This is information on a product in full production.
February 2015 DocID10873 Rev 5 1/27
VNQ600AP-E
Quad channel high side driver
Datasheet - production data
Features
DC short circuit current: 25 A
CMOS compatible inputs
Proportional load current sense
Undervoltage and overvoltage shutdown
Overvoltage clamp
Thermal shutdown
Current limitation
Very low standby power dissipation
Protection against: loss of ground and loss of
VCC
Reverse battery protection
In compliance with the 2002/95/EC european
directive
Description
The VNQ600AP-E is a quad HSD formed by
assembling two VND600-E chips in the same
SO-28 package. The VND600-E is a monolithic
device designed in| STMicroelectronics VIPower
M0-3 Technology. The VNQ600AP-E is intended
for driving any type of multiple loads with one side
connected to ground. This device has four
independent channels and four analog sense
outputs which deliver currents proportional to the
outputs currents. Active current limitation
combined with thermal shutdown and automatic
restart protect the device against overload.
Device automatically turns off in case of ground
Type RDS(on)(1)
1. Per each channel
Ilim VCC
VNQ600AP-E 35 mΩ 25 A 36 V
62GRXEOHLVODQG
*$3*36
Table 1. Device summary
Package
Order codes
Tube Tape and reel
SO-28 VNQ600AP-E VNQ600APTR-E
www.st.com
Contents VNQ600AP-E
2/27 DocID10873 Rev 5
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 14
3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Microcontroller I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . 19
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 SO-28 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 SO-28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 SO-28 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DocID10873 Rev 5 3/27
VNQ600AP-E List of tables
3
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Switching (VCC=13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 7. VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. Logic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 9. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 10. Current sense (9 V< VCC< 16 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 12. Electrical transient requirements (part 1/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 13. Electrical transient requirements (part 2/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 14. Electrical transient requirements (part 3/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 15. Thermal calculation according to the PCB heatsink area . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 16. Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 17. SO-28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 18. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
List of figures VNQ600AP-E
4/27 DocID10873 Rev 5
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Switching characteristics (resistive load RL= 2.6 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. Waveforms (per each chip). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7. IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 8. Off-state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 9. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 10. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 11. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 12. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 13. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 15. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 16. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 17. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 18. On-state resistance vs Tcase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 19. On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 20. Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 21. Demagnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. SO-28 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 23. Rthj-amb Vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 21
Figure 24. Thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 25. Thermal fitting model of a quad channel HSD in SO-28. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 26. SO-28 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 27. SO-28 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 28. SO-28 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DocID10873 Rev 5 5/27
VNQ600AP-E Block diagram and pin description
26
1 Block diagram and pin description
Figure 1. Block diagram
'5,9(5
'5,9(5
6(16(
&855(17
287387
6(16(
&855(17
287387
9&& 
*1'
,1387
,1387
,287 .
,/,0
,287 .
'(0$*
,/,0
/2*,&
'5,9(5
'5,9(5
6(16(
&855(17
287387
6(16(
&855(17
287387
9&& 
*1'
,1387
,1387
,287 .
,/,0
,287 .
,/,0
/2*,&
/6%26/,4!'%
5.$%26/,4!'%
/6%24%-0
/6%24%-0
5.$%26/,4!'%
/6%26/,4!'%
$%-!'
$%-!'
$%-!'
$%-!'
/6%24%-0
/6%24%-0
*$3*36
Block diagram and pin description VNQ600AP-E
6/27 DocID10873 Rev 5
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection/pin Current sense N.C. Output Input
Floating Not allowed X X X
To ground Through 1 kresistor X Not allowed Through 10 kresistor



&855(176(16(
&855(176(16(
&855(176(16(
287387
287387
287387
287387
9&& 
287387
287387
287387
287387
287387
287387
287387
287387
9&& 
9&& 
,1387
,1387
*1'
9&& 
9&& 
,1387
,1387
*1'
9&& 
&855(176(16(
*$3*36
DocID10873 Rev 5 7/27
VNQ600AP-E Electrical specifications
26
2 Electrical specifications
Figure 3. Current and voltage conventions
1. VFn = VCCn - VOUTn during reverse battery condition
2.1 Absolute maximum ratings
,
6
,
*1'
287387
9
&&
*1'

