Data Sheet SCC2230-E02 Combined gyroscope and 3-axis accelerometer with digital SPI interface Features * * * * * * * * * Applications 125/s Z-axis angular rate measurement range 2g 3-axis acceleration measurement (XYZ) range -40C...+125C operating range 3.0V...3.6V supply voltage SPI digital interface Extensive self diagnostics features Size 15.0 x 8.5 x 4.3 mm (l x w x h) RoHS compliant robust SOIC plastic package suitable for lead free soldering process and SMD mounting Proven capacitive 3D-MEMS technology SCC2230-E02 is targeted at applications demanding high stability with tough environmental requirements. Typical applications include: * Inertial Measurement Units (IMUs) for highly demanding environments * Platform stabilization and control * Motion analysis and control * Roll over detection * Robotic control systems * Machine control systems * Navigation systems Overview The SCC2230-E02 is a combined high performance angular rate and accelerometer sensor component. It consists of Z-axis angular rate sensor and three axis accelerometer sensor based on Murata's proven capacitive 3D-MEMS technology. Signal processing is done in one mixed signal ASIC that provides angular rate and acceleration output via flexible SPI digital interface. Sensor elements and ASIC are packaged to 24 pin premolded plastic housing that guarantees reliable operation over product's lifetime. The SCC2230-E02 is designed, manufactured and tested for high stability, reliability and quality requirements. The component has extremely stable output over wide range of temperature, humidity and vibration. The component has several advanced self diagnostics features, is suitable for SMD mounting and is compatible with RoHS and ELV directives. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 1/38 Rev. B0 TABLE OF CONTENTS 1 Introduction ....................................................................................................................................... 4 2 Specifications ................................................................................................................................... 4 2.1 General Specifications.................................................................................................................4 2.2 Performance Specifications for Gyroscope ..............................................................................5 2.3 Performance Specifications for Accelerometer........................................................................6 2.4 Performance Specification for Temperature Sensor ...............................................................7 2.5 Absolute Maximum Ratings ........................................................................................................7 2.6 Pin Description .............................................................................................................................8 2.7 Typical performance characteristics........................................................................................10 2.7.1 Gyro typical performance characteristics ........................................................................10 2.7.2 Accelerometer typical performance characteristics .......................................................13 2.8 Digital I/O Specification .............................................................................................................15 2.9 SPI AC Characteristics...............................................................................................................16 2.10 Measurement Axis and Directions ........................................................................................17 2.11 Package Characteristics ........................................................................................................18 2.11.1 Package Outline Drawing ................................................................................................18 3 2.12 PCB Footprint ..........................................................................................................................19 2.13 Abbreviations ..........................................................................................................................19 General Product Description ...................................................................................................... 20 3.1 4 5 Factory Calibration .....................................................................................................................21 Component Operation, Reset and Power Up ......................................................................... 22 4.1 Component Operation................................................................................................................22 4.2 Reset and Power Up Sequence For Enabling Internal Failsafe Diagnostics ......................23 Component Interfacing................................................................................................................. 24 5.1 SPI Interface ................................................................................................................................24 5.1.1 General ..................................................................................................................................24 5.1.2 Protocol.................................................................................................................................24 5.1.3 General Instruction format..................................................................................................25 5.1.4 Operations ............................................................................................................................26 5.1.5 Return Status........................................................................................................................26 5.1.6 Checksum (CRC)..................................................................................................................27 5.1.7 Recommendation for the SPI interface implementation .................................................28 6 Register Definition ......................................................................................................................... 