channel insert. 11 Default based on microprocessor bits SMPR_OH_DEFLT. VT Mappings. Detailed mapping formats are shown in Table 567 through Table 573, where: I = information bit. O = overhead bit. R = fixed stuff bit. P = phase bit. S = signaling bit. F = frame bit. S1, S2 = stuff bits. C1, C2 = stuff indication bits. V5 = VT overhead byte. J2 = VT path trace byte. Z6/N2 = growth/tandem byte. Z7/K4 = ERDI/APS byte. V1, V2 = pointer bytes. V3 = pointer action byte. V4 = reserved. 446 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) Table 567. Asynchronous VT1.5 V1 Table 568. Bit Synchronous VT1.5 Table 569. Byte Synchronous VT1.5 V5 V1 V1 RRRRRRIR* V5 V5 Byte 1 . . Byte 24 10RRRRIR* P1P0S1S2S3S4FR* Byte 1 . . . Byte 24 Byte 1 . . . Byte 24 V2 V2 J2 J2 10OOOOIR P1P0S1S2S3S4FR Byte 1 . . . Byte 24 Byte 1 . . . Byte 24 V3 V3 Z6/N2 Z6/N2 10OOOOIR P1P0S1S2S3S4FR Byte 1 . . . Byte 24 Byte 1 . . . Byte 24 V4 V4 Z7/K4 Z7/K4 10RRRRIR P1P0S1S2S3S4FR Byte 1 . . . Byte 24 Byte 1 . . . Byte 24 V2 J2 C1C2OOOOIR Byte 1 . . Byte 24 V3 Z6/N2 C1C2OOOOIR Byte 1 : Byte 24 V4 Z7/K4 C1C2RRRS1S2R Byte 1 . . Byte 24 * R--value based on SMPR_FXD_STFF_DEFLT (Table 67). * R--value based on SMPR_FXD_STFF_DEFLT (Table 67). Agere Systems Inc. * R--value based on SMPR_FXD_STFF_DEFLT (Table 67). 447 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) Table 570. Asynchronous VT2 Table 571. Bit Synchronous VT2 Table 572. Byte Synchronous VT2 V1 V1 V5 V5 V1 RRRRRRRR* 10RRRRRR* V5 Byte 1 . . . Byte 32 Byte 1 . . . Byte 32 P1P0RRRRRR* RRRRRRRR RRRRRRRR V2 V2 J2 J2 C1C2OOOORR 10OOOORR Byte 1 . . . Byte 32 Byte 1 . . . Byte 32 RRRRRRRR RRRRRRRR R Channels 1--15 Superframer Alignment/Signal Channels 16--30 RRRRRRRR V2 J2 P1P0RRRRRR Ra Channels 1--15 Superframer Alignment/Signal V3 V3 Z6/N2 Z6/N2 C1C2OOOORR 10OOOORR Byte 1 . . . Byte 32 Byte 1 . . . Byte 32 RRRRRRRR RRRRRRRR V4 V4 Superframer Alignment/Signal Z7/K4 Z7/K4 Channels 16--30 C1C2RRRRRS1 10RRRRRR RRRRRRRR S2 Byte 1[6:0] . . . Byte 32 Byte 1 . . . Byte 32 V4 RRRRRRRR RRRRRRRR * R--value based on SMPR_FXD_STFF_DEFLT (Table 67). * R--value based on SMPR_FXD_STFF_DEFLT (Table 67). Channels 16--30 RRRRRRRR V3 Z6/N2 P1P0RRRRRR Ra Channels 1--15 Z7/K4 P1P0RRRRRR Ra Channels 1--15 Superframer Alignment/Signal Channels 16--30 RRRRRRRR * R--value based on SMPR_FXD_STFF_DEFLT (Table 67). 448 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) Table 573. VC-11 to TU-12 Conversion V1/V2/V3/V4 V5/J2/Z6/Z7 RRRRRRIR/ P1P0S1S2S3S4FR* Fixed stuff/even parity Byte 1 Byte 2 Byte 3 Fixed stuff/even parity Byte 4 Byte 5 Byte 6 Fixed stuff/even parity Byte 7 Byte 8 Byte 9 Fixed stuff/even parity : : : Fixed stuff/even parity Byte 16 Byte 17 Byte 18 Fixed stuff/even parity Byte 19 Byte 20 Byte 21 Fixed stuff/even parity Byte 22 Byte 23 Byte 24 Fixed stuff/even parity * R--value based on SMPR_FXD_STFF_DEFLT ( Table 67). Agere Systems Inc. 449 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 19.14.5 VT Multiplexer (VTMUX) The VTMUX logic block (in Figure 39 on page429 ) performs all functions necessary to place the appropriate VT data onto the outgoing mapper transmit path data bus. Bits VT_TX_GRP_TYPE[6:0] (Table 180) are programmed to determine whether the outgoing tributary is a VT1.5/TU-11 or a VT2/TU-12. See Table 551 through Table 554 on page 430 through page 431 for VT/TU mapping formats. 19.14.6 Transmit Signaling (TX_VTSIG) The TX_VTSIG logic block (in Figure 39 on page429 ) will perform all necessary functions to retrieve the signaling phase and data from the framer and insert it into the outgoing VT/TU. Note: This block is only enabled when operating in the byte synchronous mode. The signaling is received from the appropriate framer link selected with the value programmed in bits VT_TXSIG_CH_SEL[1--28][4:0] (Table 202). VT_TXSIG_CH_SEL[1--28][4:0] is a necessary duplication of the routing information programmed within the cross connect (XC) block. The TX_VTSIG block determines whether the phase and signaling bits are to be used in the VT/TU mapping. If the phase or signaling bits are not being used (VT_USE_PBIT[1--28] = 0, VT_USE_SBIT[1--28] = 0 (Table 202)), they will be set to SMPR_FXD_STFF_DEFLT (Table 67) in the microprocessor interface block. Stomping of the F bit is controlled by VT_USE_FBIT[1--28] = 0 (Table 202). Refer to Table 574 below for programming signaling inserting. Table 574. Framing Byte Generation Per Channel VT_USE_FBIT[1--28] VT_USE_PBIT[1--28] VT_USE_SBIT[1--28] Action (See Table 202.) (See Table 202.) (See Table 202.) 0 0 0 VT/TU frame byte* = XXXXXXXR 0 0 1 VT/TU frame byte* = XXS1S2S3S4XR 0 1 0 VT/TU frame byte* = P1P0XXXXXR 0 1 1 VT/TU frame byte* = P1P0S1S2S3S4XR 1 0 0 VT/TU frame byte* = XXXXXXFR 1 0 1 VT/TU frame byte* = XXS1S2S3S4FR 1 1 0 VT/TU frame byte* = P1P0XXXXFR 1 1 1 VT/TU frame byte* = P1P0S1S2S3S4FR * X--value based on SMPR_OH_DEFLT (Table 67), R--value based on SMPR_FXD_STFF_DEFLT ( Table 67). 19.14.7 Transmit Lower Path Overhead (TX_LOPOH) The TX_LOPOH logic block (in Figure 39 on page 429) performs all necessary functions to receive and store the low-order path overhead as well as the REI and RDI values from the external LOPOH serial access channel. The following functions are supported: The TX_LOPOH logic block retimes all incoming signals on the falling edge of the external input pin LOPOHCLKIN (AC13). The source of the external inputs LOPOHDATAIN (AC14), LOPOHVALIDIN, and LOPOHCLKIN is required to hold the LOPOHVALIDIN at 0 for a minimum of eight LOPOHCLKIN cycles. The TX_LOPOH logic block monitors the incoming LOPOHVALIDIN and detects failure conditions. A failure exists if there are less than eight LOPOHCLKIN cycles between a falling edge of LOPOHVALIDIN and the next rising edge, or if the internal bit counter reaches its maximum count, for the active data type, and LOPOHVALIDIN does not transition to 0. 450 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) The first three bits received, following a rising edge of external input pin LOPOHVALIDIN (AB14), defines the data type on the incoming stream. Data types are defined in Table 557, Data Type Header Definitions on page 440. LOPOH failure is reported in bit VT_LOPOH_FAIL_E (Table 170). If an LOPOH failure exists (indicated by VT_LOPOH_FAIL_E = 1), the incoming data will be ignored. Unless the mask bit VT_LOPOH_FAIL_M (Table 174) is set, VT_LOPOH_FAIL_E = 1 will generate an interrupt. Figure 46 on pag e453 contains the TX_LOPOH block serial channel format and timing. 19.15 VT Mapper System Interface Timing 19.15.1 VT Mapper DS1/E1 Receive Interface (to System Interface) Figure 41 and Figure 42 show the minimum, typical, and maximum gaps of the clock and data out of the VT mapper for DS1 and E1. An asymmetric VT/TU mapper clock (VTMPR_RCLK) is derived from an internal 6.48 MHz clock. The rising edge of this VT mapper clock is delayed by one 6.48 MHz clock cycle with respect to the data (VTMPR_RDATA) and is one cycle in width. 616 ns 1232 ns 154 ns 1848 ns 154 ns VTMPR_RCLK VTMPR_RDATA 5-8986(F)r.2 Figure 41. DS1 Mode Gapped Clocking Scheme 462 ns 924 ns 154 ns 1386 ns 154 ns VTMPR_RCLK VTMPR_RDATA 5-8987(F)r.2 Figure 42. E1 Mode Gapped Clocking Scheme Figure 43 and Figure 44 show a typical frame of VT mapper output. The VT mapper 8 kHz frame sync output (VTMPR_RFSYNC) is coincident with the DS1 frame-bit position and with the MSB of E1 time slot 0. Note: The VT mapper 8 kHz frame sync is only transmitted for byte synchronous mappings. 125 s 154 ns 616 ns 1232 ns* VTMPR_RCLK VTMPR_RFSYNC VTMPR_RDATA F F DS0 #1 DS0 #2 DS0 #1 DS0 #2 5-8988(F)r.1 * Maximum gap between rising clock edges = 1848 ns. Figure 43. DS1 Interface Agere Systems Inc. 451 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) 125 s 154 ns 462 ns 924 ns* VTMPR_RCLK VTMPR_RFSYNC VTMPR_RDATA TS #0 TS #1 TS #1 TS #1 5-8989(F)r.1 * Maximum gap between rising clock edges = 1386 ns. Figure 44. E1 Interface 19.15.2 VT Mapper DS1/E1 Transmit Interface (from System Interface) The VT mapper input clock and data will meet the timing requirements of G.703, 1.544 MHz 50 ppm and 2.048 MHz 50 ppm. The VT mapper will accommodate up to 200 ppm to allow operation under maintenance or trouble conditions. The clock edge to retime the data is programmable with VT_TX_CLKEDGE[1--28] bit (Table 198). The receive data is clocked on the rising edge when VT_TX_CLKEDGE[1--28] = 1 and the falling edge when VT_TX_CLKEDGE[1--28] = 0. See VT Mapper Timing on page 45 for VT mapper interface and clock timing numbers. 19.16 VT Mapper Lower-Order Path Overhead Interface Timing 19.16.1 VT Mapper Receive Path Overhead Interface Description Figure 45 contains the VT mapper receive path overhead serial channel format and timing. FRAME #1 OF MULTIFRAME 125 s MINIMUM OF 8 CYCLES 154 ns LOPOHCLKOUT LOPOHVALIDOUT LOPOHDATAOUT 0 0 1 0 1 0 TMUX/SPEMPR RDI/REI VTMPR VT#1--28 V5(MSB->LSB) 0 1 1 VTMPR VT#1--28 J2(MSB->LSB) 1 0 0 VTMPR VT#1--28 Z6(MSB->LSB) 5-8327(F)r.2 Figure 45. VT Mapper Receive Path Overhead Serial Access Channel 452 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 19 VT/TU Mapper Functional Description (continued) The Super Mapper provides access to all necessary functions associated the receive path overhead for each VT/TU, specifically V5, J2, Z6/N2, Z7/K4, and the O bits. The following features are supported: V5, J2, Z6/N2, Z7/K4, and the O bits, on a per VT basis, will be stored for one complete superframe and transmitted out on external output pin LOPOHDATAOUT (AB17) during the next superframe. REI and RDI values received from the SPE mapper and TMUX will be stored on a per-frame basis and transmitted during the next frame. REI and RDI values will be latched during the A1 time of the of the received SONET frame. When operating in unidirectional path switch ring (UPSR) mode (VT_UPSR = 1 (Table 181)), REI, RDI and ERDI values in the V5 and Z7 bytes will be modified based on the receive status. See Table 557, Data Type Header Definitions on pag e440, for automatic generation requirements. Each data type out of LOPOHDATAOUT will be transmitted serially as a burst of 227 bits (VT1.5 mode) or 171 bits (VT2 mode) on the rising edge of the clock, LOPOHCLKOUT, which is driven out on external pin AB15. The REI and RDI received from the SPE mapper and TMUX will be transmitted serially as a burst of 37 bits on the rising edged of the clock, LOPOHCLKOUT. The LOPOHVALIDOUT signal (driving external output pin AB18) is set to 1 when valid data is being transmitted. Following transmission of any complete data type LOPOHVALIDOUT is held at 0 for at least eight LOPOHCLKOUT cycles. The first 3 bits transmitted, following a rising edge of LOPOHVALIDOUT, make up the data type header. Data type 001 will be the first data type transmitted in each frame. V5, J2, and Z6 are transmitted respectively in the first frame of the superframe. Z7 and the O bits are transmitted respectively in the second frame of the superframe. Note that the LOPOHDATAOUT data types are only transmitted in the first and second frames of the four frame multiframe. All data types must be transmitted within 500 s. 19.16.2 VT Mapper Transmit Path Overhead Interface Description Figure 46 contains the VT mapper transmit path overhead serial channel format and timing. FRAME #1 OF MULTIFRAME 125 s MINIMUM OF 8 CYCLES 154 ns LOPOHCLKIN LOPOHVALIDIN 37 226 226 226 LOPOH BITCNT 0 1 2 0 1 2 0 1 2 0 1 2 LOPOHDATAIN 0 0 1 0 1 0 0 1 1 1 0 0 TMUX/SPEMPR RDI/REI VTMPR VT#1--28 V5(MSB->LSB) VTMPR VT#1--28 J2(MSB->LSB) VTMPR VT#1--28 Z6(MSB->LSB) 5-8329(F)r.2 Figure 46. VT Mapper Transmit Path Overhead Serial Access Channel Agere Systems Inc. 453 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 19 VT/TU Mapper Functional Description (continued) The VT mapper transmit path overhead will perform all necessary functions for the low-order path overhead as well as the REI and RDI values from the internal SPE mapper and TMUX blocks. The following are supported: The interface clocks all incoming signals on the falling edge of external input LOPOHCLKIN (pin AC13). The first 3 bits received, following a rising edge of external input pin LOPOHVALIDIN (AB14), will define the data type on the incoming stream. Data types are defined in Table 557, Data Type Header Definitions on page 440. The source of the external input LOPOHDATAIN (AC14), LOPOHVALIDIN, and LOPOHCLKIN signals is required to hold the LOPOHVALIDIN at 0 for a minimum of eight LOPOHCLKIN cycles. The VT mapper will monitor the incoming LOPOHVALIDIN and detect failure conditions. A failure exists if there are less than eight LOPOHCLKIN cycles between a falling edge of LOPOHVALIDIN and the next rising edge, or if the LOPOH bit count (LOPOH BITCNT) reaches its maximum count for the active data type and LOPOHVALIDIN does not transition to 0. LOPOH failure is reported in bit VT_LOPOH_FAIL_E (Table 170). If a failure exists (VT_LOPOH_FAIL_E = 1), the incoming data will be ignored and unless the mask bit, VT_LOPOH_FAIL_M (Table 174), is set, the LOPOH failure will generate an interrupt. The VT mapper logic block will latch new REI and RDI values for the TMUX and SPE mapper during the A1 time of the SONET/SDH frame. The timing figures in this section are functional timing diagrams. See VT Mapper Timing on page 45 for VT mapper interface and clock timing numbers. 454 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description Table of Contents Contents Page 20 M13/M23 MUX/DeMUX Block Functional Description .................................................................................... 455 20.1 M13 Introduction ..................................................................................................................................... 456 20.2 Features ................................................................................................................................................. 456 20.2.1 M13 Applications .......................................................................................................................... 456 20.3 Block Diagrams ...................................................................................................................................... 457 20.4 M13 Functional Description .................................................................................................................... 460 20.5 M13 Multiplexing Path ............................................................................................................................ 460 20.5.1 M12 Multiplexers .......................................................................................................................... 460 20.5.2 DS1/E1 Interface .......................................................................................................................... 460 20.5.3 Loopback Select .......................................................................................................................... 461 20.5.4 DS1/E1 FIFOs .............................................................................................................................. 461 20.6 DS2 Frame Generation .......................................................................................................................... 461 20.6.1 DS1 Mode .................................................................................................................................... 461 20.6.2 E1 Mode ....................................................................................................................................... 462 20.7 M23 Multiplexer ...................................................................................................................................... 463 20.7.1 DS2 Interface ............................................................................................................................... 463 20.7.2 DS2 Select Logic ......................................................................................................................... 463 20.7.3 Overhead Bit Generation (GR-499) ............................................................................................. 463 20.7.4 M23 Mode ................................................................................................................................... 464 20.7.5 C-Bit Parity Mode ......................................................................................................................... 464 20.7.6 FEAC ........................................................................................................................................... 465 20.7.7 FEBE ............................................................................................................................................ 466 20.7.8 Terminal-to-Terminal Path Maintenance Data Link ..................................................................... 466 20.8 AIS/Idle Insertion .................................................................................................................................... 467 20.9 B3ZS Encoder (GR-499) ........................................................................................................................ 467 20.10 DS3 R-to-T Loopback ........................................................................................................................... 468 20.10.1 DS3 Transmit Path Interface ..................................................................................................... 468 20.11 M13/M23 Demultiplexer ........................................................................................................................ 468 20.11.1 DS3 LOC and LOS .................................................................................................................... 468 20.11.2 DS3 T-to-R Loopback ................................................................................................................ 469 20.11.3 M23 Demultiplexer ..................................................................................................................... 469 20.11.4 M12 Demultiplexers ................................................................................................................... 472 20.11.5 DS1 Mode .................................................................................................................................. 472 20.11.6 E1 Mode ..................................................................................................................................... 473 20.11.7 Output Select Logic .................................................................................................................... 474 Figures Page Figure 47. M13 Block Diagram............................................................................................................................. 457 Figure 48. M12 Functional Block Diagram ........................................................................................................... 458 Figure 49. M23 Functional Block Diagram ........................................................................................................... 459 Figure 50. DS3 NSMI Transmit Operation............................................................................................................ 462 Figure 51. DS3 NSMI Receive Operation............................................................................................................. 462 Tables Page Table 575. C-Bit Parity Description and Transmit Value ..................................................................................... 465 Agere Systems Inc. 455 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.1 M13 Introduction The M13 block is a highly configurable multiplexer/demultiplexer. It can operate as an M13 in either the C-bit parity or M23 mode, a mixed M13/M23, or an M23. In the C-bit parity mode, the M13 provides a far-end alarm and control (FEAC) code generator and receiver, an HDLC transmitter and receiver, and automatic far-end block error (FEBE) generation and detection. Each internal M12 MUX/deMUX and the M23 MUX/deMUX may be configured to operate as independent MUX/ deMUX. The M13 supports numerous automatic monitoring functions. It can provide an interrupt to the control system, or it can be operated in a polled mode. 20.2 Features Configurable multiplexer/demultiplexer for up to 28 DS1 signals, 21 E1 signals, or 7 DS2 signals to/from a DS3 signal. M23 or C-bit parity mode operation. Seven configurable independent M12 multiplexer/demultiplexers for up to 28 DS1 signals or 21 E1 signals to/from 7 DS2 signals. Provisionable time slot selection for DS1, E1, and DS2 insertion or drop. DS3 multiplexer capable of generating alarm indication signal (AIS), remote alarm indicator (RAI), idle, far-end alarm and control (FEAC), and far-end block error (FEBE) signals. Automatic DS3 receive monitor that detects loss of signal (LOS), bipolar violation (BPV), excessive zeros (EXZ), out of frame (OOF), severely errored frame (SEF), AIS, RAI, FEAC codes, P-bit parity errors, C-bit parity errors, and FEBE indications. HDLC transmitter with 128-byte data buffer and HDLC receiver with 128-byte data FIFO for the C-bit parity path maintenance data link. DS3, DS2, DS1, and E1 loopback and loopback request generation. Complies with T1.102, T1.107, T1.231, T1.403, T1.404, GR-499, G.747, and G.775. 20.2.1 M13 Applications M13 and M23 multiplexers. M13 multiplexers supporting G.747 format. Independent M12 multiplexers. Digital access cross connects (DACS). DS1/E1/DS2 broadcast. 456 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.3 Block Diagrams The following diagram illustrates the high-level interface between M13 block and other functional blocks. M12 DS1 DATA/ CLOCK/STFREQ DS1/E1 DS2 CROSS CONNECT TDLDATA TDLCLK TCBDATA TCBCLK TCBSYNC DS2AISCLK E1XCLK DS1XCLK NSMI_RELATED DEVICE I/O M13 MULTIPLEXER M12 DS2 DATA/CLOCK DS1/E1/DS2 LOOPBACK DS3 LOOPBACK M13_DS3CLK M13_DS3NEG M13_DS3POS_DATA SMPR_TDS3CLK SMPR_TDS3CLK_EN DEVICE I/O DS3 CROSS CONNECT SMPR_RDS3CLK_EN SMPR_RDS3CLK SMPR_DS3POS_DAT SMPR_DS3NEG_BPV M23 DS2 DATA/ CLOCK/STFREQ M13 AUTOAIS M13 DEMULTIPLEXER RDLDATA RDLCLK RCBDATA RCBCLK RCBSYNC DNSMI_RELATED SPEMPR_AUTOAIS SPE MAPPER CONTROL INTERFACE DEVICE I/O 5-9013(F)r.1 Figure 47. M13 Block Diagram Agere Systems Inc. 457 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) XC_DS2M12CLK[1--7] 4 M13_DS1M12CLK[1--4] XC_DS1STFREQ[1--4] XC_DS1DATA[1--4] XC_DS1CLK[1--4] 4 DS1/E1 LOC & AIS MONITOR #[1--4] 4 4 4 DS1/E1 LB SELECT #[1--4] M12 MUX #1 4 M13_M12DS2DATA[1--7] DS1/E1 FROM CROSS CONNECT 4 M13_DS1M12CLK[25--28] XC_DS1STFREQ[25--28] XC_DS1DATA[25--28] XC_DS1CLK[25--28] M13_DS1DATA[1--4] M13_DS1CLK[1--4] M13_AUTOAIS[1--4] 4 DS1/E1 LOC & AIS MONITOR #[25--28] 4 4 4 DS1/E1 LB SELECT #[25--28] M12 MUX #7 4 4 DS1/E1 4 OUTPUT 4 SELECT #[1--4] 4 M12 DEMUX #1 M13_DS2M12DATA[1--7] DS1/E1 TO CROSS CONNECT M13_DS1DATA[25--28] M13_DS1CLK[25--28] M13_AUTOAIS[25--28] DEVICE I/O 4 4 4 DS1/E1 OUTPUT SELECT #[25--28] 4 M12 DEMUX #7 DS1XCLK E1XCLK XC_DS2DMXCLK[1--7] XC_DS2DMXDATA[1--7] 5-9014(F)r.1 Figure 48. M12 Functional Block Diagram 458 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 TCBDATA TCBCLK TCBSYNC TDLCLK TDLDATA NSMI_RELATED 20 M13/M23 MUX/DeMUX Block Functional Description (continued) M23 MUX AIS/ IDLE INSERT DEVICE I/O M13_M12DS2 DATA[1--7] DS2 SELECT #1 DS2 LOC & AIS MONITOR #[1--7] XC_DS2M23 DATA[1--7] SMPR_TDS3CLK B3ZS ENCODE DS3 LOOPBACK SELECT SMPR_TDS3CLK_EN M13_DS3POS_DATA M13_DS3NEG 7 XC_DS2M23 CLK[1--7] 7 XC_DS2ST FREQ[1--7] 7 DS2 SELECT #7 M13_DS2M23 CLK[1--7] DS3 FROM/TO CROSSCONNECT M13_DS2M12 DATA[1--7] 7 M13_DS2 CLK[1--7] DEVICE I/O DS2AISCLK M23 DEMUX DEMUX RCBDATA RCBCLK RCBSYNC RDLCLK RDLDATA 7 DS2 OUTPUT SELECT #[1--7] DEVICE I/O DS3 DS3 LOOPBACK SELECT SELECT DNSMI_RELATED M13_DS2 DATA[1--7] B3ZS B3ZS DECODE DECODE LOC & LOS DETECT SMPR_RDS3CLK SMPR_RDS3CLK_EN SMPR_RDS3POS_DATA SMPR_RDS3NEG_BPV SPEMPR_AUTOAIS MICROPROCESSOR INTERFACE AND REGISTER MAP 5-9015(F) Figure 49. M23 Functional Block Diagram Agere Systems Inc. 459 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.4 M13 Functional Description In the descriptions below, some of the register bits exist for each of the DS1, E1, or DS2 signals. The names of these register bits have a lower case x or a y suffix to show that there are actually 28 or 7 of them, respectively. 20.5 M13 Multiplexing Path There are seven M12 multiplexers and one M23 multiplexer on the transmit side of this M13 block and all of them can operate independently. Twenty-eight DS1 inputs in groups of four, or twenty-one E1 input signals in groups of three can feed into individual M12 MUXs, while the M23 MUX can take DS2 signals from outputs of M12 MUXs, or direct DS2 inputs, or loopback deMUXed DS2s. 20.5.1 M12 Multiplexers M12 multiplexers have four operation modes provisionable through M13_M12_MODEy[1:0] (Table 263): M13_M12_MODEy[1:0] = 00: the M12 operates as the first stage of M13 multiplexing. It takes 4 DS1s (M13_DS1_E1Ny = 1(Table 263)) or 3 E1s (M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be fed into the M23 MUX. In this mode, the DS1/E1 clocks are independent inputs to the block. There should be no valid DS2 input (XC_DS2M23DATAy). This is the default mode. M13_M12_MODEy[1:0] = 01: the M12 operates as an independent multiplexer. It takes 4 DS1s (M13_DS1_E1Ny = 1) or 3 E1s (M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be sent directly to the DS2 output (M13_DS2M12DATAy) of the block and not be passed to M23 MUX input. In this mode, the DS1/E1 clocks are independent inputs to the block and a DS2 input clock (XC_DS2M12CLKy) is required. M13_M12_MODEy[1:0] = 10: the M12 operates as an independent multiplexer. It takes 4 DS1s (register bit M13_DS1_E1Ny = 1) or 3 E1s (register bit M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be sent directly to the DS2 output (M13_DS2M12DATAy) of the block and not be passed to M23 MUX input. In this mode, the associated DS1/E1 clocks are outputs from the block and derived from the DS2 input clock (XC_DS2M12CLKy). M13_M12_MODEy[1:0] = 11: the M12 is idle. The output from this M12 multiplexer will be held low. 20.5.2 DS1/E1 Interface The incoming DS1/E1 clock signals (XC_DS1CLK[28--1]) are first checked for activity or loss of clock (LOC). This is reported to the microprocessor via bits M13_DS1_LOC[28:1] (Table 247). Once LOC is detected, AIS will be inserted into the associated DS1/E1 channel using the clock from external pins, DS1XCLK/E1XCLK (AD16/AC17) (Table 3). The incoming DS1/E1 data signals are retimed immediately by the associated clocks. The edge of the clocks that is used to retime the data is user provisionable to either the rising edge (M13_RDS1_EDGEx = 1 (Table 264)) or falling edge (M13_RDS1_EDGEx = 0). After being retimed, the incoming data stream is checked for AIS. When the input is DS1, the M13 will declare AIS if the input data is logic 0 for fewer than 9 out of 8192 clock periods (T1.231). When the input is E1, AIS is declared if there are less than 3 zeros in each of two consecutive 512-bit periods and cleared when each of two consecutive 512-bit periods contains more than 2 zeros (G.775). If AIS is detected on any of the DS1/E1 inputs (XC_DS1DATA[28--1]), the associated M13_DS1_AIS_DET[28:1] (Table 248) bit is set. 460 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.5.3 Loopback Select DS1/E1 loopback selectors allow DS1 or E1 received within the DS2 or DS3 inputs from the deMUX path to be looped back. This loopback can be performed automatically if M13_AUTO_FLB (Table 259) or M13_AUTO_LB (Table 259) bits are set. Regardless of the state of M13_AUTO_FLB and M13_AUTO_LB, the user can force a DS1 or E1 loopback by setting M13_SEL_DS1_LBx (Table 264) to 1. When M13_AUTO_LB = 1, loopback of channel x is activated if M13_DS1_LB_DETx = 1 (Table 249) (see Section 20.11.4 M12 Demultiplexers on page 472). In the C-bit parity mode, automatic loopback can also be activated as a result of receiving a loopback request through the far-end alarm and control (FEAC) channel. Such a request is indicated by status bit M13_DS1_FEAC_LB_DETx (Table 251) (see Section 20.7.6 FEAC on page 465). If status bit M13_DS1_FEAC_LB_DETx = 1 and M13_AUTO_FLB = 1, loopback of channel x is activated. 20.5.4 DS1/E1 FIFOs When M13_M12_MODEy[1] = 0 (Table 263), the 4 selected DS1 or 3 selected E1 signals for each M12 MUX are fed into single bit 16-word-deep FIFOs that are used to synchronize the selected signals to the DS2 frame generation clock. The DS2/DS3 transmit clock (XC_DS2M12CLKy) is used to derive the clock source for DS2 frame generation blocks. In the C-bit parity mode, all DS2 stuff opportunities are used, which produces a nominal 6.306 MHz DS2 clock. In the M23 mode, the DS2 stuffing ratio is fixed such that the DS2 clock is nominally 6.312 MHz. The fill level of each FIFO determines the need for bit stuffing its DS1/E1 input. This block allows the M13 to accept DS1/E1 signals with nominal frequency offsets of 130 ppm and up to 5 unit intervals peak jitter. When operating in M13_M12_MODEy[1:0] = 10 mode, the FIFOs are not used. 20.6 DS2 Frame Generation Each M12 MUX generates a DS2 frame either from 4 DS1 signals multiplexed as specified in T1.107 and GR-499CORE when M13_DS1_E1Ny = 1 (Table 263), or from 3 E1 signals multiplexed using the format specified in ITU-T recommendation G.747 when M13_DS1_E1Ny = 0. When M13_M12_MODEy[1:0] = 01/10 (Table 263), each M12 MUX is operating independently. In this case, the output DS2 signals are retimed by the associated clocks. The edge of the clocks that is used to retime the data is user provisionable to either the rising edge (M13_DS2M12_EDGEy (Table 275) = 1) or falling edge (M13_DS2M12_EDGEy = 0). The AIS signal can be inserted into any DS2 output by setting M13_DS2_FORCE_AISy (Table 271) to 1. 20.6.1 DS1 Mode In the DS1 mode, the 4 signals interleaved to generate the y th DS2 signal are the outputs from DS1/E1 loopback selectors 4y - 3, 4y - 2, 4y - 1, and 4y. Bits multiplexed into the second and fourth channels (from selectors 4y - 2 and 4y) are inverted before being interleaved (T1.107) when bit M13_MUXCH2_4_INVy = 1 (Table 263). Loopback requests for a DS1 channel are indicated by inverting the third C bit for that channel (T1.107). This is done when bit M13_DS1_LB_REQx is set to 1 (Table 263). The 4 M13_DS1_LB_REQx bits that affect the yth DS2 are 4y - 3, 4y - 2, 4y - 1, and 4y. The X bit is set to the inverse of the remote alarm indication (RAI) bit (T1.107) M13_DS2_RAI_SENDy (Table 265). For testing purposes, the M frame alignment signal (normally 011) is generated with the last bit inverted (010) if M13_DS2_MPINVy is set (Table 267), and the M-subframe alignment signal (01) is generated as (00) if M13_DS2_FINVy is set (Table 268). Agere Systems Inc. 461 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.6.2 E1 Mode In the E1 mode, the 3 signals interleaved to generate the y th DS2 signal are the outputs from DS1/E1 loopback selectors 4y - 3, 4y - 2, and 4y - 1. Although it is not part of the G.747 standard, loopback requests for an E1 channel can be indicated as in the DS1 mode by inverting the third C bit for that channel. This is done if the M13_DS1_LB_REQx bit is set. The 3 M13_DS1_LB_REQx bits that affect the yth DS2 are 4y - 3, 4y - 2, and 4y - 1. The remote alarm indication (RAI) bit and the reserved bit are set to the value of M13_DS2_RAI_SENDy and M13_DS2_RSV_SENDy register bits, (Table 266) respectively (G.747). For testing purposes, the frame alignment signal (normally 111010000 as specified in G.747) is generated with the last bit inverted (111010001) if M13_DS2_FINVy is set, and the parity bit is inverted if M13_DS2_MPINVy is set. The first parity bit after a 0 to 1 transition of SMPR_BER_INSRT (Table 65) is also inverted if M13_DS2_P_BERy is set to 1 (Table 269). LINE_TXCLK29 TXDATAEN VARIABLE TXSYNC (OPTIONAL) UNUSED LINE_TXDATA29 FRAME BIT DS3POSDATAOUT 0781(F) Figure 50. DS3 NSMI Transmit Operation LINE_RXCLK29 RXDATAEN VARIABLE RXSYNC (OPTIONAL) LINE_RXDATA29 DS3POSDATAOUT UNUSED FRAME BIT 0782(F) Figure 51. DS3 NSMI Receive Operation 462 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.7 M23 Multiplexer The M23 multiplexer generates a transmit DS3 frame and fills the information bits in the frame with data either from the 7 DS2 select blocks when M13_NSMI_MODE = 0 (Table 277) or from the serial payload input XC_NSMI_DATA (when M13_NSMI_MODE = 1). It generates the frame using either the SMPR_TDS3CLK or the SMPR_RDS3CLK input clocks. In the receive loop timing mode (M13_LOOP_TIME = 1 (Table 259)), the received clock, SMPR_RDS3CLK, is selected. Otherwise, SMPR_TDS3CLK is used for DS3 frame generation. SMPR_TDS3CLK is monitored for loss of clock, which is reported through bit M13_TDS3_LOC (Table 225). The serial data interface, when enabled (M13_NSMI_MODE = 1), generates a clock M13_NSMI_CLK and an enable M13_NSMI_EN for accepting DS3 payload data XC_NSMI_DATA. A sync pulse, in reference to and ahead of the first M bit within a DS3 frame, is also generated. The offset from the sync pulse to the first M bit is programmable through bits M13_NSMI_SP_OFFSET[7:0] (Table 261). The M23 MUX can be provisioned to operate in either the M23 mode (M13_M23_CBP = 1 (Table 260)) or the C-bit parity mode (M13_M23_CBP = 0). An unframed all ones data stream is generated if M13_TDS3_FORCE_ALL1 is set to 1 ( Table 276). 20.7.1 DS2 Interface The clocks associated with input DS2 signals can be either inputs to the M23 MUX (M13_M23CLK_MODE = 0 (Table 276)) or outputs from the M23 MUX (M13_M23CLK_MODE = 1).The incoming DS2 clock signals are checked for activity or loss of clock (LOC). This is reported to the microprocessor via bits M13_XC_DS2_LOC[7:1] (Table 238). In case LOC is detected, AIS will be inserted into the associated DS2 channel using DS2AISCLK (pin E10). The incoming DS2 data signals (XC_DS2M23DATA[7--1]) are retimed immediately by the associated clocks. The edge of the clocks that is used to retime the data is user provisionable to either the rising edge (M13_RDS2_EDGEy = 1 (Table 283)) or falling edge (M13_RDS2_EDGEy = 0). After being retimed, the incoming data stream is checked for AIS. The M13 will declare AIS if the input data is 0 for fewer than 5 clock cycles in each of two consecutive 840 clock periods. The AIS is not cleared until there are more than 4 zeros in each of two consecutive 840-bit periods (G.775). If AIS is detected on any of DS2 inputs, the associated M13_XC_DS2_AIS_DET[7:1] bit is set (Table 239). 20.7.2 DS2 Select Logic The selection of DS2 signal source for each DS2 time slot is controlled by M13_AUTO_LB (Table 259), M13_DS2_LB_DETy (Table 244), M13_SEL_DS2_LBy (Table 282), and M13_M12_MODEy (Table 263) bits. When M13_AUTO_LB = 1 and M13_DS2_LB_DETy = 1, the DS2 signal from time slot y in the received DS3 signal is looped back into time slot y of the transmitted DS3 signal (see C-Bit Processing on page 470). The user can also force a loopback by setting M13_SEL_DS2_LBy to 1. DS2 loopback should not be done in the C-bit parity mode. If a loopback is not active, the DS2 signal selector is controlled by bits M13_M12_MODEy[1:0]. If register bits M13_M12_MODEy[1:0] = 00, the output of M12 multiplexer y is chosen for the yth DS2 time slot in the transmitted DS3 signal; otherwise, the input DS2 signal XC_DS2M23DATAy is selected for the yth DS2 time slot in the transmitted DS3 signal. 20.7.3 Overhead Bit Generation (GR-499) For testing purposes the F bits, M bits, and P bits can be generated with errors. The frame alignment signal (F-bit pattern that is normally 1001) is generated with the last bit inverted (1000) if M13_DS3_FINV (Table 276) is set. The multiframe alignment signal (M-bit pattern that is normally 010) is generated as (011) if M13_DS3_MINV (Table 276) is set. Agere Systems Inc. 463 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) The parity bits (P bits) are generated as odd rather than the normal even parity if M13_DS3_PINV (Table 276) is set. Both P bits within the first DS3 frame after a 0 to 1 transition of SMPR_BER_INSRT (Table 65) are also inverted if M13_DS3_P_BERy (Table 277) is set to 1. The X bits are set to the inverse of the remote alarm indication (RAI) bit (GR-499) M13_DS3_RAI_SEND (Table 277). C-bit transmission is a function of whether the M13 MUX/deMUX is in the M23 mode or the C-bit parity mode. 20.7.4 M23 Mode Please refer to M13_M23_CBP = 1 in Table 260. The information bits in the DS3 frame are drawn from the 7 DS2 select blocks. If M13_M23CLK_MODE = 0 (Table 276) and a select block is in the loopback or direct DS2 input state, the selected DS2 must be synchronized to the DS3 frame generation clock. To do this, the M13 contains 7 DS2 FIFOs each with a depth of 8. The fill level of each FIFO determines the need for bit stuffing its DS2 input. When M13_M23CLK_MODE = 0 and DS2 select blocks are not in the loopback or direct DS2 input state, the selected DS2s are generated using the DS3 frame generation clock. In this case, a fixed stuffing ratio is used for the DS2s in order to produce a nominal 6.312 MHz DS2 clock rate. When M13_M23CLK_MODE = 1, the FIFOs are not used and DS2 stuff request inputs (XC_DS2STFREQ[7--1]) will determine when stuff bits are needed. The three C bits in each M-subframe of the DS3 frame are stuff indication bits. If the stuff opportunity bit in an M subframe is filled by a DS2 bit, the first and second C bits in that M-subframe are transmitted as zeros. If the stuff opportunity bit in an M-subframe is filled with a stuff bit, the first and second C bits in that M-subframe are transmitted as ones. The third C bit in each M-subframe is normally transmitted with the same value as the first and second C bits. However, if M13_DS2_LB_REQy = 1 (Table 281), the third C bit is transmitted as the inverse of the first two C bits (which indicates a loopback request for DS2 channel y). 20.7.5 C-Bit Parity Mode Please refer to M13_M23_CBP = 0 in Table 260. The M23 MUX can operate in the C-bit parity mode under the following two circumstances: When M13_M23CLK_MODE = 0 and 28 DS1 or 21 E1 signals are being MUXed into the DS3. When M13_M23CLK_MODE = 1 and 7 DS2 signals are being MUXed into the DS3. In the C-bit parity mode, every DS2 stuffing opportunity is filled with a stuff bit. Because stuffing is not used for synchronization, the selected DS2s cannot come directly from the M13 inputs, and the selected DS2s cannot be looped back from the M23 demultiplexer. The 21 C bits in each DS3 frame are not required as stuffing indicators. Their use is described in Table 575 on page 465. 464 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) Table 575. C-Bit Parity Description and Transmit Value C-Bit Number C1 C2 C3 C4--C6, C16--C21 C7--C9 C10--C12 C13--C15 Description C-Bit Parity Identification Network Requirements Bit Transmit Value 1. If M13_CBIT2_ACT = 0 (Table 277), the C2 bit is set to 1. If M13_CBIT2_ACT = 1, the transmit value of C2 is input through pin TCBDATA (E12). Far-End Alarm and Control (FEAC) See FEAC below. Unused If M13_UNUSED_ACT = 0 (Table 277), all are transmitted as 1. CP Bits (path DS3 parity) Far-End Block Error (FEBE) Bits Terminal-to-Terminal Data Link If M13_UNUSED_ACT = 1, the transmit values are input through pin TCBDATA (E12). Set to the same value as the P bits. See Section 20.7.7 FEBE on page 466. See Section 20.7.8 Terminal-to-Terminal Path Maintenance Data Link on page 466. 20.7.6 FEAC The third C bit of each DS3 frame provides a far-end alarm and control (FEAC) signal. The use of this signal and FEAC code words are defined in T1.107 and GR-499-CORE. When the FEAC signal is not active, it is transmitted continuously as a 1. The user can provision the M13 to transmit continuous ones by setting M13_TFEAC_CTL[1:0] to 00 (Table 278). Active FEAC signals consist of repeating 16-bit code words of the form 0 x5x4x3x2x1x0 0 11111111, where xi can be a 1 or a 0. The code words are transmitted right to left one bit each DS3 frame for 16 consecutive frames. Alarm and Status Signals. EAC alarm and status signals should be transmitted continuously for the duration of the condition being reported, or for a minimum of 10 repetitions of the code word. FEAC signals are transmitted continuously by setting M13_TFEAC_CTL[1:0] to 01, and M13_TFEAC_CODE[5:0] to x5x4x3x2x1x0 (Table 278), where x5x4x3x2x1x0 is the appropriate value for the alarm or status code word. Control Signals. EAC control signals are defined for activating or deactivating a loopback. Code words for loopback activation, deactivation, and specifying the type of loopback can be transmitted using the same method as described above for alarm and status signals. Alternatively, the user may provision the M13 to automatically send the activate or deactivate commands. In order to activate a loopback, the user may set M13_TFEAC_CTL[1:0] to 11, and M13_TFEAC_CODE[5:0] to x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropriate value for the loopback code word. The M13 will then transmit 10 repetitions of the activate code word, 0 000111 0 11111111 followed by 10 repetitions of 0x5x4x3x2x1x0 0 11111111. After transmitting this 40 octet sequence, it will set M13_TFEAC_DONE to 1 (Table 217). In order to deactivate a loopback, the user may set M13_TFEAC_CTL[1:0] to 10, and M13_TFEAC_CODE[5:0] to x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropriate value for the loopback code word. The M13 will then transmit 10 repetitions of the deactivate code word, 0 011100 0 11111111, followed by 10 repetitions of 0x5x4x3x2x1x0 0 11111111. After transmitting this 40 octet sequence, it will set M13_TFEAC_DONE to 1. Agere Systems Inc. 465 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.7.7 FEBE C bits 10, 11, and 12 provide a far-end block error (FEBE) indication. Each frame of the received DS3 signal is checked for errors in the F-bit or M-bit framing sequences and for errors in the CP-bit path parity. If no errors are found, the FEBE bits are set to 111 in the next transmitted DS3 frame. If one or more errors are detected, the FEBE bits are transmitted as 000. The user can force the transmission of FEBE error indications by setting M13_FEBE_ERR to 1 (Table 277). This causes all DS3 frames to be transmitted with the FEBE bits set to 000, regardless of whether or not errors were detected in the received DS3 signal. 20.7.8 Terminal-to-Terminal Path Maintenance Data Link C bits 13, 14, and 15 can be used as a 28.2 kbit/s data link. If the data link is not used, the user should set M13_TDL_ACT to 0 (Table 279), which causes all ones to be transmitted. When M13_TDL_ACT = 1 and M13_TDL_NTRNL = 0 (Table 279), the data transmitted on this link comes directly from the M13 input pin, pin TDLDATA (E8). Otherwise (M13_TDL_ACT = 1 and M13_TDL_NTRNL = 1), the data link is controlled by the internal HDLC transmitter. HDLC Transmitter. The internal HDLC transmitter circuitry is composed of two 64-byte data buffers (registers M13_TDL_0DATA_R[0--63] (Table 298) and M13_TDL_1DATA_R[0--63] (Table 299)), a CRC-16 frame check sequence (FCS) generator, and control circuits. The HDLC transmitter continually outputs flag bytes (01111110) with MSB first until the user sets M13_TDL_NTRNL_ACT to 1 (Table 279). Following the completion of the next flag byte, the HDLC transmitter begins transmitting the first byte of the first data buffer (register M13_TDL_0DATA_R[0]), which should be filled by the user with the first byte of the address field. (For LAPD messages, this byte contains the service access point identifier, the command/response bit, and a zero extended address bit.) Bytes from the data buffer are transmitted least significant bit (LSB) first (GR-499). The HDLC controller inserts a 0 after any sequence of five consecutive ones in the data buffer to prevent the occurrence of a flag pattern prior to the closing flag. Buffer Usage. The number of bytes transmitted from the data buffers before completing the frame is controlled as follows. M13_TDL_BUF0_END (Table 279) and M13_TDL_BUF1_END (Table 279) are two bits which indicate whether or not the final buffer byte to be transmitted is currently in buffer 0 or buffer 1. While bytes from buffer 0 are being transmitted, the HDLC controller checks the value of M13_TDL_BUF0_END bit. If it is 0, all bytes from buffer 0 and at least one byte from buffer 1 are transmitted. If it is 1, bytes from buffer 0 are transmitted sequentially up to and including byte K, where M13_TDL_BYTE_END[5:0] = K (Table 280). Similarly, the number of bytes transmitted from buffer 1 is controlled by the value of M13_TDL_BUF1_END and M13_TDL_BYTE_END[5:0] bits. Bytes are transmitted alternately from buffer 0 and buffer 1 until bit M13_TDL_BUF[0, 1]_END = 1 for the active transmission buffer and the value of bits M13_TDL_BYTE_END[5:0] is equal to the byte number being transmitted. When the HDLC controller completes transmission of register M13_TDL_0DATA_R[63] (the last byte of buffer 0), the interrupt bit M13_TDL_BUF0_INT is set to 1 (Table 217). Similarly, the interrupt bit M13_TDL_BUF1_INT (Table 217) is set after the last byte of buffer 1 is transmitted. These bits indicate that the corresponding buffer has been emptied and is available for refilling. The user may abort the transmission of an HDLC frame by clearing M13_TDL_NTRNL_ACT to 0 prior to completing transmission of the last byte from the data buffers. If so, the HDLC controller will stop transmission from the buffers and send an abort byte (01111111) transmitted MSB first. The abort byte will then be followed by flag bytes until M13_TDL_NTRNL_ACT is again set to 1, starting transmission of a new frame. 466 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) FCS Generation. Once the last buffer byte is transmitted, the HDLC controller either transmits a closing flag byte (when M13_TDL_FCS = 0 (Table 279)), or it first appends the 2-byte ITU-T FCS with the necessary zero stuffing before sending the closing flag (when M13_TDL_FCS = 1). In either case, the HDLC controller sets M13_TDL_DONE (Table 217) to 1 after the transmission of the frame is complete. For testing purposes, the user can send corrupted FCS bytes by clearing M13_TDL_FCS to 0 and filling the last 2 bytes in the buffer with an incorrect CRC value. LAPD Example. T1.107 defines three standard LAPD messages that may be transmitted on the path maintenance data link. After the opening flag, each of these messages contains 79 bytes of address, control, and information. These are followed by the 2-byte FCS and the closing flag. To transmit one of these messages using the internal HDLC transmitter, the microprocessor should first set M13_TDL_ACT (Table 279) to 1, M13_TDL_NTRNL (Table 279) to 1, and M13_TDL_NTRNL_ACT (Table 279) to 0. This causes the continuous generation of flag bytes. The microprocessor may then fill buffer 0 with the first 64 bytes of the message and fill bytes 0 through 14 of buffer 1 with the last 15 bytes prior to the FCS of the message. By setting M13_TDL_BUF0_END ( Table 279) to 0, M13_TDL_BUF1_END (Table 279) to 1, and M13_TDL_BYTE_END[5:0] (Table 280) to 001110, the microprocessor can indicate that 79 buffer bytes are to be transmitted. The microprocessor can then set M13_TDL_FCS to 1 and M13_TDL_NTRNL_ACT to 1. This will cause the internal HDLC transmitter to send the 79 buffer bytes, append the FCS and closing flag, set M13_TDL_DONE to 1, and resume continuous flag transmission. If the same LAPD message is to be transmitted later without first having transmitted a different message, the microprocessor only needs to toggle M13_TDL_NTRNL_ACT to 0 and back to 1, as the values of the other control parameters and the buffer bytes are not modified by the internal HDLC transmitter. 20.8 AIS/Idle Insertion The AIS/idle insertion block can be provisioned to operate in the normal mode (M13_DS3_FORCE_AIS = 0 (Table 276) and M13_DS3_FORCE_IDLE = 0 (Table 276)), generate DS3 AIS (M13_DS3_FORCE_AIS = 1) or generate DS3 idle (M13_DS3_FORCE_AIS = 0 and M13_DS3_FORCE_IDLE = 1). In the normal mode, data from the M23 multiplexer is passed unchanged to the B3ZS encoder block. During AIS insertion (M13_DS3_FORCE_AIS = 1), the generated DS3 frame is altered by overwriting the information bits with an alternating 1010 . . . pattern, starting with a 1 after each overhead bit. In addition, the X bits are overwritten with ones, and the C bits are overwritten with all zeros (T1.107 and T1.404). During idle signal generation (M13_DS3_FORCE_AIS = 0 and M13_DS3_FORCE_IDLE = 1), the information bits are overwritten with 11001100 . . ., starting with 11 after each overhead bit. The X bits are overwritten with ones. In the M23 mode (M13_M23_CBP = 1 (Table 260)), the C bits are overwritten with all zeros. In the C-bit parity mode, the C bits are passed unchanged (T1.107 and T1.404). 