,1387
,
287
9
&&
9
287
287387
,
287
9
287
,1387
,
,1
&856(16(
,
6(16(
287387
,
287
287387
,
287
9
287
9
287
,
,1
,
6(16(
,
6(16(
,
,1
,
6(16(
&856(16(
&856(16(
&856(16(
,1387
,1387
9
6(16(
9
,1
9
6(16(
9
,1
9
6(16(
,
,1
9
,1
9
6(16(
9
,1
,
*1'
*1'

,
6
9
&&
9
&&
9
)
*$3*36
Table 3. Absolute maximum rating
Symbol Parameter Value Unit
VCC Supply voltage (continuous) 41 V
-VCC Reverse supply voltage (continuous) -0.3 V
IOUT Output current (continuous), for each channel 15 A
IR Reverse output current (continuous), for each channel -15 A
IIN Input current ±10 mA
VCSENSE Current sense maximum voltage -3
+15
V
V
IGND Ground current at Tpins < 25 °C (continuous) -200 mA
VESD
Electrostatic discharge
(Human Body Model: R=1.5 KΩ C=100 pF)
Input
Current Sense
Output
–V
CC
4000
2000
5000
5000
V
V
V
V
EMAX
Maximum switching energy
(L=0.11 mH; RL=0 Ω; Vbat=13.5 V; Tjstart=150 ºC; IL=40 A) 126 mJ
Ptot Power dissipation (per island) at Tlead=25 °C 6.25 W
Electrical specifications VNQ600AP-E
8/27 DocID10873 Rev 5
2.2 Thermal data
2.3 Electrical characteristics
Values specified in this section are for 8 V< VCC < 36 V; -40 °C < Tj < 150 °C, unless
otherwise specified.
TjJunction operating temperature Internally limited °C
Tstg Storage temperature -55 to 150 °C
Table 3. Absolute maximum rating (continued)
Symbol Parameter Value Unit
Table 4. Thermal data (per island)
Symbol Parameter Value Unit
Rthj-lead Thermal resistance Junction-lead (max) 15 °C/W
Rthj-amb Thermal resistance Junction-ambient (one chip on max) 60(1) 44(2) °C/W
Rthj-amb Thermal Resistance Junction-ambient (two chips on max) 46(1) 31((2)) °C/W
1. When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35 m thick) connected to all VCC pins.
Horizontal mounting and no artificial air flow.
2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 m thick) connected to all VCC pins.
Horizontal mounting and no artificial air flow.
Table 5. Power
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC(1) Operating supply voltage 5.5 13 36 V
VUSD(1) Undervoltage shutdown 3 4 5.5 V
VOV(1) Overvoltage shutdown 36 - - V
RON On-state resistance
IOUT1,2,3,4 = 5 A; Tj = 25 °C
IOUT1,2,3,4 = 5 A; Tj = 150 °C
IOUT1,2,3,4 = 3 A; VCC = 6 V
--
35
70
120
mΩ
mΩ
mΩ
Vclamp Clamp voltage ICC=20 mA(2) 41 48 55 V
IS(1) Supply current
Off-state; VCC = 13 V;
VIN = V
OUT = V
SENSE = 0 V
Off-state; VCC = 13 V;
VIN = V
OUT = V
SENSE = 0 V;
Tj =25 °C
On-state; VCC =13 V; VIN=5 V;
IOUT=0 A; RSENSE=3.9 KΩ
VSENSE=0 V
-
12
12
40
25
6
μA
μA
mA
IL(off1) Off-state output current VIN=VOUT=VSENSE=0V 0 - 50 μA
DocID10873 Rev 5 9/27
VNQ600AP-E Electrical specifications
26
IL(off3) Off-state output current VIN=VOUT=VSENSE=0 V; VCC=13 V;
Tj =125 °C --5μA
IL(off4) Off-state output current VIN=VOUT=VSENSE=0 V; VCC=13 V;
Tj =25 °C --3μA
1. Per island
2. Vclamp and VOV are correlated. Typical difference is 5 V.
Table 5. Power (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 6. Switching (VCC=13 V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
tD(on) Turn-on delay time RL=2.6 Ω channels 1,2,3,4 (see
Figure 4)-40-μs
tD(off) Turn-off delay time RL=2.6 Ω channels 1,2,3,4 (see
Figure 4)-40-μs
(dVOUT/dt)on Turn-on voltage slope RL=2.6 Ω channels 1,2,3,4 (see
Figure 4)-
See
relative
diagra
m
-Vμs
(dVOUT/dt)off Turn-off voltage slope RL=2.6 Ω channels 1,2,3,4 (see
Figure 4)-
See
relative
diagra
m
-Vμs
Table 7. VCC - output diode
