A KYOCERA GROUP COMPANY
AVX
RF Microwave/Thin-Film
Products
S-RFMTF00M904-C
Contact:
AVX Myrtle Beach, SC
Corporate Offices
Tel: 843-448-9411
FAX: 843-448-1943
AVX Northwest, WA
Tel: 360-699-8746
FAX: 360-699-8751
AVX North Central, IN
Tel: 317-848-7153
FAX: 317-844-9314
AVX Mid/Pacific, CA
Tel: 510-661-4100
FAX: 510-661-4101
AVX Southwest, AZ
Tel: 602-678-0384
FAX: 602-678-0385
AVX South Central, TX
Tel: 972-669-1223
FAX: 972-669-2090
AVX Southeast, GA
Tel: 404-608-8151
FAX: 770-972-0766
AVX Canada
Tel: 905-238-3151
FAX: 905-238-0319
AVX Limited, England
European Headquarters
Tel: ++44 (0) 1252-770000
FAX: ++44 (0) 1252-770001
AVX/ELCO, England
Tel: ++44 (0) 1638-675000
FAX: ++44 (0) 1638-675002
AVX S.A., France
Tel: ++33 (1) 69-18-46-00
FAX: ++33 (1) 69-28-73-87
AVX GmbH, Germany
Tel: ++49 (0) 8131-9004-0
FAX: ++49 (0) 8131-9004-44
AVX srl, Italy
Tel: ++390 (0)2 614-571
FAX: ++390 (0)2 614-2576
AVX Czech Republic
Tel: ++420 465-358-111
FAX: ++420 465-323-010
A KYOCERA GROUP COMPANY
http://www.avx.com
AVX/Kyocera, Singapore
Asia-Pacific Headquarters
Tel: (65) 6286-7555
FAX: (65) 6488-9880
AVX/Kyocera, Hong Kong
Tel: (852) 2-363-3303
FAX: (852) 2-765-8185
AVX/Kyocera, Korea
Tel: (82) 2-785-6504
FAX: (82) 2-784-5411
AVX/Kyocera, Taiwan
Tel: (886) 2-2698-8778
FAX: (886) 2-2698-8777
AVX/Kyocera, Malaysia
Tel: (60) 4-228-1190
FAX: (60) 4-228-1196
Elco, Japan
Tel: 045-943-2906/7
FAX: 045-943-2910
Kyocera, Japan - AVX
Tel: (81) 75-604-3426
FAX: (81) 75-604-3425
Kyocera, Japan - KDP
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425
AVX/Kyocera, Shanghai, China
Tel: 86-21 6886 1000
FAX: 86-21 6886 1010
AVX/Kyocera, Tianjin, China
Tel: 86-22 2576 0098
FAX: 86-22 2576 0096
USA
EUROPE
ASIA-PACIFIC
1
AVX Microwave
Ask The World Of Us
As one of the world’s broadest line
multilayer ceramic chip capacitor
suppliers, and a major Thin Film
RF/Microwave capacitor, inductor,
directional coupler and low pass filter and
microwave ceramic capacitor manufacturer,
it is our mission to provide First In Class
Technology, Quality and Service, by
establishing progressive design,
manufacturing and continuous
improvement programs driving
toward a single goal:
TOTAL CUSTOMER SATISFACTION
22
RF/Microwave Products
Table of Contents
Company Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Thin-Film RF/Microwave Technology – Accu-F®/ Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Thin-Film Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thin-Film Chip Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thin-Film Chip Capacitors for RF Signal and Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Accu-F®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
0201 Typical Electrical Tables – Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
0402 Typical Electrical Tables – Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13
0603 Typical Electrical Tables – Accu-F®/ Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
0805 Typical Electrical Tables – Accu-F®/ Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1210 Typical Electrical Tables – Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
High Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19
Environmental / Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Performance Characteristics RF Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Application Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-23
Automatic Insertion Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Thin-Film RF/Microwave Inductor Technology – Accu-L®– L0603/L0805 . . . . . . . . . . . . . . . . . . 25-30
SMD High-Q RF Inductor – Accu-L®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-29
Environmental Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Thin-Film RF/Microwave Directional Couplers – CP0402/CP0603/CP0805/DB0805 3dB 90° . . . . 31-67
CP0402 High Directivity LGA Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-35
CP0603 High Directivity LGA Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-40
CP0402 and CP0603 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CP0603 SMD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42-44
CP0603 SMD Type High Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CP0805 Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-49
CP0805 and CP0603 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DB0805 3dB 90° Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51-62
DB0805 3dB 90° Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Thin-Film RF/Microwave Harmonic Low Pass Filter – LP0603/LP0805 . . . . . . . . . . . . . . . . . . . . 64-71
LP0603 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67-68
LP0805 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Thin-Film RF/Microwave Products – Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72-74
RF/Microwave Multilayer Capacitors (MLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-89
Porcelain Capacitors (+90±20ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-79
• AQ06 (0.063" x 0.032") - Cap. Range: 0.1 to 120pF
• AQ11; AQ12 (0.055" x 0.055") - Cap. Range: 0.1 to 100pF
• AQ13; AQ14 (0.110" x 0.110") - Cap. Range: 0.1 to 1000pF
Hi-Q NP0 Capacitors (0±30ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
• AQ06 (0.063" x 0.032") - Cap. Range: 0.1 to 120pF
• AQ11; AQ12 (0.055" x 0.055") - Cap. Range: 0.1 to 1000pF
• AQ13; AQ14 (0.110" x 0.110") - Cap. Range: 0.1 to 5100pF
Hi-K RF Capacitors (±15%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78-79
• AQ12 (0.055" x 0.055") - Cap. Range: 0.001 to 0.010µF
• AQ14 (0.110" x 0.110") - Cap. Range: 0.005 to 0.1µF
MIL-PRF-55681 “BG” Voltage Temperature Limits (+90±20ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-82
• CDR11BG; CDR12BG (0.055" x 0.055") - Failure Rate Level: M, P, R, S
• CDR13BG; CDR14BG (0.110" x 0.110") - Failure Rate Level: M, P, R, S
MIL-PRF-55681 “BP” Voltage Temperature Limits (0±30ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-82
• CDR11BP; CDR12BP (0.055" x 0.055") - Failure Rate Level: M, P, R, S
• CDR13BP; CDR14BP (0.110" x 0.110") - Failure Rate Level: M, P, R, S
Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-87
Automatic Insertion Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Hi-Q®High RF Power MLC Surface Mount Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
RF/Microwave C0G (NP0) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90-93
Ultra Low ESR “U” Series, C0G (NP0)
• 0402 (0.040" x 0.020"), 0603 (0.060" x 0.030"), 0805 (0.080" x 0.050"), 1210 (0.125" x 0.100")
. . . . . . . . . . . . . . . . . . 91-93
RF/Microwave AQ 12 & 14 and “U” Series Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-97
Introduction to Microwave Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-110
33
RF/Microwave Products
Table of Contents
Company Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Thin-Film RF/Microwave Technology – Accu-F®/ Accu-P®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Thin-Film RF/Microwave Technology – Accu-L® L0603, L0805. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-30
Thin-Film RF/Microwave Directional Couplers – CP0402/CP0603/CP0805/DB0805 3dB 90° . . . . 31-63
Thin-Film RF/Microwave Harmonic Low Pass Filter – LP0603/LP0805 . . . . . . . . . . . . . . . . . . . . . . . . . 64-71
Thin-Film RF/Microwave Products – Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72-74
RF/Microwave Multilayer Capacitors (MLC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-89
RF/Microwave C0G (NP0) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90-93
RF/Microwave AQ 12 & 14 and “U” Series Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-97
Introduction to Microwave Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-110
1
2
3
4
5
6
7
8
9
44
RF/Microwave Products
Company Profile
AVX Corporation is a leading manufacturer of multilayer ceramic,
thin film, tantalum, and glass capacitors, as well as other passive
electronic components. These products are used in virtually every
variety of electronic system today, including data processing,
telecommunications, consumer/automotive electronics, military and
aerospace systems, and instrumentation and process controls.
We continually strive to be the leader in all component segments we
supply. RF/Microwave capacitors is a thrust business for us. AVX
offers a broad line of RF/Microwave Chip Capacitors in a wide range
of sizes, styles, and ratings.
The Thin-Film Products range illustrated in this catalog represents
the state-of-the-art in RF Capacitors, Inductors, Directional
Couplers and Low Pass Filters. The thin-film technology provides
components that exhibit excellent batch-to-batch repeatability of
electrical parameters at RF frequencies.
The Accu-F®and Accu-P®series of capacitors are available in ultra-
tight tolerances (±0.02pF) as well as non-standard capacitance
values.
The Accu-L®series of inductors are ideally suited for applications
requiring an extremely high Q and high current capability.
The CP0402/CP0603/CP0805 series of Directional Couplers cover
the frequency range of 800 MHz to 6 GHz. They feature low inser-
tion loss, high directivity and highly accurate coupling factors.
The LP0805 series of Low Pass Filters provide a rugged component
in a small 0805 size package with excellent high frequency perfor-
mance.
Another major series of microwave capacitors consists of both
multilayer porcelain and ceramic capacitors for frequencies from
10 MHz to 4.2 GHz (AQ11 - 14 Series). Three sizes of specially
designed ultra-low ESR C0G (NP0) capacitors are covered for
RF applications (“U” Series).
Ask the world of us. Call (843) 448-9411.
Or visit our website http://www.avx.com
55
Thin-Film Technology
Accu-F®/ Accu-P®
Thin-Film RF/Microwave Capacitors
1
6
1
Accu-F®/ Accu-P®
Thin-Film Technology
THE IDEAL CAPACITOR
The non-ideal characteristics of a real capacitor can be
ignored at low frequencies. Physical size imparts inductance
to the capacitor and dielectric and metal electrodes result in
resistive losses, but these often are of negligible effect on the
circuit. At the very high frequencies of radio communication
(>100MHz) and satellite systems (>1GHz), these effects
become important. Recognizing that a real capacitor will
exhibit inductive and resistive impedances in addition to
capacitance, the ideal capacitor for these high frequencies is
an ultra low loss component which can be fully characterized
in all parameters with total repeatability from unit to unit.
Until recently, most high frequency/microwave capacitors
were based on fired-ceramic (porcelain) technology. Layers
of ceramic dielectric material and metal alloy electrode paste
are interleaved and then sintered in a high temperature oven.
This technology exhibits component variability in dielectric
quality (losses, dielectric constant and insulation resistance),
variability in electrode conductivity and variability in physical
size (affecting inductance). An alternate thin-film technology
has been developed which virtually eliminates these vari-
ances. It is this technology which has been fully incorporated
into Accu-F®and Accu-P® to provide high frequency capaci-
tors exhibiting truly ideal characteristics.
The main features of Accu-F®and Accu-P®may be summa-
rized as follows:
High purity of electrodes for very low and repeatable
ESR.
Highly pure, low-K dielectric for high breakdown field,
high insulation resistance and low losses to frequencies
above 40GHz.
Very tight dimensional control for uniform inductance,
unit to unit.
Very tight capacitance tolerances for high frequency
signal applications.
This accuracy sets apart these Thin-Film capacitors from
ceramic capacitors so that the term Accu has been
employed as the designation for this series of devices, an
abbreviation for “accurate.”
THIN-FILM TECHNOLOGY
Thin-film technology is commonly used in producing semi-
conductor devices. In the last two decades, this technology
has developed tremendously, both in performance and in
process control. Today’s techniques enable line definitions of
below 1µm, and the controlling of thickness of layers at 100Å
(10-2µm). Applying this technology to the manufacture of
capacitors has enabled the development of components
where both electrical and physical properties can be tightly
controlled.
The thin-film production facilities at AVX consist of:
Class 1000 clean rooms, with working areas under
laminar-flow hoods of class 100, (below 100 particles
per cubic foot larger than 0.5µm).
High vacuum metal deposition systems for high-purity
electrode construction.
Photolithography equipment for line definition down to
2.0µm accuracy.
Plasma-enhanced CVD for various dielectric deposi-
tions (CVD=Chemical Vapor Deposition).
High accuracy, microprocessor-controlled dicing saws
for chip separation.
High speed, high accuracy sorting to ensure strict
tolerance adherence.
SEAL
ELECTRODE
DIELECTRIC
ALUMINA
ACCU-P CAPACITOR
ELECTRODE
ALUMINA
TERMINATION
®
7
1
Accu-F®/ Accu-P®
Thin-Film Chip Capacitors
ACCU-F®TECHNOLOGY
The use of very low-loss dielectric materials, silicon dioxide
and silicon oxynitride, in conjunction with highly conductive
electrode metals results in low ESR and high Q. These
high-frequency characteristics change at a slower rate with
increasing frequency than for ceramic microwave capacitors.
Because of the thin-film technology, the above-mentioned
frequency characteristics are obtained without significant
compromise of properties required for surface mounting.
The main Accu-F®properties are:
Internationally agreed sizes with excellent dimensional
control.
• Small size chip capacitors (0603) are available.
• Tight capacitance tolerances.
• Low ESR at VHF, UHF and microwave frequencies.
High stability with respect to time, temperature, frequency
and voltage variation.
Nickel/solder-coated terminations to provide excellent
solderability and leach resistance.
ACCU-F®FEATURES
Accu-F®meets the fast-growing demand for low-loss
(high-Q) capacitors for use in surface mount technology espe-
cially for the mobile communications market, such as cellular
radio of 450 and 900 MHz, UHF walkie-talkies, UHF cordless
telephones to 2.3 GHz, low noise blocks at 11-12.5 GHz and
for other VHF, UHF and microwave applications.
Accu-F®is currently unique in its ability to offer very
low capacitance values (0.1pF) and very tight capacitance
tolerances (±0.05pF). Typically Accu-F®will be used in small
signal applications in VCO’s, matching networks, filters, etc.
Inspection test and quality control procedures in accordance
with ISO 9001, CECC, IECQ and USA MIL Standards yield
products of the highest quality.
APPLICATIONS
Cellular Communications
CT2/PCN (Cordless
Telephone/Personal Comm.
Networks)
Satellite TV
Cable TV
GPS (Global Positioning Systems)
Vehicle Location Systems
Vehicle Alarm Systems
Paging
Military Communications
Radar Systems
Video Switching
Test & Measurements
Filters
VCO’s
Matching Networks
APPROVALS
ISO 9001
ACCU-P®TECHNOLOGY
As in the Accu-F®series the use of very low-loss dielectric
materials (silicon dioxide and silicon oxynitride) in conjunction
with highly conductive electrode metals results in low ESR and
high Q. At high frequency these characteristics change at
a slower rate with increasing frequency than conventional
ceramic microwave capacitors. Using thin-film technology, the
above-mentioned frequency characteristics are obtained with-
out significant compromise of properties required for surface
mounting. The use of high thermal conductivity materials
results in excellent RF power handling capabilities.
The main Accu-P®properties are:
• Enhanced RF power handling capability.
• Improved mechanical characteristics.
Internationally agreed sizes with excellent dimensional control.
• Ultra Small size chip capacitors (0201) are available.
• Tight capacitance tolerances.
• Low ESR at UHF, VHF, and microwave frequencies.
High-stability with respect to time, temperature, frequency
and voltage variation.
High temperature nickel/solder-coated terminations as stan-
dard to provide excellent solderability and leach resistance.
ACCU-P®FEATURES
• Minimal batch to batch variability of parameters at high fre-
quency.
The Accu-P®has the same unique features as the Accu-F®
capacitor such as low ESR, high Q, availability of very low
capacitance values and very tight capacitance tolerances.
The RF power handling capability of the Accu-P® allows for
its usage in both small signal and RF power applications.
Inspection, test and quality control procedures in accor-
dance with ISO 9001, CECC, IECQ and USA MIL Standards
guarantee product of the highest quality.
Hand soldering Accu-P®: Due to their construction
utilizing relatively high thermal conductivity materials,
Accu-P’s have become the preferred device in R & D labs
and production environments where hand soldering is used.
Accu-P’s are available in all sizes and are electrically identi-
cal to their Accu-F counterparts.
APPLICATIONS
Cellular Communications
CT2/PCN (Cordless
Telephone/Personal Comm.
Networks)
Satellite TV
Cable TV
GPS (Global Positioning Systems)
Vehicle Location Systems
Vehicle Alarm Systems
Paging
Military Communications
Radar Systems
Video Switching
Test & Measurements
Filters
VCO's
Matching Networks
RF Amplifiers
APPROVALS
ISO 9001
8
1
Accu-F® */ Accu-P®
Thin-Film Chip Capacitors for
RF Signal and Power Applications
L
T
B
1
W
B2
0603 0805
L1.60±0.1 2.01±0.1
(0.063±0.004) (0.079±0.004)
W0.81±0.1 1.27±0.1
(0.032±0.004) (0.050±0.004)
T0.63±0.1 0.63±0.1
(0.025±0.004) (0.025±0.004)
B0.30±0.1 0.30±0.1
(0.012±0.004) (0.012±0.004)
ACCU-F®*(Signal Type Capacitors)
DIMENSIONS:
millimeters (inches)
0201 0402* 0603* 0805* 1210
L0.60±0.05 1.00±0.1 1.60±0.1 2.01±0.1 3.02±0.1
(0.023±0.002) (0.039±0.004) (0.063±0.004) (0.079±0.004) (0.119±0.004)
W0.325±0.050 0.55±0.07 0.81±0.1 1.27±0.1 2.5±0.1
(0.0128±0.002) (0.022±0.003) (0.032±0.004) (0.050±0.004) (0.100±0.004)
T0.225±0.050 0.40±0.1 0.63±0.1 0.93±0.2 0.93±0.2
(0.009±0.002) (0.016±0.004) (0.025±0.004) (0.036±0.008) (0.036±0.008)
B10.10±0.10 0.00±0.1/-0 0.35±0.15 0.30±0.1 0.43±0.1
(0.004±0.004) (0.000±0.004/-0) (0.014±0.006) (0.012±0.004) (0.017±0.004)
B20.15±0.05 0.20±0.1 0.35±0.15 0.30±0.1 0.43±0.1
(0.006±0.002) (0.008±0.004) (0.014±0.006) (0.012±0.004) (0.017±0.004)
ACCU-P®(Signal and Power Type Capacitors)
0805
Size
0201*
0402*
0603
0805
1210*
5
Voltage
1 = 100V
5 = 50V
3 = 25V
Y = 16V
Z = 10V
J
Temperature
Coefficient (1)
J = 0±30ppm/°C
(-55°C to
+125°C)
K = 0±60ppm/°C
(-55°C to
+125°C)
120
Capacitance
Capacitance
expressed in pF.