29 6.1 Sensor Data Block ......................................................................................................................29 6.1.1 Example of Angular Rate Data Conversion ......................................................................29 6.1.2 Example of Acceleration Data Conversion.......................................................................29 6.1.3 Example of Temperature Data Conversion.......................................................................29 6.2 Sensor Status Block...................................................................................................................30 6.2.1 RATE Status 1 Register (09h).............................................................................................31 6.2.2 RATE Status 2 Register (0Ah) ............................................................................................31 Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 2/38 Rev. B0 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 7 8 ACC Status Register (0Fh)..................................................................................................32 Reset Control Register (16h) ..............................................................................................33 Serial ID0 and Serial ID1 Registers (18h and 19h) ...........................................................33 Common Status Register(1Bh) ..........................................................................................34 Identification Register (1Dh)...............................................................................................35 Status Summary Register (1Fh).........................................................................................35 Application information ............................................................................................................... 36 7.1 Application Circuitry and External Component Characteristics ..........................................36 7.2 Assembly Instructions ...............................................................................................................37 Order Information .......................................................................................................................... 38 Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 3/38 Rev. B0 1 Introduction This document contains essential technical information about the SCC2230-E02 sensor including specifications, SPI interface descriptions, user accessible register details, electrical properties and application information. This document should be used as a reference when designing in SCC2230-E02 component. 2 2.1 Specifications General Specifications General specifications for SCC2230-E02 component are presented in Table 1. All analog voltages are related to the potential at AVSS and all digital voltages are related to the potential at DVSS. Table 1. General specifications. Parameter Analog supply voltage: AVDD Analog supply current: I_AVDD Digital supply voltage: DVDD Digital supply current: I_DVDD Boost supply current: I_L1 (current through inductor L1, see Figure 27) Total current, I_TOTAL Total current reset Rise/fall time: AVDD, DVDD, Vin_BOOST (see Figure 27) Murata Electronics Oy www.murata.com Condition Min 3.0 Temperature range -40 ... +125 C 3.0 Temperature range -40 ... +125 C Mean value Peak value, T < 1s Max. value during startup (T0.4ms) I_AVDD + I_DVDD + I_L1 Total average current during reset SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes Typ 3.3 15.2 3.3 3.3 4.0 22.5 Max 3.6 11.5 110 60 31.5 5 Units V mA V mA mA mA mA mA mA 200 ms 3.6 4/38 Rev. B0 2.2 Performance Specifications for Gyroscope Table 2. Gyro performance specifications (DVDD=AVDD=3.3V, ambient temperature and ODR=2.3kHz unless otherwise specified). Parameter Condition Min Operating range Measurement axis Z -125 Offset (zero rate output) Offset error -40C ... +125C Units 125 /s LSB -1 1 /s -0.8 0.8 /s Offset short term bias stability Angular random walk Sensitivity 2 /h 0.40 / h 50 Sensitivity error Linearity error Max 0 (A Offset temperature drift (B Typ (C -40C ... +125C -2.5 (D Integrated noise (RMS) 60Hz filter Noise density Cross axis sensitivity (E per axis G-sensitivity Shock sensitivity 2.5 Power on start-up time % 0.5 /s 0.08 /s RMS 0.008 (/s)/ Hz -1.5 1.5 % -0.1 0.1 (/s)/g 2.0 /s 50 ms Hz Hz ms ms Hz 50g, 6ms Shock recovery Amplitude response LSB/(/s) 10Hz filter, -3dB frequency 60Hz filter, -3dB frequency 10Hz filter 60Hz filter Recommended ODR (F 10 60 750 620 2300 Min/Max v alues are v alidation 3 sigma v ariation limits f rom test population. Ty pical v alues are not guaranteed. A) Includes of f set calibration error and drif t ov er lif etime. B) Dev iation f rom v alue at ambient temperature. C) Includes calibration error, dev iation f rom room temperature v alue and drif t ov er lif etime. D) Straight line through specif ied measurement range end points. E) Cross axis sensitiv ity is the maximum sensitivity in the plane perpendicular to the measuring direction: Cross axis f or Y axis = Sensitiv ity Y / Sensitivity Z Cross axis f or X axis = Sensitiv ity X / Sensitiv ity Z F) ODR = Output Data Rate, see section 5.1.7 f or more details. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 5/38 Rev. B0 2.3 Performance Specifications for Accelerometer Table 3. Accelerometer performance specifications (DVDD=AVDD=3.3V, ambient temperature and ODR=2.3kHz unless otherwise specified). Parameter Condition Measurement range Measurement axes XYZ Min Offset (zero acceleration output) Offset error Sensitivity -40C ... +125C Sensitivity error (A Linearity error (C Integrated noise (RMS) -40C ... +125C -1g ... +1g range -2g ... +2g range 60Hz filter Cross axis sensitivity Amplitude response Power on start-up time per axis 10Hz filter, -3dB frequency 60Hz filter, -3dB frequency 10Hz filter 60Hz filter Recommended ODR (E Unit g LSB 16 mg -10 10 mg LSB/g /LSB % 5886 0.010 -1 1 -1 1 Noise density (D 2 -16 Between 3 Sensitivity temperature drift (B Max 0 (A Offset temperature drift (B Typ -2 5 10 1.2 % mg mg mgRMS 120 g/ Hz -0.5 0.5 10 60 450 320 2300 % Hz Hz ms ms Hz Min/Max v alues are v alidation 3 sigma v ariation limits f rom test population. Ty pical v alues are not guaranteed. A) Includes calibration error and drif t ov er lif etime. B) Dev iation f rom v alue at ambient temperature. C) Straight line through specif ied measurement range end points. D) Cross axis sensitiv ity is the maximum sensitivity in the plane perpendicular to the measuring direction. X-axis output cross axis sensitiv ity (cross axis f or Y and Z-axis outputs are def ined correspondingly ): Cross axis f or Y axis = Sensitiv ity Y / Sensitivity X Cross axis f or Z axis = Sensitiv ity Z / Sensitiv ity X E) ODR = Output Data Rate, see section 5.1.7 f or more details. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 6/38 Rev. B0 2.4 Performance Specification for Temperature Sensor Table 4. Temperature sensor performance specifications. Parameter Condition Min. Temperature signal range Temperature signal sensitivity Typ Max. -50 +150 Temperature sensor output in 2's complement format 14.7 Unit C LSB/C Temperature is converted to C with following equation: Temperature [C] = 60 + (TEMP / 14.7), where TEMP is temperature sensor output register content in decimal format. 2.5 Absolute Maximum Ratings Within the maximum ratings (Table 5), no damage to the component shall occur. Parametric values may deviate from specification, yet no functional deviation shall occur. All analog voltages are related to the potential at AVSS, all digital voltages are related to DVSS. Table 5. Absolute maximum ratings. Parameter Remark Min. AVDD Supply voltage analog circuitry -0.3 DVDD Supply voltage digital circuitry Typ Max. Unit 4.3 V -0.3 4.3 V DIN/DOUT Maximum voltage at digital input and output pins -0.3 DVDD+0.3 V VBoost, LBoost Maximum voltage at high voltage input and output pins -0.3 40 V Topr Operating temperature range -40 125 C Tstg Storage temperature range -40 150 C ESD_HBM ESD according Human Body Model (HBM), Q100-002 ESD_MM ESD according Machine Model (MM), Q100-003 ESD_CDM ESD according Charged Device Model (CDM), Q100-011 US Murata Electronics Oy www.murata.com Ultrasonic agitation (cleaning, welding, etc) SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 2000 V 200 V 500 750 (corner pins) V Prohibited 7/38 Rev. B0 2.6 Pin Description The pinout for SCC2230-E02 is presented in Figure 1, while the pin descriptions can be found in Table 6. Figure 1. Pinout for SCC2230-E02. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 8/38 Rev. B0 Table 6. SCC2230-E02 pin descriptions. Pin# Name Type 1, 12, 13, 24 Description HEAT - 2, 11 RESERVED - 3 EXTRESN DIN External Reset, 3.3V logic compatible Schmitt-trigger input with internal pull-up, LOW-HIGH transition causes system restart. Minimum low time 100us 4 SCK DIN CLK signal of SPI Interface 5 MISO DOUT 6 VBOOST AOUT_HV 7 LBOOST AIN_HV 8 DVSS GND Heat sink connection, connect externally to AVSS Factory use only, leave floating Data Out of SPI Interface External capacitor connection for high voltage analog supply, high voltage pad 20V Connection for inductor for high voltage generation, high voltage pad 20V Digital Supply Return, connect externally to AVSS 9 DVDD 10 D_EXTC 11 RESERVED 14 AVDD 15 A_EXTC AOUT External capacitor connection for positive reference voltage 16 AVSS_REF GND Analog reference ground, connect externally to AVSS 17 AVSS GND Analog Supply Return, connect externally to DVSS 18 CSB DIN Chip Select of SPI Interface, 3.3V logic compatible Schmitt-trigger input 19 MOSI DIN Data In of SPI Interface, 3.3V logic compatible Schmitt-trigger input 20 RESERVED - Factory use only, leave floating or connect to GND 21 RESERVED - Factory use only, leave floating or connect to GND 22 RESERVED - Factory use only, leave floating 23 RESERVED - Factory use only, leave floating Murata Electronics Oy www.murata.com SUPPLY Digital Supply Voltage AOUT - External capacitor connection for digital core ( typ. 1.8V) Factory use only, leave floating SUPPLY Analog Supply voltage SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 9/38 Rev. B0 2.7 2.7.1 Typical performance characteristics Gyro typical performance characteristics Figure 2. SCC2230-E02 gyro typical offset temperature drift in /s. Figure 3. SCC2230-E02 gyro typical sensitivity deviation from room temperature value in %. Figure 4. SCC2230-E02 gyro typical RMS noise in /s RMS. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 10/38 Rev. B0 Figure 5. SCC2230-E02 gyro typical Allan deviation in /h. Figure 6. SCC2230-E02 gyro typical cross axis sensitivity in %. Figure 7. SCC2230-E02 gyro typical G-sensitivity in (/s)/g. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 11/38 Rev. B0 Figure 8. SCC2230-E02 gyro amplitude and phase response with 60Hz filter setting. Figure 9. SCC2230-E02 gyro amplitude and phase response with 10Hz filter setting. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 12/38 Rev. B0 2.7.2 Accelerometer typical performance characteristics Figure 10. SCC2230-E02 accelerometer typical offset temperature drift in mg. Figure 11. SCC2230-E02 accelerometer typical RMS noise in mgRMS. Figure 12. SCC2230-E02 accelerometer typical cross axis sensitivity in %. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 13/38 Rev. B0 Figure 13. SCC2230-E02 accelerometer amplitude and phase response with 60Hz filter setting. Figure 14. SCC2230-E02 accelerometer amplitude and phase response with 10Hz filter setting. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 14/38 Rev. B0 2.8 Digital I/O Specification Table 7 describes the DC characteristics of SCC2230-E02 sensor SPI I/O pins. Supply voltage is 3.3 V unless otherwise specified. Current flowing into the circuit has a positive value. Table 7. SPI DC characteristics. Symbol Description Min. Nom. Max. Unit Serial Clock SCLK VinHigh Input high voltage 2 DVDD+0.3 V VinLow Input low voltage -0.3 0.8 V Vhy Input hysteresis 0.3 Ileak Input leakage current, 0V Vin DVDD -1 1 uA Cin Input capacitance 15 pF V Chip select CSB (Pull Up), low active VinHigh Input high voltage 2 DVDD+0.3 V VinLow Input low voltage -0.3 0.8 V Vhy Input hysteresis 0.3 Isource Input current source (Pull Up), Vin = 0V 10 50 uA Cin Input capacitance 15 pF Vin_open Open circuit output voltage V 2 V Serial data input MOSI (Pull Down) VinHigh Input high voltage 2 DVDD+0.3 V VinLow Input low voltage -0.3 0.8 V Vhy Input hysteresis 0.3 Isource Input current source (Pull Up), Vin = DVDD 10 Cin Vin_open V 50 uA Input capacitance 15 pF Open circuit output voltage 0.3 V Serial data output MISO (Tri state) VoutHigh_-1mA Output high voltage, Iout = -1mA DVDD-0.5 V VoutHigh_-50A Output high voltage, Iout = -50A DVDD-0.2 V VinHigh_1mA Output low voltage, Iout = +1mA 0.5 V VinHigh_50A Output low voltage, Iout = +50A 0.3 V Iout_Hz High impedance output current, 0V < VMISO < DVDD 1 uA Cld_miso Capacitive load. The slope of the MISO output signal may need to be controlled to meet EMI requirements under specified load conditions. 200 pF Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes -1 15/38 Rev. B0 2.9 SPI AC Characteristics The AC characteristics of SCC2230-E02 are defined in Figure 15 and Table 8. Figure 15. Timing diagram of SPI communication. Table 8. SPI AC electrical characteristics. Symbol Description Min. FSPI It is recommended to use maximum SCK frequency, see section 5.1.7 for more details. 0.1 TSPI Nom. Max. Unit 8 MHz 1/FSPI TCH High time: duration of logical high level at SCLK 45 TSPI/2 ns TCL Low time: duration of logical low level at SCLK 45 TSPI/2 ns TLS1 Setup time CSB: time between the falling edge of CSB and the rising edge of SCLK 45 TSPI/2 ns TVAL1 Delay time: time delay from the falling edge of CSB to data valid at MISO TSET Setup time at MOSI: setup time of MOSI before the rising edge of SCLK 15 ns THOL MOSI data hold time 8 ns TVAL2 Delay time: time delay from falling edge of SCLK to data valid at MISO TLS2 Hold time of CSB: time between the falling edge of SCLK and the rising edge of CSB TLZ Tri-state delay time: time between the rising edge of CSB to MISO in Tri-state TLH Time between SPI cycles: minimum high time of CSB between two consecutive transfers Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 30 30 45 TSPI/2 ns ns 15 250 ns ns ns 16/38 Rev. B0 2.10 Measurement Axis and Directions Figure 16. SCC2230-E02 measurement directions. Table 9. SCC2230-E02 accelerometer measurement directions. x: 0g y: 0g z: +1g x: 0g y: -1g z: 0g Murata Electronics Oy www.murata.com x: +1g y: 0g z: 0g x: -1g y: 0g z: 0g SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes x: 0g y: 0g z: -1g x: 0g y: +1g z: 0g 17/38 Rev. B0 2.11 Package Characteristics 2.11.1 Package Outline Drawing Figure 17. Package outline. The tolerances are according to ISO2768-f (see Table 10). Table 10. Limits for linear measures (ISO2768-f). Tolerance class f (fine) Murata Electronics Oy www.murata.com Limits in mm for nominal size in mm 0.5 to 3 Above 3 to 6 Above 6 to 30 0.05 0.05 0.1 SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes Above 30 to 120 0.15 18/38 Rev. B0 2.12 PCB Footprint Figure 18. Recommended PWB pad layout for SCC2230-E02. The tolerances are according to ISO2768-f (see Table 10). 2.13 Abbreviations ASIC SPI RT DPS FS CSB SCK MOSI MISO MCU Murata Electronics Oy www.murata.com Application Specific Integrated Circuit Serial Peripheral Interface Room Temperature Degrees per second Full scale Chip Select Serial Clock Master Out Slave In Master In Slave Out Microcontroller SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 19/38 Rev. B0 3 General Product Description The SCC2230-E02 sensor consists of independent acceleration and angular rate sensing elements, and single Application-Specific Integrated Circuit (ASIC) used to sense and control those elements. Figure 19 contains an upper level block diagram of the component. The ASIC provides one common SPI interface used to control and read the accelerometer and the gyroscope. Figure 19. SCC2230-E02 component block diagram. The angular rate and acceleration sensing elements are manufactured using Murata proprietary High Aspect Ratio (HAR) 3D-MEMS process, which enables making robust, extremely stable and low noise capacitive sensors. The acceleration sensing element consists of four acceleration sensitive masses. Acceleration causes capacitance change that is converted into a voltage change in the signal conditioning ASIC. The angular rate sensing element consists of moving masses that are purposely exited to in-plane drive motion. Rotation in sensitive direction causes in-plane movement that can be measured as capacitance change with the signal conditioning ASIC. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 20/38 Rev. B0 3.1 Factory Calibration SCC2230-E02 sensors are factory calibrated. No separate calibration is required in the application. Parameters that are trimmed during production include sensitivities, offsets and frequency responses. Calibration parameters are stored to non-volatile memory during manufacturing. The parameters are read automatically from the internal non-volatile memory during the start-up. It should be noted that assembly can cause minor offset/bias errors to the sensor output. If best possible offset/bias accuracy is required, system level offset/bias calibration (zeroing) after assembly is recommended. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 21/38 Rev. B0 4 4.1 Component Operation, Reset and Power Up Component Operation Simplified sensor power up sequence is shown in Figure 20 below. The SCC2230-E02 component has internal power-on reset circuit. It releases the internal reset-signal once the power supplies are within the specified range. After the reset, the sensor performs an internal startup sequence. During the startup sequence SCC2230-E02 reads configuration and calibration data from the nonvolatile memory to volatile registers. 620ms after the power on or reset, sensor shall be able to provide valid acceleration and angular rate data, separate measurement mode activation is not needed. Figure 20. Simplified reset and power up sequence. Sensor uses 60Hz low pass filter setting by default. In case the optional 10Hz low pass filter is used the filter setting can be set by writing the FLT bits to 01b in Status Summary register. See section 6.2.8 for more information on Status Summary register. Section 5.1.4 shows full SPI write frames for filter settings SCC2230-E02 component has extensive internal failsafe diagnostics to detect over range and possible internal failures. If the internal failsafe diagnostics are used they should be enabled by clearing the status registers during component power up by following the sequence shown in section 4.2 (Figure 21). Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 22/38 Rev. B0 4.2 Reset and Power Up Sequence For Enabling Internal Failsafe Diagnostics Reset and power up sequence for enabling component internal failsafe diagnostics is shown below in Figure 21. After the reset, the sensor performs an internal startup sequence. 20ms after the reset the SPI bus becomes accessible and the output filter can be set to a desired value. If the filter is not set to a valid value (60Hz or 10Hz setting), the default setting (00b = 60Hz) is used and the S_OK_C flag in Status Summary Register will indicate a failure. In 750ms (10Hz filter setting) or in 620ms (60Hz filter selection) the accelerometer and the gyro shall be able to deliver valid data. During the startup sequence the sensor performs a series of internal tests that will set various error flags in the sensor status registers and to clear them it is necessary to read all status registers after the startup sequence is complete. Once startup sequence is completed, the SPI frame Return Status bits (RS bits) indicate sensor operation status. Normal operation is indicated with RS bit content of 01b. In case the LOOPF_OK bit in Common Status register is failing, the sensor should be reset and re-started. Figure 21. Reset and power up sequence for enabling internal failsafe diagnostics. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 23/38 Rev. B0 5 Component Interfacing 5.1 5.1.1 SPI Interface General The SCC2230-E02 has one common SPI interface for the accelerometer and the angular rate sensor. SPI communication transfers data between the SPI master and registers of the SCC2230E02 ASIC. The SCC2230-E02 always operates as a slave device in master-slave operation mode. 3-wire SPI connection cannot be used. SPI interface pins: CSB SCK MOSI MISO 5.1.2 Chip Select (active low) Serial Clock Master Out Slave In Master In Slave Out MCU ASIC MCU ASIC MCU ASIC ASIC MCU Protocol SPI communication uses off-frame protocol so each transfer has two phases. The first phase contains the SPI command (Request) and the data (Response) of the previous command. The second phase contains the next Request and the Response to the Request of the first phase, see Figure 22. Data word length is 32 bits, the data is transferred MSB first. The first response after reset is undefined and shall be discarded. Data word length is 32 bits. Each transfer has two phases (). 1. First phase contains the command and the data of the previous command 2. Second phase contains the data from the command of the first phase. The first response after reset is undefined and shall be discarded. Figure 22. SPI protocol example. The interleaved Request - Response cycle then continues as shown in Figure 23. Figure 23. Request - Response frame relationship. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 24/38 Rev. B0 The SPI transmission is always started with the CSB falling edge and terminated with the CSB rising edge. The data is captured on the SCK's rising edge (MOSI line) and it is propagated on the SCK's falling edge (MISO line). This equals to SPI Mode 0 (CPOL = 0 and CPHA = 0), see Figure 24. Figure 24. SPI Frame Format. 