June 2010 CD001317 84 R ev 4 1/85
1
STw4811M
STw4811N
Power management for multimedia processors
Features
2 step-down converters
1 to 1.45 V with 15 steps at 700 mA
1.8 V at 600 mA for general purpose usage
3 low-drop output regulators for different uses
PLL analog supplies:
1.05 V, 1.2 V, 1.3 V 1.8 V - 10 mA
Processor analog functions:
2.5V-10mA
Auxiliary device:
1.5 V, 1.8V, 2.5 V, 2.8 V - 150 mA
USB OTG module
Full and low speed USB OTG transceiver
Charge-pump (5 V, 100 mA) for USB cable
Mass memory cards (SD/MMC/SDIO)
1 linear regulator: 1.8 V, 1.85 V, 2.6 V,
2.7 V, 2.85 V, 3 V, 3.3 V - 150 mA
Level shifter
Miscellaneous
32 kHz control for multimedia processor
Processor supply monitoring
Processor reset control
2 serial I2C interfaces
Applications
ST Noma dikTM STn881x
Multimedia processor
Mobile phones, PDA, videophone
Description
STw4811 is a power management companion
chip for multimedia processors used in portable
applications. It supplies the multimedia processor
including its memories and peripherals. STw4811
supports the main mass memory standard cards.
SDIOTM is also supported and allows to connect
multimedia perip her al s li ke camer as .
6x6x1.2mm
0.5m m pit ch
TFBGA 84
4.6x4.6x1.0mm
0.4m m pit ch
VFBGA 84
STw4811
STw4811
www.stnwireless.com
Contents STw4811M/STw4811N
2/85 CD00131784
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Ball c onnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Ball functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Digi tal control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 POWER OFF / VDDOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.5 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.6 IT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.7 Clock switching and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Power management module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Bandgap , biasing and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 VCORE regulator: DC/DC STEP- DOWN regulator . . . . . . . . . . . . . . . 41
4.3.3 VIO_VMEM regulator: DC/DC step- down regulator . . . . . . . . . . . . . . . 41
4.3.4 VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.6 VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.7 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.8 Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.9 Thermal shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 USB OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Modes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 USB enable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 SD/MMC/SDIO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 SD/MMC/SDIO LDO supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STw4811M/STw4811N Contents
CD00131784 3/85
4.5.2 Level shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Power suppl y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.4 VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.5 LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.6 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Digital specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.1 CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . 64
5.4.2 CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . 65
5.4.3 CMOS input/output static characteristics: VIO level . . . . . . . . . . . . . . . 66
5.4.4 CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . 68
5.4.5 CMOS input/output static characteristics: VMMC level . . . . . . . . . . . . . 69
5.5 USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 SD/MMC/SDIO card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1 Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 TFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 VFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
List of tables STw4811M/STw4811N
4/85 CD00131784
List of tables
Table 1. STw4811 ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. STw4811 balls function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4. Register address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5. Register data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Register general information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8. Power control register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 9. USB register address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. Vendor ID and Product ID: Read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. USB control register 1 (address = 04h set and 05h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. USB control register 2 (address = 06h set and 07h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. USB Interrupt source register (address = 08h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. USB interrupt latch registers (address = 0Ah set and 0Bh clearh). . . . . . . . . . . . . . . . . . . 27
Table 15. USB interrupt enable low register (address = 0Ch and 0Dh) . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16. USB interrupt enable high register (address = 0Eh and 0Fh). . . . . . . . . . . . . . . . . . . . . . . 28
Table 17. USB EN register (address = 10h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18. Configuration 1 register (11h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 19. Power control register - General information (address = 1Eh) . . . . . . . . . . . . . . . . . . . . . . 31
Table 20. Power control register - General information (address = 1Fh) . . . . . . . . . . . . . . . . . . . . . . 31
Table 21. Power control register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 22. Power control register at address 05h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 23. Power control register at address 06h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 24. Power control register at address 07h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 25. Power control register at address 08h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 26. Power control register at address 09h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 27. Power control register at address 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 28. Configuration 2 register at address = 20h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 29. VCORE_sleep register at address = 21h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 30. Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 31. Thermal threshold values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 32. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0 . . . . . . . . 48
Table 33. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1 . . . . . . . . 49
Table 34. Data receiver via USB control register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 35. STw4811 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 36. Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 37. Operating conditions (temperature range: -30 to +85 °C). . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 38. VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 39. VCORE DC/DC step-down converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 40. VIO_VMEM DC/DC step-down converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 41. LDO regulators - VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 42. LDO regulators - VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 43. LDO regulators - VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 44. Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 45. CMOS input/output static characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 46. CMOS input/output dynamic characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 47. VIO level: USB and control I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 48. VIO level: MMC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
STw4811M/STw4811N List of tables
CD00131784 5/85
Table 49. CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 50. CMOS input/output static characteristics VMMC level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 51. USB OTG transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 52. SD/MMC/SDIO card interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 53. Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 54. Recommended coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 56. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions . . . . . . . . . . . . . . . . . . 79
Table 57. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch . . . . . . . . . . . . . . . . . . . . 81
Table 58. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 59. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
List of figures STw4811M/STw4811N
6/85 CD00131784
List of figures
Figure 1. Typical mobile multimedia system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. STw4811 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. Start-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. Switching power to sleep timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. VDDOK block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. I2C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. Control interface: I2C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. Control interface: I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. Clock switching between master and internal clock (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 10. Block diagram of biasing and references of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 11. ‘vcore_available’ bit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 12. Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball. . . . . . . . . . . . . . . . . . . 45
Figure 13. USB OTG transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 14. SD/MMC/SDIO block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. Propagation and clock/data skew times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 16. STw4811 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 17. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing . . . . . . . . . . . . . . . . . . . . . 80
Figure 18. VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
STw4811M/STw4811N Overview
CD00131784 7/85
1 Overview
The ST w4811 power management device has the following features:
Power man age men t module
1 step-down converter for processor core (1 V to 1.45 V with 15 steps at 700 mA)
1 step-down converter (1.8 V at 600 mA) for general purpose usage such as
processor input/output supply, external memory, DDR and SDRAM and
peripherals
1 low-drop output regulator for analog supplies, such as PLL (1.05 V, 1.2 V, 1.3 V,
1.8 V at 10 mA)
1 low-drop output regulator for processor analog functions (2.5 V at 10 mA)
1 low-drop output regulator for auxiliary devices (1.5 V, 1.8 V, 2.5 V, 2.8 V at
150 mA)
Auxiliary device
STw4811M: Vaux OFF at start up
STw4811N: Vaux ON at start up
USB OTG module
Full and low speed USB OTG transceiver
1 linear regulator 3.1 V supplying transceiver
1 charge-pump (5 V at 100 mA) supplying VBUS line of the USB cable
Mass me mory cards (SD/MMC/SDIO)
1 linear regulator (1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V at 150 mA)
Level shifters
Miscellaneous
32 kHz control for multimedia processor
Proces so r suppl y mon itor i ng
Processor reset control
2 serial I2C interfaces
Overview STw4811M/STw4811N
8/85 CD00131784
Figure 1. Typical mobile multimedia system
1
STw4811
STw4811M/STw4811N Functional block diagram
CD00131784 9/85
2 Functional block diagram
Figure 2. STw4811 block diagram
VBAT_VIO_VMEM
VLX_VIO_VMEM
VIO_VMEM
VMINUS_VIO_VMEM
VIO_VMEM
STEP DOWN
VBAT_VCORE
VLX_VCORE
VCORE
VMINUS_VCORE
VCORE
STEP DOWN
REFERENCE
VOLTAGE
VPLL LDO
1.05, 1.2, 1.3, 1.8 V
10 m A
VANA LDO
2.5 V / 10 m A
VAUX LDO
1.5, 1.8, 2 .5, 2.8 V
150 m A
SOFT START
CHARGE PUMP
5 V / 100 mA
VUSB
3.1 V
DRIVERS
&
LEVEL
SHIFTERS
CONTROL
USBOEn
USBVP
USBVM
USBRCV
USB OTG
transceiver
VMMC
1.8, 1.85, 2.6, 2.7
2.85, 3, 3.3 V
150 m A
VBAT_MMC
VMMC
CLKOUT
CMDOUT
LATCHCLK
DATA1
DATA0
DATA3
DATA2
MCFBCLK
MCCLK
MCCMD
MCDATA0
MCDATA1
MCDATA2
MCDATA3
LEVEL
SHIFTERS
MCCMDDIR
MCDAT0DIR
MCDAT2DIR
MCDAT31DIR
CONTROL
SD/MMC INTERFACE
I2C
MUX
I2C
INTERFACE
USBSDA
USBSCL
SDA
SCL
PULL UP &
PULL DOW N
VMINUS_USB
USB
CONTROL
USBINTn
IT_WAKE_UP
GENERAL
CONTROL
PON
VDDOK
PORn
PWREN
SWRESETn
GPO1
GPO2
REQUEST_MC
TCXO_EN
CLK32K
CLK32K_IN
MASTER_CLK INTERNAL
OSCILLATOR
CLOCK SWITCHING
& CONTROL
THERMAL
SHUTDOWN
SUPPLY
MONITORING
PORn
VBAT
VM IN US _D IG
VBAT_DIG
VREF_18
VBAT_VPLL_VANA
VPLL
VANA
VAUX
VBAT_VAUX
VBAT_USB
CP
CN
VBUS
VUSB
DP
DN
ID
VBAT_ANA
VMINUS_ANA
STw4811
VBAT_VIO_VMEM
VLX_VIO_VMEM
VIO_VMEM
VMINUS_VIO_VMEM
VIO_VMEM
STEP DOWN
VBAT_VCORE
VLX_VCORE
VCORE
VMINUS_VCORE
VCORE
STEP DOWN
REFERENCE
VOLTAGE
VPLL LDO
1.05, 1.2, 1.3, 1.8 V
10 m A
VANA LDO
2.5 V / 10 m A
VAUX LDO
1.5, 1.8, 2 .5, 2.8 V
150 m A
SOFT START
CHARGE PUMP
5 V / 100 mA
VUSB
3.1 V
DRIVERS
&
LEVEL
SHIFTERS
CONTROL
USBOEn
USBVP
USBVM
USBRCV
USB OTG
transceiver
VMMC
1.8, 1.85, 2.6, 2.7
2.85, 3, 3.3 V
150 m A
VBAT_MMC
VMMC
CLKOUT
CMDOUT
LATCHCLK
DATA1
DATA0
DATA3
DATA2
MCFBCLK
MCCLK
MCCMD
MCDATA0
MCDATA1
MCDATA2
MCDATA3
LEVEL
SHIFTERS
MCCMDDIR
MCDAT0DIR
MCDAT2DIR
MCDAT31DIR
CONTROL
SD/MMC INTERFACE
I2C
MUX
I2C
INTERFACE
USBSDA
USBSCL
SDA
SCL
PULL UP &
PULL DOW N
VMINUS_USB
USB
CONTROL
USBINTn
IT_WAKE_UP
GENERAL
CONTROL
PON
VDDOK
PORn
PWREN
SWRESETn
GPO1
GPO2
REQUEST_MC
TCXO_EN
CLK32K
CLK32K_IN
MASTER_CLK INTERNAL
OSCILLATOR
CLOCK SWITCHING
& CONTROL
THERMAL
SHUTDOWN
SUPPLY
MONITORING
PORn
VBAT
VM IN US _D IG
VBAT_DIG
VREF_18
VBAT_VPLL_VANA
VPLL
VANA
VAUX
VBAT_VAUX
VBAT_USB
CP
CN
VBUS
VUSB
DP
DN
ID
VBAT_ANA
VMINUS_ANA
VREF_18
VBAT_VPLL_VANA
VPLL
VANA
VAUX
VBAT_VAUX
VBAT_USB
CP
CN
VBUS
VUSB
DP
DN
ID
VBAT_ANA
VMINUS_ANA
STw4811
Ball information STw4811M/STw4811N
10/85 CD00131784
3 Ball information
3.1 Ball connections
3.2 Ball functions
STw4811 includes the following ball types
VDDD/VDDA: digital/analog power supply
VSSD/VSSA: digital/analog ground supply
DO/DI/DIO: digital output / digital input / digital input output
DOz: digital output with high impedance capability
AO/AI/AIO: analog output / analog input / analog input-output
G: to be connected to ground
O: to be left open
Int-Ref: associated to internal reference
Table 2
details the ballout.
Table 1. STw4811 ball connections
12345678910
ACLK32K_IN VMINUS_
VIO_VMEM VLX_VIO_
VMEM VBAT_VIO_
VMEM VIO_VMEM VAUX VANA VPLL VREF_18 VCORE
B“Reserved” REQUEST_
MC VMINUS_
VIO_VMEM VBAT_VIO_
VMEM VMINUS_
ANA VBAT_
VAUX “Reserved” “Reserved” Reserved” VMINUS_
VCORE
CTCXO_EN IT_WAKE_
UP VMINUS_
DIG VLX_VIO_
VMEM “Reserved” VBAT_ANA VBAT_
VPLL_ANA PON VMINUS_
VCORE VLX_
VCORE
DVBAT_DIG MASTER_
CLK “reserved” VLX_
VCORE VBAT_
VCORE VBAT_
VCORE
EDATAOUT0 DATAOUT
<1> DATAOUT
<2> ID DP DN
FDATAOUT
<3> CMDOUT LATCHCLK “Reserved” VBAT_USB VUSB
GCLKOUT MCCLK MCCMD
DIR “Reserved” USBSCL VBUS
HMCCMD MCDATA
<3> MCDATA
<1> MCDATA31
DIR MCFBCLK PWREN SDA USBINTn USBSDA CP
JMCDATA
<2> VDDOK PORN VBAT_
MMC GPO1 SCL USBVP USBVM VMINUS_
USB CN
KMCDATA0 MCDAT0
DIR CLK32K SW_
RESET VMMC GPO2 USBRCV USBOEn MCDAT2
DIR “Reserved”
STw4811M/STw4811N Ball information
CD00131784 11/85
Table 2. STw4811 balls function
Ball Ball name Ball type Description
General supplies
D1 VBAT_DIG VDDD-VBAT Battery supply for digital/oscillator
C3 VMINUS_DIG VSSD Ground for digital and oscillator
C6 VBAT_ANA VDDA-VBAT Battery supply for analog
B5 VMINUS_ANA VSSA Ground for analog
F9 VBAT_USB VDDA-VBAT Battery supply for USB block
J9 VMINUS_USB VSSA Ground for USB block
A9 VREF_18 Int-Ref Internal reference
Control balls
C8 PON DI(VBAT)
Pull down 1.5MΩPower-on and reset
K4 SW_RESETn DI(VIO_VMEM)
Pull up 1.5MΩ
Software reset. Reset all registers except
power control
and
configuration 2
(address
20h) registers when SW_RESETn = 0
J2 VDDOK DO(VIO_VMEM) Supply monitoring for multimedia processors.