(2 significant
digits + number
of zeros)
for values
<10pF,
letter R denotes
decimal point.
Example:
68pF = 680
8.2pF = 8R2
G
Tolerance
for
C2.0pF*
P = ±0.02pF
Q = ±0.03pF
A = ±0.05pF
B = ±0.1pF
C = ±0.25pF
for
C3.0pF
Q = ±0.03pF
A = ±0.05pF
B = ±0.1pF
C = ±0.25pF
for
C5.6pF
A = ±0.05pF
B = ±0.1pF
C = ±0.25pF
for
5.6pF<C<10pF
B = ±0.1pF
C = ±0.25pF
D = ±0.5pF
for
C10pF
F = ±1%
G = ±2%
J = ±5%
A
Specification
Code
A = Accu-F®
technology
B = Accu-P®
technology
W
Termination
Code
W = Nickel/
Solder Coated
Accu-F®Sn63, Pb37
Accu-P®0201 & 0402
Sn90, Pb10
T = Nickel/High Temperature
Solder Coated
Accu-P®0603, 0805, 1210
Sn96, Ag4
S = Nickel/Lead Free
Solder Coated
Accu-P®0402
Sn100
TR
Packaging
Code
TR = Tape and Reel
(1) TC’s shown are per EIA/IEC Specifications.
* Accu-P ONLY
Operating and Storage Temperature Range -55°C to +125°C
Temperature Coefficients (1) 0 ± 30ppm/°C dielectric code “J” / 0 ± 60ppm/°C dielectric code “K”
Capacitance Measurement 1 MHz, 1 Vrms
Insulation Resistance (IR) 1011 Ohms (1010 Ohms for 0201 and 0402 size)
Proof Voltage 2.5 URfor 5 secs.
Aging Characteristic Zero
Dielectric Absorption 0.01%
ELECTRICAL SPECIFICATIONS
(1) TC’s shown are per EIA/IEC Specifications.
*Mount Black Side Up
HOW TO ORDER
DIMENSIONS: millimeters (inches)
* Tolerances as tight as ±0.01pF are available.
Please consult the factory.
*Not recommended for new designs.
Accu-P’s are recommended.
9
1
Size
Size Code 0603 0805
Voltage 100 50 25 100 50 25
Cap in Cap
pF(1) code
0.1 0R1
0.2 0R2
0.3 0R3
0.4 0R4
0.5 0R5
0.6 0R6
0.7 0R7
0.8 0R8
0.9 0R9
1.0 1R0
1.2 1R2
1.5 1R5
1.8 1R8
2.2 2R2
2.7 2R7
3.3 3R3
3.9 3R9
4.7 4R7
5.6 5R6
6.8 6R8
8.2 8R2
10 100
12 120
15 150
18 180
22 220
27 270
33 330
39 390
47 470
56 560
68 680
82 820
100 101
120 121
150 151
Size
Size Code 0603 0805
Voltage 100 50 25 100 50 25
Cap in Cap
pF((1) code
0.1 0R1
0.2 0R2
0.3 0R3
0.4 0R4
0.5 0R5
0.6 0R6
0.7 0R7
0.8 0R8
0.9 0R9
1.0 1R0
1.2 1R2
1.5 1R5
1.8 1R8
2.2 2R2
2.7 2R7
3.3 3R3
3.9 3R9
4.7 4R7
5.6 5R6
6.8 6R8
8.2 8R2
10 100
12 120
15 150
18 180
22 220
27 270
33 330
39 390
47 470
56 560
68 680
82 820
100 101
120 121
150 151
TEMP. COEFFICIENT CODE
“J” = 0±30ppm/°C
(-55°C to +125°C)(2)
Accu-F® *
Signal Type Capacitors
TEMP. COEFFICIENT CODE
“K” = 0±60ppm/°C
(-55°C to +125°)(2)
(1) For capacitance values higher than listed in table,
please consult factory.
(2) TC shown is per EIA/IEC Specifications.
(1) For capacitance values higher than listed in table,
please consult factory.
(2) TC shown is per EIA/IEC Specifications.
Accu-F®Capacitance Ranges (pF)
Intermediate values are available within the indicated range.
*Not recommended for new designs.
Accu-P’s are recommended.
10
1
Size
Size Code 0805 1210
Voltage 100 50 25 100 50(3)
Cap in Cap
pF(1) code
0.1 0R1
0.2 0R2
0.3 0R3
0.4 0R4
0.5 0R5
0.6 0R6
0.7 0R7
0.8 0R8
0.9 0R9
1.0 1R0
1.1 1R1
1.2 1R2
1.3 1R3
1.4 1R4
1.5 1R5
1.6 1R6
1.7 1R7
1.8 1R8
1.9 1R9
2.0 2R0
2.1 2R1
2.2 2R2
2.3 2R3
2.4 2R4
2.5 2R5
2.6 2R6
2.7 2R7
2.8 2R8
2.9 2R9
3.0 3R0
3.1 3R1
3.2 3R2
3.3 3R3
3.4 3R4
3.5 3R5
3.6 3R6
3.7 3R7
3.8 3R8
3.9 3R9
4.0 4R0
4.1 4R1
4.2 4R2
4.3 4R3
4.4 4R4
4.5 4R5
4.6 4R6
4.7 4R7
5.1 5R1
5.6 5R6
6.2 6R2
6.8 6R8
7.5 7R5
8.2 8R2
9.1 9R1
10.0 100
11.0 110
12.0 120
13.0 130
14.0 140
15.0 150
16.0 160
17.0 170
18.0 180
22.0 220
24.0 240
27.0 270
30.0 300
33.0 330
39.0 390
47.0 470
56.0 560
68.0 680
Accu-P®
Signal and Power Type Capacitors
TEMP. COEFFICIENT CODE
“K” = 0±60ppm/°C (-55°C to +125°C)(2)
TEMP. COEFFICIENT CODE
“J” = 0±30ppm/°C (-55°C to +125°C)(2)
(1) For capacitance values higher than listed in table,
please consult factory.
(2) TC shown is per EIA/IEC Specifications.
(3) For 50 volt range, please consult factory.
(1) For capacitance values higher than listed in table,
please consult factory.
(2) TC shown is per EIA/IEC Specifications.
These values are produced with “K” temperature coefficient
code only.
Accu-P®Capacitance Ranges (pF)
Intermediate values are available within the indicated range.
Size
Size Code 0201 0402 0603 0805 1210
Voltage 25 16 10 25 16 10 50 25 100 50 25 100 50
Cap in Cap
pF(1) code
0.1 0R1
0.2 0R2
0.3 0R3
0.4 0R4
0.5 0R5
0.6 0R6
0.7 0R7
0.8 0R8
0.9 0R9
1.0 1R0
1.1 1R1
1.2 1R2
1.3 1R3
1.4 1R4
1.5 1R5
1.6 1R6
1.7 1R7
1.8 1R8
1.9 1R9
2.0 2R0
2.1 2R1
2.2 2R2
2.3 2R3
2.4 2R4
2.5 2R5
2.6 2R6
2.7 2R7
2.8 2R8
2.9 2R9
3.0 3R0
3.1 3R1
3.2 3R2
3.3 3R3
3.4 3R4
3.5 3R5
3.6 3R6
3.7 3R7
3.8 3R8
3.9 3R9
4.0 4R0
4.1 4R1
4.2 4R2
4.3 4R3
4.4 4R4
4.5 4R5
4.6 4R6
4.7 4R7
5.1 5R1
5.6 5R6
6.2 6R2
6.8 6R8
7.5 7R5
8.2 8R2
9.1 9R1
10.0 100
11.0 110
12.0 120
13.0 130
14.0 140
15.0 150
16.0 160
17.0 170
18.0 180
22.0 220
24.0 240
27.0 270
30.0 300
33.0 330
39.0 390
47.0 470
56.0 560
68.0 680
11
1
Accu-P®
0201 Typical Electrical Tables
Self
Capacitance Resonance 250MHz 500MHz 750MHz 1000MHz 1250MHz
@ 1 MHz Frequency
Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ.
(pF) (GHz) C(eff) Q ESR C(eff) Q ESR C(eff) Q ESR C(eff) Q ESR C(eff) Q ESR
Typical (pF) ()(pF) ()(pF) ()(pF) ()(pF) ()
0.8 9.1 0.84 2154 360 0.84 630 603 0.85 424 594 0.85 327 577 0.86 255 588
1.2 7.6 1.21 1375 405 1.21 525 517 1.22 341 527 1.23 267 503 1.23 208 515
1.8 6.3 1.84 1298 271 1.85 520 341 1.86 337 347 1.87 270 326 1.88 201 347
2.2 5.7 2.23 1355 214 2.24 512 281 2.25 335 284 2.27 264 270 2.29 199 284
3.3 4.6 3.29 1295 156 3.31 430 230 3.33 285 230 3.36 220 223 3.40 159 242
3.9 4.3 3.91 1902 93 3.93 460 181 3.97 298 185 4.02 227 181 4.08 163 198
4.7 3.9 4.71 1677 84 4.74 391 174 4.80 252 178 4.87 181 183 4.97 130 200
5.6 3.6 5.62 1391 84 5.67 370 154 5.74 257 148 5.83 195 144 5.95 140 157
6.8 3.3 6.77 1135 84 6.83 314 149 6.91 217 142 7.03 164 139 7.18 118 151
Self
Capacitance Resonance 1500MHz 1750MHz 2250MHz 2500MHz 2750MHz
@ 1 MHz Frequency
Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ. Typ.
(pF) (GHz) C(eff) Q ESR C(eff) Q ESR C(eff) Q ESR C(eff) Q ESR C(eff) Q ESR
Typical (pF) ()(pF) ()(pF) ()(pF) M ()(pF) ()
0.8 9.1 0.86 204 611 0.87 168 631 0.88 141 587 0.89 126 571 0.90 122 532
1.2 7.6 1.24 155 565 1.26 129 577 1.28 92 570 1.30 89 566 1.31 81 558
1.8 6.3 1.90 148 388 1.92 123 395 1.96 96 395 1.99 83 396 2.02 74 397
2.2 5.7 2.32 145 320 2.34 123 322 2.41 93 329 2.46 81 328 2.50 72 330
3.3 4.6 3.45 119 266 3.50 101 263 3.63 74 277 3.73 64 276 3.84 55 281
3.9 4.3 4.16 122 216 4.25 103 214 4.46 75 224 4.63 64 223 4.79 56 225
4.7 3.9 5.08 99 213 5.23 83 212 5.55 60 221 5.83 50 222 6.10 43 224
5.6 3.6 6.11 108 166 6.31 91 164 6.76 64 174 7.16 53 175 7.56 45 141
6.8 3.3 7.38 93 155 7.63 76 158 8.22 54 166 8.74 44 169 9.29 37 173
12
1
Capacitance Self
& Tolerance* Resonance
Ref Typ. Typ. Typ. Ref Typ. Typ. Typ. Ref Typ. Typ. Typ. Ref Typ. Typ. Typ. Ref Typ. Typ. Typ.
@ 1 MHz Frequency
Freq C(eff) Q ESR Freq C(eff) Q ESR Freq C(eff) Q ESR Freq C(eff) Q ESR Freq C(eff) Q ESR
(pF) (GHz) (MHz) (pF) ()(MHz) (pF) ()
(MHz)
(pF) ()
(MHz)
(pF) ()(MHz) (pF) ()
Typical
0.1±0.05 19.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.2±0.05 16.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.3±0.05 14.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.4±0.05 12.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.5±0.05 11.3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.6±0.05 10.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.7±0.05 9.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.8±0.05 9.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.9±0.05 8.8 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1.00±0.05 8 247 1.16 1635 0.34 494 1.15 1283 0.22 742 1.13 870 0.22 991 1.12 620 0.23 1240 1.14 474 0.25
1.10±0.05 7.8 246 1.25 1581 0.32 492 1.22 1219 0.21 740 1.21 791 0.22 989 1.19 561 0.24 1238 1.21 425 0.25
1.20±0.05 7.4 245 1.34 1538 0.30 491 1.33 1153 0.21 738 1.31 727 0.22 986 1.3 503 0.25 1234 1.33 372 0.25
1.30±0.05 7 244 1.42 1502 0.29 490 1.42 1109 0.21 736 1.4 701 0.21 983 1.35 480 0.24 1230 1.41 350 0.25
1.40±0.05 6.8 243 1.53 1476 0.28 488 1.54 1061 0.20 733 1.52 680 0.21 980 1.49 461 0.23 1229 1.53 333 0.25
1.50±0.05 6.5 242 1.63 1454 0.28 486 1.63 1002 0.20 731 1.58 638 0.21 978 1.6 438 0.23 1226 1.65 316 0.25
1.60±0.05 6.5 242 1.71 1448 0.27 485 1.76 986 0.20 729 1.69 622 0.21 986 1.71 429 0.23 1224 1.77 309 0.24
1.70±0.05 6.4 241 1.85 1444 0.27 483 1.81 970 0.19 728 1.75 612 0.20 985 1.75 422 0.22 1223 1.86 305 0.23
1.80±0.05 6.2 240 1.93 1430 0.26 482 1.86 931 0.19 727 1.83 597 0.20 983 1.8 413 0.22 1220 1.91 299 0.23
1.90±0.05 6 239 2.01 1421 0.25 481 1.93 897 0.19 726 1.91 583 0.20 972 1.91 401 0.21 1219 1.97 294 0.22
2.00±0.05 5.7 239 2.11 1410 0.24 480 2.06 896 0.18 722 2.11 582 0.19 969 2.01 400 0.20 1215 2.11 293 0.21
2.10±0.05 5.4 238 2.21 1406 0.23 478 2.14 893 0.17 720 2.21 581 0.18 966 2.1 398 0.19 1213 2.22 291 0.20
2.20±0.05 5.1 237 2.28 1406 0.22 476 2.27 893 0.16 718 2.26 581 0.17 964 2.27 396 0.18 1212 2.35 289 0.19
2.30±0.05 5 237 2.32 1405 0.20 475 2.36 870 0.16 716 2.4 549 0.17 962 2.3 379 0.18 1209 2.4 262 0.20
2.40±0.05 4.9 236 2.45 1404 0.19 473 2.48 845 0.16 715 2.51 501 0.17 960 2.41 358 0.19 1208 2.53 253 0.20
2.50±0.05 4.7 235 2.49 1404 0.18 472 2.6 821 0.16 714 2.62 486 0.17 959 2.52 349 0.19 1205 2.7 240 0.20
2.60±0.05 4.6 234 2.6 1402 0.16 470 2.71 799 0.15 712 2.73 477 0.17 958 2.65 331 0.19 1204 2.85 231 0.20
2.70±0.05 4.5 233 2.84 1399 0.15 469 2.83 778 0.15 711 2.82 464 0.17 956 2.86 313 0.19 1203 3 224 0.20
2.80±0.05 4.5 233 2.85 1395 0.15 468 2.94 769 0.15 710 2.9 458 0.16 954 2.91 308 0.18 1202 3.12 220 0.20
2.90±0.05 4.4 232 2.87 1395 0.15 467 3.11 751 0.15 710 2.99 450 0.16 953 3.15 303 0.18 1201 3.24 218 0.19
3.00±0.05 4.4 231 2.88 1392 0.14 466 3.39 746 0.15 709 3.11 440 0.16 952 3.41 299 0.18 1201 3.33 212 0.19
3.10±0.05 4.4 230 2.9 1392 0.14 465 3.45 733 0.15 708 3.22 429 0.16 951 3.48 291 0.18 1199 3.45 207 0.19
3.20±0.05 4.3 230 2.91 1391 0.14 464 3.61 725 0.15 707 3.3 421 0.16 950 3.68 285 0.17 1198 3.58 203 0.19
3.30±0.05 4.3 229 2.92 1391 0.14 462 3.72 711 0.14 707 3.42 415 0.16 949 3.8 282 0.17 1197 3.61 198 0.19
3.40±0.05 4.3 228 2.93 1390 0.14 461 3.78 705 0.14 706 3.53 407 0.15 948 3.79 276 0.17 1196 3.78 195 0.19