5.1.3 General Instruction format The SPI frame is divided into four parts (See Figure 25 and Table 11): 1. Operation Code (OP) 2. Return status (RS, in MISO) 3. Data (DI, DO) 4. Checksum (CRC) Unused bits shall be set to 0, this is important for the checksum calculation. Figure 25. SPI instruction format. Table 11. SPI bit definitions. Bits OP[5:0] Name Operation code RS[1:0] D[15:0] CRC[7:0] Return status Data Checksum Murata Electronics Oy www.murata.com MOSI Requested operation: * OP5: Write =1 / Read = 0 * OP[4:0] = Register address n.a. Data to be written Checksum of MOSI bits [31:8] SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes MISO Performed operation: * OP5: Write = 1 / Read = 0 * OP[4:0] = Register address Sensor status Return data Checksum of MISO bits [31:8] 25/38 Rev. B0 5.1.4 Operations Table 12. Operations and their equivalent SPI frames. Operation Register Read RATE Read ACC_X Read ACC_Y RATE (01h) ACC_X (04h) ACC_Y (05h) Read ACC_Z Read TEMP Read RATE Status 1 ACC_Z (06h) TEMP (07h) RATE Status 1 (09h) RATE Status 2 (0Ah) ACC Status (15h) Reset Control (16h) Read RATE Status 2 Read ACC Status Write Reset Control HardReset Write Reset Control MonitorST Read Serial ID0 Read Serial ID1 Read Common Status Read Status Summary Write Flt[1:0] =10b: set 60Hz filter active Write Flt[1:0] =01b: set 10Hz filter active 5.1.5 SPI Frame Binary (OP, RS, Data, CRC) 000001 00 0000000000000000 11110111 SPI Frame Hex 040000F7h 000100 00 0000000000000000 11101001 100000E9h 000101 00 0000000000000000 11101111 140000EFh 000110 00 0000000000000000 11100101 180000E5h 000111 00 0000000000000000 11100011 1C0000E3h 001001 00 0000000000000000 11000111 240000C7h 001010 00 0000000000000000 11001101 280000CDh 001111 00 0000000000000000 11010011 3C0000D3h 110110 00 0000000000000100 00110001 D8000431h Reset Control (16h) 110110 00 0000000000001000 10101101 D80008ADh Serial ID0 (18h) 011000 00 0000000000000000 10100001 600000A1h Serial ID0 (19h) Common Status (1Bh) Status Summary (1Fh) Status Summary (1Fh) Status Summary (1Fh) 011001 00 0000000000000000 10100111 640000A7h 011011 00 0000000000000000 10101011 6C0000ABh 011111 00 0000000000000000 10110011 7C0000B3h 111111 00 0010000000000000 00000110 FC200006h 111111 00 0001000000000000 11000111 FC1000C7h Return Status SPI frame Return Status bits (RS bits) indicate the functional status of the sensor, see Return Status definitions in Table 13. Table 13. Return Status definitions. RS[1] 0 0 RS[0] 0 1 1 1 0 1 Description Initialization running Normal operation of selected channel Selftest of selected channel Reserved or not existing register addressed, error of selected channel or common failure (see Status Summary Register bits S_OK_C, S_OK_R, S_OK_A) * S_OK_C is the summary of Common Status * S_OK_R is the summary of RATE Status 1 and RATE Status 2 * S_OK_A is the summary of ACC Status The priority of the return status states is from high to low: 10 00 11 01. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 26/38 Rev. B0 5.1.6 Checksum (CRC) For SPI transmission error detection a Cyclic Redundancy Check (CRC) is implemented, for details see Table 14. Table 14. SPI CRC definition. Parameter Value Name CRC-8 Width 8 bit Poly 1Dh (generator polynom: X8+X4+X3+X2+1) Init FFh (initialization value) XOR out FFh (inversion of CRC result) The CRC register has to be initialized with FFh to ensure a CRC failure in case of stuck-at-0 and stuck-at-1 error on the SPI bus. C-programming language example for CRC calculation is presented in Figure 26. It can be used as is in an appropriate programming context. // Calculate CRC for 24 MSB's of the 32 bit dword // (8 LSB's are the CRC field and are not included in CRC calculation) uint8_t CalculateCRC(uint32_t Data) { uint8_t BitIndex; uint8_t BitValue; uint8_t CRC; CRC = 0xFF; for (BitIndex = 31; BitIndex > 7; BitIndex--) { BitValue = (uint8_t)((Data >> BitIndex) & 0x01); CRC = CRC8(BitValue, CRC); } CRC = (uint8_t)~CRC; return CRC; } static uint8_t CRC8(uint8_t BitValue, uint8_t CRC) { uint8_t Temp; Temp = (uint8_t)(CRC & 0x80); if (BitValue == 0x01) { Temp ^= 0x80; } CRC <<= 1; if (Temp > 0) { CRC ^= 0x1D; } return CRC; } Figure 26. C-programming language example for CRC calculation. CRC calculation example: Read RATE register (01h) -> SPI[31:8] = 040000h -> CRC [7:0] -> F7h. Further examples can be found in Table 12. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 27/38 Rev. B0 5.1.7 Recommendation for the SPI interface implementation SPI communication may interfere with the measured angular rate signal due to sensor internal capacitive coupling. If the harmonic overtones of the SPI communication activity are close to gyro operational frequency, the SPI cross talk can be seen as increased noise level in angular rate signal. Cross talk can be eliminated by choosing the output data rate (sample rate) in a suitable way, i.e. avoiding the overtones on the gyro operation frequency. For optimum performance it is recommended that 2.3kHz or 3.2kHz output data rate is used with maximum serial clock (SCK) frequency (8MHz). The design performance should be verified carefully. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 28/38 Rev. B0 6 Register Definition 6.1 Sensor Data Block Table 15. Sensor data block. Addr OP[4:0] Bits Register Name No. of Bits Read/ Description Write 01h [15:0] RATE 16 R Rate output in 2's complement format 04h [15:0] ACC_X 16 R X-axis acceleration output in 2's complement format 05h [15:0] ACC_Y 16 R Y-axis acceleration output in 2's complement format 06h [15:0] ACC_Z 16 R Z-axis acceleration output in 2's complement format 07h [15:0] TEMP 16 R Temperature sensor output in 2's complement format. See section 2.4 for temperature conversion equation. SPI read frames with CRC content for these registers are shown in Table 12. 