Interruption for high temperature warning
J3 PORn DO(VIO_VMEM) Multim ed ia proc es so r Resetn
H6 PWREN DI(VIO_VMEM)
Pull Up 1.5MΩSleep mode from multimedia processor
C1 TCXO_EN DI(VIO_VMEM)
Pull Down 1.5MΩRequest of master clock from modem part
B2 REQUEST_MC DO(VIO_VMEM) Request to master clock oscillator
J6 SCL DI(VIO_VMEM) Clock for Main I2C inte rface
H7 SDA DIO(VIO_VMEM) SDA for Main I2C interface
D2 MASTER_CLK AI
Pull Down 1.5MΩ26 MHz, 13 MHz or 19.2 MHz from modem
A1 CLK32K_IN DI(VIO_VMEM)
Pull down 1.5MΩ32 kHz input
K3 CLK32K DO(VIO_VMEM) 32 kHz to multimedia processor
Ball information STw4811M/STw4811N
12/85 CD00131784
Regulator balls
A4
B4 VBAT_VIO_VMEM VDDA-VBAT Battery power supply for step down
VIO_VMEM
A2
B3 VMINUS_VIO_VMEM VSSA Ground for step down VIO_VMEM
A3
C4 VLX_VIO_VMEM AIO BUCK of step down VIO_VMEM
A5 VIO_VMEM AI VIO_VMEM Feed back input
D9
D10 VBAT_VCORE VDDA-VBAT Battery power supply for step down VCORE
B10
C9 VMINUS_VCORE VSSA Ground for step down VC ORE
C10
D8 VLX_VCORE AIO BUCK of step-down VCORE
A10 VCORE AI VCORE sense
C7 VBAT_VPLL_ANA VDDA-VBAT Battery supply for VPLL, VANA
A7 VANA AO VANA output
A8 VPLL AO VPLL output
A6 VAUX AO VAUX output
B6 VBAT_VAUX VDDA-VBAT Battery supply for VAUX
USB balls
C2 IT_WAKE_UP DO (Open drain) Interrupt to modem or APE for wake-up due to
USB plug
K8 USBOEn DIO(VIO_VMEM)
Pull down 1.5MΩ
Output enable of the differential driver in the
USB mode
J7 USBVP DIO(VIO_VMEM)
Pull down 1.5MΩ
Data input in the USB transmit mode, positive
data input the single-ended transmit mode, or
TXD in UART mode
J8 USBVM DIO(VIO_VMEM)
Pull Down 1.5MΩ
Single-ended zero input in the USB transmit
mode, negative data input in the single-ended
transmit mode, or RXD in the UART mode
K7 USBRCV DO(VIO_VMEM) Differential receiver output
E9 DP AIO(VUSB) Positive data line in the USB mode, or serial
data input in the UART mode
E10 DN AIO(VUSB) Negative data line in the USB mode, or serial
data output in the UART mode.
E8 ID AI(VBAT-USB) ID ball of the USB detector used for protocol
identification.
Table 2. STw4811 balls function (continued)
Ball Ball name Ball type Description
General supplies
STw4811M/STw4811N Ball information
CD00131784 13/85
H10 CP AIO(VBUS) C plus fl ying capacitor
(VBUS level 4.4 to 5.25)
J10 CN AIO(VBUS) C minus flying capacitor (VBUS Level)
G10 VBUS AIO(VBUS) USB cable supply (VBUS Level)
F10 VUSB AIO Decoupling capacitor for USB internal regulator
G9 USBSCL DI(VIO_VMEM) Clock for dedicated USB I2C
H9 USBSDA DIO(VIO_VMEM) SDA fo r dedicated U SB I 2 C
H8 USBINTn DO(VIO_VMEM) Interrupt to multimedia processor for USB or
accessory plug
SD/MMC/SDIO balls
G3 MCCMDDIR DI(VIO_VMEM)
Pull down 1.5MΩ
CMD direction.
- “high”: CMD signal from processor to card
- “Low”: CMD signal from card to processor
K2 MCDAT0DIR DI(VIO_VMEM)
Pull down 1.5MΩ
DATA0 direction
- “high”: DATA0 signal from processor to card
- “Low”: DATA0 signal from card to p rocessor
K9 MCDAT2DIR DI(VIO_VMEM)
Pull down 1.5MΩ
DATA2 direction
- “high”: DATA2 signal from processor to card
- “Low”: DATA2 signal from card to p rocessor
H4 MCDAT31DIR DI(VIO_VMEM)
Pull down 1.5MΩ
DATA(3,1) direction
- “high”: DATA(3,1) signal from processor to
card
- “Low”: DATA(3,1) signal from card to
processor
G2 MCCLK DI(VIO_VMEM)
Pull Down 1.5MΩ
Host clock, between processor and STw4811,
to the card (processor clock).
H5 MCFBCLK DO(VIO_VMEM) Host feedback clock between STw4811 and
processor, to re-synchronize data in processor.
H1 MCCMD DIO(VIO_VMEM)
Pull Up 1.5MΩ
Bidirectional command/response signal
between processor and STw4811.
K1 MCDATA0 DIO(VIO_VMEM)
Pull Up1.5MΩ
Bidirectional data0 between processor and
STw4811
H2
H3
J1 MCDATA[3:1] DIO(VIO_VMEM)
Pull up 1.5MΩBidirectional data [3:1] between processor and
STw4811.
F3 LATCHCLK DI(VMMC)
Pull down 1.5MΩHost feedback clock to STw4811, to re-
synchronize data in processor.
G1 CLKOUT DO(VMMC) Host clock, between STw4811 and card
(processor clock).
F2 CMDOUT DIO(VMMC)
Pull up 1.5MΩ
Bidirectional command/response signal
between STw4811 and processor.
Table 2. STw4811 balls function (continued)
Ball Ball name Ball type Description
General supplies
Ball information STw4811M/STw4811N
14/85 CD00131784
E1 DATAOUT0 DIO(VMMC)
Pull up 1.5MΩBidirectional data0 between STw4811 and card
F1
E3
E2 DATAOUT[3:1] DIO(VMMC)
Pull up 1.5MΩ
Bidirectio nal dat a[3 :1] betw e en STw4811 and
card.
J4 VBAT_MMC VDDA-VBAT Battery supply for VMMC
K5 VMMC AIO VMMC supply output
Other balls
J5 GPO1 AO General purpos e output
K6 GPO2 AO General purpos e output
B9
D3 “Reserved” GTo be connected to ground
B1
B7
B8
C5
F8
G8
K10
“Reserved” OTo be left open
Table 2. STw4811 balls function (continued)
Ball Ball name Ball type Description
General supplies
STw4811M/STw4811N Functional description
CD00131784 15/85
4 Functional description
4.1 Introduction
The STw4811 integrates all the power supplies for a multimedia processor as well as
memories and peripherals:
Two switched mode power supply regulators: one for the multimedia processor core,
one for multimedia processor I/Os and memories
Three low-drop output regulators for multimedia processor analog supplies
(PLL and others) and auxiliary components
USB OTG FS/LS physical interface
MMC card power supplies and level shifters
Multimedia processor supply monitoring / power-on reset and power supply alarms /
interrupt management
Two serial I2C communication interfaces; one to control the devices (SDA, SCL) and
one to control the USB (USBSDA, USBSCL).
4.2 Digital control module
This module describes the interfaces used to program the device and the related registers.
4.2.1 State machine
Description of each states: (
Figure 3.
)
OFF: In this mode the STw4811 is switched off. Off is when PON=0, when battery level is
under 2.4 V or when thermal shutdown is activated. There is no multimedia processor
power supply. The only active cell is the USB cable detection and VBAT level detecti on .
OSC_START: Oscillator is enabled and the power up module is waiting for the rising edge of
the internal signal OSC_OK to start power up sequence. This state duration is 300 µs.
START_BIAS: Bias, reference and thermal shut-down are enabled, a counter is activated to
wait for rising edge of internal signals PDN_regulators. This state duration has a typical
value of 7.77 ms and a worst case value of 9.46 ms.
START_PM: after a 1 ms wait, multimedia processor power supplies are available
(VIO_VMEM, VCORE, VPLL, and VANA). The device can allow I2C communication, output
power supply monitoring and application (USB,SD/MMC/SDIO).
OFF2: STw4811 is waiting for the 32 kHz multimedia processor signal. This state has an
indeterminate duration. If 32kHz is present during the states describes above, it has no
effect. The 32 kHz signal is taken into account by STw4811 only when the ‘VDDOK’ ball is
high, that is at the end of START_PM state.
RESET: STw4811 forces a reset during 11*1/32 kHz period before setting PORn high.
INT_OSC: The STw4811 can work without MASTER_CLK via its internal oscillator. The
device waits for an external clock detection before switching to the external clock. When
receiving a rising edge on PWREN ball (coming from multimedia processor) or on
TCXO_EN ball (coming from modem), STw4811 answers by asserting to “1” the
Functional description STw4811M/STw4811N
16/85 CD00131784
REQUEST_MC ball. STw4811 remains in internal oscillator mode until it receives the
external clock signal on MASTER_CLK ball (optional).
EXT_CLK: if MASTER_CLK is us ed, when detected, the STw4811 uses this clock as
reference and switches off its internal oscillator. MASTERCLK should remain connected up
to sleep mode.
SLEEP: sleep mode is required by multimedia processor by setting a PWREN at low level.
Then VDDOK is forced to 0, regulators (VCORE, VIO_VMEM) switch to sleep mode and
wait for PWREN at high level (
Figure 4
).
WAKE-UP: from sleep mode, the multimedia processor requests to switch back to high
power mode. Thus the device restarts its internal oscillator and then switches regulators
from SLEEP to high power mode and informs multimedia processor with VDDOK at high
level (
Figure 4
).
Note: The default state of VAUX is different for STw4811M and for STw4811N.
- VAUX default state is OFF at start up for STw4811M.
- VAUX default state is ON at start up for STw4811N.
VAUX can be programmed in high power mode only by asserted pdn_vaux bit to “1”
(Table 18).
If MASTER_CLK is used instead of internal oscillator all the features are not supported in
sleep mode (see Section 4.2.3).
STw4811M/STw4811N Functional description
CD00131784 17/85
Figure 3. Start-up timing
All regulators are started with PDN_regulators or EN_regulators but can be switched off
from the beginning or during application by software, ‘pdn_(regulator)’ or ‘en_(regulator)’
bits (
Table 18
,
Table 24
, and
Table 25
).
PON ball
PDN__OSC
PDN_regulators
VDDOK ball
CLK32K_IN ball
PORn ball
PWREN ball
OFF
START_PM
Reset
1ms
INT_OSC
TCXO_EN ball
Internal_OSC
11*(1/32kHz)
OFF2
MASTER_CLK ball
REQUEST_MC ball
VBAT
300µs
9.38ms (11ms wc)
Reset
START_BIAS
7.77ms (9.46ms wc)
“or”
Delays are worst case maximum delays
Vo utput(s) ball
VPLL / VIO_VMEM
VCORE
CLK32K ball
(*)
(*) If 32 kHz available before VDDOK signal rising edge, OFF2 state duration is null
Functional description STw4811M/STw4811N
18/85 CD00131784
Figure 4. Switching power to sleep timing
Register reset
In the eve nt of a hardwar e reset coming fr om the modem, PO N ball set to “0”, all registers
are reset at initial value when PON ball goes back to “1” level.
A software reset from multimedia processor of STw4811, through SW_RESETn ball set to
“0”, resets all registers except
power control
register (at address 1E & 1F) and the
configuration 2
registe r at addres s 20h .
Main clock oscillat or control
REQUEST_MC is an OR output gate between PWREN (coming from multimedia processor)
and TCXO_EN (coming from modem supply), it is synchronized on 32 kHz, except during
power-up where PWREN is masked and considered as high.
REQUEST_MC enabled or disabled the master clock oscillator device.
PDN_regulators
VDDOK
CLK32K
PWREN
Sleep regulators
HPM Sleep HPM
MASTER_CLK
Internal_OSC
PDN_intOSC
int_OSC _detect
~100µs
REQUEST_MC
TCXO_EN “0”
STw4811M/STw4811N Functional description
CD00131784 19/85
4.2.2 POWER OFF / VDDOK
In case of VDDOK falling edge due to under voltage on VCORE or VIO_VMEM
detection, or ‘it_twarn’ bit set to “1” (
Table 18
); the multimedia processor is then reset
(PORn low during a minimum time of 333 µs) and restarted with no time-out. (see
Figure 5
). In case of VDD OK falli ng edg e becau se PWREN balls equ als “0 ”, ther e is no
reset (PORn still high).
In case of PON falling edge (STw4811 switched off from modem); the multimedia
processor is also reset with no time-out. We consider that clean switch off between
modem and multimedia processor is done by software directly.
Figure 5. VDDOK block diagram
4.2.3 Sleep mode
ST w4811 goes into sleep mode by different ways. Whether VCORE, VIO_VMEM and VAUX
are programmed to sleep mode or not is indicated in
Table 26
and
Table 27
.
Taking in account the bit programming from
Table 26
and
Table 27
, sleep mode is
summarized with the following formula:
SLEEP = (‘vxxx_sleep’ x PWREN) + (‘vxxx_for ce_sleep’) = 1
(vxxx = vcore or vio_vmem or vaux)
Note: The configuration vxxx_sleep = 0 (device in active mode) and vxxx_force_sleep = 1 (device
in sleep mode, but no priority level on this bit) is forbidden.
If the master clock is used in high power mode when switching to sleep mode, the following
features are not available:
Bit 1 (vcore_sleep) and bit 2 (vio_vmem_sleep) in power control register address
9 must be at high level
(VIO_VMEM and VCORE cannot remain in high power mode)
USB charge pump is not available in sleep mode: bit 5 in USB control register
address 07h must be set
Digit al b loc k
&VDDOK
it_twarn
Reg status
register reset after
read operation
or PON falling edge
or PORN_VBAT.
mask_twarn
PWREN
Functional description STw4811M/STw4811N
20/85 CD00131784
4.2.4 I2C Interface
The devic e supp orts two I2C bus interfac es. One ma in inter face (S DA,SCL ) controls power
managem ent an d all progr ammab le function s, the sec ond in terface (U SBSDA , USBS CL) is
dedicated to USB control. STw4811 allows to work with only the main I2C interface to
control all the functions, including the USB, via ‘usb_i2c_ctrl’ bit of
power control
register
(
Table 23
). I2C interface is used to read status information from inside the device.
Flags, interrupt
and
write
registers are used to configure the device functions (threshold,
clock division, output voltage, etc....). By default, the main I2C interface (SCL,SDA) controls
the main registers and USB I2C interface (USBSCL, USBSDA) controls
USB
registers.
Figure 6. I2C interface block diagram
Both I2 C are con figured as s lave serial interface co mpatib le with I2C re gistered tr ademark
of Philli ps Inc. (version 2.1).
I2C interface descri ption
Note: When not using the USB I2C interface, the two pins USBSCL and USCSDA must be
connected to the VIO voltage.
STw4811 I2C is a slave serial interface with a serial data line (SDA or USBSDA) and a serial
clock line (SCL or USBSCL):
SCL / USBSCL: input clock used to shift data
SDA / USBSDA: input/output bidirectional data transfers
It is composed of:
One filter to reject spikes on the bus data line and preserve data integrity
Bidirectional data transfers up to 400kbit/s (fast mode) via SDA or USBSDA signal
The SDA or USBSDA signal contains the input/output control and data signals that are
shifted in the device, MSB first. The first bit must be high (START) followed by the Device ID
(7 bits) and Read/Write bit control (1 indicates read access, a logical 0 indicates a write
access).
Device ID in write mod e: 5Ah (01011010 )
Device ID in read mode: 5Bh (01011011)
Then STw4811 sends an acknowledge at the end of an 8 bit transfer. The next 8 bits
correspond to the register address followed by another acknowledge. The 8-bit data field is
sent last, followed by a last acknowledge.
Main registers
SDA
USBSCL
SCL
MUX
SDA or USBSDA
SCL or USBSCL
USBSDA USB registers
SDA
SCL
usb_i2c_ctrl
STw4811M/STw4811N Functional description
CD00131784 21/85
I2C interface modes
Figure 7. Control interface: I2C format
Figure 8. Control interface: I2C timing
Table 3. Device ID
b7 b6 b5 b4 b3 b2 b1 b0
AdrID6 AdrID5 AdrID4 AdrID3 AdrID2 AdrID1 AdrID0 R/W
Table 4. Register address
b7 b6 b5 b4 b3 b2 b1 b0
RegADR7 RegADR6 RegADR5 RegADR4 RegADR3 RegADR2 RegADR1 RegADR0
Table 5. Register data
b7 b6 b5 b4 b3 b2 b1 b0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
DEVICE ADDRESS
0 1 0 1 1 0 1 0 REGn ADDRESS
REGn Data In
WRITE
SINGLE BYTE
START
ACK ACK
ACK
STOP
DEVICE ADDRESS
0 1 0 1 1 0 1 0 REGn ADDRESS REGn Data In
START
ACK ACK ACK
WRITE
MULTI BYTE REGn+m Data In ACK
STOP
m+1 data bytes
ACK
DEVICE ADDRESS
0 1 0 1 1 0 1 0 REGn ADDRESS
START
ACK ACK
DEVICE ADDRESS
0 1 0 1 1 0 1 1 REGn Data Out
START
ACK NO ACK
RANDOM ADDR
SINGLE BYTE
READ
DEVICE ADDRESS
0 1 0 1 1 0 1 0
REGn ADDRESS
START
ACK ACK DEVICE ADDRESS
0 1 0 1 1 0 1 1
START
Reg n Data Out ACK NO ACK
STOP
m+1 data bytes
ACK Reg n + m Data Out
RANDOM ADDR
MULTI BYTE
READ
ACK
StopStart repeatedStop
tbuf thd_statftlow
tr
thigh
thd_dat tsu_dat
Start
SDA
SCL
tsu_sta
thd_sta tsu_sto
USBSDA
USBSCL
Functional description STw4811M/STw4811N
22/85 CD00131784
4.2.5 Control registers
Control registers have the following functions:
select level of regulation for multimedia processor supply
control the USB interface
control the SD/MMC/SDIO interface
control the state machine
Table 6. Register general information
Address Comment I2C control
00h to 10h
USB
registe rs (
Table 9
to
Table 17
) USBSDA / USBSCL or SDA / SCL (1)
11h
Configuration 1
register (
Table 18
) SDA / SCL
12h to 1D h Reserved registers
1Eh to 1Fh
Power control
registers (
Table 19
to
Table 27
) SDA / SCL
20h
Configuration 2
register (
Table 28
) SDA / SCL
21h VCORE _s le ep (
Table 29
)SDA/SCL
1. Controlled by USB_I2C_CTRL bit of
power control
register (
Table 23
)
STw4811M/STw4811N Functional description
CD00131784 23/85
Register summary
Table 7. Register summary
RegisterAddr.76 5 43210
Vendor ID 00h10 0 00011
01h00 0 00100
Product ID 02h00 0 10001
03h01 0 00000
USB control
register 1 04h
05h Not used uart_en oe_int_ en bdis_
acon_en not used dat_se0 suspend speed
USB control
register 2 06h
07h vbus_
chrg vbus_
dischrg vbus_
drv id_gnd dn_
pulldown dp_
pulldown dn_
pullup dp_
pullup
USB interrupt
source 08h cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB interrupt
latch 0Ah
0Bh cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB interrupt
mask false 0Ch
0Dh cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB interrupt
mask true 0Eh
0Fh cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB EN 10h Not used B_sess_
end Not used th_
Bdevice usb_en not used
Configuration 1 1 1h pdn_
vaux it_warn
monitoring
_vio_
vmem_
vcore
mmc_ls_
status vmmc_sel[2:0] pdn_
vmmc
Configu ration 2 20h not used not used gpo2 gpo1 mask_it_
wake_up external_
vmmc mask_
twarn
Vcore_Sleep 21h not used vcore_
available vcore_sleep[3:0]
Table 8. Power control register
Addr.151413121110 9 8
1Fh Not used reg address 2 bits
Addr.76543210
1 Eh reg address 3 bits data din/dout 4 bits ena write
Functional description STw4811M/STw4811N
24/85 CD00131784
Registers control led by I2C USB bus
The registers described in this chapter are controlled through the USB serial I2C interface,
USBSC L and USBSDA balls.
These registers can also be controlled through the main I2C interface, SCL and SDA balls
by setting to “1” ‘usb_i2c_ctrl’ bit in
power control
register (
Table 23
).
Note: A bit of register 1 is set at “1” by writing a “1” at address 04h, is reset at “0” by writing a “1” at
address 05h. This is also applicable for USB control register 2 (06h, 07h), USB interrupt
register (0Ah,0Bh), USB interrupt mask false register (0Ch, 0Dh) and USB interrupt mask
true register (0Eh, 0Fh). Writing “0” at any address has not effect on the content of any
register.
Table 9. USB register address
Address Register Type
00h - 01h Vendor ID R
02h - 03h Product ID R
04h set USB control register 1 R/W
05h clearh USB control register 1 R/W
06h set USB control register 2 R/W
07h clearh USB control register 2 R/W
08h USB interrupt source R
09h Not used
0Ah set USB interrupt latch R/W
0Bh clearh USB interrup t latch R/W
0Ch set USB interrup t mask false R/W
0Dh clearh USB interrupt mask false R/W
0Eh set USB interrupt mask true R/W
0Fh clearh USB interrupt mask true R/W
10h USB_EN R/W
Table 10. Vendor ID and Product ID: Read only
Name Address Register value
Vendor ID 00h 83h
Vendor ID 01h 04h
Product ID 02h 11h
03h 40h
STw4811M/STw4811N Functional description
CD00131784 25/85
USB control register 1
Table 11. USB control register 1 (address = 04h set and 05h clearh)
76543210
Not used uart_en oe_int_en bdis_
acon_en not used dat_se0 suspend speed
- R/W R/W R/W - R/W R/W R/W
Bits Name Value Settings Default
6 uart_en 0
1Inactive
UART logic buffers are enabled 0
5 oe_int_en 0
1Inactive
Allow to send interruption through USBOEn 0
4 bdis_acon_en 0
1Inactive (default)
Enable A-device to connect if B-device disconnect
detected: 0
2 dat_se0 0
1VP_VM USB mode
DAT_SE0 USB mode 0
1 suspend 0
1Inactive (default)
Put transceiver in low power mode 0
0 speed 0
1
Set rise and fall times of transmit
Low speed
Full speed 0
Functional description STw4811M/STw4811N
26/85 CD00131784
USB control register 2
Table 12. USB control register 2 (address = 06h set and 07h clearh)
76543 210
vbus_chrg vbus_
dischrg vbus_drv id_gnd dn_
pulldown dp_
pulldown dn_pullup dp_pullup
R/W R/W R/W R/W R/W R/W R/W R/W
Bits Name Value Settings Default
7vbus_chrg 0
1Inactive
Charge VBUS through a resistor 0
6 vbus_dischrg 0
1Inactive
Discharge VBUS through a resistor to ground. 0
5vbus_drv 0
1Inactive
Provide power to VBUS 0
4 id_gnd 0
1Inactive
Connect ID ball to ground 0
3 dn_pulldown 0
1Inactive
Conne ct DN pul l-do w n 0
2 dp_pulldown 0
1Inactive
Conne ct DP pul l-d own 0
1 dn_pullup 0
1Inactive
Conne ct DN pul l-up 0
0 dp_pullup 0
1Inactive
Conne ct DP pul l-u p 0
STw4811M/STw4811N Functional description
CD00131784 27/85
USB interrupt source register
USB interrupt source
register indicates the current state of the signals that can generate an
interrupt.
USB latch register
USB interrupt latch
register indicates which source has generated an interrupt.
Table 13. USB Interrupt source regi ster (address = 08h)
76543210
cr_int bdis_acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
RRRRRRRR
Bits Name Value Settings Default
7cr_int 0
1Inactive
DP ball is above the carkit interrupt threshold 0
6 bdis_acon 0
1
Inactive
Set when bdis_acon_en is set, and transceiver
asserts dp_pullup after detecting B-device
disconnect.
0
5 id_float 0
1Inactive
ID ball float ing 0
4 dn_hi 0
1Inactive
DN ball is high 0
3 id_gnd_forced 0
1Inactive
ID ball groun ded 0
2 dp_hi 0
1Inactive
DP asserted du ring SRP, 0
1 sess_vld 0
1Session valid comparator threshold < 2V
2 V < Session valid comparator threshold 0
0vbus_vld 0
1A-device VBUS valid comparator threshold < 4.4V
A-device VBUS valid comparator threshold > 4.4V 0
Table 14. USB interrupt latch registers (address = 0Ah set and 0Bh clearh)
Register 76543210
Bit name cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_
vld vbus_
vld
Default 00000000
Type R/W R/W R/W R/W R/W R/W R/W R/W
Functional description STw4811M/STw4811N
28/85 CD00131784
USB interrupt enable low register
USB interrupt enable low
register enables interrupts on transition from high to low.
USB interrupt enable high register
USB interrupt enable high
register enables interrupts on transition from low to high.
Interrupts
Table 13
indicates the signals that can generate interrupts. Any of the signals given in
Table 13
can generate an interrupt when the signal becomes either low or high. After an
interrupt, the OTG controller is able to read each signal status as well as the bit that
indicates whether or not that signal generated the interrupt.
A bit in the
interr upt lat ch registe r
is set when any of the following occurs:
writing “1” to its set address causes the corresponding bit to be set.
the corresponding bit in the
interrupt enable high
register is set, and the associated
signal changes from low to high
the corresponding bit in the
interrupt enable low
register is set, and the associated
signal changes from high to low
The
interr upt lat ch
register is cleared by writing “1” to its clear address.
Table 15. USB interrupt enable low register (address = 0Ch and 0Dh)
76543210
cr_int bdis_acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_
vld
00000000
R/W R/W R/W R/W R/W R/W R/W R/W
Table 16. USB interrupt enable high register (address = 0Eh and 0Fh)
76543210
cr_int bdis_acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vl
d
R/W R/W R/W R/W R/W R/W R/W R/W
STw4811M/STw4811N Functional description
CD00131784 29/85
USB EN register
Table 17. USB EN register (addr ess = 10h)
76543 2 1 0
Not used B_sess_
end Not used th_
Bdevice usb_en not used
-R---R/WR/W-
Bits Name Value Settings Default
1 usb_en 0
1Inactive
Enable USB PHY 0
2th_Bdevice 0
1Threshold for vbus_valid = 4.4 V
Threshold for vbus_valid = 3.87 V 0
6 B_sess_end
0
1
Vbus voltage is below B_session_end threshold
(0.2 to 0.8 V)
Vbus voltage is above B_session_end threshold
(0.2 to 0.8 V)
0
Functional description STw4811M/STw4811N
30/85 CD00131784
Registers control led by main I2C BUS
I2C controlled registers are controlled through the main serial I2C interface, SCL and SDA
balls.
Configuration 1 register
In Flash OTP two registers allow to program STw4811 energy management part.
These two registers are at addresses 1E and 1F and must be programmed with
1F
register
first followed by
1E
registe r.
Table 18. Configuration 1 register (11h)
76 5 43210
pdn_vaux it_warn monitoring_vio_
vmem_vcore mmc_ls_
status vmmc_sel[2:0] pdn_
vmmc
R/W R(1) R(1)
1. These bits are reset (0) after reading
R/W R/W R/W
Bits Name Value Settings Default
7 pdn_vaux 0
1Inactive
Enable LDO vaux 0(1)
1. In STw4811M, pdn_vaux = 0 is the default. In STw4811N, pdn_vaux = 1 is the default.
6it_warn 0
1Below temperature threshold
Above temperature threshold 0
5monitoring_vio_
vmem_vcore 0
1Outputs in the good range
Outputs lower than expected on vio_vmem or vcore 0
4 mmc_ls_status
0
1
Level shifters ON, if ‘pdn_vmmc’ or
‘external_vmmc’ = 1
Level shifters High Impedance, if ‘pdn_vmmc’ or
‘external_vmmc’ =1
0
[3:1] vmmc_sel[2:0]
000
001
010
011
100
101
110
111
1.8V selection
1.8V selection
2.85V selection
3V selection
1.85 V sele ction
2.6 V selection
2.7 V selection
3.3 V selection
000
0 pdn_vmmc 0
1Inactive
Enable SD/MMC/SDIO function. 0
STw4811M/STw4811N Functional description
CD00131784 31/85
Power control register at address 1Eh
Power control register at address 1Fh
Power control register mapping
Caution: Only the latest value written in register at address 1E/1F can be read.