3.50±0.05 4.2 227 2.95 1389 0.13 460 3.82 693 0.14 705 3.6 402 0.15 947 3.85 273 0.16 1195 3.91 191 0.18
3.60±0.05 4.2 226 2.97 1382 0.13 459 3.87 688 0.14 704 3.7 395 0.15 946 3.89 270 0.16 1194 4 186 0.18
3.70±0.05 4.1 226 2.99 1381 0.13 458 3.93 667 0.14 702 3.81 389 0.15 945 3.95 262 0.16 1193 4.1 181 0.18
3.80±0.05 4 225 4 1380 0.13 458 4 658 0.13 699 3.9 386 0.15 944 4.02 256 0.16 1192 4.23 177 0.18
3.90±0.05 3.9 224 4.01 1379 0.13 457 4.01 649 0.13 697 4.02 384 0.15 943 4.11 251 0.16 1191 4.37 172 0.18
4.00±0.05 3.9 224 4.09 1372 0.12 457 4.07 650 0.13 696 4.11 381 0.14 942 4.18 250 0.16 1190 4.46 170 0.18
4.10±0.05 3.8 223 4.18 1370 0.12 456 4.18 655 0.13 696 4.2 380 0.14 941 4.23 248 0.15 1190 4.52 169 0.17
4.20±0.05 3.8 223 4.27 1356 0.12 455 4.27 658 0.12 695 4.29 379 0.14 940 4.37 247 0.15 1199 4.66 167 0.17
4.30±0.05 3.7 222 4.36 1355 0.12 454 4.34 657 0.12 694 4.43 373 0.14 939 4.58 246 0.15 1195 4.75 168 0.17
4.40±0.05 3.7 222 4.44 1351 0.11 453 4.45 660 0.12 693 4.5 369 0.14 939 4.62 246 0.14 1192 4.82 162 0.16
4.50±0.05 3.6 221 4.53 1350 0.11 452 4.52 665 0.12 692 4.6 364 0.13 938 4.7 245 0.14 1190 4.96 161 0.16
4.60±0.05 3.6 221 4.62 1347 0.11 451 4.62 670 0.11 691 4.72 359 0.13 938 4.79 244 0.14 1188 5.07 161 0.16
4.70±0.05 3.5 220 4.75 1343 0.11 450 4.74 673 0.11 690 4.74 351 0.13 937 4.86 244 0.14 1186 5.18 159 0.16
5.10±0.05 3.4 217 5.19 1310 0.11 447 5.16 589 0.11 687 5.23 348 0.13 934 5.53 230 0.14 1184 5.82 131 0.16
5.60±0.05 3.3 214 5.74 1297 0.11 443 5.75 576 0.11 684 5.81 342 0.12 932 6.01 201 0.14 1182 6.62 129 0.16
6.2±0.1 3 211 6.31 1244 0.10 440 6.09 585 0.10 681 6.33 339 0.11 928 6.68 202 0.12 1180 7.34 128 0.15
6.8±0.1 2.8 208 6.92 1202 0.09 436 6.94 591 0.09 678 7.04 334 0.10 926 7.39 203 0.11 1177 8.22 127 0.14
7.5±0.1 2.7 205 7.57 1155 0.08 433 7.51 567 0.09 675 7.85 320 0.10 924 8.17 191 0.10 1176 9.01 120 0.13
8.2±0.1 2.6 202 8.35 1116 0.08 430 8.36 542 0.08 673 8.48 306 0.09 922 8.93 186 0.10 1174 10.04 118 0.13
9.1±0.1 2.5 199 9.23 1059 0.09 428 9.28 458 0.09 670 9.87 249 0.10 920 10.2 152 0.11 1172 11.98 88 0.13
10.0±1% 2.4 196 10.14 936 0.09 424 10.24 385 0.10 668 10.55 202 0.11 919 11.49 118 0.13 1171 13.75 70 0.12
11.0±1% 2.3 193 11.19 912 0.08 421 11.17 363 0.09 666 11.81 185 0.11 917 12.87 103 0.12 1170 15.3 61 0.12
12.0±1% 2.2 189 12.16 889 0.08 418 12.3 348 0.09 664 12.77 173 0.11 915 14.16 95 0.13 1168 17.63 52 0.12
13.0±1% 2.2 186 13.3 984 0.07 416 13.32 363 0.08 661 14.1 183 0.09 912 15.8 101 0.11 1164 23.9 47 0.12
14.0±1% 2.1 184 14.26 802 0.08 414 14.44 298 0.09 660 15.03 149 0.12 913 16.72 76.7 0.14 1167 23.1 40 0.15
15.0±1% 2.1 182 15.34 791 0.07 413 15.46 283 0.08 660 16.16 138 0.10 912 18.51 82 0.16 1166 23.6 44 0.13
16.0±1% 2 179 16.3 780 0.07 410 16.4 270 0.08 657 17.6 129 0.11 909 20.2 68 0.13 1161 34.7 28 0.14
17.0±1% 1.9 178 17.6 765 0.07 410 17.7 263 0.08 657 18.2 130 0.11 909 21.3 70 0.12 1163 34.9 28 0.14
18.0±1% 1.8 176.5 18.13 754 0.07 409 18.42 258 0.07 657 19.51 130 0.10 910 22.7 75.5 0.11 1164 35.2 29 0.14
19.0±1% 1.8 175 19.2 680 0.08 407 19.4 241 0.07 655 20.51 115 0.11 908 24.5 62 0.11 1163 37.5 24 0.14
20.0±1% 1.8 173 20.32 520 0.08 405 20.43 195 0.06 655 22.1 112 0.11 908 26.5 57 0.12 1162 39.1 19 0.14
22.0±1% 1.75 170.04 22.42 497.5 0.09 404 23.105 174 0.54 654 25 85.5 0.12 907 30.95 44 0.13 1161 100.5 15 0.14
Accu-P®
0402 Typical Electrical Tables
* Other tolerances are available, see page 8
13
1
Capacitance Self
& Tolerance* Resonance
Ref Typ. Typ. Typ. Ref Typ. Typ. Typ. Ref Typ. Typ. Typ. Ref Typ. Typ. Typ. Ref Typ. Typ. Typ.
@ 1 MHz Frequency
Freq C(eff) Q ESR Freq C(eff) Q ESR Freq C(eff) Q ESR Freq C(eff) Q ESR Freq C(eff) Q ESR
(pF) (GHz) (MHz) (pF) ()(MHz) (pF) ()
(MHz)
(pF) ()
(MHz)
(pF) ()(MHz) (pF) ()
Typical
0.1±0.05 19.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.2±0.05 16.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.3±0.05 14.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.4±0.05 12.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.5±0.05 11.3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.6±0.05 10.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.7±0.05 9.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.8±0.05 9.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.9±0.05 8.8 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1.00±0.05 8 1489 1.18 380 0.25 1739 1.25 314 0.25 1988 1.32 265 0.24 2240 1.38 229 0.23 2493 1.41 200 0.23
1.10±0.05 7.8 1485 1.29 342 0.25 1735 1.33 275 0.25 1986 1.41 232 0.24 2238 1.49 201 0.24 2490 1.55 177 0.25
1.20±0.05 7.4 1483 1.37 307 0.25 1732 1.45 251 0.25 1982 1.54 208 0.24 2234 1.59 173 0.25 2488 1.62 149 0.27
1.30±0.05 7 1479 1.45 289 0.25 1729 1.58 240 0.25 1980 1.66 196 0.24 2230 1.73 166 0.25 2485 1.76 137 0.27
1.40±0.05 6.8 1477 1.6 265 0.25 1726 1.71 221 0.25 1977 1.78 179 0.24 2229 1.88 154 0.25 2483 1.89 125 0.26
1.50±0.05 6.5 1474 1.72 252 0.25 1724 1.82 203 0.25 1974 1.94 169 0.24 2227 2.01 143 0.25 2481 2.03 115 0.27
1.60±0.05 6.5 1472 1.81 246 0.24 1722 1.91 201 0.24 1971 2.01 168 0.23 2226 2.1 142 0.24 2479 2.1 119 0.25
1.70±0.05 6.4 1470 1.92 241 0.23 1719 1.99 199 0.23 1970 2.1 167 0.22 2225 2.23 141 0.23 2478 2.23 120 0.24
1.80±0.05 6.2 1469 1.98 240 0.22 1718 2.06 198 0.22 1969 2.24 166 0.21 2223 2.34 141 0.22 2477 2.35 122 0.22
1.90±0.05 6 1468 2.06 239 0.22 1717 2.19 197 0.21 1968 2.33 165 0.21 2222 2.41 140 0.21 2476 2.42 123 0.21
2.00±0.05 5.7 1466 2.12 233 0.21 1716 2.22 190 0.21 1968 2.51 160 0.20 2220 2.62 138 0.21 2475 2.65 118 0.21
2.10±0.05 5.4 1463 2.31 230 0.20 1714 2.43 185 0.21 1966 2.62 155 0.20 2219 2.76 132 0.2 2474 2.81 115 0.20
2.20±0.05 5.1 1461 2.47 228 0.20 1711 2.65 183 0.20 1964 2.83 149 0.20 2217 2.91 126 0.19 2473 2.91 108 0.20
2.30±0.05 5 1460 2.51 214 0.20 1709 2.81 168 0.20 1963 2.98 132 0.19 2216 3.15 121 0.19 2471 3.16 99 0.22
2.40±0.05 4.9 1459 2.6 196 0.20 1708 3 151 0.20 1962 3.16 120 0.19 2215 3.42 109 0.2 2469 3.42 91 0.23
2.50±0.05 4.7 1458 2.77 182 0.20 1706 3.12 144 0.20 1960 3.32 112 0.19 2214 3.58 92 0.21 2468 3.66 81 0.23
2.60±0.05 4.6 1455 2.85 173 0.20 1705 3.25 132 0.20 1957 3.51 97 0.19 2212 3.73 85 0.22 2467 3.73 72 0.24
2.70±0.05 4.5 1453 3.18 164 0.20 1703 3.47 122 0.20 1956 3.75 94 0.20 2211 3.89 78 0.24 2466 3.89 66 0.25
2.80±0.05 4.5 1451 3.25 159 0.20 1702 3.62 120 0.20 1956 3.93 88 0.20 2210 3.97 75 0.24 2466 4.03 65 0.25
2.90±0.05 4.4 1450 3.33 156 0.19 1702 3.77 117 0.20 1956 4.02 84 0.20 2210 4.12 73 0.24 2466 4.17 63 0.25
3.00±0.05 4.4 1449 3.49 150 0.19 1701 3.99 114 0.20 1955 4.21 81 0.20 2209 4.26 72 0.24 2465 4.21 61 0.25
3.10±0.05 4.4 1448 3.61 148 0.19 1700 4.16 109 0.20 1952 4.4 79 0.20 2209 4.45 70 0.24 2465 4.33 59 0.25
3.20±0.05 4.3 1447 3.7 145 0.19 1700 4.31 105 0.20 1952 4.62 77 0.19 2208 4.62 69 0.23 2464 4.49 58 0.25
3.30±0.05 4.3 1446 3.79 143 0.19 1699 4.47 101 0.20 1951 4.76 76 0.20 2207 4.81 68 0.23 2464 4.66 55 0.25
3.40±0.05 4.3 1446 4.01 138 0.19 1698 4.62 101 0.20 1950 4.92 75 0.20 2206 4.93 66 0.22 2464 4.92 52 0.24
3.50±0.05 4.2 1445 4.11 133 0.19 1697 4.78 95 0.20 1950 5.18 73 0.19 2206 5.21 65 0.23 2463 5.15 51 0.24
3.60±0.05 4.2 1445 4.2 130 0.19 1697 4.91 94 0.20 1949 5.34 71 0.20 2205 5.4 63 0.22 2463 5.25 51 0.24
3.70±0.05 4.1 1444 4.28 126 0.19 1696 5.05 92 0.19 1949 5.5 69 0.20 2205 5.62 62 0.22 2462 5.41 49 0.24
3.80±0.05 4 1443 4.44 125 0.19 1696 5.11 90 0.19 1948 5.61 67 0.20 2204 5.78 61 0.22 2462 5.66 48 0.24
3.90±0.05 3.9 1442 4.72 121 0.19 1695 5.26 89 0.19 1948 5.77 66 0.21 2204 5.94 60 0.22 2461 5.82 47 0.24
4.00±0.05 3.9 1441 4.8 121 0.18 1694 5.38 88 0.19 1947 5.81 66 0.20 2203 6.03 60 0.21 2461 5.86 48 0.23
4.10±0.05 3.8 1440 4.92 121 0.18 1693 5.5 87 0.19 1947 5.93 65 0.19 2203 6.11 60 0.21 2460 5.9 49 0.23
4.20±0.05 3.8 1440 5.01 120 0.18 1692 5.63 87 0.18 1946 6.05 65 0.18 2203 6.24 59 0.21 2460 5.95 49 0.21
4.30±0.05 3.7 1439 5.17 120 0.18 1692 5.78 85 0.18 1946 6.11 64 0.18 2202 6.35 58 0.2 2459 6.01 50 0.20
4.40±0.05 3.7 1439 5.28 119 0.18 1691 5.91 85 0.18 1945 6.23 64 0.18 2202 6.4 57 0.2 2459 6.12 52 0.20
4.50±0.05 3.6 1438 5.41 119 0.18 1691 6.04 81 0.18 1945 6.45 64 0.19 2201 6.52 56 0.19 2458 6.23 52 0.19
4.60±0.05 3.6 1438 5.49 118 0.17 1691 6.11 80 0.18 1944 6.66 63 0.17 2201 6.67 55 0.18 2458 6.29 54 0.19
4.70±0.05 3.5 1437 5.6 118 0.17 1690 6.23 80 0.18 1944 6.72 63 0.17 2200 6.71 56 0.18 2457 6.35 54 0.19
5.10±0.05 3.4 1435 6.59 105 0.17 1689 7.48 75 0.18 1943 7.97 60 0.19 2200 8.11 45 0.2 2456 8.1 39 0.21
5.60±0.05 3.3 1434 7.43 90 0.17 1687 8.75 61 0.17 1942 10.03 51 0.21 2199 10.42 37 0.22 2456 10.07 28 0.23
6.2±0.1 3 1432 8.27 91 0.15 1686 10.21 60 0.15 1941 11.52 48 0.18 2198 11.88 36 0.18 2455 11.02 33 0.19
6.8±0.1 2.8 1430 9.41 88 0.13 1684 11.43 58 0.13 1940 13.36 45 0.14 2196 13.72 37 0.14 2454 12.85 36 0.14
7.5±0.1 2.7 1429 10.05 85 0.13 1683 12.25 56 0.14 1939 15.06 40 0.13 2195 15.24 35 0.15 2454 13.66 33 0.14
8.2±0.1 2.6 1428 11.64 79 0.13 1682 14.43 52 0.13 1938 16.85 38 0.13 2195 16.65 32 0.14 2453 15.32 31 0.14
9.1±0.1 2.5 1427 13.39 60 0.13 1681 19.07 33 0.14 1937 28.35 25 0.15 2194 31.08 15 0.16 2452 29.91 15 0.16
10.0±1% 2.4 1425 17.6 41 0.14 1680 26.51 21 0.16 1936 40.16 11 0.17 2194 45.46 8 0.18 2452 39.54 8 0.18
11.0±1% 2.3 1424 20.09 36 0.15 1679 32.66 19 0.15 1935 66.25 8 0.17 2192 81.07 5 0.2 2451 61.28 6 0.18
12.0±1% 2.2 1423 24.14 29 0.15 1678 43.51 13 0.14 1934 92.97 5 0.18 2192 123.19 3 0.2 2450 82.44 4 0.19
13.0±1% 2.2 1417 48.3 18 0.13 1671 63.2 5 0.17 1934 125 3 0.18 2191 0.2
14.0±1% 2.1 1422 39.55 17 0.15 1677 122 2 0.21 1934 180.3 1 0.19 2191 0.18
15.0±1% 2.1 1421 38.93 20 0.14 1676 154 2 0.17 1933 244.5 0.16 2191 0.161
16.0±1% 2 1416 79.3 12 0.14 1670 0.17 1932 0.16 2191 0.16
17.0±1% 1.9 1415 77.6 11 0.14 1670 0.17 1932 0.16 2191 0.16
18.0±1% 1.8 1411 83.13 9 0.15 1675 0.17 1932 0.16 2182 0.16
19.0±1% 1.8 1415 79.6 7 0.15 1673 0.16 1932 0.16 2181 0.16
20.0±1% 1.8 1415 78.5 5 0.15 1673 0.16 1930 0.16 2180 0.16
22.0±1% 1.75 1415.3 78.8 4 0.15 1670.5 0.15 1927.5 0.16 2178 0.155
Accu-P®
0402 Typical Electrical Tables
* Other tolerances are available, see page 8
14
1
Capacitance Self
Ref Effective Max Ref Effective Max Ref Effective Max Ref Effective Max