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFForward on voltage -IOUT=2.3 A; Tj=150 °C - - 0.6 V
Table 8. Logic input
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Low level input voltage - - 1.25 V
VIH High level input voltage 3.25 - - V
VI(hyst) Input hysteresis voltage 0.5 - - V
IIL Low level input current VIN = 1.25 V2065-μA
IIh High level input current VIN = 3.25 V - 75 110 μA
VICL Input clamp voltage IIN = 1 mA
IIN = -1 mA
6 6.8
-0.7
8V
V
Electrical specifications VNQ600AP-E
10/27 DocID10873 Rev 5
Note: To ensure long term reliability under heavy overload or short circuit conditions, protection
and related diagnostic signals must be used together with a proper software strategy. If the
device is subjected to abnormal conditions, this software must limit the duration and number
of activation cycles.
Table 9. Protections
Symbol Parameter Test conditions Min. Typ. Max. Unit
Ilim DC short circuit current VCC=13 V
5.5 V<VCC<36 V
25 40 70
70
A
A
TTSD
Thermal shutdown
temperature 150 175 200 °C
TR
Thermal reset
temperature 135 - - °C
Thyst Thermal hysteresis 7 15 - °C
Vdemag
Turn-off output voltage
clamp IOUT=2 A; L=6 mH VCC-41 VCC-48 VCC-55 V
VON
Output voltage drop
limitation IOUT=0.5 A; Tj= -40 °C...+150 °C - 50 - mV
Table 10. Current sense (9 V< VCC< 16 V)
Symbol Parameter Test conditions(1) Min. Typ. Max. Unit
K1 IOUT/ISENSE
IOUT1,2=0.35 A; VSENSE=0.5 V;
Tj= -40 °C...+150 °C 3100 4150 5560
K2 IOUT/ISENSE
IOUT=2 A; VSENSE=2.5 V; Tj=-40 °C
Tj= 25 °C...+150 °C
3750
4000
4600
4600
5700
5400
K3 IOUT/ISENSE
IOUT=4 A; VSENSE=4 V; Tj=-40 °C
Tj= 25 °C...+150 °C
4000
4100
4500
4500
5200
5150
VSENSE1,2 Max analog sense output
voltage
VCC=5.5 V; IOUT1,2=2 A;
RSENSE=10 KΩ
VCC>8 V; IOUT1,2=4 A;
RSENSE=10 KΩ
2
4 --
V
V
VSENSEH
Analog sense output
voltage in over
temperature condition
VCC=13 V; RSENSE=3.9 KΩ -5-V
RVSENSEH
Analog sense output
impedance in over
temperature condition
VCC=13 V; Tj>TTSD; All channels
open - 400 - Ω
tDSENSE
Current sense delay
response to 90% ISENSE(2) - - 500 μs
1. See Figure 7.
2. Current sense signal delay after positive input slope.
DocID10873 Rev 5 11/27
VNQ600AP-E Electrical specifications
26
Table 11. Truth table
Conditions Input Output Sense
Normal operation L
H
L
H
0
Nominal
Over temperature L
H
L
L
0
VSENSEH
Undervoltage L
H
L
L
0
0
Overvoltage L
H
L
L
0
0
Short circuit to GND
L
H
H
L
L
L
0
(Tj<TTSD) 0
(Tj>TTSD) VSENSEH
Short circuit to VCC
L
H
H
H
0
< Nominal
Negative output voltage clamp L L 0
Table 12. Electrical transient requirements (part 1/3)
ISO T/R 7637/1
test pulse
Test level
I II III IV Delays and impedance
1 -25 V -50 V -75 V -100 V2 ms, 10 Ω
2 +25 V +50 V +75 V +100 V 0.2 ms, 10 Ω
3a -25 V -50 V -100 V -150 V 0.1 μs, 50 Ω
3b +25 V +50 V +75 V +100 V 0.1 μs, 50 Ω
4-4 V-5 V-6 V-7 V 100 ms, 0.01 Ω
5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2 Ω
Table 13. Electrical transient requirements (part 2/3)
ISO T/R 7637/1
test pulse
Test levels result
I II III IV
1C C C C
2C C C C
3a C C C C
3b C C C C
4C C C C
5C E E E
Electrical specifications VNQ600AP-E
12/27 DocID10873 Rev 5
Figure 4. Switching characteristics (resistive load RL= 2.6 )
Table 14. Electrical transient requirements (part 3/3)
Class Contents
CAll functions of the device are performed as designed after exposure to
disturbance.
EOne or more functions of the device is not performed as designed after exposure
and cannot be returned to proper operation without replacing the device.
W'6(16(
WGRQ