Table 19. Power control register - General information (a ddress = 1Eh)
76543210
reg address 3 bits LSB’s data din/dout 4 bits EN
R/W R/W R/W
Bits Name Value Settings Default
[7:5] reg address 3
bits See
Table 21
“Address” column (LSB’s). 0
[4:1] data din/
dout 4 bits See
Table 21
control register 0
0EN 0
1Read enabled
Write enabled 0
Table 20. Power control register - General information (a ddress = 1Fh)
15 14 13 12 11 10 9 8
Not used reg address 2 bits
MSB’s
R/W
Bits Name Value Settings Default
[9:8] reg address 2
bits MSB’s See
Table 21
“Address” column (MSB’s). 0
Table 21. Power control register mapping
Address 1Fh Address 1Eh
Comments
reg address
Not used 2 bits
MSB’s 3 bits
LSB’s data din/dout 4
bits EN
1514131211109876543210
00h to 04h Reserved
05h to 0Ah Setting See
Table 22
to
Table 27
0Bh to 1E Rese rve d
Functional description STw4811M/STw4811N
32/85 CD00131784
Power control register at address 05h
Table 22. Power control register at address 05h
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 00101 vcore_sel [3:0] EN
Bits Name Value Settings Default
[4:1] vcore_sel [3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
= 1.00V
= 1.05V
= 1.10V
= 1.15V
= 1.20V
= 1.22V
= 1.24V
= 1.26V (default)
= 1.28V
= 1.30V
= 1.32V
= 1.34V
= 1.36V
= 1.38V
= 1.40V
= 1.45V
0111
STw4811M/STw4811N Functional description
CD00131784 33/85
Power control register at address 06h
Power control register at address 07h
Table 23. Power control register at address 06h
Address 1Fh Address 1Eh
15141312111098765 4 3 2 1 0
Not used 00110
vpll_sel
[0] vaux_sel
<1:0> usb_
i2c_ctrl EN
Bits Name Value Settings Default
4vpll_sel[1:0]
on 06h and 07h
address
00
01
10
11
= 1.05V
= 1.2V
= 1.3V
= 1.8V
11
[3:2] vaux_sel[1:0]
00
01
10
11
= 1.5V
= 1.8V
= 2.5V
= 2.8V
00
1 usb_i2c_ctrl 0
1USB I2C interface controls USB registers
Main I2C interface controls USB registers 0
Table 24. Power control register at address 07h
Address 1Fh Address 1Eh
15141312111098765 4 3 2 1 0
Not used 00111en_vpllnot
used en_
vcore vpll_sel
[1] EN
Bits Name Value Settings Default
4 en_vpll 0
1Disabled / VPLL = OFF
Enabled / VPLL = ON(1)
1. No soft start feature at supply enabled after a disabled/enabled sequence
1
2 en_vcore 0
1Disabled / VCOR E = OFF
Enabled / VCORE = ON(1) 1
1 vpll_sel[1] - See
Table 23
-
Functional description STw4811M/STw4811N
34/85 CD00131784
Power control register at address 08h
Power control register at address 09h
Table 25. Power control register at address 08h
Address 1Fh Address 1Eh
15141312111098765 4 3 2 1 0
Not used 01000
en_clk
squarer
en_
mo
nitoring
en_
vana not
used EN
Bits Name Value Settings Default
4 en_clock_squarer 0
1Disabled ([0; vio_vmem] digital signal)
Enabled
(master clock input not in the range [0; vio_vmem]) 0
3 en_monitoring 0
1Disabled / MONITORING = OFF
Enabled / VCORE & VIO_VMEM monitoring = ON 1
2 en_vana 0
1Disabled / VANA = OFF
Enabled / VANA = ON 1
Table 26. Power control register at address 09h
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 01001
vaux_
sleep not
used
vio_
vmem_
sleep
(1)
1. Must be left at default value if the master clock is used.
vcore_
sleep
(1) EN
Bits Name Value Settings Default
4vaux_sleep 0
1
When PWREN is low:
VAUX stays in high power mode
VAUX goes in sleep mode 1
2 vio_vmem_sleep 0
1
When PWREN is low:
VIO_VMEM stays in high power mode
VIO_VMEM goes in sleep mode 1
1vcore_sleep 0
1
When PWREN is low:
VCORE stays in high power mode
VCORE goes in sleep mode 1
STw4811M/STw4811N Functional description
CD00131784 35/85
Power control register at address 0Ah
Table 27. Power control register at address 0Ah
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 01010
vaux_
force_
sleep
not
used
vio_
vmem_
force_
sleep
vcore_
force_
sleep EN
Bits Name Value Settings Default
4 vaux_force_sleep 0
1
0: Vaux keeps the stat e contro lled by Vaux_sleep an d
Pwren
1: VAUX goes in sleep mode (for any PWREN level) 0
2vio_vmem_force_
sleep
0
1
0: VIO_VMEM keeps the state controlled by
vio_vmem_sleep and Pwren
1: VIO_VMEM goes in sleep mode (for any PWREN
level)
0
1vcore_force_slee
p
0
1
0: VCORE keeps the state controlled by vcore_sleep
and Pwren
1: VCORE goes in sleep mode (for any PWREN
level)
0
Functional description STw4811M/STw4811N
36/85 CD00131784
Configuration 2 register
Table 28. Configuration 2 register at address = 20h
76543210
Not used Not used gpo2 gpo1 mask_it_
wake_up external_
vmmc mask_
twarn
- - R/W R/W R/W R/W R/W R/W
Bits Name Value Settings Default
0 mask_twarn 0
1Inactive
Mask TWARN interruption (it_twarn bit) through
VDDOK 0
1external_vmmc 0
1Internal LDO VMMC is used
External VMMC is used 0
2mask_it_wake
_up 0
1Inactive
IT_WAKE_UP ball masked 0
3 gpo1 0
1GPO1 in High impedance
GPO1 at low l evel 0
4 gpo2 0
1GPO2 in High impedance
GPO2 at low l evel 0
5 not used 0
1Not used 0
STw4811M/STw4811N Functional description
CD00131784 37/85
VCORE_sleep register
Table 29. VCORE_sleep register at address = 21h
Register 7654 3210
Bit name vcore_
available vcore_sleep[3:0]
Type RR/W
Bits Name Value Settings Default
[3:0] vcore_sleep[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
= 1.00V
= 1.05V
= 1.10V
= 1.15V
= 1.20V
= 1.22V
= 1.24V
= 1.26V (default)
= 1.28V
= 1.30V
= 1.32V
= 1.34V
= 1.36V
= 1.38V
= 1.40V
= 1.45V
0111
4vcore_available
(1)
1. read operation reset the value after status read operation from APE, functionality is described in
Section 4.3.7: Power supply monitoring
0
1Inactive
Reach the expected value when Vcore decreases or
increases 0
Functional description STw4811M/STw4811N
38/85 CD00131784
4.2.6 IT generation
STw4811 has three interrupt balls:
IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is
plugged this interrupt is activated to wake up the host or the modem, depends of application
(open drain, active low).
By default this feature is available independently of PON level, it can be masked when
PON = 1 by ‘mask_it_wake_up’ bit of
Configuration 2
register (see
Table 28
)
USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor .
Independently of PWREN ball state, this ball goes to low level if an USB interrupt source is
detected. In sleep mode, PWREN = 0, an interrupt source is detected only if unmasked
before PWREN goes to low level.
VDDOK: This ball has two functions:
- When high, it indicates that VIO_VMEM and VCORE output voltages are within the right
range and that the device internal temperature is below the maximum allowed temperature.
- When low, it indicates that output regulators (VCORE or VIO_VMEM) are not regulated
properly or PWREN = “0”, or that the temperature is above the allowed threshold (see
Thermal shut-down
section), ‘it_warm’ bit of
Configuration 1
register is the temperature
interruption source (see
Table 18
).
4.2.7 Clock switching and control
This block generates the clock used by the DC/DC converter (USB charge pump, step-down
VIO_VMEM and step-down VCORE). STw4811 is able to sustain the master clock
frequencies of 26 MHz, 19.2MHz and 13 MHz. If the clock is not detected the internal
oscillator is automatically selected.
STw4811 allows customers to use the internal clock issued from the internal oscillator to
switch the SMPS and charge pump; or, they can provide an external clock and connect it to
the master clock input. If it is not necessary, it is recommended to run the device on the
internal clock. Nevertheless, if the external clock is used, this clock has some constraints:
the master-clk must be provided each time the device is in high power mode.
When the device changes from sleep mode to high power mode the master-clk
must be active before the device is in high power mode (the master-clk must be
available and stable when PWREN pin goes to high level).
the only way to stop the use of the master_clk, in HPM mode, is to restart the
device with the OFF/ON sequence on PON (PON = 1 then 0 then 1)
Note: When present the Master clock should remain connected up to sleep mode.
STw4811M/STw4811N Functional description
CD00131784 39/85
Fig ure 9. Clock switching between master and internal clock (1)
INT_OSC
PON
INT_OSC_OK
MASTER_CLK_OK
PDN_INT_OSC
CONTROL_SWITCH
STEP_DOWN_CLK
Third rising edge after switching
internal clock external clocktransition
* Phase delay is less than 90 between int and ext clock
MASTER_DIV_CLK
Functional description STw4811M/STw4811N
40/85 CD00131784
4.3 Power management module
STw4811 includes several regulators that supply the multimedia processor and its
peripherals. All regulators can work in different modes depending on the processor needs.
When the STw4811 is in ‘low cu rrent mode’”, the output current is reduced to save energy
via the lower quiescent current. The nominal mode is called high power mode (HPM). The
mode is selected by PWREN ball signal according to both multimedia processor and
STw4811 state.
When P WREN = “0” , sleep m ode is selec ted. HPM i s selecte d as default when PWREN =
“1”.
Except for VIO_VMEM, each supply can be powered down by a bit ‘pdn_(regulator name) or
‘en_(reg ulator name )’ (
Table 18
,
24
and
27
). In thi s mode, th e regulat or is swit ched off and
only a leakage current is present (max. 1µA). VCORE, VAUX and VPLL output voltages are
programmable, through main I2C interface, using the ‘(regulator”_sel[x:0])’ bits of the
power
control
registers (
Table 22
to
Table 27
).
In addition, an output current limitation prevents high current delivery in case of output short
circuit.
All mul timedia pr ocessor po wer supplie s have the sa me soft start to preve nt leakage in the
multimedia processor device during the start-up phase. There is an exception with VAUX
which can be started independently.
4.3.1 Bandgap, biasing and references
Figure 10. Block diagram of biasing and references of the device
BG
All internal
references
VREF_18
All internal
biasing
Bias genera tor
Voltage reference control
STw4811M/STw4811N Functional description
CD00131784 41/85
4.3.2 VCORE regulator: DC/DC STEP- DOWN regulator
This regulator drives the core of the multimedia processor. VCORE is a DC/DC step-down
regulator that generates the regulated power supply with very high efficiency. The 16
voltage levels enable dynamic voltage and frequency scaling suitable for any supply voltage
of CMOS process, they also follow the processor process roadmap. The regulated output
voltage level is adjustable via the main I2C interface (SDA, SCL): in high power mode by the
power control
registers (
Table 22
), in sleep mode by
Vcore_sleep
register (
Table 29
).
The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to
generate the switching clock of the SMPS. When this clock is not available, regulators run
with the internal RC oscillator.
The DC/DC step-down regulator has the following main features;
Programmable output voltage,
When changing the output voltage value (during a voltage scaling phase) the
voltage step must be less than 100mV.
In high power mode, 16 levels from 1.0 V to 1.45 V through ‘vcore_sel [3:0]’ bits of
power contr ol
register (
Table 22
)
In sleep mode,16 levels from 1.0 V to 1.45 V through ‘vcore_sleep [3:0]’ bits of
Vcore_sleep
register (
Table 29
).
Note: By default ‘vcore_sel’ = ‘vcore_sleep’
3 power domains:
‘High power mode’ when multimedia processor is in run mode, 700 mA full load
‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current
capability.
Fast switching from low current to high power mode.
The regulator is in ‘low current mode’ when multimedia processor is in sleep
mode. PWREN signal indicates that the multimedia processor is about to switch to
high power mode. VDDOK signal indicates to the multimedia processor that all
supplies are in the specified range.
Note: The definition of sleep mode is given in section 4.2.3: Sleep mode.
‘Power down mode’ or ‘standby mode’ when regulator is switched off, no
consumption (‘en_vcore’ bit of
power contro
l register -
Table 24
)
Soft start circuitry at start up, from power off to high power mode, when PON ball
changes from “0” to “1”.
4.3.3 VIO_VMEM regulator: DC/DC step- down regulator
VIO_VMEM step-down regulator has the same structure than VCORE.
The VIO_VMEM regulator supplies the IOs of the multimedia processor and its peripherals.
This regulator can be used to supply the memories working with the multimedia processor,
such as DDR-SDRAM. A switched mode power supply - voltage down converter is used to
generate the 1.8 V regulated power supply with very high efficiency.
The master clock (13, 19.2 or 26 MHz) is automatically detected and divided to generate the
SMPS switching clock. Master clock is squared when bit en_clock_squarer is enabled
(
Table 25: Power control register at address 08h
). When this clock is not available,
regulators can run with the internal RC oscillator.
Functional description STw4811M/STw4811N
42/85 CD00131784
Main features
Fixed 1.8 V output voltage
Two power domains:
‘High power mode’ when multimedia processor is in run mode - 600 mA full load
‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current
capability.
Fast switching from low current to high power mode.
The regulator is in ‘low current mode’ when multimedia processor is in sleep
mode. PWREN signal indicates that the multimedia processor is about to switch to
run mode. VDDOK signal indicates to the multimedia processor that all supplies
are in the specified range.
Note: The definition of sleep mode is given in 4.2.3: Sleep mode section.
Soft start circuitry at start up, from power off to high power mode, when PON ball
changes from “0” to “1”.
4.3.4 VPLL
This LD O is ded ic ated to the mul tim edi a pr oces s or PLL (1.05, 1.2, 1 .3, 1. 8 V) power supply
with 10 mA max full load (
power control
registers -
Table 23
and
Table 24
).
Main features
Programmable output voltage, ‘vpll_sel[1:0]’ bits of
power control
register -
Table 23
and
Table 24
)
Two power domains:
‘High power mode’ 10 mA full load
‘Power down mode’ or ‘standby mode’ when regulators are switched off and there
is no power consumption (‘en_vpll’ bit of
power control
register -
Table 24
)
Soft start circuitry at start up, from power off to high power mode, when PON ball
changes from “0” to “1”.
4.3.5 VANA
This LDO is dedicated to the multimedia processor analog function (2.5 V) power supply
with 10 mA full load.
Main features:
2.5 V output voltage,
Two power domains
‘High power mode’ 10 mA full load
‘Power down mode’ or ‘standby mode’ when regulators are switched off and there
is no power consumption (‘en_vana’ bit of
power contro
l register -
Table 25
),
STw4811M/STw4811N Functional description
CD00131784 43/85
4.3.6 VAUX
This LDO is dedicated either to the multimedia processor input/output signals or to the
auxiliary devices. Power supply values are 1.5, 1.8, 2.5, 2.8 V with 150 mA full load and
0.5 mA in sleep mode. In case of 1.5 V on the output, this LDO can be supplied by using
VIO_VMEM DC/DC converter (1.8 V). One pad feed-back is used.
Main features:
Programmable output voltage, 4 levels
(‘vaux_sel[1:0]’ bits of
power control
register -
Table 23
)
Three power domains:
‘High power mode’ when multimedia processor is in run mode, 150 mA full load
‘Low current mode’ when multimedia processor is in sleep mode, 0.5 mA current
capability.
Fast switching from low current to high power mode.
Note: The definition of sleep mode is given in 4.2.3: Sleep mode section.
‘Power down mode’ or ‘standby mode’ when regulator is switched off, no power
consumption (‘pdn_vaux’ bit of
configuration 1
register -
Table 18
).
4.3.7 Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM
drop below the threshold, the multimedia processor is reset, through PORn output ball.
In high power mode, this feature can be disabled by setting ‘en_monitoring’ bit of
power
control
register to “0” (
Table 25
).
When VCORE programmed value changes, ‘vcore_available’ bit (
Table 29
) gives the status
of VCORE output supply value and informs the APE that the expected output voltage is
reached, this bit is a read only bit and is reset after an APE read operation.
Figure 11
describes ‘vcore_available’ bit behavior.
Figure 11. ‘vcore_a vail able’ b it behavio r
Vcore
vcore_available bit
read operation to reset bit
Functional description STw4811M/STw4811N
44/85 CD00131784
4.3.8 Power supply domains
Table 30
lists the register bits that control STw4811 supply domains for each supply.
Note: More details on VMMC supply are given in Section 4.5
4.3.9 Thermal shut-down
A thermal sensor is used to monitor the die temperature.
As soon as the die temperature exceeds the thermal warning rising threshold, VDDOK
ball goes to “0” and ‘it_warn’ bit is set to “1” (
configuration 1
register -
Table 18
). The IC
turns back VDDOK ball to “1” and ‘it_warn’ bit to “0” when the device temperature drops
below the thermal warning falling threshold of the thermal sensor.
A second thermal detection level, thermal shutdown threshold, puts all STw4811
supplies OFF, the supplies goes back to ON state when the temperature is under the
thermal shutdown threshold and after a new startup phase.
Table 30. Power supply domains
Supply
name Description Supply domains
High power Sleep Power down
VCORE STEP-DOWN vcore_sel[3:0]
vcore_sleep[3:0]
vcore_sleep
vcore_force_sleep en_vcore
VIO_VMEM STEP-DOWN - vio_vmem_sleep
vio_vmem_force_sleep -
VPLL LDO vpll_sel[1:0] - en_vpll
VANA LDO - - en_vana
VAUX LDO vaux_sel[1:0] vaux_sleep
vaux_force_sleep pdn_vaux
VMMC LDO vmmc_sel[2:0] - pdn_vmmc
Table 31. Thermal threshold values
Description Min Typ Max Unit
Thermal warning thresh old
Rising threshold 134 140 149 °C
Falling threshold 117 123 1 31 °C
Thermal shutdown threshold
Threshold 149 155 164 °C
STw4811M/STw4811N Functional description
CD00131784 45/85
Figure 12. Thermal th reshold temperatures for ‘it_warn’ bit and VDDOK ball
4.4 USB OTG module
This transceiver complies with the USB specification;
Universal serial bus specification Rev 2.0
On the go supplement to the USB specification Rev 1.0-a
Car kit interface specification (see: OTG transceiver specification Rev 0.92)
The USB OTG Transceiver has two modes: USB mode and UART mode. It includes:
Full and low speed transceiver (12 Mbit/s and 1.5 Mbit/s data rate)
Support data line and VBUS pulsing session request
Contains Host Negotiation Protocol (HNP) command and
status
register
Charge pump regulator (5 V at 100 mA) to supply VBUS line of the USB cable
VBUS pull-up and pull-down resistors as defined by Session Request Protocol (SRP)
VBUS threshold comparators
VUSB LDO internal regulator which provides power supply for the bus driver and
receiver.
ID line detector and interrupt generator
Dedicated I²C serial control interface
Note: The transceiver complies with USB specification if Vbat is greater than 3.2 V.
‘it_w arn’ bit
VDDOK ball
Temperature
Rising warning
threshold Shutdown
threshold
All supplies
are turn “OFF”
Functional description STw4811M/STw4811N
46/85 CD00131784
4.4.1 Block diagram
Figure 13. USB OTG transceiver block diagram
VUSB
VBAT_USB
VUSB_LDO
VBAT_DIG
VMINUS_DIG
out_diff_Rx
Control
Registers
TRANCEIVER
VBAT_USB
ID
CP CN
VBUS
DP
DN
Charge
pump
5V - 100mA
OE_TP_INT
DAT_VP
SEO_VM
RCV
suspend
VP
VM
id_float
id_gnd
vbus_vld
sess_vld
B_sess_end
DP
VBUS_MONITOR
DP_MONITOR
4.4 V
1.9 V
0.6 V
ID Detector
Diff Tx
Diff Rx
SE_DP
SE_DN
DECODER
SINGLE
RXD
RXD
speed
dat_se0
bdis_acon_en
oe_int_en
uart_en
dp_pullup
dn_pullup
dp_pulldown
dn_pulldown
id_gnd_forced
vbus_drv
vbus_dischrg
vbus_chrg
dp_hi
id_gnd
dn_hi
bdis_acon
Gnd
RA_BUS_IN
CLK
REF
RPU_DN
RPU_DP
RPD_DN
RPD_DP
R_VBUS_SRP
R_VBUS_PD
vbus_chrg
vbus_dischrg
dn_pullup
dn_pulldown
id_gnd
dp_pullup
dp_pulldown
USBVP
USBVM
USBOEn
USBRCV
cr_int
Interrupt
Control
Register
vbus_vld
sess_vld
id_float
cr_int
USB_INTn
USBSCL
USBSDA
suspend
vbus_drv
ENDED
IT_WAKE_UP
Plug detect
Management sess_vld
RID_PU
R
4.7 R
R
SCL
SDA
DP < [0.4 to 0.6] V
5.7 R
R
OR
0.85*ID
0.15*ID
100 mA
usb_i2c_ctrl
SW_RESETn
usb_en
Open
VBAT_USB
Drain
B_sess_end
STw4811M/STw4811N Functional description
CD00131784 47/85
Interrupt management
IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is
plugged this interrupt is activated to wake up the host or the modem, depends of application
(open drain, active low).
By default this feature is available independently of PON level, it can be masked when
PON = 1 by ‘mask_it_wake_up’ bit of
configuration 2
register (see
Table 28
)
USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor .
Independently of PWREN ball state, this ball goes to low level if an USB interrupt source is
detected. In sleep mode, PWREN = 0, an interrupt source is detected only if unmasked
before PWREN goes to low level.
VBUS monitoring
These comparators monitor the VBUS voltage. They detect the current status of the VBUS
line:
VBUS > 4.4 V means A-Device VBUS_Valid
0.8 V < VBUS < 2 V means A-Device Session Valid and 0.8 V < VBUS < 4 V means B-
Device Session Valid. To be compatible with both Session Valid threshold, STw4811
threshold is equal to 1.9 V.
VBUS < 0.8 V means B_Device Session End
These three bits generate an interrupt when active (see
USB interrupt
registers (
Table 13
)).
VUSB LDO: Internal regulator which provides power supply for the bus driver and receiver.
ID detector: This block detects the status of the ID line. It is capable of detecting three
different states of line:
ball is floating ‘id_float’ bit is high, Threshold detection is equal to 0.85 * Vbattery.
ball is tied to ground ‘id_gnd_forced’ bit is high, Threshold detection is equal to 0.15 *
Vbattery.
ball is grounded via resistor, voltage is between 0.85 * Vbattery and 0.15 * Vbattery.
‘id_float’ and ‘id_gnd_forced’ bits are low.
This detection generates interrupts (see
USB interrupt
registers (
Table 13
)).
Transceiver: The driver can operate in different modes. It can act as a classical low-speed
and full-speed differential driver, as two independent single-ended drivers or as a single-
ended driver in UART mode. This block contains one differential receiver for the USB mode
of operation and two single-ended receivers for USB signaling and UART mode.
DP monitor: This block is used to detect car kit peripheral, ‘cr_int’,0.6 V on DP (see
USB
interrupt
registers (
Table 13
)).
Pull up and pull down resistors: Configurable integrated pull-up and pull-down resistor of
data line and VBUS (see
USB control
registe r 2 (
Table 12
)).
Functional description STw4811M/STw4811N
48/85 CD00131784
4.4.2 Modes and operations
Power modes
The t ransceiver pow er modes are:
active mode
suspend mode
power down mode
In suspend mode the differential transmitter and receiver are turned off to save power but
the USB interface is still active (pull-up and pull-down on, VBUS on).
In power d own mode , only t he seria l interfa ce is act ive and the trans ceiver is able to detect
SRP. In power down mode, ID ball can be grounded by ‘id_gnd’ bit of
USB control
register 2
(
Table 12
).
USB modes
The two transceiver modes are:
DAT_SEO mode (dat_se0 = 1 in
USB control
register 1 -
Table 11
)
VP_VM mode (dat_se0 = 0 in
USB control
register 1 -
Table 11
)
Data transmissio n The transceiver transmits USB data in the following conditions for
USB
control register 1
(
Table 32
,
Table 33
):
uart_en=0; oe_int_en=0
and USBOEn ball at low level.
Table 32. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0
USB mode
(DAT_SE0)
Inputs Outputs Comments
USBVP USBVM DP DN USBRCV
1 (DAT_SE0 mode) 0 0 0 1 Not used Single ended data (zero sent)
1 (DAT_SE0 mode) 1 0 1 0 Not used Single ended data (1 sent)
1 (DAT_SE0 mode) x 1 0 0 Not used Force single ended zero
0 (VP_VM mode) 0 0 0 0 DIFF_RX
DAT_VP drives the level of DP
SE0_VM drives the level of DN
0 (VP_VM mode) 1 0 1 0 DIFF_RX
0 (VP_VM mode) 0 1 0 1 DIFF_RX
0 (VP_VM mode) 1 1 1 1 DIFF_RX
STw4811M/STw4811N Functional description
CD00131784 49/85
If oe_int_en = 1 and suspend=1 (
USB control register 1
-
Table 11
), the USBOEn ball
becomes an output used to generate an IT to multimedia processor.
Data reception The transceiver receives USB data in the following conditions:
uart_en = 0 (
USB control register 1
); oe_int_en = 1
and USBOEn at high level.
Table 33. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1
USB mode (dat_se0) Inputs Outputs Comments
USBVP USBVM DP DN USBRCV
1 (DAT_SE0 mode) 0 0 0 1 Not used Single ended data (zero sent)
1 (DAT_SE0 mode) 1 0 1 0 Not used Single ended data (1 sent)
1 (DAT_SE0 mode) x 1 0 0 Not used Force single ended zero
0 (VP_VM mode) 0 0 0 0 0 (off)
Driver are suspended
0 (VP_VM mode) 1 0 1 0 0 (off)
0 (VP_VM mode) 0 1 0 1 0 (off)
0 (VP_VM mode) 1 1 1 1 0 (off)
Table 34. Data receiver via USB control register 1
USB mode (dat_se0) Suspend Inputs Outputs
DP DN USBVP USBVM USBRCV
1 (DAT_SE0 mode) 0 0 0 Diff rcv 1 1 Not used
1 (DAT_SE0 mode) 01010Not used
1 (DAT_SE0 mode) 00100Not used
1 (DAT_SE0 mode) 0 1 1 Diff rcv 1 0 Not used
1 (DAT_SE0 mode) 10001Not used
1 (DAT_SE0 mode) 11010Not used
1 (DAT_SE0 mode) 10100Not used
1 (DAT_SE0 mode) 11110Not used
0 (VP_VM mode) 0 0 0 0 0 diff rcv 1
0 (VP_VM mode) 010101
0 (VP_VM mode) 001010
0 (VP_VM mode) 0 1 1 1 1 diff rcv 1
0 (VP_VM mode) 1 0 0 0 0 Not used
0 (VP_VM mode) 1 1 0 1 0 Not used
0 (VP_VM mode) 1 0 1 0 1 Not used
0 (VP_VM mode) 1 1 1 1 1 Not used
Functional description STw4811M/STw4811N
50/85 CD00131784
UART mode
UART mode is entered by setting the ‘uart_en’ bit to 1 (
USB control register 1
-
Table 11
).
The transceiver contains two digital logic level translators between the following balls:
TXD signal: from USBVM ball to DN ball
RXD signal: from DP ball to USBVP ball
When not in UART mode the level translators are disabled.
VBUS monitoring and control
The monitoring is made of three comparators that determine if the VBUS voltage is at a valid
level for operation:
VBUS VALID: It corresponds to the minimum level on VBUS. Any voltage on VBUS
below the threshold is considered to be a fault. During power-up, it is expected that this
comparato r output is ign ored.
VBUS SESSION VALID: This threshold is necessary for session request protocol to
detect the VBUS pulsing.
VBUS SESSION END: Session is ended. In this USB block, a B-device Session End
threshold is defined within the range [0.2; 0.8] V. The reason for a low 0.2 V limit is that
the leakage current could charge the VBUS up to 0.2 V (maximum).
When the A-device (default master) is power supplied and does not supply VBUS, it
presents an input impedance RA_BUS_IN on VBUS of no more than 100 kΩ. If the A-device
respo nds to th e VB US pul sing method of S RP, th en the input impe dance RA_BU S_IN m ay
not be lower than 40 kΩ.
When the A-device supplies power, the rise time TA_VBUS_RISE on VBUS to go from 0 to
4.4 V is less than 100 ms when driving 100 mA and with an external load capacitance of
10 µF (in addition to VBUS decoupling capacitance). If VBUS does not reach this voltage
within TA_VBUS_RISE maximum time, it indicates that the B-device is drawing more
current that the A-device is capable of providing and an over-current condition exists. In this
case, the A-device turns VBUS off and terminates the session.
VBUS cap acitance
A dual-role device must have a VBUS capacitance CDRD_VBUS value comprised between
1 µF and 6.5 µF (see charge pump specification). The limit on the decoupling capacitance
allows a B-device to differentiate between a powered-down dual-role device and a powered-
down standard host. The capacitance on a host is higher than 96 µF.
Data line pull-down resistance
The two bits of
USB control
register, dp_pulldown and dn_pulldown (
Table 12
) are used to
connect/disconnect the pull-down resistors.
When an A-device is idle or acting as host, it activates the pull-down resistors RPD on both
DP and DN lines.
When an A-device is acting as peripheral, it disables RPD on DP, not DN.
The A-device can disable both pull-down resistors during the interval of a packet
transmission when acting as either host or peripheral.
When the line is not used, the pull-down is activated and the maximum level on this ball
should not exceed 0.342 V.
STw4811M/STw4811N Functional description
CD00131784 51/85
Data line pull-up resistance
The two bits of
USB control
register dp_pullup and dn_pullup (
Table 12
) are used to
connect/disconnect pull-up resistors.
Full-speed and low-speed devices are differentiated by the position of the pull-up resistor
from the peripheral device. A pull-up resistor is connected to DP line for a full-speed device
and a pull-up resistor is connected to DN line for a low-speed device. The pull-up resistor
value is in the range of 900 Ω to 1600 Ω when the bus is idle and 1425 Ω to 3100 Ω when
the upstream device is transmitting.
Session Request Protocol (SRP)
To save power , the OTG supplement allows an A-device to leave the VBUS turned off when
the bus is not being used. If the B-device wants to use the bus when VBUS is turned off,
then it requires the A-device to supply power on VBUS using the Session Request Protocol
(SRP).
Initial conditions
The B-device does not attempt to start a new session until it has determined if the A-device
has detected the end of the previous session. The B-device must ensure that VBUS is
below VBUS_SESSION_END before requesting a new session.
Additionally, the B-device switches a pull-down resistor (R_VBUS_PD) from VBUS to
ground in order to quicken the discharge process as long as the B-device does not draw
more than 8 mA from VBUS. R_VBUS_PD is activated by bit ‘vbus_dischrg’ of
USB control
registe r 2
, (
Table 12
).
When the B-device detects that VBUS is below the VBUS_SESSION_END and that both
DP and DN have been low (SEO) for at least 2 ms, then any previous session on the A-
device is over and a new session can start.
Data-line pulsing
To indicate a request for a new session using the data line pulsing, the B-device turns on the
DP pull-up resistor for 5 ms to 10 ms (only at full speed, no DN pulsing). The DP pull-up
resistor is connected to VUSB (regulator output voltage). Timing is controlled by the USB
digital control.
VBUS pulsing
To indicate a request for a new session using the VBUS pulsing method, the B-device waits
for the initial conditions and then drives VBUS. VBUS is driven for a long enough period for
a capacitance on VBUS that is smaller than 2x6.5 µF to be charged to 2.1 V while a
capacitance on VBUS higher than 97 µF is not charged above 2.0 V. In this USB block, the
VBUS_SESSION_VALID threshold is used to determine if an A-device is DRD (dual role
device) or a standard host.
The B-device VBUS pulsing block is designed so that the maximum drawn current does not
exceed 8 mA. In this USB block, the pull-up is 600 Ω +/- 30%.
If a B-device is attached to a standard device, the pull-up must be disconnected after the
defined timing to prevent damage of standard hosts not designed to withstand a voltage
externally applied to VBUS.
Functional description STw4811M/STw4811N
52/85 CD00131784
Session Request Protocol (SRP)
If the B-device is in correct condition to start a new session, it first performs data line
pulsing, followed by VBUS pulsing. When VBUS next crosses the SESSION VALID
threshold, the B- device considers a session to be in progress and asserts the DP or DN
data line within 100 ms. After SRP initialization, the B- device is set up to wait for at least 5
seconds for the A-device to respond before informing the user that the consumption attempt
has failed.
Host Negotiation Protocol (HNP)
At the start of a session, the A-device has the role of host as default. During a session, the
host role can be transferred back and forth between the A-device and the B-device any
number of times using the Host Negotiation Protocol (HNP). The sequence of events for this
exchange of host role is described in the “On the Go Supplement to the USB 2.0
Specification” (rev 1.0) as follow:
The A-device puts the bus in the suspend state
The B-device simulates a disconnect by de-asserting its DP pull-up
The A-device detects SE0 on the bus and asserts its DP pull-up
The B-device detects that DP line is high and takes the role of the host.
ID detector
In either active or suspended power mode, the ID detector detects the condition of the ID
line and different iate s betw een the foll owi ng three co nditio ns :
ID ball floating: (e.g. with USB B-device connected)
ID ball shorted to ground: (e.g. with USB A-device connected)
ID ball connected to ground through resistor RACC_ID: (e.g.with an accessory).
The transceiver pulls the ID ball to VID_HI (VBA T) through a resistance of RID_PU when an
accessory is plugged in. In this case, the ID ball is externally connected to ground via
Racc_ID resistor.
T wo comparators are used to detect the ID voltage: VID_GND and VID_FLOAT (
Figure 13
).
The ID detector also has a switch that can be used to ground the ID ball. This switch is
controlled by ‘id_gnd bit’ of
USB control register 2
(
Table 12
); This pull -d own is used for
CEA_KARKIT purposes.
Car kit interrupt detector
The transceiver is able to detect when the DP line is below the car kit interrupt threshold
‘cr_int’, (see
USB int errupt
register in
Table 13
and refer to OTG specifications, Rev 0.92,
§2.7, p13).
Charge pump
From VBAT _USB, th e charge pu mp s upplie s V BUS , ‘v bu s_d r v’ bit of
USB cont ro l regi ste r 2
(
Table 12
) is used to enable/disable the charge pump.
If VBUS is “ON” before going to sleep mode, it remains “ON” in sleep mode.
LDO USB
From VBAT_USB, a LDO provides VUSB supply, ‘usb_en’ bit of
USB_EN
register (
Table 17
)
is used to enable/disable the VUSB LDO and the transceiver.
STw4811M/STw4811N Functional description
CD00131784 53/85
4.4.3 USB enable control
STw 4811 OFF
In this state: PON ball = 0
In this state, the overall system is able to detect USB connection through IT_W AKE_UP ball
and with VBUS session valid comparator and ID detection ON.
IT_WAKE_UP ball is activated (low level if tied by an external Pull Up resistor to VIO or
VBAT) in either of the two following cases:
When a mini A connector cable is connected and ID goes low
When activity on VBUS, that is a mini B is connected and is able to communicate.
This mode is used to wake-up the platform. In this configuration, USBINTn ball is not
enabled and IT_WAKE_UP ball cannot be masked by ‘mask_it_wake_up’ bit
(
Table 28
).
STw4811 ON, USB driver not enabled
In this state: PON = 1
If ‘mask_it_wake_up’ bit is set to “0”, IT_WAKE_UP ball has the same behavior as above
(PON = 0) and turns ON the transceiver, ‘usb_en’ bit set to “1” (
Table 17
).
If ‘mask_it_wake_up’ is set to “1”, IT_WAKE_UP ball feature is disabled and always stay at
level “1” if tied by an external pull up resistor to VIO or VBAT and the transceiver is not turn
ON.
In sleep mode and in HIGH POWER mode, USBINTn ball is now enabled.
If the USB cable is already connected while STw4811 is starting, the USB driver will be
enabled when power management is ready.
Wake-up USB driver conditions
A plug-in on a mini A-device and active ID detector
B device is connected and ready to start data transfer, VBUS is driven high
(session valid high)
–Activity on
USB
registers (00h to 0Fh -
Table 9
to
Table 16
). Multimedia processor
ready to wake-up and set-up USB PHY.
Possibility to force PHY high (enable) when writing ‘usb_en’ = 1 in USB EN
register (
Table 17
)
Set condition: one among the following possibilities
External it_wake_up =0
usb_en = 1 by writing to I2C USB interface
Access to any other
USB
register (00h to 0Fh)
Power down USB driver conditions in order to set the USB driver to power down mode:
it_wake_up = 1, and only then
Set ‘usb_en’ bit of USB EN register (
Table 17
) to “0
Functional description STw4811M/STw4811N
54/85 CD00131784
4.5 SD/MMC/SDIO module
Figure 14. SD/MMC/SDIO block diagram
4.5.1 SD/MMC/SDIO LDO supply
The Vmmc LDO is supplied via the input Vbat_Vmmc. According to the protection diode
design, the voltage on this input pin Vbat_Vmmc must be always higher or equal to the
battery voltage.
Vbat_Vmm c >= Vbat
By programming ‘vmmc_sel[2:0] bits of
configuration 1
regi s ter (
Table 18
), this LDO
provides the power supply (1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V) with a 150 mA
current compliance for any of the following peripherals.
SD card
MMC card
SDIO card
If an application does not request to use the level shifter feature, this LDO can be used to
supply an other peripheral, in this case, to reduce the internal current consumption due to
level shifter it is recommended to set to “1” ‘mmc_ls_status’ bit of
config urati on 1
register
(
Table 18
).
If an application, like HDD, requests more than 150 mA current supply and the use of the
internal level shifters, internal LDO must be disabled.
The application will be supplied by an external LDO and internal level shifter will be directly
suppli ed by the external LDO.
In this configuration, ‘pdn_vmmc’ bit is set to “0”, ‘mmc_ls_status’ is set to “0” (
Table 18
) and
‘external_vmmc’ bit is set to “1” (
Table 28
).
SD/ MMC/SDIO inte rface
LDO
VBAT_VMMC
VMMC
Driver
Level
shifter
LATCHCLK
CLKOUT
DATAOUT0
MCCLK
MCFBCLK
MCCMDDIR
MCDATA0DIR
MCDATA31DIR
MCCMD
MCDATA[3:1]
MCDATA0
SD, MMC
SDIO OR
cards
CMDOUT
5*RB
DATAOUT[3:1]
VIO_VMEM
EMIF
Rs
Dz Dz
RC
MCDATA2DIR
3*RA
3*RA
150 mA
RB
STw4811M/STw4811N Functional description
CD00131784 55/85
4.5.2 Level shifters
Signal shifting cards voltage level value is automatically done by the multimedia processor
system. Following a card detection, the multimedia processor starts the SD/MMC/SDIO
applic ati on by writi ng in the
configuration 1
registe r (
Table 18
) to program LDO VMMC
output supply and then starts the protocol initialization.
The module includes:
Five bidirectional level shifter channels compatible with 1.8 V, 1.85 V, 2.6 V, 2.7 V,
2.85 V, 3.0 V, 3.3 V
Two unidirectional lines for clock: multimedia processor to card and feedback clock to
multimedia processor for synchronization.
Four control signals for channel direction. When direction balls (MCCMDDIR,
MCDATA0DIR, MCDATA2DIR, MCDATA31DIR) are at low level, data is transmitted
from Card to APE. When direction balls are at high level data is transmitted from APE
to card.
When the level shifters are “ON”, the APE interface MCDATA[3:0] and the MCCMD balls
have a 1.5 Mohm pull up resistor to VIO_VMEM.
It is possible to connect another card on the APE interface (1.8 V interface) for this:
set to “1” ‘mmc_ls_status’ bits of
configuration 1
registe r (
Table 18
) with this
configuration:
the APE interface MCDATA[3:0] and the MCCMD balls are put in high impedance
and the pull up resistors are disconnected.
the card interface DATAOUT[3:0] and the CMDOUT balls are set to “1” with an
internal 1.5 Mohm pull up resistor
the card clock, CLKOUT ball, is set to “0” and the APE feedback clock, MCFBCLK
ball is configured in high impedance.
Electrical and timing characteristics STw4811M/STw4811N
56/85 CD00131784
5 Electrical and timing characteristics
Otherwise specified typical parameters are defined for T = 25 °C / VBAT = 3.6 V.
5.1 Absolute maximum rating
5.2 Package dissipation
5.3 Power supply
Note: STw4811 has different ways to go in sleep mode.
The different possibilities for VCORE, VIO_VMEM and VAUX to be programmed to sleep
mode are given in
Table 26
and
Table 27
.
Taking in account the bit programming from
Table 26
and
Table 27
, sleep mode is
summarized with the following formula:
SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1
(Vxx = VCORE or VIO_VMEM or VAUX)
Table 35. STw4811 absolute maximum ratings
Symbol Description Values Units
Maximum power supply -0.5 to 7 V
Ta Maximum operating ambient temperature -30 to +85 °C
VESD Electrostatic discharge model Human body model(1)
1. HBM tests have been performed in compliance with JESD22-A114-B and ESD STM 5.1-2001.HBM
-2 to +2 kV
Charge device
model(2)
2. CDM tests have been performed in compliance with CDM ANSI-ESD STM 5.3.1-1999
-300 to +1000 V
Table 36. Package dissipation
Symbol Description Min. Typ. Max. Units
TFBGA 84 6x6x1.2mm 0.5mm ball pitch
RTHJ-A Thermal resistance junction to ambient 70 °C/W
VFBGA84 4.6x4.6x1.0mm 0.4mm ball pitch
RTHJ-A Thermal resistance junction to ambient 76 °C/W
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 57/85
Note: The configuration Vxxx_SLEEP = 0 (device in active mode) and Vxxx_FORCE_SLEEP = 1
(device in sleep mode, but no priority level on this bit) is forbidden.
In all the following tables:
“High power mode” is defined as “SLEEP = ‘0’”
“Sleep mode” is defined as “SLEEP = ‘1’”
Use
Table 27
to refer to each Vxxx supply (VCORE or VIO_VMEM or VAUX).