&Tolerance* Resonance
Freq. Capacitance ESR Freq. Capacitance ESR Freq. Capacitance ESR Freq. Capacitance ESR
@ 1 MHz Frequency
MHz Max/Min ()MHz Max/Min ()MHz Max/Min ()MHz Max/Min ()
(pF) (GHz)
(pF) (pF) (pF) (pF)
0.1±0.05 18.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.2±0.05 12.7
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.3±0.05 10.4
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.4±0.05 9.0
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5±0.05 8.1
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.6±0.10 7.4
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.7±0.10 6.8
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.8±0.10 6.4
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.9±0.10 6.0
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
1.0±0.10 5.7
245 1.15/0.90 .280 491 1.10/0.90 .220 738 1.10/0.90 .220 987 1.15/0.90 .300
1.1±0.10 5.4
244 1.25/1.00 .270 490 1.25/1.00 .210 736 1.11/1.00 .210 985 1.25/1.00 .290
1.2±0.10 5.2
243 1.35/1.10 .260 487 1.35/1.05 .200 734 1.40/1.05 .210 981 1.35/1.05 .280
1.3±0.10 5.0
242 1.45/1.15 .260 486 1.45/1.15 .200 732 1.45/1.15 .200 974 1.45/1.15 .270
1.4±0.10 4.8
241 1.55/1.25 .250 485 1.55/1.25 .190 731 1.45/1.25 .200 977 1.55/1.25 .260
1.5±0.10 4.7
241 1.65/1.35 .250 484 1.65/1.35 .180 729 1.65/1.35 .190 976 1.70/1.35 .250
1.6±0.10 4.5
240 1.75/1.45 .240 483 1.75/1.45 .180 727 1.75/1.45 .190 973 1.80/1.50 .250
1.7±0.10 4.4
240 1.85/1.55 .230 482 1.85/1.60 .170 725 1.85/1.60 .180 971 1.90/1.60 .250
1.8±0.10 4.2
239 2.10/1.70 .220 479 2.10/1.70 .160 723 2.10/1.70 .170 969 2.15/1.70 .250
1.9±0.10 4.1
239 2.15/1.78 .210 478 2.15/1.80 .160 721 2.15/1.80 .167 967 2.20/1.80 .240
2.0±0.10 4.0 238 2.11/1.80 .205 477 2.11/1.80 .155 720 2.11/1.80 .165 966 2.25/1.90 .230
2.1±0.10 3.9 237 2.25/1.95 .200 475 2.25/1.98 .150 718 2.35/1.98 .162 964 2.35/2.00 .220
2.2±0.10 3.8 236 2.40/2.05 .190 474 2.45/2.05 .145 717 2.42/2.05 .160 962 2.45/2.10 .210
2.4±0.25 3.7 234 2.70/2.15 .175 471 2.75/2.15 .140 713 2.80/2.15 .150 958 2.80/2.15 .200
2.7±0.25 3.5 232 3.00/2.45 .160 468 3.10/2.45 .125 709 3.10/2.45 .145 954 3.15/2.48 .190
3.0±0.25 3.3 230 3.40/2.75 .150 465 3.40/2.75 .120 706 3.40/2.75 .140 951 3.60/2.80 .170
3.3±0.25 3.1 226 3.60/3.05 .130 459 3.70/3.05 .120 699 3.70/3.05 .130 945 3.80/3.10 .165
3.6±0.25 3.0 224 3.90/3.30 .128 456 4.25/3.35 .119 697 3.90/3.35 .125 942 4.10/3.40 .160
3.9±0.25 2.9 223 4.20/3.65 .125 455 4.35/3.70 .115 695 4.90/3.75 .120 940 5.15/3.75 .150
4.3±0.25 2.7 220 4.60/4.00 .122 451 4.80/4.05 .117 692 5.10/4.05 .115 937 5.30/4.05 .150
4.7±0.25 2.6 218 5.00/4.45 .120 448 5.20/4.45 .110 689 5.30/4.50 .115 935 5.50/4.55 .145
5.1±0.25 2.5 216 5.40/4.85 .115 445 5.70/4.89 .105 686 6.00/4.90 .115 931 6.20/5.00 .140
5.6±0.25 2.4 214 5.90/5.35 .110 443 6.10/5.35 .100 684 6.15/5.40 .110 929 6.50/5.50 .135
6.2±0.25 2.3 211 6.50/5.95 .105 439 6.90/5.95 .099 680 7.10/6.00 .110 927 8.00/6.10 .130
6.8±0.25 2.2 208 7.20/6.55 .100 435 7.25/6.55 .099 677 7.50/6.60 .110 925 9.00/6.65 .130
7.5±0.50 2.1 205 8.10/7.00 .095 432 8.10/7.00 .099 675 8.20/7.00 .110 925 9.50/7.05 .125
8.2±0.50 2.0 202 8.80/7.70 .090 429 8.80/7.70 .098 672 9.00/7.70 .110 921 10.00/7.80 .125
9.1±0.50 1.9 200 9.80/8.60 .090 425 10.95/8.65 .098 670 12.00/9.00 .110 919 13.00/9.10 .120
10±5% 1.8 195 10.70/9.50 .085 422 11.60/9.50 .097 667 12.50/9.60 .110 917 16.00/9.90 .120
11±5% 1.7 191 11.60/10.90 .085 420 12.20/10.60 .095 665 13.20/10.50 .110 916 17.00/10.00 .120
12±5% 1.6 189 12.90/11.40 .085 418 13.40/11.50 .095 663 14.60/11.90 .110 914 18.00/12.00 .120
13±5% 1.6 187 13.10/12.90 .080 416 14.00/13.00 .095 661 16.00/13.50 .110 913 21.00/14.00 .120
14±5% 1.5 185 14.90/13.25 .080 414 16.90/14.00 .090 660 19.00/15.00 .110 912 26.00/15.00 .120
15±5% 1.5 182 15.90/14.25 .080 412 17.50/15.30 .090 659 21.00/16.50 .100 911 29.00/17.00 .120
16±5% 1.4 179 17.00/15.15 .070 410 18.00/15.90 .085 657 22.00/17.00 .100 910 30.00/18.00 .120
18±5% 1.3 176 19.50/17.00 .070 408 20.20/17.10 .085 656 23.70/19.00 .100 908 33.00/21.00 .120
22±5% 1.2 170 24.00/20.90 .066 404 25.00/20.90 .080 654 28.00/21.00 .10 906 39.00/21.50 .120
24±5% 1.2 168 26.00/22.80 .066 403 30.00/23.00 .080 653 N/A .10 905 N/A .120
27±5% 1.1 165 29.00/25.60 .065 402 36.00/27.00 .080 652 N/A .10 905 N/A .120
30±5% 1.0 163 32.00/28.50 .064 401 40.00/30.00 .080 651 N/A .10 904 N/A .120
33±5% 1.0 160 37.65/31.35 .064 400 45.00/33.00 .080 650 N/A .10 904 N/A .120
* Other tolerances are available, see page 8
Accu-F®/ Accu-P®
0603 Typical Electrical Tables
15
1
Accu-F®/ Accu-P®
0805 Typical Electrical Tables
Capacitance Self
Ref Effective Max Ref Effective Max Ref Effective Max Ref Effective Max
&Tolerance* Resonance
Freq. Capacitance ESR Freq. Capacitance ESR Freq. Capacitance ESR Freq. Capacitance ESR
@ 1 MHz Frequency
MHz Max/Min ()MHz Max/Min ()MHz Max/Min ()MHz Max/Min ()
(pF) (GHz)
(pF) (pF) (pF) (pF)
0.1±0.05 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.2±0.05
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.3±0.05
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.4±0.05
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5±0.05
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.6±0.10
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.7±0.10
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.8±0.10
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.9±0.10
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
1.0±0.10 5.6
250 1.20/0.90 .320 500 1.20/0.90 .300 750 1.20/0.90 .270 999 1.20/0.90 .300
1.1±0.10 5.4
248 1.30/1.00 .290 496 1.30/1.00 .270 754 1.30/1.00 .250 993 1.30/1.00 .290
1.2±0.10 5.1
245 1.40/1.10 .270 492 1.40/1.10 .250 739 1.40/1.10 .240 987 1.40/1.10 .280
1.3±0.10 4.9
243 1.50/1.20 .260 488 1.50/1.20 .230 734 1.50/1.10 .230 980 1.50/1.20 .270
1.4±0.10 4.8
242 1.60/1.30 .240 487 1.60/1.20 .220 733 1.60/1.20 .220 979 1.60/1.30 .260
1.5±0.10 4.6
242 1.70/1.40 .230 486 1.70/1.40 .210 731 1.70/1.40 .220 977 1.70/1.40 .260
1.6±0.10 4.5
241 1.80/1.50 .220 484 1.85/1.50 .210 729 2.00/1.50 .220 975 2.00/1.50 .250
1.7±0.10 4.3
240 1.90/1.60 .210 483 1.95/1.60 .200 728 2.05/1.60 .210 974 2.20/1.60 .240
1.8±0.10 4.2
239 2.00/1.70 .200 482 2.05/1.70 .190 726 2.10/1.70 .210 972 2.30/1.70 .230
1.9±0.10 4.1
239 2.10/1.80 .200 481 2.15/1.80 .190 724 2.25/1.80 .200 970 2.40/1.80 .230
2.0±0.10 4.0 238 2.20/1.90 .190 479 2.30/1.90 .180 722 2.40/1.90 .200 967 2.60/1.95 .220
2.1±0.10 3.9 237 2.30/2.00 .190 477 2.40/2.00 .170 720 2.60/2.00 .190 964 2.80/2.06 .210
2.2±0.10 3.8 236 2.40/2.10 .180 475 2.60/2.10 .170 716 2.80/2.14 .190 962 3.06/2.17 .210
2.4±0.25 3.6 235 2.85/2.15 .170 473 3.13/2.29 .170 714 3.17/2.30 .190 960 3.31/2.31 .210
2.7±0.25 3.4 233 3.19/2.45 .160 470 3.47/2.55 .150 711 3.52/2.60 .170 957 3.67/2.60 .200
3.0±0.25 3.3 231 3.51/2.75 .150 465 3.76/2.86 .140 707 3.84/2.93 .160 952 4.00/3.00 .190
3.3±0.25 3.1 229 3.83/3.05 .140 463 4.04/3.10 .140 704 4.15/3.19 .160 948 4.38/3.30 .190
3.6±0.25 3.0 228 4.16/3.35 .140 462 4.35/3.42 .130 704 4.50/3.53 .150 947 4.80/3.60 .190
3.9±0.25 2.9 227 4.48/3.65 .130 459 4.67/3.72 .120 701 4.85/3.86 .150 944 5.23/3.90 .180
4.3±0.25 2.7 223 4.91/4.05 .130 456 5.11/4.13 .120 697 5.32/4.25 .150 940 5.79/4.50 .180
4.7±0.25 2.6 220 5.35/4.45 .120 451 5.52/4.53 .110 691 5.79/4.60 .140 936 6.36/4.80 .170
5.1±0.25 2.5 218 5.78/4.85 .120 447 5.94/4.94 .110 688 6.25/5.20 .140 934 7.16/5.74 .160
5.6±0.25 2.4 215 6.00/5.35 .100 444 6.82/5.40 .100 684 7.27/5.60 .120 930 8.25/5.90 .150
6.2±0.25 2.3 212 7.00/5.95 .100 442 7.52/6.00 .100 683 8.08/6.10 .120 927 9.35/6.80 .150
6.8±0.25 2.2 208 7.20/6.55 .100 435 8.21/6.88 .100 677 8.90/6.96 .120 925 10.46/7.32 .150
7.5±0.05 2.1 206 8.64/7.00 .100 434 9.02/7.10 .100 675 9.85/7.50 .120 924 11.75/8.42 .150
8.2±0.05 2.0 203 9.40/7.70 .090 432 9.83/7.90 .080 673 10.80/8.25 .110 922 13.04/9.53 .150
9.1±0.05 1.9 199 10.37/8.60 .080 429 10.88/8.76 .080 670 12.02/9.10 .110 920 14.70/10.70 .150
10±5% 1.8 196 11.00/9.50 .080 423 11.92/9.76 .080 668 13.24/10.00 .110 918 15.37/11.80 .140
11±5% 1.8 193 12.50/10.45 .080 420 13.23/10.50 .080 665 15.07/11.00 .110 916 16.00/12.20 .140
12±5% 1.6 190 13.61/11.40 .070 418 14.50/11.90 .080 663 16.90/12.82 .110 915 N/A .140
13±5% 1.6 187 14.75/12.35 .070 416 15.80/13.00 .080 662 18.87/14.00 .110 914 N/A .140
14±5% 1.5 184 15.88/13.30 .070 414 17.22/14.00 .080 661 20.84/16.00 .110 913 N/A .140
15±5% 1.5 182 17.02/14.25 .070 414 18.56/15.19 .080 660 22.62/19.13 .110 912 N/A .130
16±5% 1.4 179 18.16/15.20 .070 411 19.90/16.28 .080 659 27.00/20.89 .100 911 N/A .130
18±5% 1.3 176 20.42/17.10 .070 408 22.69/18.57 .070 657 33.00/22.10 .100 910 N/A .130
20±5% 1.3 173 22.70/19.00 .060 406 25.38/20.78 .070 656 38.00/23.15 .100 908 N/A .130
22±5% 1.2 171 24.95/20.90 .060 405 28.08/21.00 .070 655 42.00/24.00 .100 907 N/A .130
24±5% 1.2 168 27.20/22.80 .060 403 31.31/25.61 .070 654 N/A .090 907 N/A .130
27±5% 1.1 165 30.78/25.69 .060 401 36.10/32.20 .070 652 N/A .090 906 N/A .130
30±5% 1.0 163 34.23/28.50 .050 400 40.58/33.20 .070 651 N/A .090 905 N/A .130
33±5% 1.0 159 37.85/31.35 .050 399 46.65/35.00 .070 650 N/A .090 904 N/A .120
36±5% 0.9 157 41.19/34.20 .050 397 52.22/38.00 .070 649 N/A .090 903 N/A .120
39±5% 0.9 155 44.79/37.05 .050 396 59.08/47.08 .070 648 N/A .090 902 N/A .120
43±5% 0.9 153 49.99/40.85 .050 395 70.50/53.04 .060 647 N/A .090 901 N/A .120
47±5% 0.8 152 55.19/44.65 .050 394 81.99/59.00 .060 646 N/A .090 900 N/A .110
* Other tolerances are available, see page 8
16
1
Capacitance Self
Ref Effective Max Ref Effective Max Ref Effective Max Ref Effective Max
&Tolerance* Resonance
Freq. Capacitance ESR Freq. Capacitance ESR Freq. Capacitance ESR Freq. Capacitance ESR
@ 1 MHz Frequency
(MHz) Max/Min ()(MHz) Max/Min ()(MHz) Max/Min ()(MHz) Max/Min ()
(pF) (GHz)
(pF) (pF) (pF) (pF)
1.0±0.
25
4.98
247 1.23/0.75 .350 495 1.34/0.86 .260 745 1.46/0.94 .280 995 1.6/0.99 .350
1.2±0.
25
4.55
245 1.32/0.95 .310 491 1.45/1.00 .240 739 1.64/1.1 .260 987 2.00/1.2 .320
1.5±0.
25
4.07
242 1.6/1.23 .250 486 1.75/1.3 .230 731 1.82/1.95 .250 978 2.1/1.4 .270
1.8±0.
25
9.71
240 2.1/1.55 .200 482 2.21/1.56 .200 731 2.4/1.6 .200 978 2.54/1.7 .210
2.2±0.25 9.96 237 2.48/1.95 .170 476 2.68/2.00 .170 727 2.85/2.1 .180 969 3.02/2.2 .200
2.7±0.25 2.70 233 3.42/2.45 .140 466 3.49/2.55 .140 708 3.73/2.63 .150 952 3.89/2.70 .170
3.3±0.25 2.60 229 4.02/3.05 .140 463 4.09/3.15 .130 704 4.33/3.23 .140 948 4.49/3.30 .160
3.6±0.25 2.50 228 4.18/3.35 .130 462 4.32/3.43 .130 704 4.50/3.32 .140 947 4.78/3.45 .160
3.9±0.25 2.40 227 4.53/3.65 .130 458 4.66/3.73 .120 701 4.85/3.75 .140 944 5.18/3.90 .150
4.3±0.25 2.30 223 5.01/4.05 .120 456 5.11/4.14 .110 697 5.32/4.29 .130 940 5.72/4.30 .140
4.7±0.25 2.20 220 5.48/4.45 .120 451 5.62/4.50 .110 691 5.94/4.60 .130 936 6.56/4.70 .140
5.1±0.25 2.10 218 5.88/4.85 .110 447 6.04/4.90 .110 683 6.36/5.10 .130 933 7.20/5.40 .140
5.6±0.25 2.00 215 6.49/5.35 .110 441 6.72/5.56 .100 681 7.17/5.67 .120 928 8.15/6.00 .140
6.2±0.25 1.90 212 7.19/5.95 .100 442 7.26/6.07 .100 679 7.99/6.10 .110 927 9.18/7.00 .130
6.8±0.25 1.80 208 7.38/6.55 .100 435 8.16/6.42 .100 677 8.81/6.93 .110 925 10.20/7.42 .130
7.5±0.25 1.70 206 8.60/7.90 .100 434 8.90/7.25 .100 675 9.58/7.60 .100 924 11.36/8.00 .130
8.2±0.25 1.70 203 9.36/7.70 .100 432 9.76/7.96 .090 673 10.68/8.31 .100 922 13.00/9.10 .130
9.1±0.25 1.60 199 10.34/8.60 .090 429 10.87/8.88 .090 670 12.10/9.66 .090 920 15.11/10.25 .130
10±5% 1.50 196 11.33/9.50 .090 423 11.97/9.79 .090 668 13.51/10.05 .090 918 17.22/11.06 .130
11±5% 1.50 193 12.50/10.45 .090 420 13.23/10.83 .090 665 15.07/11.33 .090 916 N/A .130
12±5% 1.40 190 13.61/11.40 .080 418 14.59/11.90 .080 663 16.90/12.82 .090 915 N/A .120
13±5% 1.30 185 14.75/12.35 .080 416 15.64/13.00 .080 662 18.80/13.60 .090 914 N/A .120
14±5% 1.30 183 15.89/13.30 .080 415 17.22/14.00 .080 661 20.85/16.00 .090 913 N/A .120
15±5% 1.20 182 17.02/14.25 .080 414 18.56/15.19 .080 660 22.62/17.00 .090 912 N/A .110
16±5% 1.20 180 18.16/15.20 .080 411 19.90/16.28 .080 659 25.12/18.00 .090 911 N/A .110
18±5% 1.10 176 20.42/17.10 .070 408 22.69/18.57 .080 657 30.00/24.00 .080 909 N/A .110
20±5% 1.10 173 22.70/19.00 .070 406 25.36/20.78 .080 656 35.00/26.00 .080 908 N/A .110
22±5% 1.00 171 24.95/20.90 .070 405 28.06/22.96 .080 655 42.00/27.00 .080 908 N/A .110
24±5% 0.98 168 27.20/22.60 .070 403 31.31/25.60 .080 654 N/A .080 907 N/A .110
25±5% 0.96 166 26.39/23.75 .070 402 32.91/26.00 .080 653 N/A .080 907 N/A .110
27±5% 0.92 164 30.78/25.65 .070 401 36.10/28.00 .070 652 N/A .080 906 N/A .110
28±5% 0.91 163 31.93/26.50 .070 401 37.60/30.76 .070 651 N/A .080 906 N/A .110
30±5% 0.88 162 34.23/28.50 .070 400 40.50/33.20 .070 651 N/A .080 905 N/A .110
32±5% 0.85 161 36.51/30.40 .070 399 44.63/34.50 .070 650 N/A .080 905 N/A .110
33±5% 0.84 159 37.65/31.35 .060 399 46.65/35.00 .070 650 N/A .080 905 N/A .110
34±5% 0.82 158 38.83/32.30 .060 398 48.51/37.00 .070 649 N/A .080 904 N/A .110
36±5% 0.80 157 41.20/34.20 .060 397 52.22/41.00 .070 649 N/A .070 904 N/A .110
39±5% 0.77 155 44.79/37.05 .060 396 59.00/43.00 .070 649 N/A .070 904 N/A .110
43±5% 0.73 153 49.99/40.85 .060 396 70.00/46.00 .070 648 N/A .070 904 N/A .110
47±5% 0.70 152 55.69/44.65 .060 395 81.00/53.00 .070 648 N/A .070 903 N/A .110
Accu-P®
1210 Typical Electrical Tables
* Other tolerances are available, see page 8
17
1
Accu-F®/ Accu-P®
High Frequency Characteristics
Typical SRF vs. Capacitance
Accu-P®0201
Typical ESR vs. Frequency
Accu-P®0201
Typical Q vs. Frequency
Accu-P®0201
0.8pF
1.8pF
2.2pF
3.3pF
4.7pF
6.8pF
1000
900
800
700
600
500
400
300
200
1000 500 1000 1500
Frequency (MHz)
ESR (m)
2000 2500 3000
0.8pF
1.8pF
3.9pF
4.7pF
6.8pF
1000
100
10
500 1000 1500 2000 2500 3000
Frequency (MHz)
Q
7
8
6
5
4
3
2
1
034567
SRF (GHz)
Capacitance (pF)
8910
18
1
Accu-F®/ Accu-P®
High Frequency Characteristics
GHz
10
1
0.1
110100 pF
L (self inductance)
~
0.78 nH
NOTE
L and SRF are obtained from the measured increase in
effective capacitance as the frequency is increased
Measured on the Boonton 34-A
Typical ESR vs. Frequency
Accu-F®/Accu-P®0603
Typical ESR vs. Frequency
Accu-P®0402
Typical Q vs. Frequency
Accu-F®/Accu-P®0603
Typical Q vs. Frequency
Accu-P®0402
Typical Self Resonant Frequency vs. Capacitance
Accu-F®/Accu-P®0603
Typical Self Resonant Frequency vs. Capacitance
Accu-P®0402
22pF 2.7pF
10pF
10000
100
1000
10
0 0.5 1 1.5 2 2.5 3GHz
Measured on Boonton 34-A
(34-A limits measurements to 3GHz)
0.25
0.2
0.15
0.1
0.05
00 500 1000 1500 2000 2500
Frequency (MHz)
ESR (Ohms)
Measured on Boonton 34A
1.0pF
2.2pF
4.7pF
10pF
8
7
6
5
4
3
2
1
00246
CAPACITANCE (pF)
Measured on Wiltron 360 Vector Analyzer
SRF (GHz)
81012
1 pF
2.2 pF
4.7 pF
10 pF
10000
1000
100
10
1
0500 1000 1500
Frequency (MHz)
Q (Logarithmic Scale)
2000 2500 3000
19
1
Accu-F®/ Accu-P®
High Frequency Characteristics
Typical ESR vs. Frequency
Accu-P®1210
Typical Q vs. Frequency
Accu-P®1210
Typical Self Resonant Frequency vs. Capacitance
Accu-P®1210
10
GHz
1
0.1
110100 pF
L (self inductance)
~
1.02 nH
NOTE
L and SRF are obtained from the measured increase in
effective capacitance as the frequency is increased
Measured on the Boonton 34-A
1pF
3.3pF
33pF
10pF
1
0.1
Ohm
0.01
0 0.5 1 1.5 2 2.5 3GHz
Measured on Boonton 34-A
(34-A limits measurements to 3GHz)
33pF
3.3pF
1pF
10pF
1
0000
100
1000
100 0.5 1 1.5 2 2.5 3GHz
Measured on Boonton 34-A
(34-A limits measurements to 3GHz)
GHz
10
1
0.1
110100 pF
L (self inductance)
~
0.82 nH
NOTE
L and SRF are obtained from the measured increase in
effective capacitance as the frequency is increased
Measured on the Boonton 34-A
Typical ESR vs. Frequency
Accu-F®/Accu-P®0805
Typical Q vs. Frequency
Accu-F®/Accu-P®0805
Typical Self Resonant Frequency vs. Capacitance
Accu-F®/Accu-P®0805
1pF
3.3pF
33pF
1
0.1
Ohm
0.01
0 0.5 1 1.5 2 2.5 3GHz
Measured on Boonton 34-A
(34-A limits measurements to 3GHz)
33pF
3.3pF
1pF
10pF
10000
100
1000
10
0 0.5 1 1.5 2 2.5 3GHz
Measured on Boonton 34-A
(34-A limits measurements to 3GHz)
20
1
Accu-F®/ Accu-P®
Environmental / Mechanical Characteristics
QUALITY & RELIABILITY
Accu-P®is based on well established thin-film technology
and materials.
• ON-LINE PROCESS CONTROL
This program forms an integral part of the production cycle
and acts as a feedback system to regulate and control
production processes. The test procedures, which are
integrated into the production process, were developed
after long research work and are based on the highly
developed semiconductor industry test procedures and
equipment. These measures help AVX to produce a con-
sistent and high yield line of products.
• FINAL QUALITY INSPECTION
Finished parts are tested for standard electrical parameters
and visual/mechanical characteristics. Each production lot
is 100% evaluated for: capacitance and proof voltage at
2.5 UR. In addition, production is periodically evaluated for:
Average capacitance with histogram printout for
capacitance distribution;
IR and Breakdown Voltage distribution;
Temperature Coefficient;
Solderability;
Dimensional, mechanical and temperature stability.
QUALITY ASSURANCE
The reliability of these thin-film chip capacitors has been
studied intensively for several years. Various measures
have been taken to obtain the high reliability required today
by the industry. Quality assurance policy is based on well
established international industry standards. The reliability
of the capacitors is determined by accelerated testing
under the following conditions:
Life (Endurance) 125°C, 2UR, 1000 hours
Accelerated Damp
Heat Steady State 85°C, 85% RH, UR,
1000 hours.
TEST CONDITIONS REQUIREMENT
Life (Endurance)
125°C, 2UR,1000 hours No visible damage
MIL-STD-202F Method 108A
C/C 2% for C5pF
C 0.25pF for C<5pF
Accelerated Damp
85°C, 85% RH, UR, 1000 hours No visible damage
Heat Steady State
C/C 2% for C5pF
MIL-STD-202F Method 103B
C 0.25pF for C<5pF
Temperature Cycling
-55°C to +125°C, 15 cycles – Accu-P®No visible damage
MIL-STD-202F Method 107E
-55°C to +125°C, 5 cycles – Accu-F®C/C 2% for C5pF
MIL-STD-883D Method 1010.7
C 0.25pF for C<5pF
Resistance to Solder Heat
260°C ± 5°C for 10 secs C remains within initial limits
IEC-68-2-58
ENVIRONMENTAL CHARACTERISTICS
TEST CONDITIONS REQUIREMENT
Solderability
Components completely immersed in a Terminations to be well tinned, minimum 95%
IEC-68-2-58
solder bath at 235°C for 2 secs. coverage
Leach Resistance
Components completely immersed in a
Dissolution of termination faces 15% of area
IEC-68-2-58
solder bath at 260±5°C for 60 secs.
Dissolution of termination edges 25% of length
Adhesion
A force of 5N applied for 10 secs. No visible damage
MIL-STD-202F Method 211A
Termination Bond Strength
Tested as shown in diagram No visible damage
IEC-68-2-21 Amend. 2
C/C 2% for C5pF
C 0.25pF for C<5pF
Robustness of Termination
A force of 5N applied for 10 secs. No visible damage
IEC-68-2-21 Amend. 2
High Frequency Vibration
55Hz to 2000Hz, 20G No visible damage
MIL-STD-202F Method 201A,
204D
(Accu-P®only)
Storage
12 months minimum with components Good solderability
stored in “as received” packaging
MECHANICAL CHARACTERISTICS
D
45mm 45mm
D = 3mm Accu-P
D = 1mm Accu-F
21
1
CAPACITOR TYPE CHIP SIZE THERMAL IMPEDANCE (°C/W)
Accu-P®0805 6.5
1210 5
Microwave MLC 0505 12
1210 7.5
ADVANTAGES OF ACCU-P®
IN RF POWER CIRCUITS
The optimized design of Accu-P®offers the designer of RF
power circuits the following advantages:
Reduced power losses due to the inherently low ESR of
Accu-P®.
Increased power dissipation due to the high thermal
conductivity of Accu-P®.
PRACTICAL APPLICATION
IN RF POWER CIRCUITS
There is a wide variety of different experimental methods
for measuring the power handling performance of a
capacitor in RF power circuits. Each method has its
own problems and few of them exactly reproduce the
conditions present in “real” circuit applications.
Similarly, there is a very wide range of different circuit appli-
cations, all with their unique characteristics and operating
conditions which cannot possibly be covered by such
“theoretical” testing.
• THE ONLY TRUE TEST OF A CAPACITOR IN ANY PARTICULAR
APPLICATION IS ITS PERFORMANCE UNDER OPERATING
CONDITIONS IN THE ACTUAL CIRCUIT.
Accu-F®/ Accu-P®
Performance Characteristics RF Power Applications
RF POWER APPLICATIONS
In RF power applications capacitor losses generate heat. Two
factors of particular importance to designers are:
• Minimizing the generation of heat.
• Dissipating heat as efficiently as possible.
CAPACITOR HEATING
The major source of heat generation in a capacitor in RF
power applications is a function of RF current (I) and ESR,
from the relationship:
Power dissipation = I2RMS x ESR
• Accu-P®capacitors are specially designed to minimize
ESR and therefore RF heating. Values of ESR for
Accu-P®capacitors are significantly less than those of
ceramic MLC components currently available.
HEAT DISSIPATION
Heat is dissipated from a capacitor through a variety of
paths, but the key factor in the removal of heat is the
thermal conductivity of the capacitor material.
The higher the thermal conductivity of the capacitor, the
more rapidly heat will be dissipated.
The table below illustrates the importance of thermal
conductivity to the performance of Accu-P®in power
applications.
1210
0805
Amps
8
6
4
2
00 200 400 600 800 1000 1200 1400MHz
1210
0805
0603
0402
PRODUCT MATERIAL THERMAL CONDUCTIVITY W/mK
Accu-P®Alumina 18.9
Microwave MLC Magnesium Titanate 6.0
Power Handling
Accu-P®10pF
Data used in calculating the graph:
Thermal impedance of capacitors:
0402 17°C/W
0603 12°C/W
0805 6.5°C/W
1210 5°C/W
Thermal impedance measured using RF generator,
amplifier and strip-line transformer.
ESR of capacitors measured on Boonton 34A
THERMAL IMPEDANCE
Thermal impedance of Accu-P®chips is shown below com-
pared with the thermal impedance of Microwave MLC’s.
The thermal impedance expresses the temperature difference
in °C between chip center and termination caused by
a power dissipation of 1 watt in the chip. It is expressed in
°C/W.
22
1
Accu-F®/ Accu-P®
Application Notes
GENERAL
Accu-F®and Accu-P®SMD capacitors are designed for
soldering to printed circuit boards or other substrates. The
construction of the components is such that they will with-
stand the time/temperature profiles used in both wave and
reflow soldering methods.
CIRCUIT BOARD TYPE
The circuit board types which may be used with Accu-F®and
Accu-P®are as follows:
Accu-F®: All flexible types of circuit boards
(eg. FR-4, G-10).
Accu-P®: All flexible types of circuit boards
(eg. FR-4, G-10) and also alumina.
For other circuit board materials, please consult factory.
HANDLING
SMD capacitors should be handled with care to avoid damage
or contamination from perspiration and skin oils. The use of
plastic tipped tweezers or vacuum pick-ups is strongly recom-
mended for individual components. Bulk handling should
ensure that abrasion and mechanical shock are minimized. For
automatic equipment, taped and reeled product gives the
ideal medium for direct presentation to the placement
machine.
COMPONENT PAD DESIGN
Component pads must be designed to achieve good
joints and minimize component movement during reflow
soldering. Pad designs are given below for both wave and
reflow soldering.
The basis of these designs is:
a. Pad width equal to component width. It is permissible to
decrease this to as low as 85% of component width but
it is not advisable to go below this.
b. Pad overlap 0.5mm beneath large components. Pad
overlap about 0.3mm beneath small components.
c. Pad extension of 0.5mm for reflow of large components
and pad extension about 0.3mm for reflow of small com-
ponents. Pad extension about 1.0mm for wave soldering.
WAVE SOLDERING
DIMENSIONS: millimeters (inches)
1.2
(0.047)
3.1
(0.122)
0.8
(0.031)
0.7
(0.028)
1.2
(0.047)
0.8
(0.031)
2.1
(0.083)
0.55
(0.022)
0.5
(0.020)
0.8
(0.031)
1.
06
(
0.042
)
0
.
34
(
0.013
)
0
.2
6
(
0.010
)
0
.4
0
(
0.016
)
0
.4
0
(
0.016
)
3.1
(0.122)
0.8
(0.031)
0.6
(0.024)
1.25
(0.049)
1.25
(0.049)
1.5
(0.059)
1.5
(0.059)
1.0
(0.039)
4.0
(0.157)
1.25
(0.049)
1.5
(0.059)
1.5
(0.059)
2.0
(0.079)
5.0
(0.197)
2.5
(0.098)
0603
Accu-F®
0402
Accu-P®
0201
Accu-P®
0603
Accu-P®
0805
Accu-F®
Accu-P®
1210
Accu-P®
REFLOW SOLDERING
DIMENSIONS: millimeters (inches)
0.6
(0.024)
1.7
(0.068)
0.55
(0.022)
0.5
(0.020)
0.6
(0.024)
0.8
(0.031)
2.3
(0.091) 0.6
(0.024)
0.85
(0.033)
0.85
(0.033)
3.0
(0.118)
1.25
(0.049)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
2.5
(0.098)
4.0
(0.157)
1.0
(0.039)
2.0
(0.079)
1.0
(0.039)
0402
Accu-P®
0
.7
8
(
0.030
)
0
.
34
(
0.013
)
0
.2
6
(
0.010
)
0
.2
6
(
0.010
)
0
.2
6
(
0.010
)
0201
Accu-P®
0.8
(0.031)
2.3
(0.091) 0.7
(0.028)
0.8
(0.031)
0.8
(0.031)
0603
Accu-F®
0603
Accu-P®
0805
Accu-F®
Accu-P®
1210
Accu-P®
23
1
Accu-F®/ Accu-P®
Application Notes
PREHEAT & SOLDERING
The rate of preheat in production should not exceed 4°C/
second and a recommended maximum is about 2°C/second.
Temperature differential from preheat to soldering should not
exceed 100°C.
For further specific application or process advice, please consult
AVX.
COOLING
After soldering, the assembly should preferably be allowed
to cool naturally. In the event of assisted cooling, similar
conditions to those recommended for preheating should be
used.
HAND SOLDERING & REWORK
Hand soldering is permissible. Preheat of the PCB to 150°C is
required. The most preferable technique is to use hot air sol-
dering tools. Where a soldering iron is used, a temperature
controlled model not exceeding 30 watts should be used and
set to not more than 260°C.
RECOMMENDED SOLDERING
PROFILE
CLEANING RECOMMENDATIONS
Care should be taken to ensure that the devices are
thoroughly cleaned of flux residues, especially the space
beneath the device. Such residues may otherwise become
conductive and effectively offer a lossy bypass to the device.
Various recommended cleaning conditions (which must be
optimized for the flux system being used) are as follows:
Cleaning liquids. . . . . . . i-propanol, ethanol, acetylacetone,
water and other standard PCB
cleaning liquids.
Ultrasonic conditions . . power-20w/liter max.
frequency-20kHz to 45kHz.
Temperature . . . . . . . . . 80°C maximum (if not otherwise
limited by chosen solvent system).
Time . . . . . . . . . . . . . . . 5 minutes max.