W
,1387
WGRII

W
W
,6(16(
G9287 GWRII
WI


WU
G9287 GWRQ
9287
*$3*36
DocID10873 Rev 5 13/27
VNQ600AP-E Electrical specifications
26
Figure 5. Waveforms (per each chip)
96(16(+
56(16(
,6(16(
6+257729 &&
1RPLQDO
1RPLQDO
/2$'&855(17Q
6(16(Q
/2$'92/7$*(Q
,1387Q
/2$'92/7$*(Q
6(16(Q
/2$'&855(17Q
,1387Q
6+25772*5281'
9&& 929 9&& !929
929
/2$'&855(17Q
7M75
776'
6(16(Q
,1387Q
29(57(03(5$785(
/2$'&855(17Q
/2$'&855(17Q
/2$'&855(17Q
6(16(Q
,1387Q
6(16(Q
9&&
29(592/7$*(
,1387Q
986'K \ VW
986'
9&&
81'(592/7$*(
1250$/23(5$7 ,21
,1387Q
6(16(Q
*$3*36
Application information VNQ600AP-E
14/27 DocID10873 Rev 5
3 Application information
Figure 6. Application schematic
Note: Channels 3 and 4 have the same internal circuit as channel 1 and 2
3.1 GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load.
The following is an indication on how to dimension the RGND resistor.
1. RGND 600 mV / 2(IS(on)max)
2. RGND VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device’s datasheet.
Power dissipation in RGND (when VCC<0: during reverse battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different HSD. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that if the microprocessor ground is not common with the device ground then
the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
287387
9&&
5SURW
5SURW
5SURW
5SURW
287387
*1'
*1'
9*1'
5*1'
'*1'
&6(16(
&6(16(
,1387
,1387
5SURW
5SURW
5SURW
,1387
&6(16(
,1387
56(16(
287387
5SURW
9
'OG
&6(16(
287387
9&&
&
*$3*36
DocID10873 Rev 5 15/27
VNQ600AP-E Application information
26
values. This shift will vary depending on how many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor or several devices have to share
the same resistor then the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1 k) should be inserted in
parallel to DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst several different HSD. Also in this
case, the presence of the ground network will produce a shift ( 600mV) in the input
threshold and the status output values if the microprocessor ground is not common with the
device ground. This shift will not vary if more than one HSD shares the same diode/resistor
network.
Series resistor in input line is also required to prevent that, during battery voltage transient,
the current exceeds the absolute maximum rating.
Safest configuration for unused input pin is to leave it unconnected, while unused sense pin
has to be connected to ground pin.
3.2 Load dump protection
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the
VCC maximum DC rating. The same applies if the device is subject to transients on the VCC
line that are greater than those shown in the ISO T/R 7637/1 table.
3.3 Microcontroller I/O protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the μC I/O pins from latching up.
The value of these resistors is a compromise between the leakage current of μC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of
microcontroller I/Os:
-VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax
Example
For the following conditions:
VCCpeak= -100 V
Ilatchup 20 mA
VOHC 4.5 V
5 kΩ Rprot 65 kΩ.
Recommended values are:
Rprot =5 kΩ
Application information VNQ600AP-E
16/27 DocID10873 Rev 5
Figure 7. IOUT/ISENSE versus IOUT
DocID10873 Rev 5 17/27
VNQ600AP-E Application information
26
3.4 Electrical characteristics curves
Figure 8. Off-state output current Figure 9. High level input current
        