6.1.1 Example of Angular Rate Data Conversion For example, if RATE register read results: RATE = 05FFE08Bh, the register content is converted to angular rate as follows: * 05h = 000001 01b o 000001b = operation code = Read RATE o 01b = return status (RS bits) = no error * FFE0h = 1111 1111 1110 0000b = RATE register content o FFE0h in 2's complement format = -32d o Angular rate = -32LSB / sensitivity = -32LSB / (50LSB/(/s)) = -0.64/s * 8Bh = CRC of 05FFE0h 6.1.2 Example of Acceleration Data Conversion For example, if ACC_X register read results: ACC_X = 1100DC02h, the register content is converted to acceleration rate as follows: * 11h = 000100 01b o 000100b = operation code = Read ACC_X o 01b = return status (RS bits) = no error * 00DCh = bin 0000 0000 1101 1100b = ACC_X register content o 00DCh in 2's complement format = 220d o Acceleration = 220LSB / sensitivity = 220LSB / (5886LSB/g) = 0.037g * 02h = CRC of 1100DCh 6.1.3 Example of Temperature Data Conversion For example, if TEMP register read results: TEMP = 1DFE6F4Eh, the register content is converted to temperature as follows: * 1Dh = bin 000111 01b o bin 000111b = operation code = Read TEMP o 01 = return status (RS bits) = no error * FE6Fh = bin 1111 1110 0110 1111 = TEMP register content o FE6Fh in 2's complement format = -401d o Temperature = 60 + ( TEMP / 14.7) = 60 + [-401/14.7] = +32.7C o See section 2.4 for temperature conversion equation * 4Eh = CRC of 1DFE6Fh Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 29/38 Rev. B0 6.2 Sensor Status Block Table 16. Sensor status block. Addr OP[4:0] Bits Register Name No. of Bits Read/ Description Write 09h [15:0] RATE Status 1 16 R Gyro sensor status 0Ah [15:0] RATE Status 2 16 R Gyro sensor status 0Fh [15:0] ACC Status 16 R Accelerometer status 15h [15:0] Test 16 R/W R/W register for SPI communication checking 16h [15:0] Reset Control 16 R/W Reset status and trigger bits 18h [15:0] Serial ID0 16 R Component serial number least significant bits 19h [15:0] Serial ID1 16 R Component serial number most significant bits 1Bh [15:0] Common Status 16 R Status of common blocks 1Dh [15:0] Identification 16 R Product type identification 1Fh [15:0] Status Summary 16 R/W Status overview Note: R/W for the register means, that the content of the register can be read, and that it is also possible to over write the content of the register in normal mode operation. The following signal blocks will then operate with the value written to the register. After a write cycle to the register, the register will keep its value until another write cycle or reset occurs. SPI read and write frames with CRC content for these registers are shown in Table 12. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 30/38 Rev. B0 6.2.1 RATE Status 1 Register (09h) Table 17. RATE Status 1 register. VCMF_OK Vboost_OK D5 D4 D3 D2 - - - - - - Write OF_R_OK D6 DR_AmpCtrl_OK D7 Q_AmpCtrl_OK D8 dDR_Amp_OK - dQ_Amp_OK - SDM_D_OK D15 D14 D13 D12 D11 D10 D9 Read - Reserved[7:0] D1 D0 Bit RATE Status 1 register indicates saturation or failure in gyroscope. Failure is indicated by setting OK flag to 0, the condition will be latched until a read cycle on the register. Table 18. RATE Status 1 register bit description. 6.2.2 Register Bit Description OF_R_OK This bit indicates signal path saturation and overflow conditions DR_AmpCtrl_OK Status of drive amplitude control Q_AmpCtrl_OK Status of compensation signal amplitude control dDR_Amp_OK Status of drive amplitude dQ_Amp_OK Status of compensation signal amplitude SDM_D_OK Status of drive path stability VBoost_OK Status of VBoost voltage VCMF_OK Status of biasing voltage RATE Status 2 Register (0Ah) Table 19. RATE Status 2 register. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 - - - - - - - - - - Reserved[6:0] S_P_Pk_OK S_N_OK S_P_OK D_N_OK D_P_OK SI_N_OK SI_P_OK DI_N_OK DI_P_OK D0 Bit Write Read RATE Status 2 register indicates saturation or failure in gyroscope. Failure is indicated by setting OK flag to 0, the condition will be latched until a read cycle on the register. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 31/38 Rev. B0 Table 20. RATE Status 2 register bit description. 6.2.3 Register Bit Description DI_P_OK Indicates saturation or failure condition DI_N_OK Indicates saturation or failure condition SI_P_OK Indicates saturation or failure condition SI_N_OK Indicates saturation or failure condition D_P_OK Indicates saturation or failure condition D_N_OK Indicates saturation or failure condition S_P_OK Indicates saturation or failure condition S_N_OK Indicates saturation or failure condition S_P_Pk_OK Indicates saturation or failure condition ACC Status Register (0Fh) Table 21. ACC Status register. D3 D2 D1 - - - - - - - Write Reserved[8:0] C2V_VREF_OK Reserved[2:0] OF_ACC_OK ADC_SAT_OK SAT_OK STC_OK D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D0 Bit Read ACC Status register indicates saturation or failure in accelerometer. Failure is indicated by setting OK flag to 0, the condition will be latched until a read cycle on the register. Table 22. ACC Status register bit description. Register Bit Description STC_OK Indicates saturation or failure condition SAT_OK Indicates saturation or failure condition ADC_SAT_OK Indicates saturation or failure condition OF_ACC_OK Indicates saturation or failure condition C2V_VREF_OK Status of reference voltage Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 32/38 Rev. B0 6.2.4 Reset Control Register (16h) Table 23. Reset Control register. D7 D6 D5 D4 D2 - - D1 D0 Bit Reserved[1:0] Reserved[11:0] D3 HardReset D8 MonitorST D15 D14 D13 D12 D11 D10 D9 Write Read Table 24. Reset Control register bit description. 6.2.5 Register Bit Description HardReset Writing this bit to 1 generates an EXTRESN compatible signal. Thus it is possible to generate hardware reset via SPI interface MonitorST Writing this bit to 1 initiates self test of internal monitoring circuit Serial ID0 and Serial ID1 Registers (18h and 19h) SCC2230-E02 serial number is laser marked on top of component lid and stored in to Serial ID0 and Serial ID1 registers. Serial number is in 32bit unsigned integer format. Serial number register bit descriptions are shown below in Table 25 and Table 26. Table 25. Serial ID0 (18h) register (serial number LSB word). D15 D14 D13 D12 D11 D10 D9 - - - - - - - D8 D7 D6 D5 D4 D3 D2 D1 - - - - - - - - D0 Bit - ID0[15:0] Write Read Table 26. Serial ID1 (19h) register (serial number MSB word). D15 D14 D13 D12 D11 D10 D9 - - - - - - - D8 D7 D6 D5 D4 D3 D2 D1 - - - - - - - - ID1[15:0] D0 Bit - Write Read Example serial number conversion shown below: * Serial ID0 register content: 