STORAGE CONDITIONS
Recommended storage conditions for Accu-F®and
Accu-P®prior to use are as follows:
Temperature . . . . . . . . . . 15°C to 35°C
Humidity . . . . . . . . . . . . . 65%
Air Pressure . . . . . . . . . . 860mbar to 1060mbar
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
00.511.522.533.544.5
Assembly enters the
preheat zone
Additional soak time
to allow uniform
heating of the
substrate
Soak time
1) Activates the flux
2) Allows center of board
temperatures to catch up with
corners
45-60 sec.
above solder
melting point
Assembly exits heat–
no forced cooldown
186°C solder melting
temperature
COMPONENT LAND TEMP (DEG C)
Time (mins)
02030405060708090100110120
260
240
220
200
180
160
140
120
100
80
60
40
20 Time (seconds)
Enter Wave
Natural
Cooling
100°C
3–5 seconds
10
TEMPERATURE °C
0
20
TEMPERATURE °C
40
60
80
100
120
140
160
180
200
215°C
Time (minutes)
Preheat
Transfer from
preheat with
min. delay &
temp. loss
0
20
40
60
80
100
120
140
160
180
215°C
Time (seconds)
Reflow
Enter
Vapor
Natural
Cooling
Duration varies
with thermal mass
of assembly
10–60 secs typical
10 20 30 40 50 60 70
200
IR REFLOW WAVE SOLDERING
VAPOR PHASE
24
1
ABCDEF
8.0 ± 0.3 3.5 ± 0.05 1.75±0.1 2.0 ± 0.05 4.0 ± 0.1 1.5
(0.315 ± 0.012) (0.138 ± 0.002) (0.069 ± 0.004) (0.079 ± 0.002) (0.157 ± 0.004) (0.059 )
Accu-F®/Accu-P®
Automatic Insertion Packaging
A(1) BCDEFG
180±1.0 1.5 min. 13±0.2 20.2 min. 50 min. 9.6±1.5 14.4 max.
(7.087±0.039) (0.059 min.) (0.512 ± 0.008) (0.795 min.) (1.969 min.) (0.370 ± 0.050) (0.567 max.)
NOTE: AVX reserves the right to change the information published herein without notice.
TAPE & REEL
All tape and reel specifications are in compliance with EIA 481-1-A.
(equivalent to IEC 286 part 3).
• 8mm carrier
• Reeled quantities: Reels of 3,000 per 7" reel or 10,000 pieces per 13" reel
0201 and 0402 = 5,000 pieces per 7" reel and 20,000 pieces per 13" reel
FULL RADIUS
D*
B* C
E
F
G MAX.
A
DRIVE SPOKES OPTIONAL
IF USED, ASTERISKED
DIMENSIONS APPLY.
*
A
E
P
D
F
W
L
C
B
10 PITCHES
CUMULATIVE
TOLERANCE ON
TAPE ±0.2
CENTER LINES
OF CAVITY
TOP
TAPE
DIRECTION OF FEED
REEL
DIMENSIONS: millimeters (inches)
CARRIER
DIMENSIONS: millimeters (inches)
Metric dimensions will govern.
Inch measurements rounded and for reference only.
(1) 330mm (13 inch) reels are available.
+0.1
-0.0
+0.004
-0.000
NOTE: The nominal dimensions of the component compartment (W,L) are derived from the component size.
P = 4mm except 0201 and 0402 where P = 2mm
25
Thin-Film Technology
Accu-L® L0603/L0805
Thin-Film RF/Microwave Inductors
2
26
2
Accu-L®
SMD High-Q RF Inductor
ACCU-L®TECHNOLOGY
The Accu-L®SMD Inductor is based on thin-film multilayer
technology. This technology provides a level of control on the
electrical and physical characteristics of the component which
gives consistent characteristics within a lot and lot-to-lot.
The original design provides small size, excellent high-
frequency performance and rugged construction for reliable
automatic assembly.
FEATURES
• High Q
• RF Power Capability
• High SRF
• Low DC Resistance
• Ultra-Tight Tolerance on Inductance
• Standard 0603 and 0805 Chip Size
• Low Profile
• Rugged Construction
• Taped and Reeled
The Accu-L®inductor is particularly suited for the telecom-
munications industry where there is a continuing trend
towards miniaturization and increasing frequencies. The
Accu-L®inductor meets both the performance and tolerance
requirements of present cellular frequencies 450MHz and
900MHz and of future frequencies, such as 1700MHz,
1900MHz and 2400MHz.
APPLICATIONS
• Mobile Communications
• Satellite TV Receivers
• GPS
• Vehicle Locations Systems
• Filters
• Matching Networks
10 nH Inductor (Top View)
27
2
L
T
B
W
Accu-L® 0603 and 0805
SMD High-Q RF Inductor
HOW TO ORDER
Operating/Storage
Temp. Range:
-55°C to +125°C
DIMENSIONS: millimeters (inches) 0603 0805
L1.6±0.10 2.11±0.10
(0.063±0.004) (0.083±0.004)
W0.81±0.10 1.5±0.10
(0.032±0.004) (0.059±0.004)
T0.61±0.10 0.91±0.13
(0.024±0.004) (0.036±0.005)
top: 0.0 +0.3/-0.0 0.25±0.15
B(0.0+0.012) (0.010±0.006)
bottom: 0.35±0.20
(0.014±0.008)
L
Product
Inductor
0805
Size
0603
0805
4R7
Inductance
Expressed in nH
(2 significant digits +
number of zeros)
for
values <10nH,
letter R denotes
decimal point.
Example:
22nH = 220
4.7nH = 4R7
L 4.7nH,
B = ±0.1nH
C = ±0.2nH
D = ±0.5nH
4.7nH<L<10nH,
C = ±0.2nH
D = ±0.5nH
L 10nH,
G = ±2%
J = ±5%
E
Specification
Code
E = Accu-L®0805
technology
G= Accu-L®0603
technology
W
Termination
Code
W = Nickel/
solder coated
(Sn 63, Pb 37)
TR
Packaging
Code
TR = Tape and Reel
(3,000/reel)
450 MHz 900 MHz 1900 MHz 2400 MHz IDC max
Test Frequency Test Frequency Test Frequency Test Frequency SRF min RDC max (mA)
Inductance Available QL (nH) QL (nH) QL (nH) Q(MHz) ()
L (nH) Inductance Tolerance Typical Typical Typical Typical (1)
1.2 ±0.1, ±0.2nH 49 1.2 70 1.2 134 1.2 170 10000 0.04 1000
1.5 ±0.1, ±0.2nH 26 1.54 39 1.52 63 1.52 76 10000 0.06 1000
1.8 ±0.1, ±0.2nH 20 1.74 30 1.73 50 1.72 59 10000 0.07 1000
2.2 ±0.1, ±0.2nH 20 2.2 30 2.24 49 2.24 56 10000 0.08 1000
2.7 ±0.1, ±0.2nH 21 2.7 30 2.75 48 2.79 54 9000 0.08 750
3.3 ±0.1, ±0.2, ±0.5nH 24 3.33 35 3.39 56 3.47 64 8400 0.08 750
3.9 ±0.1, ±0.2, ±0.5nH 25 3.9 57 4.06 60 4.21 69 6500 0.12 500
4.7 ±0.1, ±0.2, ±0.5nH 23 4.68 32 4.92 46 5.2 49 5500 0.15 500
5.6 ±0.2, ±0.5nH 26 5.65 36 5.94 54 6.23 60 5000 0.25 300
6.8 ±0.2, ±0.5nH 23 6.9 33 7.3 47 8.1 39 4500 0.30 300
8.2 ±0.2, ±0.5nH 23 8.4 31 10 35 12.1 31 3800 0.35 300
10.0 ±2%, ±5% 28 10 39 11.8 47 14.1 41 3500 0.45 300
12.0 ±2%, ±5% 28 13.2 38 14.1 30 17.2 20 3000 0.50 300
15.0 ±2%, ±5% 28 16.2 38 25.9 30 49.8 15 2500 0.60 300
(1) IDC measured for 15°C rise at 25°C ambient temperature
(2) IDC measured for 70°C rise at 25°C ambient temperature
L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 360
Vector Analyzer, RDC measured on Keithley 580 micro-ohmmeter.
ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L®0603
450 MHz 900 MHz 1700 MHz 2400 MHz IDC max
Test Frequency Test Frequency Test Frequency Test Frequency SRF min RDC max (mA)
Inductance Available QL (nH) QL (nH) QL (nH) Q(MHz) ()T = 15°C T = 70°C
L (nH) Inductance Tolerance Typical Typical Typical Typical (1) (2)
1.2 ±0.1nH, ±0.2nH, ±0.5nH 60 1.2 92 1.2 122 1.2 92 10000 0.05 1000 2000
1.5 ±0.1nH, ±0.2nH, ±0.5nH 50 1.5 74 1.5 102 1.5 84 10000 0.05 1000 2000
1.8 ±0.1nH, ±0.2nH, ±0.5nH 50 1.8 72 1.8 88 1.9 73 10000 0.06 1000 2000
2.2 ±0.1nH, ±0.2nH, ±0.5nH 42 2.2 62 2.2 82 2.3 72 10000 0.07 1000 2000
2.7 ±0.1nH, ±0.2nH, ±0.5nH 42 2.7 62 2.8 80 2.9 70 10000 0.08 1000 2000
3.3 ±0.1nH, ±0.2nH, ±0.5nH 38 3.3 46 3.4 48 3.5 57 10000 0.11 750 1500
3.9 ±0.1nH, ±0.2nH, ±0.5nH 27 3.9 36 4.0 38 4.1 42 10000 0.20 750 1500
4.7 ±0.1nH, ±0.2nH, ±0.5nH 43 4.8 62 5.3 76 5.8 60 5500 0.10 750 1500
5.6 ±0.5nH 50 5.7 68 6.3 73 7.6 62 4600 0.10 750 1500
6.8 ±0.5nH 43 7.0 62 7.7 71 9.4 50 4500 0.11 750 1500
8.2 ±0.5nH 43 8.5 56 10.0 55 15.2 32 3500 0.12 750 1500
10 ±2%, ±5% 46 10.6 60 13.4 52 2500 0.13 750 1500
12 ±2%, ±5% 40 12.9 50 17.3 40 2400 0.20 750 1500
15 ±2%, ±5% 36 16.7 46 27 23 2200 0.20 750 1000
18 ±2%, ±5% 30 21.9 27 1700 0.35 500 1000
22 ±2%, ±5% 36 27.5 33 1400 0.40 500 1000
ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L®0805
D
Tolerance
for
(1) IDC measured for 15°C rise at 25°C ambient temperature when soldered to FR-4 board. Inductance and Q measured on Agilent 4291B / 4287 using the 16196A test fixture.
28
2
Typical Inductance vs. Frequency
L0805
Measured on HP4291A and
Wiltron 360 Vector Analyzer
100
10
Inductance (nH)
1
22nH
15nH
10nH
5.6nH
1.8nH
0.01 0.1
Frequency (GHz)
110
200
100
10
103.532.521.510.5
15nH 10nH 6.8nH 4.7nH2.7nH
Current (A)
Temperature rise will typically be no higher than shown by the graph
T (°C)
Maximum Temperature Rise
at 25°C ambient temperature (on FR-4)
L0805
Accu-L® 0603 and 0805
SMD High-Q RF Inductor
Typical Q vs. Frequency
L0805
Measured on HP4291A and
Boonton 34A Coaxial Line
0.1
0
20
40
Q
60
100
120
140
80
1
22nH
15nH
10nH
5.6nH
1.8nH
1.5nH
1.2nH
10
Frequency (GHz)
Typical Inductance vs. Frequency
L0603
15nH
8.2nH
6.8nH
4.7nH
3.3nH
2.2nH
1.8nH
1.2nH
100
10
10 0.5 1 1.5
Frequency (GHz)
L (nH)
2 2.5 3
180
160
140
120
100
80
60
40
20
0012
Frequency (GHz)
Q
3
1.2nH
1.5nH
5.6nH
8.2nH
15nH
Typical Q vs. Frequency
L0603
Measured on AGILENT 4291B/4287
using the 16196A test fixture
Measured on AGILENT 4291B/4287
using the 16196A test fixture
L0805
L0603
29
2
Accu-L® 0603 and 0805
SMD High-Q RF Inductor
TEST CONDITIONS REQUIREMENT
Solderability Components completely immersed in Terminations to be well tinned.
a solder bath at 235 ± 5°C for 2 secs. No visible damage.
Leach Resistance Components completely immersed in Dissolution of termination faces
a solder bath at 260 ±5°C for 60 secs. 15% of area.
Dissolution of termination edges
25% of length.
Storage 12 months minimum with components Good solderability
stored in “as received” packaging.
Shear Components mounted to a substrate. No visible damage
A force of 5N applied normal to the
line joining the terminations and in
a line parallel to the substrate.
Rapid Change of Components mounted to a substrate. No visible damage
Temperature 5 cycles -55°C to +125°C.
Tested as shown in diagram
Bend Strength No visible damage
Temperature Component placed in +0 to +125 ppm/°C
Coefficient of environmental chamber (typical)
Inductance -55°C to +125°C.
(TCL) T1= 25°C
FINAL QUALITY INSPECTION
Finished parts are tested for electrical parameters and visual/
mechanical characteristics.
Parts are 100% tested for inductance at 450MHz. Parts are
100% tested for RDC. Each production lot is evaluated on a
sample basis for:
• Q at test frequency
• Static Humidity Resistance: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR, 4 hours
1mm
deflection
45mm 45mm
TCL = • 106
L2-L1
L1(T2-T1)
ENVIRONMENTAL CHARACTERISTICS
30
2
30
Accu-L® 0805
Application Notes
HANDLING
SMD chips should be handled with care to avoid damage or
contamination from perspiration and skin oils. The use of
plastic tipped tweezers or vacuum pick-ups is strongly
recommended for individual components. Bulk handling
should ensure that abrasion and mechanical shock are min-
imized. For automatic equipment, taped and reeled product
is the ideal medium for direct presentation to the placement
machine.
CIRCUIT BOARD TYPE
All flexible types of circuit boards may be used (e.g. FR-4,
G-10) and also alumina.
For other circuit board materials, please consult factory.
COMPONENT PAD DESIGN
Component pads must be designed to achieve good joints
and minimize component movement during soldering.
Pad designs are given below for both wave and reflow
soldering.
The basis of these designs is:
a. Pad width equal to component width. It is permissible
to decrease this to as low as 85% of component width
but it is not advisable to go below this.
b. Pad overlap about 0.3mm.
c. Pad extension about 0.3mm for reflow.
Pad extension about 0.8mm for wave soldering.
PREHEAT & SOLDERING
The rate of preheat in production should not exceed
4°C/second. It is recommended not to exceed 2°C/
second.
Temperature differential from preheat to soldering should not
exceed 150°C.
For further specific application or process advice, please
consult AVX.
HAND SOLDERING & REWORK
Hand soldering is permissible. Preheat of the PCB to 100°C
is required. The most preferable technique is to use hot air
soldering tools. Where a soldering iron is used, a tempera-
ture controlled model not exceeding 30 watts should be
used and set to not more than 260°C. Maximum allowed
time at temperature is 1 minute. When hand soldering, the
base side (white side) must be soldered to the board.
COOLING
After soldering, the assembly should preferably be allowed to
cool naturally. In the event of assisted cooling, similar condi-
tions to those recommended for preheating should be used.
CLEANING RECOMMENDATIONS
Care should be taken to ensure that the devices are thor-
oughly cleaned of flux residues, especially the space beneath
the device. Such residues may otherwise become conduc-
tive and effectively offer a lossy bypass to the device. Various
recommended cleaning conditions (which must be optimized
for the flux system being used) are as follows:
Cleaning liquids . . . . . . i-propanol, ethanol, acetylace-
tone, water, and other standard
PCB cleaning liquids.
Ultrasonic conditions . . power – 20w/liter max.
frequency – 20kHz to 45kHz.
Temperature. . . . . . . . . 80°C maximum (if not otherwise
limited by chosen solvent system).
Time. . . . . . . . . . . . . . . 5 minutes max.
STORAGE CONDITIONS
Recommended storage conditions for Accu-L®prior to use
are as follows:
Temperature. . . . . . . . . 15°C to 35°C
Humidity . . . . . . . . . . . 65%
Air Pressure . . . . . . . . . 860mbar to 1060mbar
RECOMMENDED SOLDERING
PROFILE
For recommended soldering profile see page 23
REFLOW SOLDERING
DIMENSIONS: millimeters (inches)
WAVE SOLDERING
DIMENSIONS: millimeters (inches)
1.2
(0.047)
1.2
(0.047)
1.4
(0.055)
3.8
(0.150)
1.5
(0.059)
0805
Accu-L®
0.7
(0.028)
0.7
(0.028)
1.4
(0.055)
2.8
(0.110)
1.5
(0.059)
0805
Accu-L®
1.30
(0.051)
1.30
(0.051)
0.50
(0.020)
3.1
(0.122)
0.8
(0.031)
0603
Accu-L®
0
.
90
(
0.035
)
0
.
90
(
0.035
)
0
.
50
(
0.020
)
2.
3
(
0.091
)
0
.
8
(
0.031
)
0603
Accu-L®
3131
Thin-Film Technology
CP0402/CP0603/CP0805
and DB0805 3dB 90°
Thin-Film RF/Microwave
Directional Couplers
3
32
3
QUALITY INSPECTION
Finished parts are 100% tested for electrical parameters and
visual characteristics. Each production lot is evaluated on a
sample basis for:
• Static Humidity: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR, 4 hours
TERMINATION
Sn90Pb10 or Lead-Free Sn100 Nickel/Solder coating
compatible with automatic soldering technologies: reflow,
wave soldering, vapor phase and manual.
TERMINALS (Top View)
The ITF High Directivity LGA Coupler is based on thin-film multilayer
technology. The technology provides a miniature part with excellent high
frequency performance and rugged construction for reliable automatic
assembly.
The ITF Coupler is offered in a variety of frequency bands compatible
with various types of high frequency wireless systems.
APPLICATIONS
• Mobile Communications
• Satellite TV Receivers
• GPS
• Vehicle Location Systems
• Wireless LAN’s
L
T
S
W
B
A
DIMENSIONS: millimeters (inches)
(Bottom View)
L1.00±0.05
(0.040±0.002)
W0.58±0.04
(0.023±0.002)
T0.35±0.05
(0.014±0.002)
CP
Style
Directional Coupler
0402
Size
0402
X
Type
****
Frequency
(MHz)
X
Sub Type
L
LGA
Termination
L = LGA Sn90, Pb10
N = LGA Sn100
TR
Packaging Code
TR = Tape and Reel
HOW TO ORDER
Thin-Film Directional Couplers
CP0402 High Directivity LGA Termination
GENERAL DESCRIPTION
ITF (Integrated Thin-Film) TECHNOLOGY
A0.20±0.05
(0.008±0.002)
B0.18±0.05
(0.007±0.002)
S0.05±0.05
(0.002±0.002)
1.18
(0.046)
0.39
(0.015)
0.25
(0.010)
0.63
(0.025)
OUT
IN
50 OHM
COUPLING
Recommended Pad Layout Dimensions mm (inches)
FEATURES
• Inherent Low Profile
• Self Alignment during Reflow
• Excellent Solderability
• Low Parasitics
• Better Heat Dissipation
• Operating/Storage Temp
-40°C to +85°C
• Power Rating 3W RF Cont
IN CP
50
OHM
IN
OUT
50
OHM
OUT
CP
ORIENTATION IN TAPE
*The recommended distance to the PCB Ground Plane is 0.254mm (0.010")
33
3
Thin-Film Directional Couplers
CP0402 High Directivity LGA Termination
COUPLER TYPE SELECTION GRAPH
CP0402A**** AL
CP0402A**** BL
CP0402A**** CL
CP0402A**** DL
CP0402A**** EL
CP0402A**** FL
0
-5
-10
-15
-20
-25
-30
-35
-40
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Frequency (GHz)
dB
Coupling vs. Frequency
Intermediate coupling factors are readily available.
Please contact factory.
34
3
Thin-Film Directional Couplers
CP0402 High Directivity LGA Termination
Important: Couplers can be used at any frequency within the indicated range.
Coupler P/N CP0402AxxxxAL CP0402AxxxxALTR
I. Loss
Coupling
R. Loss
Isolation
0
0.8 1.6 2.4 3.2 4.0
0
-4.0
-8.0
-12
-16
-20
-24
Frequency (GHz)
I Loss (dB)
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
Coupling, Return Loss, Isolation (dB)
I. Loss
Coupling
R. Loss
Isolation
0
0.8 1.6 2.4 3.2 4.0
0
-2.0
-4.0
-6.0
-8.0
-10.0
-12.0
Frequency (GHz)
I Loss (dB)
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
Coupling, Return Loss, Isolation (dB)
Coupler P/N CP0402AxxxxCL CP0402AxxxxCLTR
I. Loss
Coupling
R. Loss
Isolation
0
0.8 1.6 2.4 3.2 4.0
0
-2.0
-4.0
-6.0
-8.0
-10.0
-12.0
Frequency (GHz)
I Loss (dB)
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
Coupling, Return Loss, Isolation (dB)
Coupler P/N CP0402AxxxxBL CP0402AxxxxBLTR
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0402A0836AL 824 - 849 19.10 32
CP0402A0881AL 869 - 894 18.60
GSM CP0402A0902AL 890 - 915 18.50
CP0402A0947AL 935 - 960 18.00 0.25 31
E-GSM CP0402A0897AL 880 - 915 18.50
CP0402A0942AL 925 - 960 18.00
PDC CP0402A1441AL 1429 - 1453 14.50 0.40 28 21
PCN CP0402A1747AL 1710 - 1785 13.00 26
CP0402A1842AL 1805 - 1880 12.50
PCS CP0402A1880AL 1850 - 1910 12.30 0.50
CP0402A1960AL 1930 - 1990 12.00
PHP CP0402A1907AL 1895 - 1920 12.30
25
DECT CP0402A1890AL 1880 - 1900
Wireless LAN CP0402A2442AL 2400 - 2484 10.30 0.70 23
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0402A0836BL 824 - 849 22.00
CP0402A0881BL 869 - 894 21.70 0.20 28
GSM CP0402A0902BL 890 - 915 21.50
CP0402A0947BL 935 - 960 21.00 0.25 27
E-GSM CP0402A0897BL 880 - 915 21.50 0.20 28
CP0402A0942BL 925 - 960 21.00 0.25 27
PDC CP0402A1441BL 1429 - 1453 17.50 24 27
PCN CP0402A1747BL 1710 - 1785 16.00 0.30
CP0402A1842BL 1805 - 1880 15.50 23
PCS CP0402A1880BL 1850 - 1910
CP0402A1960BL 1930 - 1990 15.00 0.35 22
PHP CP0402A1907BL 1895 - 1920 15.50 23
DECT CP0402A1890BL 1880 - 1900
Wireless LAN CP0402A2442BL 2400 - 2484 13.30 0.40 21
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0402A0836CL 824 - 849 23.60 33
CP0402A0881CL 869 - 894 23.00
GSM CP0402A0902CL 890 - 915 0.20 26
CP0402A0947CL 935 - 960 22.50 33 22
E-GSM CP0402A0897CL 880 - 915 23.00 25
CP0402A0942CL 925 - 960 22.50 32
PDC CP0402A1441CL 1429 - 1453 19.00 31
PCN CP0402A1747CL 1710 - 1785 17.20
CP0402A1842CL 1805 - 1880 17.00 30
PCS CP0402A1880CL 1850 - 1910 16.80 0.25 30
CP0402A1960CL 1930 - 1990 16.50 29
PHP CP0402A1907CL 1895 - 1920 16.80
DECT CP0402A1890CL 1880 - 1900 30
Wireless LAN CP0402A2442CL 2400 - 2484 14.70 0.45 28
35
3
Thin-Film Directional Couplers
CP0402 High Directivity LGA Termination
Important: Couplers can be used at any frequency within the indicated range.
CP0402AxxxxELTR
CP0402AxxxxFLTR
I. Loss
Coupling
R. Loss
Isolation
0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
0
-2.0
-4.0
-6.0
-8.0
-10.0
-12.0
Frequency (GHz)
I Loss (dB)
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
Coupling, Return Loss, Isolation (dB)
I. Loss
Coupling
R. Loss
Isolation
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
Frequency (GHz)
I Loss (dB)
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
Coupling, Return Loss, Isolation (dB)
CP0402AxxxxDLTR
Coupler P/N CP0402AxxxxDL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0402A0836DL 824 - 849 25.20 29
CP0402A0881DL 869 - 894 24.80
GSM CP0402A0902DL 890 - 915 24.70
CP0402A0947DL 935 - 960 24.10 0.20 28 20
E-GSM CP0402A0897DL 880 - 915 24.70
CP0402A0942DL 925 - 960 24.10
PDC CP0402A1441DL 1429 - 1453 20.50 25
PCN CP0402A1747DL 1710 - 1785 19.00 24
CP0402A1842DL 1805 - 1880 18.50
PCS CP0402A1880DL 1850 - 1910 18.20
CP0402A1960DL 1930 - 1990 18.00 0.25 23 23
PHP CP0402A1907DL 1895 - 1920 18.10
DECT CP0402A1890DL 1880 - 1900 18.20
Wireless LAN CP0402A2442DL 2400 - 2484 16.00 0.35 22
Coupler P/N CP0402AxxxxEL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0402A0836EL 824 - 849 27.20 35
CP0402A0881EL 869 - 894 26.80
GSM CP0402A0902EL 890 - 915 26.50
CP0402A0947EL 935 - 960 26.00 0.20 34 25
E-GSM CP0402A0897EL 880 - 915 26.50
CP0402A0942EL 925 - 960 26.00
PDC CP0402A1441EL 1429 - 1453 22.30 29
PCN CP0402A1747EL 1710 - 1785 20.50 27
CP0402A1842EL 1805 - 1880 20.30
PCS CP0402A1880EL 1850 - 1910 0.25
CP0402A1960EL 1930 - 1990 20.00 26 23
PHP CP0402A1907EL 1895 - 1920
DECT CP0402A1890EL 1880 - 1900
Wireless LAN CP0402A2442EL 2400 - 2484 18.00 0.35 23
Coupler P/N CP0402AxxxxFL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0402A0836FL 824 - 849 31.00 29.10
CP0402A0881FL 869 - 894 30.70 28.60
GSM CP0402A0902FL 890 - 915 30.60 28.50
CP0402A0947FL 935 - 960 30.00 28.10
E-GSM CP0402A0897FL 880 - 915 30.60 28.50
CP0402A0942FL 925 - 960 30.00 28.10
PDC CP0402A1441FL 1429 - 1453 26.50 0.20 25.00 11
PCN CP0402A1747FL 1710 - 1785 25.00 23.80
CP0402A1842FL 1805 - 1880 24.50 23.60
PCS CP0402A1880FL 1850 - 1910 24.20 23.50
CP0402A1960FL 1930 - 1990 24.00 23.30
PHP CP0402A1907FL 1895 - 1920 24.20 23.40
DECT CP0402A1890FL 1880 - 1900 23.50
Wireless LAN CP0402A2442FL 2400 - 2484 22.00 0.25 22.60
I. Loss
Coupling
R. Loss
Isolation
0
0.8 1.6 2.4 3.2 4.0
0
-2.0
-4.0
-6.0
-8.0
-10.0
-12.0
Frequency (GHz)
I Loss (dB)
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
Coupling, Return Loss, Isolation (dB)
36
3
The ITF LGA Coupler is based on thin-film multilayer technology.
The technology provides a miniature part with excellent high frequency
performance and rugged construction for reliable automatic assembly.
The ITF Coupler is offered in a variety of frequency bands compatible
with various types of high frequency wireless systems.
APPLICATIONS
• Mobile Communications
• Satellite TV Receivers
• GPS
• Vehicle Location Systems
• Wireless LAN’s
L
T
S
W
B
A
DIMENSIONS: millimeters (inches)
(Bottom View)
L1.60±0.10
(0.063±0.004)
W0.84±0.10
(0.033±0.004)
T0.60±0.10
(0.024±0.004)
Thin-Film Directional Couplers
CP0603 High Directivity LGA Termination
GENERAL DESCRIPTION
ITF (Integrated Thin-Film) TECHNOLOGY
A0.25±0.05
(0.010±0.002)
B0.20±0.05
(0.008±0.002)
S0.05±0.05
(0.002±0.002)
FEATURES
• Inherent Low Profile
• Self Alignment during Reflow
• Excellent Solderability
• Low Parasitics
• Better Heat Dissipation
• Operating/Storage Temp
-40°C to +85°C
• Power Rating 3W RF Cont
1.75 (0.069)
0.50
(0.020)
0.40
(0.016)
1.10
(0.043)
QUALITY INSPECTION
Finished parts are 100% tested for electrical parameters and
visual characteristics. Each production lot is evaluated on a
sample basis for:
• Static Humidity: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR, 4 hours
TERMINATION
Sn90Pb10 or Lead-Free Sn100 Nickel/Solder coating
compatible with automatic soldering technologies: reflow,
wave soldering, vapor phase and manual.
TERMINALS (Top View)
CP
Style
Directional Coupler
0603
Size
0603
X
Type
****
Frequency
(MHz)
X
Sub Type
L
Termination
Code
L = LGA Sn90, Pb10
N = LGA Sn100
TR
Packaging Code
TR = Tape and Reel
HOW TO ORDER
OUT
IN
50 OHM
COUPLING
Recommended Pad Layout Dimensions mm (inches)
IN CP
50
OHM
IN
OUT
50
OHM
OUT
CP
ORIENTATION IN TAPE
*The recommended distance to the PCB Ground Plane is 0.254mm (0.010")
37
3
Thin-Film Directional Couplers
CP0603 High Directivity LGA Termination
COUPLER TYPE SELECTION GRAPH
CP0603A**** AL
CP0603A**** BL
CP0603A**** CL
CP0603A**** DL
CP0603A**** EL
CP0603A**** FL
CP0603A**** GL
CP0603A**** HL
CP0603A**** ML
0
-5
-10
-15
-20
-25
-30
-35
-40
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Frequency (GHz)
dB
Coupling vs. Frequency
Intermediate coupling factors are readily available.
Please contact factory.
38
3
Thin-Film Directional Couplers
CP0603 High Directivity LGA Type
Coupler P/N CP0603AxxxxAL CP0603AxxxxALTR
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-4
-8
-12
-16
-20
-24
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-4
-8
-12
-16
-20
-24
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-4
-8
-12
-16
-20
-24
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
CP0603AxxxxBLTR
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836AL 824 - 849 20.0 28
CP0603A0881AL 869 - 894 19.7
GSM CP0603A0902AL 890 - 915 19.4 27
CP0603A0947AL 935 - 960 19.0 0.25
E-GSM CP0603A0897AL 880 - 915 19.4 28
CP0603A0942AL 925 - 960 19.0 27
PDC CP0603A1441AL 1429 - 1453 15.5 0.40 24 22
PCN CP0603A1747AL 1710 - 1785 14.0
CP0603A1842AL 1805 - 1880 13.5 0.50 22
PCS CP0603A1880AL 1850 - 1910 13.2
CP0603A1960AL 1930 - 1990 13.0 0.55 21
PHP CP0603A1907AL 1895 - 1920 13.2 0.50 22
DECT CP0603A1890AL 1880 - 1900
Wireless LAN CP0603A2442AL 2400 - 2484 11.5 0.75 20
Coupler P/N CP0603AxxxxBL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836BL 824 - 849 23.0
CP0603A0881BL 869 - 894 22.7 31
GSM CP0603A0902BL 890 - 915 22.5 29
CP0603A0947BL 935 - 960 22.0 0.20 30
E-GSM CP0603A0897BL 880 - 915 22.5 31
CP0603A0942BL 925 - 960 22.0 30
PDC CP0603A1441BL 1429 - 1453 18.5 27
PCN CP0603A1747BL 1710 - 1785 17.0
CP0603A1842BL 1805 - 1880 16.4 25
PCS CP0603A1880BL 1850 - 1910 16.2 0.25
CP0603A1960BL 1930 - 1990 16.0 24 24
PHP CP0603A1907BL 1895 - 1920 16.1 25
DECT CP0603A1890BL 1880 - 1900 16.2
Wireless LAN CP0603A2442BL 2400 - 2484 14.2 0.35 23
CP0603AxxxxCLTR
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-4.0
-8.0
-12.0
-16.0
-20.0
-24.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
Coupler P/N CP0603AxxxxCL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836CL 824 - 849 15.2
CP0603A0881CL 869 - 894 15.0 0.35 23
GSM CP0603A0902CL 890 - 915 14.7
CP0603A0947CL 935 - 960 14.3 0.40 22 23
E-GSM CP0603A0897CL 880 - 915 14.7 0.35 23
CP0603A0942CL 925 - 960 14.3 0.40 22
PDC CP0603A1441CL 1429 - 1453 11.0 0.70 19
PCN CP0603A1747CL 1710 - 1785 9.5 0.80 18
CP0603A1842CL 1805 - 1880 9.0 0.90
PCS CP0603A1880CL 1850 - 1910 8.8
CP0603A1960CL 1930 - 1990 8.5 1.00 17 21
PHP CP0603A1907CL 1895 - 1920 8.8 0.90
DECT CP0603A1890CL 1880 - 1900
Wireless LAN CP0603A2442CL 2400 - 2484 7.0 1.40 15
Important: Couplers can be used at any frequency within the indicated range.