7F&





,/RII$
2IIVWDWH
9FF 9
9LQ 9RXW 9
*$3*36
        
7F&





,LK$
9LQ 9
*$3*36
Figure 10. Input clamp voltage Figure 11. Input high level
        
7F&








9LFO9
,LQ P$
*$3*36
       
7F &







9LK9
*$3*36
Figure 12. Input low level Figure 13. Input hysteresis voltage
       
7F &







9LO9
*$3*36
        
7F&










9K\VW9
*$3*36
Application information VNQ600AP-E
18/27 DocID10873 Rev 5
Figure 14. Overvoltage shutdown Figure 15. ILIM vs Tcase
Figure 16. Turn-on voltage slope Figure 17. Turn-off voltage slope
        
7F&











9RY9
*$3*36
        
7F&








,OLP$
9FF 9
*$3*36
        
7F&











G9RXWGWRQ9PV
9FF 9
5O 2KP
*$3*36
        
7F&










G9RXWGWRII9PV
9FF 9
5O 2KP
*$3*36
Figure 18. On-state resistance vs Tcase Figure 19. On-state resistance vs VCC
         
7F&










5RQP2KP
,RXW $
9FF 99
*$3*36

9FF9








5RQP2KP
,RXW $
7F &
7F &
7F &
*$3*36
DocID10873 Rev 5 19/27
VNQ600AP-E Application information
26
3.5 Maximum demagnetization energy (VCC = 13.5V)
Figure 20. Maximum turn-off current versus load inductance
Legend:
A = Single Pulse at TJstart = 150 ºC
B = Repetitive pulse at TJstart = 100 ºC
C = Repetitive Pulse at TJstart = 125 ºC
Conditions:
VCC = 13.5 V
Values are generated with RL = 0 Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse
must not exceed the temperature specified above for curves B and C.
Figure 21. Demagnetization


   
/P+
,/0$;$
$
%
&
*$3*36
9,1,/
W
'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ
*$3*36
Package and PCB thermal data VNQ600AP-E
20/27 DocID10873 Rev 5
4 Package and PCB thermal data
4.1 SO-28 thermal data
Figure 22. SO-28 PC board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 58 mm x 58 mm, PCB
thickness = 2 mm, Cu thickness = 35 μm, Copper areas: 0.5 cm2, 3 cm2, 6 cm2).
RthA = Thermal resistance Junction to Ambient with one chip on
RthB = Thermal resistance Junction to Ambient with both chips on and Pdchip1=Pdchip2
RthC = Mutual thermal resistance
Table 15. Thermal calculation according to the PCB heatsink area
Chip 1 Chip 2 Tjchip1 Tjchip2 Note
On Off RthA x Pdchip1 + Tamb RthC x Pdchip1 + Tamb
Off On RthC x Pdchip2 + Tamb RthA x Pdchip2 + Tamb
On On RthB x (Pdchip1 + Pdchip2) + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2
On On (RthA x Pdchip1) + RthC x Pdchip2 + Tamb (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1Pdchip2
DocID10873 Rev 5 21/27
VNQ600AP-E Package and PCB thermal data
26
Figure 23. Rthj-amb Vs PCB copper area in open box free air condition
Figure 24. Thermal impedance junction ambient single pulse