20.9 B3ZS Encoder (GR-499) The transmit DS3 device output can either be in the form of unipolar data (M13_DS3POS_DATA when M13_BIPOLAR = 0 (Table 260)) or positive data, and negative data (M13_DS3POS_DATA, and M13_DS3NEG when M13_BIPOLAR = 1). If M13_BIPOLAR = 1, the DS3 data is B3ZS encoded with M13_DS3POS_DATA = 1 indicating a positive pulse and M13_DS3NEG = 1 indicating a negative pulse. The B3ZS encoder block accepts data output from the M23 multiplexer and when M13_BIPOLAR = 1, performs coding as follows: for each input data bit that is a 1, the encoder outputs a 1 (or pulse) on either its positive or negative output. The positive or negative output is chosen such that the resulting pulse is opposite in polarity to the last nonzero output. Agere Systems Inc. 467 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) For each input data bit that is a 0, the encoder outputs zeros on both its positive and negative outputs, unless doing so would cause three consecutive output periods of positive and negative zeros. In the latter case, the three consecutive input zeros are output as either [00V] or [B0V], where B is a pulse on either the positive or negative output that is opposite in polarity to the last non-zero output, and V is a pulse that is the same polarity as the last nonzero output. The choice of [00V] or [B0V] is made so that the polarity of consecutive V-pulses alternates (which is equivalent to forcing the number of B-pulses between successive V-pulses to be odd). When M13_BIPOLAR = 1, the user can force errors in the bipolar coding by setting M13_BIPOL_ERR (Table 258) to 1. When this is done, the M13 transmits the next 1 as a bipolar violation. 20.10 DS3 R-to-T Loopback The received DS3 signal can be looped directly back to the transmit DS3 output. If either M13_LOOP_R_TO_T = 1 (Table 260), or both M13_AUTO_FLB = 1 (Table 259) and M13_DS3_FLB_DET = 1 (Table 251) (see Section 20.7.6 FEAC on page 465), the loopback is activated. (During loopback, the SMPR_RDS3POS_DATA and SMPR_RDS3NEG_BPV input signals are looped to the M13_DS3POS_DATA and M13_DS3NEG outputs, respectively.) 20.10.1 DS3 Transmit Path Interface When cross connected to the DS3 device pins, the DS3 data out DS3POSDATAOUT (pin R22) and DS3NEGDATAOUT (pin P22) is clocked out on the falling edge of DS3DATAOUTCLK (pin N22). If the M13 DS3 interface is optioned for loop timing (M13_LOOP_TIME = 1), the DS3 data is clocked out on the rising edge of DS3DATAINCLK (pin J22). 20.11 M13/M23 Demultiplexer 20.11.1 DS3 LOC and LOS SMPR_RDS3CLK is monitored for loss of clock, which is reported through bit M13_RDS3_LOC (Table 225). The user can configure which edge of SMPR_RDS3CLK retimes the data (M13_RDS3_EDGE = 1 ( Table 287) selects the rising edge; M13_RDS3_EDGE = 0 selects the falling edge). The receive DS3 signal is also checked for loss of signal (LOS), which is reported through bit M13_RDS3_LOS (Table 225). An LOS defect, according to T1.231, is the occurrence of 175 75 contiguous pulse positions with no pulses of either positive or negative polarity at the DS3 input. An LOS defect is terminated upon detecting an average pulse density of at least 33% over a period of 175 75 contiguous pulse positions starting with the receipt of a pulse. An LOS defect will not be terminated if, at the end of the pulse-position interval, any subintervals of 100 pulse positions containing no pulses of either polarity were observed (T1.231). B3ZS Decoder. The receive DS3 device input can either be in the form of unipolar clock and data (SMPR_RDS3CLK and SMPR_RDS3POS_DATA when M13_BIPOLAR = 0 (Table 260 on pag e216)) or unipolar clock, positive data, and negative data (SMPR_RDS3CLK, SMPR_RDS3POS_DATA, and SMPR_RDS3NEG_BPV when M13_BIPOLAR = 1 and M13_BPV_IN = 0 (Table 259)) or unipolar clock, data, and bipolar violation indication (external input) (SMPR_RDS3CLK, SMPR_RDS3POS_DATA, and SMPR_RDS3NEG_BPV when M13_BIPOLAR = 0 and M13_BPV_IN = 1). When M13_BIPOLAR = 0, the received DS3 data and clock are passed directly to the M23 demultiplexer. When M13_BIPOLAR = 0 and M13_BPV_IN = 1, the received DS3 data and clock are passed to the M23 demultiplexer while the bipolar violation indication is forwarded to the internal BPV counter for performance monitoring (B3ZS decoder is not used). When M13_BIPOLAR = 1 and M13_BPV_IN = 0, the received SMPR_RDS3POS_DATA and SMPR_RDS3NEG_BPV data inputs are first B3ZS decoded. 468 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) The B3ZS decoder block performs decoding as follows. For each clock period that both SMPR_RDS3POS_DATA and SMPR_RDS3NEG_BPV are 0 (no pulse), the decoder outputs a 0. For each clock period that either SMPR_RDS3POS_DATA or SMPR_RDS3NEG_BPV is 1 (pulse), the decoder determines whether or not the pulse is part of a zero substitution (ZS) sequence. A ZS sequence is [00V] or [B0V], where B is a pulse on either the positive or negative input that is opposite in polarity to the last nonzero input, and V is a pulse that is the same polarity as the last nonzero input. If the received pulse is not part of a ZS sequence, the decoder outputs a 1. Otherwise, the decoder outputs three consecutive zeros in place of the received ZS sequence. The B3ZS decoder also checks for bipolar coding violations. Bipolar coding violations are defined as received V-pulses that are not opposite in polarity to the last V-pulse or are not immediately preceded by a 0, or received zeros that are immediately preceded by two other zeros. The M13 contains a counter that increments on each occurrence of a received bipolar coding violation (BPV). It also monitors the occurrence of excessive zeros (EXZ), which is defined as any zero string length equal to or greater than 3 (T1.231). These are part of the performance monitoring counters that can be sampled and simultaneously reset (see DS3 Performance Monitors on page 472). Their last sampled values are available in registers M13_BPV_CNT_R[1--3] (Table 295) and M13_EXZ_CNT_R[1--3] (Table 296). 20.11.2 DS3 T-to-R Loopback The M13 can be configured to loopback the internal transmit DS3 from the output of the M23 MUX (M13_LOOP_T_TO_R = 1 (Table 259)) or accept the received DS3 signal after B3ZS decoding (M13_LOOP_T_TO_R = 0) and send it into the M23 deMUX block. 20.11.3 M23 Demultiplexer The M23 demultiplexer will take the received DS3 signal and either deMUX it into 7 DS2 data streams or strip off the overhead bits and send payload out through the NSMI serial interface when M13_NSMI_MODE (Table 277) = 1. The serial data interface, when enabled (M13_NSMI_MODE = 1), generates a clock M13_DNSMI_CLK and an enable M13_DNSMI_EN for outputting DS3 payload data M13_DNSMI_DATA. A sync pulse M13_DNSMI_SYNC, in reference to and ahead of the first M bit within a DS3 frame, is also generated. The offset from the sync pulse to the first M bit is programmable through bits M13_D_SP_OFFSET[7:0] ( Table 262). In the case of the received DS3 signal being deMUXed into 7 DS2s, those DS2s can be sent out of the device, or looped back to the transmit side, or passed to M12 demultiplexers for further breakdown into DS1s/E1s. DS3 Framer. After being B3ZS decoded, the incoming DS3 data stream is checked for the presence of unframed all ones. If the input data is 0 for fewer than 9 out of 8192 clock periods, bit M13_RDS3_ALL1_DET (Table 225) will be set. The M23 demultiplexer determines if the input signal contains valid DS3 framing. This is done in two stages by first finding a bit position that matches the frame alignment pattern (F bits), and then locating the multiframe alignment signal (M bits). After a matching F-bit sequence is found, in-frame is declared (M13_DS3_OOF = 0 (Table 224)) when correct M bits are received for three consecutive M frames (T1.231). The maximum average reframe time is 0.5 ms in the presence of a bit error rate of 10 -3. Once the deMUX is in-frame, the received frame bits are monitored for out-of-frame. Out-of-frame is declared (M13_DS3_OOF = 1) when too many errors are received in either the F bits (three errors in 16 bits when M13_DS3_MODE = 0 (Table 287), or at least 1 F-bit error in each of four consecutive M-subframes when M13_DS3_MODE = 1) or the M bits (at least 1 error in each of three consecutive M frames) (T1.231). For testing purposes, the user may also force the framer out-of-frame by setting M13_DS3_FORCE_OOF ( Table 258) to 1. Agere Systems Inc. 469 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) The traditional algorithm for declaring out-of-frame (three errors in 16 F bits) results in false out-of-frame approximately every 30 seconds when the received bit error rate is 10-3. By waiting for four consecutive M-subframes with F bit errors before declaring out-of-frame (M13_DS3_MODE = 1), the M13 normally stays in frame for over an hour when the bit error rate is 10-3. The M13_DS3_LOF (Table 224) bit is set if bit M13_DS3_OOF is high continuously for 28 frame periods (approximately 3 ms). Once set, M13_DS3_LOF is not cleared until M13_DS3_OOF is continuously low for 28 frame periods. The user can provision the M13 to automatically output AIS if either bit M13_DS3_OOF = 1 (by setting M13_AUTO_AIS_OOF (Table 259) to 1), or M13_DS3_LOF = 1 (by setting M13_AUTO_AIS_LOF to 1). The received DS3 frames are also checked for severely errored frames (SEF). An SEF defect is the occurrence of three or more F-bit errors in 16 consecutive F bits and is reported through bit M13_RDS3_SEF (Table 225). An SEF defect is terminated when the signal is in-frame and there are less than three F-bit errors in 16 consecutive F bits. AIS, Idle, and RAI Detection. Each M frame, the 4704 information bits are checked for the presence of the AIS (1010) or idle (1100) pattern. In order to detect these patterns in the presence of a high error rate, AIS (M13_DS3_AISPAT_DET = 1 (Table 224)) or idle (M13_DS3_IDLEPAT_DET = 1 (Table 224)) pattern detection is declared if fewer than five pattern errors are received in each of two consecutive frames. Once AIS or idle is declared, these bits are not cleared until at least 16 pattern errors are received in each of 2 consecutive frames (T1.231). In addition to the fixed information bit patterns, AIS and idle signals are transmitted with all C bits set to 0 and both X bits set to 1. These conditions are monitored by the M13 and reported in bits M13_DS3_CBZ_DET (Table 224) and M13_DS3_RAI_DET (Table 224). If every C bit in three consecutive DS3 frames is 0, the M13 sets M13_DS3_CBZ_DET to 1. If the three C bits in a single M-subframe are all 1, M13_DS3_CBZ_DET is cleared. If both X bits in two consecutive frames are received as 0, the device sets M13_DS3_RAI_DET to 1. Once M13_DS3_RAI_DET is set, it is not cleared until both X bits in two consecutive frames are received as 1. The user may wish to declare AIS or idle based on a combination of some or all of the following bits: M13_DS3_CBZ_DET, M13_DS3_RAI_DET, and M13_DS3_AISPAT_DET or M13_DS3_IDLEPAT_DET. C-Bit Processing. The M13 can be provisioned to operate in either the M23 mode (M13_M23_CBP = 1 (Table 260)) or the C-bit parity mode (M13_M23_CBP = 0). In the M23 mode, the C bits in each M-subframe are interpreted as stuff indicator bits, and they are checked for loopback requests. If the third C bit differs from the first and second C bits in the yth M-subframe for 5 successive DS3 frames, M13_DS2_LB_DETy (Table 244) is set to 1. The M13_DS2_LB_DETy bit is cleared when the third C bit does not differ from the first two C bits in subframe y for five successive DS3 frames. The first C bit of each frame, C1, provides C-bit parity identification. If for eight consecutive frames it is received as a 1, the M13 sets M13_DS3_C1_DET (Table 224) to 1. Once M13_DS3_C1_DET bit is set, three consecutive frames with C1 = 0 must be received before it is cleared. The RCBDATA (pin E15) output provides access to the received C2, C4, C5, C6, and C16 through C21 C bits. The received data link bits, C13 through C15, are output as a serial stream on RDLDATA pin (H22). FEAC. In the C-bit parity mode, the third C bit of each DS3 frame, C3, is monitored for FEAC signals. Active FEAC signals consist of repeating 16-bit code words of the form 0 x5x4x3x2x1x0 0 11111111, where xi can be a 1 or a 0, and the bits are received right-to-left. The same code word must be received four consecutive times before it is accepted. When a code word is accepted, the action taken by the M13 depends on the value of x5x4x3x2x1x0, which may be an alarm indication, a loopback activation, or a loopback deactivation. 470 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) The values of M13_DS1_FEAC_LB_DETx and M13_DS3_FLB_DET bits are not changed if an activate or deactivate control signal is accepted, but the next code word to be accepted is not a channel indication control signal (010011, 011011, or 100001 through 111100). Alarm, Status, or Unassigned Signals. If a FEAC signal is accepted that is not a loopback activate (000111), deactivate (011100), or channel indication (010011, 011011, or 100001 through 111100) signal, the M13 will set bits M13_RFEAC_CODE[5:0] = x5x4x3x2x1x0 and M13_RFEAC_ALM_INT (Table 217) to 1. Control Signals. EAC control signals are defined for activating or deactivating a loopback. If a loopback activate (000111), deactivate (011100), or channel indication (010011, 011011, or 100001 through 111100) is accepted, the M13 will set bits M13_RFEAC_CODE[5:0] (Table 252) = x5x4x3x2x1x0 and M13_RFEAC_LB_INT (Table 217) to 1. If a loopback activate (000111), followed by the all-DS1 channels indication (010011) is accepted, the device sets all M13_DS1_FEAC_LB_DETx (Table 251) bits. All M13_DS1_FEAC_LB_DETx bits are cleared if a loopback deactivate (011100), followed by the all-DS1 channels indication, is accepted. If a loopback activate (000111), followed by the DS3 indication (011011) is accepted, the device sets the M13_DS3_FLB_DET (Table 251) bit. The M13_DS3_FLB_DET bit is cleared if a loopback deactivate (011100), followed by the DS3 indication, is accepted. Similarly, if the M13 accepts an activate or deactivate control signal followed by a DS1 channel indication (100001 through 111100), it sets or clears the M13_DS1_FEAC_LB_DETx bit, where x is equal to the binary value of x5x4x3x2x1x0. Terminal-to-Terminal Path Maintenance Data Link. C bits 13, 14, and 15 can be used as a 28.2 kbit/s data link. These bits are available directly at device output pin RDLDATA (H22). The M13 also contains an internal HDLC receiver for processing the received data link bits. HDLC Receiver. The internal HDLC receiver circuitry is composed of a 128-byte FIFO, a CRC-16 frame check sequence (FCS) error detector, and control circuits. The HDLC receiver searches for flag bytes (01111110) and processes the bits received between flag bytes as follows. The receiver removes zeros that immediately follow any sequence of five consecutive ones. Sequences of 8 bits after zero destuffing are grouped into bytes and written into the FIFO. As bytes are received, the CRC-16 value, based on the ITU-T polynomial, is calculated. When the closing flag is received, the receiver checks that the received FCS in the final 2 bytes matches the calculated CRC-16. If M13_RDL_FCS = 1 (Table 287) and the FCS does not match, M13_RDL_FCS_ERR (Table 253) is set. If M13_RDL_FCS = 0, M13_RDL_FCS_ERR is held reset at 0. M13_RDL_FCS bit also determines whether or not the final 2 bytes of the frame are written into the FIFO. They are written into the FIFO only when M13_RDL_FCS = 0. The receiver allows frames to be sent back-to-back with the closing flag of one frame shared as the opening flag of the next frame. If fewer than three complete destuffed bytes are received between flag bytes, the receiver ignores the data and writes nothing into the FIFO. FIFO Usage. The FIFO is large enough to hold one full and two partial standard DS3 LAPD frames of 79 bytes. In case shorter frames are being transmitted, the M13 can keep track of up to four frames in the FIFO that have not been read. The receive data-link frame interrupt bit, M13_RDL_FRM_INT (Table 217), is set when a frame closing flag or an abort byte is received. The M13_RDL_FIFO_UF (Table 225) bit is set if the buffer underflows, and the M13_RDL_FIFO_AF (Table 225) bit is set if the buffer reaches a provisionable fill level. The fill level can be set to 16 bytes (M13_RDL_FILL[1:0] = 00 (Table 287)), 32 bytes (M13_RDL_FILL[1:0] = 01), 64 bytes (M13_RDL_FILL[1:0] = 10), or 96 bytes (M13_RDL_FILL[1:0] = 11). The user may read bytes from the FIFO through register M13_RDL_DATA_R (Table 254). The portion of the earliest frame still in the FIFO can be deleted by setting M13_RDL_FRM_CLR ( Table 258) to 1. (This is normally done to purge a corrupted or aborted frame.) The user must reset M13_RDL_FRM_CLR before another frame can be deleted. If M13_RDL_FRM_CLR is set before the closing flag of the frame currently being read from the FIFO has been received, all subsequent bytes of the frame will be discarded without being written into the FIFO. Agere Systems Inc. 471 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) Frame Status and Error Reporting. The M13 provides information on the earliest frame still in the FIFO through status register M13_RHDLC_STATUS_R (Table 256). The status register has 1 bit to indicate whether or not the closing flag (or an abort byte) for the current frame has been received, 1 bit to indicate if the current frame is corrupted, 5 bits to indicate the size of the current frame modulo-32, and 1 bit to indicate whether or not there are less than 32 bytes of the earliest frame left in the FIFO. There are four ways in which the M13 can identify that the current frame has been corrupted. The frame may have been aborted (M13_RDL_ABORT = 1 (Table 253)), it may have failed the CRC check (M13_RDL_FCS_ERR = 1 (Table 253)), the number of bits between opening and closing flags may not have been a multiple of 8 (M13_RDL_NOT_BYTE = 1 (Table 253)), or it may have been overwritten before being read from the FIFO (M13_RDL_OVFL = 1 (Table 253)). Also, there is a separate bit M13_RDL_FLAG (Table 253) to indicate whether or not the closing flag (or an abort byte) for the current frame has been received. The size of the current frame modulo-128 (including FCS bytes only if M13_RDL_FCS = 0 (Table 287)) is indicated by register M13_RDL_FRAME_SIZE_R (Table 255). DS3 Performance Monitors. For performance monitoring purposes, there are a number of error counters in the M13. All of these internal counters are comprised of a running error counter and a hold register that presents stable results to the microprocessor. The counts in all of the running counters are latched to the hold registers and the running counters cleared with the configured internal performance monitor reset signal. The latched results are then held to be read by the microprocessor. All of the internal counters have the ability to store more than the maximum possible count in a one second interval for a bit error rate of 10-3. As long as the performance monitor reset occurs at least once every second, no counts will be lost. In case this doesn't happen, all of the running counters will either hold their maximum value or roll over to zero, depending on the control signal input SMPR_SAT_ROLLOVER (Table 67). Within the M23 demultiplexer, there are four performance monitoring counters. M13_DS3_FERR_CNT[11:0] (Table 289) increments each time an error is detected in either an F bit or M bit, and M13_DS3_PERR_CNT[13:0] (Table 292) increments if at least one of the P bits disagrees with the parity of the previous frame. In the C-bit parity mode only, M13_DS3_CPERR_CNT[13:0] (Table 291) counts frames with at least two of the three C-bit parity bits indicating an error, and M13_DS3_FEBE_CNT[13:0] (Table 290) accumulates FEBE error indications (1 error indication for each DS3 frame with at least one FEBE bit equal to zero). 20.11.4 M12 Demultiplexers Each M12 demultiplexer outputs either 4 DS1 signals from the DS2 frame as specified in GR-499-CORE (when M13_DS1_E1Ny = 1 (Table 263)), or three E1 signals from the DS2 format specified in ITU-T Recommendation G.747 (when M13_DS1_E1Ny = 0). In the DS1 mode, the demultiplexed second and fourth channels are inverted before being sent to the output selectors when M13_DEMUXCH2_4_INVy = 1 (Table 272). Each M12 DeMUX can be programmed independently to receive DS2 signal either from M23 deMUX (when M13_M12DMX_MODEy[1:0] = 00 (Table 272)) or direct DS2 input XC_DS2DMXDATAy (when M13_M12DMX_MODEy[1:0] = 01). In the latter case, an input DS2 clock XC_DS2DMXCLKy is also required. When M13_M12DMX_MODEy[1:0] = 10/11, the M12 demultiplexer is idle and the outputs are held low. The DS2 signal is monitored for AIS, which is declared (M13_DS2_AIS_DETy = 1 (Table 242)) if the demultiplexer input is 0 for fewer than five clock cycles in each of two consecutive 840 clock periods, and cleared if there are more than 4 zeros in each of two consecutive 840-bit periods (G.775). 20.11.5 DS1 Mode Framer. The M12 demultiplexers determine if the input signal contains valid DS2 framing. This is done in two stages by first finding a bit position that matches the M-subframe alignment pattern (F bits), and then locating the M frame alignment signal (M bits). After a matching F-bit sequence is found, in-frame is declared (M13_DS2_OOFy = 0 (Table 240)) when correct M bits are received for three consecutive M frames. The maximum average reframe time is 2.5 ms in the presence of a bit error rate of 10 -3. 472 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 20 M13/M23 MUX/DeMUX Block Functional Description (continued) Once the deMUX is in-frame, the received frame bits are monitored for out-of-frame. Out-of-frame is declared (M13_DS2_OOFy = 1) if too many errors are received in either the F bits (two errors in 4 bits when M13_DS2_MODE = 0 (Table 274), or at least one F-bit error in four consecutive M-subframe pairs when M13_DS2_MODE = 1) or the M-bits (at least one error in three consecutive M frames). For testing purposes, the user may also force the framer out-of-frame by setting M13_DS2_FORCE_OOFy (Table 257) to 1. The traditional algorithm for declaring out-of-frame (two errors in 4 F bits) results in false out-of-frame approximately every 5 seconds when the bit error rate is 10-3. By waiting for four consecutive errored M-subframe pairs (containing 4-F bits) before declaring out-of-frame (M13_DS2_MODE = 1), the M13 normally stays in frame for over 4four days when the bit error rate is 10-3. Overhead Processing. The C bits for each DS1 channel are checked for loopback requests. If the third C bit differs from the first and second C bits in the zth M-subframe for five successive DS2 frames, M13_DS1_LB_DETx (Table 249) is set to 1, where x = (4y - 4 + z). M13_DS1_LB_DETx is cleared when the third C bit does not differ from the first two C bits in the zth M-subframe for five successive DS2 frames. If the X bit in four consecutive frames is received as 0, the M13 sets M13_DS2_RAI_DETy (Table 243) to 1. Once M13_DS2_RAI_DETy is set, it is not cleared until the X bit is received as 1 in four consecutive frames. 20.11.6 E1 Mode Framer. The M12 demultiplexers determine if the input signal contains a valid frame format as specified in ITU-T recommendation G.747. Frame alignment is declared (M13_DS2_OOFy = 0 (Table 240)) when a correct frame alignment signal is received for three consecutive frames. The maximum average reframe time is 0.5 ms in the presence of a bit error rate of 10 -3. Out-of-frame is declared (M13_DS2_OOFy = 1) if the frame alignment signal contains at least 1-bit error for four consecutive frames. For testing purposes, the user may also force the framer out-of-frame by setting M13_DS2_FORCE_OOFy (Table 257) to 1. Overhead Processing. The C bits for each E1 channel are checked for loopback requests. If the third Cz bit differs from the first and second Cz bits for five successive frames, M13_DS1_LB_DETx (Table 249) is set to 1, where x = (4y - 4 + z). M13_DS1_LB_DETx is cleared when the third Cz bit does not differ from the first two Cz bits for five successive frames. If the RAI bit in four consecutive frames is received as 1, the M13 sets M13_DS2_RAI_DETy to 1 ( Table 243). Once M13_DS2_RAI_DETy is set, it is not cleared until the RAI bit is received as 0 in four consecutive frames. The received reserved bit is reported through the M13_DS2_RSV_RCVy (Table 245), which is updated only when a new value is received in four consecutive frames. Loss of Frame and Automatic AIS Insertion. The M13_DS2_LOFy (Table 241) bit is set when M13_DS2_OOFy is high continuously for 28 DS3 frame periods (approximately 3 ms). Once set, M13_DS2_LOFy is not cleared until M13_DS2_OOFy is continuously low for 28 DS3 frame periods. The user can provision the M13 to automatically output AIS if either bit M13_DS2_OOFy = 1 (by setting M13_AUTO_AIS_OOF to 1), or M13_DS2_LOFy = 1 (by setting M13_AUTO_AIS_LOF to 1). DS2 Performance Monitors. Within each M12 demultiplexer, there are two performance monitoring counters. These counters are cleared and read as described above (see DS3 Performance Monitors on page 472). Registers M13_DS2_FERR_CNT[7--1]_R (Table 294) count errors in the frame alignment signal. In the DS1 mode, M13_DS2_FERR_CNTy (Table 294) increments each time an error is detected in either an F bit or M bit. In the E1 mode, this counter increments either for each frame alignment signal bit error (when M13_DS2_FERR_MODE = 0 (Table 274)), or once for each frame alignment signal that contains at least one bit error (when M13_DS2_FERR_MODE = 1). In the E1 mode only, registers M13_DS2_PERR_CNT[7--1]_R[1--2] (Table 293) count errors in P bits. Agere Systems Inc. 473 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 20 M13/M23 MUX/DeMUX Block Functional Description (continued) 20.11.7 Output Select Logic DS2 Output Selection. The M23 demultiplexer outputs are fed into seven DS2 output selection logic blocks. This allows the M13 to output the demultiplexed DS2 signals or insert AIS. Each selector is identified by a number y that ranges from one to seven and corresponds directly to M13 outputs M13_DS2DATA[7--1]. The outgoing DS2 signals are retimed by an associated clock, M13_DS2CLK[7--1]. The edge of the clocks that is used to retime the data is provisionable to either the rising edge (M13_TDS2_EDGE = 1 (Table 294)) or falling edge (M13_TDS2_EDGE = 0). The output from each selection block is controlled by the values of bits M13_DS2_OUT_IDLEy (Table 284) and M13_DS2_OUT_AISy (Table 285). Output is held low when M13_DS2_OUT_IDLEy = 1; otherwise, the deMUXed DS2 signal is output when M13_DS2_OUT_AISy = 0 and DS2 AIS is output when M13_DS2_OUT_AISy = 1. The all ones DS2 AIS signal is also output under all failure conditions at DS3 level which require automatic AIS insertion at DS2 level. DS1/E1 Output Selection. The M12 demultiplexer outputs are fed into 28 DS1/E1 output selection logic blocks. This allows the M13 to output the demultiplexed DS1/E1 (M13_DS1_OUT_AISx = 0 (Table 273)), or insert AIS (M13_DS1_OUT_AISx = 1). The all ones AIS signal is also output under all failure conditions at DS3 or DS2 level which require automatic AIS insertion at DS1/E1 level. Each selector is identified by a number x that ranges from 1 to 28 and corresponds directly to a block output M13_DS1DATA[28--1]. The outgoing DS1 and/or E1 signals are retimed by an associated clock, M13_DS1CLK[28--1]. The edge of the clock that is used to retime the data is provisionable to either the rising edge (M13_TDS1_EDGEx = 1 (Table 272)) or falling edge (M13_TDS1_EDGEx = 0). Each output selector number, x can be expressed as either 4y - 3, 4y - 2, 4y - 1, or 4y, where y ranges from 1 to 7. For a given y, the 4 selectors in the group output DS1 signals when M13_OUT_TYPEy = 1 ( Table 272), or E1 signals when M13_OUT_TYPEy = 0. In either of these modes, the four selectors in the group are controlled by the 2-bit values OUTSELx, where x = 4y - 3, 4y - 2, 4y - 1, and 4y. When M13_OUT_TYPEy = 0, the output of selector 4y is held low. 474 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description Table of Contents Contents Page 21 28-Channel Framer Block Functional Description .......................................................................................... 475 21.1 28-Channel Framer Introduction ............................................................................................................. 479 21.1.1 DS0/E0 Switching Applications .................................................................................................... 479 21.2 Transport Applications ............................................................................................................................ 482 21.3 Framer-to-Line Interface Unit Physical Interface .................................................................................... 485 21.3.1 Line Interface References/Standards .......................................................................................... 485 21.3.2 Frame Formats ............................................................................................................................ 485 21.3.3 Transmit Framer Functions .......................................................................................................... 486 21.3.4 Framing References/Standards ................................................................................................... 486 21.4 DS1 Transparent Framing Format .......................................................................................................... 486 21.5 CEPT 2.048 Basic Frame Structure Transparent Framing Format ........................................................ 487 21.6 Receive Framer Nonalignment Mode (DS1/E1) ..................................................................................... 488 21.6.1 Loss of Frame Alignment Criteria ................................................................................................ 488 21.7 Frame Alignment Criteria ........................................................................................................................ 489 21.8 Receive and Transmit Signaling Processor ............................................................................................ 489 21.8.1 Signaling Introduction and Feature Description ........................................................................... 489 21.8.2 Signaling References/Standards ................................................................................................. 490 21.9 Receive Signaling Per-Link Feature Provisioning .................................................................................. 490 21.9.1 Signaling State Mode Source Selection ....................................................................................... 491 21.9.2 Signaling State Mode Selection ................................................................................................... 491 21.9.3 Signaling Source Selection .......................................................................................................... 491 21.9.4 Signaling Destination Selection ................................................................................................... 492 21.10 Optional Receive Signaling Features Provisioned for Each Link ......................................................... 494 21.10.1 Support of DS1 Robbed-Bit Stomping ....................................................................................... 494 21.10.2 Support of CEPT Time-Slot 16 Stomping .................................................................................. 494 21.10.3 Support of Signaling Debounce ................................................................................................. 494 21.10.4 Support of Japanese Handling Groups ..................................................................................... 494 21.11 Receive Signaling Global Feature Provisioning ..................................................................................... 494 21.11.1 Link Count Selection ................................................................................................................. 495 21.12 Other Receive Signaling Global Features .............................................................................................. 495 21.12.1 Support of Automatic Signaling Freeze on Framing Bit Errors .................................................. 495 21.12.2 Support of Change of Signaling State FIFO .............................................................................. 495 21.13 Receive Signaling Interrupts .................................................................................................................. 496 21.13.1 Maintenance of the Change of Signaling State FIFO Status Bits .............................................. 496 21.13.2 Maintenance of Handling Group Related Status Bits ................................................................ 496 21.14 Transmit Signaling Per-Link Feature Provisioning ................................................................................. 497 21.14.1 Signaling State Mode Source Selection .................................................................................... 497 21.14.2 Signaling State Mode Selection ................................................................................................ 498 21.14.3 Signaling Source Selection ....................................................................................................... 498 21.14.4 Signaling Destination Selection ................................................................................................. 500 21.15 Optional Transmit Signaling Features Provisioned for Each Link .......................................................... 501 21.15.1 Support of Automatic Maintenance of the Time-Slot 16 Remote Frame Alarm ........................ 501 21.15.2 Support of DS1 Robbed-Bit Stomping ....................................................................................... 501 21.15.3 Support of CEPT Time-Slot 16 Stomping .................................................................................. 501 21.15.4 Support of Signaling Debounce ................................................................................................. 501 21.15.5 Support of Japanese Handling Groups ..................................................................................... 501 21.15.6 Support of Zero-Code Suppression ........................................................................................... 501 21.16 Transmit Signaling Global Feature Provisioning .................................................................................... 502 21.16.1 Link-Count Selection ................................................................................................................. 502 21.17 Other Transmit Signaling Global Features ............................................................................................. 502 21.17.1 Support of Automatic Signaling Freeze on Framing Bit Errors .................................................. 502 Agere Systems Inc. 475 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table of Contents (continued) Contents Page 21.17.2 Support of Byte Sync SONET Mapping .................................................................................... 502 21.18 Transmit Signaling Status Registers ...................................................................................................... 502 21.18.1 Maintenance of CEPT Related Status Bits ................................................................................ 502 21.19 Performance Monitoring Functional Integration into Superframer ......................................................... 503 21.20 Performance Report Message ............................................................................................................... 506 21.21 Performance Monitoring References/Standards .................................................................................... 508 21.22 Facility Data Link .................................................................................................................................... 508 21.22.1 Facility Data Link References/Standards .................................................................................. 508 21.22.2 Receive Data Link Functional Description ................................................................................. 509 21.22.3 SLC-96 Superframe Receive Data Link .................................................................................... 509 21.22.4 DDS Receive Data Link Stack ................................................................................................... 509 21.22.5 CEPT; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms) Multiframe Sa Bits Receive Stack ..... 510 21.22.6 Receive Data Link Stack Idle Modes ......................................................................................... 511 21.22.7 Receive Data Link Stack Pointer ............................................................................................... 511 21.22.8 Transmit Facility Data Link Functional Description ................................................................... 513 21.22.9 SLC-96 Superframe Transmit Data Link ................................................................................... 513 21.22.10 DDS Transmit Data Link Stack ................................................................................................ 514 21.22.11 Transmit ESF Data Link Bit-Oriented Messages ..................................................................... 515 21.22.12 CEPT, CEPT Multiframe Transmit Data Link Sa bits Stack .................................................... 515 21.22.13 Transmit Data Link Stack Idle Modes ...................................................................................... 516 21.22.14 SLC-96, DDS, or CEPT ESF Frame Alignment ...................................................................... 516 21.23 HDLC Functional Description ................................................................................................................. 517 21.24 HDLC Operation .................................................................................................................................... 517 21.24.1 Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing) ................................................................... 517 21.24.2 Flags .......................................................................................................................................... 517 21.24.3 Aborts ........................................................................................................................................ 518 21.24.4 Receive IDLES .......................................................................................................................... 518 21.24.5 CRC ........................................................................................................................................... 518 21.24.6 HDLC Mode ............................................................................................................................... 519 21.24.7 Receive HDLC Transparent Mode ............................................................................................ 519 21.24.8 Receive HDLC ........................................................................................................................... 519 21.24.9 Receive HDLC Features ........................................................................................................... 519 21.24.10 Transmit HDLC FIFO Features ............................................................................................... 520 21.25 Framer Phase-Lock Loop (PLL) ............................................................................................................. 522 21.25.1 Framer Timing Selection ........................................................................................................... 523 21.26 System Interface .................................................................................................................................... 523 21.26.1 System Interface Introduction .................................................................................................... 523 21.26.2 System Interface References/Standards ................................................................................... 524 21.26.3 Transmit/Receive System Interface Features ........................................................................... 524 21.26.4 Double NOTFAS System Time-Slot (FRM_DNOTFAS (Table 347)) Mode .............................. 524 21.26.5 Transparent Mode ..................................................................................................................... 525 21.26.6 Loopbacks ................................................................................................................................. 525 21.26.7 System AIS ................................................................................................................................ 525 21.26.8 Slip Detection ............................................................................................................................ 526 21.26.9 The Concentration Highway (CHI) Mode .................................................................................. 526 21.26.10 Nominal CHI Timing ................................................................................................................ 526 21.26.11 CHI Timing with CHI Double Time-Slot Timing (CHIDTS) Mode Enabled .............................. 528 21.26.12 CHI Timing with Associated Signaling Mode Enabled ............................................................ 529 21.26.13 ASM 2-Byte Time-Slot Format ................................................................................................ 529 21.26.14 CEPT: Time-Slot 16 Signaling ASM 2-Byte Time-Slot Format ................................................ 530 21.26.15 CHI Offset Programming ......................................................................................................... 530 476 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Table of Contents (continued) Contents Page 21.26.16 The Parallel Bus System Interface Mode ................................................................................ 532 21.26.17 Distributed Stuffing: DS1 ......................................................................................................... 533 21.26.18 Distributed Stuffing: E1 ............................................................................................................ 535 21.26.19 Drive to 3-State and 3-State to Drive Timing ........................................................................... 536 21.27 Serial Multiplex Interface ........................................................................................................................ 536 21.27.1 Signals (6-Pin Mode) ................................................................................................................. 537 21.27.2 Signals (8-Pin Mode) ................................................................................................................. 537 21.27.3 Timing Diagrams ....................................................................................................................... 538 21.27.4 Time-Slot Sequencing ............................................................................................................... 539 21.27.5 Timing Between Transmit and Receive ..................................................................................... 539 21.28 Superframer Host Interface .................................................................................................................... 540 21.28.1 Superframer Register Addressing ............................................................................................. 540 21.29 Superframer Register Addressing .......................................................................................................... 541 21.29.1 Per Link Register Sections in Table 609 ................................................................................... 542 Figures Page Figure 52. Switching Application of the Super Mapper......................................................................................... 479 Figure 53. Super Mapper Switching Configuration ............................................................................................... 480 Figure 54. Super Mapper Switching Mode for Framer in DS0 Interface (Parallel or Serial) Configuration (The Optional Byte-Synchronous VT Mapping Path Is Shown) .......................................................... 481 Figure 55. Transport Application of the Super Mapper......................................................................................... 482 Figure 56. Super Mapper Transport Configuration ............................................................................................... 483 Figure 57. Super Mapper Transport (with Intrusive Performance Monitoring) Mode (The Optional Byte-Synchronous VT Mapping Path Is Shown) .......................................................... 484 Figure 58. DS1 Transparent Frame Structure ...................................................................................................... 486 Figure 59. CEPT Transparent Frame Structure ................................................................................................... 487 Figure 60. HG Alignment Algorithm ...................................................................................................................... 497 Figure 61. Rx Data Link Block Diagram ............................................................................................................... 511 Figure 62. Stack Available and Stack Ready Bit Formatting ................................................................................ 512 Figure 63. Tx Data Link Block Diagram................................................................................................................ 516 Figure 64. Receive HDLC Block Diagram ............................................................................................................ 519 Figure 65. Transmit HDLC FIFO Block Diagram .................................................................................................. 520 Figure 66. Framer PLL ......................................................................................................................................... 522 Figure 67. Framer Block Transmit Path Timing Selection .................................................................................... 523 Figure 68. System Loopbacks .............................................................................................................................. 525 Figure 69. CHI Mode of the Transmit System Interface ....................................................................................... 526 Figure 70. Nominal Concentration Highway Interface Timing .............................................................................. 527 Figure 71. CHIDTS Mode Concentration Highway Interface Timing .................................................................... 528 Figure 72. Associated Signaling Mode Concentration Highway Interface Timing ................................................ 529 Figure 73. TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 0 (CEX = 3 and CER = 4, Respectively) ....................................................................................................................................... 531 Figure 74. CHI TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 1 (CEX = 3 and CER = 6, Respectively) ................................................................................................ 532 Figure 75. Parallel Bus System Interface Mode of the Transmit System Interface .............................................. 532 Figure 76. Parallel Bus System Interface Turnaround Timing .............................................................................. 536 Figure 77. Signals (6-Pin Mode) ........................................................................................................................... 537 Figure 78. Signals (8-Pin Mode) ........................................................................................................................... 537 Figure 79. Network Serial Multiplexed Interface (Single Octet)............................................................................ 538 Figure 80. Network Serial Multiplexed Interface (Multiple Octets)........................................................................ 539 Agere Systems Inc. 477 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table of Contents (continued) Tables Page Table 576. Frame Alignment Criteria ................................................................................................................... 489 Table 577. Receive Signaling Link Registers 0--31 Bit Description ................................................................... 491 Table 578. Receive Signaling Link Registers 0--31 G-Bit and F-Bit Description ................................................ 491 Table 579. Receive Signaling Link Registers 0--31 DS1/CEPT/CMI Data ......................................................... 493 Table 580. Receive Signaling Link Registers 0--31 Expected Data ................................................................... 494 Table 581. Signaling Receive Global Register 3, Bit Definition ........................................................................... 