8612h = bin 1000 0110 0001 0010 * Serial ID1 register content: 8FB9h = bin 1000 0110 0001 0010 * Full serial number: 8FB9 8612h = 2411300370 * Serial number laser marked on lid is 2411300370SCC Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 33/38 Rev. B0 6.2.6 Common Status Register(1Bh) Table 27. Common Status register. MonCheck_OK CRC_OTP_OK CRC_SPI_OK OF_C_OK - D8 D7 D6 D5 D4 D3 D2 D1 - - - - - - - - - Write DVDD_OK NMode_OK - VBG1_0P9V_OK - VDDD_OK - Reserved - VBG2_0P9V_OK - TEMP_Mon_OK - LOOPF_OK D15 D14 D13 D12 D11 D10 D9 Read StateMon[3:0] D0 Bit Common Status register indicates failure in common signals/blocks. Failure is indicated by setting OK flag to 0, the condition will be latched until a read cycle on the register. Table 28. Common Status register bit description. Register Bit Description DVDD_OK Status of DVDD digital 3.3V supply voltage VBG1_0P9V_OK Status of internal reference voltage VDDD_OK Status of digital core supply voltage VBG2_0P9V_OK Status of internal reference voltage TEMP_Mon_OK Status of temperature sensor signal LOOPF_OK Status of loop filter StateMon[3:0] Status of state machine for self test of monitoring circuit. OF_C_OK This bit indicates signal path saturation and overflow conditions related to common signals/blocks CRC_SPI_OK This bit indicates CRC failure in SPI communication CRC_OTP_OK This bit indicates CRC failure in OTP memory MonCheck_OK Result of the monitoring circuit self test NMode_OK Bit = 0 : ASIC test mode activated Bit = 1 : ASIC is in normal mode Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 34/38 Rev. B0 6.2.7 Identification Register (1Dh) Table 29. Identification register. D15 D14 D13 D12 D11 D10 D9 - - - - - - - D8 D7 D6 D5 D4 D3 D2 D1 - - - - - - - - D0 Bit - Identification[15:0] Write Read Table 30. Identification register bit description. 6.2.8 Register Bit Description Identification Default value: 0815h (bin 0000 1000 0001 0101) for SCC2230-E02 Status Summary Register (1Fh) Table 31. Status Summary register. D15 D14 D13 D12 D11 D10 D9 D3 D2 D1 D0 Bit - - - - - Write S_OK_R Reserved[5:0] D4 Reserved[1:0] SelfTestDis Flt[1:0] D5 S_OK_A STC_EN - D6 Reserved[1:0] - D7 S_OK_C - D8 Read Table 32. Status Summary register bit description. Register Bit Description S_OK_R Sensor status summary flag: gyro S_OK_A Sensor status summary flag: accelerometer S_OK_C Status summary flag for common blocks and functionalities Flt[1:0] Output Filter Selection: 00b: 60Hz filter active for ACC and GYRO signal (default after reset), with Flt default setting S_OK_C is set to 0 01b: 10Hz filter active for ACC and GYRO signals 10b: 60Hz filter active for ACC and GYRO signal 11b: Reserved SelfTestDis SelfTestDis=`1' indicates that the self test of the monitoring circuit is disabled. STC_EN STC_EN=`1' indicates that the accelerometer self test is enabled. Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 35/38 Rev. B0 7 7.1 Application information Application Circuitry and External Component Characteristics See Figure 27 and Table 33 for specification of the external components. The PCB layout example is shown in Figure 28. (Vin_Boost) Figure 27. Application schematic. Table 33. External component description for SCC2230-E02. Symbol Description Min. Nom. Max. Unit C1 376 30 470 564 100 nF V m High voltage capacitor. Voltage rating ESR Recommended component: Murata GCM21BR71H474KA55, 0805, 470N, 50V, X7R C2 Decoupling capacitor between DVDD and DVSS ESR 700 1000 1300 100 nF m 700 1000 1300 100 nF m 70 100 130 100 nF m 700 1000 1300 100 nF m 22 47 100 F m 57 5 H Recommended component: Murata GCM21BR71C105KA58, 0805, 1U, 16V, X7R C3 Decoupling capacitor between D_EXTC and DVSS ESR Recommended component: Murata GCM21BR71C105KA58, 0805, 1U, 16V, X7R C4 Decoupling capacitor between AVDD and AVSS ESR Recommended component: Murata GCM188R71C104KA37, 0603, 100N, 16V, X7R C5 Decoupling capacitor between A_EXTC and AVSS ESR Recommended component: Murata GCM21BR71C105KA58, 0805, 1U, 16V, X7R C6, C7 Optional decoupling capacitor ESR Recommended component: Murata GRM32ER71A476KE15L, 1210, 47U, 10V, X7R L1 Inductance for high voltage generation from Vin_Boost ESR 37 47 Recommended component: Bourns CM322522-470KL Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 36/38 Rev. B0 Figure 28. Application PCB layout. General circuit diagram and PCB layout recommendations for SCC2230-E02 (refer to Figure 27 and Figure 28): 1. Connect decoupling SMD capacitors (C1 - C5) right next to respective component pins. 2. Locate ground plate under component. 3. Do not route signals or power supplies under the component on top layer. 4. Minimize the trace length between the L1 inductor and LBOOST pin (pin 7). 5. Ensure good ground connection of DVSS, AVSS_REF and AVSS pins (pins 8, 15, 16). 6. For optimum performance the use of decoupling capacitors C6 and C7 is recommended. Capacitor C6 should be located close to C2 and C7 close to C4. 7.2 Assembly Instructions Usage of PCB coating materials may effect component performance. The coating material and coating process used should be validated. For additional assembly related details please refer to "Technical Note 96" for assembly instructions: TN96_Assembly_Instructions_for_SCC2000_Series Murata Electronics Oy www.murata.com SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 37/38 Rev. B0 8 Order Information Table 34. SCC2230-E02 order codes with packing quantity. Order code Packing Qty SCC2230-E02-004 Gyro (Z-axis 125dps) accelerometer (2g) combo with digital SPI i/f Bulk 4pcs SCC2230-E02-05 Gyro (Z-axis 125dps) accelerometer (2g) combo with digital SPI i/f T&R 50pcs SCC2230-E02-6 Gyro (Z-axis 125dps) accelerometer (2g) combo with digital SPI i/f T&R 600pcs Murata Electronics Oy www.murata.com Description SCC2230-E02 Doc.Nr. 82 1888 00 Subject to changes 38/38 Rev. B0