3&%&XKH DWV LQN DU H DFP ALV ODQG
57+MBDP E
&:
5WK$
5WK%
5WK&
*$3*36




      
WLPHV
=WK&:
FP ALVODQG
FP ALVODQG
FP ALVODQG
2QHFKDQQHO21
7ZRFKDQQHOV
21RQVDPHFKLS
*$3*36
ZTHRTH ZTHtp 1+=
Package and PCB thermal data VNQ600AP-E
22/27 DocID10873 Rev 5
Equation 1: pulse calculation formula
where tpT=
Figure 25. Thermal fitting model of a quad channel HSD in SO-28
Table 16. Thermal parameter
Area/island (cm2) 0.5 6
R1=R7=R13=R15 (°C/W) 0.05 -
R2=R8=R14=R16 (°C/W) 0.3 -
R3=R9 (°C/W) 3.4 -
R4=R10 (°C/W) 11 -
R5=R11 (°C/W) 15 -
R6=R12 (°C/W) 30 13
C1=C7=C13=C15 (W.s/°C) 0.001 -
C2=C8=C14=C16 (W.s/°C) 5.00E-03 -
C3=C9 (W.s/°C) 1.00E-02 -
C4=C10 (W.s/°C) 0.2 -
C5=C11 (W.s/°C) 1.5 -
C6=C12 (W.s/°C) 5 8
R17=R18 (°C/W) 150 -
3G
&
5
& &
55 555
& &&
3G
5
& &
5
7MB
7MB
7BDPE
3G
&
5
& &
55 55
5
& &
&
3G
5
& &
5
7MB
7MB
5 5
*$3*36
DocID10873 Rev 5 23/27
VNQ600AP-E Package information
26
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.1 SO-28 package information
Figure 26. SO-28 package outline
Table 17. SO-28 mechanical data
Ref.
Dimensions
Millimeters
Min. Typ. Max.
A 2.35 2.65
A1 0.10 0.30
B 0.33 0.51
C 0.23 0.32
D(1) 17.70 18.10
'
$
(
+
$
$
%
K[
/
N
F
&
6($7,1*
3/$1(
 

H
3,1
,'(17,),&$7,21
&
PP
*$*(3/$1(
GGG
*$3*36
Package information VNQ600AP-E
24/27 DocID10873 Rev 5
E 7.40 7.60
e 1.27
H 10.0 10.65
h 0.25 0.75
L 0.40 1.27
k0° 8°
ddd 0.10
1. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.
Table 17. SO-28 mechanical data
Ref.
Dimensions
Millimeters
Min. Typ. Max.
DocID10873 Rev 5 25/27
VNQ600AP-E Package information
26
5.2 SO-28 packing information
Figure 27. SO-28 tube shipment (no suffix)
Figure 28. SO-28 tape and reel shipment (suffix “TR”)
$OOGLPHQVLRQVDUHLQPP
%DVH4W\ 
%XON4W\ 
7XEHOHQJWK 
$ 
% 
& 
$
&
%
*$3*36
Package information VNQ600AP-E
26/27 DocID10873 Rev 5
5.3 Revision history
Table 18. Document revision history
Date Revision Changes
01-Oct-2004 1 Initial release.
08-Jun-2009 2
Features:
Changed Ilim value from 22 A to 25 A
Changed DC short circuit current value from 22 A to 25 A
Table 9: changed Ilim min value from 22 A to 25 A
15-Oct-2009 3 Updated Figure 2: Configuration diagram (top view).
20-Sep-2013 4 Updated Disclaimer.
18-Feb-2015 6
Updated:
Section 5.1: SO-28 package information;
Tape dimensions in Figure 28: SO-28 tape and reel shipment
(suffix “TR”) on page 25.
DocID10873 Rev 5 27/27
VNQ600AP-E
27
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved