TYPICAL PERFORMANCE CURVES (R) 1200V APT33GF120B2_LRDQ2(G) APT33GF120B2RDQ2 APT33GF120LRDQ2 APT33GF120B2RDQ2G* APT33GF120LRDQ2G* *G Denotes RoHS Compliant, Pb Free Terminal Finish. FAST IGBT & FRED (B2) T-Max(R) TO-264 The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through technology, the Fast IGBT combined with an APT free wheeling Ultra Fast Recovery Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed. * Low Forward Voltage Drop * High Freq. Switching to 20KHz * RBSOA and SCSOA Rated * Ultra Low Leakage Current (L) C * Ultrafast Soft Recovery Anti-parallel Diode G E MAXIMUM RATINGS Symbol All Ratings: TC = 25C unless otherwise specified. Parameter APT33GF120B2_LRDQ2(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage 30 I C1 Continuous Collector Current @ TC = 25C 64 I C2 Continuous Collector Current @ TC = 100C 30 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 75 Switching Safe Operating Area @ TJ = 150C 75A @ 1200V Total Power Dissipation Watts 357 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.5mA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES MAX 4.5 5.5 6.5 2.0 2.5 3.0 Units 1200 (VCE = VGE, I C = 1mA, Tj = 25C) Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25C) Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25C) TYP xx 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125C) Volts 100 2 Gate-Emitter Leakage Current (VGE = 20V) 6000 120 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com A nA 11-2005 V(BR)CES MIN Rev A Characteristic / Test Conditions 052-6280 Symbol DYNAMIC CHARACTERISTICS Symbol APT33GF120B2_LRDQ2(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf 110 Gate Charge 10 VGE = 15V 170 TJ = 150C, R G = 4.3, VGE = 1315 TJ = +25C 1515 14 VCC = 800V 17 Turn-off Delay Time VGE = 15V 220 RG = 4.3 135 1325 I C = 25A Current Fall Time Eoff Turn-off Switching Energy J 1930 Inductive Switching (125C) Current Rise Time Turn-on Switching Energy (Diode) ns 110 RG = 4.3 Turn-on Delay Time Turn-on Switching Energy nC 185 6 Eon2 V A 17 I C = 25A Eon1 pF 75 14 5 UNIT 100 VCC = 800V 4 MAX 19 Inductive Switching (25C) Current Fall Time Turn-off Switching Energy td(off) f = 1 MHz 15V, L = 100H,VCE = 1200V Turn-off Delay Time Eoff tr 230 VGE = 15V Turn-on Switching Energy (Diode) td(on) 1855 VGE = 0V, VCE = 25V I C = 25A Current Rise Time Eon2 TYP Capacitance VCE = 600V Turn-on Delay Time Turn-on Switching Energy MIN 44 55 TJ = +125C ns J 3325 6 2145 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RJC Junction to Case (IGBT) RJC Junction to Case (DIODE) WT Package Weight MIN TYP MAX .35 0.61 6.10 UNIT C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6280 Rev A 11-2005 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TJ = 25C 60 TJ = -55C 50 40 TJ = 125C 30 20 10 70 12V 60 50 11V 40 10V 30 20 9V 0 5 10 15 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25C) 250s PULSE TEST<0.5 % DUTY CYCLE 70 TJ = -55C 60 50 40 30 TJ = 25C 20 TJ = 125C 10 0 FIGURE 2, Output Characteristics (TJ = 125C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 80 8V 7V 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 13V 80 10 0 0 15V 90 J 10 VCE = 960V 8 6 4 2 0 20 TJ = 25C. 250s PULSE TEST <0.5 % DUTY CYCLE IC = 15A 3 2 IC = 7.5A 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 5 2 0 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.85 VGE = 15V. 250s PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 150 TJ, Junction Temperature (C) FIGURE 6, On State Voltage vs Junction Temperature 80 0.90 IC = 12.5A 1 1.10 0.95 IC = 25A 3 90 1.00 IC = 50A 4 1.15 1.05 40 60 80 100 120 140 160 180 200 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC = 30A 4 (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 VCE = 240V VCE = 600V 12 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 25A C T = 25C 14 0 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 8, DC Collector Current vs Case Temperature 11-2005 IC, COLLECTOR CURRENT (A) = 15V Rev A GE 052-6280 V 70 APT33GF120B2_LRDQ2(G) 100 IC, COLLECTOR CURRENT (A) 80 VGE = 15V 15 10 5 VCE = 800V TJ = 25C, or 125C RG = 4.3 L = 100H 0 70 40 30 20 VCE = 800V RG = 4.3 L = 100H RG = 4.3, L = 100H, VCE = 800V 100 TJ = 25C, VGE = 15V 80 TJ = 125C, VGE = 15V 60 40 10 20 0 0 60 50 40 30 20 10 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 4,000 = 800V V CE = +15V V GE R = 4.3 EOFF, TURN OFF ENERGY LOSS (J) EON2, TURN ON ENERGY LOSS (J) 50 120 tf, FALL TIME (ns) tr, RISE TIME (ns) TJ = 25 or 125C,VGE = 15V 50 G 8,000 TJ = 125C 6,000 4,000 2,000 TJ = 25C J 12,000 10,000 8,000 Eoff,50A 4,000 Eoff,25A 2,000 Eon2,25A Eon2,12.5A Eoff,12.5A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (J) Eon2,50A 14,000 6,000 G 3,000 TJ = 125C 2,500 2,000 1,500 TJ = 25C 1,000 500 9,000 = 800V V CE = +15V V GE T = 125C 16,000 3,500 60 50 40 30 20 10 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 60 50 40 30 20 10 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 18,000 = 800V V CE = +15V V GE R = 4.3 0 0 SWITCHING ENERGY LOSSES (J) 100 140 10,000 11-2005 VGE =15V,TJ=25C 