495 Table 582. Transmit Signaling Link Registers 0--31 Bit Description .................................................................. 498 Table 583. Transmit Signaling Link Registers 0--31 G-Bit and F-Bit Description ............................................... 498 Table 584. Transmit Signaling Link Registers 0--31 DS1/CEPT/CMI Data ........................................................ 499 Table 585. Transmit Signaling Link Registers 0--31 Expected Data .................................................................. 500 Table 586. Performance Monitor Functional Descriptions ................................................................................... 503 Table 587. Performance Report Message Format .............................................................................................. 507 Table 588. Performance Report Message Field Definition .................................................................................. 507 Table 589. Shared Rx Stack Format for SLC-96 Frames .................................................................................... 509 Table 590. Shared Rx FDL Stack Format for DDS Frames ................................................................................ 510 Table 591. Shared Rx Stack Format for CEPT Frames ...................................................................................... 510 Table 592. Shared Tx FDL Stack Format for SLC-96 Frames ............................................................................ 513 Table 593. Shared Tx FDL Stack Format for DDS Frames ................................................................................. 514 Table 594. Shared Tx Stack Format for CEPT Frame ........................................................................................ 515 Table 595. HDLC Frame Format ......................................................................................................................... 517 Table 596. Performance Report Message Structure ........................................................................................... 521 Table 597. Clock Mode Programming for PLL Mode Device Pins ...................................................................... 522 Table 598. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames ..................................... 529 Table 599. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels .............................. 530 Table 600. Associated Signaling Mode CHI 2-Byte Time-Slot format for CEPT ................................................. 530 Table 601. Programming Values for FRM_TOFF[2:0] and FRM_ROFF[2:0] when FRM_CMS = 0 .................... 530 Table 602. Programming Values for FRM_TOFF[2:0] when FRM_CMS = 1 ...................................................... 530 Table 603. Programming Values for FRM_ROFF[2:0] when FRM_CMS = 1 ...................................................... 530 Table 604. Parallel System Bus Interface Time-Slot Arrangement for DS1 ........................................................ 534 Table 605. Parallel System Bus Interface Time-Slot Arrangement for E1 ........................................................... 535 Table 606. PSB System I/O Definition ................................................................................................................. 535 Table 607. Serial ID ............................................................................................................................................. 538 Table 608. Current Number of Global and per Link/Channel Registers for Each Block ...................................... 540 Table 609. Framer Addressing Map for the Global and Per Link/Channel Registers of the Superframer ........... 541 478 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.1 28-Channel Framer Introduction The next two sections describe the switching and transport mode of the superframer. The framer can be configured into two basic modes: DS0/E0 switching mode and DS1/E1 transport/monitoring mode. 21.1.1 DS0/E0 Switching Applications The switching application of the Super Mapper/superframer is shown in Figure 52 and Figure 53. The system interface is either a parallel interface (e.g., system telecom bus interface) or a serial system interface (e.g., CHI) that transmits or receives framed (channelized) or unframed (unchannelized) DS0/E0 time slots. In the transmit line direction (Tx, to the mapper), the framer receives data from the DS0/E0 switch through the system interface and sends this data (framed or unframed) to the mapper section via the internal DS1 cross connect block. The data consists of data, clock, and frame sync. In the receive line direction (Rx), the mapper sends the line data and clock (through the internal DS1 cross connect) to the framer block. The framer then takes this data and transmits it to a DS0/E0 switch through the system interface. Links provisioned for extended superframe format (ESF) can automatically generate and send performance message reports (PRMs) from the Rx path performance monitor through a Tx path HDLC channel assigned to the facility data link in the transmit line path. SYSTEM INTERFACE SUPER MAPPER #1 PM FRAMER SUPER MAPPER #1 STS-3 MAPPER SYSTEM INTERFACE PM MAPPER FRAMER MAPPER TELECOM BUS PM DS0/E0 SWITCH FRAMER PM MAPPER SUPER MAPPER #2 MAPPER DS0/E0 SWITCH SUPER MAPPER #2 PM FRAMER FRAMER PM MAPPER SUPER MAPPER #3 MAPPER FRAMER SUPER MAPPER #3 5-8924(F)r.1 Figure 52. Switching Application of the Super Mapper Agere Systems Inc. 479 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) LOOPBACKS FDL PRMs FRAMER RECEIVE LINE TO TRANSMIT SYSTEM PATH (Rx PATH) VT/VC MAPPER MAPPER TO FRAMER DS1 CROSS CONNECT FRAMER RECEIVE SYSTEM TO TRANSMIT LINE PATH (Tx PATH) VC-4 MULTIPLEXER STM-1 MULTPLEXER 8-bit DATA + 1-bit PARITY M12 MULTIPLEXER DS3 MAPPER SUPER MAPPER: FRAMER RFS1, RCLK1, RDATA28 TFS1, TCLK 1, TDATA28 DS2 I/O DS3 I/O SONET/SDH DS3 MAPPED I/O SYSTEM INTERFACE DS0 I/O DS3 OR T1/E1 TO STS-1 MAPPED OUTPUT (HIGH-SPEED TELECOM BUS) 5-9017(F)r.1 Figure 53. Super Mapper Switching Configuration 480 Agere Systems Inc. TFS1, TCLK1, TDATA8, TDATA_PARITYA1 TSIGNALING8, TSIGNALING_PARITYA 1 SUPER MAPPER: FRAMER RFS1, RCLK1, RDATA8, RDATA_PARITYA1 RSIGNALING8, RSIGNALING_PARITYA1 SYSTEM INTERFACE PARALLEL DS0 BUS TFS1, TCLK1, TDATA28 RFS1, RCLK1, RDATA28 SYSTEM INTERFACE SERIAL DS0 BUS RECEIVE SYSTEM INTERFACE SUPER MAPPER M12 MULTIPLEXER INTERFACE SUPER MAPPER VT MAPPER INTERFACE VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING TRANSMIT DATA TRANSMIT FRAME FORMATTER TRANSMIT FACILITY DATA LINK TRANSMIT HDLC RECEIVE FRAME ALIGNER RECEIVE FACILITY DATA LINK PERFORMANCE MONITOR RECEIVE HDLC TRANSMIT SIGNALING DATA (EXTRACTED FROM SYSTEM INTERFACES OR SIGNALING REGISTERS) SIGNALING PROCESSOR (INSERTION) Tx PATH ESF PRM PATH Rx PATH TRANSMIT SYSTEM INTERFACE SIGNALING PROCESSOR (EXTRACTION) VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING RECEIVE DATA Rx LINE DECODER Agere Systems Inc. Tx LINE ENCODER RECEIVE SIGNALING DATA (TO SIGNALING REGISTERS) Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Figure 54 shows the framer block in a switching application. The framer system interface for the transmit path is labelled receive and the receive path is labelled transmit. This may seem an error but is chosen based on established, historical naming convention. 5-9018(F) Figure 54. Super Mapper Switching Mode for Framer in DS0 Interface (Parallel or Serial) Configuration (The Optional Byte-Synchronous VT Mapping Path Is Shown) 481 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.2 Transport Applications The transport application of the Super Mapper is depicted in Figure 55, Figure 56, and Figure 57. The Super Mapper interfaces with LIUs at the DS1/E1 rate in this mode. The data is either framed or unframed DS1s. In the transmit path direction (Tx, to the mapper), the framer receives framed or unframed DS1/E1 data from its line interface and sends this line data and clock (via the DS1 cross connect) to the mapper block. The framer can be provisioned to frame align the data prior to sending it to the mapper section. The framer can be provisioned for performance monitoring on the data and in ESF mode transmit PRMs back to its line interface. In the receive path direction (Rx), the mapper sends the line data and clock (through the DS1 cross connect) to the framer block. This data may be framed or unframed DS1/E1 data. The framer can be provisioned to frame align the data and transmit a frame sync signal in addition to the data and clock. The framer can be provisioned for performance monitoring on the data. In ESF mode, it can automatically generate and send PRMs back to themapper interface. LINE INTERFACE SUPER MAPPER #1 PM FRAMER SUPER MAPPER #1 STS-3 MAPPER PM MAPPER PM LINE INTERFACE FRAMER PM MAPPER TELECOM BUS T1/E1 LINE INTERFACE UNIT (T7690 OR T7698) PM FRAMER PM MAPPER PM MAPPER FRAMER PM SUPER MAPPER #2 SUPER MAPPER #2 PM FRAMER T1/E1 LINE INTERFACE UNIT (T7690 OR T7698) PM MAPPER PM SUPER MAPPER #3 MAPPER FRAMER PM SUPER MAPPER #3 5-8925(F)r.1 Figure 55. Transport Application of the Super Mapper 482 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) LOOPBACKS FDL PRMs FRAMER DS1 RECEIVE LINE PATH PERFORMANCE MONITORING (Rx PATH) VT/VC MAPPER VC-4 MULTIPLEXER STM-1 MULTIPLEXER 8-bit DATA + 1-bit PARITY MAPPERTOFRAMER I/O CROSS CONNECT DS1 TRANSMIT LINE PATH PERFORMANCE MONITORING (Tx PATH) M12 MULTIPLEXER DS3 MAPPER SUPER MAPPER: FRAMER RLCK28, RPD28, RND28 TLCK28, TPD28, TND28 DS2 I/O DS3 I/O SONET/SDH DS3 MAPPED I/O LINE INTERFACE DS1 I/O DS3 OR T1/E1 TO STS-1 MAPPED OUTPUT (HIGH-SPEED TELECOM BUS) 5-9020(F)r.1 Figure 56. Super Mapper Transport Configuration Agere Systems Inc. 483 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) RX SIGNALING DATA (TO SIGNALING REGISTERS) TX LINE ENCODER RLCK28 , RPD28 , RND28 RECEIVE SIGNALING PROCESSOR RECEIVE HDLC VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING RECEIVE DATA RECEIVE FACILITY DATA LINK TRANSMIT FRAME FORMATTER RX PATH VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING TRANSMIT DATA RECEIVE FRAME ALIGNER TRANSMIT HDLC SUPER MAPPER VT MAPPER INTERFACE PERFORMANCE MONITOR ESF PRM PATH ESF PRM PATH TX PATH RX LINE DECODER TLCK28 , TPD28, TND28 PERFORMANCE MONITOR TRANSMIT HDLC RECEIVE FRAME ALIGNER TRANSMIT FRAME FORMATTER TX PATH SIGNALING PROCESSOR SUPER MAPPER M12 MULTIPLEXER INTERFACE TRANSMIT FACILITY DATA LINK SUPER MAPPER: FRAMER TRANSMIT SIGNALING DATA 5-9021(F)r.2 Figure 57. Super Mapper Transport (with Intrusive Performance Monitoring) Mode (The Optional ByteSynchronous VT Mapping Path Is Shown) 484 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.3 Framer-to-Line Interface Unit Physical Interface The framer-LIU interface of the Super Mapper framer consists of 28 groups of six connections. The internal DS1 cross connect must be configured to connect the framer-LIU interface through the multifunction system interface to external T1/E1 line interface devices. The six connections for each framer are TND, TPD, and TLCK driven from the transmit framer (receive path) and RPD, RND, and RCLK (transmit path) sourced from the external line interface device. The connections can optionally be from/to the protected switch. See Table 3 on page 15 for the external pin names that correspond to the desired six connections. The line interface may operate in single-rail or dual-rail mode. The default mode of the line encoder is single-rail (FRM_LD_MODE[2:0] = 000 (Table 430), FRM_LE_MODE[2:0] = 000 (Table 431)). In this mode, the input signals are passed transparently through the line encoder. In single rail mode, the link's framer internal bipolar line encoder/decoder is disabled and monitoring of received line format violation is accomplished with the use of the RND input. When RND = 1 on the rising edge of RLCK, the line format violation FRM_BPV[15:0] (Table 388) counter increments by one. The link's transmit framer transmits data via the TPD output pin while TND is forced to a 0 state. In dual rail mode, the internal line encoder/decoder and monitoring are enabled. The line code may be selected by provisioning FRM_LD_MODE[2:0] and FRM_LE_MODE[2:0]: 1. Alternate Mark Inversion (AMI). 2. High-Density Bipolar of Order 3--G.703, A.1 (HDB3). 3. Binary 8 Zero Code Suppression--G.703, A.2 (B8ZS). Line format violations due to excessive zeros will be optionally monitored as follows: 1. B8ZS--8 consecutive zeros cause a violation. 2. HDB3--4 consecutive zeros cause a violation. 21.3.1 Line Interface References/Standards 1. ITU-T Recommendation G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces;1991. 2. ANSI T1.403-1995, Network-to-Customer Installation - DS1 Metallic Interface; March 21, 1995. 21.3.2 Frame Formats The 28 superframers support the following frame formats: 1. DS1 superframe D4. 2. DS1 superframe J-D4 with Japanese remote alarm. 3. DS1 superframe DDS. 4. DS1 superframe SLC-96. 5. DS1 extended superframe (ESF). 6. Japanese extended superframe J-ESF (J1 standard with different CRC-6 algorithm). 7. Nonalign DS1 (transparent 193 bits). 8. CEPT basic frame {ITU G.706}. 9. CEPT CRC-4 multiframe with 100 ms timer {ITU G.706}. 10. CEPT CRC-4 multiframe with 400 ms timer (automatic CRC-4/nonCRC-4 equipment interworking) {ITU G.706 Annex B}. 11. Nonalign E1 (transparent 256 bits). 12. 2.048 coded mark inversion (CMI) coded interface (TTC Standards JJ-20.11). 13. 6.312 Mbits/s interface (ITU G.704/NTT J2). Agere Systems Inc. 485 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.3.3 Transmit Framer Functions 1. Transmits alarm indication signal (AIS) to the line automatically and on demand. 2. Transmits AIS-CI to the line automatically and on demand. 3. Transmits remote alarm indication (RAI) to the line automatically and on demand. Conditions for transmitting RAI include; loss of received frame alignment, CEPT loss of received time slot 0 multiframe alignment, CEPT CRC-4 timer expiration, CEPT loss of received time slot 16 signaling multiframe alignment, CEPT received Sa6 equals 8, and received Sa6 equals C. 4. Transmits RAI-CI to the line automatically and on demand. 5. Transmits auxiliary test pattern (AUXP) to the line automatically and on demand. 6. Transmits CEPT E bits based received CRC-4 errors. 7. Support the CEPT double not-FAS system mode. 8. Transmits a PRBS test pattern to the line on demand. 9. Transmits line loopback on and off codes to the line on demand (T1.403 section 9.3.1). 10. In transport mode, when not in frame alignment, to optionally send AIS or transparently pass data. 21.3.4 Framing References/Standards 1. ANSI T1.403, 1997. 2. ITU-T Recommendation G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces; 1991. 3. ITU-T Recommendation G.704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488 and 44736 kbits/s Hierarchical Levels; July 1995. 4. ITU-T Recommendation G.706, Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures defined in Recommendation G.704; 1991. 5. TTC Standard JT-G704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488 and 44736 kbits/s Hierarchical Levels; July 1995. 21.4 DS1 Transparent Framing Format The transmit framer can be programmed to transparently transmit 193 bits of CHI system data to the line. When configured for transparent framing, the transmit framer extracts from the receive CHI system data bit 8 of time slot 1 and inserts this bit into the framing bit position of the transmit line data. The other 7 bits of the receive system time slot 1 are ignored by the transmit framer. The receive framer will extract the framing bit (or 193rd bit) of the receive line data and insert it into bit 8 of time slot 1 of the CHI system data. The other bits of time slot 1 are set to 0. Frame integrity is maintained in both the transmit and receive framer sections. TIME-SLOT 1 TIME-SLOT 2 TIME-SLOT 3 TIME-SLOT 31 TIME-SLOT 32 32 TIME-SLOT CHI FRAME (STUFF TIME-SLOT) 0 0 0 0 0 0 0 F BIT F BIT TIME-SLOT 1 TIME-SLOT 2 TIME-SLOT 24 TRAMSMIT FRAMER'S 193-bit FRAME DS1 = 125 s 5-5989(F).ar.1 Figure 58. DS1 Transparent Frame Structur e 486 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than bipolar violations and unframed AIS monitoring there is no processing of the receive line data. The receive framer will insert the 193rd bit of the receive line data into bit 8 of time slot 1 of the transmit system data. Bit 8 of time slot 1 of the receive system interface is inserted as the 193rd data bit into the transmit line data. Transparent framing mode 1 is selected by setting FRM_LNK_TRANSP ( Table 421) to 1 and FRM_MODE[3:0] (Table 422) to 1000 (nonalign 193rd bit). In transparent framing mode 2, the receive framer functions normally on receive line data. All normal monitoring of receive line data is performed and data is passed to the transmit CHI as programmed. The receive framer will insert the extracted framing bit of the receive line data into bit 8 of time slot 1 of the transmit system data. The remaining bits in time slot 1 are set to 0. Bit 8 of time slot 1 of the receive system interface is inserted in the transmit line framing bit position. Transparent framing mode 2 is selected by setting FRM_LNK_TRANSP ( Table 421) to 1 and selecting the appropriate framing mode with FRM_MODE[3:0] (Table 422). 21.5 CEPT 2.048 Basic Frame Structure Transparent Framing Format The transmit framer can be programmed to transparently transmit 256 bits of CHI system data to the line. The transmit framer must be programmed to transparent framing mode 1 . In transparent mode, the transmit framer transmits all 256 bits of the system payload unmodified to the line. Time slot 1 of the CHI system interface, determined by the system frame sync signal, is inserted into the FAS/NOTFAS time slot of the transmit line interface. Frame integrity is maintained in both the transmit and receive framer sections. TIME-SLOT 1 TIME -SLOT 2 TIME-SLOT 3 TIME-SLOT 1 TIME-SLOT 2 TIME-SLOT 3 TIME-SLOT 31 TIME-SLOT 32 TIME-SLOT 31 TIME-SLOT 32 32 TIME-SLOT CHI FRAME 32 TIME-SLOT LINE FRAME 5-5988(F) Figure 59. CEPT Transparent Frame Structure In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than bipolar violations and unframed AIS monitoring, there is no processing of the receive line data. The entire receive line payload is transmitted unmodified to the CHI. Transparent framing mode 1 is selected by setting FRM_LNK_TRANSP ( Table 421) to 1 and FRM_MODE[3:0] (Table 422) to 0000 (non-align 256th bit). In transparent framing mode 2, the receive framer functions normally on the receive line data. All normal monitoring of receive line data is performed and data is transmitted to the CHI as programmed. Transparent framing mode 2 is selected by setting FRM_LNK_TRANSP ( Table 421) to 1 and selecting the appropriate framing mode with FRM_MODE[3:0] (Table 422). Agere Systems Inc. 487 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.6 Receive Framer Nonalignment Mode (DS1/E1) In the non-align framing modes the receive frame aligner does not frame to the receive line data. Other than bipolar violations, AIS, and AUXP monitoring, there is no processing of the receive line data. The entire receive line frame is given unmodified to the system interface. 21.6.1 Loss of Frame Alignment Criteria There are two criteria for declaring loss of frame: frame bit errors and CRC errors. Frame Bit Errors. 1. T1: two frame bit errors out of 4 frame bits (FT and FS bits checked). 2. T1: two frame bit errors out of 5 frame bits (FT and FS bits checked). 3. T1: two frame bit errors out of 6 frame bits (FT and FS bits checked). 4. T1: three frame bit errors out of 12 frame bits--DDS only (FT, FS, and time slot 24 F bits). 5. T1: two frame bit errors out of 4 frame bits (only FT bits checked). 6. T1: two frame bit errors out of 5 frame bits (only FT bits checked). 7. T1: two frame bit errors out of 6 frame bits (only FT bits checked). 8. T1: four frame bit errors out of 12 frame bits--DDS only (F T, F S and time slot 24 FAS pattern). 9. E1: three consecutive incorrect frame alignment signals. 10. E1: three consecutive incorrect frame alignment signals or three consecutive incorrect non-FAS frames as indicated by bit 2 in time slot 0 in frames not containing the frame alignment signal. 11. E1: 3 consecutive incorrect FAS or non-FAS frames. 12. 2.048 Mbits/s CMI: 2 consecutive missing code rule violations (CRVs). CRC Errors. The use of CRC errors to declare loss of frame is optional. CRC errors are monitored in the performance monitor block. In DS1 mode, ESF, and J-ESF formats only, N or more CRC-6 errors in a 1 second interval results in loss of frame alignment. N is provisionable. N defaults to 320 in DS1 mode. In CEPT mode N, or more, CRC-4 errors in a 1 second interval results in loss of frame alignment. N is provisionable. N defaults to 915 in CEPT modes. 488 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.7 Frame Alignment Criteria Table 576 describes the frame alignment criteria for the formats supported by the superframer. Table 576. Frame Alignment Criteria Frame Format Alignment Procedure SF Frame alignment is established when six consecutive error-free superframes are received. Only the FT framing bits are checked (36 bits checked). D4 and J-D4 Frame alignment is established when six consecutive error-free superframes are received (72 bits checked in D4, 66 bits checked in J-D4). DDS Frame alignment is established when six consecutive error-free frames are received (42 bits checked: FT, FS, and time slot 24). SLC-96 The FT frame position is established when four consecutive error-free superframes are received (24 FT bits checked). After establishing the FT frame position, SLC-96 superframe alignment is established on the first valid FS sequence of 000111000111. All the while the F T frame position must remain error free. ESF and J-ESF Frame alignment is established when three consecutive error-free superframes are received (18 bits checked). CEPT Basic Frame Uses the strategy outlined in G.706 paragraph 4.1.2. CEPT CRC-4 100 ms Timer Uses the strategy outlined in G.706 paragraphs 4.1.2 and 4.2. CEPT CRC-4 400 ms Timer Uses the strategy outlined in G.706 paragraph 4.1.2 and ANNEX B. 2.048 Mbits/s CMI Coded Interface Frame alignment is established on the first detection of the CRV violation. Multiframe alignment is achieved the first time the 01111111 multiframe alignment pattern is detected. 21.8 Receive and Transmit Signaling Processor 21.8.1 Signaling Introduction and Feature Description The signaling processor, which is duplicated in the receive and transmit paths, moves signaling data to and from the following interfaces: T1/E1/J1/CMI line interface System interface VT mapper interface Host interface The following frame types are supported when processing signaling to and from the line interface (no special provisioning is needed for the signaling processor to distinguish between these frame types): DS1: ESF; J-ESF; D4; J-D4 (2-, 4-, or 16-state mode) CEPT Basic Frame; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms) CMI Agere Systems Inc. 489 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) The following system bus modes are supported (no special provisioning is needed for the signaling processor to distinguish between these system bus modes): Parallel system bus CHI bus in ASM mode The VT mapper interface in the signaling processor supports VT1.5, VT 2 byte sync mapping, as well as VC-11 byte sync mapping using handling groups. The host can read the signaling data extracted from the line, system, or VT mapper interface at any time. The transmit signaling processor can be configured so that the host provides the signaling data to be forwarded to the line, system, or VT mapper interface. Other signaling features include: Debounce on all signaling data extracted from the line interface or the VT mapper interface. Host interrupt upon change of signaling state in the receive path. Signaling extraction inhibit based on frame alignment and framing bit errors. Stomping of DS1 robbed-bit signaling positions. Support of zero-code suppression on the line interface in the transmit path. Superframe signaling integrity. No signaling data transmitted will be a mix of old and new due to a mid superframe update of signaling information. 21.8.2 Signaling References/Standards ITU Rec. G.704 10/98 CEPT Multiframe Signaling Structure ITU Rec. G.775 10/98 CEPT TS16 AIS Detection, Remote Alarm Detection ITU Rec. G.732 1998 CEPT Time-Slot 16 mfa, Time-Slot 16 rfa ITU Rec. O.162 10/92 CEPT Time-Slot 16 rfa Detection T1.403 1995 Robbed-Bit Signaling TTC JJ-20.11 CMI Coded Interface ANSI T1.105 SONET Payload Mapping Telcordia GF-253-CORE SONET Transport Systems ITU Rec G.707 10/98 Network Node Interface for SDH TTC JT G.704 Japanese Synchronous Frame Structures 21.9 Receive Signaling Per-Link Feature Provisioning The receive signaling processor requires the provisioning of four items for each link in order to enable signaling extraction and delivery: 1. Signaling state mode source (host or Rx CHI interface). 2. Signaling state mode (2-, 4-, and 16-state mode or no-signaling). 3. Signaling source (receive line, VT mapper, or host interface). 4. Signaling destination (transmit system or transmit line interface). 490 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.9.1 Signaling State Mode Source Selection The signaling state mode source is selected by programming FRM_R_FGSRC in Table 374, FRM_RSLR33, Receive Signaling Link Register 33 (R/W) on page 269, bit 2. The typical application will select the host for programming the state mode. If so, the host will have to program the state mode for all of the time slots on each of the links. The default state mode selected is 16-state signaling. It is possible for the state mode to be set by the values received on the CHI bus by the receive system interface. In this mode, the signaling processor will constantly monitor those values and update the state mode for each of the time slots on each link. 21.9.2 Signaling State Mode Selection The signaling state mode for each time slot is selected by programming bits 5 and 6 of FRM_RSLR0-- FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W) in Table 372 on page 268 for each link. The bit definition for each of those 32 registers is shown below. Table 577. Receive Signaling Link Registers 0--31 Bit Description Bit 6 G Bit 5 F Bit 4 -- Bit 3 D Bit 2 C Bit 1 B Bit 0 A The signaling state mode definitions are shown in the table below. Table 578. Receive Signaling Link Registers 0--31 G-Bit and F-Bit Description G and F 00 01 10 11 Signaling State Mode Selected 16 state (reset state) 4 state no signaling 2 state The signaling state mode for DS1 type links should be set to match the function of each time slot. The signaling state mode does not apply to CEPT type links and the value must be kept in the reset state which is 00. The signaling state mode for CMI type links must be set to 11. The 16-state mode, which is the state mode selected out of reset, can be used on SF type DS1 links in order to detect a toggle code. In this case, signaling will be collected over two superframes and stored as a 4-bit code. When programming the state mode for each time slot, the host can also program the D, C, B, and A bits in the same register. Doing this will determine the default code forwarded to the transmit system or the transmit line interface before the first valid signaling code has been extracted from the receive line or VT mapper interface. Each of the links and time slots is completely independent from one another with respect to the signaling state mode selection. Any combination is acceptable. 21.9.3 Signaling Source Selection The signaling source is selected by programming FRM_R_SIGSRC in Table 374, FRM_RSLR33, Receive Signaling Link Register 33 (R/W) on page 269, bits [1:0]. If the source selected is the receive line interface, the receive signaling processor will start extracting data from the receive line and store valid signaling codes into the D, C, B, and A locations of FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on page 268 for each of the links. The receive signaling processor will automatically determine the link type and extract the correct signaling bit positions from each link. The receive signaling processor can simultaneously service any combination of CEPT, DS1, and CMI type links. The receive signaling processor will extract robbed-bit signaling from DS1 links, common channel signaling from CEPT links, and time slot 0 signaling from CMI links compliant with the following standards. Agere Systems Inc. 491 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) ITU Rec G.704 10/98 CEPT multiframe signaling structure T1.403 1995 robbed-bit signaling TTC JJ-20.11 CMI coded interface If the VT mapper is transporting byte sync mapped DS1 links into SONET frames, then the signaling source should be set to VT mapper interface. In that case, the receive signaling processor will start collecting valid signaling codes from the VT mapper and store them into the D, C, B, and A locations of FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on page 268 for each of the links. If the VT mapper is the source of signaling, data will be extracted based on the standards listed below. ANSI T1.105SONET payload mapping Bellcore GF-253-CORE SONET transport systems ITU Rec G.707 10/98 network node interface for SDH If the VT mapper is transporting byte sync mapped CEPT links into SONET frames, then the signaling source should be set to the receive line interface. In that case, the receive signaling processor will extract the entire time slot 16 multiframe and store that information into FRM_RSLR0--FRM_RSLR31, receive signaling link registers 0--31 (R/W) for each of the links. If the signaling source is set to be the host, the host may write to FRM_RSLR0--FRM_RSLR31, receive signaling link registers 0--31 (R/W) and those values will be forwarded to the selected destination. The host mode can also be used to manually freeze signaling. When the source is switched from receive line to host, for example, the existing signaling codes will be held until modified by the host or until the signaling source is switched back to the receive line interface. If the host mode is used to manually freeze signaling, then the signaling debounce feature must be enabled. To enable signaling debounce set FRM_R_SIGDEB in Table 374, FRM_RSLR33, Receive Signaling Link Register 33 (R/W) on page 269, bits 5 to 1. Each of the links is completely independent from one another with respect to the signaling source selection. Any combination of receive line, VT mapper, and host is acceptable. 21.9.4 Signaling Destination Selection There are three destinations for the signaling extracted from the receive line or VT mapper interface: 1. Transmit system interface. 2. Transmit line interface. 3. FRM_RSLR0--FRM_RSLR31, receive signaling link registers 0--31 (R/W), Table 372 on page268 . The signaling extracted from the receive line or VT mapper interface will automatically be delivered to the transmit system interface when the framer section of the Super Mapper is programmed for switch mode. This is done by setting FRM_SW_TRN in FRM_SFGR1, Superframer Global Register 1 (R/W), Table 301 on pag e243, bits 15 to 1. The system interface will need to be configured for ASM mode in order for the signaling to be transmitted on the PSB or CHI buses. ASM mode is controlled by FRM_SYSGR1, System Interface Global Register 1 (R/W), Table 347 on page257 bit 11. The signaling extracted from the VT mapper interface can be inserted into the transmit line interface when the framer section of the Super Mapper is programmed for transport mode. This is done by setting FRM_SW_TRN in FRM_SFGR1, Superframer Global Register 1 (R/W), Table 301 on page243 , bits 15 to 0, and by setting FRM_R_SIGI in Table 374, FRM_RSLR33, Receive Signaling Link Register 33 (R/W) on page 269, bit 8 to 1. The signaling will be inserted based on the programming of state modes of each time slot. The receive signaling processor cannot provide data to the transmit system and the transmit line interface on different links simultaneously. Signaling extracted from the VT mapper or receive line interface will always be available in FRM_RSLR0-- FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on page268 for each link. The host can read these registers regardless of whether or not the signaling is forwarded to the transmit system or transmit line interface. Receive Signaling Link Registers 0--31 DS1/CEPT/CMI Data, Table 577 on page 491 shows the position of the data in those 32 registers for each of the receive line formats. 492 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Table 579. Receive Signaling Link Registers 0--31 DS1/CEPT/CMI Data RSLR Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 RSLR Bit[6:0] (DS1) -- GF0 DCBA (Channel 1) GF0 DCBA (Channel 2) GF0 DCBA (Channel 3) GF0 DCBA (Channel 4) GF0 DCBA (Channel 5) GF0 DCBA (Channel 6) GF0 DCBA (Channel 7) GF0 DCBA (Channel 8) GF0 DCBA (Channel 9) GF0 DCBA (Channel 10) GF0 DCBA (Channel 11) GF0 DCBA (Channel 12) GF0 DCBA (Channel 13) GF0 DCBA (Channel 14) GF0 DCBA (Channel 15) GF0 DCBA (Channel 16) GF0 DCBA (Channel 17) GF0 DCBA (Channel 18) GF0 DCBA (Channel 19) GF0 DCBA (Channel 20) GF0 DCBA (Channel 21) GF0 DCBA (Channel 22) GF0 DCBA (Channel 23) GF0 DCBA (Channel 24) -- -- -- -- -- -- -- RSLR Bit[6:0] (CEPT) 000 X0 Y X1 X2 000 DCBA (Channel 1) 000 DCBA (Channel 2) 000 DCBA (Channel 3) 000 DCBA (Channel 4) 000 DCBA (Channel 5) 000 DCBA (Channel 6) 000 DCBA (Channel 7) 000 DCBA (Channel 8) 000 DCBA (Channel 9) 000 DCBA (Channel 10) 000 DCBA (Channel 11) 000 DCBA (Channel 12) 000 DCBA (Channel 13) 000 DCBA (Channel 14) 000 DCBA (Channel 15) -- 000 DCBA (Channel 17) 000 DCBA (Channel 18) 000 DCBA (Channel 19) 000 DCBA (Channel 20) 000 DCBA (Channel 21) 000 DCBA (Channel 22) 000 DCBA (Channel 23) 000 DCBA (Channel 24) 000 DCBA (Channel 25) 000 DCBA (Channel 26) 000 DCBA (Channel 27) 000 DCBA (Channel 28) 000 DCBA (Channel 29) 000 DCBA (Channel 30) 000 DCBA (Channel 31) RSLR Bit[6:0] (CMI) -- 110 DCBA (Channel 1) 110 DCBA (Channel 2) 110 DCBA (Channel 3) 110 DCBA (Channel 4) 110 DCBA (Channel 5) 110 DCBA (Channel 6) 110 DCBA (Channel 7) 110 DCBA (Channel 8) 110 DCBA (Channel 9) 110 DCBA (Channel 10) 110 DCBA (Channel 11) 110 DCBA (Channel 12) 110 DCBA (Channel 13) 110 DCBA (Channel 14) 110 DCBA (Channel 15) -- 110 DCBA (Channel 17) 110 DCBA (Channel 18) 110 DCBA (Channel 19) 110 DCBA (Channel 20) 110 DCBA (Channel 21) 110 DCBA (Channel 22) 110 DCBA (Channel 23) 110 DCBA (Channel 24) 110 DCBA (Channel 25) 110 DCBA (Channel 26) 110 DCBA (Channel 27) 110 DCBA (Channel 28) 110 DCBA (Channel 29) 110 DCBA (Channel 30) 110 DCBA (Channel 31) For CEPT links, the entire time slot 16 multiframe is stored in FRM_RSLR0--FRM_RSLR31, receive signaling link registers 0--31 (R/W), Table 372 on page268 . The spare bits X[2:0] and the time slot 16 remote frame alarm Y bit are stored in RSLR0. When time slot 16 multiframe alignment is lost, X[2:0] will automatically be set to 111 and the Y bit will be set to 0. The format of the data stored in FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on page 268 also depends on the signaling state mode selected for each time slot as shown inTable 580. Agere Systems Inc. 493 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 580. Receive Signaling Link Registers 0--31 Expected Data Signaling State Mode 16 state 4 state 2 state Bit 6 0 0 1 Bit 5 0 1 1 Bit 4 0 0 0 Bit 3 D 0 0 Bit 2 C 0 0 Bit 1 B B 0 Bit 0 A A A If the state mode is 4 state or 2 state, then the unused bits will be set to 0. 21.10 Optional Receive Signaling Features Provisioned for Each Link 21.10.1 Support of DS1 Robbed-Bit Stomping The DS1 robbed-bit positions of voice time slots will be set to 1 in the payload when FRM_R_RXSTOMP in FRM_RSLR33, Receive Signaling Link Register 33 (R/W), Table 374 on page 269, bit 7 is set to 1. The robbed-bit positions in the payload will be stomped; however, the signaling will be transmitted untouched by the system interface. 21.10.2 Support of CEPT Time Slot 16 Stomping Stomping of time slot 16 for CEPT links is enabled in the system interface block.The Super Mapper can also be configured to transmit AIS on the system bus in time slot 16 when the signaling block loses time slot 16 alignment. The configuration bits related to these two features are located in the FRM_SYSLR2, System Interface Link Register 2 (R/W), Table 419 on page 294. When using these features, the signaling codes forwarded to the transmit system bus will continue to reflect the contents of FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on pag e268. 21.10.3 Support of Signaling Debounce If programmed to do so, the signaling extracted from the selected source will be debounced. This implies that a valid signaling code would have to be detected twice before it is updated in FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on page268 . This feature is enabled by setting FRM_R_SIGDEB in FRM_RSLR33, Receive Signaling Link Register 33 (R/W), Table 374 on page269 , bit 5. 21.10.4 Support of Japanese Handling Groups If the signaling is transported by the VT mapper within four handling groups compliant to the Japanese standard, TTC JT G.704, then FRM_R_HGEN in FRM_RSLR33, Receive Signaling Link Register 33 (R/W), Table 374 on page 269, bit 4 must be set to 1. The signaling state mode must be set to either 2 state or no-signaling when using handling groups. If the signaling transported by the VT mapper uses handling groups, then the status of the handling group alignment can be transmitted across the system interface. The transmission of this status is enabled by setting FRM_R_TSAISHG in FRM_SGR1, Receive Signaling Global Register 1 (R/W), Table 359 on page 262, bits 15 to 1. This mode forces the signaling data for the channels contained in each handling group to 1 if HG alignment has not been achieved by the receive signaling processor. For example, if HG2 is unaligned then the A bit for time slots 2, 6, 10, 14, 18, and 22 forwarded to the system would be forced to 1. 21.11 Receive Signaling Global Feature Provisioning The receive signaling processor requires the provisioning of one global item in order to enable signaling extraction and delivery. Link count (number of active receive links). 494 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.11.1 Link Count Selection The link count is specified by programming FRM_R_LINKCNT[4:0] in FRM_SGR1, receive signaling global register 1 (R/W), Table 359 on page262 , bits [14:10]. The reset value is 28, which is appropriate for a 28 link DS1 application. A value of 21 is appropriate for a 21 link CEPT application. If the application mixes DS1 and CEPT links or the TDM clock supplied to the framer section is less than 51.84 MHz, this value should match the terminal count set in FRM_FGR2, framer global register 2 (R/W), Table 306 on page246 , bits [7:0]. 21.12 Other Receive Signaling Global Features 21.12.1 Support of Automatic Signaling Freeze on Framing Bit Errors By default, signaling extraction from a particular link will halt when the appropriate alignment has been lost. In order to guarantee that signaling freeze takes place as soon as possible, FRM_R_AFZFBE in FRM_SGR1, Receive Signaling Global Register 1 (R/W), Table 359 on pa ge262, bit 1 must set to 1. When enabled, FRM_R_AFZFBE halts signaling extraction for 32 frames upon detection of a frame bit error. This configuration bit is applicable to DS1, CEPT, and CMI type frames and for signaling extracted from the receive line or the VT mapper interface. When FRM_R_AFZFBE is enabled, the receive signaling debounce feature must also be enabled. The FRM_R_SIGDEB feature is enabled in FRM_RSLR33, Receive Signaling Link Register 33 (R/W), Table 374 on pag e269, bit 5. 21.12.2 Support of Change of Signaling State FIFO Signaling can be terminated in the framer section of the Super Mapper by polling FRM_RSLR0--FRM_RSLR31, Receive Signaling Link Registers 0--31 (R/W), Table 372 on page 268 for each link. An alternative method is to enable the operation of a signaling change of state FIFO. In doing so, the host will be interrupted when there have been signaling state changes which need to be processed. In order to enable the operation of the signaling change of state FIFO, set FRM_R_SCOSEN in FRM_SGR2, Receive Signaling Global Register 2 (R/W), Table 360 on page 262, bit 15 to 1. The FIFO is located at signaling receive global register 3. The word read by the host has the following format. Table 581. Signaling Receive Global Register 3, Bit Definition Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 M V L4 L3 L2 L1 L0 TS4 TS3 TS2 TS1 TS0 D C B A The data read by the host indicates the link number (L[4:0]), time slot number (TS[4:0]) and the signaling information for a time slot whose value has changed. The word read by the host will also indicate whether or not the entry is valid (V = 1) and whether or not there are more entries yet to be read (M = 1). A word with V set to 0 indicates that the FIFO is empty. The signaling code presented will reflect the associated GF value programmed by the host. The unused signaling bits will be set to 0. For example, if the time slot is programmed for 4-state signaling, the D and C bits will be set to 0. The A and B bit will identify the valid signaling code. This feature can be used in combination with any other feature (i.e., debounce). When the change of state FIFO is enabled, the host will be interrupted when one of two conditions is satisfied. If the number of entries in the FIFO exceed the threshold programmed by the host or if there are valid entries to be processed and the signaling interrupt timer has expired, then the host will be interrupted. The host sets the FIFO depth threshold by programming FRM_R_SCOSDTH[9:0] in FRM_SGR2, Receive Signaling Global Register 2 (R/W), bits [9:0]. The depth of the FIFO is 672, which is sufficient to store an entry for every time slot processed by the 28-link framer. The timer interval is selected by programming FRM_R_SCOSTTH[15:0] in FRM_SGR3, Receive Signaling Global Register 3 (R/W), Table 361 on page 263, bits [15:0]. The timer increments are 125 s and the maximum interval possible is 8 s. The default setting for the depth and timer threshold is 0, which results in the host being interrupted whenever an entry is made into the FIFO. If the FIFO overflows, the processor will immediately be interrupted. The current contents of the FIFO will be lost however, subsequent entries will be stored normally. The host can poll the change of state FIFO without the use of interrupts. Agere Systems Inc. 495 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.13 Receive Signaling Interrupts There are three interrupts which are maintained in the receive signaling processor, which are located in FRM_SGR7, receive signaling global register 7 (R/W), Table 365 on page264 . The three interrupts reflect the status of the change of signaling state FIFO. These interrupt bits can be reset based on a clear-on-read protocol, which is provisioned in the Super Mapper global registers. Threshold overflow interrupt. This bit is set to 1 when the programmed threshold for the FIFO capacity has been exceeded. Interrupt timer interrupt. This bit is set to 1 when the programmed interrupt timer has expired and there are valid entries in the FIFO to be processed. FIFO overflow interrupt. This bit is set to 1 when the FIFO overflows. There are mask bits associated with each of the three interrupt status bits which are located in FRM_SGR7, receive signaling global register 7 (R/W). 21.13.1 Maintenance of the Change of Signaling State FIFO Status Bits There is one bit which reflects the status of the change of signaling state FIFO. The location of this status bit is in FRM_SGR5, receive signaling global register 5 (RO), Table 363 on page263 . FIFO depth threshold overflow status. This bit is set to 1 when the programmed threshold for the FIFO capacity has been exceeded. 21.13.2 Maintenance of Handling Group Related Status Bits There are three bits which reflect the status of the handling groups extracted from the VT mapper interface. There are four handling groups on each link therefore there will be three copies of the following bits for each link. The location of these status bits are in FRM_RSLR33, Receive Signaling Link Register 33 (R/W), Table 374 on page 269. Loss of HG alignment. Alignment uses the 0101010 . . . framing pattern and follows the alignment algorithm shown in Figure 60 on page497 . AIS detection within each handling group (AIS detection 48 consecutive ones, AIS loss any two zeros). RDI detection within each handling group (RDI detection is the presence of three consecutive zeros in the Sp bit position). 496 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) RESET n=1 LOF FOR HGX SX(n) = 0 AND SX(n + 8) = 1 AND SX(n + 16) = 0 AND SX(n + 24) = 1 NO n=n+1 YES n = n + 32 MFA FOR HGX SX(n) = 0 AND SX(n + 8) = 1 AND YES n = n + 16 NO SX(n + 16) = 0 AND SX(n + 24) = 1 YES n = n + 32 NO n = n + 25 LOF FOR HGX SX - INDICATES S bits FROM VT MAPPER (S1, 2, 3, 4) n - INDICATES THE SEQUENCE OF EACH SX bit RECEIVED HGX - INDICATES THE HG (HG1, 2, 3, 4) ASSOCIATED WITH THE CORRESPONDING S bit (S1, 2, 3, 4) 5-9024(F)r.1 Figure 60. HG Alignment Algorithm 21.14 Transmit Signaling Per-Link Feature Provisioning The transmit signaling processor requires the provisioning of four items for each link to enable signaling extraction and delivery. Signaling State Mode Source (host or Rx CHI interface) Signaling State Mode (2-, 4-, and 16-state mode or no-signaling) Signaling Source (receive line, receive system, or host interface) Signaling Destination (VT mapper or transmit line interface) 21.14.1 Signaling State Mode Source Selection The signaling state mode source is selected by programming FRM_T_FGSRC in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), Table 378 on pag e272, bit 2. The typical application will select the host for programming the state mode. If so, the host will have to program the state mode for all of the time slots on each link. Agere Systems Inc. 497 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) It is possible for the state mode to be implied by the values received on the CHI or PSB bus by the receive system interface. In this mode, the signaling processor will constantly monitor those values and update the state mode for each of the time slots on each link. 21.14.2 Signaling State Mode Selection The signaling state mode is selected by programming bits 5 and 6 in FRM_TSLR0--FRM_TSLR31, Transmit Signaling Link Registers 0--31 (R/W), Table 372 on pag e268 for each link. The bit definition for each of those 32 registers is illustrated below. Table 582. Transmit Signaling Link Registers 0--31 Bit Description Bit 6 G Bit 5 F Bit 4 -- Bit 3 D Bit 2 C Bit 1 B Bit 0 A The signaling state mode definitions are illustrated in the table below. Table 583. Transmit Signaling Link Registers 0--31 G-Bit and F-Bit Description G and F 00 01 10 11 Signaling State Mode Selected 16 state (reset state) 4 state No signaling 2 state The signaling state mode for DS1 type links should be set to match the function of each time slot. The signaling state mode does not apply to CEPT type links and the value must be kept in the reset state which is 00. The signaling state mode for CMI type links must be set to 11. The sixteen state mode, which is the state mode selected out of reset, can be used on SF-type DS1 links in order to detect a toggle code. In this case, signaling will be collected over two superframes and stored as a 4-bit code. When programming the state mode for each time slot, the host can also program the DCBA bits in the same register. Doing this will determine the default code forwarded to the transmit line or the transmit VT mapper interface before the first valid signaling code has been extracted from the receive line or receive system interface. Each of the links and time slots is completely independent from one another with respect to the signaling state mode selection. Any combination is acceptable. 21.14.3 Signaling Source Selection There are three sources for signaling in the transmit path. Transmit Signaling Link Registers 0--31 (host programmed) Receive System Interface Receive Line Interface The signaling source is selected by programming FRM_T_SIGSRC[1:0] in FRM_TSLR32, transmit signaling link register 32 (R/W), Table 373 on page269 , bits [1:0]. If the source of signaling is the host, then the transmit signaling link registers 0--31 must be programmed with valid signaling. Table 584 on pag e499, shows the organization of signaling data in those registers for the different types of links . 498 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Table 584. Transmit Signaling Link Registers 0--31 DS1/CEPT/CMI Data TSLR Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 TSLR Bit[6:0] (DS1) -- GF0 DCBA (Channel 1) GF0 DCBA (Channel 2) GF0 DCBA (Channel 3) GF0 DCBA (Channel 4) GF0 DCBA (Channel 5) GF0 DCBA (Channel 6) GF0 DCBA (Channel 7) GF0 DCBA (Channel 8) GF0 DCBA (Channel 9) GF0 DCBA (Channel 10) GF0 DCBA (Channel 11) GF0 DCBA (Channel 12) GF0 DCBA (Channel 13) GF0 DCBA (Channel 14) GF0 DCBA (Channel 15) GF0 DCBA (Channel 16) GF0 DCBA (Channel 17) GF0 DCBA (Channel 18) GF0 DCBA (Channel 19) GF0 DCBA (Channel 20) GF0 DCBA (Channel 21) GF0 DCBA (Channel 22) GF0 DCBA (Channel 23) GF0 DCBA (Channel 24) -- -- -- -- -- -- -- TSLR Bit[6:0] (CEPT) 000 X2 X1 Y X0 000 DCBA (Channel 1) 000 DCBA (Channel 2) 000 DCBA (Channel 3) 000 DCBA (Channel 4) 000 DCBA (Channel 5) 000 DCBA (Channel 6) 000 DCBA (Channel 7) 000 DCBA (Channel 8) 000 DCBA (Channel 9) 000 DCBA (Channel 10) 000 DCBA (Channel 11) 000 DCBA (Channel 12) 000 DCBA (Channel 13) 000 DCBA (Channel 14) 000 DCBA (Channel 15) 000 0000 000 DCBA (Channel 17) 000 DCBA (Channel 18) 000 DCBA (Channel 19) 000 DCBA (Channel 20) 000 DCBA (Channel 21) 000 DCBA (Channel 22) 000 DCBA (Channel 23) 000 DCBA (Channel 24) 000 DCBA (Channel 25) 000 DCBA (Channel 26) 000 DCBA (Channel 27) 000 DCBA (Channel 28) 000 DCBA (Channel 29) 000 DCBA (Channel 30) 000 DCBA (Channel 31) TSLR Bit[6:0] (CMI) -- 110 DCBA (Channel 1) 110 DCBA (Channel 2) 110 DCBA (Channel 3) 110 DCBA (Channel 4) 110 DCBA (Channel 5) 110 DCBA (Channel 6) 110 DCBA (Channel 7) 110 DCBA (Channel 8) 110 DCBA (Channel 9) 110 DCBA (Channel 10) 110 DCBA (Channel 11) 110 DCBA (Channel 12) 110 DCBA (Channel 13) 110 DCBA (Channel 14) 110 DCBA (Channel 15) -- 110 DCBA (Channel 17) 110 DCBA (Channel 18) 110 DCBA (Channel 19) 110 DCBA (Channel 20) 110 DCBA (Channel 21) 110 DCBA (Channel 22) 110 DCBA (Channel 23) 110 DCBA (Channel 24) 110 DCBA (Channel 25) 110 DCBA (Channel 26) 110 DCBA (Channel 27) 110 DCBA (Channel 28) 110 DCBA (Channel 29) 110 DCBA (Channel 30) 110 DCBA (Channel 31) For CEPT links, the entire time slot 16 multiframe is sourced from the transmit signaling link registers (TSLR) 0--31. The time slot 16 multiframe alignment pattern is transmitted from TSLR 16. That location must be written to 0 if the correct time slot 16 multiframe alignment pattern is to be transmitted. The reset value of all TSLR locations is 0. The spare bits (X2, X1, and X0) and the time slot 16 remote frame alarm (Y bit) to be transmitted must be written by the host into TSLR0. If the source of signaling is the receive system interface and the X or Y bits must be changed, then switch the signaling source back to host temporarily, write the new values, and then switch the signaling source back to the receive system interface. If the source of signaling is the host, only the relevant bits need be written in each transmit signaling link register. The format of the data written in each transmit signaling link register depends on the signaling state mode selected for each time slot as shown in Table 585. Agere Systems Inc. 499 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 585. Transmit Signaling Link Registers 0--31 Expected Data Signaling State Mode 16 state 4 state 2 state Bit 6 0 0 1 Bit 5 0 1 1 Bit 4 -- -- -- Bit 3 D -- -- Bit 2 C -- -- Bit 1 B B -- Bit 0 A A A The host mode can also be used to manually freeze signaling. For example, if the source is switched from receive system to host, the existing signaling codes will be held until modified by the host or the signaling source is switched back to the receive system. If the host mode is used to manually freeze signaling when the actual source is the receive line interface, then signaling debounce must be enabled. Signaling debounce is enabled by setting T_SIGDEB in the transmit signaling link register, bit 5 to 1. If the signaling source is set to the receive system interface, the transmit signaling processor will copy exactly what is extracted from the bus into the D, C, B, and A locations of the transmit signaling link registers 0--31 for each of the links. The system interface will need to be configured for ASM mode in order for the signaling to be received on the PSB or CHI buses. ASM mode is controlled by FRM_ASM in FRM_SYSGR1, System Interface Global Register 1 (R/W), Table 347 on page 257, bit 11. If the signaling source is set to the receive line interface, the transmit signaling processor will start extracting data from the receive line and store valid signaling codes into the D, C, B, and A locations of the transmit signaling link registers 0--31 for each of the links. The transmit signaling processor will automatically determine the link type and extract the correct signaling bit positions from each link. The transmit signaling processor can simultaneously service any combination ofCEPT, DS1, and CMI type links. The transmit signaling processor will extract robbed-bit signaling from DS1 links, common channel signaling from CEPT links, and time slot 0 signaling from CMI links compliant with the following standards. ITU Rec G.704 10/98 CEPT Multiframe Signaling Structure T1.403 1995 Robbed-Bit Signaling TTC JJ-20.11 CMI Coded Interface The transmit signaling processor can accommodate any combination of CEPT, DS1, and CMI type links when the signaling source is set to the receive system interface. The transmit signaling processor cannot extract signaling from the receive system and the receive line interface on different links simultaneously. 21.14.4 Signaling Destination Selection There are two destinations for transmit path signaling. Transmit Line Interface VT Mapper Interface The signaling extracted from the receive system or programmed by the host will be inserted into the transmit line if FRM_T_SIGI in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), Table 378 on page272 , bit 8, is set to 1. The transmit signaling processor will automatically detect the format of each link and insert the signaling accordingly. In the case of DS1, no signaling will be inserted for those time slots whose signaling state mode is set to nosignaling (G bit and F bit = 10). In the case of CEPT, the entire time slot 16 multiframe is supplied from the transmit signaling link registers 0--31. The signaling programmed by the host or extracted from the receive system or line interface can be transported by the VT mapper by setting FRM_T_VTSIGE in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 9, to 1. 500 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) The signaling will be byte sync mapped based on the standards listed below. ANSI T1.105 SONET Payload Mapping Telcordia GF-253-CORE SONET Transport Systems ITU Rec G.707 10/98 Network Node Interface for SDH 21.15 Optional Transmit Signaling Features Provisioned for Each Link 21.15.1 Support of Automatic Maintenance of the Time-Slot 16 Remote Frame Alarm For CEPT links, the time slot 16 remote frame alarm (Y bit) can be automatically maintained in the transmit path by setting FRM_T_ATS16RFA in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), Table 378 on pag e272, bit 14, to 1. In that case, the Y bit transmitted will reflect the TS16 multiframe alignment status in the receive path. Bit 1 in the transmit signaling link register 0 will be ignored. If the receive path time slot 16 alignment for a particular link is lost, then the corresponding Y bit in the transmit path will be set to 1. 21.15.2 Support of DS1 Robbed-Bit Stomping The DS1 robbed-bit positions of voice time slots will be set to 0 in the payload when FRM_T_TXSTOMP in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 7 is set to 1. This feature is a programmable option required for byte sync mapping. 21.15.3 Support of CEPT Time-Slot 16 Stomping Stomping of time slot 16 for CEPT links can by accomplished by setting the source of signaling to be the host and then programming the transmit signaling link registers 0--31 to all ones. 21.15.4 Support of Signaling Debounce If programmed to do so, the signaling extracted from the receive line interface will be debounced. This implies that a valid signaling code would have to be detected twice before it is updated in the transmit signaling link registers 0--31. This feature is enabled by setting FRM_T_SIGDEB in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 5 to a 1. 21.15.5 Support of Japanese Handling Groups If the signaling is transported by the VT mapper within four handling groups compliant to the Japanese standard, TTC JT G.704, then FRM_T_HGEN in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 4, must be set to 1. The signaling state mode will be assumed to be 2-state signaling, and the value programed into the GF bits of the transmit signaling link registers 0--31 will be ignored. By default, the transmit signaling processor will drive the Sp bit of each handling group on each link to 1.This bit can be manually forced to 0 for all the handling groups within a link by setting FRM_T_MSP in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 11, to 1. The Sp bit can be automatically maintained by setting FRM_T_ASPLB in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 12, to 1. In that case, the Sp bits in the transmit path will reflect the corresponding handling group alignment in the receive path. For example, if HG2 on link 3 is the only HG out of alignment on that link, then the Sp bit transmitted to the VT mapper for HG2 will be set to 0. The Sp bit for HG 1, 3, and 4 will be set to 1. 21.15.6 Support of Zero-Code Suppression If the frame formatter is configured to perform zero-code suppression, then FRM_T_ZCSM in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 10, must be set to 1. Zero-code suppression in the frame formatter is enabled by programming FRM_ZCSMD[2:0] in FRM_FFLR1, Frame Formatter Link Register 1 (R/W), Table 424 on page 300, bits [10:8]. Agere Systems Inc. 501 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.16 Transmit Signaling Global Feature Provisioning The transmit signaling processor requires the provisioning of one global item in order to enable signaling extraction and delivery. Link Count (number of active transmit links). 21.16.1 Link-Count Selection The link count is specified by programming FRM_T_LINKCNT[4:0] in FRM_SGR8, transmit signaling global register 8 (R/W), Table 366 on page265 , bits [14:10]. The reset value is 28, which is appropriate for a 28 link DS1 application. A value of 21 is appropriate for a 21 link CEPT application. If the application mixes DS1 and CEPT links or the TDM clock supplied to the framer is less than 51.84 MHz, this value should match the terminal count (FRM_TC[7:0]) set in FRM_FGR2, framer global register 2 (R/W), Table 306 on page246 , bits [7:0]. 21.17 Other Transmit Signaling Global Features 21.17.1 Support of Automatic Signaling Freeze on Framing Bit Errors This feature is valid when extracting signaling from the receive line interface (transport mode). By default, signaling extraction from a particular receive line will halt when the appropriate alignment has been lost. In order to guarantee that signaling freeze takes place as soon as possible, FRM_T_AFZFBE in FRM_SGR8, Transmit Signaling Global Register 8 (R/W), bit 1, must be set to 1. When enabled, FRM_T_AFZFBE halts signaling extraction for 32 frames upon detection of a frame bit error. When FRM_T_AFZFBE is enabled, the transmit signaling debounce feature must also be enabled. The FRM_T_SIGDEB feature is enabled in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 5. 21.17.2 Support of Byte Sync SONET Mapping A provisionable feature related to SONET byte sync mapping requires that those time slots which are configured for no-signaling should have a signaling value of 0 transported by the VT mapper. This feature can be enabled by setting FRM_T_SUBZERO in FRM_SGR8, Transmit Signaling Global Register 8 (R/W), bit 5, to 1. In that case, those time slots with a signaling state mode of no-signaling (GF = 10) will automatically forward a value of 0 to the VT mapper. 21.18 Transmit Signaling Status Registers There are two status values which are maintained for each of the links. 21.18.1 Maintenance of CEPT Related Status Bits There are 2 bits which reflect the status of the CEPT time slot 16 signaling multiframe. These status bits are valid when the source of signaling is set to be the receive line interface (transport mode). The location of these status bits is in FRM_TSLR33, Transmit Signaling Link Register 33 (COR), Table 379 on page273 . The receive signaling register searches for AIS in time slot 16 when time slot 16 alignment is lost. The status of this search is maintained. The status of TS16 multiframe alignment is maintained. 502 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.19 Performance Monitoring Functional Integration into Superframer The framer monitors the recovered line data for alarm conditions and errored events, and then presents this information to the system through the microprocessor registers. To a lesser degree of importance, the framer also monitors the receive system data when in the switching mode and presents the information to the system through the microprocessor registers. In the transport mode, both directions are monitored for alarm conditions and error events. Table 586 shows the functions provided by the performance monitor function, identifies the associated status register bits and event counter register, and establishes the functions validity in particular framing modes. Table 586. Performance Monitor Functional Descriptions Function Description Register or Bit Name 1 Performance report messages (PRMs) as per G.704 section 2.1.3.1.3.3, G.963, T1.231 section 6.3, and T1.403 section 9.4.2. Provides status for errored seconds, bursty errored seconds, severely errored seconds, and at ET, ETRE, NT, and NT-RE. Maintains a count of errored seconds, bursty errored seconds, severely errored seconds, and at the ET. Provides a status indication for a loss of signaling frame alignment condition. Provides a status indication for an out-of-frame condition. Provides a status indication for a loss of time slot 0 CRC-4 multiframe alignment. Provides a status indication for a time slot 0 CRC-4 multiframe alignment signal bit error. Provides a status indication for auxiliary pattern detection. Provides a status indication for detection of the DS1 idle signal. Provides a status indication for detection of an alarm indication signal. Provides a status indication for detection of an alarm indication signal at the customer installation (AIS-CI). Provides a status indication for detection of remote alarm indication. Provides a status indication for detection of remote alarm indication at the customer installation (RAI-CI). Provides a status indication for detection of time slot 16 AIS (FRM_R_TS16AIS (Table 373)). Provides a status indication for detection of remote multiframe alarm in time slot 16 (RTS16MFA). Provides a status indication for the loss of CEPT biframe alignment (LBFA). -- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Agere Systems Inc. Valid Framing Modes for Functions ESF and J-ESF only -- All modes -- All modes FRM_LSFA (Table 385) All modes FRM_OOF (Table 385) All modes FRM_LTS0MFA (Table 385) FRM_TS0MFABE (Table 385) FRM_AUXP (Table 386) CEPT CRC-4 only FRM_IDLEID (Table 386) All modes except CEPT CRC-4 All modes FRM_AIS (Table 385) FRM_OAIS (Table 385) FRM_RAI (Table 385) FRM_ORAI (Table 385) CEPT CRC-4 only CEPT CRC-4 only All modes except CEPT-CRC4 All modes FRM_OAIS (Table 385) ESF and J-ESF only CEPT CRC-4 only FRM_ORAI (Table 385) CEPT CRC-4 only FRM_LTFA (Table 386) CEPT CRC-4 only 503 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 586. Performance Monitor Functional Descriptions (continued) Function 17 18 Provides a status indication for detection of remote Japanese yellow alarm (RJYA). Provides a status indication for continuous E-bit reception. 19 Provides a status indication for detection of Sa6 states. 20 Provides a status indication for detection of line format violations. Register or Bit Name Valid Framing Modes for Functions J-D4 only FRM_ORAI (Table 385) FRM_CREBIT CEPT CRC-4 only (Table 386) FRM_SA6 CEPT CRC-4 only (Table 394) FRM_LFV All modes Provides a status indication for detection of frame bit errors. (Table 386) FRM_FBE All modes 22 Provides a status indication for detection of CRC errors. (Table 386) FRM_CRCE 23 Provides a status indication for detection of excessive CRC errors. 24 Provides a status indication for detection of an E bit equal to 0. 21 25 Provides a status indication for expiration of CRC-4 multiframe alignment timer. 26 Provides a status indication for new frame alignment. 27 Provides a status indication for detection of Sa7 link identification code. 28 Provides a status indication for detection of an SF line loopback on code. Provides a status indication for detection of an SF line loopback off code. Provides a status indication for detection of an overflow in the receive elastic store. Provides a status indication for detection of an underflow in the receive elastic store. Provides a status indication for detection of loss of signal. 29 30 31 32 33 Maintains a count of received CRC errors. 34 Maintains a count of received bipolar violations, line code violations, and excessive zeros. Provides a status indication for detection of a bit-oriented message in the ESF data link bits. Provides a status indication of a test pattern detector lock. 35 36 37 504 Description Provides a status indication for detection of a test-pattern bit error. (Table 386) FRM_ECRCE (Table 386) FRM_REBIT ESF, J-ESF, and CEPT CRC-4 only ESF, J-ESF, and CEPT CRC-4 only CEPT CRC-4 only (Table 386) FRM_CRCTX CEPT CRC-4 only (Table 385) FRM_NFA All modes (Table 386) FRM_SA7LID CEPT CRC-4 only (Table 386) FRM_LLBON (Table 386) FRM_LLBOFF (Table 386) FRM_SLIPO (Table 385) FRM_SLIPU (Table 385) FRM_LOS (Table 386) FRM_CEC (Table 390) FRM_BPV (Table 388) FRM_BOMR (Table 386) FRM_DETECT (Table 311) FRM_PTRNBER SF only SF only All modes All modes All modes ESF/J-ESF and CEPT CRC-4 only All modes ESF only All modes All modes (Table 311) Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Table 586. Performance Monitor Functional Descriptions (continued) Function 38 Description Register or Bit Name 43 Provides a status indication for detection of an ESF-FDL RAI/yellow alarm code. Provides a status indication for detection of the ESF-FDL payload loopback enable code. Provides a status indication for detection of the ESF-FDL payload loopback disable code. Provides a status indication for detection of the ESF-FDL line loopback enable code. Provides a status indication for detection of the ESF-FDL line loopback disable code. Maintains a 16-bit count of received framing bit errors. 44 Maintains a 16-bit count of received E bit = 0 events. (Table 389) FRM_REC CEPT CRC-4 only 45 Maintains a 16-bit count of received Sa6 = 00x1 events. (Table 391) FRM_CETE CEPT CRC-4 only Maintains a 16-bit count of received Sa6 = 001x events. (Table 392) FRM_CENT CEPT CRC-4 only 39 40 41 42 46 47 48 49 50 51 52 53 54 55 56 57 58 Provides a status indication for detection of Sa6[1:4]) = (x, x, AIS). Provides a status indication for detection of Sa6[1:4]) = (0, 1, 1111). Provides a status indication for detection of Sa6[1:4]) = (1, 1, 1111). Provides a status indication for detection of Sa6[1:4]) = (x, x, AUXP). Provides a status indication for detection of Sa6[1:4]) = (1, 1, 1000). Provides a status indication for detection of Sa6[1:4]) = (0, 1, 1000). Provides a status indication for detection of Sa6[1:4]) = (0, 1, 1110). Provides a status indication for detection of Sa6[1:4]) = (0, 1, 1100). Provides a status indication for detection of Sa6[1:4]) = (1, 0, 0000). Provides a status indication for detection of Sa6[1:4]) = (1, 1, 1110). Provides a status indication for detection of Sa6[1:4]) = (1, 1, 00xx). Provides a status indication for detection of Sa6[1:4]) = (x, 0, xxxx). Agere Systems Inc. an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, an (A, Sa5, FRM_FDL_RAI (Table 387) FRM_FDL_PLBON (Table 387) FRM_FDL_PLBOFF (Table 387) FRM_FDL_LLBON (Table 387) FRM_FDL_LLBOFF (Table 387) FRM_FBEC Valid Framing Modes for Functions ESF only (Table 393) FRM_FE_OP (Table 394) FRM_FE_N (Table 394) FRM_FE_M (Table 394) FRM_FE_L (Table 394) FRM_FE_K (Table 394) FRM_FE_I (Table 394) FRM_FE_H (Table 394) FRM_FE_G (Table 394) FRM_FE_F (Table 394) FRM_FE_E (Table 394) FRM_FE_D (Table 394) FRM_FE_C (Table 394) ESF only ESF only ESF only ESF only All modes CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only CEPT CRC-4 only 505 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 586. Performance Monitor Functional Descriptions (continued) Function Description Register or Bit Name Valid Framing Modes for Functions 59 Provides a status indication for detection of an (A, Sa5, Sa6[1:4]) = (x, 0, 0000). FRM_FE_B (Table 394) CEPT CRC-4 only 60 Provides a status indication for detection of an (A, Sa5, Sa6[1:4]) = (x, 1, 00xx). FRM_FE_A (Table 394) CEPT CRC-4 only 61 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (x, 1, 0011, x). FRM_FE_Y (Table 395) CEPT CRC-4 only 62 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (x, 1, 0010, x). FRM_FE_X (Table 395) CEPT CRC-4 only 63 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (x, 1, 0001, x). FRM_FE_W (Table 395) CEPT CRC-4 only 64 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (x, 0, 0000, 0). FRM_FE_V (Table 395) CEPT CRC-4 only 65 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (x, 1, xxxx, 0). FRM_FE_U (Table 395) CEPT CRC-4 only 66 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (x, 0, 0000, x). FRM_FE_T (Table 395) CEPT CRC-4 only 67 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (1, 0, xxxx, x). FRM_FE_S (Table 395) CEPT CRC-4 only 68 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (1, 0, 1010, x). FRM_FE_R (Table 395) CEPT CRC-4 only 69 Provides a status indication for detection of an (A, Sa5, Sa6[1:4], E) = (1, 0, 1111, x). FRM_FE_Q (Table 395) CEPT CRC-4 only 70 Provides storage for bit-oriented messages. FRM_RBOM[7:0] ESF only (Table 399) 71 Provides an indication to frame aligner (does not have to be stored) to reframe (in CEPT and ESF modes) based on CRC errors and to re-establish multiframe alignment (in CEPT) based on bit 0 of the NOTFAS frames (except 15 and 17). -- CEPT, ESF/JESF, J2 only 72 Provides indication to frame formatter to set RAI. -- All modes 73 Provides indication to frame formatter to set AIS. -- All modes 74 Provides indication to frame formatter to set E bits. -- CEPT CRC-4 only 75 Provides status indication of parallel bus system interface mode data and signaling parity errors. FRM_DPARERR, Parallel bus system interface mode only, monitor all the time FRM_SPARERR (Table 394) 21.20 Performance Report Message The performance monitor block monitors for errored second events and generates the one-second data for the extended superframe (ESF) performance report message (PRM) (G.704 section 2.1.3.1.3.3, G.963, T1.231 section 6.3, and T1.403 section 9.4.2.). The form of the PRM message is shown in Table 587 below. The definition of the fields is given in Table 588. 506 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) The superframer performance monitor block outputs fields G1--G6, FE, SE, LV, SL, and LB. The remaining fields are generated in the HDLC block. A severely errored frame (SEF) defect is determined by examining contiguous time windows for frame bit errors. In ESF, the window size is 3 ms, and only the frame pattern sequence bits are checked. An SEF defect occurs when two or more frame bit errors in a window are detected. An SEF defect is terminated when the signal is in frame and there are less than two frame bit errors in a window. Table 587. Performance Report Message Format Octet Number 1 2 3 4 5 6 7 8 9 10 11 12 13--14 15 PRM B7 G3 FE G3 FE G3 FE G3 FE PRM B6 LV SE LV SE LV SE LV SE PRM B5 G4 LB G4 LB G4 LB G4 LB PRM B4 PRM B3 Flag SAPI TEI Control U1 U2 G1 R U1 U2 G1 R U1 U2 G1 R U1 U2 G1 R FCS FLAG PRM B2 G5 G2 G5 G2 G5 G2 G5 G2 PRM B1 PRM B0 C/R EA EA SL Nm SL Nm SL Nm SL Nm G6 NI G6 NI G6 NI G6 NI Table 588. Performance Report Message Field Definition Field G1 = 1 G2 = 1 G3 = 1 G4 = 1 G5 = 1 G6 = 1 SE = 1 FE = 1 LV = 1 SL = 1 LB = 1 U1, U2 = 0 R=0 Nm, NI = 00, 01, 10, 11 Agere Systems Inc. Definition CRC Error Event = 1 1 < CRC Error Event 5 5 < CRC Error Event 10 10 < CRC Error Event 100 100 < CRC Error Event 319 CRC Error Event 320 Severely Errored Framing Event 1 (FE will = 0) Frame Synchronization Bit Error Event 1 (SE will = 0) Line Code Violation Event 1 (BPV 1 or EXZ 1) Slip Event 1 Payload Loopback Activated Reserved Reserved (default value = 0) One Second Report Modulo 4 Counter 507 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.21 Performance Monitoring References/Standards ANSI T1.231-1997, Digital Hierarchy--Layer 1 In-Service Digital Transmission Performance Monitoring. ANSI T1-403-1995, Network-to-Customer Installation--DS1 Metallic Interface. ETS 300 233 Integrated Services Digital Network (ISDN); Access digital section for ISDN primary rate; May 1994. ETS 300 417-1-1 Transmission and Multiplexing (TM); Generic functional requirement for Synchronous Digital Hierarchy (SDH) equipment; Part 1-1: Generic processes and performance; January 1996. ITU-T Recommendation G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces; 1991. ITU-T Recommendation G.704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488 and 44736 kbits/s Hierarchical Levels; July 1995. ITU-T Recommendation G.706, Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures defined in Recommendation G.704; 1991. ITU-T Recommendation G.732, Characteristics of Primary PCM Multiplex Equipment Operating at 2048 kbits/s; 1993. ITU-T Recommendation G.733, Characteristics of Primary PCM Multiplex Equipment Operating at 1544 kbits/s; 1993. ITU-T Recommendation G.775, Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria; November 1994. ITU-T Recommendation G.826, Error performance parameters and objectives for international, constant bit rate digital paths at or above the primary rate; August 1996. ITU-T Recommendation G.963, Access Digital Section for ISDN Primary Rate at 1544 kbits/s; March 1993. ITU-T Recommendation G.964, V-Interfaces at the Digital Local Exchange (LE) - V5.1 Interface (based on 2048 kbits/s) for the Support of Access Network (AN); June 1994. ITU-T Recommendation G.965, V-Interfaces at the Digital Local Exchange (LE) - V5.2 Interface (based on 2048 kbits/s) for the Support of Access Network (AN); March 1995. ITU-T Recommendation O.151, Error Performance Measuring Equipment Operating at the Primary Rate and Above; October, 1992. ITU-T Recommendation O.152, Error Performance Measuring Equipment for Bit Rates of 64 kbits/s and N X 64 kbits/s; October, 1992. ITU-T Recommendation O.153, Basic Parameters for the Measurement of Error Performance at Bit Rates Below the Primary Rate; October, 1992. ITU-T Recommendation O.161, In-Service Code Violation Monitors for Digital Systems; 1993. ITU-T Recommendation O.162, Equipment to Perform In-Service Monitoring on 2048, 8448, 34 368 and 139 264 kbits/s Signals; October, 1992. ITU-T Recommendation O.163, Equipment to Perform In-Service Monitoring on 1544 kbits/s Signals; October, 1992. TTC Standard JT-G704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488 and 44736 kbits/s Hierarchical Levels; July 1995. 21.22 Facility Data Link 21.22.1 Facility Data Link References/Standards ANSI T1.403-1995--Bit-Oriented Messages (BOM). 508 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.22.2 Receive Data Link Functional Description This block extracts facility data links bits and stores them in a microprocessor access register bank: D bits from the SLC -96 multisuperframe. Sa bits from time slot 0 in CEPT basic and CRC-4 multiframes. Data link bits from DDS frames. The respective bits will always be extracted from the framed aligned receive line payload and stored in the facility data link stack regardless of other configuration bits. The processor will have control of being alerted to stack updates through the interrupt mask registers. All frame types: Support clear-on-read status and interrupt bits based on the setting of the input select signal. 21.22.3 SLC -96 Superframe Receive Data Link Delineates the SLC-96 data link in the Fs signaling frame, extracts the 24 D bits, and stores in the internal memory stack. Provides interrupt for stack ready. Provides host access to stack using processor clock. Supports loss of frame status. Both basic frame alignment and multiframe alignment must be established before the data can be assumed valid. The SLC-96 Fs bits are stored in the Rx stack as follows. Table 589. Shared Rx Stack Format for SLC-96 Frames Word 0 1* 2* 3* 4* 15 0 C1 SB2 0 0 14 0 C2 SB3 0 0 13 0 C3 M1 0 0 12 1 C4 M2 0 0 11 1 C5 M3 0 0 10 1 C6 A1 0 0 9 0 C7 A2 0 0 8 0 C8 S1 0 0 7 0 C9 S2 0 0 6 5 4 1 1 1 C10 C11 SB1 S3 S4 SB4 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 * The value held in the bits left blank should be ignored by the host. When the entire stack has been filled, the host is notified using the Rx stack ready interrupt. After the Rx stack ready interrupt bit is set, the host has approximately 9 ms to read the stack. 21.22.4 DDS Receive Data Link Stack Extracts data link bit (bit 6) from time slot 24 and stores into stack. Provides interrupt for stack ready. Provides host access to stack using processor clock to provide fast access. Supports loss of frame status. DDS frames are numbered 1 through 12 with the data link bits located in bit 6 of time slot 24 in every frame. Only basic frame alignment must be established for the data link bits to be extracted. The DDS stack is stored in the shared Rx stack as follows. Agere Systems Inc. 509 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 590. Shared Rx FDL Stack Format for DDS Frames Word 0 1 2 3 4 15 D1 D1 D1 -- -- 14 D2 D2 D2 -- -- 13 D3 D3 D3 -- -- 12 D4 D4 D4 -- -- 11 D5 D5 D5 -- -- 10 D6 D6 D6 -- -- 9 D7 D7 D7 -- -- 8 D8 D8 D8 -- -- 7 D9 D9 D9 -- -- 6 D10 D10 D10 -- -- 5 D11 D11 D11 -- -- 4 D12 D12 D12 -- -- 3 -- -- -- -- -- 2 -- -- -- -- -- 1 -- -- -- -- -- 0 -- -- -- -- -- Starting at every superframe boundary, the data link bits are stored in an internal copy of the shared Rx stack. As the data link bits are accumulated, the data link bits from the first superframe are stored in word 0. The frame aligner block will give an indication of loss of frame alignment, which is used by the data link block to determine if the data link bits collected are invalid. In this case, they will not be made available to the system. When the entire stack has been filled (three superframes), the host is notified using the Rx stack ready interrupt. After the Rx stack ready interrupt bit is set, the host has approximately 4.5 ms to read the stack. 21.22.5 CEPT; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms) Multiframe Sa Bits Receive Stack Extracts two multiframes of Sa bits from CEPT links and stores them in internal memory. Supports loss of frame status. Provides host access to the stack using the processor clock. Provides interrupt for stack ready. CEPT frames are numbered 0 through 15 with the Sa bits located in time slot 0 of the odd numbered frames. The Sa bits can only be extracted from CEPT links when the proper alignment has been established. For basic CEPT frames, the Sa bits will be extracted given the arbitrary alignment selected by the frame aligner block when basic frame alignment is established. For CEPT CRC-4 links, the Sa bits will be extracted based on the alignment determined by the frame aligner block when multiframe frame alignment is established. Optionally, the Sa bits will be extracted from CEPT CRC-4 links only after basic frame alignment is established (RxCRCSM). The Sa bits are stored in the stack as follows: Table 591. Shared Rx Stack Format for CEPT Frames Word 0 1 2 3 4 15 SA41 SA51 SA61 SA71 SA81 14 SA43 SA53 SA63 SA73 SA83 13 SA45 SA55 SA65 SA75 SA85 12 SA47 SA57 SA67 SA77 SA87 11 SA49 SA59 SA69 SA79 SA89 10 SA411 SA511 SA611 SA711 SA811 9 SA413 SA513 SA613 SA713 SA813 8 SA415 SA515 SA615 SA715 SA815 7 SA41 SA51 SA61 SA71 SA81 6 SA43 SA53 SA63 SA73 SA83 5 SA45 SA55 SA65 SA75 SA85 4 SA47 SA57 SA67 SA77 SA87 3 SA49 SA59 SA69 SA79 SA89 2 SA411 SA511 SA611 SA711 SA811 1 SA413 SA513 SA613 SA713 SA813 0 SA415 SA515 SA615 SA715 SA815 It takes two multiframes to fill the Rx stack; bit 15 is received first. The frame aligner block will give an indication of loss of frame alignment which is used by the data link block to determine if the Sa bits collected are invalid. In this case, they will not be made available to the system. When the entire stack has been filled, the host is notified using the Rx stack ready interrupt. After the Rx stack ready interrupt bit is set, the host has approximately 4 ms to read the stack. 510 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.22.6 Receive Data Link Stack Idle Modes No data link stack features for the following frame formats: D4 J-D4 ESF J-ESF J2 CMI 21.22.7 Receive Data Link Stack Pointer The stack pointer maintains two pointers: an internal pointer and a host pointer. The pointer identifies which stack is active for the host and which stack is active for the internal logic. These pointers will always point to opposite stacks. When the TDM interface block is writing Sa bits or D bits to the stack, then the internal pointer may be selecting the upper stack. In this case, the host pointer is selecting the lower stack for the host reads. At the beginning of each double multiframe or each superframe, a pointer switch takes place. This switch takes place during the time in which the host is prevented from accessing the stack for a particular link. A stack pointer is maintained for each of the links individually. TD M ID RX RE CE IVE LINE FRA M ER SY STE M TD M DA TA D AT A LINK INT ERR U PT INT ER FACE TR AN SM IT SY STE M TD M IN TE RFA CE C EPT A ND S LC- 96 INT ER NA L D ATA STA CK FU LL S HA RE D R X U PP ER S TAC K STA CK PO IN TER HO ST R EG IST ERS S HA RE D R X LO WER S TAC K PR OC ES SO R CLO C K FD L C LO CK IN TE RN AL BU S 5-9025(F)r.1 Figure 61. Rx Data Link Block Diagram Agere Systems Inc. 511 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Receive Stack Host Interface. Host access to the shared system stack will be managed using a stack availability status bit. This bit reflects the stack availability status for each individual port. The host will use this status bit for each port to determine when the stack is available for reading. Each stack is made unavailable only to enable a window for the data link block to update the system stack. The window will be large enough so that any small amount of overlap will not allow the possibility of a collision. D, Sa, or DDS data link bits are collected over the multiple frame time periods appropriate for each frame type. The stack is available for reading during that entire time period except for the last frame. During that one frame time, the internal stack will be switched to the system stack. The stack will be made accessible once the transfer is done, after which the Rx stack ready status bit will be set. If the host is managing the stack via interrupts from the data link block and the interrupt can be serviced within 8.8 ms for SLC-96, 3.8 ms for CEPT, or 4.3 ms for DDS, then the host simply reads the stack. If the host is polling the Rx stack ready status and reading the stack arbitrarily, then the host is required to read the Rx stack available status bit FRM_RXSA (Table 406) which corresponds to the respective port. If that bit is set to 1, then the host can access the corresponding stack locations. If that bit is set to 0, the host should poll on that bit until it changes. Stack Available and Stack Ready Bit Formats. As described above, when the stack has been filled, the stack available bit goes high. One or two frames before the stack is about to be filled, the stack available bit goes low and stays low for one or two frames. This prevents the host from reading when a pointer switch is about to happen, preventing the host from getting the data mixed. The stack ready bit is set to 1, also, when the stack has been filled. The host clears this bit. Figure 62 shows the dynamics of these bits. Sa bit Sr bit (HOST CLEARS THIS BIT WHENEVER) SET HIGH HERE STACK NOT AVAILABLE DDS: 35 FRAMES (4.4 ms) 1 FRAME (0.125 ms) SLC-96: 70 FRAMES (8.75 ms) 2 FRAMES (0.25 ms) CEPT: 30 FRAMES (3.75 ms) 2 FRAMES (0.25 ms) ONE STACK OF DATA NEXT STACK 5-9026(F)r.1 Figure 62. Stack Available and Stack Ready Bit Formatting Receive Stack Pointer. The stack pointer maintains two pointers: an internal pointer and a host pointer. The pointer identifies which stack is active for the host and which stack is active for the internal logic. These pointers will always point to opposite stacks. When the TDM interface block is writing Sa bits or D bits to the stack, then the internal pointer may be selecting the upper stack. In this case, the host pointer is selecting the lower stack for the host reads. At the beginning of each double multiframe or each superframe, a pointer switch takes place. This switch takes place during the time in which the host is prevented from accessing the stack for a particular link. A stack pointer is maintained for each of the links individually. 512 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.22.8 Transmit Facility Data Link Functional Description This block performs the transmission of D bits into SLC-96 superframes, SA bits into CEPT multiframes, and data link bits into DDS frames. For SLC -96 frames, the D bits are always sourced from this block when the block is enabled for insertion (FRM_DS1I (Table 412)). The D-bit delineator bits (SLC-96 Fs frame) are also sourced from this block and stored in the stack with the D bits. For CEPT frames, the Sa bits are sourced from either the Sa stack or outside of the data link block. The data link block only responds with valid data when selected by the Sa source control bits (FRM_SA4SC--FRM_SA8SC (Table 412)). For DDS frames, the data link bits are always sourced from this block when this block is enabled for insertion (FRM_DS1I). This block also provides the capability to transmit BOMs in the data link channel of ESF links. All frame types: Support clear-on-read status and interrupt bits based on the setting of the input select signal. 21.22.9 SLC -96 Superframe Transmit Data Link Provides storage for D bits and delineator bits for transmission on SLC-96 links. Provides interrupt for stack empty. Provides host access to stack using processor clock. Performs retransmission of stack when update is yet to be performed. When enabled for insertion, this block will always source the D bits to any SLC-96 Tx link. The delineator bits (SLC96 Fs frame), which bound the 24 D bits, are also sourced from this block. The 12-frame SLC-96 superframe is composed of a terminal frame (FT) alternating with a subframe that consists of a combined signaling (FS) frame and data link. The subframe shares establishing the signaling frame (FS) and SLC-96 data link. The FDL stack bits are inserted into the signaling and data link subframe position in the superframe. Seventy-two superframes are required to deliver the 24 D bits and 12-bit delineator. The front-end delineator is 00111, which is followed by 24 D bits and trailed by 0001110. The alignment of the FS bits within the superframe is determined and indicated by the frame aligner block. The SLC-96 FS bits are stored in the shared Tx stack as shown in Table 592. Table 592. Shared Tx FDL Stack Format for SLC-96 Frames Word 0 1* 2* 3* 4* 15 14 0 0 C1 C2 SB2 SB3 0 0 0 0 13 0 C3 M1 0 0 12 1 C4 M2 0 0 11 1 C5 M3 0 0 10 1 C6 A1 0 0 9 0 C7 A2 0 0 8 0 C8 S1 0 0 7 0 C9 S2 0 0 6 5 4 1 1 1 C10 C11 SB1 S3 S4 SB4 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 * The value held in the bits left blank should be ignored by the host. The transmission of the SLC-96 stack will take 9 ms to complete, during which time the host should refill the system stack if the D bits need to change. Near the beginning of each SLC-96 superframe, the Tx data link block will determine whether a new set of D bits is available to be transmitted. Agere Systems Inc. 513 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) The host will indicate this state by resetting the Tx stack empty bit, FRM_TXSE_IS (Table 414). If this is the case, the new D bits will be transmitted; otherwise, the previous D bits will be retransmitted. If the Tx stack empty bit was 0 at the beginning of the SLC-96 superframe, then the bit will be set to 1, indicating a request for new D bits. When enabled using the FRM_ASRC (Table 412) bit, the D bits should only be inserted when the proper alignment has been reached. For SLC-96, both terminal (FT) and signaling (FS) frames need to be valid. This condition effects the insertion of D bits and the reporting of stack empty to the host. Before enabling a link for the SLC-96 format or enabling this block for insertion, the host should initialize the stack and set the Tx stack empty bit to 0. If not, the data link block will transmit the reset state of the stack, which is arbitrary. 21.22.10 DDS Transmit Data Link Stack Provides three superframes of data link bit storage for transmission on DDS links. Provides interrupt for stack empty. Performs retransmission of stack when update has yet to be performed. Provides host access to stack using processor clock to provide fast access. If enabled for insertion, this block will always source the DDS data link bits to any DDS Tx link. DDS superframes are 12 frames with the data link bits located in bit number 6 of time slot 24 of every frame. Thirty-six frames of data link bits are stored in the stack. The DDS stack is stored in the shared Tx stack as follows. Table 593. Shared Tx FDL Stack Format for DDS Frames Word 0* 1* 2 3 4 15 D1 D1 D1 -- -- 14 D2 D2 D2 -- -- 13 D3 D3 D3 -- -- 12 D4 D4 D4 -- -- 11 D5 D5 D5 -- -- 10 D6 D6 D6 -- -- 9 D7 D7 D7 -- -- 8 D8 D8 D8 -- -- 7 D9 D9 D9 -- -- 6 D10 D10 D10 -- -- 5 D11 D11 D11 -- -- 4 D12 D12 D12 -- -- 3 -- -- -- -- -- 2 -- -- -- -- -- 1 -- -- -- -- -- 0 -- -- -- -- -- * The value held in the bits left blank should be ignored by the host. Transmission of the DDS stack will take 4.5 ms to complete, during which time the host should refill the system stack if the data link bits need to change. Near the beginning of every third DDS superframe, the Tx data link block will determine whether a new set of data link bits is available to be transmitted. The host will indicate this state by resetting the Tx stack empty bit. If this is the case, the new data link bits will be transmitted; otherwise, the previous data link bits will be retransmitted. If the Tx stack empty bit was 0 at the beginning of the set of superframes, then the bit will be set to 1, indicating a request for new data link bits. When enabled, using the FRM_ASRC bit, the Sa bits should only be inserted when the proper alignment has been reached. For DDS links, only terminal frame (FT) is required for insertion. This condition affects the insertion of data link bits and the reporting of stack empty to the host. Before enabling a link for the DDS format or enabling this block for insertion, the host should initialize the stack and set the Tx stack empty bit to 0. If not, the data link block will transmit the reset state of the stack, which is arbitrary . 514 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.22.11 Transmit ESF Data Link Bit-Oriented Messages Provides capability to transmit bit-oriented messages. When enabled through a configuration bit (FRM_BOME (Table 413)), bit-oriented messages will be transmitted on the data link channel of the frame bit for ESF links. The ESF superframe is numbered 1 through 24 with the data link channel transmitted in the odd numbered frames (4 kbits/s). The BOM is a 16-bit message defining an alarm or command and response action, and sent repeatedly for a period of time determined by the event. The message consists of eight ones, a 0, a 6-bit code to identify the alarm or action, and a 0 (1111_1111_0 in front and 0 behind the 6-bit code). The message can occur at any point in the extended superframe without respect to boundaries. The exact message to be sent will reflect what has been programmed into a register (FRM_TBOM{5:0] ( Table 413) bits). The BOM format is as follows: 0 X X X _ X X X 0 _ 1111_1111: (right-most bit being transmitted first). When the BOM pattern is enabled, it will be transmitted until disabled. When disabled, the pattern will cease to be transmitted immediately. A BOM status bit will indicate when the pattern has been sent 10 times. That status bit will be reset on read. When enabled using the FRM_ASRC (Table 412) bit, the BOMs should only be inserted when the proper alignment has been reached. For ESF links, both BFA and MFA are required for insertion. This condition affects the insertion of BOMs bits and the reporting of stack empty to the host. 21.22.12 CEPT, CEPT Multiframe Transmit Data Link Sa bits Stack Provides two multiframes of Sa-bit storage for transmission on CEPT links. Provides interrupt for stack empty. Performs retransmission of stack when update has yet to be performed. Provides capability to source Sa bits from blocks other than the data link block. Provides host access to stack using processor clock to provide fast access. This block will always present the Sa bits stored in the Tx stack to the TDM data stream. The data valid signal will reflect the programming of the Sa source control bits (FRM_SA4SC--FRM_SA8SC, Table 412). In CEPT, the Sa bits are located in time slot 0 of the NOTFAS frames (odd -numbered frames). CEPT multiframe format frames are numbered 0 through 15 with the Sa bits located in time slot 0 of the odd numbered frames (NOTFAS frames). The Sa bits are stored in the Tx stack as follows. Table 594. Shared Tx Stack Format for CEPT Frame Word 0 1 2 3 4 15 SA41 SA51 SA61 SA71 SA81 14 SA43 SA53 SA63 SA73 SA83 13 SA45 SA55 SA65 SA75 SA85 12 SA47 SA57 SA67 SA77 SA87 11 SA49 SA59 SA69 SA79 SA89 10 SA411 SA511 SA611 SA711 SA811 9 SA413 SA513 SA613 SA713 SA813 8 SA415 SA515 SA615 SA715 SA815 7 SA41 SA51 SA61 SA71 SA81 6 SA43 SA53 SA63 SA73 SA83 5 SA45 SA55 SA65 SA75 SA85 4 SA47 SA57 SA67 SA77 SA87 3 SA49 SA59 SA69 SA79 SA89 2 SA411 SA511 SA611 SA711 SA811 1 SA413 SA513 SA613 SA713 SA813 0 SA415 SA515 SA615 SA715 SA815 Transmission of the Sa stack will take 4 ms, during which time the host should refill the system stack if the Sa bits need to change. Near the beginning of each CEPT double multiframe, the Tx data link block will determine whether a new set of Sa bits is available to be transmitted. The host will indicate this state by resetting the Tx stack empty bit. If this is the case, the new Sa bits will be transmitted; otherwise, the previous Sa bits will be retransmitted. Agere Systems Inc. 515 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) If the Tx stack empty bit was 0 at the beginning of the CEPT double multiframe, then the bit will be set to 1, indicating a request for new Sa bits. When enabled using the FRM_ASRC (Table 412) bit, the SA bits should only be inserted when the proper alignment has been reached. For CEPT links, only BFA is required for insertion. For CEPT CRC-4 links, both BFA and MFA need to be valid. This affects the insertion of Sa bits and the reporting of stack empty to the host. There is another configuration bit FRM_TXCRCSM (Table 412) which allows the CEPT CRC-4 links to insert when only BFA is active (FRM_TXCRCSM). Before enabling a link for CEPT format, the host should initialize the stack and set the Tx stack empty bit to 0. If not, the data link block will transmit the reset state of the stack which is arbitrary. 21.22.13 Transmit Data Link Stack Idle Modes D4 J-D4 J2 CMI No data link features 21.22.14 SLC-96, DDS, or CEPT ESF Frame Alignment For CEPT, DDS, or SLC-96 frames, loss of frame alignment is not an issue since the framer is the source of time slot 0 or the F bits. Once a link is enabled, the frame sequence always starts at the beginning. In the case of the system being the source of multiframe alignment, the data link block will simply deliver what is requested. T D M ID TX LIN E TR A N SM IT F RA M E R S YS TE M IN TE R FA C E T DM D AT A RX S Y ST EM D A TA / VALID D AT A L IN K IN T ER R U PT TD M IN T ER F AC E S TA CK R E AD S TA C K TR AN S FE R R E Q U ES T S H A RE D R X S TA C K S TA C K WR ITE FD L C LO C K RE A D R EQ U E ST LO G IC PR O C E SS O R C LO C K R EA D AR B ITR A TIO N L O G IC HOST R E G IST ER S S YS TE M T X S TA CK R EA D R EQ U E S T W RITE R E Q U ES T IN TE R N AL B U S 5-9027(F)r.1 Figure 63. Tx Data Link Block Diagram 516 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.23 HDLC Functional Description The Super Mapper framer is capable of inserting and extracting HDLC data to and from multiple logical channels. The system may specify any bit as an HDLC channel. For ESF, DDS, and CEPT framing formats, the facility data link (FDL) bit may be programmed as a logical HDLC channel. Multiple bits within a time slot may be concatenated to form a logical HDLC channel. The maximum number of bits in a logical channel is 8 bits (all within a single time slot) and corresponds to a maximum data rate of 64 kbits/s. Multiple logical HDLC channels may be assigned to a single payload time slot. Received data from a HDLC channel is placed into a 128-byte FIFO. Transmit HDLC channels are read from a separate 128-byte FIFO. Once the HDLC channels are defined and the HDLC is enabled, the framer extracts and inserts the HDLC frames in these channels. The function of the receive and transmit HDLC sections will be described separately. 21.24 HDLC Operation This section describes the standard HDLC functions performed by the framer's HDLC block. The HDLC transmitter accepts parallel data from the transmit FIFO, converts it to a serial bit stream, provides bit stuffing as necessary, adds the CRC and the opening and closing flags, and sends the framed serial bit stream to the transmit framer. The HDLC receiver unit receives time slot data from the receive framer, identifies frames for proper format, reconstructs data bytes, provides bit destuffing as necessary, and loads parallel data in the receive FIFO. HDLC frames on the serial link have the following format. Table 595. HDLC Frame Format Opening Flag 01111110 User Data Field Frame Check Sequence (CRC) 8 bits (multiple of 8 bits) 16 bits Closing Flag 01111110 All bits between the opening flag and the CRC are considered user payload. User payload data such as the address, control, and information fields are fetched from the transmit FIFO for transmission. Received user payload data is stored in the receive FIFO buffers. The 16 bits preceding the closing flag are the frame check sequence or cyclic redundancy check (CRC) bits. 21.24.1 Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing) The HDLC protocol recognizes three special bit patterns: flags, aborts, and idles. These patterns have the common characteristic of containing at least six consecutive ones. A user data byte can contain one of these special patterns. Transmitter zero-bit stuffing is done on user data and CRC fields of the frame to avoid transmitting one of these special patterns. Whenever five ones occur between flags, a 0 bit is automatically inserted after the fifth 1, prior to transmission of the next bit. On the receive side, if five successive ones are detected followed by a 0, the 0 is assumed to have been inserted and is deleted (bit destuffing). 21.24.2 Flags All flags* have the bit pattern 01111110 and are used for frame synchronization. The framer's HDLC block automatically sends one flag at the beginning of each frame. If the FRM_HTIDLE (Table 435) bit is cleared to 0, the FLAG byte (01111110) is continuously sent between frames if no data is present in the FIFO. If the FRM_HTIDLE bit is set to 1, the HDLC block sends continuous FRM_IDLE (Table 349) bytes (11111111) when the transmit FIFO is empty. Once there is data in the transmit FIFO, an opening flag is sent, followed by the frame. During transmission, two successive flags will not share the intermediate 0. * Regardless of the time-fill byte used, there always is an opening and closing flag with each frame. Back-to-back frames are separated by two flags. Agere Systems Inc. 517 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) An opening flag is always generated at the beginning of a frame (indicated by the presence of data in the transmit FIFO and the transmitter enabled). FRM_CFLAGS[1:0] (Table 435) determines which FRM_FCNT[0--3][4:0] parameter to use. The FRM_FCNT[0--3][4:0] parameters define the number of idle flags that are sent between HDLC packets. Data is transmitted per the HDLC protocol until a byte is read from the FIFO with Tx HDLC register bits FRM_HTFUNC[1:0] (Table 438) = 01 set. The HDLC block follows this byte with the CRC sequence and a closing flag. The HDLC receiver recognizes the 01111110 pattern as a flag. Two successive flags may or may not share the intermediate 0 bit and are identified as two flags (i.e., both 011111101111110 and 0111111001111110 are recognized by the HDLC block). When another flag is identified, it is treated as the closing flag. As mentioned above, a flag sequence in the user data or FCS fields is prevented by zero-bit insertion and deletion. 21.24.3 Aborts The bit pattern of the abort sequence is 01111111, with 0 transmitted first. A frame can be aborted by writing setting Tx HDLC register bits FRM_HTFUNC[1:0] = 01. This causes the last byte written to the transmit FIFO to be followed by the abort sequence upon transmission. Once a byte is tagged by a write to Tx HDLC register bits FRM_HTFUNC[1:0] = 01, it cannot be cleared by subsequent writes. When receiving a frame, the receiver recognizes the abort sequence whenever it receives a 0 followed by seven consecutive ones. This status results in the abort bit, and possibly the bad byte count bit and/or bad CRC bits, being set in the status of frame status byte which is appended to the receive data queue. The last bytes of user data are assumed to be CRC bits and are placed in the queue in the regular HDLC mode. All subsequent FRM_IDLE or flag bytes are ignored until a valid opening flag is received. 21.24.4 Receive IDLES In accordance with the HDLC protocol, the HDLC block recognizes 15 or more contiguous received ones as idle. When the HDLC block receives 15 contiguous ones, the receiver FRM_IDLE[7:0] bit, idle is set. 21.24.5 CRC For a given frame of bits, 16 additional bits that constitute an error-detecting code are added by the transmitter. As called for in the HDLC protocol, the frame check sequence bits are transmitted most significant bit first and are bit stuffed. The cyclic redundancy check (or frame check sequence) is calculated as a function of the transmitted bits by using the ITU-T standard polynomial: x 16 + x 12 +x5+1 At the other end, the receiver performs the same calculation on the received bits after destuffing and compares the results to an expected result. An error occurs if, and only if, there is a mismatch. The transmitter can be instructed to transmit a corrupted CRC by setting the transmit bad CRC bit DXBCRC (DCI-DCR-1-B6). As long as the DXBCRC bit is set, the CRC is corrupted for each frame transmitted by logically flipping the least significant bit of the transmitted CRC. The receiver calculates and verifies the CRC for an incoming frame. The result of the CRC check is reported in bit 7 of the status of frame byte, which is placed in the receive FIFO after the last data byte of the frame. The CRC is stored in the FIFO at all times. 518 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.24.6 HDLC Mode The receive queue manager forms a status of frame (SF) word for each HDLC frame and stores the SF word in the receive HDLC FIFO after the last data byte of the associated frame. HDLC frames that include the payload and the frame check sequence (FCS) bytes and consists of n bytes will have n + 1 bytes stored in the receive FIFO. The FCS bytes of the received HDLC frame are stored into the receive FIFO. 21.24.7 Receive HDLC Transparent Mode The receive FIFO receives data from the receive framer and directly stores this data information bit-for-bit, least significant bit first. If the FRM_MODE[3:0] (Table 422) and FRM_MATCH[7:0] (Table 442) bits are set, the receive HDLC FIFO will load data only after the matched pattern has been detected. The search for the match character is in a sliding window fashion and data is aligned accordingly. The octet is aligned relative to the first HDLC clock after frame alignment is established. The match character and all subsequent bytes are placed into the receive FIFO. A receive reset command causes the receive to realign to the match character if enabled. 21.24.8 Receive HDLC Data is presented to the TDM to channel conversion block from the TDM bus (see Figure 64 below). This block determines which, if any, channel the data belongs to. When data is found that belongs to a channel, it is sent to the HDLC serial to parallel block. This block buffers up bits into bytes and does HDLC processing on channels so programmed. When a valid byte of data (or status) has been grouped together for a specific channel, that data is then sent to the FIFOs interrupt block. Here, the data is further buffered in separate FIFOs for each channel where data can be read by the microprocessor. LOOPBACK FROM TX CHAN INTERNAL TDM BUS TDM TO CHANNEL CONVERSION INTS. CHAN DATA DATA 1 ENABLE HDLC SERIAL-TO-PARALLEL 8 TYPE FIFOs/ INTERRUPTS VALID P CNTL P DATA P ADDR 5-9028(F)r.1 Figure 64. Receive HDLC Block Diagram 21.24.9 Receive HDLC Features In transparent mode, bits are simply gathered into bytes with the option of waiting for an initial provisionable 8-bit pattern to be detected before starting. In HDLC mode, incoming data is correctly formatted and packetized according to the HDLC standard. In HDLC mode, aborted packets, idle status, and CRC errors are checked for and reported. Agere Systems Inc. 519 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 128 bytes of FIFO buffering for each channel with the ability to interrupt on end of packet (EOP), exceed programmable FIFO threshold or FIFO overrun. Each channel has independent reset and enable. Reset will reset all state machines, disable the channel, reset FIFO pointers, and clear pending interrupts. Disabling a channel will reset the state machine but not affect the FIFO pointers or interrupts. Any channel can be programmed to run from any combination of bits from any one time slot of either odd or even (or both) frame numbers of any link. A loopback mode (from transmit HDLC, through HDLC to FIFO) is supported. Channels will not operate if the corresponding link/framer goes out of frame (function is equivalent to channel disabled). Data is ignored if the link/framer is not in basic frame alignment. Upon selection from the top level, the 128 bytes of FIFO per-channel can be converted into 512 bytes of FIFO, with a quarter of the channels. Data received from the receive framer is stored in the appropriate channel receive FIFO. In the HDLC mode, the receiver also places a status of frame byte in the receive FIFO for every complete frame received. The receive HDLC channel FIFO register bits FRM_HRCOUNT[9:0] (Table 446) report the number of bytes available for this particular channel since the last byte received by the HDLC receive block regardless of how many bytes were read by the host. The host loads the data from the RFIFO of the various channels through the microprocessor interface. PRM INFO INTS. CHAN TDM BUS ACK/UNDERFLOW CHAN CHAN DATA TDM TO CHANNEL CONVERSION FIFOs/ INTERRUPTS 8 TYPE ENABLE HDLC/ PARALLEL-TOSERIAL VALID DATA 1 LOOPEN TDMEN P CNTL P DATA P ADDR 5-9029(F)r.1 Figure 65. Transmit HDLC FIFO Block Diagram 21.24.10 Transmit HDLC FIFO Features In transparent mode, simply transform the data to a serial output. In HDLC mode, correctly format and packetize the outgoing data bits. In HDLC mode, sends normal packets (close with flag) or abort packets (via command or absence of data). Provide 128 bytes of FIFO buffering for each channel with ability to interrupt on packet done, below programmable FIFO threshold or underrun (FIFO empty in middle of packet). Each channel has independent reset and enable. Reset will reset all state machines, disable the channel, reset FIFO pointers, and clear pending interrupts. Disabling a channel will reset the state machine but not affect the FIFO pointers or interrupts. 520 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Any channel can be programmed to run for any combination of bits for any one time slot of either odd or even (or both) frame numbers of any link. A local loopback is supported. (From transmit FIFO through the HDLC back to the receive FIFO.) The PRM data is received from the framer performance monitoring block approximately once per second per link. If the link is enabled to send PRM data, then the PRM packet will be sent as the next packet on that link. The PRM packet contains data for the current and three previous seconds. The format of the PRM packet is shown in Table 587, Performance Report Message Format on page 507. Table 596. Performance Report Message Structure Octet Number 1 2 3 4 5 6 7 8 9 10 11 12 13--14 15 PRM B7 G3 FE G3 FE G3 FE G3 FE PRM B6 LV SE LV SE LV SE LV SE PRM B5 G4 LB G4 LB G4 LB G4 LB PRM B4 PRM B3 FLAG SAPI TEI Control U1 U2 G1 R U1 U2 G1 R U1 U2 G1 R U1 U2 G1 R FCS FLAG PRM B2 PRM B1 PRM B0 C/R EA EA SL Nm SL Nm SL Nm SL Nm G6 NI G6 NI G6 NI G6 NI G5 G2 G5 G2 G5 G2 G5 G2 In Table 596, the flags (octet 1 and 15) are normal HDLC flags (note that the CFLAGS bit must be programmed to 1 to force nonshared flags), SAPI = 001110, C/R is programmable, EA = 0 in octet 2 and 1 in octet 3, TEI = 0000000, Control = 00000011. Octets 5 and 6 contain the most recent data received from the performance monitor (except U1, U2, R = 0 always). Octets 7 and 8 contain the same data from the previous second. Octets 9 and 10 contain data from the second before that (antepenultimate second) and octets 11 and 12 contain data for the second before that. The FCS is automatically generated by the HDLC. The data normally received from the performance monitor will be initialized to all zeros. Transmit HDLC data is loaded into the channel transmit FIFO (TFIFO) via the Tx HDLC channel data bits FRM_HTDATA[7:0] (Table 438). Multiframes can be placed in the Tx HDLC FIFO. In HDLC mode, the final byte of each frame is marked by writing the Tx HDLC FRM_HTFUNC[1:0] (Table 438) bits to the appropriate value. The transmit HDLC channel count register indicates how many additional bytes can be added to the Tx HDLC FIFO. The transmitter empty (Tx HDLC FRM_HTTHRSH (Table 436)) interrupt bit is set in the HDLC interrupt status register when the TFIFO is below the number of bytes specified in the threshold registers. A Tx HDLC FRM_HTDONE interrupt occurs for each HDLC frame completed. In HDLC mode, an Tx HDLC FRM_HTUND (Table 436) interrupt is generated if the transmitter underruns. There is no interrupt indicated for a transmitter overrun that is writing more data than empty spaces exist. Overrunning transmitter data is ignored which results in missing data in the frame. Agere Systems Inc. 521 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.25 Framer Phase-Lock Loop (PLL) The Super Mapper incorporates an internal PLL to generate transmit path line clocks for the framers at DS1, and E1 from an external system clock (device pin CLKIN_PLL (AD24)). The external system clock is multiplied by an analog phase-locked loop (PLL) and fractionally divided down to obtain the required line clock frequencies. C L K IN _ P L L M O D E 2_ P L L M O D E 1_ P L L A N A L O G P LL AND FR AC TIO N A L D IV ID E R C L O C K S TO FR A M E R BL O C K M O D E 0_ P L L M P U R EG IST ER B IT M PU_CG _PW RDN 5-9075(F) Figure 66. Framer PLL The PLL may be programmed for eight different external system clocks with the device pins: MODE2_PLL (AB21) (MSB), MODE1_PLL (AE24), and MODE0_PLL (AF24) (LSB), as shown in Table 597 below. Table 597. Clock Mode Programming for PLL Mode Device Pins Clock Select MODE2_PLL, MODE1_PLL, MODE0_PLL 000 001 010 011 100 101 110 111 System Clock Frequency (MHz) CLKIN_PLL Reserved (do not use) 51.84 26.624 19.44 16.384 8.192 4.096 2.048 The PLL is used when framer bit PLL_BYPAS = 0 (Table 301). When PLL_BYPAS = 1, the PLL is bypassed and an external clock at the system interface is used as the line clock. An example would be when the framers are programmed for a CHI interface at 2.048 MHz and the frames are programmed for E1, the PLL may be bypassed and the CHI system clock may be used as the line clock. The PLL may be powered down when not in use with microprocessor register bit SMPR_MPU_CG_PWRDN (Table 70) set to 1. 522 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.25.1 Framer Timing Selection The following diagram shows the framer timing selection. tp_rclk[1--28] rs_gtclk 28 1 BUFFER x28 CLKIN_PLL 28 FRM_SW_TRN[1--28] FRM_PLL_BYPAS 1 DS1 1 MODE2_PLL MODE1_PLL MODE0_PLL PLL 1 E1 BUFFER x28 28 0 0 0 1 1 1 tp_tclk[1--128] 0 FRM_LOOP TIMING 0 rp_rclk_[1:28] 3 TRANSMIT PATH FRAME FORMATTER 28 FRM_MODE[1--28][3:0] FRM_TXLBMD[1:0] FRM_AUTOPLB FRM_AUTOLLB 5-9076(F)r.1 Figure 67. Framer Block Transmit Path Timing Selection Legend for Figure 67: Device pins: CLKIN_PLL (AD24)--system clock into PLL. MODE2_PLL (AB21)--PLL input clock frequency select pins. MODE1_PLL (AE24). MODE0_PLL (AF24). Framer register bits: FRM_MODE[3:0] (Table 422)--framing mode select (per link). FRM_PLL_BYPAS (Table 301)--transmit path clock select from PLL or external system interface (global). FRM_SW_TRN (Table 301)--switching or transport mode select (global). Framer internal signals: tp_rclk--transmit path receive clock. tp_tclk--transmit path transmit clock. rs_gtclk--receive system global transmit clock (LINERXDATA[29] device pin D13). rp_rclk--receive path receive clock 21.26 System Interface 21.26.1 System Interface Introduction The system interface of Super Mapper can be programed for several modes of operation: Concentration Highway (CHI) Mode. This is the system interface on Agere's current framers. It can be programmed to operate at 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz clock rates (data rates up to 8.192 Mbits/s only). In this mode, a pair of global system clock and system frame sync (one for the transmit and one for the receive direction) are required. This interface can be used, for example, to interface with the TSI device. Agere Systems Inc. 523 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Parallel Bus System Interface Mode. This interface consists of a 17-bit wide parallel bus operating at 19.44 Mbits/s, 9 bits of which form a byte of data and a data parity bit while the other 8 bits contain the signaling and control information. A clock and frame sync are expected in both the receive and transmit directions. For a 28-link device, only 1/3 of the bytes are populated. In the transmit direction the unpopulated bytes are 3-stated, while in the receive direction they are ignored. Three 28-link devices (Super Mappers) can be connected in parallel to the telecom bus for implementing an STS-3 (STM-1) rate interface. Note: The Tx system is defined as the interface that sends data out of the chip and toward the system (nonSONET) interface. The Rx system receives data from the system. These designations are opposite of the path definitions for the Super Mapper. 21.26.2 System Interface References/Standards ITU G.783 characteristics of synchronous digital hierarchy (SDH) equipment functional blocks. ITU Q.511 exchange interfaces towards other exchanges. 21.26.3 Transmit/Receive System Interface Features The features supported in the system interface are summarized below: Data rates of 2.048 Mbits/s, 4.096 Mbits/s, 8.192 Mbits/s, and 19.44 Mbyte/s. Clock rates of 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz, and 19.44 MHz. A global input clock and frame sync (CHI and parallel bus system interface modes). Byte offset--2.048 Mbits/s, 0--31 bytes. Byte offset--4.096 Mbits/s, 0--63 bytes. Byte offset--8.192 Mbits/s, 0--127 bytes. Bit offset (CHI mode). 1/2-bit offset (CHI mode). 1/4-bit offset (CHI CMS mode). Clock mode select (CMS) (CHI mode). Associated signaling mode (ASM) (CHI mode). Double time slot mode, CHIDTS (CHI mode). Double NOTFAS system time slot, FRM_DNOTFAS (Table 347) (CHI and parallel bus system interface modes). Sampled clock edge for transmit system frame sync (CHI mode). Global programmable stuffed time slot position in DS1 mode (CHI mode). Global programmable stuffed byte in DS1 mode (CHI and parallel bus system interface modes). Global single time slot loopback address for system or line. Programmable automatic system AIS (loss of frame alignment). Programmable automatic system AIS (CEPT CRC-4 multiframe alignment timer expiration). On-demand transmission of system AIS. Programmable even/odd parity generation (parallel bus system interface mode). 21.26.4 Double NOTFAS System Time-Slot (FRM_DNOTFAS (Table 347)) Mode This mode is applicable to the CHI and parallel bus system interface modes. In the default case (FRM_DNOTFAS = 0 (Table 347)), both the FAS and NOTFAS time slots are transmitted by the transmit system interface and expected by the receive system interface. 524 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) Setting FRM_DNOTFAS to 1 enables the NOTFAS time slot to be transmitted twice on the transmit system interface in the NOTFAS and FAS time slot (TS0) positions. Similarly, the receive system interface assumes time slot 0 to carry NOTFAS data that is repeated twice. 21.26.5 Transparent Mode This mode is only used in the CHI mode. In the transparent DS1 mode, the transmit system interface inserts the 193rd bit of the DS1 frame in bit 7 (LSB) of the first stuffed time slot. The receive system interface takes bit 7 of the first stuffed time slot and inserts it into the framing bit position (193rd bit on the TDM data bus). In the transparent E1 mode, the transmit system maps 32 received time slots into the CHI time slots. Similarly, the receive system maps the CHI time slots into the TDM bus time slots. The transmit frame formatter inserts TS0 of the CHI (FAS/NOTFAS) into the TS0 of the frame based on the biframe alignment. 21.26.6 Loopbacks Two forms of loopbacks are supported: single time slot system loopback (STSSLB) and single time slot line loopback (STSLLB), as shown in Figure 68 below. When FRM_STSSLB = 1 (Table 350), a single time slot from the receive system interface selected using the configuration parameter FRM_TSLBA[4:0] (Table 350), is looped back to the system. The idle code, programmable using the configuration registers (FRM_IDLE[7:0] (Table 349)), is transmitted to the line in place of the looped back time slot. When FRM_STSLLB = 1 (Table 350), a single time slot from the transmit system interface selected using the configuration parameter FRM_TSLBA[4:0], is looped back to the line. The programmable idle code is transmitted to the system in place of the looped back time slot. SYSTEM LINE ES SINGLE TIME-SLOT SYSTEM LOOPBACK SYSTEM LINE ES SINGLE TIME-SLOT LINE LOOPBACK ES = ELASTIC STORE 5-9030(F)r.1 Figure 68. System Loopbacks 21.26.7 System AIS The transmit system interface transmits AIS automatically to the system on the following conditions: Loss of frame alignment in the frame aligner or the mapper block (provisionable using a configuration register bit). CEPT CRC-4 multiframe alignment timer expiration (provisionable using a configuration register bit). On-demand AIS can also be sent to the system by setting the configuration register bit for the particular link (FRM_MANAIS (Table 419)). Agere Systems Inc. 525 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.26.8 Slip Detection Controlled slips are performed on frame boundaries. Elastic store slip overflow and underflow is monitored with status bits FRM_SLIPO and FRM_SLIPU (Table 393 on page285 ). In the case of an underflow, an entire frame is repeated. In the case of an overflow, an entire frame in skipped. 21.26.9 The Concentration Highway (CHI) Mode This is the system interface on Agere's framers. It can be programmed to operate at 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz clock rates (data rates up to 8.192 Mbits/s only). In this mode, a pair of global system clock and system frame sync (one for the transmit and one for the receive direction) is required. The offset between the frame sync and bit 0 of time slot 0 is programmable in this mode. Figure 70 below shows the transmit system interface operating in the CHI mode. The data path (shown in bold arrows) passes through the slip buffer. Slips in the form of buffer overflows or underflows are detected and reported in this mode. This interface can be used, for example, to interface with the time slot interchange (TSI) device. TFS TCLK FRAME FORMATTER 28 TDM 28 28 FANOUT RATE ADAPTATION BUFFER 1 PLL RS_D[28:1] RS_G RS_GCLK RS_GTCLK TRANSMIT PATH TO CROSSCONNCT BLOCK (XC) RECEIVE SYSTEM RECEIVE PATH TRANSMIT SYSTEM TS_GFS FRAME ALIGNER TDM SLIP BUFFER TS_GCLK TS_D[28:1] 5-9032(F) Figure 69. CHI Mode of the Transmit System Interface 21.26.10 Nominal CHI Timing Figure 70 illustrates nominal CHI frame timing. Double time slot mode (CHIDTS) and associated signaling mode (ASM) is disabled. The frames are 125 s long and consist of 32 contiguous time slots when the 2.048 MHz data rate mode is selected. In DS1 frame modes, the CHI frame consists of 24 payload time slots and eight stuffed (unused) time slots. In CEPT frame modes, the CHI frame consists of 32 payload time slots: TCHIDATA--output data to system. RCHIDATA--input data to system. TCHIFS--transmit CHI frame sync. RCHIFS--receive CHI frame sync. 526 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 125 s TCHIFS/ RCHIFS DS1 FORMAT 2.048 Mbits/s CHI: FRAME 1 24 VALID TIME-SLOTS TCHIDATA FRAME 2 7 STUFFED SLOTS* 1 STUFFED SLOT 24 VALID TIME-SLOTS RCHIDATA FRAME 2 CEPT FORMAT 2.048 Mbits/s CHI: 32 VALID TIME-SLOTS TCHIDATA or RCHIDATA FRAME 1 FRAME 2 4.096 Mbits/s CHI: TCHIDATA FRAME 1 RCHIDATA FRAME 1 HIGH IMPEDANCE FRAME 2 FRAME 2 8.192 Mbits/s CHI: TCHIDATA FRAME 1 RCHIDATA FRAME 1 HIGH IMPEDANCE * The position of the stuffed time is controlled by register bit FRM_STUFFL (Table FRAME 2 FRAME 2 347). FRM_STUFF = 1 is shown. 5-8978(F) Figure 70. Nominal Concentration Highway Interface Timing Agere Systems Inc. 527 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.26.11 CHI Timing with CHI Double Time-Slot Timing (CHIDTS) Mode Enabled Figure 71 illustrates the CHI frame timing when CHIDTS is enabled (bit FRM_CHIDTS (Table 347)) and ASM is disabled (bit FRM_ASM (Table 347)). In the CHIDTS mode, valid CHI payload time slots are alternated with highimpedance intervals of one time slot duration. This mode is valid only for 4.096 Mbits/s and 8.192 Mbits/s CHI rates. 125 s TCHIFS/ RCHIFS FRAME 1 4.096 Mbits/s CHI FRAME 2 TIME TIME SLOT SLOT TS1 TS2 TS3 TS4 TS30 TS31 TS0 TS0 TS1 TS2 TS3 TS4 T30 TS31 TS0 TCHIDATA TS0 TS1 TS2 TS30 TS31 RCHIDATA TS0 TS1 TS2 TS30 TS31 TCHIDATA TS0 8 bits RCHIDATA 8.192 Mbits/s CHI HIGH IMPEDANCE TS0 TS0 5-8979(F) Figure 71. CHIDTS Mode Concentration Highway Interface Timing 528 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.26.12 CHI Timing with Associated Signaling Mode Enabled Figure 72 illustrates the CHI frame timing when the associated signaling mode is enabled (bit FRM_ASM (Table 347)) and the CHIDTS mode is disabled (bit FRM_CHIDTS (Table 347)). The frames are 125 s long and consist of 32 contiguous 16-bit time slots when the 4.096 MHz CHI data rate mode is selected. In DS1 frame formats, each frame consists of 24 time slots and 8 stuffed time slots. Each time slot consists of two octets. In CEPT modes, each frame consists of 32 time slots. Each time slot consists of two octets. 125 s TCHIFS/ RCHIFS FRAME = 64 bytes: 32 DATA + 32 SIGNALING 4.096 Mbits/s CHI: TCHIDATA or RCHIDATA FRAME 1 FRAME 2 DATA AND SIGNALING BYTES ARE INTERLEAVED DATA 0 SIGNALING 0 DATA 31 SIGNALING 31 DATA 0 FRAME 8.192 Mbits/s CHI: TCHIDATA HIGH IMPEDANCE FRAME 1 RCHIDATA FRAME 2 FRAME 1 FRAME 2 5-8980(F) Figure 72. Associated Signaling Mode Concentration Highway Interface Timing 21.26.13 ASM 2-Byte Time-Slot Format Table 598 illustrates the ASM time slot format for valid channels. Table 598. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames DS1: ASM CHI Time-Slot 1 2 3 Payload Data 4 5 6 7 8 A B Signaling Information* C D X F G P * X indicates bits that are undefined by the framer The identical sense of the received system P bit in the transmitted signaling data is echoed back to the system in the received signaling information. The DS1 framing formats require rate adoption from the line-interface 1.544 Mbits/s bitstream to the system-interface 4.096 Mbits/s bitstream. The rate adoption results in the need for stuffed time slots on the system interface. Table 599 illustrates the ASM format for T1 stuffed channels. The stuffed data and signaling bytes contain the programmable idle code in register FRM_STUFF[] (default = 7F (hex)). Agere Systems Inc. 529 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 599. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels ASM CHI Time-Slot 0 1 1 Payload Data* 1 1 1 1 1 0 1 Signaling Information* 1 1 1 1 1 1 X* P * The default stuff byte is shown. 21.26.14 CEPT: Time-Slot 16 Signaling ASM 2-Byte Time-Slot Format Table 600 illustrates the ASM time slot format for valid CEPT E1 time slots. Table 600. Associated Signaling Mode CHI 2-Byte Time-Slot format for CEPT CEPT ASM CHI Time-Slot 1 2 3 Payload Data 4 5 6 7 8 A B Signaling Information C D X* X* * In the CEPT formats, these bits are undefined. The P bit is the parity-sense bit calculated over the 8 data bits, the ABCD bits, and the P bit. The identical parity-sense of the received system Pbit in the transmitted signaling data is echoed back to the system in the received signaling information 21.26.15 CHI Offset Programming To facilitate bit offset programming, two parameters are introduced: CEX is defined as the clock edge with which the first bit of time slot 0 is transmitted; CER is defined as the clock edge on which bit 0 of time slot 0 is latched. CEX and CER are counted relative to the edge on which the CHIFS signal is sampled. Values of CEX and CER depend upon the values of the parameters described below. The following three tables give decimal values of CEX and CER for various values of FRM_CMS (Table 347), FRM_TFSCKE (Table 347), FRM_RFSCKE (Table 355), FRM_TOFF[2:0] (Table 418), and FRM_ROFF[2:0] (Table 418). The byte (time slot) offsets are assumed to be zero in the following examples. Table 601. Programming Values for FRM_TOFF[2:0] and FRM_ROFF[2:0] when FRM_CMS = 0 FRM_TFSCKE/ FRM_RFSCKE 0 1 000 0 0 001 2 2 FRM_ROFF[2:0] or FRM_TOFF[2:0] 010 011 100 101 110 4 6 8 10 12 4 6 8 10 12 111 14 14 CER or CEX (decimal) Table 602. Programming Values for FRM_TOFF[2:0] when FRM_CMS = 1 FRM_TFSCKE 0 1 000 0 0 001 4 4 010 8 8 FRM_TOFF[2:0] 011 100 101 12 16 20 12 16 20 110 24 24 111 28 28 CEX (decimal) 110 24 24 111 28 28 CER (decimal) Table 603. Programming Values for FRM_ROFF[2:0] when FRM_CMS = 1 FRM_RFSCKE 0 1 530 000 0 0 001 4 4 010 8 8 FRM_ROFF[2:0] 011 100 101 12 16 20 12 16 20 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) The offset is further determined by the use of four bits FRM_THALFOFF, FRM_RHALFOFF, FRM_TQUAROFF, and FRM_RQUAROFF (Table 418). When the CHI clock and data rate are the same (FRM_CMS = 0), setting FRM_THALFOFF and FRM_RHALFOFF bits will increase the clock edge offset, CEX and CER, by one. When the CHI clock is twice the data rate (FRM_CMS = 1), setting the FRM_THALFOFF and FRM_RHALFOFF bits will increase the clock edge offset by two, and setting the FRM_TQUAROFF and FRM_RQUAROFF bits will increase the clock offset by one. The byte offsets FRM_TBYOFF[6:0] and FRM_RBYOFF[6:0] (Table 418) increment the offset one byte at a time. When FRM_CMS = 0, the offset will increment by 16 clock edges; when FRM_CMS = 1, the offset will increment by 32 clock edges. Figure 73 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters: FRM_CMS = 0, FRM_TFSCKE, FRM_RFSCKE = 0, FRM_TQUAROFF = 0, FRM_RQUAROFF = 0. FRM_THALFOFF = 1, FRM_TOFF[2:0] = 001, FRM_TBYOFF[6:0] = 0000000. FRM_RHALFOFF = 0, FRM_ROFF[2:0] = 010, FRM_RBYOFF[6:0] = 0000000. CHI FRAME SYNC IS SAMPLED ON THE FALLING EDGE TCHICK/ RCHICK 1 3 5 2 4 7 6 8 TCHIFS/ RCHIFS CEX = 3 TCHIDATA HIGH IMPEDANCE BIT 0, TS 0 BIT 1, TS 0 BIT 2, TS 0 BIT 1, TS 0 BIT 2, TS 0 CER = 4 RCHIDATA BIT 0, TS 0 5-8983(F) Figure 73. TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 0 (CEX = 3 and CER = 4, Respectively) Figure 74 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters: FRM_CMS = 1, FRM_TFSCKE = 0, FRM_RFSCKE = 0. FRM_THALFOFF = 1, FRM_TQUAROFF = 1, FRM_TOFF[2:0] = 000, FRM_TBYOFF[6:0] = 0000000. FRM_RHALFOFF = 1, FRM_RQUAROFF = 0, FRM_ROFF[2:0] = 001, FRM_RBYOFF[6:0] = 0000000. Agere Systems Inc. 531 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) CHI FRAME SYNC IS SAMPLED ON THE FALLING EDGE 1 TCHICK/ RCHICK 3 5 2 7 4 6 8 TCHIFS/ RCHIFS CEX = 3 TCHIDATA HIGH IMPEDANCE BIT 1, TS 0 BIT 0, TS 0 CER = 6 RCHIDATA BIT 1, TS 0 BIT 0, TS 0 5-8984(F) Figure 74. CHI TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 1 (CEX = 3 and CER = 6, Respectively) The timing figures shown are functional timing diagrams. See Section 5.5 Concentration Highway (CHI) Timing on page 46 in the Timing Characteristics section of this data sheet for CHI interface and clock timing parameter specifications. 21.26.16 The Parallel Bus System Interface Mode This interface consists of a 16-bit wide parallel bus operating at 19.44 Mbyte/s, nine bits of which form a byte of data and a data parity bit while the other eight bits contain the signaling and control information (A, B, C, and D signaling bits, F and G signaling state bits, P parity bit, and a don't care bit). A clock and frame sync are expected in both the receive and transmit directions. Figure 75, below, shows the transmit system interface in the parallel bus system interface mode. The timing specifications for this interface are in the Section 5.6 Parallel System Bus Timing on page 47 in the Timing Characteristics section of this data sheet. The offset between the frame sync and data is fixed in this mode. TFS TCLK FRAME FORMATTER 28 TDM RATE ADAPTATION BUFFER RS_D[16:1] RS_GFS RECEIVE SYSTEM 28 28 FANOUT 1 PLL RS_GCLK RS_GTCLK TRANSMIT SYSTEM TS_GFS FRAME ALIGNER TDM 28 SLIP BUFFER TS_GCLK TS_D[16:1] 5-9037(F) Figure 75. Parallel Bus System Interface Mode of the Transmit System Interfac e 532 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) At 19.44 MHz, the parallel bus system interface has 2430 clocks per 8 ms frame. To transfer 84 DS1s or 63 E1s requires only 2016 clocks. The difference is made up by inserting stuffs onto the bus every so often. Since multiple devices (three) will drive the bus, the stuff positions are also used to greatly simplify the timing when switching from one device to another. Both DS1 and E1 use the same general method to drive the bus which is: Send some stuffs, Send some stuffs, Send some stuffs, Send some stuffs, Etc. then device 0 sends then device 1 sends then device 2 sends then device 0 sends TS0 TS0 TS0 TS1 for for for for link 1 - n, then link 1 - n, then link 1 - n, then link 1 - n, then 21.26.17 Distributed Stuffing: DS1 For DS1, the parallel bus system interface time slot arrangement is as follows: Six stuff TSs | device 0, link 0--27 | six stuff TSs | device 1, link 0--27 | five* stuff TSs | device 2, link 0--2 |, etc. Where * means in TSs 1, 5, 9, 13, 17, 21 six stuff time slots are inserted instead of five. Hence: total time slots = (6 + 28 + 6 + 28 + 5 + 28) * 24 TSs + 6 extra stuff TSs = 2430 TSs. Agere Systems Inc. 533 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) Table 604 shows the distribution of the time slots and stuffing in the STM-1 frame for the DS1 mode. Table 604. Parallel System Bus Interface Time-Slot Arrangement for DS1 Link Number (R = stuffed time slot) TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ... Repeat TS5-TS8 Format For TS9--TS12, TS13--TS16, TS17--TS20 ... TS21 TS22 TS23 TS24 534 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DEV2 -- R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.26.18 Distributed Stuffing: E1 For E1, the parallel bus system interface time slot arrangement is as follows: Five* stuff TSs | device 0, link 0--20 | four stuff TSs | device 1, link 0--20 | four stuff TSs | device 2, link 0--20 |, etc. Where * means in TS 0 three stuff time slots are inserted instead of five. Hence: total time slots = (5 + 21 + 4 + 21 + 4 +21) * 32 TSs - 2 TSs skipped in TS 0 = 2430 TSs. Table 605 shows the distribution of the time slots and stuffing in the STM-1 frame for the E1 mode. Table 605. Parallel System Bus Interface Time-Slot Arrangement for E1 Link number (R = stuffed time slot) TS0 TS1 TS2 TS3 TS4 DEV0 -- -- R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV1 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV2 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV1 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV2 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV1 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV2 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV1 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV2 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV1 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV2 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ... Repeat TS4 Format For TS5--TS30 ... TS31 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV1 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DEV2 -- R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Table 606. PSB System I/O Definition Name TS_D[ ], RS_D[] [16:9] TS_D[ ], RS_D[] [8] TS_D[ ], RS_D[] [7] TS_D[ ], RS_D[] [6] TS_D[ ], RS_D[] [5] TS_D[ ], RS_D[] [4] TS_D[ ], RS_D[] [3] TS_D[ ], RS_D[] [2] TS_D[ ], RS_D[] [1] TS_GCLK, RS_GCLK TS_GFS, RS_GFS RS_GTCLK Agere Systems Inc. Definition Time Slot Data [msb:lsb] Data Parity Signaling A-bit Signaling B-bit Signaling C-bit Signaling D-bit Signaling F-bit Signaling G-bit Signaling Parity System Global Clock [19.44 MHz] System Frame Sync External Global Transmit Line Clock (CEPT-2.048 MHz, T1-1.544 MHz). Only required if internal framer PLL is not used. 535 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 21.26.19 Drive to 3-State and 3-State to Drive Timing The minimum number of stuff time slots is 3 (in the E1 mode). This allows enough time to switch the bus between devices. The device on the bus can drive the bus high for one extra clock cycle to ensure a fast rise time. The device then 3-states while the bus is pulled high, using a pull-up resistor. Optionally, the next device starts driving early for one clock cycle to ensure that there is minimal delay between the clock and data outputs (the turn-on delay of the buffer is eliminated by turning on the buffer one clock cycle early). The timing for the case of three stuff time slots is shown in the Figure 76. (In the receive direction from the switch, we assume the stuff time slots are driven to 1.) PULLED HIGH USING A PULL-UP DEV 0 DRIVES HIG H FOR ONE EXTR A CLO CK CYCLE DEV 1 MAY DRIVE HIGH ONE CLOCK CYCLE EARLY DEV 0, LINK 0-N DEV 1, LINK 0-N SYS DATA[I] SYS CLK R R R MINIMUM OF 3 STUFF TIME-SLOTS DEV 0 ENA DEV 1 ENA DRIVE HIGH-IMPEDANCE HIGH-IMPEDANCE DRIVE 5-8992(F) Figure 76. Parallel Bus System Interface Turnaround Timing See Section 5.6 Parallel System Bus Timing on page 47 in the Timing Characteristics section of this data sheet for PSB receive and transmit interface and clock timing parameter specifications. 21.27 Serial Multiplex Interface The network serial multiplexed interface (NSMI) provides a no-slip capability for transfer of multiple framed DS1s and/or E1s from one device to another using a very narrow interface. A no-slip interface is widely used in datacom and IMA applications. There are two NSMI interface modes of operation requiring either six or eight signals to be used. Mode 1 uses six primary signals. The six primary signals are composed of three transmit and three receive signals. The transmit signals are LINETXCLK29 (R24), LINETXDATA29 (T23), and LINETXSYNC29 (R26). The receive signals are LINERXCLK29 (B13), LINERXDATA29 (D13), and LINERXSYNC29 (A13). Each group of three signals provide clock, data, and control information. The data and link number specified by the LINETXDATA29 and LINETXSYNC29 will be received in the same order by the receive side of the Super Mapper after traversing the switch side of the system. 536 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.27.1 Signals (6-Pin Mode) R E C E IV E L IN E R X C L K 2 9 TR A N S M IT L IN E R X D A TA 2 9 L IN E R X S Y N C 2 9 SUPER M APPER SMI IN T E R F A C E S W IT C H L IN E T X C L K 2 9 L IN E TX D A TA 2 9 L IN E T X S Y N C 2 9 R E C E IV E T R A N S M IT 5-9100(F)r.2 Figure 77. Signals (6-Pin Mode) LINERXCLK29 (B13)--Output of the switch, which is the LINETXCLK29, delayed. LINERXDATA29 (D13)--Serial data sent out of the switch. The MSB is sent out first and at the same time, the first bit (start bit) of the LINERXSYNC29 is sent out. LINERXSYNC29 (A13)--The control data, otherwise known as the serial ID (SID), is generated by the switch. LINETXCLK29 (R24)--Clock signal generated by the Super Mapper. LINETXDATA29 (T23)--Serial data sent out of the Super Mapper. The MSB is sent out first and at the same time the first bit (start bit) of the LINETXSYNC29 is sent out. LINETXSYNC29 (R26)--The control data, otherwise known as the serial ID (SID), is generated by the Super Mapper. Mode 2 uses the same six primary signals as mode 1, along with two additional transmit signals. Signal RXDATAEN (AB19) is a clock signal generated by the Super Mapper. Signal TXDATAEN (W22) contains control data in the same format as the LINETXSYNC29 (R26) and LINERXSYNC29 (A13) signals. These two extra transmit signals from the Super Mapper specify data links and data requested on the Super Mapper NSMI receive ports. This allows the Super Mapper to receive links and data independent from those transmitted by the Super Mapper. 21.27.2 Signals (8-Pin Mode) R E C E IVE LIN E R X C L K 29 T R A N S M IT L IN E R X D A T A2 9 LIN E R X S YN C 2 9 SMI IN TE R FA C E L IN ET XC LK 2 9 S U P ER M AP P E R SW ITC H LIN E TX D A TA 2 9 L IN E T XS Y N C 2 9 R EC EIV E TR A N S M IT R X D A TA E N EX TR A TR A N S M IT T XD AT A EN E X TR A R EC EIV E 5-9101(F)r.2 Figure 78. Signals (8-Pin Mode) Agere Systems Inc. 537 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) LINERXCLK29 (B13)--Output of the switch, which is the LINETXCLK29, delayed. LINERXDATA29 (D13)--Serial data sent out of the switch. The MSB is sent out first and at the same time, the first bit (start bit) of the LINE_RXSYNC29 is sent out. LINERXSYNC29 (A13)--The control data, otherwise known as the serial ID (SID), is generated by the switch. LINETXCLK29 (R24)--Clock signal generated by the Super Mapper. LINETXDATA29 (T23)--Serial data sent out of the Super Mapper. The MSB is sent out first and at the same time the first bit (start bit) of the LINETXSYNC29 is sent out. LINETXSYNC29 (R26)--The control data, otherwise known as the serial ID (SID), is generated by the Super Mapper. RXDATAEN (AB19)--Clock signal generated by the Super Mapper. TXDATAEN (W22)--The control data, otherwise known as the serial ID (SID), is generated by the Super Mapper. 21.27.3 Timing Diagrams Single Octet -- Data is sent out on the LINETXDATA29 (T23) line serially with the MSB of the data first. The MSB is driven at the same time the START bit of the LINETXSYNC29 (R26) signal is driven. -- Following the START bit, the FSYNC bit of the SID is driven. After the FSYNC bit, the LSB of the LINKNUMBER is sent. Once the MSB of the LINKNUMBER is driven, the final bit of the SID is sent. This final bit is a reserved bit and must be 0. LINETXCLK29 SERIAL DATA LINETXDATA29 MSB LINETXSYNC29 START LSB LINKNUMBER[5:0] fSYNC LSB MSB RESERVED 5-8990(F)r.2 Figure 79. Network Serial Multiplexed Interface (Single Octet) Table 607. Serial ID Name Bit START 0 FSYNC 1 LINKNUMBER[5:0] 6:2 -- 7 Description Start Bit. 0 = Start an octet. Bits 1 to 7 follow. 1 = Do not start an octet. Next bit is another bit 0. Frame Sync Bit. Indicates whether the current byte corresponds to the first byte in the frame or not. 0 = Not the first byte. 1 = First byte. Link Number. These bits indicate the link number of received/transmitted data. Reserved. Must write to 0. Multiple Octets -- Single octets of data can be sent out consecutively. Any number of clocks can separate octets. During the time when octets are separated, the LINETXSYNC29 line must be driven with a 1. 538 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) LINETXCLK29 MSB SERIAL DATA LSB SERIAL DATA SERIAL DATA LINETXDATA29 START START START LINETXSYNC29 5-9102(F)r.1 Figure 80. Network Serial Multiplexed Interface (Multiple Octets) 21.27.4 Time-Slot Sequencing Link numbers--28 link numbers, numbered 1 to 28 in T1 mode, and 1 to 21 for E1 mode. Note: Link numbers can start at 0 by setting FRM_LNKSTART ( Table 347) bit 8 at address 0x80050 to 0. This will cause the link numbers for T1 to be numbered 0--27 and for E1, 0--20. In T1 mode, each of the 28 links has 24 time slots and should be numbered 1 to 24. In E1 mode, each of the 21 links has 32 time slots and should be numbered 0 to 31. The FSYNC (Table 607) bit indicates that the data for the link is in the first time slot for that frame (time slot 1 in T1 and time slot 0 in E1 mode). Link data is sent out in any order. It is totally unpredictable. Time slots are sent in order and it is the job of the switch to keep track of which time slot it receives. Note: The order of the links sent out is in relation to the order in which the Super Mapper framer receives the links. Thus it is possible, for example, to receive all the time slots for link 5 and then start the next frame of data for link 5 before link 10 completes its frame. The minimum and maximum time between successive time slots on a link is calculated below for both DS1 and E1, using an NSMI bus clock of 51.84 MHz (19.3 ns clock period). DS1: Max time = (1 link time slot interval) + (27 links * 8 bits * NSMI clk period) + (1 link bit time). Max time = 5.2 s + (27 * 8 * 19.3 ns) + (648 ns) = 10 s. Min time = (1 link time slot interval) - (27 links * 8 bits * NSMI clk period). Min time = 5.2 s - (27 * 8 * 19.3 ns) = 1.0 s. E1: Max time = (1 link time slot interval) + (20 links * 8 bits * NSMI clk period). Max time = 3.9 s + (20 * 8 * 19.3 ns) = 7.0 s. Min time = (1 link time slot interval) - (20 links * 8 bits * NSMI clk period). Min time = 3.9 s - (20 * 8 * 19.3 ns) = 0.8 s. 21.27.5 Timing Between Transmit and Receive 6-Pin Mode. The Super Mapper sends out the data and link information through the transmit signals. While it sends data, it also expects data to be sent back for the same link number and time slot. The only requirement the Super Mapper has is that it receives data at a constant time interval every time. For example, at clock 1 data and link information was sent to the switch. Then at clock 16, data was sent back to the Super Mapper. Thus, the time taken to send data back was 15 clocks. During this time, the next link and data were sent to the switch at clock 9, the Super Mapper must receive the second data requested at clock 24. The time interval must be constant. It doesn't matter how long, but it must be constant. Agere Systems Inc. 539 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 21 28-Channel Framer Block Functional Description (continued) 8-Pin Mode. As in the 6-pin mode, the Super Mapper sends data and link information through the transmit signals. However, in the 8-pin mode, it requests data through the extra transmit signals. The data is then expected to be sent back for the same link number and time slot on the Super Mapper's receive signals. As in the 6-pin mode, the only requirement is that it receives data at a constant time interval. 21.28 Superframer Host Interface 21.28.1 Superframer Register Addressing Table 608 summarizes the current number of global and per link/channel registers for each block. Table 608. Current Number of Global and per Link/Channel Registers for Each Block Block TOP AR RXP FF TXP FF RXP PM TXP PM RXP SYS TXP SYS RXP HDLC TXP HDLC RXP DL TXP DL RXP SIG TXP SIG RXP LC TXP LC Global 1 0 0 0 15 15 5 1 6 6 0 0 1 1 0 0 Per Link/Per Channel 0/0 2/0 2/0 2/0 19/0 19/0 3/0 2/0 0/8 0/8 9/0 9/0 41/0 36/0 1/0 1/0 All of the block global registers will be combined with the top global register. Each block will receive a global select and a per link/per channel select. The block addressing is summarized below. An extra bit is used for future growth of global and link/channel registers. Table 609 describes the addressing scheme. Bit 14 is used to indicate whether a link or HDLC channel is selected (0 selects link and global registers; 1 selects HDLC registers). When an HDLC channel is to be addressed, bits B13--B8 indicate the HDLC channel numbers 0--63 (000000--111111), bit B7 indicates the transmit or receive paths, and bits B3--B0 indicate the register number. When a link is selected, bits B13--B9 indicate the link numbers 1--28 (00001--11100), and bit B8 indicates the transmit and receive paths for the link. Bits B7--B0 indicate the block and register number, as shown in Framer Addressing Map for the Global and Per Link/Channel Registers of the Superframer, Table 609 on page 541. Global registers are selected by setting B14--B9 = 000000, selecting a block using bits B7--B4, and selecting a register using bits B3--B0. 540 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 21 28-Channel Framer Block Functional Description (continued) 21.29 Superframer Register Addressing Table 609 below summarizes the address map for the global and per link/channel registers of the superframer: Table 609. Framer Addressing Map for the Global and Per Link/Channel Registers of the Superframer Address Pins (ADDR15--ADDR0) 15 0 14 13 12 11 10 9 0 0 0 0 0 0 8 7 6 5 Framer Global Registers RXP=0/ 0 0 0 TXP=1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 Links 1--28 (00001--11100) LNK4 LNK3 LNK2 LNK1 LNK0 HDLC Channels 1--64 (000000--111111) HDL9 HDL8 HDL7 HDL6 HDL5 HDL4 0 1 1 1 1 1 1 1 1 RXP=0/ TXP=1 4 3 2 1 0 0 1 0 1 0 1 0 1 Superframer Global AR (Framer) Performance Monitor Performance Monitor HDLC System Interface Signaling Frame Formatter (Transmit Framer) 0 0 0 Reserved 0 0 1 Receive Data Link 0 1 0 Transmit Data Link Others Reserved Framer Functional Register Addresses SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0 0 PM5 PM4 PM3 PM2 PM1 PM0 1 0 0 RDL3 RDL2 RDL1 RDL0 1 0 1 TDL3 TDL2 TDL1 TDL0 1 1 0 0 SYS2 SYS1 SYS0 1 1 1 0 0 AR1 AR0 1 1 1 0 1 FF1 FF0 1 1 1 1 0 Res. Res. 1 1 1 1 1 LC1 LC0 0 0 0 Per Channel Register HDL3 HDL2 HDL1 HDL0 21.29.1 Per Link Register Sections in Table 609 SIG = Signaling (see Section 12.9.1 Signaling Per Link Registers on page 267). PM = Performance Monitor (see Section 12.3 Performance Monitor Global Registers on page 247). RDL = Receive (Facility) Data Link (see Section 12.11 Receive Facility Data Link Configuration and Status Registers on page 288). TDL = Transmit (Facility) Data Link (see Section 12.12 Transmit Facility Data Link Configuration and Status Registers on page 290). SYS = System Interface (see Section 12.13 System Interface, Arbiter, and Frame Formatter Mapping on page 292). AR = Arbiter (Framer) (see Section 12.2 Arbiter (Framer) Global Registers on page 245). FF = Frame Formatter (Transmit Framer) (see Section 12.16 Frame Formatter Per Link Registers on page 300). LC = Line Encoder/Decoders (see Section 12.18 Line Encoder/Decoder Per Link Registers on page 303); RXP = 0 for the line encoder and TXP = 1 for the line decoder. HDLC = High-Level Data Link Control (see Section 12.19 HDLC Per Channel Configuration and Status Registers on page 304); RXP = 0 for the receive HDLC and TXP = 1 for the transmit HDLC. RXP = High-Level Data Link Control (see Table 432 on page304 ) RXP = 0 for the receive HDLC and TXP = 1 for the transmit HLDLC. Agere Systems Inc. 541 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description Table of Contents Contents Page 22 Cross Connect (XC) Block Functional Description ......................................................................................... 542 22.1 Cross Connect Introduction .................................................................................................................... 544 22.2 Cross Connect Features ......................................................................................................................... 544 22.3 Cross Connect Block Diagram ............................................................................................................... 545 22.3.1 Framer to Cross Connect Overview ............................................................................................ 546 22.3.2 External I/O to Cross Connect Overview ..................................................................................... 547 22.4 Cross Connect Connectivity Overview ................................................................................................... 548 22.5 DS1/E1 Cross Connect .......................................................................................................................... 549 22.5.1 DS1/E1 Connectivity Matrix ......................................................................................................... 550 22.5.2 DS1/E1 Register Definition .......................................................................................................... 550 22.6 Notes on the DS1 Cross Connect .......................................................................................................... 552 22.6.1 DS1/E1 TPG ................................................................................................................................ 552 22.6.2 M13 DS1/E1 Interface ................................................................................................................. 552 22.6.3 VT Mapper DS1/E1 Interface ...................................................................................................... 553 22.6.4 Digital Jitter Attenuator (DJA) Interface ....................................................................................... 553 22.6.5 Framer System Interface ............................................................................................................. 554 22.6.6 Framer System Interface--PSB .................................................................................................. 555 22.6.7 Framer System Interface--CHI ................................................................................................... 555 22.6.8 Framer System Interface--NSMI ................................................................................................ 557 22.7 DS2 Connectivity .................................................................................................................................... 557 22.7.1 M13 DS2 Interface (DS2 Cross Connect) ................................................................................... 558 22.7.2 M12 MUX (Transmit Path) ........................................................................................................... 558 22.7.3 M12 DeMUX (Receive Path) ........................................................................................................ 560 22.7.4 M23 DeMUX (Receive Path) ....................................................................................................... 561 22.7.5 M23 MUX (Transmit Path) ........................................................................................................... 562 22.8 DS3 Connectivity .................................................................................................................................... 564 22.8.1 DS3 TPG/TPM Cross Connect .................................................................................................... 565 22.8.2 DS3 Basic Cross Connect ........................................................................................................... 566 22.8.3 NSMI Cross Connect ................................................................................................................... 567 22.9 Transmit and Receive Path Overhead Access Channel I/O Configuration ............................................ 568 Figures Page Figure 81. Cross Connect Block Diagram ............................................................................................................ 545 Figure 82. Framer and Cross Connect ................................................................................................................. 546 Figure 83. DS1 Cross Connect Interface.............................................................................................................. 549 Figure 84. DS1E1 External I/O to M13 ................................................................................................................. 552 Figure 85. Framer Line Interface Cross Connect ................................................................................................. 554 Figure 86. Framer System Interface--Parallel System Bus (PSB) ...................................................................... 555 Figure 87. Framer System Interface--Concentration Highway Interface (CHI) ................................................... 556 Figure 88. DS2 Cross Connect Interface.............................................................................................................. 557 Figure 89. M12 MUX DS2 Output Cross Connect................................................................................................ 559 Figure 90. M12 DeMUX Input DS2 Cross Connect .............................................................................................. 561 Figure 91. M23 DeMUx DS2 Output Cross Connect ............................................................................................ 562 Figure 92. M23 MUX DS2 Input Cross Connect................................................................................................... 563 Figure 93. DS3 Cross Connect............................................................................................................................. 564 Figure 94. DS3 Test-Pattern Cross Connect........................................................................................................ 565 Figure 95. DS3 Basic Cross Connect ................................................................................................................... 566 Figure 96. NSMI Interface Cross Connect............................................................................................................ 568 Figure 97. TPOAC and RPOAC Cross Connect .................................................................................................. 569 542 Agere Systems Inc. Preliminary Data Sheet May 2001 Tables Table 610. Table 611. Table 612. Table 613. Table 614. Table 615. Table 616. Table 617. Table 618. Table 619. Table 620. Table 621. TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Page Multifunction System Interface Programmable I/O ............................................................................ 547 DS3 Interface Programmable I/O ...................................................................................................... 548 Transmit and Receive POAC Programmable I/O .............................................................................. 548 Connectivity Within the Cross Connect Block ................................................................................... 548 DS1/E1 Signal Connectivity Matrix .................................................................................................... 550 Special XC_PDATA Source IDs for Source Block = 0 ....................................................................... 551 Special XC_SYNC Source IDs for Source Block = 0 ......................................................................... 551 Special XC_ALCO Source IDs for Source Block = 0 ......................................................................... 551 Configuration of the Control Group .................................................................................................... 556 XC_PDATA Source IDs for LINETXDATA Routing with Source Block = 111 ................................... 559 XC_PDATA Source IDs for LINETXCLK Routing with Source Block = 111 ...................................... 559 DS3 Connectivity ............................................................................................................................... 564 Agere Systems Inc. 543 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) 22.1 Cross Connect Introduction The cross connect block is a highly configurable crosspoint switch for internal DS1/E1/DS2/DS3 signal connections in the Super Mapper. The cross connect allows flexible configuration of the Super Mapper's internal blocks to support a variety of applications. The internal 28-channel framer, VT mapper, SPE mapper, M13, digital jitter attenuator, and test-pattern generator/monitor blocks or external device I/O pins can be interconnected with the independent, nonblocking signal routing of the cross connect block. 22.2 Cross Connect Features Configurable crosspoint interconnect for up to 28 DS1 signals or 21 E1 signals to/from the framer (or external pins), and the same number of signal channels to/from the M13 and VT mapper. Also supports up to seven DS2 signals to/from the external pins or M12 MUXes, connecting to the M13 MUX M23 block. Also connects one DS3 signal to/from the external NSMI interface to the SPE, M13, or TPG blocks. Any mix of DS1, E1, DS2, or DS3 signals may be interconnected. Any transmitter (signal source) may be connected to any receiver (signal destination) in the DS1/E1 cross connect. Multicast or broadcast operation (one port to many) is supported. Jitter attenuation may also be inserted in-line on any DS1/E1 channel. (Note: Cascading of jitter attenuators is not allowed.) Standard network loopback or straight away facility testing is supported for DS1/E1 and DS3. Any source or transmitter may be replaced by a test-pattern generator capable of injecting idle, standards based pseudorandom bit sequence test patterns, or AIS (blue) alarm. Any sink or receiver may be replaced by a test-pattern monitor, which can detect/count bit errors in a pseudorandom test sequence, or loss of frame, or loss of sync. Loopbacks may be configured to sectionalize a circuit for identifying faults or misconfiguration during out of service maintenance. Fast alarm channels are supported for VT mapper or M13 to framer interconnects for alarm indication signal (AIS or blue alarm) and VT mapper only for remote alarm indicator (RAI or yellow alarm). This feature reduces the propagation delay of the alarms by eliminating multiple integration of alarm conditions. Supports M12, M23 or C-bit parity, M13, or VT group modes of operation. Supports framer-only, transport (framer LIU, M13, and VT mapper), and switching (CHI and PSB) modes of operation. 544 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) 22.3 Cross Connect Block Diagram The following diagram illustrates the high-level interface between the XC block and other functional blocks. TPG TPM DS1_DATA/CLK/STFREQ DS1_E1 DS2_AISCLK M12_DS2_DATA/CLK M13 DS1_DATA/CLK/FSYNC M23_DS2_DATA/CLK/STFREQ DS3_DATA/CLK AUTOAIS VT MAPPER EXT. I/O PIN DS2_DATA/CLK DS3_DATA/CLK DS1_DATA/CLK/FSYNC TEST GEN/MON T/R_POAC CROSS CONNECT (XC) DS1_DATA/CLK/FSYNC RAI RAI 28 CHANNEL FRAMER AUTOAIS AUTOAIS PTRADJ DS1_STFREQ PTRADJ DS1_DATA/CLK SPE MAPPER AUTOAIS DS3_DATA/CLK DIGITAL JITTER ATTENUATOR DS1_AISCLK E1_AISCLK CONTROL INTERFACE 5-9180(F)r.5 Figure 81. Cross Connect Block Diagram Agere Systems Inc. 545 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) The cross connect can functionally be divided into three major sections: XC1 for DS1(E1), XC2 for DS2, and XC3 for DS3. Each section can be configured to establish interconnects between major functional blocks or connect blocks to external I/O to establish an application. The DS1 and DS2 cross connects can establish the order of the circuits to be multiplexed and demultiplexed in the transmission hierarchy. In addition, a programmable MUX is provided for selecting the path overhead access channel connection. Literally hundreds of signals are interconnected. The cross connect is designed to simplify the configuration by defining a set of sources and destinations. Signals such as data, clock, alarm, and control associated with an identified source and destination are bundled to simplify the cross connect configuration. Establishing a connection in the configuration registers will interconnect the source group of signals to the destination group of signals. It is important to note that the configuration information is not shared between major blocks. For example, a virtual tributary is interconnected between the VT mapper and the framer. The cross connect can establish the interconnect for data and clock and intelligently establish the proper interconnects for alarms and control. The framer block and VT mapper are required to be properly configured for operation as a DS1 or E1 and selection of clock edge to properly sample the data. A brief overview of the framer block and the device external I/O pins is useful prior to a detailed description of the cross connect block. 22.3.1 Framer to Cross Connect Overview The framer block interface to the cross connect is subdivided into six defined interfaces for each of the 28 framers as shown in Figure 82. A brief explanation follows for establishing path and interconnect definition. TRANSMIT PATH CROSS CONNECT FRM_TP_T TP FRAME FORMATTER FRM_RP_R RP FRAME ALIGNER RECEIVE PATH RECEIVE SYSTEM FRM_RS TP FRAME ALIGNER FRM_TP_R RP FRAME FORMATTER FRM_RP_T TRANSMIT SYSTEM FRM_TS CROSS CONNECT 5-9181(F) Figure 82. Framer and Cross Connect FRM_TP_T, FRM_TP_R--Transmit and receive interfaces for the framer transmit path (TP). FRM_RP_T, FRM_RP_R--Transmit and receive interfaces for the framer receive path (RP). FRM_RS--Framer receive system interface (RS). FRM_TS--Framer transmit system interface (TS). Note: The receive system interface is associated with the transmit path and the transmit system interface is associated with the receive path. The system interface definitions have been assigned based on historical convention. 546 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) The path designations assigned to the framer are consistent with established network definitions. Signals multiplexed up into the digital hierarchy from the transmit path. Signals demultiplexed from the digital hierarchy comprise the receive path. In switching applications, concentration highway interface (CHI) or parallel system bus (PSB) signals will enter through the external I/O and are cross connected to the receive system interface (top right side of Figure 82). The signals will traverse the framer through the transmit path frame formatter and are cross connected to the internal multiplexers/mappers (top left side of Figure 82). Signals demultiplexed from DS3 or demapped from SONET are cross connected to the receive path frame aligner (bottom left side of Figure 82) traverse the framer, and are cross connected from the transmit system interface to the external I/O pins (bottom right side of Figure 82). In transport mode, line interface (LIU) signals will enter through the external I/O and are cross connected to the transmit path frame aligner interface (top right side of Figure 82). The signals will traverse the framer through the transmit path frame formatter and are cross connected to the internal multiplexers/mappers (top left side of Figure 82). Signals demultiplexed from DS3 or demapped from SONET are cross connected to the receive path frame aligner (bottom left side of Figure 82) traverse the framer, and are cross connected from the receive path frame formatter to the external I/O pins (bottom right side of Figure 82) on to the LIUs. Most applications will cross connect the framer interfaces FRM_TP_T and FRM_RP_R to the M13 MUX or VT mapper. The framer interfaces FRM_RP_T and FRM_TP_R or the system interfaces FRM_TS and FRM_RS will be cross connected to the external I/O of the multifunction system interface. 22.3.2 External I/O to Cross Connect Overview The cross connect defines the connectivity of device pins associated with the DS3 (6 pins), STS-1 POAC (6 pins), and the multifunction system interface (174 pins). Therefore, the cross connect plays a very large role in configuring the functionality of the Super Mapper from the applications viewpoint. The multifunction system interface device pins connectivity may be configured to support DS1/E1 (LIU and serial data/clock/sync), DS2 interfaces, channelized (DS0), and multiplexed system interfaces (CHI, PSB, or NSMI). Table 610. Multifunction System Interface Programmable I/O Pin Symbol LINERXDATA[1--28] Input/Output (I/O) I LINERXDATA[29] LINERXCLK[1--29] I/O I/O LINERXSYNC[1--28] I LINERXSYNC29 LINETXDATA[1--29] I/O O LINETXCLK[1--28] I/O LINETXCLK[29] LINETXSYNC[1--29] I/O I/O Agere Systems Inc. Pin C13, A12, B11, B10, B9, D8, C8, A7, B6, D5, A4, A3, H5, F5, C2, D2, E2, F4, G2, H1, J3, J4, K4, L4, M2, N1, P4, P3 D13 D12, C12, C11, C10, A9, B8, D7, C7, C6, C5, C4, C3, J5, B2, D3, E3, F3, G3, G4, H2, J1, K3, L3, M3, M4, N2, P2, R4 B12, D11, D10, D9, C9, A8, B7, D6, B5, B4, B3, E6, K5, C1, D1, E4, F2, G1, H3, H4, J2, K2, L2, M1, N3, N4, P1, R2 A13 R25, P26, N23, N24, M26, L25, K25, J25, H23, H24, G26, F25, E23, D26, C26, E21, B24, B23, B22, D21, B20, A19, C18, D18, D17, D16, B15, A14, T23 R23, P25, N25, M23, M24, L24, K24, J26, H25, G23, G24, F24, E24, D24, C24, B25, C23, C22, C21, C20, D20, B19, A18, C17, C16, C15, D15, B14 R24 P24, P23, N26, M25, L23, K23, J23, J24, H26, G25, F23, E25, D25, C25, F22, A24, A23, D22, B21, A20, C19, D19, B18, B17, B16, A15, C14, D14, R26 547 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) The DS3 external device pins may be configured to provide DS3 access to the M13, test-pattern generator, or SPE mapper. Table 611. DS3 Interface Programmable I/O Pin Symbol Input/Output Pin DS3POSDATAIN I M22 DS3NEGDATAIN I K22 DS3DATAINCLK I J22 DS3POSDATAOUT O R22 DS3NEGDATAOUT O P22 DS3DATAOUTCLK I N22 The SONET path overhead access channel (POAC) is configurable for access to the SPE mapper or TMUX. Table 612. Transmit and Receive POAC Programmable I/O Pin Symbol RPOACCLK RPOACDATA RPOACSYNC TPOACCLK TPOACDATA TPOACSYNC Input/Output O O O O I O Pin AE3 AD4 AF4 AE4 AD5 AC5 22.4 Cross Connect Connectivity Overview Table 613 below describes the connectivity within the cross connect block. Table 613. Connectivity Within the Cross Connect Block Destination Source External I/O Framer TP_T Framer RP_T Framer TS M13 MUX VT Mapper Jitter Attenuation TPG SPE External Framer Framer Framer M13 VT Jitter TPM I/O RP_R TP_R RS Mapper Mapper Attenuation & % % % % % % T 2 % T& X X % % % T3 % X T& X X % % T % X X T& X X X X % % X X T %4 %4 X1 & 2, 4 1 4, 5 % % X % T % % X & J J J X J J X6 J T7 T T T X T T T SELF8 NSMI/DS3 X X X DS3 X X T SPE NSMI X X X DS3 X X X X Notes: 1. Framer, M13, and VT mapper have limited self-loopback capability (no reordering). 2. RAI paths and frame sync paths supported. 3. Framer also has limited test-pattern capability. 4. Auto-AIS paths (fast AIS) supported.PTRADJ paths supported. 5. PTRADJ paths supported 6. Jitter attenuator reordering or cascading (chaining) not expected. 7. Reference clock sources from DJA used by TPG. 8. Prohibited for DS3. 548 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) The symbols in Table 613 and Table 614 are as follows: Symbols: % = Primary (expected) modes of operation. X = Unsupported mode. T = Test mode. SELF = TPG->TPM self-test mode. J = Jitter-attenuated signal mode. & = Represents loopback path. NSMI = NSMI mode only. 22.5 DS1/E1 Cross Connect SOURCE DESTINATION DJA_DS1/E1/DS2_AISCLK XC_T_DS1/E1CLK REF CLKS DJA 2 DJA (SOURCE_ID = 101) XC_JDATA[1--28][7:0] TPG (SOURCE_ID = 000) TPM[DS1 DATA, TPG DJA TPM DS1 IDLE, E1 DATA] VT MAPPER VTMPR (SOURCE_ID = 100) XC_VDATA[1--28][7:0] FRM_RP (SOURCE_ID = 110) XC_TP_RDATA[1--28][7:0] FRM_RP_T FRM_TS (SOURCE_ID = 111) FRM_TS FRM_TP (SOURCE_ID = 010) XC_RS_D[1--28][7:0] CROSS CONNECT (XC1) XC_RP_RDATA[1--28][7:0] FRM_TP_T XC_MDS1DATA[1--28][7:0] M13 FRM_TP_R FRM_RS FRM_RP_R M13 M13 (SOURCE_ID = 011) XC_PDATA[1--29][7:0] EXT I/O PIN VT MAPPER LINETXDATA[1--29] LINETXCLK[1--29] EXT I/O PIN EXT (SOURCE_ID = 001) XC_SYNC[1--29][7:0] XC_ALCO[1--29][7:0] LINETXSYNC[1--29] LINERXCLK[1--29] CONTROL INTERFACE 5-9182(F)r.5 Figure 83. DS1 Cross Connect Interface Agere Systems Inc. 549 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) 22.5.1 DS1/E1 Connectivity Matrix DS1/E1 signal connectivity matrix Table 614 below is a subset of Table 613, Connectivity Within the Cross Connect Block on page 548 excluding the last row and column. Table 614. DS1/E1 Signal Connectivity Matrix Note: See Table 613, Connectivity Within the Cross Connect Block on page548 for symbol and footnote descriptions. Destination Source External I/O Framer RP_R Framer TP_R Framer RS M13 Mapper VT Mapper Jitter Attenuation TPM External I/O & % % % % % % T Framer TP_T % T& X X % %2 % T3 Framer RP_T % X T& X X % % T Framer TS % X X T& X X X X M13 MUX % %4 X X X1 & % %4 T VT Mapper % %2, 4 % X % X1 & %4, 5 T Jitter Attenuation J J J X J J X6 J T7 TPG T T T X T T T SELF Each box represents a set of 28 or more output bundles from the cross connect (XC) block. A bundle consists of three standard data path signals [normally DATA, CLK, and FS or STFREQ], plus, in many cases, AUTOAIS, and, in some cases, RAI or PTRADJ signals. 22.5.2 DS1/E1 Register Definition For every valid output signal (bundle) from the cross connect, one input signal (bundle) to the cross connect is steered to the destination, first via a block select (one of 8) and then via a channel select (one of 28, except external I/O, which is one of 29). Therefore, each box in Table 614 also represents 32 8-bit source identifiers in the register map. Note: By specifying on a per-output basis, collisions are avoided and broadcast/multicast options are preserved (that is, multiple outputs may share the same source identifier). For E1 signals, only 3 out of 4 channels are used (channel numbers that are even multiples of four are typically disallowed). The crosspoint's connectivity is determined by a set of source identifiers (SOURCE_IDs), one for each channel leaving the crosspoint switch. A DS1/E1 (XC1) SOURCE_ID is therefore defined as follows: Bit SOURCE_ID 7 6 5 4 3 SOURCE_BLOCK[2:0] 2 1 0 CHANNEL_ID[4:0] The SOURCE_BLOCK[2:0] is defined as: Index Block Identifier Index Block Identifier 000 TPG (Test-Pattern Generator)/Special 100 VTMPR (VT Mapper) 001 EXT (External I/O) 101 DJA (Jitter Attenuator) 010 FRM TP (Superframer) 110 FRM RP (Framer Line Interface) 011 M13 (M13 MUX) 111 FRM TS (Framer System Interface) The CHANNEL_ID typically ranges from 1 to 28 (29 for EXT). Values 0, 30, and 31 (and usually 29 as well) are unused. 550 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) The 000 index (TPG/special) has a separate, independent mapping to allow for DS2, DS3, or special connections to the external pins as defined in the following tables. The above definitions cover registers: XC_PIND_SRC[1--15] (Table 451), XC_FRP_SRC[1--14] (Table 452), XC_M13_SRC[1--14] (Table 453), XC_VT_SRC[1--14] (Table 454), XC_DJA_SRC[1--14] (Table 455), XC_FTP_SRC[1--14] (Table 456), XC_FRS_SRC[1--14] (Table 457), XC_PINS_SRC[1--15] (Table 465), XC_ALCO_SRC[1--15] (Table 466), and XC_TPM_SRC[1--4] (Table 458). Table 615. Special XC_PDATA Source IDs for Source Block = 0 Blk Ch. 0 0 1 2 3 4 5 6 7 Description TEST: DS1 TEST: DS1 Idle TEST: E1 Reserved TEST: DS2 Reserved Reserved Reserved Blk Ch. 0 8 9 10 11 12 13 14 15 Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Blk Ch. 0 16 17 18 19 20 21 22 23 Description Blk Ch. DS2 AIS 0 24 M23_DMX_DS2_1 25 M23_DMX_DS2_2 26 M23_DMX_DS2_3 27 M23_DMX_DS2_4 28 M23_DMX_DS2_5 29 M23_DMX_DS2_6 30 M23_DMX_DS2_7 31 Description M13 NSMI* SPE NSMI* FRM NSMI* Reserved Reserved Reserved Reserved Reserved * For the 29th pin only. Table 616. Special XC_SYNC Source IDs for Source Block = 0 Blk Ch. 0 0 1 2 3 4 5 6 7 Description TEST: DS1 TEST: DS1 Idle TEST: E1 Reserved TEST: DS2 Reserved Reserved Reserved Blk Ch. 0 Description Blk Ch. 8 Reserved 9 M12_DS2_OUT_1 10 M12_DS2_OUT_2 11 M12_DS2_OUT_3 12 M12_DS2_OUT_4 13 M12_DS2_OUT_5 14 M12_DS2_OUT_6 15 M12_DS2_OUT_7 0 16 17 18 19 20 21 22 23 Description Blk Ch. Description DS2 AIS M23_DMX_DS2_1 M23_DMX_DS2_2 M23_DMX_DS2_3 M23_DMX_DS2_4 M23_DMX_DS2_5 M23_DMX_DS2_6 M23_DMX_DS2_7 0 24 25 26 27 28 29 30 31 M13 NSMI* SPE NSMI* FRM NSMI* Reserved Reserved Reserved Reserved Reserved * For the 29th pin only. Table 617. Special XC_ALCO Source IDs for Source Block = 0 Blk Ch. 0 0 1 2 3 4 5 6 7 Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Blk Ch. 0 8 9 10 11 12 13 14 15 Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Blk Ch. 0 16 17 18 19 20 21 22 23 Description Reserved M23_DS2CLKO_1 M23_DS2CLKO_2 M23_DS2CLKO_3 M23_DS2CLKO_4 M23_DS2CLKO_5 M23_DS2CLKO_6 M23_DS2CLKO_7 Blk Ch. 0 24 25 26 27 28 29 30 31 Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Since register information is generally not shared between other blocks and the XC block, the user is responsible for correct programming of the crosspoint. That is, the user must ensure the consistency of the designation of DS1 (or J1) vs. E1 channels. Also, in the configuration of the M13 MUX, the user must ensure the correct allocation of DS1/E1 vs. DS2 channels, as well as coordinating the designation or ordering of DS2 channels within the DS3 (in the independent M12 MUX mode). Agere Systems Inc. 551 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) 22.6 Notes on the DS1 Cross Connect 22.6.1 DS1/E1 TPG DS1 test signals are available at any XC1 output channel by specifying value 000 in the SOURCE_ID field. The CHANNEL_ID field is set to zero for standard DS1 test-data patterns and one for DS1 (framed) idle data. E1 test signals are available at any XC1 output channel by specifying value 0 in the SOURCE_ID field. The CHANNEL_ID field is set to two for standard E1 test-data patterns. 22.6.2 M13 DS1/E1 Interface The user configures the M13 DS1(E1) connections from the crosspoint by loading the appropriate SOURCE_IDs into the M13 crosspoint configuration registers. The user may connect any valid DS1 or E1 (XC1 input) signal bundle from the framer, VT mapper, external I/O, TPG, or DJA to any M13 input configured as a DS1 or E1 input. Each of the 28 possible M13 (DS1) or 21 possible E1(J1) inputs may be assigned a XC1 source ID for the corresponding XC_MDS1DATA[1--28][7:0] ( Table 453) byte in the XC_M13_SRC[1--14] configuration registers. Since register information is not shared between the M13 block and the XC1 block, the user is responsible for correct programming of the crosspoint by ensuring the consistency of the designation of M13 vs. M12/M23 channels, as well as coordinating the designation of DS1 vs. E1(J1) channels. The cross connect block automatically supports independent signal paths for alarm indicator signal (AIS) on channels between the M13 and the framer. The XC1 supports a mode where the M13 block provides the DS1/E1 clock out for data to be multiplexed in from the external I/O device pins as depicted in Figure 84 on page 552. DS1/E1 low clock out mode is enabled with register bit XC_DS1ALCOEN = 1(Table 462). In this mode, the appropriate DS1 or E1 level clock is routed to the LINERXCLK[1--29] device pin by programming the corresponding XC_ALCO[1--29][7:0] byte in registers XC_ALCO_SRC[1--15] with the M13 SOURCE_ID = 011 and the channel ID of the selected M13 channel. The LINERXCLK[1--29] clock output is used to clock in data from the associated LINERXDATA[1--29] device pin and a stuff request input from the LINERXSYNC[1--29] device pin. In this mode, the M12 stuff time is determined externally. XC_MDS1DATA[1--28][7:0] EXT I/O--SOURCE_ID = 001 CHANNEL_ID = 1 TO 29 --PIN SELECT XC M13 BUNDLED SIGNALS EXTERNAL I/O M13_DS1_DATA LINERXDATA M13_DS1_CLOCK M13_DS1_STUFF REQUEST LINERXSYNC LINERXCLK REGISTER BIT XC_DS1ALCOEN 0 = DS1 EXTERNAL CLOCK IN 1 = DS1 M13 DEMUX CLOCK OUT XC_ALCO[1--29][7:0] SOURCE_ID = 011 CHANNEL_ID FROM 1 TO 29 M13_DS1_CLOCK (DEMUX FROM M13) XC1 5-9183(F)r.2 Figure 84. DS1E1 External I/O to M13 552 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) 22.6.3 VT Mapper DS1/E1 Interface The user configures the VT mapper DS1/E1 connections from the crosspoint by loading the appropriate SOURCE_IDs into the VT mapper crosspoint configuration registers. The user may connect any valid DS1 or E1 signal bundle from the M13 MUX, framer, external I/O, TPG, or DJA blocks to any VT mapper input. Each of the 28 possible DS1 or 21 possible E1 inputs may be assigned a XC1 source ID for the corresponding XC_VDATA[1--28][7:0] (Table 454) byte in the XC_VT_SRC[1--14] configuration registers. The user must ensure the consistency of the designation of DS1(J1) vs. E1 channels and block interface parameters. The cross connect block automatically supports independent signal paths for remote alarm indication (RAI), alarm indicator signal (AIS), frame sync (byte synchronous mode only), and signaling (out of band signaling) on channels between the VT mapper and the framer. 22.6.4 Digital Jitter Attenuator (DJA) Interface The DJA block consists of up to 28 DS1 jitter attenuator channels or up to 21 E1 jitter attenuation channels. The DS1 or E1 channels are cross connected from the VT mapper, M13 MUX, framer, external I/O interface, or test interface and the DJA outputs are returned to the crosspoint switch for cross connect to the destination. Test signals from the TPG will not require jitter attenuation, although this capability exits. The crosspoint cannot chain jitter attenuators together serially (that is, DJA to DJA paths are not supported). The user configures the DJA DS1(E1) outputs from the crosspoint by loading the appropriate SOURCE_IDs into the DJA crosspoint configuration registers. The user may connect any valid DS1 or E1 signal bundle from the external I/O pin, M13, VT mapper, framer, or TPG blocks to any DJA input. Each of the 28 possible DS1 (J1) or 21 possible E1 inputs may be assigned a XC1 source ID for the corresponding XC_JDATA[1--28][7:0] (Table 455) byte in the XC_DJA_SRC[1--14] configuration registers. The user must ensure the consistency of the designation of DS1(J1) vs. E1 channels. The cross connect is provided with DS1 and E1 reference clocks from the DJA block. These 1X clocks are derived from external AIS clock inputs, and are made available to the test-pattern generator block for use as the testpattern source clocks. The DJA block is responsible for the correct assignment of reference clocks to jitter attenuation channels. When a channel from the VT mapper is cross connected to a DJA channel, the bundled signals include receive pointer adjustment information. For all other sources, the pointer adjustment signal is not required and is disabled. Framer Interface The framer block can pass through a total bandwidth of one DS3. This may be formed from 28 DS1s or 21 E1s or any mix where a group of four adjacent DS1 channels may be substituted by three E1s. The DS1 or E1 channels can be cross connected to the M13 MUX, VT mapper, external I/O interface, or test interface. The framer block provides extensive per link loopback capability based on DS1/E1 standards. As previously stated, special channels for AIS, RAI, frame sync, and signaling are enabled when the framer is cross connected to the VT mapper. The framer presents six interfaces to the cross connect as shown in Figure 82 on page546 . Although somewhat flexible, most applications will cross connect the framer interfaces FRM_TP_T (XC1--source ID = 010) and FRM_RP_R (XC1--destination = XC_RP_RDATA[1--28][7:0] (Table 452)) to the M13 MUX or VT mapper. If desired, the digital jitter attenuators may be inserted in this connection. Agere Systems Inc. 553 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) An example of an exception to this rule is the framer only application where the Super Mapper is used as a block of 28 framers with a CHI system interface. The 28 framers would interface line interface units with FRM_TP_T and FRM_RP_R and the system with FRM_TS and FRM_RS entirely through the multifunction system interface device pins. Either end of the framer block may be configured to interface to line interface units as shown in Figure 85 on page 554. In a framer only application, the FRM_TP_T and FRM_RP_R framer block interfaces with the LIUs. The FRM_RP_T and FRM_TP_R framer block interfaces the LIUs in a transport application. If a dual-rail or bipolar LIU interface is desired, the sync line is used as the negative-rail data. The user configures the framer block connectivity by simply loading the appropriate source IDs into the XC_TP_RDATA[1--28][7:0] (Table 456), XC_RP_RDATA[1--28][7:0], and XC_RS_D[1--28][7:0] (Table 457) bytes of the framer crosspoint configuration registers: XC_FTP_SRC[1--28][7:0], XC_FRP_SRC[1--28][7:0], and XC_FRS_SRC[1--28][7:0], respectively. EXTERNAL I/O FRM XC XC_TP_RDATA[1--28][7:0] 3x28 LINERXDATA LINERXCLK LINERXSYNC FRM_TP_R XC_TP_RDATA XC_TP_RCLK XC_TP_RFS FRM_RP_R 3x29 3x28 XC_RP_RDATA[1--28][7:0] XC_RP_RDATA XC_RP_RCLK XC_RP_RFS FRM_TP_T 3x28 LINETXDATA XC_PDATA[1--29][7:0] LINETXCLK FRM_TP_TDATA FRM_TP_TCLK FRM_TP_TFS 3x29 FRM_RP_T LINETXSYNC XC_SYNC[1--29][7:0] 3x28 FRM_RP_TDATA FRM_RP_TCLK FRM_RP_TFS XC1 5-9184(F)r.1 Figure 85. Framer Line Interface Cross Connect 22.6.5 Framer System Interface The framer system interface FRM_TS/FRM_RS consists of bundles of data, clock, and/or sync/miscellany, that may only be connected to the device external I/O pins. The system interface operates as the parallel system bus (PSB), concentration highway (CHI), or network serial multiplexed interface (NSMI). Note that not all pins are used in these configurations. The user should exercise caution in mixing the usage of the external pins between system interface TS/RS usage and any other use. Two register bits, XC_SI_CHI and XC_SYNC_FOR_DATA (Table 449), and a group of seven 2-bit parameters XC_CHI_MODE[1--7][1:0] (Table 450) are used to assist with the configuration of the system interface. 554 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) 22.6.6 Framer System Interface--PSB The framer system interface is configured for the parallel system bus as depicted in Figure 86 on page555 . Program bit XC_SI_CHI = 1 to select the PSB mode, and bit XC_SYNC_FOR_DATA = 1 to allow the connecting of transmit system data outputs to the LINETXSYNC[1--29] pins. The programming of the XC_CHI_MODE[1--7][1:0] bits is not required. The PSB configuration is completed by programming appropriate source IDs into the XC_RS_D[1--28][7:0] (Table 457) and XC_SYNC[1--29] (Table 465) bytes of the XC_FRS_SRC[1--14] (Table 457) and XC_PINS_SRC[1--14] (Table 465) XC1 crosspoint configuration registers. FRAMER SYSTEM INTERFACE EXTERNAL I/O AS PSB XC FRM_TS/FRM_RS XC_SI_CHI = 1 XC_SYNC_FOR_DATA = 1 XC_CHI_MODE[1--7][1:0] = 00 XC_SYNC[1--29][7:0] LINETXSYNC[16--13] TS_D[16--1] LINETXSYNC[4--1] XC_RS_D[1--28][7:0] RS_D[16--1] LINERXSYNC[16--1] TS_GCLK LINETXCLK29 TS_GFS LINETXSYNC29 RS_GCLK LINERXCLK29 RS_GFS LINERXSYNC29 RS_GTCLK LINERXDATA29 XC1 5-9185(F)r.2 Figure 86. Framer System Interface--Parallel System Bus (PSB) 22.6.7 Framer System Interface--CHI The framer system interface is configured for CHI operation as shown in Figure 87 on page556 . Program bit XC_SI_CHI = 0 (Table 449) to select the CHI mode, and bit XC_SYNC_FOR_DATA = 1 (Table 449) to allow the connecting of transmit system data outputs to the LINETXSYNC[1--29] pins. The concentration highway interface can operate at data rates of 2.048 Mbits/s, 4.096 Mbits/s, and 8.192 Mbits/s. The CHI interface allows a single system interface to support combining 2 or 4 DS1/E1s at 4.096 Mbits/s and 8.192 Mbits/s, respectively. Therefore, the 28-channel framer block may result in as many as 28 CHIs or as few as 7 combined CHIs or a mix as determined by the specific needs of the application. Agere Systems Inc. 555 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) In addition to configuring the framers for the CHI mode, 7 CHI mode parameters in the cross connect block require configuration. The parameters are designated XC_CHI_MODE[1--7][1:0] ( Table 450). The parameters divide the 28-framer CHI system interfaces, LINETXSYNC[1--29], into seven groups of four, LINETXSYNC[1--4], . . . , LINETXSYNC[25--28]. Each XC_CHI_MODE[1--7][1:0] parameter consists of 2 bits for configuration of the control group see Table 618 on page 556. Table 618. Configuration of the Control Group XC_CHI_MODE[1--7][1:0] Description 00 All four links within the group are normal outputs at 2 Mbits/s or 4 Mbits/s. 01 Links 4i - 3 and 4i - 2 are normal outputs; links 4i - 1 and 4i are combined into a single output on 4i; output 4i - 1 is used as T1/E1 line output, where i = 1 to 7. 10 Links 4i - 1 and 4i are combined into a single output on 4i; links 4i - 3 and 4i - 2 are combined into a single output on 4i - 2; outputs 4i - 1 and 4i - 3 are used as T1/E1 line outputs. 11 All four links are combined into a single output on 4i; the other three outputs are used as T1/E1 line outputs. For example, XC_CHI_MODE[4][1:0] = 01 configures LINETXSYNC[13] and LINETXSYNC[14] as individual 2.048 Mbits/s CHIs and combines LINETXSYNC[16] and LINETXSYNC[15] into a 4.096 Mbits/s output on LINETXSYNC[16]. The LINETXSYNC[15] output can be used for T1/E1 line sync output. EXTERNAL I/O AS CHI XC FRAMER SYSTEM INTERFACE FRM_TS/FRM_RS XC_SI_CHI = 0 XC_SYNC_FOR_DATA = 1 XC_CHI_MODE[1--7][1:0] = * XC_SYNC[1--29][7:0] LINETXSYNC[28--25] TS_D[28--1] LINETXSYNC[4--1] XC_RS_D[1--28][7:0] RS_D[28--1] LINERXSYNC[28--1] TS_GCLK LINETXCLK29 TS_GFS LINETXSYNC29 RS_GCLK LINERXCLK29 RS_GFS LINERXSYNC29 RS_GTCLK LINERXDATA29 XC1 5-9186(F)r.3 * See Table 450. Figure 87. Framer System Interface--Concentration Highway Interface (CHI) 556 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) 22.6.8 Framer System Interface--NSMI The network serial multiplexed interface (NSMI) connectivity is described in the DS3 cross connect connectivity section and is shown in Figure 96 on page568 . 22.7 DS2 Connectivity TPG SOURCE DESTINATION TPG_DS2 TPM_DS2 TPM (SOURCE_ID = 00) XC2_M21_[1--7][7:0] M12_DS2_IN XC2_DS2M12CLK[1--7][7:0] M12_DS2_OUT M13:M12MUX (SOURCE_ID = 01) M13 MAPPER M23 M13:M23DEMUX (SOURCE_ID = 10) XC2 DS2 CROSS CONNECT M12_DS2_OUT M13 MAPPER XC2_MDS2M23DATA[1--7][7:0] M23 DS1 DS1 XC1 CROSS CONNECT XC1 CROSS CONNECT EXT I/O (SOURCE_ID = 11) XC_PDATA[1--29][7:0] (SOURCE_ID = 000) XC_SYNC[1--29][7:0] (SOURCE_ID = 000) XC_ALCO[1--29][7:0] (SOURCE_ID = 000) CONTROL INTERFACE EXT I/O PIN LINETXSYNC[1--29] LINERXDATA[1--29] LINERXCLK[1--29] LINERXSYNC[1--29] ALL ACCESS TO EXTERNAL I/O PINS IS THROUGH THE DS1/E1 CROSS CONNECT USING A SOURCE_ID = 000 EXT I/O PIN LINETXSYNC[1--29] LINETXDATA[1--29] LINETXCLK[[1--29] LINERXCLK[1--29] 5-9187(F)r.2 Figure 88. DS2 Cross Connect Interface The DS2 cross connect is used when the application requires the M13 and needs external I/O or maintenance for DS2 signals. The DS2 cross connect provides full-split access at the DS2 level. Otherwise, the registers may be programmed to the default values. Agere Systems Inc. 557 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) The cross connect block supports DS2 mapping to/from the M13 MUX, TPG/TPM, and external pin I/O. Here, the available sources are the M12 MUX or the M23 deMUX, a set of external I/O pins, or the test-pattern generator. The DS2 crosspoint's connectivity is determined by a smaller set of source 2 identifiers (SOURCE2_IDs), as defined in the following table (covering registers XC2_M23_SRC[1--7] (Table 460) and XC2_TPM_SRC (Table 461)): Bit 7 SOURCE2_ID 0 6 5 4 3 SOURCE2_BLOCK[1:0] 2 1 0 CHANNEL2_ID[4:0] The SOURCE2_BLOCK is defined as follows: Index Block2 Identifier 00 TPG (DS2 Test-Pattern Generator) 01 M13:M12 MUX 10 M13:M23 DeMUX 11 External I/O The CHANNEL2_ID typically ranges from 1 to 7. For test data from the TPG, the SOURCE2_BLOCK is set to 0 and the CHANNEL2_ID value four represents the DS2 test pattern. For DS2 signals routed from external pins to the input of M23 MUX or TPM, the CHANNEL2_ID can range from 1 to 29. The above DS2 source ID definition covers registers beginning with XC2. Note: For certain DS2 signals routed to external pins, the XC1 cross connect is used and a special SOURCE_ID (block 0) is programmed: Bit SOURCE2_ID 7 0 6 0 5 0 4 3 2 1 CHANNEL2_ID[4:0] 0 The SOURCE2_ID is defined as in Table 615 to Table 617. The user must ensure consistency between the use of M13 vs. M12/M23 channels and external I/O channels. 22.7.1 M13 DS2 Interface (DS2 Cross Connect) The DS2 full split access results in four sets of DS2 signals that can be routed through cross connect, essentially providing access to the path between the seven M12 MUX/deMUXs and the M23 MUX/deMUX. 22.7.2 M12 MUX (Transmit Path) The M12 MUX assembles three E1s or four DS1s into a DS2. The DS2 output data is clocked out by an external DS2 rate clock as shown in Figure 89. The DS2 rate clock is routed from an external pin, LINETXSYNC[14--8], through the cross connect to the M12, by programming the XC2_DS2M12CLK[1--7][7:0] (Table 459) bytes in the DS2 cross connect registers XC2_M12_SRC[1--7] (Table 459) with a source2 ID = 11 (external I/O) and a channel select of 1 to 7. The channel select value of 1 to 7 selects the clock from pins LINETXSYNC[8] to LINETXSYNC[14], respectively. The DS2 data is routed through the DS1 cross connect to the external pins, LINETXSYNC[7--1], by programming the XC_SYNC[1--29] (Table 465) bytes in the XC_PINS_SRC[1--14] DS1 cross connect registers with a source ID = 000 and a channel select as defined in Table 616. A channel select value of 9 to 15 selects the external pin LINETXSYNC[1] to LINETXSYNC[7], respectively. 558 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) EXTERNAL I/O M13 XC XC1 XC_SYNC[1--29][7:0] LINETXSYNC[7--1] SOURCE_ID = 000 CHANNEL_ID 9 TO 15 LINETXDATA[29--1] M12_DS2_DATA_OUT XC_DATA[1--29][7:0] SOURCE_ID = 111 CHANNEL_ID 1TO 7 LINETXSYNC[14--8] XC2_DS2M12CLK[1--7][7:0] LINETXCLK[29--1] XC2_DS2M12CLK LINERXCLK[29--1] DS2_AISCLK XC2 5-9188(F)r.3 Figure 89. M12 MUX DS2 Output Cross Connect There is another way to route DS2 signals for M12 MUX's through LINETXDATA and LINETXCLK pins, if available, by setting the block ID of XC_PDATA_Source_ID to 111 (refer to the Table onpage 550). This configuration is capable of supporting DS2 demand clocking operation. In DS2 demand clocking mode, the LINETXCLK pins act as outputs; otherwise, they are input pins carrying incoming DS2 clocks. Depending on the clocking scheme, the channel ID can be set up based on the following tables. Table 619. XC_PDATA Source IDs for LINETXDATA Routing with Source Block = 111 I/O Ch. Description I/O Ch. O 0 Reserved O 8 O 1 M12_DS2DAT_1 O 9 O 2 M12_DS2DAT_2 O 10 O 3 M12_DS2DAT_3 O 11 O 4 M12_DS2DAT_4 O 12 O 5 M12_DS2DAT_5 O 13 O 6 M12_DS2DAT_6 O 14 O 7 M12_DS2DAT_7 O 15 Description Reserved M12_DS2DAT_1 M12_DS2DAT_2 M12_DS2DAT_3 M12_DS2DAT_4 M12_DS2DAT_5 M12_DS2DAT_6 M12_DS2DAT_7 I/O Ch. O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 Description Reserved M12_DS2DAT_1 M12_DS2DAT_2 M12_DS2DAT_3 M12_DS2DAT_4 M12_DS2DAT_5 M12_DS2DAT_6 M12_DS2DAT_7 I/O Ch. Description O 24 Reserved O 25 Reserved O 26 Reserved O 27 Reserved O 28 Reserved O 29 Reserved O 30 Reserved O 31 Reserved Table 620. XC_PDATA Source IDs for LINETXCLK Routing with Source Block = 111 I/O Ch. O 0 O 1 O 2 O 3 O 4 O 5 O 6 O 7 Description Reserved DS2_AISCLK DS2_AISCLK DS2_AISCLK DS2_AISCLK DS2_AISCLK DS2_AISCLK DS2_AISCLK Agere Systems Inc. I/O Ch. Description I/O Ch. Description O 8 Reserved O 16 Reserved O 9 DM12_DS2CLK_1 I 17 M12_DS2CLK[7:1] input through O 10 DM12_DS2CLK_2 I 18 LINETXCLK pins, O 11 DM12_DS2CLK_3 I 19 the actual routings O 12 DM12_DS2CLK_4 I 20 are determined by O 13 DM12_DS2CLK_5 I 21 XC2_DS2M12CLK O 14 DM12_DS2CLK_6 I 22 SOURCE ID O 15 DM12_DS2CLK_7 I 23 I/O Ch. Description O 24 Reserved O 25 Reserved O 26 Reserved O 27 Reserved O 28 Reserved O 29 Reserved O 30 Reserved O 31 Reserved 559 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) The register XC2_DS2M12CLK SOURCE ID is defined as: Bit SOURCE2_ID 7 0 6 5 SRC2_BLK[2:0] 4 3 2 1 CHANNEL2_ID[4:0] 0 The register can be programmed to route DS2 clocks from various sources based on the following table: SRC2_BLK 00 01 10 11 CHANNEL2_ID 1 to 7 1 to 29 1 to 29 Don't care Function DS2 Clocks Sourced from LINETXSYNC[8:14] DS2 Clocks Sourced from LINETXCLK[1:29] DS2 Clocks Sourced from LINERXCLK[1:29] DS2 Clocks Sourced from PIN_DS2_AISCLK 22.7.3 M12 DeMUX (Receive Path) The M12 deMUX disassembles a DS2 into three E1s or four DS1s. The routing of DS2 data and clocks to M12 DeMUX is controlled by the register XC2_M21_SRC[1:7] which are defined as: Bit SOURCE2_ID 7 6 SRC2_BLK[2:0] 5 4 3 2 1 CHANNEL2_ID[4:0] 0 The routings are based on the following table. SRC2_BLK 000 001 010 011 100 101 Others CHANNEL2_ID 4 1 to 7 1 to 7 1 to 7 1 to 29 1 to 29 Don't care Function DS2DATA/CLK from TPG DS2DATA/CLK from M12 MUX DS2DATA/CLK from M23 DEMUX DS2DATA/CLK from Pin LINETXSYNC[21:15]/LINETXSYNC[28:22] DS2DATA/CLK from Pin LINERXDATA[29:1]/PIN_DS2_AISCLK DS2DATA/CLK from Pin LINERXDATA/CLK[29:1] Not Valid When bits 7--5 of XC2_M21_SRC set to 100, the user also needs to set bits 7--5 of the related register XC_ALCO_SOURCE_ID(I) to 001 as well as the appropriate channel value to ensure the demand clocking operation. The DS2 input has six connection options as shown in Figure 90 on page561 . The external I/O inputs for DS2 clock and data are cross connected by programming bytes, XC2_M21[1--7][7:0] (Table 459) in configuration registers XC2_M12_SRC[1--7], with a source2 ID = 11 and a channel select of 1 to 7. The channel select value of 1 to 7 selects DS2 data from device pins LINETXSYNC[15] to LINETXSYNC[21] and selects DS2 clock from LINETXSYNC[22] to LINETXSYNC[28], respectively. A DS2 signal loopback may be performed for the M12 MUX/deMUX by programming the XC2_M21[1--7][7:0] (Table 459) byte in the XC2_M12_SRC[1--7] registers with a source2 ID = 01 and a channel select of 1 to 7. Cross connecting among the seven channels is supported. For example, the output of M12 MUX 1 may be connected to the input of M12 deMUX 5. The TPG may be cross connected to the M12 deMUX DS2 inputs by programming the XC2_M21[1--7][7:0] byte in the XC2_M12_SRC[1--7] registers with a source2 ID = 00 and a channel ID = 4. The connection is not useful because the DS2 pattern generator is limited to sending unframed pseudorandom data patterns that cannot be demultiplexed into DS1s or E1s. 560 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) XC M13 BUNDLED SIGNALS TPG TPG_DATA[4] DM12_DS2_DATA DM23_DS2_DATA TPG_CLK[4] LINERXDATA[29--1] LINETXSYNC[21--15] M12_DS2_DATA LINERXCLK[29--1] LINETXSYNC[28--22] DM12_DS2_CLOCK DS2_AISCLK DM23_DS2_CLK XC_DS2M12CLK[1--7][7:0] EXTERNAL I/O XC2_M21_[1--7][7:0] TPG--SOURCE_ID = 000 CHANNEL_ ID = 4--DS2 DATA M13:M12 MUX (DS2 FROM M12)--SOURCE_ID = 001 CHANNEL_ID = 1 TO 7 M13:M23 DEMUX --SOURCE_ID = 010 CHANNEL_ID = 1 TO 7 LINETXSYNC --SOURCE_ID = 011 CHANNEL_ID = 1 TO 7 LINERXDATA/DS2_AISCLK--SOURCE_ID = 100 CHANNEL_ID = 1 TO 29 LINERXDATA/CLK--SOURCE_ID = 101 CHANNEL_ID = 1 TO 29 5-9189(F)r.3 Figure 90. M12 DeMUX Input DS2 Cross Connect 22.7.4 M23 DeMUX (Receive Path) The M23 deMUX disassembles a DS3 into 7 DS2 signals. The M23 deMUX can cross connect DS2 data and clock out to external pins and/or the test-pattern monitor as shown in Figure 91. The M23 DS2 data and clock are connected to external I/O by programming the XC_PDATA[1--29] (Table 451 on page 323) bytes in the DS1 cross connect registers XC_PIND_SRC[1--15] with a source ID = 000 and a channel select value from Table 615. The channel select value of 17 to 23 (decimal) routes DS2 data out from DS2 deMUX 1 to 7 to the external I/O pins LINETXDATA[1--29] and LINETXCLK[1--29] as selected by programming one of the 29 XC_PDATA[1--29] bytes. For example, to connect the DS2 data and clock outputs from M23 deMUX 4 to the LINETXDATA[19] and LINETXCLK[19] device pins, program the XC_PDATA19 byte in register XC_PIND_SRC10 (Table 451) for a source ID = 000 (binary) and a channel ID = 20 (decimal) XC_PDATA19 = 00010100 (binary). The demultiplexed DS2 may be connected to the test-pattern monitor (TPM) by programming the XC2_TSOURCE_ID (Table 461) byte in register XC2_TPM_SRC with a source ID of 10 and a channel select value of 1 to 7 corresponding to the deMUXed output to monitor. The TPM is limited to receiving unframed pseudorandom data patterns. Agere Systems Inc. 561 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) TPG TPG_DATA[4] TPG_CLK[4] XC XC2 XC2 MDS2M23DATA[1--7][7:0] TPG--SOURCE_ID = 00 CHANNEL_ID = 4--DS2 DATA CHANNEL_ID = 5--DS2 IDLE EXT I/O--SOURCE_ID = 11 CHANNEL_ID = 1 TO 29-- PIN SELECT M13 BUNDLED SIGNALS EXTERNAL I/O M23_DS2_DATA LINERXDATA M23_DS2_CLOCK M23_DS2_STUFF REQUEST LINERXSYNC XC_ALCO[1--29][7:0] LINERXCLK SOURCE_ID = 000 CHANNEL_ID =* REGISTER BIT XC_DS2ALCOEN 0 = DS2 EXTERNAL CLOCK IN 1 = DS2 M23 DEMUX CLOCK OUT M23_DS2_CLOCK_OUT (DEMUX FROM DS3) XC1 5-9190(F)r.3 * = Channel ID from Table 615. Figure 91. M23 DeMUX DS2 Output Cross Connect 22.7.5 M23 MUX (Transmit Path) The M23 MUX assembles seven DS2s into a DS3 signal. The routing of the DS2 data and clock inputs to the M23 MUX is shown in Figure 92. Two modes of operation are available and selected with bit XC_DS2ALCOEN (Table 462). The first mode routes DS2 data and clock from device inputs to the M23 (XC_DS2ALCOEN = 0). The second mode cross connects a DS2 clock out to an external I/O pin that is used by the external application to provide DS2 data and a stuff request to the Super Mapper input pins for the M23 (XC_DS2ALCOEN = 1). The first mode determines the appropriate standards based stuff times internally, ignoring the external stuff request, and the second mode determines the stuff times from the external application. The DS2 data, clock, and stuff request inputs to the M23 are cross connected by programming XC2_MDS2M23DATA[1--7] (Table 460) bytes in XC2_M23_SRC[1--7] registers with the source ID = 11 and a channel select value of 1 to 29. The channel select value of 1 to 29 selects the data, clock, and stuff request signals from the external I/O device pins LINERXDATA[1--29], LINERXCLK[1--29], and LINERXSYNC[1--29], respectively. For example, to cross connect DS2 data from LINERXDATA[6], DS2 clock from LINERXCLK[6], and stuff request from LINERXSYNC[6] to the inputs of M23 number 3, program the XC2_MDS2M23DATA3 byte in register XC2_M23_SRC3, with a source ID = 11 and a channel select = 6. XC2_MDS2M23DATA3 = 01100110 (binary). If XC_DS2ALCOEN = 1, the cross connect for the DS2 clock output must be programmed into XC_ALCO[1--29] byte in the XC_ALCO_SRC[1--15] registers. The source ID = 000 and the channel ID select has a value between 17 and 23 (decimal) to select DS2 DeMUX 1 to 7, respectively. 562 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) For the above example, the XC_ALCO6 byte in register XC_ALCO_SRC3 (Table 466), would be programmed with a source ID = 000 and a channel select = 19. This will output a DS2 clock from M23 DeMUX 3 to LINERXCLK[6]. XC_ALCO6 = 00010011 (binary). TPG TPG_DATA[4] TPG_CLK[4] XC XC2 XC2 MDS2M23DATA[ ] TPG--SOURCE_ID = 00 CHANNEL_ID = 4--DS2 DATA CHANNEL_ID = 5--DS2 IDLE EXT I/O--SOURCE_ID = 11 CHANNEL_ID = 1 TO 29-- PIN SELECT M13 BUNDLED SIGNALS EXTERNAL I/O M23_DS2_DATA LINERXDATA M23_DS2_CLOCK M23_DS2_STUFF REQUEST LINERXSYNC XC_ALCO[ ] LINERXCLK SOURCE_ID = 000 CHANNEL_ID =* REGISTER BIT XC_DS2ALCOEN 0 = DS2 EXTERNAL CLOCK IN 1 = DS2 M23 DEMUX CLOCK OUT M23_DS2_CLOCK_OUT (DERIVED FROM DS3) XC1 5-9191(F)r.2 * Channel ID from Table 617. Figure 92. M23 MUX DS2 Input Cross Connect Agere Systems Inc. 563 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) 22.8 DS3 Connectivity TPG TEST GEN TPM TEST MON XC3 M13 MAPPER MUX M13 MAPPER DEMUX DS3 (CLEAR CHANNEL) SPE HAS DIRECT INPUTS FROM PINS SPE MAPPER SPE MAPPER PIN_DS3POSDATAIN PIN_DS3NEGDATAIN SPE_DS3_AIS RX PD+ PD- EXT. PIN I/O (TO M13) PIN_RLSC52 (FROM HS TELECOM BUS) PIN_DS3DATAINCLK CROSS CONNECT TX PIN_TLSC52 (FROM HS TELECOM BUS) PIN_DS3POSDATAIN PIN_DS3POSDATAOUT PIN_DS3NEGDATAIN PIN_DS3NEGDATAOUT PIN_DS3DATAINCLK PIN_DS3DATAOUTCLK EXT. PIN I/O 5-9192(F)r.1 Figure 93. DS3 Cross Connect The cross connect block also supports DS3 mapping to/from the SPE mapper and the M13 MUX, to dedicated external pins (PIN). There is also an external NSMI I/O channel, which transfers DS3 data as well. In both cases (standard and NSMI), the available sources are the M13 DeMUX or the SPE mapper, a set of external I/O pins, or the test-pattern generator. The DS3 crosspoint's connectivity is determined by an even smaller set of source3 identifiers. Table 621. DS3 Connectivity Destination Source External I/O M13 MUX TPG SPE External I/O & % T NSMI/DS3 M13 MUX % X T DS3 TPM T T X T SPE NSMI/DS3 DS3 X X Note: DS3 external I/O is supported by dedicated pins. NSMI uses the multifunction system interface. The symbols in Table 621 are defined below: % = Primary (expected) modes of operation. X = Unsupported mode. & = represents loopback path. NSMI = NSMI mode only. T = Test mode. 564 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) The DS3/NSMI connectivity is established through a combination of DS3 specific MUXs controlled by registers XC3_TPM_SRC (Table 463) and XC3_MDS3_SRC (Table 464) and special cases of the DS1 cross connects controlled by XC_PDATA[1--29] (Table 451) and XC_SYNC[1--29] (Table 465) bytes in the XC_PIND_SRC[1--15] (Table 451) and XC_PINS_SRC[1--14] (Table 465) registers to accommodate the NSMI connectivity from the multifunction system interface to the SPE mapper or M13. Description of the DS3 connectivity will be presented in three sections: the test-pattern generator/monitor (TPG/TPM), the DS3 basic connect, and the NSMI. 22.8.1 DS3 TPG/TPM Cross Connect The DS3 test signals are routed through the XC3 crosspoint by programming register XC3_TPM_SRC as shown in Figure 94. For DS3 test signals, the TPG does not supply the source clock. Instead, a source clock and a clock enable are provided from another block via the XC3 crosspoint. The TPG/TPM provide unframed test data that may be connected to the SPE block for clear channel testing. For framed DS3 test data, the TPG/TPM are connected to the NSMI interface in the M13 block and the M13 block DS3 interface provides the framed DS3 signal for test purposes. The DS3 TPG/TPM crosspoint's connectivity is determined by a set of source3 identifiers (source3_IDs) for bits 5 and 6 of XC3_TSOURCE_ID in register XC3_TPM_SRC as defined in the following tables: Bit XC3_TSOURCE_ID 7 0 6 5 XC3_TSOURCE_ID 4 0 3 0 2 0 1 0 0 0 where XC3_TSOURCE_ID is defined as follows: Index (Bits [6:5]) 00 01 10 11 Block3 Identifier TPM receives DS3 from external pin*. TPG and TPM are connected to M13 through NSMI interface. TPM receives DS3 from SPE. Reserved. * DS3 unframed single rail (unipolar) non-return-to-zero (NRZ) data. XC TPG/TPM M13 M13_DNSMI_DATA XC_TDATA XC3_TPMCLK M13_DNSMI_CLK XC3_TPMCLKEN M13_DNSMI_EN XC3_TPGCLK M13_NSMI_CLK XC3_TPGCLKEN TPG_DATA M13_NSMI_EN 1 XC3_NSMI_DATA EXTERNAL I/O DS3DATAOUTCLK DS3DATAINCLK SPE 1 DS3POSDATAIN DS3POS_DATA_RX LINERXDATA[29] XC3_TSOURCE_ID 5-9193(F) Figure 94. DS3 Test-Pattern Cross Connect Agere Systems Inc. 565 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) 22.8.2 DS3 Basic Cross Connect The DS3 basic cross connect interconnects DS3 signals between the DS3 dedicated external I/O pins, the SPE mapper, and the M13 by programming bits XC3_SOURCE_ID in register XC3_MDS3_SRC (Table 464) as shown in Figure 95 on page 566. The DS3 dedicated external I/O pins DS3DATAINCLK (J22), DS3POSDATAIN (M22), and DS3NEGDATAIN (K22) are directly connected to the SPE mapper; cross connect is not required (see SPE mapper bits SPE_TDS3SRCTYP[1:0] and SPE_RDS3OUTTYP[1:0] (Table 152)). The DS3 basic crosspoint's connectivity is determined by a set of source3 identifiers (source3_IDs) for bits 1 and 0 of XC3_SOURCE_ID in register XC3_MDS3_SRC as defined in the following tables: Bit XC3_SOURCE_ID 7 0 6 0 5 0 4 0 3 0 2 0 1 0 XC3_SOURCE_ID The XC3_SOURCE_ID is defined as follows: Index (Bits [1:0]) 00 01 10 11 Block3 Identifier M13 inputs/outputs DS3 through external I/O pins. M13 and SPE are interconnected. SPE inputs/outputs DS3 through external pins and M13 is used as a monitor for the transmit path DS3. SPE inputs/outputs DS3 through external pins and M13 is used as a monitor for the receive path DS3. SPE DS3POS_DATA_RX EXTERNAL I/O DS3NEG_DATA_RX SPEMPR_M13DATA DS3POSDATAOUT SPEMPR_CE_M13_RX SPEMPR_CE_M13_TX DS3NEGDATAOUT TLSC52 M13 DS3DATAOUTCLK M13_DS3NEG 1 M13DS3POS_DATA RLSC52 SMPR_TDS3CLK DS3DATAINCLK SMPR_TDS3CLKEN SMPR_RDS3CLK 1 SMPR_RDS3CLKEN SMPR_RDS3POS_DATA DS3POSDATAIN SMPR_RDS3NEG_BPV DS3NEGDATAIN XC XC3_SOURCE_ID 5-9194(F)r.1 Figure 95. DS3 Basic Cross Connect 566 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) 22.8.3 NSMI Cross Connect The Super Mapper cross connect supports interconnection of the network serial multiplexed interface (NSMI) to the SPE mapper, M13 MUX/deMUX, or the NSMI system interface of the framer block as shown in Figure 96. The cross connects are controlled by programming the XC_PDATA[29] (Table 451) and XC_SYNC[29] (Table 465) bytes in registers XC_PIND_SRC15 and XC_PINS_SRC15. As previously discussed, the TPG/TPM can send/receive data using the NSMI interface of the M13. Only the framer block can disassemble the NSMI payload into DS0 channels and signaling. Connectivity to the M13 and SPE mapper is for transport in a proprietary format only. The NSMI crosspoint's connectivity to the multifunction interface external I/O is determined by a set of XC1 source identifiers (SOURCE_IDs). The NSMI connectivity is defined as a special with the source ID = 000 for XC_PDATA[29] and XC_SYNC[29] bytes in registers XC_PIND_SRC15 and XC_PINS_SRC15, with a CHANNEL_ID restricted to 5, 24, 25, or 26 (see Table 615 and 616): Bit SOURCE_ID 7 0 6 0 5 0 4 3 2 CHANNEL_ID[4:0] 1 0 The channel ID is defined as: CHANNEL_ID Binary (Decimal) Connectivity 00101 (5) DS3 Test Pattern 11000 (24) M13--NSMI 11001 (25) SPE--NSMI 11010 (26) Framers--NSMI Agere Systems Inc. 567 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 22 Cross Connect (XC) Block Functional Description (continued) TPG M13 XC M13_NSMI_CLK M13_NSMI_EN M13_NSMI_SYNC TPG_DATA XC3_NSMI_DATA M13_DNSMI_CLK M13_DNSMI_EN M13_DNSMI_SYNC M13_DNSMI_DATA SPE EXTERNAL I/O XCP_NSMI_DATA LINERXSYNC[29] SPE_NSMI_SYNC SPE_NSMI_CLKEN LINERXCLK[29] SPE_DNSMI_SYNC SPE_DNSMI_CLKEN TLSC52 SPE_DNSMI_DATA RXDATAEN LINERXDATA[29] LINETXSYNC[29] FRM LINETXDATA[29] TSMI_D TSMI_CTL TSMI_CLK LINETXCLK[29] RSMI_D RLSC52 RSMI_CLKO TXDATAEN RSMI_CTLO RSMI_CTLI RSMI_CLKI XC3_TSOURCE_ID[1:0] XC_PDATA[1--29][7:0] XC_SYNC[1--29][7:0] 5-9195(F)r.1 Figure 96. NSMI Interface Cross Connect 22.9 Transmit and Receive Path Overhead Access Channel I/O Configuration The cross connect allows selection of transmit and receive POAC channels from either the TMUX block or SPE mapper to the external I/O pins as shown in Figure 97. An output enable and a select register bit is provided for transmit and receive POAC. The transmit POAC clock and sync output signals are enabled with bit XC_TPOAC_EN (Table 462) and the source, SPE Mapper or TMUX block, is selected with register bit XC_TSTS1_TUG3 (Table 462). The receive POAC clock, data, and sync output signals are enabled with bit XC_RPOAC_EN (Table 462) and the source, SPE mapper or TMUX block, is selected with bit XC_RSTS1_TUG3 (Table 462). 568 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 22 Cross Connect (XC) Block Functional Description (continued) TMUX EXT I/O EXT I/O RPOACCLK RPOACSYNC RPOACDATA TPOACDATA TPOACCLK TPOACSYNC 0 0 1 1 SPE MAPPER RPOAC_EN RSTS1_TUG3 TPOAC_EN TSTS1_TUG3 5-9196(F) Figure 97. TPOAC and RPOAC Cross Connect Agere Systems Inc. 569 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 23 Digital Jitter Attenuation Controller Functional Description Table of Contents Contents Page 23 Digital Jitter Attenuation Controller Functional Description ............................................................................ 570 23.1 Introduction ............................................................................................................................................. 571 23.2 Features ................................................................................................................................................. 571 23.3 Functional Block Diagram of the DJA Block ........................................................................................... 572 23.4 Digital Jitter Attenuation Controller Operation ........................................................................................ 572 23.4.1 PLL Bandwidth and Damping Factor Control .............................................................................. 573 23.4.2 PLL Order Control ....................................................................................................................... 573 23.4.3 DS1/E1 Clock Edge Control ........................................................................................................ 573 Figures Page Figure 98. DJA Block with I/O Connections to Other Blocks in the Device .......................................................... 571 Figure 99. Basic Functional Flow of the DJA Block .............................................................................................. 572 Tables Page Table 622. PLL Bandwidth Control Parameters .................................................................................................. 571 Table 623. First-Order Mode Duration Control .................................................................................................... 571 570 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 23 Digital Jitter Attenuation Controller Functional Description (continued) 23.1 Introduction This section describes the functions of the digital jitter attenuator (DJA) controller used in the Super Mapper device. The DJA controller contains 28 DJA blocks. Each DJA block can operate in two different modes, as a DS1 or an E1 jitter attenuator. In both modes, the DJA blocks can be provisioned to operate as a second-order PLL always, or it can switch to act as a first-order PLL during VT pointer adjustments to help meet MTIE requirements. The block will also insert the proper AIS signal if the primary block AIS control input is active. The PLL bandwidth can be set over a wide range to accommodate a number of different system constraints. 23.2 Features The DJA block accepts/delivers DS1/E1 clock, data, and AIS indications from/to the cross connect block. AIS in will cause the correct AIS clock to be inserted, and the AIS indication will be passed back to the cross connect. The DJA blocks operate in the second-order PLL mode under normal conditions. The DJA blocks can be provisioned to enter the first-order PLL mode following VT level pointer adjustments. The period of time in the firstorder mode is provisionable via registers. The PLL bandwidth is provisionable between 0.1 Hz and 0.5 Hz. The damping factor for these bandwidths varies between 2 and 0.5. Figure 98 shows the DJA block with I/O connections to other blocks within the Super Mapper device. M IC R O IN TER FAC E C ONT RO L XC _JD ATA[28:1] XC _JC LK[28:1] XC _JPTR ADJ[28:1] XC _JAIS[28:1] E1_XCLK D S1_XC LK DIGIT AL JITTER AT TEN UAT OR CR OSS C ON NEC T D JA_C LK[28:1] D JA_D ATA[28:1] D S1_AISC LK E1_AISCLK 5-8955(F)r.3 Figure 98. DJA Block with I/O Connections to Other Blocks in the Device Agere Systems Inc. 571 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 23 Digital Jitter Attenuation Controller Functional Description (continued) 23.3 Functional Block Diagram of the DJA Block The functional view of the DJA block, along with interconnections to the other blocks within the Super Mapper device, are shown in the Figure 99. The DJA block interfaces only to the cross connect and microprocessor interface blocks within the Super Mapper device. The input interface between the DJA block and the cross connect block consists of clock, serial data, VT pointer adjustment indication, and AIS insert indication. The output interface consists of clock, serial data, and AIS insert indication as well as the DS1 and E1 AIS clocks for use by other blocks within the device. XC_JAISx XC_JCLKx XC_JDATAx XC_JPTRADJx DS1_XCLK E1_XCLK JITTER ATTENUATION BLOCK DJA_CLKx DJA_DATAx DJA_AUTOAISx BLOCK REPEATED 28 TIMES DS1_AISCLK AIS CLOCK GENERATION E1_AISCLK 5-8956(F)r.1 Figure 99. Basic Functional Flow of the DJA Block 23.4 Digital Jitter Attenuation Controller Operation The digital jitter attenuation (DJA) controller is comprised of 28 DJA blocks. The DJA_SEL line rate control register (Table 478) is used to determine if the block is operating in the DS1 or E1 mode (1 = DS1, 0 = E1). The DJA controller requires a reference clock running at 16 or 32 times the line rate of the signal requiring jitter attenuation. This reference clock should be driven on one of the external input signals DS1XCLK or E1XCLK (see Table 3, High-speed I/O Pin Descriptions on page15 under the M13 MUX/DEMUX block receive path section). Each jitter attenuator block receives a clock, data, pointer adjust control, and an AIS control signal input. If the AIS control signal is active (high) on any time slot, then the AIS clock generation block (see Figure 99) of the DJA simply divides the correct line clock (XC_JCLKx) by 16 or 32 (via the DJA_BLUECLKD register shown in Table 479, independent of being in DS1 or E1 mode), sends this divided clock (DS1_AISCLK or E1_AISCLK) to the cross connect, and transmits the data signal (DJA_DATA) as a continuous logic 1. Even with the digital PLL portion of the DJA turned off (via the P_DJA_CLK_EN register, seeTable 71 on page71 , the AIS clock generation block will still generate the correct DS1_AISCLK or E1_AISCLK signals. Each DJA block has a 64-bit elastic store. These elastic stores are monitored for both underflow and overflow conditions. Both of these conditions contribute to the DJA_ESOVFL parameter, which can be unmasked to contribute to an interrupt DJA_ESOVFL[28:1] (Table 469). In the event of an elastic store overflow, the elastic store will recenter itself. The block monitors DS1XCLK (DJA_DS1LOC and DJA_G_DS1LOC) and E1XCLK (DJA_E1LOC and DJA_G_E1LOC) for loss of clock (LOC indication, Table 471) and change of loss of clock state (LOC delta, Table 469). The DJA_DS1LOC and DJA_E1LOC parameters are controlled by LOC events detected at the AIS clock generation block, while the DJA_G_DS1LOC and DJA_G_E1LOC parameters are controlled by LOC events detected at the DPLL. All loss of clock indications can contribute to a DJA interrupt. These interrupts can be unmasked by writing zeros to the registers in Table 470, DJA_MASK1--DJA_MASK2, Loss of Clock and Overflow/ Underflow Masks (R/W) on page 332. 572 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 23 Digital Jitter Attenuation Controller Functional Description (continued) 23.4.1 PLL Bandwidth and Damping Factor Control Two programmable terms are used to set the second-order loop damping factor and natural frequency. These terms are the gain threshold, set by registers DJA_E1GAIN[26:0] (Table 472) and DJA_DS1GAIN[26:0] (Table 473), and scale value, set by registers DJA_E1SCALE[15:0] (Table 474) and DJA_DS1SCALE[15:0] (Table 475). Some values of damping factor (d) and natural frequency (n) are listed below. The GAIN and SCALE values in decimal and hexadecimal terms to achieve these parameter values are listed in Table 622. Table 622. PLL Bandwidth Control Parameters d n E1_SCALE dec hex 0.5 0.45 2,829 0xB0D 0.75 0.325 5,876 0x16F4 1.0 0.25 10,186 0x27CA 1.5 0.175 21,827 0x5543 2.0 0.125 40,743 0x9F27 E1_GAIN dec 8,005,638 15,348,087 25,938,267 52,935,238 104,000,000 hex 0x7A2806 0xEA3177 0x18BC95B 0x327BA46 0x632EA00 DS1_SCALE dec hex 2,133 0x855 4,430 0x114E 7,679 0x1DFF 16,455 0x4047 30,716 0x77FC DS1_GAIN dec hex 4,549,825 0x456CC1 8,722,740 0x851934 14,741,431 0xE0EFB7 30,084,553 0x1CB0DC9 58,965,723 0x383BEDB 23.4.2 PLL Order Control Under normal conditions the DJA blocks operate in the second-order PLL mode. This operation attempts to keep the elastic store at the center of its range. However, following a VT pointer adjustment, it may be desirable to have the DJA blocks operate in the first-order mode. This is because the maximum timing interval error (MTIE) specification (GR-253, requirement R5-132) doesn't allow for any peaking. The second-order loop has a certain amount of peaking in its transient response that the first-order loop eliminates. The amount of time that the block operates in the first-order mode is programmable between 0 ms and 1 second. This operation is accomplished by loading a count value into registers DJA_E1PTRADJCNT[20:0] or DJA_DS1PTRADJCNT[20:0] (Table 476, Table 477). The value in this register is loaded into a counter whenever a VT pointer adjustment takes place. The counter decrements every XCLK/16 or XCLK/32 clock period until it reaches 0. While the count is nonzero, the block operates in the first-order mode. By default, the DJA_E1PTRADJCNT or DJA_DS1PTRADJCNT value is 0, so the block never switches into the first-order mode until programmed to do so. Some example time period durations and the corresponding decimal and hexadecimal DJA_E1PTRADJCNT and DJA_DS1PTRADJCNT values are listed in Table 623. Table 623. First-Order Mode Duration Control Duration -- 250 ms 500 ms 750 ms 1s E1 Mode dec 512,000 1,024,000 1,536,000 2,048,000 DS1 Mode hex 0xC800 0xFA000 0x177000 0x1F4000 dec 386,000 77,200 1,158,000 1,544,000 hex 0x96C8 0x12D90 0x11AB70 0x178F40 23.4.3 DS1/E1 Clock Edge Control The active edges on both the input and the output DS1/E1 signals are selectable via registers in Table 479, DJA_CLK_CTL1--DJA_CLK_CTL4, Reference Clock Rate and Edge Transitions (R/W) on page 334. DJA_TXEDGE[28:1] (Table 479) controls the edge that the data transitions on when leaving the DJA (1 = rising edge). DJA_RXEDGE[28:1] controls the edge that the data transitions on when retimed into the DJA (1 = rising edge). Agere Systems Inc. 573 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 24 Test-Pattern Generation/Detection Functional Description Table of Contents Contents Page 24 Test-Pattern Generation/Detection Functional Description ............................................................................ 574 24.1 Test-Pattern Generator Introduction ....................................................................................................... 575 24.2 Features ................................................................................................................................................. 575 24.3 Applications ............................................................................................................................................ 575 24.4 Block Diagram ........................................................................................................................................ 576 24.5 Functional Descriptions .......................................................................................................................... 576 24.5.1 Test-Pattern Generation .............................................................................................................. 576 24.5.2 TPG Clock Source ....................................................................................................................... 577 24.5.3 TPG Transmit Edge Select .......................................................................................................... 577 24.5.4 TPG Test-Pattern Framing .......................................................................................................... 577 24.5.5 DS1 TPG Framing ....................................................................................................................... 577 24.5.6 E1 TPG Framing ......................................................................................................................... 577 24.5.7 DS2 TPG Framing ....................................................................................................................... 578 24.5.8 DS3 TPG Framing ....................................................................................................................... 578 24.5.9 Line Encoding/Decoding ............................................................................................................. 578 24.5.10 TPG Test-Pattern Sequences ................................................................................................... 578 24.5.11 TPG Idle Generator ................................................................................................................... 579 24.5.12 TPG Error Insertion ................................................................................................................... 579 24.5.13 TPG Interrupts ........................................................................................................................... 579 24.5.14 Test-Pattern Monitor (TPM) ....................................................................................................... 579 24.5.15 TPM Channel Selection ............................................................................................................. 579 24.5.16 TPM Clock Edge and Data Polarity Selection ........................................................................... 579 24.6 TPM Framing Acquisition and Synchronization ...................................................................................... 579 24.6.1 DS1/E1 ........................................................................................................................................ 579 24.6.2 TPM Error Detection and Counting ............................................................................................. 580 24.6.3 TPM Interrupts ............................................................................................................................. 581 24.7 Microprocessor Interface ........................................................................................................................ 581 24.7.1 Microprocessor Interface Register Map ...................................................................................... 581 Figures Page Figure 100. TPG Block Interface Block Diagram.................................................................................................. 576 Tables Page Table 624. TPG Framing Controls (TPG_FRAMEx = 1) ..................................................................................... 577 Table 625. TPG Test-Pattern Sequences ........................................................................................................... 578 Table 626. TPM Interrupts ................................................................................................................................... 581 574 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 24 Test-Pattern Generation/Detection Functional Description (continued) 24.1 Test-Pattern Generator Introduction The TPG block is a configurable set of test-pattern generators and monitors for the Super Mapper. For maintenance and troubleshooting operations, TPG feeds one or more T1/E1/DS2 test signals (via data, clock, and FS signal paths) to the crosspoint switch (XC block). The XC block can redistribute or broadcast these signals to any valid channel in the framer, external I/O, M13 mapper, DJA, or VT mapper blocks. Similarly, any channel arriving at the XC may be routed to the test monitor. The TPG can also generate DS3 test signals for use via the M13 and SPE blocks. Single bit-errors can be detected and counted at each monitor. The test-pattern generator and associated monitors receive configuration and setup information from the microprocessor control interface. Once the rate and data format are chosen, the test generator outputs are fed to the crosspoint (XC). The crosspoint can map the test signals to any valid DS1/E1/DS2 channel in the device, or to a special set of test monitor channels in the TPG block (for loopback testing of the test generator/monitor pair). The monitor waits for the expected test pattern and (after a brief synchronization operation) continually checks the data stream for bit errors. Optionally, a single data-bit or framing-bit error may be generated via a global SMPR_BER_INSRT (Table 65, SMPR_GTR, Global Trigger Register (RW) on page66 ) control signal, in order to confirm the correct detectability of such an error as it traverses the crosspoint and other system elements. Simultaneous testing of DS1, E1, DS2, and DS3 signals is supported (one test channel at each rate plus one idle channel at DS1). The DL (DS1-ESF data link) and E1 Sa (spare) bit fields are read/writable under software control, allowing for additional system testing control. Test monitors can automatically detect/count data-bit errors and detect framing-bit or CRC errors in a pseudorandom test sequence, or loss of frame or loss of sync. The TPG can provide an interrupt to the control system, or it can be operated in a polled mode. 24.2 Features Configurable test-pattern generator: DS1, E1, DS2, and DS3 formats. Pseudorandom bit sequence (PRBS, also known as pseudonoise or PN sequences) based on maximal-length feedback shift register sequences; PN codes selectable from the following options: QRSS, PRBS15, PRBS20, PRBS23, ALT_01, ALL_ONES, USER pattern (16 bits, repeating). The DS1 and E1 test patterns can be transmitted either unframed or as the payload of a framed signal as defined in ITU-T Recommendation O.150 (see TPG_FRAMEx signals (Table 507 and Table 508)). Single bit-errors or framing-errors may be injected into any test pattern, under register control. Any sink or receiving channel may be replaced by a test-pattern monitor, which can detect and count bit errors or misconfigurations, and/or detect idle conditions or AIS. Data link (DS1-ESF DL) and SSM (E1 multiframe Sa) fields read/writable. Supports all Super Mapper modes of operation. Complies with T1.107, T1.231, T1.403, G.703, G.704, O.150. 24.3 Applications Super Mapper self-test, crosspoint verification. Built-in link and system testing support. Flexible multicast/broadcast capabilities. Programmable error insertion. Idle or test-pattern (DS1 only) generation for each channel. Idle or test-pattern (DS1 only) bit error or activity monitoring for each channel. Agere Systems Inc. 575 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 24 Test-Pattern Generation/Detection Functional Description (continued) 24.4 Block Diagram The following diagram illustrates the high-level interface between the TPG block and other functional blocks. DS1/E1/DS2/DS3 SOURCE CLOCKS 4 (DS1) DATA/CLK/SYNC 3 (DS1) IDLE/CLK/SYNC 3 (E1) DATA/CLK/SYNC 3 (DS2) DATA/CLK 2 [DS3} DATA/CLK/CLKEN 3 TPG TEST GEN/MON XC CROSS CONNECT (TPG_DS1) DATA/CLK/SYNC 3 (TPG_DS1) IDLE/CLK/SYNC 3 (TPG_E1) DATA/CLK/SYNC 3 (TPG_DS2) DATA/CLK 3 (TPG_DS3) DATA/CLK/CLKEN 3 CONTROL INTERFACE 5-9178(F)r.3 Figure 100. TPG Block Interface Block Diagram 24.5 Functional Descriptions 24.5.1 Test-Pattern Generation The test-pattern generator has five groups of output signals. These outputs consist of two signal groups for DS1 and one signal group each for E1, DS2, and DS3 clock rates. Each of these groups can be provisioned, independently, in various ways. Each DS1/E1 signal group consists of a clock, the data stream, and a frame-sync signal (if needed in a byte-synchronous environment). The DS2 signal group consists of clock and data. The DS3 signal group consists of data, clock, and clock enable. Each rate supports full-payload test patterns data signals and DS1 also supports continuous idle data signals. 576 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 24 Test-Pattern Generation/Detection Functional Description (continued) 24.5.2 TPG Clock Source The Super Mapper TPG uses four source clocks provided by the cross connect as input at the appropriate rate to generate the test patterns. These are shown in Figure 100, TPG Block Interface Block Diagram on page 576 as being supplied by the XC block, except the DS3 clock (which is provided via the XC3 crosspoint by the M13 or SPE block). 24.5.3 TPG Transmit Edge Select The edge of the clock TPG_CLKx that is used to source the data is provisionable to either the rising edge TPG_EDGEx = 1 (Tables 507, 508, 509, and 510) or the falling edge TPG_EDGEx = 0 for each of the five test-pattern sources. 24.5.4 TPG Test-Pattern Framing The test pattern can be transmitted either unframed or as the payload of a framed signal as defined in ITU-T Recommendation O.150. The DS1 continuous-idle signal is always framed. The test-pattern framing is determined by the TPG_FRAMEx register values (Table 507 and Table 508): 0 represents an unframed signal, while 1 represents a test-pattern embedded in a framed signal. Additionally, a TPG_ESF bit (Table 507) determines if extended superframe operation is enabled (DS1 only). Table 624. TPG Framing Controls (TPG_FRAMEx = 1) Index (x) 0 Data Rate -- DS1 1 2 4 5 E1 DS2 DS3 Framing SF (TPG_ESF = 0) ESF (TPG_ESF = 1) Transparent mode (test sequence bits User-settable data-link pattern CRC-6 in signaling bit positions) generate/check Continuous idle NA E1 with common channel signaling, CRC-4 Unframed PRBS sequence DS3--gated PRBS sequence (framing via M13) The DS1 idle data signal is always superframe (SF) framed. The associated SYNC signal is generated but may safely be ignored if not used. 24.5.5 DS1 TPG Framing For DS1 signals, the frame bit in the 12th frame of each superframe is inverted if TPG_FINV0 = 1 ( Table 507 and Table 508). For ESF modes, the transmitted data-link pattern is a continuous repeat of the contents of the TPG_ESFDL[15:0] (Table 504). Each ESF superframe is also checked for CRC-6 errors per ANSI T1.403. These CRC errors may be injected via TPG_CRC6EINSx register bits (Table 503). A single CRC-6 error event is generated each time that the TPG_CRC6EINSx bit transitions from 0 to 1. 24.5.6 E1 TPG Framing For E1 signals, the frame alignment signal (normally 0011011) is transmitted with the last bit inverted (0011010) if TPG_FINV = 1 (Table 507 and Table 508). Each transmitted E1 multiframe contains a CRC-4 cyclic redundancy check mechanism per Recommendation G.704 Section 2.3. CRC-4 errors may be injected via TPG_CRC4EINSx register bits (Table 503). A single CRC-4 error event is generated each time that the TPG_CRC4EINSx bit transitions from 0 to 1. Agere Systems Inc. 577 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 24 Test-Pattern Generation/Detection Functional Description (continued) The transmitted Sa bits (designated as spares in G.704) are a continuous repeat of the contents of the TPG_E1SAx[4:8] registers (Table 505 and Table 506). These bits are synchronized to the CRC-4 frame. Referring to Table 5B in G.704, the E1SA1[4:8] bits are the SA bits in SMF 1 and 9, the E1SA2[4:8] bits are the Sa bits in SMF 3 and 11, etc. 24.5.7 DS2 TPG Framing The DS2 generator provides an unframed DS2 rate test sequence. 24.5.8 DS3 TPG Framing For DS3 test signals, the TPG provides a raw PN sequence on TPG_DATA[5] using the enabled clock. 24.5.9 Line Encoding/Decoding For DS1 and E1 test signals, the TPG may be provisioned to transmit and receive AMI coded signals TPG_TPM_CODEx (Table 507 and Table 508). The signals can be uncoded, B8ZS coded, HDB3 coded, or AMI coded. If coding is selected, it is active for both transmit and receive paths. For coded signals, the DATA inputs/outputs become the positive rails and the sync inputs/outputs become the negative rails. 24.5.10 TPG Test-Pattern Sequences The test-pattern bit sequence generated on the nonidle TPG_DATAx lines is determined by the TPG_SEQm[2:0] (Table 507, 508, 509, and 510) register values, where m is the rate index (0 = DS1, 2 = E1, 4 = DS2, and 5 = DS3). One of seven sequences presently may be selected for transmission within the framed or unframed test pattern on the corresponding even TPG_DATAx lines (the odd lines are connected to idle generators). Each datastream also has an associated clock TPG_CLKx and frame-sync signal TPG_FSx (x even, except DS2). TPG_SEQm[2:0] values are described in the following table: The polarity of the output data stream may also be provisioned to normal TPG_TPINVx = 0 (Table 507, 508, 509, and 510) or inverted TPG_TPINVx = 1. Table 625. TPG Test-Pattern Sequences TPG_SEQm 000 011 100 101 Test Pattern PRBS15. 1 PN sequence specified in O.150. This sequence is generated by a 15-stage shift register whose 14th and 15th stages are added and fed back to the first stage. The output of the last stage is inverted (which yields a sequence with up to 15 consecutive zeros) to produce the transmitted sequence. PRBS20. 220 - 1 PN sequence. This sequence is generated by a 20-stage shift register whose 17th and 20th stages are added and fed back to the first stage. The transmitted test sequence is normally the noninverted output of the last (20th) stage. QRSS. 220 - 1 PN sequence with zero-suppression as specified in O.150. This sequence is generated by a 20-stage shift register whose 17th and 20th stages are added and fed back to the first stage. The transmitted test sequence is normally the non-inverted output of the last (20th) stage, but the test sequence is forced high if the outputs of stages 6 through 19 are low. PRBS23. 223 - 1 PN sequence. ALT_01. Alternating sequence of ones and zeros. ALL_ONES. All-ones sequence. 110 111 Note: If unframed, an AIS signal is generated. Reserved. User-Defined. Continuously repeating 16-bit pattern from TPG_USER[15:0] (Table 511). 001 010 578 215 - Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 24 Test-Pattern Generation/Detection Functional Description (continued) 24.5.11 TPG Idle Generator The TPG has one output dedicated to providing a valid, SF framed DS1 idle data pattern. This datastream also has an associated clock TPG_CLKx and frame-sync signal TPG_SYNCx (x odd). This pattern is specified in detail in T1.403 for DS1. 24.5.12 TPG Error Insertion A single bit error is injected into the test sequence each time that the global control signal SMPR_BER_INSRT (Table 65, SMPR_GTR, Global Trigger Register (RW) on page66 ) transitions from 0 to 1 while the associated enable bit TPG_BERINSx (Table 501) is set to 1. Similarly, for framed signals, a single framing bit error may be injected into the test sequence each time that the TPG_FERINSx (Table 502) bit transitions from 0 to 1. For certain types of framed signals (that is, DS1 ESF and E1 multiframe), cyclic-redundancy check (CRC) errors may be injected into the test sequence. A single error insertion event is triggered each time that the TPG_CRCEINSx (Table 500) (for DS1-ESF) or TPG_CRC4EINSx (Table 503) (for E1) register bit toggles from 0 to 1. 24.5.13 TPG Interrupts There are no interrupts from the TPG at the current time. 24.5.14 Test-Pattern Monitor (TPM) The test-pattern monitor TPM sub-block contains four self-synchronizing detectors that are provisioned to search for a particular test pattern (one each for signal at DS1, E1, DS2, and DS3). Each of the four monitor blocks searches for the framed or unframed sequence at that rate, as determined by the values of TPM_FRAMEx (Table 507 and Table 508) and TPM_SEQm[2:0] (Table 507, 508, 509, and 510) register bits (defined similarly to the corresponding TPG register bits). 24.5.15 TPM Channel Selection In normal operation, the user connects one of the available DS1, E1, DS2, or DS3 signals to the corresponding TPM input by configuring the cross connect (XC). 24.5.16 TPM Clock Edge and Data Polarity Selection The edge of the clocks XC_TCLKx that is used to acquire the test data is provisionable to either the rising edge TPM_EDGEx = 1 (Table 507, 508, 509, and 510) or the falling edge TPM_EDGEx = 0 for each of the four test-pattern monitors. The polarity of the input data stream may also be provisioned to normal TPM_TPINVx = 0 (Table 507, 508, 509, and 510) or inverted TPM_TPINVx = 1. 24.6 TPM Framing Acquisition and Synchronization 24.6.1 DS1/E1 For framed data streams TPM_FRAMEx = 1 (Table 507 and Table 508), the monitor searches for the appropriate frame sequence in the selected signal. If no frame is found, TPM_OOFx (Table 496) is set. The TPM_OOFx condition (status) signals default to 1, indicating an out-of-frame condition. Agere Systems Inc. 579 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 24 Test-Pattern Generation/Detection Functional Description (continued) A TPM_OOFxD (Table 482) signal detects and latches delta events (changes or transitions) in the TPM_OOFx signal. The TPM_OOFxD signal is reset to 0 based on the SMPR_COR_COW (Table 67, SMPR_GCR, Global Control Register (RW) on pag e68) global control signal: if SMPR_COR_COW is set, event or delta signals are cleared on any microprocessor read of the event or delta register. If SMPR_COR_COW is 0, each event or delta signal must be written with a 1 to clear it. The TPM_OOFxD signal, if asserted, will generate an interrupt unless the corresponding mask bit TPM_OOFxDM (Table 489) is set. Also, synchronization is checked for the designated test patterns. If the TPM monitor detects 32 consecutive matches in its input sequence, the corresponding TPM_OOSx (Table 497) is cleared. Similarly, if the TPM detects four or more consecutive mismatches in the input sequence, the corresponding TPM_OOSx is set. The TPM_OOSx condition (status) signals default to 1, indicating an out-of-sync condition. A TPM_OOSxD (Table 483) signal detects and latches delta events (changes or transitions) in the TPM_OOSx signal. The TPM_OOSxD signal is reset to 0 based on the SMPR_COR_COW global control signal: if SMPR_COR_COW is set, delta signals are cleared on any microprocessor read of the delta register. If SMPR_COR_COW is 0, each delta signal must be written with a 1 to clear it. The TPM_OOSxD signal, if asserted, will generate an interrupt unless the corresponding mask bit TPM_OOSxDM (Table 490) is set. DS2 (x = 4). The DS2 monitor checks for synchronization of the unframed PRBS signals, and for bit errors as above. DS3 (x = 5). The DS3 monitor checks for synchronization of the unframed PRBS signals, and for bit errors as above. 24.6.2 TPM Error Detection and Counting TPM Bit Errors. While in sync, each data monitor detects and counts the number of times that the input sequence differs from the expected sequence in a 16-bit counter (one per rate). Detection of a bit error causes the TPM to latch a 1 into the TPM_BEREx (Table 490) event register bit. Clearing of this latched event is determined by the SMPR_COR_COW global control signal (if set, the event is automatically cleared on read, otherwise a 1 must be written to the TPM_BEREx register bit to clear it). If the interrupt is enabled (not masked) via TPM_BERMx (Table 491) mask bits, then this event will trigger an interrupt. The error counters accumulate TPM_BEREx events in a set of active counters. The active counter values are transferred to registers upon assertion of global control signal SMPR_PMRESET (Table 65, SMPR_GTR, Global Trigger Register (RW) on page66 ). The counter values may be read via the microprocessor control interface via registers called TPM_CNTx[15:0] (Tables 513, 514, 515, and 516). The active counters will roll over or saturate at the terminal count depending on global control signal SMPR_SAT_ROLLOVER (Table 67, SMPR_GCR, Global Control Register (RW) on page68 ). The counters will clear on read if the global control signal SMPR_COR_COW is set; otherwise, the counter values are not affected by reads and instead must be cleared by explicit writes. The global control signals SMPR_PMRESET, SMPR_SAT_ROLLOVER, and SMPR_COR_COW operate on all six test channels; there are no separate controls per rate or mode. TPM Framing Errors. Framing-bit errors TPM_FEREx (Table 485) events are detected when TPM_FRAMEx is 1 but not counted. The event is latched and may be used to trigger a (maskable) interrupt, or may be polled (the error assertion will last between one and 24 frame intervals). The interrupt mask bit is called TPM_FERExM (Table 492). The global control signal SMPR_COR_COW determines if the TPM_FEREx event is cleared on read or write. TPM CRC Errors. Cyclic redundancy check (CRC) errors TPM_CRCEx (Table 488) are detected when TPM_FRAMEx (Table 507 and Table 508) is 1 but not counted. CRC-6 errors are valid only for DS1 extended super-frame (ESF) test patterns. CRC-4 errors are valid only for E1 multiframe test patterns. Each CRC error event is latched and may be used to trigger a (maskable) interrupt, or may be polled (the error assertion will last between 1 and 24 frame intervals). CRC-6 errors (DS1-ESF only) are detected via TPM_CRCE0. Interrupts are managed via TPM_CRCE0M (Table 495) bit. The global control signal SMPR_COR_COW (Table 67, SMPR_GCR, Global Control Register (RW) on page68 ) determines if the TPM_CRCE0 event is cleared on read or write. 580 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 24 Test-Pattern Generation/Detection Functional Description (continued) CRC-4 errors (E1 multiframe only) are detected via TPM_CRCE2. Interrupts are managed via TPM_CRCE2M (Table 495) bits. The global control signal SMPR_COR_COW determines if the TPM_CRCE2 event is cleared on read or write. TPM Data AIS Detection. If an active data monitor detects AIS (i.e., detects all ones in the data signal), the corresponding register bit TPM_AISx (Table 498) is asserted (default = 0, no AIS). A TPM_AISxD (Table 487) signal detects and latches delta events (changes or transitions) in the TPM_AISx signal. The TPM_AISxD signal is reset to 0 based on the SMPR_COR_COW global control signal: if SMPR_COR_COW is set, event or delta signals are cleared on any microprocessor read of the event or delta register. If SMPR_COR_COW is 0, each event or delta signal must be written with a 1 to clear it. The TPM_AISxD signal, if asserted, will trigger an interrupt unless the corresponding interrupt mask bit TPM_AISxDM (Table 494) is set. TPM DS1-ESF Data Link. For DS1 extended super frame (ESF) test patterns, the received data link field contents are presented to software via registers entitled TPM_ESFDL[15:0] ( Table 504). TPM E1 Sa-Bits Field. For E1 framed test patterns, the received Sa bits are presented to software via registers entitled TPM_E1SAx[4:8] (Table 518 and Table 519). 24.6.3 TPM Interrupts The TPM block is capable of generating the following (maskable) interrupts: Table 626. TPM Interrupts Event Int_Name Int_Mask_Name Description OOFx Change TPM_OOFxD (Table 482) TPM_OOFxDM (Table 489) TPM Out-of-Frame Delta OOSx Change TPM_OOSxD (Table 483) TPM_OOSxDM (Table 490) TPM Out-of-Sync Delta BER TPM_BEREx (Table 484) TPM_BERExM (Table 491) TPM Single Bit Error FER TPM_FEREx (Table 485) TPM_FERExM (Table 492) TPM Framing Error CRC Error TPM_CRCEx (Table 488) TPM_CRCExM (Table 495) TPM CRC Error (DS1, ESF, or E1 only) AISx Change TPM_AISxD (Table 487) TPM_AISxDM (Table 494) TPM AIS Delta The microprocessor interface may also read the current condition (status) of TPM framing, synchronization, or AIS detection via the TPM_OOFx (Table 496), TPM_OOSx (Table 497), and TPM_AISx (Table 498) indicators directly. 24.7 Microprocessor Interface 24.7.1 Microprocessor Interface Register Map The register map of the microprocessor interface is shown in Table 76, Microprocessor Interface Register Map on page 73. All addresses referred to in this section are given in hexadecimal notations in the first column of the table. Agere Systems Inc. 581 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 25 Philosophies Table of Contents Contents Page 25 Philosophies ................................................................................................................................................... 582 25.1 Clocking and Power Management Philosophy ....................................................................................... 583 25.2 Maintenance Philosophy ........................................................................................................................ 583 Figures Page Figure 101. Clock and Power Shutdown Diagram................................................................................................ 583 Tables Page Table 627. Maintenance Tasks Supported by the SMPR .................................................................................... 584 582 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 25 Philosophies (continued) 25.1 Clocking and Power Management Philosophy E1XCLK DS1XCLK FRAMER BANK 44.736 MHz TXCK M13 MUX 44.736 MHz DJA RXCK AIS CLOCK GENERATION 19.44 MHz 19.44 TXCK 155 MHz Tx 51.84 MHz SPE/ AU-3 MAPPER 51.84 6.48 MHx TMUX 51.84 MHz 155 MHz Rx 51.84 RXCK DPLL (x28) TXCK VT/VC MAPPER 6.48 MHz 19.44 T1/E1 DS2 DS3 RXCK 19.44 MHz MPU_CLK (TO ALL BLOCKS) DS1_AISCLK E1_AISCLK TEST PATTERN GEN/MON CROSS CONNECT LINERXCLK [29:1] LINETXCLK [29:1] MPU INTERFACE AND CONTROL MPCLK 16 MHz--66 MHz MPMODE 5-8977(F) Figure 101. Clock and Power Shutdown Diagram 25.2 Maintenance Philosophy The Super Mapper maintenance philosophy follows the SONET NE maintenance criteria specified by GR-253CORE. The various functions that are used to perform the following maintenance tasks are addressed: Trouble detection Trouble or repair verification Trouble sectionalization Trouble isolation Restoration Agere Systems Inc. 583 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 25 Philosophies (continued) The following tables show how the Super Mapper handles its maintenance tasks. Table 627. Maintenance Tasks Supported by the SMPR Maintenance Tasks Loss of Signal (LOS) Loss of Frame (LOF) Loss of Pointer (LOP) Equipment Failures Loss of Synchronization APS Troubles: Protection Switching Byte Failure Channel Mismatch Failure APS Mode Mismatch Failure Far-End Protection-Line Failure DCC Failure Signal Label Mismatch: STS Payload Label Mismatch STS Path Unequipped VT Payload Label Mismatch VT Path Unequipped Support by Generation SMPR (Blocks Responsible) Alarm Surveillance Directly Detected Defects and Failure Supported TMUX Supported TMUX Supported TMUX Detection (Blocks Responsible) NA Supported Supported -- -- TMUX TMUX, M13 TMUX, M13 TMUX, SPEMPR, VTMPR -- TMUX, VTMPR TMUX -- TMUX TMUX (partial support) Supported Supported Supported Supported TMUX, SPEMPR TMUX, SPEMPR -- VTMPR TMUX, SPEMPR TMUX, SPEMPR VTMPR VTMPR Alarm Indication Signal (AIS) Line AIS (AIS-L) Supported TMUX TMUX STS Path AIS (AIS-P) Supported TMUX, SPEMPR TMUX, SPEMPR VT Path AIS (AIS-V) Supported VTMPR VTMPR DSn AIS Supported TPG, M13, FRAMER, TPG, M13, FRAMER, VTMPR VTMPR Remote Defect Indication (RDI) and Remote Failure Indication (RFI) Line Remote Defect Indication (RDI-L) and Supported TMUX TMUX Remote Failure Indication (RFI-L) STS Path Remote Defect Indication (RDI-P) Supported TMUX, SPEMPR TMUX, SPEMPR and Remote Failure Indication (RDI-P) VT Path Remote Defect Indication (RDI-V) Supported VTMPR VTMPR and Remote Failure Indication (RFI-V) DSn RDI and RAI Signals Supported M13, FRAMER M13, FRAMER Payload Defect Indication (PDI) STS Payload Defect Indication (PDI-P) Supported TMUX, SPEMPR TMUX, SPEMPR VT Payload Defect Indication (PDI-V) NA -- -- Maintenance Signals for Other Mappings NA -- -- Trunking NA -- -- Alarm-Related Events Supported All blocks to meet the signal-- ing and timing requirements 584 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 25 Philosophies (continued) Table 627. Maintenance Tasks Supported by the SMPR (continued) Maintenance Tasks Support by Generation SMPR (Blocks Responsible) Control of Alarm Processing Alarm Level Designations NA -- Signal Failure/Single Message NA -- Independent Failures NA -- Retrieval of NE Condition NA -- Provisioning of Alarm Levels NA -- Clear Messages NA -- Noninstrusive Detection of Defects and NA -- Declaration of Failures Performance Monitoring General Accumulation and Thresholding Criteria Physical Layer PM Physical Layer Parameters Supported -- Physical Layer PM Criteria Supported -- Section Layer PM Section Layer Parameters Supported TMUX Section Layer PM Criteria Supported TMUX Line Layer PM Near-end Line Layer Parameters Supported TMUX Far-end Line Layer Parameters Supported TMUX Line Layer PM Criteria Supported TMUX STS Path Layer PM Near-end STS Path Layer Parameters Supported TMUX, SPEMPR Far-end STS Path Layer Parameters Supported TMUX, SPEMPR STS Path Layer PM Criteria Supported TMUX, SPEMPR Agere Systems Inc. Detection (Blocks Responsible) -- -- -- -- -- -- -- TMUX, SPEMPR, M13 SPEMPR, M13 TMUX TMUX TMUX TMUX TMUX TMUX, SPEMPR TMUX, SPEMPR TMUX, SPEMPR 585 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 25 Philosophies (continued) Table 627. Maintenance Tasks Supported by the SMPR (continued) Maintenance Tasks Support by SMPR Generation (Blocks Responsible) Detection (Blocks Responsible) VT Path Layer PM Near-end VT Path Layer Parameters Supported VTMPR VTMPR Far-end VT Path Layer Parameters Supported VTMPR VTMPR VT Path Layer PM Criteria Supported VTMPR VTMPR Monitoring at DSn Interfaces Supported TPG, M13, FRAMER TPG, M13, FRAMER PM During Troubles NA -- -- Intermediate-Path PM NA -- -- Testing Process Test Access Fiber Access NA -- -- SONET Signal Test Access NA -- -- Supported TPG TPG Digital Test Access Diagnostics Physical Layer -- -- -- Section Layer Supported TMUX TMUX Signal Identification: Supported TMUX TMUX TMUX, SPEMPR, VTMPR TMUX, SPEMPR, VTMPR ALL BLOCKS ALL BLOCKS STS Path Trace STS and VT Path Signal Label Error Monitoring Supported Loopbacks SONET Terminal Loopbacks Supported TMUX -- SONET Facility Loopbacks Supported VTMPR, TMUX, SPEMPR -- DSn Loopbacks Supported M13, FRAMER -- 586 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Applications 26 Applications Table of Contents Contents Page 26 Applications ..................................................................................................................................................... 587 26.1 Application Diagrams .............................................................................................................................. 588 26.2 High-Speed Line Interfaces and Clock and Data Recovery ................................................................... 589 26.2.1 Receive Direction ......................................................................................................................... 589 26.2.2 Transmit Direction ......................................................................................................................... 589 26.3 Multiplex Section Protection (MSP 1 + 1) ............................................................................................... 589 26.3.1 Pointer Interpreter ........................................................................................................................ 589 26.4 Path Termination Function ..................................................................................................................... 590 26.5 STS-3/STM-1 MUX-DeMUX ................................................................................................................... 591 26.6 Telecom Bus Interface--Interfacing to Mate Devices ............................................................................ 591 26.7 SPE/AU-3 Mapper (DS3 Mapper) .......................................................................................................... 591 26.8 VT/VC Mapper ........................................................................................................................................ 592 26.8.1 Receive Direction ......................................................................................................................... 592 26.8.2 Transmit Direction ........................................................................................................................ 593 26.9 M13/M23 Multiplexer .............................................................................................................................. 593 26.9.1 Receive Direction ......................................................................................................................... 593 26.9.2 Transmit Direction ........................................................................................................................ 594 26.10 Cross Connect Block ............................................................................................................................ 594 26.11 Digital Jitter Attenuator ......................................................................................................................... 595 26.12 Test Pattern Generator ......................................................................................................................... 595 26.13 28-Channel Framer .............................................................................................................................. 596 26.14 Line Decoder/Encoder .......................................................................................................................... 601 26.15 Receive Frame Aligner/Transmit Frame Formatter .............................................................................. 601 26.16 Receive Performance Monitor .............................................................................................................. 601 26.17 Signaling Processor .............................................................................................................................. 602 26.18 Facility Data Link (FDL) Processor ....................................................................................................... 602 26.19 HDLC Unit ............................................................................................................................................ 603 26.20 System Interface.....................................................................................................................................603 27 Change History ............................................................................................................................................... 604 Figures Page Figure 102. Switching Application of the Super Mapper....................................................................................... 588 Figure 103. Transport Application of the Super Mapper....................................................................................... 588 Figure 104. Super Mapper Switching Mode for Framer in Concentration Highway Interface (CHI) Configuration............................................................................................................. 596 Figure 105. Super Mapper Switching Mode for Framer in Parallel System Bus Configuration ............................ 597 Figure 106. Super Mapper Switching Mode CHI Configuration with Byte-Synchronous VT Mapping Enabled ... 598 Figure 107. Super Mapper Byte-Synchronous Transport Mode: Passive Performance Monitoring..................... 599 Figure 108. Super Mapper Byte-Synchronous Transport Mode: Intrusive Performance Monitoring.................... 600 Tables Page Table 628. Change History .................................................................................................................................... 604 Agere Systems Inc. 587 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) 26.1 Application Diagrams SYSTEM INTERFACE SUPER MAPPER #1 PM FRAMER SUPER MAPPER #1 STS-3 MAPPER SYSTEM INTERFACE PM MAPPER FRAMER MAPPER TELECOM BUS PM DS0/E0 SWITCH FRAMER PM MAPPER MAPPER SUPER MAPPER #2 SUPER MAPPER #2 PM FRAMER DS0/E0 SWITCH FRAMER PM MAPPER MAPPER SUPER MAPPER #3 FRAMER SUPER MAPPER #3 5-8924(F)r.1 Figure 102. Switching Application of the Super Mapper LINE INTERFACE SUPER MAPPER #1 STS-3 PM FRAMER SUPER MAPPER #1 MAPPER PM MAPPER PM LINE INTERFACE FRAMER PM MAPPER TELECOM BUS T1/E1 LINE INTERFACE UNIT (T7690 OR T7698) PM FRAMER PM MAPPER PM MAPPER FRAMER PM SUPER MAPPER #2 SUPER MAPPER #2 PM FRAMER T1/E1 LINE INTERFACE UNIT (T7690 OR T7698) PM MAPPER PM SUPER MAPPER #3 MAPPER FRAMER PM SUPER MAPPER #3 5-8925(F)r.1 Figure 103. Transport Application of the Super Mapper 588 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) 26.2 High-Speed Line Interfaces and Clock and Data Recovery In the receive direction, the Super Mapper accepts either a differential serial data signal at 155.52 Mbits/s (STS-3/STM-1 mode) or a serial STS-1 clock and data at 51.84 MHz (STS-1 mode). For the STS-1 case, the input is retimed with the input clock. A clock and data recovery circuit is used for the 155 Mbits/s case with the highspeed transmit input clock as the clock reference. In the event that external clock and data recovery is provided, this feature can be bypassed. The clock and date circuit can be used for recovering clock at 51 MHz, but a 155 MHz clock reference must still be supplied. On the transmit side, in STS-3/STM-1 mode, the Super Mapper receives a differential 155.52 MHz transmit clock and transmit frame sync signal and outputs a differential serial data signal. In STS-1 mode, it receives a 51.84 MHz transmit clock and frame sync signal and outputs serial data. Loss of input clock or recovered clock is detected, as well as a loss-of-signal condition, by monitoring an external signal pin or internally an all-zeros/ones pattern. Built-in loopbacks at both high-speed interfaces provide maximum flexibility for maintenance testing. 26.2.1 Receive Direction Terminating the transport overhead (TOH), the Super Mapper performs frame alignment (STS-3/STM-1 or STS-1), B1 BIP-8 check, J0 monitoring, descrambling, F1 monitoring, B2 BIP-8 check, APS and K2 monitoring, AIS-L and RDI-L detection, M1 REI-L detection, S1 sync status monitoring, and transport overhead access channel (RTOAC) drop. The states of the framer as well as all state changes are reported, and, if not masked, cause an interrupt. The B1 and B2 parity check supports bit and block mode. The counters count up to one second worth of BIP errors. They stay at their maximum value in case of overflow or rollover and should be read (and cleared) at least once per second. The J0 monitor supports nonframed, SONET-framed, and SDH-framed 16-byte sequences as well as single J0 byte monitoring modes. APS monitoring is performed on K1[7:0] and K2[7:3]. The value is stored and changes are reported. Bits [2:0] of the K2 byte are monitored independently. Line AIS (AIS-L/MS-AIS) and remote defect indication (RDI-L/MS-RDI) are monitored separately and changes are reported. This information is also sent to the protection device for ADM applications. The M1 monitor operates either in bit or block mode and allows accessing of the remote error indication (REI-L/MS-REI) errored bit count. The S1 byte can be monitored in two modes: as an entire 8-bit word or as one 4-bit nibble (bits 7 to 4). Continuous N times detection counters are implemented for these monitoring functions. All automatic receive monitoring functions can be configured to provide an interrupt to the control system, or the device can be operated in a polled mode. The receive transport overhead access channel (RTOAC) provides access to all of the line section overhead bytes. Even or odd parity is calculated over all bytes. It has a data rate of 5.184 Mbits/s and consists of a clock, data, and an 8 kHz sync pulse. Alternatively, only the data communication channels D1--D3 or D4--D12 may transmit a serial 192 kbits/s or a 576 kbits/s data stream. 26.2.2 Transmit Direction In the transmit direction, the Super Mapper performs transmit transport overhead access channel (TTOAC) insertion, sync status byte (S1) insertion, M0/M1--REI-L insertion, K1 and K2 insertion, AIS-L insertion, B2 calculation and insertion, F1 byte insertion, B1 generation and error insertion, scrambler, J0 insert control, and A2 error insertion. Agere Systems Inc. 589 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) All insert control functions that are inhibited will optionally insert either all zeros or all ones. The TTOAC allows the users to insert the following overhead bytes: E1, F1, D1--D3, D4--D12, S1, and E2. Even or odd parity is checked over all bytes. Bytes which are not enabled for insertion are set to an all-ones or all-zeros stuff value. The Super Mapper sources a clock and an 8 kHz sync pulse and receives the data at a data rate of 5.184 Mbits/s. Alternatively, only the data communication channels D1--D3 or D4--D12 may receive a serial 192 kbits/s or a 576 kbits/s data stream. The insertion (overwrite of TTOAC) of programmed S1, F1, J0, Z0-2, and Z0-3 bytes can be enabled. Automatic insertion of M0/M1 may be inhibited. A protection switch selects the REI-L value for insertion to be taken from the protection board rather than from the receive side. The entire APS value or K2[2:0] can be inserted via microprocessor control. Automatic RDI insertion is supported with individual inhibit for each contributor. A protection switch selects the RDI-L value for insertion to be taken from the protection board rather than from the receive side. B1 and B2 BIP-8 values are calculated and inserted; both values can be inverted. 26.3 Multiplex Section Protection (MSP 1 + 1) The TMUX block supports a payload 1 + 1 protection switch. In the receive direction, this occurs prior to pointer interpretation. If the protection switch is activated, then the data is selected from the receive protection interface rather than from the high-speed input path. In the transmit direction, the signal is broadcast to the high-speed output path and the protection interface. The interface consists of a 155.52 MHz or 51.84 MHz clock, data, and sync pulse in each direction. 26.3.1 Pointer Interpreter This state machine implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996-- Annex B. The pointer interpreter evaluates the current pointer state for the normal state, path AIS state, or LOP (loss of pointer) conditions, as well as pointer increments and decrements. The current pointer state and any changes in pointer condition are reported to the control system. The number of consecutive frames for invalid pointer and invalid concatenation indication is fixed at nine. 26.4 Path Termination Function The path termination function is performed on either all three STS-1s or on the VC-4 POH only. It includes on the receive side: J1 monitoring, B3 BIP-8 checking, C2 signal label monitoring, REI-P and RDI-P detection, H4 multiframe monitoring; F2, F3, and K3 automatic protection switch monitoring, N1 tandem connection monitoring, signal degrade BER and signal fail BER detection; path overhead access channel (RPOAC) drop, AIS-P/HO-AIS insertion, and automatic AIS generation (with individual inhibit). The J1 monitor provides five modes of operation on a programmable length (1 byte--64 bytes) of the trace identifier: cyclic checking against the last received sequence, compare against a programmed sequence, SONET framing mode, SDH framing mode, and consecutive consistent occurrences of a new pattern. B3 is monitored either in bit or block mode. Provisionable N-times detection counters are implemented for C2, F2, F3, N1, and K3 bytes. The K3 APS byte and N1 TCM byte can be monitored as an entire 8-bit word or two 4-bit nibbles. The receive path overhead access channel (RPOAC) provides access to all the path overhead bytes. Even or odd parity is calculated over all bytes. It has a data rate of 8 bytes per 8 kHz frame and consists of clock, data, and an 8 kHz sync pulse. 590 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) In the transmit direction, J1 path trace insertion, B3 calculation and insertion, C2 signal label insertion, REI-P and RDI-P insertion; F2 insertion, H4 multiframe insertion, F3 path user byte insertion, K3 insertion, N1 byte insertion, and AIS-P insertion via POAC or software control is supported. The transmit path overhead access channel (TPOAC) allows the insertion of all overhead bytes besides B3 which is automatically calculated. Even or odd parity is checked over all bytes. Bytes which are not enabled for insertion are set to an all-ones or all-zeros stuff value. The Super Mapper sources a clock and an 8 kHz sync pulse and receives the data at a rate of 8 bytes per 8 kHz frame. 26.5 STS-3/STM-1 MUX-DeMUX The STS-3/STM-1 (AU-4) multiplexer provides three modes of operation: STS-3, AU-4, and STS-1. In STS-3 mode, the block multiplexes and demultiplexes up to three STS-1 signals to/from a SONET STS-3 signal. In AU-4 mode, it provides the functionality to MUX/deMUX up to three AU-3 signals to/from a STM-1 (AU-4) signal. In STS-1 mode, it provides the functions to generate and terminate a single STS-1 signal. The STS-3/STM-1 MUX function takes the bytes in the order they are present on the telecom bus and multiplexes them into the high-speed signal. Grooming of the VTs/VCs is performed in the SPE mapper of each of the three devices. 26.6 Telecom Bus Interface--Interfacing to Mate Devices The Super Mapper can communicate with up to three mate devices via a telecom bus interface. The bus operates at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode. In the receive direction, the Super Mapper outputs one parallel clock at 19.44 MHz, three sync signals (SPE, J0J1V1, and V1), an 8-bit data bus, and an odd/even parity bit. The data bus carries either three STS-1/TUG-3 signals, each in their own time slot, or it carries one STS-1 signal. It also outputs a 51.84 MHz low-speed clock and sync. The transmit side of Super Mapper drives a clock and three sync signals (SPE, J0J1V1, and V1) onto the telecom bus. These signals control when the internal SPE mapper or one of the mate devices drives the data bus. The Super Mapper receives an 8-bit data bus and an odd/even parity bit from the telecom bus. The data consists of the SPE for up to three STS-1s. Also, a 51.84 MHz low-speed clock and sync are output. 26.7 SPE/AU-3 Mapper (DS3 Mapper) The SPE mapper block is a highly configurable mapper. It operates either as an AU-3/STS-1 mapper or as a TUG-3 mapper. In both modes, it maps/demaps data from/to either the VT mapper, the M13 MUX/deMUX, the DS3 clear channel, or the DS3 loopback channel. The SPE mapper supports numerous automatic monitoring functions and provides interrupts to the control system, or it can be operated in a polled mode. In TU mapping mode, the SPE mapper provides flexibility down to TUG-2 level for choosing which TUG-2s (out of 7) are mapped/dropped into/from which TUG-3s (between 1 and 3) for generating STM-1 signals. This allows grooming of the VTs/TUs on the STM-1 level (over all three devices). In a full STM-1 application, with two other devices sitting on the telecom bus, care has to be taken for the provisioning of the time slots when each block drives the telecom bus. In DS3 mapping mode, the SPE mapper block accepts/delivers structured DS3 data from/to the M13 block or a clear DS3 signal at 44.736 Mbits/s rate and maps/demaps it asynchronously into/from the STS-1 SPE or a TU-3. The DS3 mapper generates a fixed pointer value of 522. Agere Systems Inc. 591 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) On the receive side, pointer interpretation is performed detecting LOP, AIS, NDF, NORM, INC, and DEC. A DS3 loopback mode allows demapping and remapping of a DS3 signal. It is particularly useful in cases where a DS3 signal mapped as an AU-3/STS-1 signal is needed to be remapped as a TU-3 signal or vice versa. B3ZS encoding/ decoding is included. The same path overhead monitoring functions as described above are implemented in this block. This block also connects to the path overhead access channel (POAC) to insert/drop the path overhead bytes J1, C2, F2, H4, F3, K3, and N1 into the STS-1 SPE or VC-3. The SPE mapper supports unidirectional path switch ring (UPSR) applications as well as N1 tandem connection function. The SPE mapper complies with GR-253-CORE, T1.105, ITU-T G.707, ITU-T G.831, G.783, and ETS 300 417-1-1. 26.8 VT/VC Mapper The VT/VC mapper maps any valid combination of DS1 and E1 signals into a stream at a rate of 51.84 Mbits/s (STS-1 or AU-3). The mapping methods (VT1.5, VT2, and VT group in ANSI nomenclature; TU-11, TU-12, and TUG-2 in ITU nomenclature) are analogous. The VT/VC mapper supports the following mappings: 28 asynchronous, byte- or bit-synchronous DS1 signals are mapped into seven VT groups or TUG-2s. 28 asynchronous, byte- or bit-synchronous J1 signals are mapped into seven VT groups or TUG-2s. 21 asynchronous, byte- or bit-synchronous E1 signals are mapped into seven VT groups or TUG-2s. Maps T1 into VT1.5/TU-11/TU-12, J1 into VT1.5/TU-11/TU-12, and E1 into VT2/TU-12. ADM and unidirectional path switch ring (UPSR) applications are supported via tributary loopback, tributary pointer processing, and low-order path overhead access channel. The VT/VC mapper supports automatic generation or microprocessor overwrite 1-bit RDI, enhanced RDI, 1-bit RFI, automatic downstream AIS generation, and five J2 trace identifier modes. The VT/VC mapper complies with GR-253-CORE, G.707, T1.105, G.704, G.783, JT-G707, GR-499, and ETS 300 417-1-1. 26.8.1 Receive Direction In the receive direction, the VT mapper terminates the data stream it receives from the SPE mapper. It demultiplexes the AU-3/TUG-3 into the VTs/TUs and checks the H4 multiframe alignment. Pointer interpreters for up to 28 VTs/TUs detect LOP, AIS, NDF, NORM, INC, and DEC on each channel. The low-order path termination includes V5 byte termination, J2 path trace, Z6/N2 tandem connection, Z7/K4 enhanced RDI and low-order APS monitor, and the payload termination for asynchronous, byte- or bit-synchronous signals. The V5 byte termination performs BIP-2 check (bit- or block-mode), REI count, RFI and RDI detection, signal label monitor, and automatic AIS insertion (which can be inhibited). The J2 monitor supports four different modes as follows: Cyclic check SONET framing mode SDH framing mode Single byte check. In byte-synchronous modes, the receive demapper generates a frame sync to indicate the DS1 frame bit or the MSB of the E1 time slot 0. Additionally, it provides the framer access to the received signaling bits. Output of the VT mapper is a DS1/J1/E1 signal with a gapped clock. It can be overwritten with AIS automatically or upon microprocessor request. 592 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) 26.8.2 Transmit Direction In the transmit direction, the VT mapper gets a clock, data, and frame sync from the cross connect. The input is retimed and checked for a digital loss of clock (LOC), an AIS condition, and low zeros-density. In byte-synchronous mode, the input signal is additionally checked for loss of frame sync (LOFS). A transmit elastic store synchronizes the incoming DS1/J1/E1 signals to the local STS-1 clock. In asynchronous and bit-synchronous mode, it works as a bit-oriented (64-bit) FIFO, and in byte-synchronous mode, as a bytewide (8-byte) buffer using a V5 byte marker bit (8--bit). Overflow or underflow conditions are monitored and reported. In asynchronous and bit-synchronous mode, a fixed VT pointer of 78 (VT1.5/TU-11) and 105 (VT2/TU-12) is generated and the payload is mapped into the container using positive/null/negative bit stuffing mechanism (C- and S bits). In bit-synchronous mode, the bit stuffing mechanism is disabled. In byte-synchronous mode, a dynamic VT pointer value is generated using the V5 marker implementing NORM, NDF, INC, and DEC pointers. The VT POH generation comprises V5 byte with BIP2-generation, AIS-, signal label-, UNEQ-insertion, automatic REI-, RFI-, RDI-, and enhanced RDI-generation (Bellcore, ITU-T), J2 path trace insertion via microprocessor, Z6/N2 byte insertion, and Z7/K4 byte insertion via microprocessor or low-order path overhead (LOPOH) access channel. The data stream is synchronized to the received 2 kHz sync pulse and multiplexed to form the STS-1/AU-3 signal, which is then output to the SPE mapper. When operating in byte-synchronous mode, the phase and signaling bits from the framer are stored and inserted into the mapped frame. 26.9 M13/M23 Multiplexer The M13 is a highly configurable multiplexer/demultiplexer. It can operate as an M13 in either the C-bit parity or M23 mode, a mixed M13/M23, or an M23. In the C-bit parity mode, the M13 provides a far-end alarm and control (FEAC) code generator and receiver, an HDLC transmitter and receiver, and automatic far-end block error (FEBE) generation. Each internal M12 MUX/deMUX and the M23 MUX/deMUX may be configured to operate as independent MUXs/deMUXs. 28 DS1 inputs in groups of four or 21 E1 input signals in groups of three can feed into individual M12 MUXs, while the M23 MUX can take DS2 signals from outputs of M12 MUXs, or direct DS2 inputs, or loopback deMUXed DS2s. The M13 supports numerous automatic monitoring functions. It can provide an interrupt to the control system, or it can be operated in a polled mode. The M13 complies with T1.102, T1.107, T1.231, T1.403, T1.404, GR-499, G.747, and G.775. 26.9.1 Receive Direction The receive DS3 is monitored for loss of clock and checked for loss of signal (LOS) according to T1.231. The B3ZS decoder accepts either unipolar clock and data or unipolar clock, positive and negative data. It also checks for bipolar coding violations. The transmit DS3 can be looped back into the receive side after B3ZS decoding. The M23 demultiplexer checks for valid DS3 framing by finding the frame alignment pattern (F bits), and then locating the multi frame alignment signal (M bits). Each M frame, the data stream is checked for the presence of the AIS (1010) or idle (1100) pattern. C bits 13, 14, and 15 can be used as a 28.2 kbits/s data link and are available directly at device output via an internal HDLC receiver. It is composed of a 128-byte FIFO, a CRC-16 frame check sequence (FCS) error detector, and control circuits. Agere Systems Inc. 593 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) Within the M23 demultiplexer, there are four performance monitoring counters for F- or M-bit, P-bit, E-bit parity, and FEBE errors. Each M12 demultiplexer contains two performance monitoring counters. 26.9.2 Transmit Direction The incoming DS1/E1 clocks are first checked for activity or loss of clock (LOC). The data signals are retimed and checked for AIS and activity. DS1/E1 loopback selectors allow DS1 or E1 received within the DS2 or DS3 inputs from the deMUX path to be looped back. This loopback can be performed automatically or the user can force a DS1 or E1 loopback. The four DS1 or three E1 signals for each M12 MUX are fed into single bit 16-word-deep FIFOs to synchronize the signals to the DS2 frame generation clock. The fill level of each FIFO determines the need for bit stuffing its DS1/E1 input. The M13 can handle DS1/E1 signals with nominal frequency offsets of 130 ppm and up to five unit intervals peak jitter. The DS2/DS3 transmit clock is used to derive the clock source for DS2 frame generation. The M23 multiplexer generates a transmit DS3 frame, and fills the information bits in the frame with data from the seven DS2 select blocks. The M23 MUX can be provisioned to operate in either the M23 mode or the C-bit parity mode. It contains seven DS2 FIFOs each with a depth of 8. The fill level of each FIFO determines the need for bit stuffing its DS2 input. The transmit DS3 output can either be in the form of unipolar clock and data or unipolar clock, positive and negative data. The DS3 data is B3ZS encoded and can be looped back from the receive DS3 input. 26.10 Cross Connect Block The cross connect (XC) is a highly configurable nonblocking crosspoint switch for DS1/E1/DS2 signals, configuration of DS3 signal paths, and configuration of the path overhead access I/O. The cross connect plays a major role in configuring the interconnection of major function blocks to satisfy an application's implementation. The cross connect provides the flexibly to tie DS1/E1/DS2 channels from the framer or external pins to the M13 mapper or to the VT mapper. It is also capable of multicast or broadcast operation (one port to many), handling injected test patterns, idles, or alarm conditions to any channel, and can provide system loopback testing support. Jitter attenuation may also be inserted in-line on any DS1/E1 channel. The cross connect can interconnect up to 28 individual DS1/E1 channels between the framer, M13 multiplexer, VT mapper, jitter attenuator, or external I/O. The external I/O pins support an application dependent mix of up to 29 T1/E1 interfaces (one dedicated protection channel), seven DS2 interfaces, or one of four available framer system interfaces. The cross connect supports an independent signal path for remote alarm indication (RAI), alarm indication signal (AIS), and byte-synchronous frame sync signals on channels between the VT mapper or M13 and the framer. Receive pointer adjustment information is routed to the jitter attenuator block for each channel originating in the VT mapper. The cross connect has independent DS2 interfaces for the M12 and M23 blocks of the M13 MUX. Full split access to the external I/O device pins provides the capability to add, drop, or rearrange the DS2 signals within the M13. For DS3 signals, the cross connect supports configuration of interconnects between the M13 and the SPE, or external I/O interconnection to the M13 or SPE, or insertion/monitoring of DS3 test patterns from the test-pattern generator block. The test-pattern generator block (TPG) provides test signals and it monitors inputs (TPM) for signals to and from the cross connect. The TPG can generate a set of test signals or idles at DS1, E1, DS2, or DS3 rates. There is only one test pattern generator and monitor per signal rate. Device pins for the path overhead access channel may be configured to connect to the SPE mapper or TMUX blocks. 594 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) 26.11 Digital Jitter Attenuator The digital jitter attenuator (DJA) contains 28 copies of the digital jitter attenuator block. These digital jitter attenuator blocks can operate in two different modes, as a DS1 or as an E1 jitter attenuator. In both modes, the digital jitter attenuator can be provisioned to always operate as a second-order PLL, or it can switch to a act as a first-order PLL during VT pointer adjustments to help meet MTIE requirements. The period of time in the first-order mode is provisionable. The PLL bandwidth is provisionable between 0.1 Hz and 0.5 Hz and the damping factor for these bandwidths varies between 2 and 0.5 to accommodate a number of different system constraints. The block will also insert the proper AIS signal if the primary block AIS control input is active. 26.12 Test Pattern Generator The test pattern generator and monitor (TPG and TPM) is a set of configurable test pattern generators and monitors for local self-test, maintenance, and troubleshooting operations. The TPG feeds one or more T1/E1/DS2 test signals (via data, clock, and FS or AIS signal paths) to the crosspoint switch which can redistribute or broadcast these signals to any valid channel in the framer, external I/O, M13 mapper, or VT mapper blocks. The TPG can also generate DS3 test signals. Any channel arriving at the cross connect may be routed to the test monitor. The test monitors can automatically detect/count bit errors in a pseudorandom test sequence, loss of frame, or loss of sync. The TPM can provide an interrupt to the control system, or it can be operated in a polled mode. Simultaneous testing of DS1, E1, DS2, and DS3 signals is supported (one channel each). Supported test patterns are: pseudorandom bit sequence (PRBS15, PRBS20), alternating zeroes/ones, and an allones pattern. The test pattern can be transmitted either unframed or as the payload of a framed signal, as defined in ITU-T recommendation O.150. Single bit-errors may be injected into any test pattern, under register control. Agere Systems Inc. 595 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) 26.13 28-Channel Framer The block diagrams of the 28 T1/21E1-channel framer in the switching application in the CHI, parallel system bus, and CHI with byte-synchronous VT mapping, are shown in Figure 104, Figure 105, and Figure 106 (only the major functional blocks are shown). The block diagrams of the 28 T1/21E1-channel framers in the transport application are shown in Figure 107 and Figure 108 (only the major functional blocks are shown). TFS1, TCLK1, TDATA28 SIGNALING PROCESSOR (EXTRACTION) RECEIVE HDLC RECEIVE FACILITY DATA LINK TRANSMIT SYSTEM INTERFACE RECEIVE FRAME ALIGNER SUPER MAPPER VT MAPPER INTERFACE RFS1, RCLK1, RDATA28 DS0 INTERFACE PERFORMANCE MONITOR ESF PRM PATH SUPER MAPPER M12 MULTIPLEXER INTERFACE TRANSMIT HDLC RECEIVE SYSTEM INTERFACE MAPPER TO FRAMER DS1 CROSS CONNECT TRANSMIT FRAME FORMATTER SIGNAL PROCESSOR (INSERTION) TRANSMIT FACILITY DATA LINK SUPER MAPPER: FRAMER 5-8926(F) Figure 104. Super Mapper Switching Mode for Framer in Concentration Highway Interface (CHI) Configuration 596 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 SIGNALING PROCESSOR (EXTRACTION) RFS1, RCLK1, RDATA8, RDATA_PARITYA1, RSIGNALING8, RSIGNALING_PARITYA1 RECEIVE HDLC RECEIVE FACILITY DATA LINK RECEIVE FRAME ALIGNER TRANSMIT SYSTEM INTERFACE SUPER MAPPER VT MAPPER INTERFACE PERFORMANCE MONITOR DS0 INTERFACE TFS1, TCLK1, TDATA8, TDATA_PARITYA1, TSIGNALING8, TSIGNALING_PARITYA1 26 Applications (continued) ESF PRM PATH SUPER MAPPER M12 MULTIPLEXER INTERFACE TRANSMIT HDLC RECEIVE SYSTEM INTERFACE MAPPER TO FRAMER DS1 CROSS CONNECT TRANSMIT FRAME FORMATTER SIGNAL PROCESSOR (INSERTION) TRANSMIT FACILITY DATA LINK SUPER MAPPER: FRAMER 5-8927(F) Figure 105. Super Mapper Switching Mode for Framer in Parallel System Bus Configuration Agere Systems Inc. 597 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) In the byte-sync mode, the frame sync and signaling (VT SPE) information are also passed to the mapper. In the receive direction, the mapper block provides the line data, line clock, frame sync (byte-sync mode), and signaling information (byte-sync mode) to the superframer. Performance reports, in the form of HDLC packets (PRMs), are sent from the receive performance monitor block to the transmit HDLC block. RECEIVE SIGNALING DATA (TO SIGNALING REGISTERS) TFS1, TCLK1, TDATA28 SIGNALING PROCESSOR (EXTRACTION) RECEIVE HDLC VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING RECEIVE DATA RECEIVE FACILITY DATA LINK TRANSMIT SYSTEM INTERFACE RECEIVE FRAME ALIGNER SUPER MAPPER VT MAPPER INTERFACE RFS1, RCLK1, RDATA28 DS0 INTERFACE PERFORMANCE MONITOR ESF PRM PATH SUPER MAPPER M12 MULTIPLEXER INTERFACE TRANSMIT HDLC RECEIVE SYSTEM INTERFACE SIGNALING STOMP DATA SIGNAL PROCESSOR (INSERTION) SUPER MAPPER: FRAMER MAPPER TO FRAMER DS1 CROSS CONNECT TRANSMIT FRAME FORMATTER TRANSMIT FACILITY DATA LINK TRANSMIT SIGNALING DATA (EXTRACTED FROM SYSTEM OF SIGNALING REGISTERS) VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING TRANSMIT DATA 5-8928(F) Figure 106. Super Mapper Switching Mode CHI Configuration with Byte-Synchronous VT Mapping Enabled 598 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING RECEIVE DATA RECEIVE HDLC LINE ENCODER RCLK28, RPD28, RND28 SIGNALING PROCESSOR (TRANSMIT) RECEIVE FACILITY DATA LINK TRANSMIT FRAME FORMATTER (LINE INTERFACE) RECEIVE FRAME ALIGNER SUPER MAPPER VT MAPPER INTERFACE PERFORMANCE MONITOR DS1 INTERFACE MAPPER TO FRAMER DS1 CROSS CONNECT LINE DECODER TCLK28, TPD28, TND28 PERFORMANCE MONITOR RECEIVE FRAME ALIGNER (LINE INTERFACE) SUPER MAPPER M12 MULTIPLEXER INTERFACE SIGNALING STOMP DATA SIGNALING PROCESSOR (RECEIVE) TRANSMIT FRAME FORMATTER TRANSMIT FACILITY DATA LINK VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING TRANSMIT DATA SUPER MAPPER: PERFORMANCE MONITORING FRAMER 5-8929(F) Figure 107. Super Mapper Byte-Synchronous Transport Mode: Passive Performance Monitoring Agere Systems Inc. 599 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING RECEIVE DATA RECEIVE HDLC LINE RCLK28 , RPD 28 , RND28 SIGNALING PROCESSOR (TRANSMIT) RECEIVE FACILITY DATA LINK TRANSMIT FRAME FORMATTER (LINE INTERFACE) RECEIVE FRAME ALIGNER DS1 INTERFACE TRANSMIT HDLC MAPPER TO FRAMER DS1 CROSS CONNECT INTRUSIVE PERFORMANCE MONITOR LINE PERFORMANCE MONITOR TCLK28 , TPD28, TND28 SUPER MAPPER VT MAPPER INTERFACE PERFORMANCE MONITOR RECEIVE FRAME ALIGNER (LINE INTERFACE) TRANSMIT HDLC SIGNALING STOMP DATA SIGNALING PROCESSOR (RECEIVE) SUPER MAPPER M12 MULTIPLEXER INTERFACE TRANSMIT FRAME FORMATTER TRANSMIT FACILITY DATA LINK VT MAPPER: BYTE-SYNCHRONOUS ROBBED-BIT SIGNALING TRANSMIT DATA SUPER MAPPER: PERFORMANCE MONITORING FRAMER 5-8930(F)r.3 Figure 108. Super Mapper Byte-Synchronous Transport Mode: Intrusive Performance Monitoring 600 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) 26.14 Line Decoder/Encoder The line decoder/encoder supports either single-rail or dual-rail transmission. In dual-rail mode, the line codes supported are as follows: Alternate mark inversion (AMI). DS1 binary 8 zero code suppression (B8ZS). ITU-CEPT high-density bipolar of order 3 (HDB3). In the single-rail mode, a line interface unit (LIU) decodes/encodes the data. In the dual-rail mode, loss of signal in monitored. In the case of coded mark inversion (CMI) coding (Japanese TTC standard JJ-20.11), the LIU decodes the data, indicating both the CMI coding rule violations (CRVs) and line coding violations as bipolar violations. (In the CMI mode, the framer is in the single-rail mode.) 26.15 Receive Frame Aligner/Transmit Frame Formatter The receive frame aligner and transmit frame formatter support the following frame formats: D4 superframe. SF D4 superframe: FT framing only. J-D4 superframe with Japanese remote alarm. DDS. SLC-96. ESF. J-ESF (J1 standard with different CRC-6 algorithm). Non-align DS1 (193 bits--clear channel). CEPT basic frame (ITU G.706). CEPT CRC-4 multiframe with 100 ms timer (ITU G.706). CEPT CRC-4 multiframe with 400 ms timer (automatic CRC-4/nonCRC-4 equipment interworking) (ITU G.706 Annex B). Non-align E1 (256 bits--clear channel). 2.048 coded mark inversion (CMI) coded interface (TTC standards JJ-20.11). 26.16 Receive Performance Monitor The receive framer monitors the following alarms: loss of receive clock, loss of signal, loss of frame, alarm indication signal (AIS), remote frame alarms, and remote multiframe alarms. These alarms are detected as defined by the appropriate ANSI, AT&T, ITU, and ETSI standards. Performance monitoring as specified by AT&T, ANSI, and ITU is provided through counters monitoring bipolar violation, frame bit errors, CRC errors, errored events, errored seconds, bursty errored seconds, and severely errored seconds. In-band loopback activation and deactivation codes can be transmitted to the line via the payload or the facility data link. In-band loopback activation and deactivation codes in the payload or the facility data link are detected. Agere Systems Inc. 601 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 26 Applications (continued) 26.17 Signaling Processor The signaling processor supports the following modes: Superframe (D4, SLC-96): 2-state, 4-state, and 16-state. VT 1.5 SPE: 2-state, 4-state, and 16-state. Extended superframe: 2-state, 4-state, and 16-state. CEPT: common channel signaling (CCS) (TS-16). Transparent (pass through) signaling. J-ESF handling groups. Signaling features supported per channel are as follows: Signaling debounce. Signaling freeze. Signaling interrupt upon change of state. Associated signaling mode (ASM). Signaling inhibit. Signaling stomp. In the DS1 robbed-bit signaling modes, voice and data channels are programmable. The entire payload can be forced into a data-only (no signaling channels) mode, i.e., transparent mode by programming one control bit. Signaling access can be through the on-chip signaling registers or the system interface. Data and its associated signaling information can be accessed through the system in either DS1 or CEPT-E1 modes. 26.18 Facility Data Link (FDL) Processor The bit-oriented ESF data-link messages defined in ANSI T1.403 are monitored by the receive facility data link unit. The transmit facility data link unit overrides the FDL-FIFO for the transmission of the bit-oriented ESF data-link messages defined in ANSI T1.403-1995. The FDL processor extracts and stores data link bits from three different frame types as follows: D bits and delineator bits from the SLC-96 multi-superframe. Data link bits from DDS frames (bit 6 of time slot 24). Two multiframes of Sa[4:8] bits from time slot 0 in CEPT basic and CRC-4 multiframes. The respective bits will always be extracted from frame-aligned frames and stored in a stack. The processor will have control of being alerted to stack updates through the interrupt mask registers. The transmit FDL block performs the transmission of D bits into SLC-96 superframes, Sa-bits in CEPT frames, and D bits in DDS frames. In SLC-96 frames, the D and delineator bits are always sourced from this block when the block is enabled for insertion. In DDS frames, the data link bits are always sourced from this block when this block is enabled for insertion. This block also provides the capability to transmit BOMs in the data link channel of ESF links. In CEPT frames, the Sa bits are sourced from either the Sa stack within this block or from the system interface. The data link block only responds with valid data when selected by the Sa source control bits. 602 Agere Systems Inc. Preliminary Data Sheet May 2001 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 26 Applications (continued) 26.19 HDLC Unit The HDLC processor formats the HDLC packets for insertion into the programmable channels. A channel can be any number of bits (1 to 8) from a time slot. The maximum number of channels is 64. The maximum channel bit rate is 64 kbits/s. The minimum channel bit rate is 4 kbits/s. Each channels is allocated 128 bytes of storage. HDLC processing of data on the facility data link (PRMs, Sa bits, or otherwise) is implemented by assigning the FDL bit position to a logic HDLC channel. 26.20 System Interface The system interface block provides a programmable interface. It can be configured to work in four different modes. Concentration highway interface (serial time division multiplex interface). -- Global frame sync. -- Global clock: 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz. -- 28 transmit and receive data ports; data rates: 2.048 Mbits/s, 4.096 Mbits/s, or 8.192 Mbits/s. Parallel system bus (parallel time-division multiplex interface/transmit and receive). -- Global frame sync. -- Global clock: 19 MHz. -- Data rate: 19 MHz. -- 8 bits of data + associated parity bit. -- 4 bits of signaling + 2 bits of signaling control + 1 bit of parity. Time-division multiplex data rate serial interface. -- 28 receive frame sync (per port). -- 28 receive clock: 1.544 Mbits/s or 2.048 Mbits/s (per port). -- 28 receive ports. -- One transmit frame sync. -- One transmit clock: 1.544 Mbits/s or 2.048 Mbits/s. -- 28 transmit ports. Network serial multiplexed bus. -- 6- or 8-pin serial interface. -- Transmit and receive clock and data at 51.84 MHz. -- Accommodates 1 DS3 of throughput. -- Provides a minimal pin count interface for data and inverse multiplexing for ATM (IMA) applications without slip buffers. -- Three modes of operation: framer--NSMI payload assembled/disassembled into DS1/E1s; M13--proprietary transport format with DS3 framing; SPE--proprietary transport format mapped into an STS-1/AU-3. Agere Systems Inc. 603 TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 Preliminary Data Sheet May 2001 Change History The organization of this data sheet (DS01-167PDH) has radically changed. While the contents have undergone minimal changes (listed below), the various sections have been rearranged and section numbers have been installed to make navigating throughout the document easier. An overall table of contents has been added towards the front of the document, and in front of each section a table of content has been added. The entire Preface Section has been rewritten; no change bars have been installed. The Pin Descriptions, starting on page 15, has been revised and more tables have been added to that section. The pin numbers and pin names, however, have not been changed; no change bars have been installed. Red change bars have been installed for all content-specific changes. Any additions, or deletions, have been highlighted in red. Any references to tables, figures, sections, or pages have been highlighted in blue. Changes to format (such as grammar, punctuation, new paragraphs etc.) have not been highlighted. Navigating Through an Acrobat Document If the reader displays this document in Acrobat Reader, clicking on any blue reference will bring the reader to that reference point. Clicking on the back arrow (Go to previous View) in the toolbar of the Acrobat Reader, will bring the reader back to the starting point. For example: clicking on the 3 below, will bring the reader to page 3, which is the first change of this document. Clicking on the back arrow (in Acrobat Reader) will bring the reader back to this page (pa ge604). All changes from the previous version (DS01-078PDH) are listed in the following table: Table 628. Change History 604 Page Page Page 3 305 7 307 424 34 310 439 51 333 464 54 345 468 55 346 469 61 347 472 68 348 482 82 384 503 114 405 514 217 406 530 219 411 549 226 412 564 248 415 592 255 421 593 272 422 Agere Systems Inc. Preliminary Data Sheet May 2001 Agere Systems Inc. TMXF28155/51 Super Mapper 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 605 For additional information, contact your Agere Systems Account Manager or the following: INTERNET: http://www.agere.com E-MAIL: docmaster@micro.lucent.com N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC Tel. (86) 21 50471212, FAX (86) 21 50472266 JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600 , FAX (81) 3 5421 1700 EUROPE: Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. SLC is a registered trademark of Agere Systems Inc. Copyright (c) 2001 Agere Systems Inc. All Rights Reserved Printed in U.S.A. June 2001 DS01-167PDH (replaces DS01-078PDH)