5.3.1 Operating conditions
5.3.2 VREF18
Table 37. Operating conditions (temperatur e range: -30 to +85 °C)
Symbol Description Test conditions Min. Typ. Max. Units
VBAT Pow er su pply 2.7 4.8 V
IQSLEEP Quiescent current
Sleep mode
VBAT = 3.6 V 140 µA
IQSTDBY OFF mode
VBAT = 3.6 V A
Table 38. VREF18
Symbol Description Test conditions Min. Typ. Max. Units
VBAT Supply volt age 2.7 4.8 V
VREF_18 Output volt age 1.78 1.8 1.84 V
PSRR Power supply
rejection ratio Vpp = 0.3 V
f 100 kHz 60 dB
Noise 100 Hz f 100
kHz 30 µV
tSSettling time 7.77 9.46 ms
Electrical and timing characteristics STw4811M/STw4811N
58/85 CD00131784
5.3.3 VCORE DC/DC step-down converter
Table 39. VCORE DC/DC step-down converter
Symbol Description Test conditions Min. Typ. Max. Units
VCORE regulator in high power mode (SLEEP = 0) unless otherwise specified, VCORE =
1.26V
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VRIPPLE Output vo ltage
ripple 6mVpp
VOUT Programmable
output voltage
’vcore_sel’[3:0]
1111
1110
1101
1100
1011
1010
1001
1000
0111 (default)
0110
0101
0100
0011
0010
0001
0000
-3.7%
-4.25%
-5%
1.45
1.40
1.38
1.36
1.34
1.32
1.30
1.28
1.26
1.24
1.22
1.20
1.15
1.10
1.05
1.00
+3.7%
+4.25%
+5%
V
IOUT Out put cu rrent 700 mA
PEFF Power efficiency VBAT = 3.6 V
IOUT = 200 mA 86 %
LIR Line regulation VBAT: [2.7; 4.8]V 10 mV
LDR(1) Load regulation IOUT: [0.1; 700] mA 10 mV
ISHORT Short circ ui t
current limitation 0.9 1.2 1.4 A
IQQuiescent current IOUT = 0 mA 130 200 µA
ILKG Power-down
current ‘en_vcore’ = 0 1 µA
PSRR(1) Power supply
rejection Vpp = 0.3 V
[0; 20] kHz 40 dB
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 7mV
LDRT Transient load
regulation IOUT = [1; 700] mA
tR = tF = 100 ns 70 mV
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 59/85
5.3.4 VIO_VME M DC/DC step-down converte r
VCORE regulator in sleep mode (SLEEP= ‘1’)
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VRIPPLE VCORE output
voltage ripple 6mVpp
LIR Line regulation VBAT: [2.7; 4.8]V 10 mV
LDR Load regulation IOUT: [0.1; 5] mA 10 mV
IOUT VCORE output
current 5mA
PEFF Power efficiency VBAT= 3.6 V
IOUT: [0.1; 5] mA 85 %
IQQuiescent current IOUT = 0 mA 20 30 µA
LIRT Transient line
regulation
ΔVBAT= 300 mV
tR = tF = 10 µs 7mV
1. Guaranteed by design
Table 39. VCORE DC/DC step-down converter (continued)
Symbol Description Test conditions Min. Typ. Max. Units
Table 40. VIO_VMEM DC/DC step-down converter
Symbol Description Test conditions Min. Typ. Max. Units
VIO_VMEM regulator in high power mode (SLEEP = ‘0’)
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VOUT Out put vo ltage (1) -3% 1.8 +3% V
VRIPPLE Output ripp le 6mVpp
LIR Line regulation VBAT: [2.7; 4.8]V 10 mV
LDR(2) Load regulation IOUT: [0.1; 600] mA 10 mV
IOUT Out put cu rrent 600 mA
PEFF Power efficiency VBAT = 3.6 V,
VIO = 1.8 V
IOUT= 200 mA 90 %
ISHORT Short circ ui t
current limitation 0.9 1.2 1.4 A
IQQuiescent current IOUT = 0 mA 130 250 µA
PSRR(2) Power supply
rejection Vpp = 0.3 V
[0; 20] kHz 40 dB
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 7mV
LDRT Transient load
regulation IOUT= [1; 600] mA
tR = tF = 100 ns 70 mV
Electrical and timing characteristics STw4811M/STw4811N
60/85 CD00131784
VIO_VMEM regulator in sleep mode (SLEEP=’1’)
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VRIPPLE Output ripp le 10 mVpp
LIR Line regulation VBAT: [2.7; 4.8]V 10 mV
LDR Load regulation IOUT: [0.1; 5] mA 10 mV
IOUT Out put cu rrent 5mA
PEFF Power efficiency VBAT = 3.6 V
IOUT = [0.1; 5] mA 85 %
IQQuiescent current IOUT = 0 mA 20 µA
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 2mV
1. Including output voltage temperature coefficient, DC line and load regulations, voltage reference accuracy,
industrial manufacturing tolerances and ripple voltage due to switching
2. Guaranteed by design
Table 40. VIO_VMEM DC/DC step-down converter (continued)
Symbol Description Test conditions Min. Typ. Max. Units
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 61/85
5.3.5 LDO regulators
VPLL
Table 41. LDO regulators - VPLL
Symbol Description Test conditions Min. Typ. Max. Units
VPLL regulator in high power mode unless otherwise specified, VPLL = 1.8 V
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VOUT Out put vo ltage
’vpll_sel’[1:0]
11 (default)
10
01
00
-3% 1.8
1.3
1.2
1.05
+3% V
IOUT Out put cu rrent 3.5 10 mA
ISHORT Short-circuit
limitation 95 130 165 mA
IQQuiescent current IOUT = 0 mA 30 40 µA
ILKG Power-down
current EN_VPLL = 0 1µA
PSRR(1)
1. Guaranteed by design
Power supply
rejection
Vpp = 0.3 V
f < 10 kHz
10 kHz < f
<100 kHz
55
45 dB
dB
LIR Line regulation VBAT: [2.7; 4.8]V 5mV
LDR Load regulation IOUT: [0.1; 10] mA 10 mV
LIRT Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs 1mV
LDRT Transient load
regulation IOUT = [0.1; 10] mA
tR = tF = 1 µs 1mV
En(1) Noise density at 1 kHz
BW = 100 Hz 250 nVrms
Hz
-------------
Electrical and timing characteristics STw4811M/STw4811N
62/85 CD00131784
VANA
VAUX
Table 42. LDO regulators - VANA
Symbol Description Test conditions Min. Typ. Max. Units
VANA regulator in high power mode
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VOUT Out put vo ltage -5% 2.5 +5% V
IOUT Out put cu rrent 10 mA
ISHORT Short-circuit
limitation 39 51 64 mA
IQQuiescent current IOUT = 0 mA 30 µA
ILKG Power-down
current EN_VANA = 0 1µA
PSRR(1)
1. Guaranteed by design
Power supply
rejection Vpp = 0.3 V
f < 10 kHz 45 dB
LIR Line regulation VBAT: [2.7; 4.8] V 5mV
LDR Load regulation IOUT: [0.1; 10] mA 5mV
LIRT Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs 2mV
LDRT Transient load
regulation IOUT = [0.1; 10] mA
tR = tF = 1 µs 15 mV
Table 43. LDO regulators - VAUX
Symbol Description Test conditions Min. Typ. Max. Units
VAUX regulator in high power mode (pdn_vaux = 1, SLEEP = 0)
VBAT Input power supply
VOUT = 1.5V 1.7 4.8 V
VOUT = 1.8/2.5 V 2.7 3.6 4.8 V
VOUT = 2.8 V 3 3.6 4.8
VOUT Out put vo ltage
’vaux_sel’[1:0]
00 (default)
01
10
11
-3% 1.5
1.8
2.5
2.8
+3% V
IOUT Out put cu rrent 150 mA
ISHORT Short-circuit
limitation 220 410 mA
IQQuiescent current IOUT = 0 mA 30 µA
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 63/85
ILKG Power-down
current ’pdn_vaux’ = 0 1 µA
PSRR(1) Power supply
rejection
VOUT=1.5 V
Vpp = 0.3 V
f < 10 kHz 40 dB
LIR Line regulation VOUT=1.5 V
VBAT: [2.7; 4.8]V 5mV
LDR(1) Load regulation VOUT=1.5 V
IOUT= [0.1; 150] mA 10 mV
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 2mV
LDRT Transient load
regulation
IOUT = [10; 90%]
mA
tR = tF = 1 µs 35 mV
tSSettling time 100 µs
VAUX regulator in sleep mode (’pdn_vaux’= 1, SLEEP=’1’)
VBAT Input power supply
VOUT = 1.5V
VIO_VMEM supply 1.7 4.8 V
VOUT = 1.8/2.5 V 2.7 3.6 4.8 V
VOUT = 2.8 V 3 3.6 4.8
IOUT Out put cu rrent 500 µA
IQQuiescent current IOUT = 0 mA 20 µA
PSRR(1) Power supply
rejection
VOUT=1.5 V
Vpp = 0.3 V
f < 10 kHz 38 dB
LIR Line regulation VOUT=1.5 V
VBAT: [2.7; 4.8]V 5mV
LDR Load regulation VOUT=1.5 V
IOUT= [10; 90%] µA 10 mV
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 2mV
LDRT Transient load
regulation IOUT = [10; 90%] µA
tR = tF = 1 µs 35 mV
1. Guaranteed by design
Table 43. LDO regulators - VAUX (continued)
Symbol Description Test conditions Min. Typ. Max. Units
Electrical and timing characteristics STw4811M/STw4811N
64/85 CD00131784
5.3.6 Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM
drops below the threshold, the multimedia processor is reset.
5.4 Digital specifications
5.4.1 CMOS input/output static characteristics: I2C interface
Table 44. Power supply monitoring
Symbol Description Test conditions Min. Typ. Max. Units
Threshold
THCORE(1)
1. Guaranteed by design
Threshold VCORE -3% VCORE-150 +3% mV
THVIO(1) Threshold
VIO_VMEM -3% 1.65 +3% V
Comparators
VBAT Supply voltage 2.7 3.6 4.8 V
tRES Response time 100 ns
HYFALL Hysteresis (input
voltage falling) 26 mV
HYRIS Hysteresis (input
voltage rising) +4 mV
Table 45. CMOS input/output static characteristics: I²C interface
Symbol Description Test conditions Min. Typ. Max. Units
I²C interface(1)
1. Vio is for VIO_VMEM
VIL Low level input
voltage 0.3*VIO V
VIH High lev el input
voltage 0.7*VIO V
IIL Low level input
current -1.0 1.0 µA
IIH High lev el input
current -1.0 1.0 µA
VOL Low level output
voltage
IOL = 3mA
(with open drain or
open colle cto r) 0.2*VIO V
VOH High lev el output
voltage
IOL = 3mA
(with open drain or
open colle cto r) 0.8*VIO V
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 65/85
5.4.2 CMOS input/output dynamic characteristics: I2C interface
Table 46. CMOS input/output dynamic characteristics: I²C interface
Symbol Description Min. Typ. Max. Units
I²C interface (
Figure 8
)
Fscl Clock frequency 400 kHz
thigh Clock pulse width high 600 ns
tlow Clock pulse width low 1300 ns
tr SDA, SCL, USBSDA, USBSCL rise time 20+0.1*Cb (1)
1. Cb = total capacitance of one bus line in pF
300 ns
tf SDA, SCL, USBSDA, USBSCL fall time 20+0.1*Cb 300 ns
thd_sta Start condition hold time 600 ns
tsu_sta Start condition set up time 600 ns
thd_dat Data input hold time 0 ns
tsu_d at Data input set up tim e 100 ns
tsu_sto Stop condition set up time 600 ns
tbuf Bus free time 1300 ns
Cb Capacitive load for each bus line 400 pF
Electrical and timing characteristics STw4811M/STw4811N
66/85 CD00131784
5.4.3 CMOS input/output static characteristics: VIO level
USB and control I/Os
Table 47. VIO level: USB and control I/Os
Symbol Description Test conditions Min. Typ. Max. Units
SW_RESETn, VDDOK, PORN, PWREN, TCXO_EN, REQUEST_MC, CLK32K, CLK32K_IN,
USBOEN, USBVP, USBVM, USBRCV, USBINTn, MASTER_CLK
VIL(1)
1. Vio fo r VIO_ VMEM
Low level input
voltage 0.3*Vio V
VIH High lev el input
voltage 0.7*Vio V
IIL Low level input
current -1.0 1.5 µA
IIH High lev el input
current -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage IOL = 4 mA 0.2*Vio V
VOH High lev el output
voltage IOL = 4 mA 0.8*Vio V
tOF Output fall time Capacitance 10pF 10 ns
tOR Output rise time Capacitance 10pF 10 ns
CI/O Driving capability 100 pF
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 67/85
MMC interface
Table 48. VIO level: MMC interface
Symbol Description Test conditions Min. Typ. Max. Units
MMC interface: MCCLK, MCFBCLK, MCCMDDIR, MCCMD, MCDATA2 DIR, MCDAT2,
MCDATA0DIR, MCDAT0, MCDAT31DIR, MCDAT3, MCDAT1
VIL(1)
1. Vio fo r VIO_ VMEM
Low level input
voltage 0.3*Vio V
VIH High lev el input
voltage 0.7*Vio V
IIL Low level input
current -1.0 1.5 µA
IIH High lev el input
current -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage IOL = 15 mA 0.2*Vio V
VOH High lev el output
voltage IOL = 15 mA 0.8*Vio V
CI/O Driving capability
at 52 MHz 30 pF
Electrical and timing characteristics STw4811M/STw4811N
68/85 CD00131784
5.4.4 CMOS input/output static characteristics: VBAT level
Table 49. CMOS input/output static characteristics: VBAT level
Symbol Description Test conditions Min. Typ. Max. Units
IT_WAKE_UP, PON, GPO1, GPO2
VIL Low level input
voltage PON 0.3*Vbat V
VIH High lev el input
voltage PON 0.7*Vbat V
IIL Low level input
current PON -1.0 1.5 µA
IIH High lev el input
current PON -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage
IT_WAKE_UP,
GPO1, GPO2
IOL = 2 mA 0.2*Vbat V
VOH High lev el output
voltage
IT_WAKE_UP,
GPO1, GPO2
IOL = 2 mA 0.8*Vbat V
tOF Output fall time Capacitance 10pF 5 ns
tOR Output rise time Capacitance 10pF 50 ns
CI/O Driving capability 100 pF
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 69/85
5.4.5 CMOS input/output static characteristics: VMMC level
Table 50. CMOS input/output static characteristics VMMC level
Symbol Description Test conditions Min. Typ. Max. Units
DATAOUT0, DATAOUT1, DATAOUT2, DATAOUT3, CMDOUT, LATCHCLK, CLKOUT
VIL Low level input
voltage 0.3*VMMC
VIH High lev el input
voltage 0.7*VMMC
IIL Low level input
current -1.0 1.5 µA
IIH High lev el input
current -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage IOL =25mA 0.2*VMMC
VOH High lev el output
voltage IOL =25mA 0.8*VMMC
CI/O Driving capability 40 pF
Electrical and timing characteristics STw4811M/STw4811N
70/85 CD00131784
5.5 USB OTG transceiver
Table 51. USB OTG transceiver
Symbol Description Test conditions Min. Typ. Max. Unit s
UART mode
tRRise time CLOAD= [50; 100] pF
[10; 90] % of
VOH-VOL
100 ns
tFFall time CLOAD= [50;100 ] pF
10......90% of
VOH-VOL
100 ns
tPLH Drive propagation
delay low => high CLOAD= [50; 100] pF
50% of |VOH-VOL|100 ns
tPHL Drive propagation
delay high => low CLOAD= [50;100] pF
50% of |VOH-VOL|100 ns
USB full speed mode (DP & DN signals)
tRRise time
USBVP & USBVM :
- Trise & Tfall < 1 ns
- Skew < 0.66 ns
420ns
tFFall time 4 20 ns
DRFM Differential rise an
fall time matching 90 111 %
OSCV Output signal
crossover voltage 1.3 2 V
PDEL Propagation delay 18 ns
USB low speed mode (DP & DN signals)
tRRise time 75 300 ns
tFFall time 75 300 ns
DRFM Differential rise an
fall time matching 80 125 %
OSCV Output signal
crossover voltage 1.3 2 V
VBUS comparator s
VBAT Input power supply Battery voltage 3.1 3.6 4.8 V
tRR Rising reac ti ng tim e 1.7 µs
tFR Fall reacting time 2.1 µs
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 71/85
Threshold VBUS monitoring
VAval VBUS valid 4.4 4.5 4.6 V
Vth_dev Threshold device ‘th_Bdevice’ = 1 3.77 3.87 3.97 V
VBses VBUS session valid 1.8 2 V
VBsess_end B_session_end 0.2 0.8 V
VBUS
RA_BUS_
IN 40 100 kΩ
TA_VBUS_
RISE
VBUS = [0; 4.4] V
ILOAD = 100mA
External ca p 10µF 100 ms
Data line pull-down resistance
RPD_DPDN 14 19 25 kΩ
Data line pull-up resistance
RPU_DP Bus idle
Bus driven 900
1425 1200
2300 1600
3100 Ω
RPU_DN Bus idle
Bus driven 900
1425 1200
2300 1600
3100 Ω
PULL-DOWN on VBUS
RVBUS_PD 650 925 1200 Ω
PULL-UP on VBUS
RVBUS_SRP 420 600 780 Ω
ID
VID_GND ID_GND comparator
threshold 2.7 V < VBAT < 4.8
V0.15*
VBAT V
VID_HI
(VBAT)Battery level 2.7 3.6 4.8 V
VID_FLOAT
ID_FLOAT
comparator
threshold
0.85*
VBAT V
RPU_ID 70 100 130 kΩ
RPD_ID 10 kΩ
Carkit threshold detection
cR_INT C arkit interrupt
threshold 0.4 0.6 V
Table 51. USB OTG transceiver (continued)
Symbol Description Test conditions Min. Typ. Max. Unit s
Electrical and timing characteristics STw4811M/STw4811N
72/85 CD00131784
Transceiver
VOH_TXD_
DAT
TXD output high on
DN ISOURCE = 500 µA 2.4 3.6 V
VOL_TXD_
DAT
TXD output low on
DN ISINK = 2mA 0.4 V
VIH_RXD
_DAT
RX D input high on
DP 2V
VIL_RXD_
DAT
RXD input low on
DP 0.8 V
Charge pump
VBAT Input power supply Battery voltage VUSB+0.1 3.6 4.8 V
VBUS Out put voltage Current load up to
100 mA 4.75 5 5.25 V
tSSettling time
[0;4.8] V)
Ext. load: 100 mA +
External ca p =
10µF
1.2 ms
IQ Quiesce nt curr ent No Load 2.7 mA
VRipple Amplitude output
ripple on VBUS
Current load 8 mA
Current load
100mA
25
40 mV
mV
IOUT Output current 100 mA
Eff Efficiency
VBAT = 3.0V
IOUT =100mA
VBAT= 3.6V.
IOUT = 8 mA.
85
60
%
%
VUSB regulator
VBAT(1) Input voltage Battery voltage:
VBAT min =
VOUT + 0.1V VUSB+0.1 3.6 5.5 V
VOUT Output voltage VBAT min=
VOUT + 0.1V 3.0 3.1 3.2 V
ISHORT Short circuit current
limitation 320 mA
IQQuiescent current No load 70 µA
PSRR(2) Power supply
rejection VBAT= VOUT+0.2V
f < 20 kHz 45 dB
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10µs. 5mV
Table 51. USB OTG transceiver (continued)
Symbol Description Test conditions Min. Typ. Max. Unit s
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 73/85
5.6 SD/MMC/SDIO card interface
tSSettling time
OFF->ON IOUT = 0mA 25 µs
tDDischa rge tim e
ON>OFF IOUT = 0mA 400 µs
1. From 4.8 V to 5.5 V, charge pump is “Off” and no OTG feature is provided
2. Guaranteed by design
Table 51. USB OTG transceiver (continued)
Symbol Description Test conditions Min. Typ. Max. Unit s
Table 52. SD/MMC/SDIO card interface
Symbol Description Test conditions Min. Typ. Max. Units
VMMC regulator specifications (’pdn_vmmc’ = 1)
VIN Input voltage
VOUT = 3.3 V
VOUT = 3 V
VOUT = 2.85 V
VOUT = 2.7 V
VOUT = 2.6 V
VOUT = 1.8/1.8 5 V
3.55
3.25
3.1
2.95
2.85
2.7
3.6 5.5 V
VOUT Out put vo ltage -3%
3.3
3
2.85
2.7
2.6
1.85
1.8
+3% V
IOUT Out put cu rrent 150 mA
ISHORT Short circ ui t
current limitation 240 360 600 mA
IQ Quiescent current IOUT = 0 mA 30 µA
ILKG Power-down
current ’p dn_ vm m c’ = 0 1 µA
PSRR(1) Power supply
rejection
IOUT = 150 mA
Vpp = 0.3 V
f < 20 kHz 45 dB
LIR(1) Line regulati on VOUT=2.85 V
VBAT: [3.1; 4.8]V 5mV
LDR(1) Load regulation VOUT=2.85 V
IOUT= [1; 150] mA 10 mV
LIRT Transient line
regulation
VOUT=2.85 V
VBAT: 3.1 to 3.4V
tR = tF = 10 µs. 2mV
Electrical and timing characteristics STw4811M/STw4811N
74/85 CD00131784
LDRT Transient load
regulation IOUT = [1; 150] mA
tR = tF = 1 µs 25 mV
tSSettling time
OFF->ON IOUT = 0 mA 100 µs
tDDischarge time
ON>OFF IOUT = 0 mA 1 ms
Bus line specifications
RA(2) Pull-up resistor To pr event bus
from floating 1.5 MΩ
RB Pull-down resistor To pr event bus
from floating 1.5 MΩ
fDT
Clock frequency
data transfert
mode With CL = 30pF 52 MHz
fID Clock frequency
identification mode With CL = 30pF 400 kHz
TPHC Propag ation time
from Host to card
Figure 15
7ns
TPCH Propag ation time
from card to host
Figure 15
7ns
TSHC
Clock /data skew
time from host to
card
Figure 15
Reference is
CLKOUT +/- 0.5 ns
TSCH
Clock /data skew
time from card to
host
Figure 15
Reference is
MMCLK +/- 0.5 ns
TRRise time 3 ns
TFFall time 3 ns
C1LINE Between host and
STw4811
Bus line
capacitance
f < 52 MHz 20(3) pF
C2LINE Between ST w48 1 1
and MMC card
Bus line
capacitance
f < 52 MHz 20 + 20(4) pF
1. Guaranteed by design
2. MMC interface pull up resistors are in EMIF06-HCM 01F2 device (7 KΩ for CMD; 75 KΩ for Data wires)
3. 20 pF for equivalent board parasitic capacitance.
4. 20 pF for EMIF06 protection + 20 pF for board parasitic capacitance.
Table 5 2. SD/MMC/SDIO card interface (contin ued)
Symbol Description Test conditions Min. Typ. Max. Units
VMMC regulator specifications (’pdn_vmmc’ = 1)
STw4811M/STw4811N Electrical and timing characteristics
CD00131784 75/85
Figure 15. Propagation and clock/data skew times
MCCLK
MCCMD
MCDATA[3:0]
MCFBCLK t
50%
2 ns
2 ns
10%
90%
10%
90%
t
50%
T
PHC
CLKOUT
CMDOUT
DATAOUT[3:0]
LATCHCLK
T
PHC
MCCLK
MCCMD
MCDATA[3:0]
MCFBCLK
t
50%
2 ns
2 ns
10%
90%
10%
90%
t
50%
T
PCH
CLKOUT
CMDOUT
DATAOUT[3:0]
LATCHCLK
T
PCH
MCDATA[3:0]
2 ns
10%
90%
T
SHC
MCCLK 50% CLKOUT
DATAOUT[3:0]
MCDATA[3:0]
2 ns
10%
90%
T
SCH
MCCLK
50%
CLKOUT
DATAOUT[3:0]
Application information STw4811M/S Tw4811 N
76/85 CD00131784
6 Application information
6.1 Components list
Table 53. Components list
Name Typical
value Comments Function
C1 22µF
In the complete system application, the
sum of the capacitors connected on
each STw4811 ball must never be less
than 30% of the value indicated in the
typical value column of this table. This
inc ludes all capacitor parameters:
production dispersion
DC bias voltage applied
temperature range of the complete
system application
–aging
VIO_VMEM output filter
C4 VCORE output filter
C2
10µF
VBAT_VIOVMEM decoupling
C3 VBAT_ANA decoupling
C5 VBAT_VCOR E dec ou pli ng
C6
1µF
VPLL output filter
C7 VANA output filter
C8 VREF output filter
C10 VUSB output filter
C13 VAUX output filter
C9 470nF Flying capacitor for cha rge pu mp
C11 4.7µF VBUS output filter (tank charge
pump capacitor)
C12 2.2µF VSD_MMC output filter
C13, C14,
C15, C16,
C17 1 µF Vbattery input voltage
decoupling capacitors
L1 4.7µH See
Table 54
for recommended coils Coil VIOVMEM DC/DC
L2 Coil VCORE DC/DC
Table 54. Recommended coils
Supplier Pa rt number DCR (Ω)Irms
(1) (A)
1. Irms: 30% decrease of initial value
L x l x h (mm * mm * mm)
TDK
VLF3010AT-4R7MR70 0.28 0.7 2.8 * 2.6 * 1.0
VLF3012AT-4R7MR74 0.16 0.74 2.8 * 2.6 * 1.2
VLF4012AT-4R7M1R1 0.14 1.1 3.7 * 3.5 * 1.2
Coilcraft
DO1605T-472MX 0.15 1.1 5.5 * 4.2 * 1.8
DO3314-472ML 0.32 1.1 3.3 * 3.3 * 1.4
ME3320-472MX 0.19 1.1 3.2 * 2.5 * 2.0
STw4811M/STw4811N Application information
CD00131784 77/85
Table 55. Other ST components
Name Order code Function
EMIF02 EMIF02USB05 USB ESD/EMI Protection
EMIF06 EMIF06-HMC01F2 MMC Interface ESD/EMI Protection
Application information STw4811M/S Tw4811 N
78/85 CD00131784
6.2 Application schematics
Figure 16. STw4811 application schematics
VLX_VIOVMEM
USBVP
USBOEn
USBRCV
USBVM
MCCMDDIR
MCCMD
MCDAT0DIR
VUSB
SCL
SDA
PON
MCDAT0
MCCLK
VREF
LATCHCLK
DATOUT[3:1]
MCDAT31DIR
MCFBCLK
CMDOUT
MCDAT[3,1]
Multimedia processor
VCORE
PORn
CLK32K
PWREN
VDDOK
USB
3
VMINUS_VIOVMEM
VBAT_VIOVMEM
VIOVMEM_FB
VBAT_ANA
VMINUS_ANA
VBAT_VCORE
VLX_VCORE
VPLL
VANA
CP
CN
VBUS
DP
DN
ID ESD
EMI
filter
VMMC
SD
MMC
SDIO
CLKOUT
MODEM & SYSTEM CLOCK
3
CLK32Kin
MASTER_CLK**
SW_RESETn
IT_WAKE_UP
L1
C1
C2 C3
L2
C5
C6
C7
C8
C10
C11
C12
R1
R1
VBAT_MMC
VBAT_USB
VMINUS_USB
VBAT_VPLL_VANA
VMINUS_DIG
VBAT_DIG
D3
B9
DATAOUT0
VAUX
C9
VBAT_VAUX C13
VMINUS_VCORE
C4
USBINTn
REQUEST_MC
TCXO_EN
EMI
Filter
USBSCL
USBSDA
GPO1
GPO2
EMIF02
EMIF06-HMC01F2
MCDAT2DIR
MCDAT2
STw4811
CARD
C13(*)
C14(*)
C15(*)
C16(*)
C17(*)
(*) The usefulness of these capacitors depend of PCB layout
(**) Master Clock can be connected on this ball. In this case see the feature use restriction in section 4.2.3
STw4811M/STw4811N Package mechanical data
CD00131784 79/85
7 Package mechanical data
In order to meet environmental requirements, ST-Ericsson offers these devices in
ECOPACK® packages. These packages have a Lead-free second level interconnect. The
category of second Level Interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is a trademark of
STMicroelectronics group of companies. ECOPACK specifications are available at:
www.st.com.
7.1 TFBGA 84 balls
See
Figure 17: TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing
.
Table 56. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions(1)
1. These measurements conform to JEDEC standards
Drawing dimensions (mm) Min. Typ. Max.
A1.16
A1 0.20 0.25 0.30
A2 0.82
b 0.250.300.35
D 5.906.006.10
D1 4.50
E 5.906.006.10
E1 4.50
e 0.450.500.55
f 0.650.750.85
ddd 0.08
Package mechanical data STw4811M/STw4811N
80/85 CD00131784
Figure 17. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing
Note: The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
STw4811M/STw4811N Package mechanical data
CD00131784 81/85
7.2 VFBGA 84 balls
See
Figure 18: VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing
.
Table 57. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch(1)
1. These measurements conform to JEDEC standards
Drawing dimensions (mm) Min. Typ. Max.
A0.864
A1 0.15 0.19 0.23
A2 0.615
A3 0.18
A4 0.435
b 0.210.250.29
D 4.554.604.65
D1 3.60
E 4.554.604.65
E1 3.60
e0.40
f0.50
ddd 0.08
eee 0.13
fff 0.04
Package mechanical data STw4811M/STw4811N
82/85 CD00131784
Figure 18. VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing
Note: The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
STw4811M/STw4811N Ordering information
CD00131784 83/85
8 Ordering information
Note: STw4811M: Vaux OFF at start up
STw4811N: Vaux ON at start up
Table 58. Order codes
Part number Package Comments Packing
STW4811MBHD /LF TFBGA84- 6x 6 x 1 .2 mm / 0. 5 m m pitch - Tray
STW4811MBHDT/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch - Tape and Reel
STW4811MBRA/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch - Tray
STW4811MBRAT/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch - Tape and Reel
STW4811NBHD/LF T FBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch - Tray
STW4811NBHDT/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch - Tape and Reel
STW4811NBRA/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch - Tray
STW4811NBRAT/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch - Tape and Reel
STW4811MBRAT/HF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch ECOPACK2 Tape and Reel
Revision history STw4811M/STw4811N
84/85 CD00131784
9 Revision history
Table 59. Document revision history
Date Revision Changes
05-Sep-2007 1 Initial release on www.st.com.
Reviewed the first sentence in
Section 5.3: Power supply
to precise
‘typical’ parameters.
17-Apr-2008 2 Updated the document status to ‘datasheet’ with respect to the
device maturity level.
25-Aug-2008 3
Updated the maximum current value of the step-down converter for
processor core to 700 mA in
Features
,
Chapter 1: Overview
,
Section 4.3.2: VCORE regulator: DC/DC STEP- DOWN regulator
and
Table 39: VCORE DC/DC step-do w n convert er
.
04-June-2010 4 Updated
Chapter 8: Ordering information
and the ECOPACK
information in
Chapter 7: Package mechanical data
STw4811M/STw4811N
CD00131784 85/85
Please Read Carefully:
The contents of this document are subject to change without prior notice. ST-Ericsson makes no representation or warranty of any nature
whatsoev er (nei ther ex press ed nor implie d) with r espect to the mat ters addre ssed in thi s document , in cluding but not limit ed to warr anties of
merchantab ilit y or fi tness for a pa rticu lar purpo se, in terpre tabilit y or in terope rabi lity o r, again st in fringeme nt of third p arty i ntellec tual prop ert y
rights, and in no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or consequential damages and or loss
whatsoev er (including but not limit ed to monetary losse s or loss of data) , that might ari se from the use of this docum ent or the informa tion in it.
ST-Erics son and the ST-Eric sson logo are t r ademarks of the ST -Ericsson group of companies or used under a license from
STMicroelec tronics NV or Telef onaktiebola get LM Ericsson.
All other names are the proper ty of their respective owners.
© ST-Ericsson, 2010 - All rights reserved
Contact information at www.stericsson.com under Contacts
www.stericsson.com