160 RG = 4.3, L = 100H, VCE = 800V 60 50 40 30 20 10 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current Rev A VGE =15V,TJ=125C 150 60 50 40 30 20 10 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 60 052-6280 200 0 60 50 40 30 20 10 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 APT33GF120B2_LRDQ2(G) 250 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 = 800V V CE = +15V V GE R = 4.3 8,000 G 7,000 Eon2,50A 6,000 5,000 Eoff,50A 4,000 3,000 2,000 1,000 0 Eoff,25A Eon2,25A Eon2,12.5A Eoff,12.5A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES 3,000 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 1,000 500 Coes Cres 100 APT33GF120B2_LRDQ2(G) 80 Cies 50 70 60 50 40 30 20 10 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.35 D = 0.9 0.30 0.7 0.25 0.20 0.5 Note: 0.15 0.3 0.10 t1 t2 0.05 0 PDM ZJC, THERMAL IMPEDANCE (C/W) 0.40 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.225 0.148 Case temperature. (C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 5 0 T = 125C J T = 75C C D = 50 % V = 800V CE R = 4.3 max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RJC G 5 10 15 20 25 30 35 40 45 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 11-2005 0.0138 F 10 Rev A 0.125 Power (watts) 50 052-6280 RC MODEL Junction temp. (C) FMAX, OPERATING FREQUENCY (kHz) 100 APT33GF120B2_LRDQ2(G) APT40DQ120 Gate Voltage 10% TJ = 125C td(on) IC V CC Collector Current tr V CE 90% 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125C td(off) 90% tf Collector Voltage 10% 0 Collector Current Switching Energy 052-6280 Rev A 11-2005 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT33GF120B2_LRDQ2(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol All Ratings: TC = 25C unless otherwise specified. Characteristic / Test Conditions APT33GF120B2_LRDQ2(G) IF(AV) Maximum Average Forward Current (TC = 112C, Duty Cycle = 0.5) 40 IF(RMS) RMS Forward Current (Square wave, 50% duty) 63 IFSM Non-Repetitive Forward Surge Current (TJ = 45C, 8.3ms) UNIT Amps 210 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions MIN Forward Voltage TYP IF = 25A 2.46 IF = 50A 2.95 IF = 25A, TJ = 125C 1.83 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/s, V = 30V, T = 25C F F R J - 26 trr Reverse Recovery Time - 350 Qrr Reverse Recovery Charge - 570 - 4 - 430 ns - 2200 nC - 9 - 210 ns - 3400 nC - 29 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 40A, diF/dt = -200A/s VR = 800V, TC = 125C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25C Maximum Reverse Recovery Current trr IRRM IF = 40A, diF/dt = -200A/s IF = 40A, diF/dt = -1000A/s VR = 800V, TC = 125C Maximum Reverse Recovery Current ns nC - - Amps Amps 0.60 D = 0.9 0.50 0.7 0.40 Note: 0.5 0.30 PDM 0.3 0.20 t1 t2 t Duty Factor D = 1/t2 Peak TJ = PDM x ZJC + TC 0.10 0 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL 0.0442 0.00222 0.242 0.00586 Rev A Power (watts) 11-2005 Junction temp (C) 0.324 0.0596 052-6280 Z JC, THERMAL IMPEDANCE (C/W) 0.70 Case temperature (C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 600 100 80 TJ = 175C 60 40 TJ = 25C TJ = 125C 20 trr, REVERSE RECOVERY TIME (ns) IF, FORWARD CURRENT (A) 120 APT33GF120B2_LRDQ2(G) T = 125C J V = 800V R 500 80A 400 40A 20A 300 200 100 TJ = -55C 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 5000 T = 125C J V = 800V 4500 R 4000 80A 3500 3000 40A 2500 2000 20A 1500 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/s) Figure 27. Reverse Recovery Charge vs. Current Rate of Change IRRM Qrr CJ, JUNCTION CAPACITANCE (pF) 40A 15 10 20A 5 Duty cycle = 0.5 T = 175C J 70 50 40 20 10 0 200 11-2005 20 30 0.4 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev A 25 60 0.2 052-6280 80A R 30 80 trr 0.6 150 100 50 0 T = 125C J V = 800V 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/s) Figure 28. Reverse Recovery Current vs. Current Rate of Change trr 0.8 35 0 Qrr 1.0 0.0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/s) Figure 26. Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/s) 1.2 0 IRRM, REVERSE RECOVERY CURRENT (A) 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT33GF120B2_LRDQ2(G) Vr diF /dt Adjust +18V APT10035BLL 0V D.U.T. 30H trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions T-MAX(R) (B2) Package Outline TO-264 (L) Package Outline e1 SAC: Tin, Silver, Copper 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) 4.50 (.177) Max. 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 25.48 (1.003) 26.49 (1.043) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) 2.29 (.090) 2.69 (.106) 19.81 (.780) 21.39 (.842) 0.48 (.019) 0.76 (.030) 0.84 (.033) 1.30 (.051) 2.79 (.110) 2.59 (.102) 3.18 (.125) 3.00 (.118) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 2.29 (.090) 2.69 (.106) Gate Collector (Cathode) Emitter (Anode) 11-2005 0.40 (.016) 0.79 (.031) 5.79 (.228) 6.20 (.244) Rev A 20.80 (.819) 21.46 (.845) Collector (Cathode) Collector (Cathode) 5.38 (.212) 6.20 (.244) 052-6280 e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 15.49 (.610) 16.26 (.640) 1.49 (.059) 2.49 (.098)