1/50March 2008
M28W160ECT
M28W160ECB
16 Mbit (1Mb x16, Boot Block)
3V Supply Flash Memory
FEATURES SUMMARY
SUPPLY VOLTAGE
–V
DD = 2.7V to 3.6V Core Power Supply
–V
DDQ= 1.65V to 3.6V for Input/Output
–V
PP = 12V for fast Program (optional)
ACCESS TIME: 70, 85, 90,100ns
PROGRAMMING TIME:
10µs typical
Double Word Programming Option
COMMON FLASH INTERFACE
64 bit Security Code
MEMORY BLOCKS
Parameter Blocks (Top or Bottom
location)
Main Blocks
BLOCK LOCKING
All blocks locked at Power Up
Any combination of blocks can be locked
–WP
for Block Lock-Down
SECURITY
64 bit user Programmable OTP cells
64 bit unique device identifier
One Parameter Block Permanently
Lockable
AUTOMATIC STAND-BY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
Manufacturer Code: 20h
Top Device Code, M28W160ECT: 88CEh
Bottom Device Code, M28W160ECB:
88CFh
ECOPACK PACKAGES AVAILABLE
Figure 1. Packages
FBGA
TSOP48 (N)
12 x 20mm
TFBGA46 (ZB)
6.39 x 6.37mm
M28W160ECT, M28W160ECB
2/50
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDD Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3/50
M28W160ECT, M28W160ECB
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 5. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 15
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 14. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 15. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 16. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 17. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
M28W160ECT, M28W160ECB
4/50
Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 18. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 13.TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . . 29
Table 19. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 29
Figure 14.TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline 30
Table 20. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 30
Figure 15.TFBGA46 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 31
Figure 16.TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 31
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 21. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 22. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 23. Top Boot Block Addresses, M28W160ECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 24. Bottom Boot Block Addresses, M28W160ECB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 26. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 27. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 28. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 29. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 30. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 18.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 19.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 42
Figure 20.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 21.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 22.Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 23.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 46
APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 47
Table 31. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 32. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 33. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5/50
M28W160ECT, M28W160ECB
SUMMARY DESCRIPTION
The M28W160EC is a 16 Mbit (1 Mbit x 16) non-
volatile Flash memory that can be erased electri-
cally at the block level and programmed in-system
on a Word-by-Word basis. These operations can
be performed using a single low voltage (2.7 to
3.6V) supply. VDDQ allows to drive the I/O pin
down to 1.65V. An optional 12V VPP power supply
is provided to speed up customer programming.
The device features an asymmetrical blocked ar-
chitecture. The M28W160EC has an array of 39
blocks: 8 Parameter Blocks of 4 KWord and 31
Main Blocks of 32 KWord. M28W160ECT has the
Parameter Blocks at the top of the memory ad-
dress space while the M28W160ECB locates the
Parameter Blocks starting from the bottom. The
memory maps are shown in Figure 5., Block Ad-
dresses.
The M28W160EC features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency, enabling in-
stant code and data protection. All blocks have
three levels of protection. They can be locked and
locked-down individually preventing any acciden-
tal programming or erasure. There is an additional
hardware protection against program and erase.
When VPP VPPLK all blocks are protected against
program or erase. All blocks are locked at power-
up.
Each block can be erased separately. Erase can
be suspended in order to perform either read or
program in any other block and then resumed.
Program can be suspended to read data in any
other block and then resumed. Each block can be
programmed and erased over 100,000 cycles.
The device includes a 128 bit Protection Register
and a Security Block to increase the protection of
a system design. The Protection Register is divid-
ed into two 64 bit segments, the first one contains
a unique device number written by Numonyx,
while the second one is one-time-programmable
by the user. The user programmable segment can
be permanently protected. The Security Block, pa-
rameter block 0, can be permanently protected by
the user. Figure 6., shows the Security Block and
Protection Register Memory Map.
Program and Erase commands are written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the tim-
ings necessary for program and erase operations.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The memory is offered in TSOP48 (10 X 20mm)
and TFBGA46 (6.39 x 6.37mm, 0.75mm pitch)
packages.
In order to meet environmental requirements, Nu-
monyx also offers the M28W160ECT and the
M28W160ECB in ECOPACK® packages. ECO-
PACK packages are Lead-free. The category of
second Level Interconnect is marked on the pack-
age and on the inner box label, in compliance with
JEDEC Standard JESD97. The maximum ratings
related to soldering conditions are also marked on
the inner box label.
The memories are supplied with all the bits erased
(set to ’1’).
M28W160ECT, M28W160ECB
6/50
Figure 2. Logic Diagram Table 1. Signal Names
Figure 3. TSOP Connections
AI07542
20
A0-A19
W
DQ0-DQ15
VDD
M28W160ECT
M28W160ECB
E
VSS
16
G
RP
WP
VDDQ VPP
A0-A19 Address Inputs
DQ0-DQ15 Data Input/Output
EChip Enable
GOutput Enable
WWrite Enable
RP Reset
WP Write Protect
VDD Core Power Supply
VDDQ Power Supply for Input/Output
VPP Optional Supply Voltage for
Fast Program & Erase
VSS Ground
NC Not Connected Internally
DQ3
DQ9
DQ2
A6
DQ0
W
A3
NC
DQ6
A8
A9
DQ13
A17
A10 DQ14
A2
DQ12
DQ10
DQ15
VDD
DQ4
DQ5
A7
DQ7
VPP
WP
AI07543
M28W160ECT
M28W160ECB
12
1
13
24 25
36
37
48
DQ8
NC
A19
A1
A18
A4
A5
DQ1
DQ11
G
A12
A13
A16
A11
VDDQ
A15
A14
VSS
E
A0
RP
VSS
7/50
M28W160ECT, M28W160ECB
Figure 4. TFBGA Connections (Top view through package)
Figure 5. Block Addresses
Note: Also see APPENDIX A., Table 23. and Table 24. for a full listing of the Block Addresses.
AI03804
C
B
A
87654321
E
D
F
A4
A7VPP
A8A11
A13
A0EDQ8DQ5DQ14A16
VSS
DQ0DQ9DQ3DQ6
DQ15
VDDQ
DQ1DQ10VDD
DQ7VSS
DQ2
A2
A5A17WA10
A14
A1A3A6A9A12A15
RP A18
DQ4
DQ13 G
DQ12
DQ11
WP A19
AI07544
4 KWords
FFFFF
FF000
32 KWords
0FFFF
08000
32 KWords
07FFF
00000
M28W160ECT
Top Boot Block Addresses
4 KWords
F8FFF
F8000
32 KWords
F0000
F7FFF
Total of 8
4 KWord Blocks
Total of 31
32 KWord Blocks
4 KWords
FFFFF
F8000
32 KWords
32 KWords
00FFF
00000
M28W160ECB
Bottom Boot Block Addresses
4 KWords
F7FFF
0FFFF
32 KWords
F0000
08000
Total of 31
32 KWord Blocks
Total of 8
4 KWord Blocks
07FFF
07000
M28W160ECT, M28W160ECB
8/50
Figure 6. Security Block and Protection Register Memory Map
AI03523
Parameter Block # 0
User Programmable OTP
Unique device number
Protection Register Lock 2 1 0
88h
85h
84h
81h
80h
SECURITY BLOCK
PROTECTION REGISTER
9/50
M28W160ECT, M28W160ECB
SIGNAL DESCRIPTIONS
See Figure 2., Logic Diagram and Table 1., Signal
Names, for a brief overview of the signals connect-
ed to this device.
Address Inputs (A0-A19). The Address Inputs
select the cells in the memory array to access dur-
ing Bus Read operations. During Bus Write opera-
tions they control the commands sent to the
Command Interface of the internal state machine.
Data Input/Output (DQ0-DQ15). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or the data to be programmed during a Write Bus
operation.
Chip Enable (E). The Chip Enable input acti-
vates the memory control logic, input buffers, de-
coders and sense amplifiers. When Chip Enable is
at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is
deselected, the outputs are high impedance and
the power consumption is reduced to the stand-by
level.
Output Enable (G). The Output Enable controls
data outputs during the Bus Read operation of the
memory.
Write Enable (W). The Write Enable controls the
Bus Write operation of the memory’s Command
Interface. The data and address inputs are latched
on the rising edge of Chip Enable, E, or Write En-
able, W, whichever occurs first.
Write Protect (WP). Write Protect is an input
that gives an additional hardware protection for
each block. When Write Protect is at VIL, the Lock-
Down is enabled and the protection status of the
block cannot be changed. When Write Protect is at
VIH, the Lock-Down is disabled and the block can
be locked or unlocked. (refer to Table 6., Read
Protection Register and Lock Register).
Reset (RP). The Reset input provides a hard-
ware reset of the memory. When Reset is at VIL,
the memory is in reset mode: the outputs are high
impedance and the current consumption is mini-
mized. After Reset all blocks are in the Locked
state. When Reset is at VIH, the device is in normal
operation. Exiting reset mode the device enters
read array mode, but a negative transition of Chip
Enable or a change of the address is required to
ensure valid data outputs.
VDD Supply Voltage. VDD provides the power
supply to the internal core of the memory device.
It is the main power supply for all operations
(Read, Program and Erase).
VDDQ Supply Voltage. VDDQ provides the
power supply to the I/O pins and enables all Out-
puts to be powered independently from VDD. VDDQ
can be tied to VDD or can use a separate supply.
VPP Program Supply Voltage. VPP is both a
control input and a power supply pin. The two
functions are selected by the voltage range ap-
plied to the pin. The Supply Voltage VDD and the
Program Supply Voltage VPP can be applied in
any order.
If VPP is kept in a low voltage range (0V to 3.6V)
VPP is seen as a control input. In this case a volt-
age lower than VPPLK gives an absolute protection
against program or erase, while VPP > VPP1 en-
ables these functions (see Table 14., DC Charac-
teristics, for the relevant values). VPP is only
sampled at the beginning of a program or erase; a
change in its value after the operation has started
does not have any effect and program or erase op-
erations continue.
If VPP is in the range 11.4V to 12.6V it acts as a
power supply pin. In this condition VPP must be
stable until the Program/Erase algorithm is com-
pleted (see Table 16. and Table 17.).
VSS Ground. VSS is the reference for all voltage
measurements.
Note: Each device in a system should have
VDD, VDDQ and VPP decoupled with a 0.1µF ca-
pacitor close to the pin. See Figure 8., AC Mea-
surement Load Circuit. The PCB trace widths
should be sufficient to carry the required VPP
program and erase currents.
M28W160ECT, M28W160ECB
10/50
BUS OPERATIONS
There are six standard bus operations that control
the device. These are Bus Read, Bus Write, Out-
put Disable, Standby, Automatic Standby and Re-
set. See Table 2., Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read. Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Interface. Both Chip Enable and Output En-
able must be at VIL in order to perform a read op-
eration. The Chip Enable input should be used to
enable the device. Output Enable should be used
to gate data onto the output. The data read de-
pends on the previous command written to the
memory (see Command Interface section). See
Figure 9., Read Mode AC Waveforms, and Table
15., Read AC Characteristics, for details of when
the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write. Bus Write operations write Commands to
the memory or latch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at VIL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on the rising edge of Write Enable or Chip
Enable, whichever occurs first.
See Figures 10 and 11, Write AC Waveforms, and
Tables 16 and 17, Write AC Characteristics, for
details of the timing requirements.
Output Disable. The data outputs are high im-
pedance when the Output Enable is at VIH.
Standby. Standby disables most of the internal
circuitry allowing a substantial reduction of the cur-
rent consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to
the stand-by level and the outputs are set to high
impedance, independently from the Output Enable
or Write Enable inputs. If Chip Enable switches to
VIH during a program or erase operation, the de-
vice enters Standby mode when finished.
Automatic Standby. Automatic Standby pro-
vides a low power consumption state during Read
mode. Following a read operation, the device en-
ters Automatic Standby after 150ns of bus inactiv-
ity even if Chip Enable is Low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Out-
puts will still output data if a bus Read operation is
in progress.
Reset. During Reset mode when Output Enable
is Low, VIL, the memory is deselected and the out-
puts are high impedance. The memory is in Reset
mode when Reset is at VIL. The power consump-
tion is reduced to the Standby level, independently
from the Chip Enable, Output Enable or Write En-
able inputs. If Reset is pulled to VSS during a Pro-
gram or Erase, this operation is aborted and the
memory content is no longer valid.
Table 2. Bus Operations
Note: X = VIL or VIH, VPPH = 12V ± 5%.
Operation E G W RP WP VPP DQ0-DQ15
Bus Read VIL VIL VIH VIH X Don't Care Data Output
Bus Write VIL VIH VIL VIH XVDD or VPPH Data Input
Output Disable VIL VIH VIH VIH X Don't Care Hi-Z
Standby VIH XX
VIH X Don't Care Hi-Z
Reset XXX
VIL X Don't Care Hi-Z
11/50
M28W160ECT, M28W160ECB
COMMAND INTERFACE
All Bus Write operations to the memory are inter-
preted by the Command Interface. Commands
consist of one or more sequential Bus Write oper-
ations. An internal Program/Erase Controller han-
dles all timings and verifies the correct execution
of the Program and Erase commands. The Pro-
gram/Erase Controller provides a Status Register
whose output may be read at any time during, to
monitor the progress of the operation, or the Pro-
gram/Erase states. See APPENDIX D., Table 31.,
Write State Machine Current/Next, for a summary
of the Command Interface.
The Command Interface is reset to Read mode
when power is first applied, when exiting from Re-
set or whenever VDD is lower than VLKO. Com-
mand sequences must be followed exactly. Any
invalid combination of commands will reset the de-
vice to Read mode. Refer to Table 3., Commands,
in conjunction with the text descriptions below.
Read Memory Array Command
The Read command returns the memory to its
Read mode. One Bus Write cycle is required to is-
sue the Read Memory Array command and return
the memory to Read mode. Subsequent read op-
erations will read the addressed location and out-
put the data. When a device Reset occurs, the
memory defaults to Read mode.
Read Status Register Command
The Status Register indicates when a program or
erase operation is complete and the success or
failure of the operation itself. Issue a Read Status
Register command to read the Status Register’s
contents. Subsequent Bus Read operations read
the Status Register at any address, until another
command is issued. See Table 10., Status Regis-
ter Bits, for details on the definitions of the bits.
The Read Status Register command may be is-
sued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will automatically output the con-
tent of the Status Register.
Read Electronic Signature Command
The Read Electronic Signature command reads
the Manufacturer and Device Codes and the Block
Locking Status, or the Protection Register.
The Read Electronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer Code, the Device Code, the
Block Lock and Lock-Down Status, or the Protec-
tion and Lock Register. See Tables 4, 5 and 6 for
the valid address.
Read CFI Query Command
The Read Query Command is used to read data
from the Common Flash Interface (CFI) Memory
Area, allowing programming equipment or appli-
cations to automatically match their interface to
the characteristics of the device. One Bus Write
cycle is required to issue the Read Query Com-
mand. Once the command is issued subsequent
Bus Read operations read from the Common
Flash Interface Memory Area. See APPENDIX
B., COMMON FLASH INTERFACE (CFI), Tables
25, 26, 27, 28, 29 and 30 for details on the infor-
mation contained in the Common Flash Interface
memory area.
Block Erase Command
The Block Erase command can be used to erase
a block. It sets all the bits within the selected block
to ’1’. All previous data in the block is lost. If the
block is protected then the Erase operation will
abort, the data in the block will not be changed and
the Status Register will output the error.
Two Bus Write cycles are required to issue the
command.
The first bus cycle sets up the Erase
command.
The second latches the block address in the
internal state machine and starts the Program/
Erase Controller.
If the second bus cycle is not Write Erase Confirm
(D0h), Status Register bits b4 and b5 are set and
the command aborts.
Erase aborts if Reset turns to VIL. As data integrity
cannot be guaranteed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will accept
the Read Status Register command and the Pro-
gram/Erase Suspend command, all other com-
mands will be ignored. Typical Erase times are
given in Table 7., Program, Erase Times and Pro-
gram/Erase Endurance Cycles.
See APPENDIX C., Figure 20., Erase Flowchart
and Pseudo Code, for a suggested flowchart for
using the Erase command.
Program Command
The memory array can be programmed word-by-
word. Two bus write cycles are required to issue
the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data
to be written and starts the Program/Erase
Controller.
During Program operations the memory will ac-
cept the Read Status Register command and the
Program/Erase Suspend command. Typical Pro-
gram times are given in Table 7., Program, Erase
Times and Program/Erase Endurance Cycles.
M28W160ECT, M28W160ECB
12/50
Programming aborts if Reset goes to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
memory location must be erased and repro-
grammed.
See APPENDIX C., Figure 17., Program Flow-
chart and Pseudo Code, for the flowchart for using
the Program command.
Double Word Program Command
This feature is offered to improve the programming
throughput, writing a page of two adjacent words
in parallel.The two words must differ only for the
address A0. Programming should not be attempt-
ed when VPP is not at VPPH. The command can be
executed if VPP is below VPPH but the result is not
guaranteed.
Three bus write cycles are necessary to issue the
Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and
the Data of the second word to be written and
starts the Program/Erase Controller.
Read operations output the Status Register con-
tent after the programming has started. Program-
ming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program opera-
tion is aborted, the block containing the memory
location must be erased and reprogrammed.
See APPENDIX C., Figure 18., Double Word Pro-
gram Flowchart and Pseudo Code, for the flow-
chart for using the Double Word Program
command.
Clear Status Register Command
The Clear Status Register command can be used
to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the
Clear Status Register command.
The bits in the Status Register do not automatical-
ly return to ‘0’ when a new Program or Erase com-
mand is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command.
Program/Erase Suspend Command
The Program/Erase Suspend command is used to
pause a Program or Erase operation. One bus
write cycle is required to issue the Program/Erase
command and pause the Program/Erase control-
ler.
During Program/Erase Suspend the Command In-
terface will accept the Program/Erase Resume,
Read Array, Read Status Register, Read Electron-
ic Signature and Read CFI Query commands. Ad-
ditionally, if the suspend operation was Erase then
the Program, Block Lock, Block Lock-Down or
Protection Program commands will also be ac-
cepted. The block being erased may be protected
by issuing the Block Protect, Block Lock or Protec-
tion Program commands. When the Program/
Erase Resume command is issued the operation
will complete. Only the blocks not being erased
may be read or programmed correctly.
During a Program/Erase Suspend, the device can
be placed in a pseudo-standby mode by taking
Chip Enable to VIH. Program/Erase is aborted if
Reset turns to VIL.
See APPENDIX C., Figure 19., Program Suspend
& Resume Flowchart and Pseudo Code, and Fig-
ure 21., Erase Suspend & Resume Flowchart and
Pseudo Code, for flowcharts for using the Pro-
gram/Erase Suspend command.
Program/Erase Resume Command
The Program/Erase Resume command can be
used to restart the Program/Erase Controller after
a Program/Erase Suspend operation has paused
it. One Bus Write cycle is required to issue the
command. Once the command is issued subse-
quent Bus Read operations read the Status Reg-
ister.
See APPENDIX C., Figure 19., Program Suspend
& Resume Flowchart and Pseudo Code, and Fig-
ure 21., Erase Suspend & Resume Flowchart and
Pseudo Code, for flowcharts for using the Pro-
gram/Erase Resume command.
Protection Register Program Command
The Protection Register Program command is
used to Program the 64 bit user One-Time-Pro-
grammable (OTP) segment of the Protection Reg-
ister. The segment is programmed 16 bits at a
time. When shipped all bits in the segment are set
to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are required to issue the Protec-
tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data
to be written to the Protection Register and
starts the Program/Erase Controller.
Read operations output the Status Register con-
tent after the programming has started.
The segment can be protected by programming bit
1 of the Protection Lock Register. Bit 1 of the Pro-
tection Lock Register protects bit 2 of the Protec-
tion Lock Register. Programming bit 2 of the
Protection Lock Register will result in a permanent
protection of the Security Block (see Figure
6., Security Block and Protection Register Memo-
ry Map). Attempting to program a previously pro-
tected Protection Register will result in a Status
13/50
M28W160ECT, M28W160ECB
Register error. The protection of the Protection
Register and/or the Security Block is not revers-
ible.
The Protection Register Program cannot be sus-
pended. See APPENDIX C., Figure
23., Protection Register Program Flowchart and
Pseudo Code, for the flowchart for using the Pro-
tection Register Program command.
Block Lock Command
The Block Lock command is used to lock a block
and prevent Program or Erase operations from
changing the data in it. All blocks are locked at
power-up or reset.
Two Bus Write cycles are required to issue the
Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table 9. shows the protection status after issuing
a Block Lock command.
The Block Lock bits are volatile, once set they re-
main set until a hardware reset or power-down/
power-up. They are cleared by a Blocks Unlock
command. Refer to the section, Block Locking, for
a detailed explanation.
Block Unlock Command
The Blocks Unlock command is used to unlock a
block, allowing the block to be programmed or
erased. Two Bus Write cycles are required to is-
sue the Blocks Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table 9. shows the protection status after issuing
a Block Unlock command. Refer to the section,
Block Locking, for a detailed explanation.
Block Lock-Down Command
A locked block cannot be Programmed or Erased,
or have its protection status changed when WP is
low, VIL. When WP is high, VIH, the Lock-Down
function is disabled and the locked blocks can be
individually unlocked by the Block Unlock com-
mand.
Two Bus Write cycles are required to issue the
Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Locked-Down blocks revert to the locked (and not
locked-down) state when the device is reset on
power-down. Table 9. shows the protection status
after issuing a Block Lock-Down command. Refer
to the section, Block Locking, for a detailed expla-
nation.
M28W160ECT, M28W160ECB
14/50
Table 3. Commands
Note: 1. X = Don't Care.
2. The signature addresses are listed in Tables 4, 5 and 6.
3. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0.
Table 4. Read Electronic Signature
Note: RP = VIH.
Commands No. of
Cycles
Bus Write Operations
1st Cycle 2nd Cycle 3nd Cycle
Bus
Op. Addr Data Bus
Op. Addr Data Bus
Op. Addr Data
Read Memory Array 1+ Write X FFh Read Read
Addr Data
Read Status Register 1+ Write X 70h Read X Status
Register
Read Electronic Signature 1+ Write X 90h Read Signature
Addr (2) Signature
Read CFI Query 1+ Write X 98h Read CFI Addr Query
Erase 2 Write X 20h Write Block
Addr D0h
Program 2 Write X 40h or
10h Write Addr Data
Input
Double Word Program(3) 3 Write X 30h Write Addr 1 Data
Input Write Addr 2 Data
Input
Clear Status Register 1 Write X 50h
Program/Erase Suspend 1 Write X B0h
Program/Erase Resume 1 Write X D0h
Block Lock 2 Write X 60h Write Block
Address 01h
Block Unlock 2 Write X 60h Write Block
Address D0h
Block Lock-Down 2 Write X 60h Write Block
Address 2Fh
Protection Register
Program 2WriteXC0hWrite
Address Data
Input
Code Device E G W A0 A1 A2-A7 A8-A19 DQ0-DQ7 DQ8-DQ15
Manufacture.
Code VIL VIL VIH VIL VIL 0 Don't Care 20h 00h
Device Code
M28W160ECT VIL VIL VIH VIH VIL 0 Don't Care CEh 88h
M28W160ECB VIL VIL VIH VIH VIL 0 Don't Care CFh 88h
15/50
M28W160ECT, M28W160ECB
Table 5. Read Block Lock Signature
Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Block Locking section.
Table 6. Read Protection Register and Lock Register
Table 7. Program, Erase Times and Program/Erase Endurance Cycles
Note: 1. Typical values measured at ambient operating temperature, TA.
2. All the parameters have been sampled only, not 100% tested.
Block Status E G W A0 A1 A2-A7 A8-A11 A12-A19 DQ0 DQ1 DQ2-DQ15
Locked Block VIL VIL VIH VIL VIH 0 Don't Care Block Address 1 0 00h
Unlocked Block VIL VIL VIH VIL VIH 0 Don't Care Block Address 0 0 00h
Locked-Down
Block VIL VIL VIH VIL VIH 0 Don't Care Block Address X (1) 100h
Word E G W A0-A7 A8-A19 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
Lock VIL VIL VIH 80h Don't Care 0 OTP Prot.
data
Security
prot. data 00h 00h
Unique ID 0 VIL VIL VIH 81h Don't Care ID data ID data ID data ID data ID data
Unique ID 1 VIL VIL VIH 82h Don't Care ID data ID data ID data ID data ID data
Unique ID 2 VIL VIL VIH 83h Don't Care ID data ID data ID data ID data ID data
Unique ID 3 VIL VIL VIH 84h Don't Care ID data ID data ID data ID data ID data
OTP 0 VIL VIL VIH 85h Don't Care OTP data OTP data OTP data OTP data OTP data
OTP 1 VIL VIL VIH 86h Don't Care OTP data OTP data OTP data OTP data OTP data
OTP 2 VIL VIL VIH 87h Don't Care OTP data OTP data OTP data OTP data OTP data
OTP 3 VIL VIL VIH 88h Don't Care OTP data OTP data OTP data OTP data OTP data
Parameter(2) Test Conditions
M28W160EC
Unit
Min Typ(1) Max
Word Program VPP = VDD 10 200 µs
Double Word Program VPP = 12V ±5% 10 200 µs
Main Block Program
VPP = 12V ±5% 0.16 5 s
VPP = VDD 0.32 5 s
Parameter Block Program
VPP = 12V ±5% 0.02 4 s
VPP = VDD 0.04 4 s
Main Block Erase
VPP = 12V ±5% 15 s
VPP = VDD 15 s
Parameter Block Erase
VPP = 12V ±5% 0.4 4 s
VPP = VDD 0.4 4 s
Program/Erase Cycles (per Block) 100,000 cycles
M28W160ECT, M28W160ECB
16/50
BLOCK LOCKING
The M28W160EC features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency. This locking
scheme has three levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be
changed.
VPP VPPLK - the third level offers a complete
hardware protection against program and
erase on all blocks.
The lock status of each block can be set to
Locked, Unlocked, and Lock-Down. Table 9., de-
fines all of the possible protection states (WP,
DQ1, DQ0), and APPENDIX C., Figure 22., shows
a flowchart for the locking operations.
Reading a Block’s Lock Status
The lock status of every block can be read in the
Read Electronic Signature mode of the device. To
enter this mode write 90h to the device. Subse-
quent reads at the address specified in Table 5.,
will output the lock status of that block. The lock
status is represented by DQ0 and DQ1. DQ0 indi-
cates the Block Lock/Unlock status and is set by
the Lock command and cleared by the Unlock
command. It is also automatically set when enter-
ing Lock-Down. DQ1 indicates the Lock-Down sta-
tus and is set by the Lock-Down command. It
cannot be cleared by software, only by a hardware
reset or power-down.
The following sections explain the operation of the
locking system.
Locked State
The default status of all blocks on power-up or af-
ter a hardware reset is Locked (states (0,0,1) or
(1,0,1)). Locked blocks are fully protected from
any program or erase. Any program or erase oper-
ations attempted on a locked block will return an
error in the Status Register. The Status of a
Locked block can be changed to Unlocked or
Lock-Down using the appropriate software com-
mands. An Unlocked block can be Locked by issu-
ing the Lock command.
Unlocked State
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),
can be programmed or erased. All unlocked
blocks return to the Locked state after a hardware
reset or when the device is powered-down. The
status of an unlocked block can be changed to
Locked or Locked-Down using the appropriate
software commands. A locked block can be un-
locked by issuing the Unlock command.
Lock-Down State
Blocks that are Locked-Down (state (0,1,x))are
protected from program and erase operations (as
for Locked blocks) but their lock status cannot be
changed using software commands alone. A
Locked or Unlocked block can be Locked-Down by
issuing the Lock-Down command. Locked-Down
blocks revert to the Locked state when the device
is reset or powered-down.
The Lock-Down function is dependent on the WP
input pin. When WP=0 (VIL), the blocks in the
Lock-Down state (0,1,x) are protected from pro-
gram, erase and protection status changes. When
WP=1 (VIH) the Lock-Down function is disabled
(1,1,1) and Locked-Down blocks can be individu-
ally unlocked to the (1,1,0) state by issuing the
software command, where they can be erased and
programmed. These blocks can then be locked
again (1,1,1) and unlocked (1,1,0) as desired while
WP remains high. When WP is low, blocks that
were previously Locked-Down return to the Lock-
Down state (0,1,x) regardless of any changes
made while WP was high. Device reset or power-
down resets all blocks, including those in Lock-
Down, to the Locked state.
Locking Operations During Erase Suspend
Changes to block lock status can be performed
during an erase suspend by using the standard
locking command sequences to unlock, lock or
lock-down a block. This is useful in the case when
another block needs to be updated while an erase
operation is in progress.
To change block locking during an erase opera-
tion, first write the Erase Suspend command, then
check the status register until it indicates that the
erase operation has been suspended. Next write
the desired Lock command sequence to a block
and the protection status will be changed. After
completing any desired lock, read, or program op-
erations, resume the erase operation with the
Erase Resume command.
If a block is locked or locked-down during an erase
suspend of the same block, the locking status bits
will be changed immediately, but when the erase
is resumed, the erase operation will complete.
Locking operations cannot be performed during a
program suspend. Refer to APPENDIX
D., COMMAND INTERFACE AND PROGRAM/
ERASE CONTROLLER STATE, for detailed infor-
mation on which commands are valid during erase
suspend.
17/50
M28W160ECT, M28W160ECB
Table 8. Block Lock Status
Table 9. Protection Status
Note: 1. The protection status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block)
as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL.
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.
3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
Item Address Data
Block Lock Configuration
xx002
LOCK
Block is Unlocked DQ0=0
Block is Locked DQ0=1
Block is Locked-Down DQ1=1
Current
Protection Status(1)
(WP, DQ1, DQ0)
Next Protection Status(1)
(WP, DQ1, DQ0)
Current State Program/Erase
Allowed
After
Block Lock
Command
After
Block Unlock
Command
After Block
Lock-Down
Command
After
WP transition
1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0
1,0,1(2) no 1,0,1 1,0,0 1,1,1 0,0,1
1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1
1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1
0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0
0,0,1(2) no 0,0,1 0,0,0 0,1,1 1,0,1
0,1,1 no 0,1,1 0,1,1 0,1,1 1,1,1 or 1,1,0 (3)
M28W160ECT, M28W160ECB
18/50
STATUS REGISTER
The Status Register provides information on the
current or previous Program or Erase operation.
The various bits convey information and errors on
the operation. To read the Status register the
Read Status Register command can be issued, re-
fer to Read Status Register Command section. To
output the contents, the Status Register is latched
on the falling edge of the Chip Enable or Output
Enable signals, and can be read until Chip Enable
or Output Enable returns to VIH. Either Chip En-
able or Output Enable must be toggled to update
the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are summarized in
Table 10., Status Register Bits. Refer to Table 10.
in conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The Pro-
gram/Erase Controller Status bit indicates whether
the Program/Erase Controller is active or inactive.
When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is
active; when the bit is High (set to ‘1’), the Pro-
gram/Erase Controller is inactive, and the device
is ready to process a new command.
The Program/Erase Controller Status is Low im-
mediately after a Program/Erase Suspend com-
mand is issued until the Program/Erase Controller
pauses. After the Program/Erase Controller paus-
es the bit is High.
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled to find the
end of the operation. Other bits in the Status Reg-
ister should not be tested until the Program/Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, VPP
Status and Block Lock Status bits should be tested
for errors.
Erase Suspend Status (Bit 6). The Erase Sus-
pend Status bit indicates that an Erase operation
has been suspended or is going to be suspended.
When the Erase Suspend Status bit is High (set to
‘1’), a Program/Erase Suspend command has
been issued and the memory is waiting for a Pro-
gram/Erase Resume command.
The Erase Suspend Status should only be consid-
ered valid when the Program/Erase Controller Sta-
tus bit is High (Program/Erase Controller inactive).
Bit 7 is set within 30µs of the Program/Erase Sus-
pend command being issued therefore the memo-
ry may still complete the operation rather than
entering the Suspend mode.
When a Program/Erase Resume command is is-
sued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Program/
Erase Controller has applied the maximum num-
ber of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Sta-
tus bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Con-
troller inactive).
Once set High, the Erase Status bit can only be re-
set Low by a Clear Status Register command or a
hardware reset. If set High it should be reset be-
fore a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Pro-
gram/Erase Controller has applied the maximum
number of pulses to the byte and still failed to ver-
ify that it has programmed correctly. The Program
Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Con-
troller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set High it should be reset be-
fore a new command is issued, otherwise the new
command will appear to fail.
VPP Status (Bit 3). The VPP Status bit can be
used to identify an invalid voltage on the VPP pin
during Program and Erase operations. The VPP
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can oc-
cur if VPP becomes invalid during an operation.
When the VPP Status bit is Low (set to ‘0’), the volt-
age on the VPP pin was sampled at a valid voltage;
when the VPP Status bit is High (set to ‘1’), the VPP
pin has a voltage that is below the VPP Lockout
Voltage, VPPLK, the memory is protected and Pro-
gram and Erase operations cannot be performed.
Once set High, the VPP Status bit can only be reset
Low by a Clear Status Register command or a
hardware reset. If set High it should be reset be-
fore a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program
Suspend Status bit indicates that a Program oper-
ation has been suspended. When the Program
Suspend Status bit is High (set to ‘1’), a Program/
Erase Suspend command has been issued and
the memory is waiting for a Program/Erase Re-
sume command. The Program Suspend Status
should only be considered valid when the Pro-
19/50
M28W160ECT, M28W160ECB
gram/Erase Controller Status bit is High (Program/
Erase Controller inactive). Bit 2 is set within 5µs of
the Program/Erase Suspend command being is-
sued therefore the memory may still complete the
operation rather than entering the Suspend mode.
When a Program/Erase Resume command is is-
sued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Pro-
tection Status bit can be used to identify if a Pro-
gram or Erase operation has tried to modify the
contents of a locked block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been at-
tempted on a locked block.
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register com-
mand or a hardware reset. If set High it should be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to APPENDIX C., Flowcharts and
Pseudo Codes, for using the Status Register.
Table 10. Status Register Bits
Note: Logic level '1' is High, '0' is Low.
Bit Name Logic Level Definition
7 P/E.C. Status
'1' Ready
'0' Busy
6 Erase Suspend Status
'1' Suspended
'0' In progress or Completed
5Erase Status
'1' Erase Error
'0' Erase Success
4 Program Status
'1' Program Error
'0' Program Success
3VPP Status
'1' VPP Invalid, Abort
'0' VPP OK
2 Program Suspend Status
'1' Suspended
'0' In Progress or Completed
1 Block Protection Status
'1' Program/Erase on protected Block, Abort
'0' No operation to protected blocks
0 Reserved
M28W160ECT, M28W160ECB
20/50
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause per-
manent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating con-
ditions for extended periods may affect device
reliability. Refer also to the Numonyx SURE Pro-
gram and other relevant quality documents.
Table 11. Absolute Maximum Ratings
Note: 1. Depending on range.
Symbol Parameter
Value
Unit
Min Max
TAAmbient Operating Temperature (1) – 40 85 °C
TBIAS Temperature Under Bias – 40 125 °C
TSTG Storage Temperature – 55 155 °C
VIO Input or Output Voltage – 0.6 VDDQ+0.6 V
VDD, VDDQ Supply Voltage – 0.6 4.1 V
VPP Program Voltage – 0.6 13 V
21/50
M28W160ECT, M28W160ECB
DC AND AC PARAMETERS
This section summarizes the operating and mea-
surement conditions, and the DC and AC charac-
teristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are de-
rived from tests performed under the Measure-
ment Conditions summarized in Table
12., Operating and AC Measurement Conditions.
Designers should check that the operating condi-
tions in their circuit match the measurement condi-
tions when relying on the quoted parameters.
Table 12. Operating and AC Measurement Conditions
Figure 7. AC Measurement I/O Waveform Figure 8. AC Measurement Load Circuit
Table 13. Capacitance
Note: Sampled only, not 100% tested.
Parameter
M28W160ECT, M28W160ECB
Units70 85 90 100
Min Max Min Max Min Max Min Max
VDD Supply Voltage 2.7 3.6 2.7 3.6 2.7 3.6 2.7 3.6 V
VDDQ Supply Voltage (VDDQ VDD)2.7 3.6 2.7 3.6 2.7 3.6 1.65 3.6 V
Ambient Operating Temperature – 40 85 – 40 85 – 40 85 – 40 85 °C
Load Capacitance (CL)50 50 50 50 pF
Input Rise and Fall Times 5 5 5 5 ns
Input Pulse Voltages 0 to VDDQ 0 to VDDQ 0 to VDDQ 0 to VDDQ V
Input and Output Timing Ref. Voltages VDDQ/2 VDDQ/2 VDDQ/2 VDDQ/2 V
AI00610
VDDQ
0V
VDDQ/2
AI00609C
VDDQ
CL
CL includes JIG capacitance
25kΩ
DEVICE
UNDER
TEST
0.1µF
VDD
0.1µF
VDDQ
25kΩ
Symbol Parameter Test Condition Min Max Unit
CIN Input Capacitance VIN = 0V 6pF
COUT Output Capacitance VOUT = 0V 12 pF
M28W160ECT, M28W160ECB
22/50
Table 14. DC Characteristics
Symbol Parameter Test Condition Min Typ Max Unit
ILI Input Leakage Current 0V VIN VDDQ ±1 µA
ILO Output Leakage Current 0V VOUT VDDQ ±10 µA
IDD Supply Current (Read) E = VSS, G = VIH, f = 5MHz 918mA
IDD1 Supply Current (Stand-by or
Automatic Stand-by)
E = VDDQ ± 0.2V,
RP = VDDQ ± 0.2V 15 50 µA
IDD2 Supply Current
(Reset) RP = VSS ± 0.2V 15 50 µA
IDD3 Supply Current (Program)
Program in progress
VPP = 12V ± 5% 510mA
Program in progress
VPP = VDD 10 20 mA
IDD4 Supply Current (Erase)
Erase in progress
VPP = 12V ± 5% 520mA
Erase in progress
VPP = VDD 10 20 mA
IDD5 Supply Current
(Program/Erase Suspend)
E = VDDQ ± 0.2V,
Erase suspended 15 50 µA
IPP Program Current
(Read or Stand-by) VPP > VDD 400 µA
IPP1 Program Current
(Read or Stand-by) VPP VDD 15µA
IPP2 Program Current (Reset) RP = VSS ± 0.2V 15µA
IPP3 Program Current (Program)
Program in progress
VPP = 12V ± 5% 110mA
Program in progress
VPP = VDD 15µA
IPP4 Program Current (Erase)
Erase in progress
VPP = 12V ± 5% 310mA
Erase in progress
VPP = VDD 15µA
VIL Input Low Voltage –0.5 0.4 V
VDDQ 2.7V –0.5 0.8 V
VIH Input High Voltage VDDQ –0.4 VDDQ +0.4 V
VDDQ 2.7V 0.7 VDDQ VDDQ +0.4 V
VOL Output Low Voltage IOL = 100µA, VDD = VDD min,
VDDQ = VDDQ min 0.1 V
VOH Output High Voltage IOH = –100µA, VDD = VDD min,
VDDQ = VDDQ min VDDQ –0.1 V
VPP1 Program Voltage (Program or
Erase operations) 1.65 3.6 V
VPPH
Program Voltage
(Program or Erase
operations)
11.4 12.6 V
VPPLK Program Voltage
(Program and Erase lock-out) 1V
VLKO VDD Supply Voltage (Program
and Erase lock-out) 2V
23/50
M28W160ECT, M28W160ECB
Figure 9. Read Mode AC Waveforms
Table 15. Read AC Characteristics
Note: 1. Sampled only, not 100% tested.
2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
Symbol Alt Parameter
M28W160EC
Unit
70 85 90 100
tAVAV tRC Address Valid to Next Address Valid Min 70 85 90 100 ns
tAVQV tACC Address Valid to Output Valid Max 70 85 90 100 ns
tAXQX (1) tOH Address Transition to Output Transition Min 0 0 0 0 ns
tEHQX (1) tOH Chip Enable High to Output Transition Min 0 0 0 0 ns
tEHQZ (1) tHZ Chip Enable High to Output Hi-Z Max 20 20 25 30 ns
tELQV (2) tCE Chip Enable Low to Output Valid Max 70 85 90 100 ns
tELQX (1) tLZ Chip Enable Low to Output Transition Min 0 0 0 0 ns
tGHQX (1) tOH Output Enable High to Output Transition Min 0 0 0 0 ns
tGHQZ (1) tDF Output Enable High to Output Hi-Z Max 20 20 25 30 ns
tGLQV (2) tOE Output Enable Low to Output Valid Max 20 20 30 35 ns
tGLQX (1) tOLZ Output Enable Low to Output Transition Min 0 0 0 0 ns
DQ0-DQ15
AI03813b
VALID
A0-A19
E
tAXQX
tAVAV
VALID
tAVQV
tELQV
tELQX
tGLQV
tGLQX
ADDR. VALID
CHIP ENABLE
OUTPUTS
ENABLED DATA VALID STANDBY
G
tGHQX
tGHQZ
tEHQX
tEHQZ
M28W160ECT, M28W160ECB
24/50
Figure 10. Write AC Waveforms, Write Enable Controlled
E
G
W
DQ0-DQ15 COMMAND CMD or DATA STATUS REGISTER
VPP
VALIDA0-A19
tAVAV
tQVVPL
tAVWH tWHAX
PROGRAM OR ERASE
tELWL tWHEH
tWHDX
tDVWH
tWLWH
tWHWL
tVPHWH
SET-UP COMMAND CONFIRM COMMAND
OR DATA INPUT
STATUS REGISTER
READ
1st POLLING
tELQV
AI03814b
tWPHWH
WP
tWHGL
tQVWPL
tWHEL
25/50
M28W160ECT, M28W160ECB
Table 16. Write AC Characteristics, Write Enable Controlled
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
Symbol Alt Parameter
M28W160EC
Unit
70 85 90 100
tAVAV tWC Write Cycle Time Min 70 85 90 100 ns
tAVWH tAS Address Valid to Write Enable High Min 45 45 50 50 ns
tDVWH tDS Data Valid to Write Enable High Min 45 45 50 50 ns
tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 0 0 ns
tELQV Chip Enable Low to Output Valid Min 70 85 90 100 ns
tQVVPL (1,2) Output Valid to VPP Low Min 0 0 0 0 ns
tQVWPL Output Valid to Write Protect Low Min 0 0 0 0 ns
tVPHWH (1) tVPS VPP High to Write Enable High Min 200 200 200 200 ns
tWHAX tAH Write Enable High to Address Transition Min 0 0 0 0 ns
tWHDX tDH Write Enable High to Data Transition Min 0 0 0 0 ns
tWHEH tCH Write Enable High to Chip Enable High Min 0 0 0 0 ns
tWHEL Write Enable High to Chip Enable Low Min 25 25 30 30 ns
tWHGL Write Enable High to Output Enable Low Min 20 20 30 30 ns
tWHWL tWPH Write Enable High to Write Enable Low Min 25 25 30 30 ns
tWLWH tWP Write Enable Low to Write Enable High Min 45 45 50 50 ns
tWPHWH Write Protect High to Write Enable High Min 45 45 50 50 ns
M28W160ECT, M28W160ECB
26/50
Figure 11. Write AC Waveforms, Chip Enable Controlled
E
G
DQ0-DQ15 COMMAND CMD or DATA STATUS REGISTER
VPP
VALIDA0-A19
tAVAV
tQVVPL
tAVEH tEHAX
PROGRAM OR ERASE
tWLEL tEHWH
tEHDX
tDVEH
tELEH
tEHEL
tVPHEH
POWER-UP AND
SET-UP COMMAND
CONFIRM COMMAND
OR DATA INPUT
STATUS REGISTER
READ
1st POLLING
tELQV
AI03815b
W
tWPHEH
WP
tEHGL
tQVWPL
27/50
M28W160ECT, M28W160ECB
Table 17. Write AC Characteristics, Chip Enable Controlled
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
Symbol Alt Parameter
M28W160EC
Unit
70 85 90 100
tAVAV tWC Write Cycle Time Min 70 85 90 100 ns
tAVEH tAS Address Valid to Chip Enable High Min 45 45 50 50 ns
tDVEH tDS Data Valid to Chip Enable High Min 45 45 50 50 ns
tEHAX tAH Chip Enable High to Address Transition Min 0 0 0 0 ns
tEHDX tDH Chip Enable High to Data Transition Min 0 0 0 0 ns
tEHEL tCPH Chip Enable High to Chip Enable Low Min 25 25 30 30 ns
tEHGL Chip Enable High to Output Enable
Low Min 25 25 30 30 ns
tEHWH tWH Chip Enable High to Write Enable High Min 0 0 0 0 ns
tELEH tCP Chip Enable Low to Chip Enable High Min 45 45 50 50 ns
tELQV Chip Enable Low to Output Valid Min 70 85 90 100 ns
tQVVPL (1,2) Output Valid to VPP Low Min 0 0 0 0 ns
tQVWPL Data Valid to Write Protect Low Min 0 0 0 0 ns
tVPHEH (1) tVPS VPP High to Chip Enable High Min 200 200 200 200 ns
tWLEL tCS Write Enable Low to Chip Enable Low Min 0 0 0 0 ns
tWPHEH Write Protect High to Chip Enable High Min 45 45 50 50 ns
M28W160ECT, M28W160ECB
28/50
Figure 12. Power-Up and Reset AC Waveforms
Table 18. Power-Up and Reset AC Characteristics
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns.
2. Sampled only, not 100% tested.
3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.
Symbol Parameter Test Condition
M28W160EC
Unit
70 85 90 100
tPHWL
tPHEL
tPHGL
Reset High to Write Enable Low, Chip
Enable Low, Output Enable Low
During
Program
and Erase
Min50505050µs
others Min 30 30 30 30 ns
tPLPH(1,2) Reset Low to Reset High Min 100 100 100 100 ns
tVDHPH(3) Supply Voltages High to Reset High Min 50 50 50 50 µs
AI03537b
W,
RP
tPHWL
tPHEL
tPHGL
E, G
VDD, VDDQ
tVDHPH
tPHWL
tPHEL
tPHGL
tPLPH
Power-Up Reset
29/50
M28W160ECT, M28W160ECB
PACKAGE MECHANICAL
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline
Note: Drawing is not to scale.
Table 19. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data
Symbol
millimeters inches
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.100 0.050 0.150 0.0039 0.0020 0.0059
A2 1.000 0.950 1.050 0.0394 0.0374 0.0413
B 0.220 0.170 0.270 0.0087 0.0067 0.0106
C 0.100 0.210 0.0039 0.0083
CP 0.100 0.0039
D1 12.000 11.900 12.100 0.4724 0.4685 0.4764
E 20.000 19.800 20.200 0.7874 0.7795 0.7953
E1 18.400 18.300 18.500 0.7244 0.7205 0.7283
e 0.500 0.0197
L 0.600 0.500 0.700 0.0236 0.0197 0.0276
L1 0.800 0.0315
a 305305
TSOP-G
B
e
DIE
C
LA1 α
E1
E
A
A2
1
24
48
25
D1
L1
CP
M28W160ECT, M28W160ECB
30/50
Figure 14. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline
Drawing is not to scale.
Table 20. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data
E1E
D1
D
b
A2
A1
A
BGA-Z13
ddd
e
e
FD
FE
SD
SE
BALL "A1"
Symbol
millimeters inches
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.200 0.0079
A2 1.000 0.0394
b 0.400 0.350 0.450 0.0157 0.0138 0.0177
D 6.390 6.290 6.490 0.2516 0.2476 0.2555
D1 5.250 0.2067
ddd 0.100 0.0039
E 6.370 6.270 6.470 0.2508 0.2469 0.2547
e 0.750 0.0295
E1 3.750 0.1476
FD 0.570 0.0224
FE 1.310 0.0516
SD 0.375 0.0148
SE 0.375 0.0148
31/50
M28W160ECT, M28W160ECB
Figure 15. TFBGA46 Daisy Chain - Package Connections (Top view through package)
Figure 16. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package)
AI03298
C
B
A
87654321
E
D
F
AI3299
C
B
A
87654321
E
D
F
START
POINT
END
POINT
M28W160ECT, M28W160ECB
32/50
PART NUMBERING
Table 21. Ordering Information Scheme
Example: M28W160ECT 90 N 6 T
Device Type
M28
Operating Voltage
W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V
Device Function
160EC = 16 Mbit (1 Mb x16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
70 = 70 ns
85 = 85 ns
90 = 90 ns
100 = 100 ns
Package
N = TSOP48: 12 x 20 mm
ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch
Temperature Range
1 = 0 to 70 °C
6 = –40 to 85 °C
Option
Blank = Standard Packing
T = Tape & Reel Packing
S = Tape & Reel Packing, 16mm (BGA only)
E = ECOPACK Package, Standard Packing
F = ECOPACK Package, Tape & Reel Packing
U = ECOPACK Package, 16mm Tape & Reel Packing (BGA only)
33/50
M28W160ECT, M28W160ECB
Table 22. Daisy Chain Ordering Scheme
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available op-
tions (Speed, Package, etc.) or for further information on any aspect of this device, please contact the Nu-
monyx Sales Office nearest to you.
Example: M28W160EC -ZB T
Device Type
M28W160EC
Daisy Chain
-ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch
Option
T = Tape & Reel Packing
S = Tape & Reel Packing, 16mm (BGA only)
M28W160ECT, M28W160ECB
34/50
APPENDIX A. BLOCK ADDRESS TABLES
Table 23. Top Boot Block Addresses,
M28W160ECT
Table 24. Bottom Boot Block Addresses,
M28W160ECB
#Size
(KWord) Address Range
0 4 FF000-FFFFF
1 4 FE000-FEFFF
2 4 FD000-FDFFF
3 4 FC000-FCFFF
4 4 FB000-FBFFF
5 4 FA000-FAFFF
6 4 F9000-F9FFF
7 4 F8000-F8FFF
8 32 F0000-F7FFF
99 32 E8000-EFFFF
10 32 E0000-E7FFF
11 32 D8000-DFFFF
12 32 D0000-D7FFF
13 32 C8000-CFFFF
14 32 C0000-C7FFF
15 32 B8000-BFFFF
16 32 B0000-B7FFF
17 32 A8000-AFFFF
18 32 A0000-A7FFF
19 32 98000-9FFFF
20 32 90000-97FFF
21 32 88000-8FFFF
22 32 80000-87FFF
23 32 78000-7FFFF
24 32 70000-77FFF
25 32 68000-6FFFF
26 32 60000-67FFF
27 32 58000-5FFFF
28 32 50000-57FFF
29 32 48000-4FFFF
30 32 40000-47FFF
31 32 38000-3FFFF
32 32 30000-37FFF
33 32 28000-2FFFF
34 32 20000-27FFF
35 32 18000-1FFFF
36 32 10000-17FFF
37 32 08000-0FFFF
38 32 00000-07FFF
#Size
(KWord) Address Range
38 32 F8000-FFFFF
37 32 F0000-F7FFF
36 32 E8000-EFFFF
35 32 E0000-E7FFF
34 32 D8000-DFFFF
33 32 D0000-D7FFF
32 32 C8000-CFFFF
31 32 C0000-C7FFF
30 32 B8000-BFFFF
29 32 B0000-B7FFF
28 32 A8000-AFFFF
27 32 A0000-A7FFF
26 32 98000-9FFFF
25 32 90000-97FFF
24 32 88000-8FFFF
23 32 80000-87FFF
22 32 78000-7FFFF
21 32 70000-77FFF
20 32 68000-6FFFF
19 32 60000-67FFF
18 32 58000-5FFFF
17 32 50000-57FFF
16 32 48000-4FFFF
15 32 40000-47FFF
14 32 38000-3FFFF
13 32 30000-37FFF
12 32 28000-2FFFF
11 32 20000-27FFF
10 32 18000-1FFFF
9 32 10000-17FFF
8 32 08000-0FFFF
7 4 07000-07FFF
6 4 06000-06FFF
5 4 05000-05FFF
4 4 04000-04FFF
3 4 03000-03FFF
2 4 02000-02FFF
1 4 01000-01FFF
0 4 00000-00FFF
35/50
M28W160ECT, M28W160ECB
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC ap-
proved, standardized data structure that can be
read from the Flash memory device. It allows a
system software to query the device to determine
various electrical and timing parameters, density
information and functions supported by the mem-
ory. The system can interface easily with the de-
vice, enabling the software to upgrade itself when
necessary.
When the CFI Query Command (RCFI) is issued
the device enters CFI Query mode and the data
structure is read from the memory. Tables 25, 26,
27, 28, 29 and 30 show the addresses used to re-
trieve the data.
The CFI data structure also contains a security
area where a 64 bit unique security number is writ-
ten (see Table 30., Security Code Area). This area
can be accessed only in Read mode by the final
user. It is impossible to change the security num-
ber after it has been written by Numonyx. Issue a
Read command to return to Read mode.
Table 25. Query Structure Overview
Note: Query data are always presented on the lowest order data outputs.
Table 26. CFI Query Identification String
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
Offset Sub-section Name Description
00h Reserved Reserved for algorithm-specific information
10h CFI Query Identification String Command set ID and algorithm data offset
1Bh System Interface Information Device timing & voltage information
27h Device Geometry Definition Flash device layout
P Primary Algorithm-specific Extended Query table Additional information specific to the Primary
Algorithm (optional)
A Alternate Algorithm-specific Extended Query table Additional information specific to the Alternate
Algorithm (optional)
Offset Data Description Value
00h 0020h Manufacturer Code Numonyx
01h 88CEh
88CFh Device Code To p
Bottom
02h-0Fh reserved Reserved
10h 0051h "Q"
11h 0052h Query Unique ASCII String "QRY" "R"
12h 0059h "Y"
13h 0003h Primary Algorithm Command Set and Control Interface ID code 16 bit ID code
defining a specific algorithm
Intel
compatible
14h 0000h
15h 0035h
Address for Primary Algorithm extended Query table (see Table 28.) P = 35h
16h 0000h
17h 0000h Alternate Vendor Command Set and Control Interface ID Code second vendor -
specified algorithm supported (0000h means none exists) NA
18h 0000h
19h 0000h Address for Alternate Algorithm extended Query table
(0000h means none exists) NA
1Ah 0000h
M28W160ECT, M28W160ECB
36/50
Table 27. CFI Query System Interface Information
Offset Data Description Value
1Bh 0027h
VDD Logic Supply Minimum Program/Erase or Write voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
2.7V
1Ch 0036h
VDD Logic Supply Maximum Program/Erase or Write voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
3.6V
1Dh 00B4h
VPP [Programming] Supply Minimum Program/Erase voltage
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
11.4V
1Eh 00C6h
VPP [Programming] Supply Maximum Program/Erase voltage
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
12.6V
1Fh 0004h Typical time-out per single word program = 2n µs 16µs
20h 0004h Typical time-out for Double Word Program = 2n µs 16µs
21h 000Ah Typical time-out per individual block erase = 2n ms 1s
22h 0000h Typical time-out for full chip erase = 2n ms NA
23h 0005h Maximum time-out for word program = 2n times typical 512µs
24h 0005h Maximum time-out for Double Word Program = 2n times typical 512µs
25h 0003h Maximum time-out per individual block erase = 2n times typical 8s
26h 0000h Maximum time-out for chip erase = 2n times typical NA
37/50
M28W160ECT, M28W160ECB
Table 28. Device Geometry Definition
Offset Word
Mode Data Description Value
27h 0015h Device Size = 2n in number of bytes 2 MByte
28h
29h
0001h
0000h Flash Device Interface Code description x16
Async.
2Ah
2Bh
0002h
0000h Maximum number of bytes in multi-byte program or page = 2n 4
2Ch 0002h
Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous
Erase Blocks of the same size.
2
M28W160ECT
2Dh
2Eh
001Eh
0000h
Region 1 Information
Number of identical-size erase block = 001Eh+1 31
2Fh
30h
0000h
0001h
Region 1 Information
Block size in Region 1 = 0100h * 256 byte 64 KByte
31h
32h
0007h
0000h
Region 2 Information
Number of identical-size erase block = 0007h+1 8
33h
34h
0020h
0000h
Region 2 Information
Block size in Region 2 = 0020h * 256 byte 8 KByte
M28W160ECB
2Dh
2Eh
0007h
0000h
Region 1 Information
Number of identical-size erase block = 0007h+1 8
2Fh
30h
0020h
0000h
Region 1 Information
Block size in Region 1 = 0020h * 256 byte 8 KByte
31h
32h
001Eh
0000h
Region 2 Information
Number of identical-size erase block = 001Eh+1 31
33h
34h
0000h
0001h
Region 2 Information
Block size in Region 2 = 0100h * 256 byte 64 KByte
M28W160ECT, M28W160ECB
38/50
Table 29. Primary Algorithm-Specific Extended Query Table
Note: 1. See Table 26., offset 15 for P pointer definition.
Offset
P = 35h (1) Data Description Value
(P+0)h = 35h 0050h
Primary Algorithm extended Query table unique ASCII string “PRI”
"P"
(P+1)h = 36h 0052h "R"
(P+2)h = 37h 0049h "I"
(P+3)h = 38h 0031h Major version number, ASCII "1"
(P+4)h = 39h 0030h Minor version number, ASCII "0"
(P+5)h = 3Ah 0066h Extended Query table contents for Primary Algorithm. Address (P+5)h
contains less significant byte.
bit 0Chip Erase supported(1 = Yes, 0 = No)
bit 1Suspend Erase supported(1 = Yes, 0 = No)
bit 2Suspend Program supported(1 = Yes, 0 = No)
bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No)
bit 4Queued Erase supported(1 = Yes, 0 = No)
bit 5Instant individual block locking supported(1 = Yes, 0 = No)
bit 6Protection bits supported(1 = Yes, 0 = No)
bit 7Page mode read supported(1 = Yes, 0 = No)
bit 8Synchronous read supported(1 = Yes, 0 = No)
bit 31 to 9Reserved; undefined bits are ‘0’
No
Ye s
Ye s
No
No
Ye s
Ye s
No
No
(P+6)h = 3Bh 0000h
(P+7)h = 3Ch 0000h
(P+8)h = 3Dh 0000h
(P+9)h = 3Eh 0001h Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported
during Erase or Program operation
bit 0Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1Reserved; undefined bits are ‘0’ Yes
(P+A)h = 3Fh 0003h Block Lock Status
Defines which bits in the Block Status Register section of the Query are
implemented.
Address (P+A)h contains less significant byte
bit 0Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No)
bit 1Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
bit 15 to 2Reserved for future use; undefined bits are ‘0’
Ye s
Ye s
(P+B)h = 40h 0000h
(P+C)h = 41h 0030h VDD Logic Supply Optimum Program/Erase voltage (highest performance)
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
3V
(P+D)h = 42h 00C0h VPP Supply Optimum Program/Erase voltage
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
12V
(P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space.
"00h," indicates that 256 protection bytes are available
01
(P+F)h = 44h 0080h Protection Field 1: Protection Description
This field describes user-available. One Time Programmable (OTP)
Protection register bytes. Some are pre-programmed with device unique
serial numbers. Others are user programmable. Bits 0–15 point to the
Protection register Lock byte, the section’s first byte.
The following bytes are factory pre-programmed and user-programmable.
bit 0 to 7 Lock/bytes JEDEC-plane physical low address
bit 8 to 15Lock/bytes JEDEC-plane physical high address
bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
bit 24 to 31 "n" such that 2n = user programmable bytes
80h
(P+10)h = 45h 0000h 00h
(P+11)h = 46h 0003h 8 Byte
(P+12)h = 47h 0003h 8 Byte
(P+13)h = 48h Reserved
39/50
M28W160ECT, M28W160ECB
Table 30. Security Code Area
Offset Data Description
80h 00XX Protection Register Lock
81h XXXX
64 bits: unique device number
82h XXXX
83h XXXX
84h XXXX
85h XXXX
64 bits: User Programmable OTP
86h XXXX
87h XXXX
88h XXXX
M28W160ECT, M28W160ECB
40/50
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 17. Program Flowchart and Pseudo Code
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
Write 40h or 10h
AI03538b
Start
Write Address
& Data
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
NO
b4 = 0
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
End
YES
NO
b1 = 0 Program to Protected
Block Error (1, 2)
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
if (status_register.b4==1) /*program error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
}
41/50
M28W160ECT, M28W160ECB
Figure 18. Double Word Program Flowchart and Pseudo Code
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
Write 30h
AI03539b
Start
Write Address 1
& Data 1 (3)
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
NO
b4 = 0
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
YES
End
YES
NO
b1 = 0 Program to Protected
Block Error (1, 2)
Write Address 2
& Data 2 (3)
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
if (status_register.b4==1) /*program error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
}
M28W160ECT, M28W160ECB
42/50
Figure 19. Program Suspend & Resume Flowchart and Pseudo Code
Write 70h
AI03540b
Read Status
Register
YES
NO
b7 = 1
YES
NO
b2 = 1
Program Continues
Write D0h
Read data from
another address
Start
Write B0h
Program Complete
Write FFh
Read Data
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
}
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
}
Write FFh
43/50
M28W160ECT, M28W160ECB
Figure 20. Erase Flowchart and Pseudo Code
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
Write 20h
AI03541b
Start
Write Block
Address & D0h
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
YES
b4, b5 = 1
VPP Invalid
Error (1)
Command
Sequence Error (1)
NO
NO
b5 = 0 Erase Error (1)
End
YES
NO
b1 = 0 Erase to Protected
Block Error (1)
YES
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
} while (status_register.b7== 0) ;
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
}
M28W160ECT, M28W160ECB
44/50
Figure 21. Erase Suspend & Resume Flowchart and Pseudo Code
Write 70h
AI03542b
Read Status
Register
YES
NO
b7 = 1
YES
NO
b6 = 1
Erase Continues
Write D0h
Read data from
another block
or
Program/Protection Program
or
Block Protect/Unprotect/Lock
Start
Write B0h
Erase Complete
Write FFh
Read Data
Write FFh
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
}
else
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
45/50
M28W160ECT, M28W160ECB
Figure 22. Locking Operations Flowchart and Pseudo Code
Write
01h, D0h or 2Fh
AI04364
Read Block
Lock States
YES
NO
Locking
change
confirmed?
Start
Write 60h locking_operation_command (address, lock_operation) {
writeToFlash (any_address, 0x60) ; /*configuration setup*/
if (readFlash (address) ! = locking_state_expected)
error_handler () ;
/*Check the locking state (see Read Block Signature table )*/
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/
}
Write FFh
Write 90h
End
if (lock_operation==LOCK) /*to protect the block*/
writeToFlash (address, 0x01) ;
else if (lock_operation==UNLOCK) /*to unprotect the block*/
writeToFlash (address, 0xD0) ;
else if (lock_operation==LOCK-DOWN) /*to lock the block*/
writeToFlash (address, 0x2F) ;
writeToFlash (any_address, 0x90) ;
M28W160ECT, M28W160ECB
46/50
Figure 23. Protection Register Program Flowchart and Pseudo Code
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
Write C0h
AI04381
Start
Write Address
& Data
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
NO
b4 = 0
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
protection_register_program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0xC0) ;
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
End
YES
NO
b1 = 0 Program to Protected
Block Error (1, 2)
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
if (status_register.b4==1) /*program error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
}
47/50
M28W160ECT, M28W160ECB
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER
STATE
Table 31. Write State Machine Current/Next, sheet 1 of 2.
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
Current
State
SR
bit 7
Data
When
Read
Command Input (and Next State)
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Setup
(20h)
Erase
Confirm
(D0h)
Prog/Ers
Suspend
(B0h)
Prog/Ers
Resume
(D0h)
Read
Status
(70h)
Clear
Status
(50h)
Read Array “1” Array Read Array Prog.Setup Ers. Setup Read Array Read Sts. Read Array
Read
Status “1” Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Read
Elect.Sg. “1” Electronic
Signature Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Read CFI
Query “1” CFI Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Lock Setup “1” Status Lock Command Error Lock
(complete)
Lock Cmd
Error
Lock
(complete) Lock Command Error
Lock Cmd
Error “1” Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Lock
(complete) “1 Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Prot. Prog.
Setup “1” Status Protection Register Program
Prot. Prog.
(continue) “0” Status Protection Register Program continue
Prot. Prog.
(complete) “1 Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Prog. Setup “1” Status Program
Program
(continue) “0” Status Program (continue) Prog. Sus
Read Sts Program (continue)
Prog. Sus
Status “1” Status Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array “1” Array Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read
Elect.Sg.
“1” Electronic
Signature
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read CFI “1” CFI Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Program
(complete) “1 Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Erase
Setup “1” Status Erase Command Error Erase
(continue)
Erase
CmdError
Erase
(continue) Erase Command Error
Erase
Cmd.Error “1” Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
Erase
(continue) “0” Status Erase (continue) Erase Sus
Read Sts Erase (continue)
Erase Sus
Read Sts “1” Status Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read Array “1” Array Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read
Elect.Sg.
“1” Electronic
Signature
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read CFI “1” CFI Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Sts
Erase Sus
Read Array
Erase
(complete) “1 Status Read Array Program
Setup
Erase
Setup Read Array Read
Status Read Array
M28W160ECT, M28W160ECB
48/50
Table 32. Write State Machine Current/Next, sheet 2 of 2.
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
Current State
Command Input (and Next State)
Read Elect.Sg.
(90h)
Read CFI
Query
(98h)
Lock Setup
(60h)
Prot. Prog.
Setup (C0h)
Lock Confirm
(01h)
Lock Down
Confirm (2Fh)
Unlock
Confirm
(D0h)
Read Array Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Read Status Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Read Elect.Sg. Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Lock Setup Lock Command Error Lock (complete)
Lock Cmd Error Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Lock (complete) Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Prot. Prog.
Setup Protection Register Program
Prot. Prog.
(continue) Protection Register Program (continue)
Prot. Prog.
(complete) Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Prog. Setup Program
Program
(continue) Program (continue)
Prog. Suspend
Read Status
Prog. Suspend
Read Elect.Sg.
Prog. Suspend
Read CFI Query Program Suspend Read Array Program
(continue)
Prog. Suspend
Read Array
Prog. Suspend
Read Elect.Sg.
Prog. Suspend
Read CFI Query Program Suspend Read Array Program
(continue)
Prog. Suspend
Read Elect.Sg.
Prog. Suspend
Read Elect.Sg.
Prog. Suspend
Read CFI Query Program Suspend Read Array Program
(continue)
Prog. Suspend
Read CFI
Prog. Suspend
Read Elect.Sg.
Prog. Suspend
Read CFI Query Program Suspend Read Array Program
(continue)
Program
(complete) Read Elect.Sg. Read CFIQuery Lock Setup Prot. Prog.
Setup Read Array
Erase Setup Erase Command Error Erase
(continue)
Erase
Cmd.Error Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
Erase (continue) Erase (continue)
Erase Suspend
Read Status
Erase Suspend
Read Elect.Sg.
Erase Suspend
Read CFI Query Lock Setup Erase Suspend Read Array Erase
(continue)
Erase Suspend
Read Array
Erase Suspend
Read Elect.Sg.
Erase Suspend
Read CFI Query Lock Setup Erase Suspend Read Array Erase
(continue)
Erase Suspend
Read Elect.Sg.
Erase Suspend
Read Elect.Sg.
Erase Suspend
Read CFI Query Lock Setup Erase Suspend Read Array Erase
(continue)
Erase Suspend
Read CFI Query
Erase Suspend
Read Elect.Sg.
Erase Suspend
Read CFI Query Lock Setup Erase Suspend Read Array Erase
(continue)
Erase
(complete) Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Array
49/50
M28W160ECT, M28W160ECB
REVISION HISTORY
Table 33. Document Revision History
Date Version Revision Details
21-Nov-2002 1.0 First Issue
18-Feb-2004 2.0
S packing option added to Table 21., Ordering Information Scheme and Table
22., Daisy Chain Ordering Scheme.
Document Status promoted from Target Specification to Preliminary Data.
1-July-2004 3.0
Datasheet status updated to “Full Datasheet”.
Lead-free package options added in FEATURES SUMMARY, SIGNAL
DESCRIPTIONS, Table 11., Absolute Maximum Ratings and PART NUMBERING
sections.
Tape & Reel Packing options updated in Table 21., Ordering Information Scheme
and Table 22., Daisy Chain Ordering Scheme
5-Aug-2004 4.0 Table 21., Ordering Information Scheme and Table 22., Daisy Chain Ordering
Scheme updated.
16-Nov-2004 5.0 U packing option added in Table 21., Ordering Information Scheme.
01-Dec-2005 6
ECOPACK text updated.
Main Block Erase time and Parameter Block Erase time updated in Table
7., Program, Erase Times and Program/Erase Endurance Cycles. Note: 1. and 2.
added.
Figure 13., TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package
Outline and Table 19., TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm,
Package Mechanical Data updated.
26-Mar-2008 7 Applied Numonyx branding.
M28W160ECT, M28W160ECB
50/50
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Numonyx may make changes to specifications and product descriptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to
the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or
implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by
visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.