39
3
Thin-Film Directional Couplers
CP0603 High Directivity LGA Type
Coupler P/N CP0603AxxxxDL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836DL 824 - 849 22.0 31
CP0603A0881DL 869 - 894 21.8 0.25
GSM CP0603A0902DL 890 - 915 21.3
CP0603A0947DL 935 - 960 21.0 0.30 30 30
E-GSM CP0603A0897DL 880 - 915 21.3 0.25
CP0603A0942DL 925 - 960 21.0 0.30
PDC CP0603A1441DL 1429 - 1453 17.7 27
PCN CP0603A1747DL 1710 - 1785 16.0 25
CP0603A1842DL 1805 - 1880 15.4
PCS CP0603A1880DL 1850 - 1910 15.2 0.40
CP0603A1960DL 1930 - 1990 15.0 24 25
PHP CP0603A1907DL 1895 - 1920 15.2
DECT CP0603A1890DL 1880 - 1900
Wireless LAN CP0603A2442DL 2400 - 2484 13.3 0.55 22
Coupler P/N CP0603AxxxxEL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836EL 824 - 849 25.8
CP0603A0881EL 869 - 894 25.3 32
GSM CP0603A0902EL 890 - 915 25.0
CP0603A0947EL 935 - 960 24.7 0.20 31
E-GSM CP0603A0897EL 880 - 915 26.0 32
CP0603A0942EL 925 - 960 24.7 31
PDC CP0603A1441EL 1429 - 1453 22.0 0.25 28 21
PCN CP0603A1747EL 1710 - 1785 19.5
CP0603A1842EL 1805 - 1880 19.0
PCS CP0603A1880EL 1850 - 1910 18.8 0.30 26
CP0603A1960EL 1930 - 1990 18.5
PHP CP0603A1907EL 1895 - 1920 18.7
DECT CP0603A1890EL 1880 - 1900 18.8
Wireless LAN CP0603A2442EL 2400 - 2484 17.0 0.40 24
Coupler P/N CP0603AxxxxFL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836FL 824 - 849 31.2 38
CP0603A0881FL 869 - 894 30.8
GSM CP0603A0902FL 890 - 915 30.5
CP0603A0947FL 935 - 960 30.2 0.20 37
E-GSM CP0603A0897FL 880 - 915 30.5
CP0603A0942FL 925 - 960 30.2
PDC CP0603A1441FL 1429 - 1453 27.0 33 12
PCN CP0603A1747FL 1710 - 1785 25.0
CP0603A1842FL 1805 - 1880 26.5 31
PCS CP0603A1880FL 1850 - 1910 24.3
CP0603A1960FL 1930 - 1990 24.0 0.25 30
PHP CP0603A1907FL 1895 - 1920 24.2 31
DECT CP0603A1890FL 1880 - 1900
Wireless LAN CP0603A2442FL 2400 - 2484 21.5 30
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
0
-4.0
-8.0
-12.0
-16.0
-20.0
-24.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
0
-4.0
-8.0
-12.0
-16.0
-20.0
-24.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
CP0603AxxxxDLTR
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
CP0603AxxxxELTR
CP0603AxxxxFLTR
Important: Couplers can be used at any frequency within the indicated range.
40
3
Thin-Film Directional Couplers
CP0603 High Directivity LGA Type
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836GL 824 - 849 34.2
CP0603A0881GL 869 - 894 33.8 39
GSM CP0603A0902GL 890 - 915 33.6
CP0603A0947GL 935 - 960 33.2 0.20 38
E-GSM CP0603A0897GL 880 - 915 33.6 39
CP0603A0942GL 925 - 960 33.2 38
PDC CP0603A1441GL 1429 - 1453 30.0 34 13
PCN CP0603A1747GL 1710 - 1785 28.5
CP0603A1842GL 1805 - 1880 28.0 32
PCS CP0603A1880GL 1850 - 1910 27.7
CP0603A1960GL 1930 - 1990 27.5 0.25 31
PHP CP0603A1907GL 1895 - 1920 27.6 32
DECT CP0603A1890GL 1880 - 1900 27.7
Wireless LAN CP0603A2442GL 2400 - 2484 25.5 31
Coupler P/N CP0603AxxxxGL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836HL 824 - 849 17.3 26
CP0603A0881HL 869 - 894 17.0 0.30
GSM CP0603A0902HL 890 - 915 16.7
CP0603A0947HL 935 - 960 16.3 25 26
E-GSM CP0603A0897HL 880 - 915 17.0 0.35
CP0603A0942HL 925 - 960 16.3
PDC CP0603A1441HL 1429 - 1453 13.0 0.55 22
PCN CP0603A1747HL 1710 - 1785 11.4 20
CP0603A1842HL 1805 - 1880 11.0
PCS CP0603A1880HL 1850 - 1910 10.8 24
CP0603A1960HL 1930 - 1990 10.5 0.75
PHP CP0603A1907HL 1895 - 1920 10.7 19
DECT CP0603A1890HL 1880 - 1900 10.8
Wireless LAN CP0603A2442HL 2400 - 2484 8.8 1.00 17
Coupler P/N CP0603AxxxxHL
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603A0836ML 824 - 849 24.2 33
CP0603A0881ML 869 - 894 23.8
GSM CP0603A0902ML 890 - 915 23.4
CP0603A0947ML 935 - 960 23.2 0.20 32 23
E-GSM CP0603A0897ML 880 - 915 23.4
CP0603A0942ML 925 - 960 23.2
PDC CP0603A1441ML 1429 - 1453 20.0 28
PCN CP0603A1747ML 1710 - 1785 18.4 27
CP0603A1842ML 1805 - 1880 18.0
PCS CP0603A1880ML 1850 - 1910 17.8 0.25 20
CP0603A1960ML 1930 - 1990 17.5 26
PHP CP0603A1907ML 1895 - 1920 17.7
DECT CP0603A1890ML 1880 - 1900 17.8
Wireless LAN CP0603A2442ML 2400 - 2484 15.6 0.35 24
Coupler P/N CP0603AxxxxML
CP0603AxxxxGLTR
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
0
-4.0
-8.0
-12.0
-16.0
-20.0
-24.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
CP0603AxxxxHLTR
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-4.0
-8.0
-12.0
-16.0
-20.0
-24.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
CP0603AxxxxMLTR
I. Loss
Coupling
R. Loss
Isolation
0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.8 1.6 2.4 3.2 4.0
0
-4.0
-8.0
-12.0
-16.0
-20.0
-24.0
Frequency (GHz)
Coupling, Return Loss, Isolation (dB)
I Loss (dB)
Important: Couplers can be used at any frequency within the indicated range.
41
3
Thin-Film Directional Couplers
CP0402 / CP0603 High Directivity Couplers Test Jigs
GENERAL DESCRIPTION
These jigs are designed for testing the CP0402 and CP0603
High Directivity Couplers using a Vector Network Analyzer.
They consist of a dielectric substrate, having 50microstrips
as conducting lines and a bottom ground plane located at a
distance of 0.254mm (0.010") from the microstrips.
The substrate used is Neltec’s NH9338ST0254C1BC.
The connectors are SMA type (female), ‘Johnson Components
Inc.’ Product P/N: 142-0701-841.
Both a measurement jig and a calibration jig are provided.
The calibration jig is designed for a full 2-port calibration, and
consists of an open line, short line and through line. LOAD
calibration can be done by a 50SMA termination.
When measuring a component, it can be either soldered or
pressed using a non-metallic stick until all four ports touch
the appropriate pads. Set the VNA to the relevant frequency
band. Connect the VNA using a 10dB attenuator on the jig
terminal connected to port 2. Follow the VNAs instruction
manual and use the calibration jig to perform a full 2-Port
calibration in the required bandwidths.
Place the coupler on the measurement jig as follows:
Input (Coupler) Connector 1 (Jig) Termination (Coupler) Connector 3 (Jig)
Output (Coupler) Connector 2 (Jig) Coupling (Coupler) Connector 4 (Jig)
To measure I. Loss connect:
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) 50
Connector 2 (Jig) Port 2 (VNA) Connector 4 (Jig) 50
To measure R. Loss and Coupling connect:
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) 50
Connector 2 (Jig) 50Connector 4 (Jig) Port 2 (VNA)
To measure Isolation connect:
Connector 1 (Jig) 50Connector 3 (Jig) 50
Connector 2 (Jig) Port 1 (VNA) Connector 4 (Jig) Port 2 (VNA)
MEASUREMENT PROCEDURE
Measurement Jig
Connector 1
Connector 2
Connector 4
Connector 3
Calibration Jig
Short Line
to GND.
Load &
Through
Load &
Through
Connector
Johnson
P/N 142-0701-841
Open
Line
HS
OPEN
TH
42
3
42
Thin-Film Directional Couplers
CP0603 SMD Type
QUALITY INSPECTION
Finished parts are 100% tested for electrical parameters and
visual characteristics. Each production lot is evaluated on a
sample basis for:
• Static Humidity: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR, 4 hours
TERMINATION
Nickel/Solder coating compatible with automatic soldering
technologies: reflow, wave soldering, vapor phase and
manual.
TERMINALS (Top View)
The ITF SMD Coupler is based on thin-film multilayer technology.
The technology provides a miniature part with excellent high frequency
performance and rugged construction for reliable automatic assembly.
The ITF Coupler is offered in a variety of frequency bands compatible with
various types of high frequency wireless systems.
APPLICATIONS
• Mobile Communications
• Satellite TV Receivers
• GPS
• Vehicle Location Systems
• Wireless LAN’s
LW
B
T
B1
A
Bottom View
Top View
0603
L1.6±0.1
(0.063±0.004)
W0.84±0.1
(0.033±0.004)
T0.60±0.1
(0.028±0.004)
A0.35±0.15
(0.014±0.006)
B0.175±0.1
(0.007±0.004)
B1 0.00+0.1/0-0.0
(0.00+0.004/-0.0)
CP
Style
Directional Coupler
0603
Size
0603
X
Type
****
Frequency
MHz
X
Sub Type
W
Termination
Code
W = Sn90, Pb10
S = Sn100
TR
Packaging Code
TR = Tape and Reel
HOW TO ORDER
GENERAL DESCRIPTION
ITF (Integrated Thin-Film) TECHNOLOGY
1.85
(0.073)
0.45
(0.018)
0.28
(0.011) 1.08
(0.043)
OUT 50 OHM
IN COUPLING
Orientation in tape
Recommended Pad Layout Dimensions
mm (inches)
FEATURES
• Miniature Size: 0603
• Frequency Range: 800MHz - 3GHz
• Characteristic Impedance: 50
• Operating / Storage Temp.: -40ºC to +85ºC
• Power Rating: 3W Continuous
• Low Profile
• Rugged Construction
• Taped and Reeled
DIMENSIONS: millimeters (inches)
43
3
43
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603A0836CW 824 - 849 21±1
CP0603A0881CW 869 - 894 20.5±1 0.25
GSM CP0603A0902CW 890 - 915 20.5±1
CP0603A0947CW 935 - 960 20±1
E-GSM CP0603A0897CW 880 - 915 20.5±1
CP0603A0942CW 925 - 960 20±1
PDC CP0603A1441CW 1429 - 1453 16.5±1 0.40 1.2
PCN CP0603A1747CW 1710 - 1785 15±1
CP0603A1842CW 1805 - 1880 14.5±1
PCS CP0603A1880CW 1850 - 1910 14.5±1
CP0603A1960CW 1930 - 1990 14±1 0.5
PHP CP0603A1907CW 1895 - 1920 14.5±1
DECT CP0603A1890CW 1880 - 1900 14.5±1
Wireless LAN CP0603A2442CW 2400 - 2484 12.5±1 0.65
Thin-Film Directional Couplers
CP0603 SMD Type
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603A0836AW 824 - 849 18.5±1
CP0603A0881AW 869 - 894 18.5±1 0.25
GSM CP0603A0902AW 890 - 915 18±1
CP0603A0947AW 935 - 960 17.5±1
E-GSM CP0603A0897AW 880 - 915 18±1
CP0603A0942AW 925 - 960 17.5±1
PDC CP0603A1441AW 1429 - 1453 14±1 0.4
PCN CP0603A1747AW 1710 - 1785 12.5±1 1.2
CP0603A1842AW 1805 - 1880 12±1 0.6
PCS CP0603A1880AW 1850 - 1910 12±1
CP0603A1960AW 1930 - 1990 11.5±1 0.65
PHP CP0603A1907AW 1895 - 1920 12±1 0.6
DECT CP0603A1890AW 1880 - 1900 12±1
Wireless LAN CP0603A2442AW 2400 - 2484 10±1 0.85
Coupler P/N CP0603A****AW P/N CP0603A****AW
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603A0836BW 824 - 849 16±1
CP0603A0881BW 869 - 894 15.5±1 0.25 1.2
GSM CP0603A0902BW 890 - 915 15.5±1
CP0603A0947BW 935 - 960 15±1
E-GSM CP0603A0897BW 880 - 915 15.5±1
CP0603A0942BW 925 - 960 15±1
PDC CP0603A1441BW 1429 - 1453 11.5±1 0.55
PCN CP0603A1747BW 1710 - 1785 10±1 1.3
CP0603A1842BW 1805 - 1880 9.5±1
PCS CP0603A1880BW 1850 - 1910 9±1
CP0603A1960BW 1930 - 1990 9±1 0.8
PHP CP0603A1907BW 1895 - 1920 9±1 1.4
DECT CP0603A1890BW 1880 - 1900 9±1
Wireless LAN CP0603A2442BW 2400 - 2484 7.5±1 1.1
Coupler P/N CP0603A****BW CP0603A****BW
Coupler P/N CP0603A****CW CP0603A****CW
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603A0836DW 824 - 849 15.0±1
CP0603A0881DW 869 - 894 14.5±1 0.40 1.2
GSM CP0603A0902DW 890 - 915 14.5±1
CP0603A0947DW 935 - 960 14±1
E-GSM CP0603A0897DW 880 - 915 14.5±1
CP0603A0942DW 925 - 960 14±1
PDC CP0603A1441DW 1429 - 1453 10.5±1 0.7 1.3
PCN CP0603A1747DW 1710 - 1785 9±1
CP0603A1842DW 1805 - 1880 8.5±1 0.9
PCS CP0603A1880DW 1850 - 1910 8.5±1
CP0603A1960DW 1930 - 1990 8±1 1.0 1.5
PHP CP0603A1907DW 1895 - 1920 8.5±1
DECT CP0603A1890DW 1880 - 1900 8.5±1
Wireless LAN CP0603A2442DW 2400 - 2484 6.5±1 1.5
Coupler P/N CP0603A****DW CP0603A****DW
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-50
-60
0
-2
-4
-6
-8
-10
-12
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 1.0 1.5 2.0 2.5
Frequency (GHz)
3.0 3.5
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-50
-60
0
-2
-4
-6
-8
-10
-12
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 1.0 1.5 2.0 2.5
Frequency (GHz)
3.0
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-50
-60
-70
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 1.0 1.5 2.0 2.5
Frequency (GHz)
3.0 3.5
I. Loss
Coupling Return Loss
Isolation
0
-10
-20
-30
-40
-50
-60
0
-2
-4
-6
-8
-10
-12
-1
-3
-5
-7
-9
-11
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 0.7 0.9 1.1 1.3
Frequency (GHz)
1.5 1.7 1.9 2.1 2.3 2.5
Important: Couplers can be used at any frequency within the indicated range.
44
3
44
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603B0836CW 824 - 849 26.5±1
CP0603B0881CW 869 - 894 26±1
GSM CP0603B0902CW 890 - 915 26±1
CP0603B0947CW 935 - 960 25.5±1 0.2
E-GSM CP0603B0897CW 880 - 915 26±1
CP0603B0942CW 925 - 960 25.5±1
PDC CP0603B1441CW 1429 - 1453 22±1 1.2
PCN CP0603B1747CW 1710 - 1785 20.5±1
CP0603B1842CW 1805 - 1880 20±1
PCS CP0603B1880CW 1850 - 1910 20±1 0.25
CP0603B1960CW 1930 - 1990 19.5±1
PHP CP0603B1907CW 1895 - 1920 20±1
DECT CP0603B1890CW 1880 - 1900 20±1
Wireless LAN CP0603B2442CW 2400 - 2484 18±1 0.35 1.3
Thin-Film Directional Couplers
CP0603 SMD Type
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603B0836AW 824 - 849 24.5±1
CP0603B0881AW 869 - 894 24±1
GSM CP0603B0902AW 890 - 915 24±1 0.2
CP0603B0947AW 935 - 960 23.5±1
E-GSM CP0603B0897AW 880 - 915 24±1
CP0603B0942AW 925 - 960 23.5±1
PDC CP0603B1441AW 1429 - 1453 20±1 0.25 1.2
PCN CP0603B1747AW 1710 - 1785 18±1
CP0603B1842AW 1805 - 1880 17.5±1
PCS CP0603B1880AW 1850 - 1910 17.5±1
CP0603B1960AW 1930 - 1990 17.5±1 0.3
PHP CP0603B1907AW 1895 - 1920 17.5±1
DECT CP0603B1890AW 1880 - 1900 17.5±1
Wireless LAN CP0603B2442AW 2400 - 2484 15.5±1 0.45
Coupler P/N CP0603B****AW CP0603B****AW
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0603B0836BW 824 - 849 25.5±1
CP0603B0881BW 869 - 894 25±1
GSM CP0603B0902BW 890 - 915 25±1
CP0603B0947BW 935 - 960 24.5±1 0.2
E-GSM CP0603B0897BW 880 - 915 25±1
CP0603B0942BW 925 - 960 24.5±1
PDC CP0603B1441BW 1429 - 1453 21±1 1.2
PCN CP0603B1747BW 1710 - 1785 19±1
CP0603B1842BW 1805 - 1880 19±1
PCS CP0603B1880BW 1850 - 1910 18.5±1 0.25
CP0603B1960BW 1930 - 1990 18.5±1
PHP CP0603B1907BW 1895 - 1920 18.5±1
DECT CP0603B1890BW 1880 - 1900 18.5±1
Wireless LAN CP0603B2442BW 2400 - 2484 16.5±1 0.35
Coupler P/N CP0603B****BW CP0603B****BW
Coupler P/N CP0603B****CW CP0603B****CW
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-50
-60
-1
-3
-5
-7
-9
-11
-13
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 1.0 1.5 2.0 2.5
Frequency (GHz)
3.0 3.5 4.0
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-5
-15
-25
-35
-45
-50
0
-2
-4
-6
-8
-10
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 1.0 1.5 2.0 2.5
Frequency (GHz)
3.0 3.5 4.0
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-5
-15
-25
-35
-45
-50
0
-2
-4
-6
-8
-10
Coupling, Return Loss,
Isolation (dB)
I. Loss (dB)
0.5 1.0 1.5 2.0 2.5
Frequency (GHz)
3.0 3.5 4.0
Important: Couplers can be used at any frequency within the indicated range.
45
3
Thin-Film Directional Couplers
CP0603 SMD Type – High Directivity
Coupler P/N CP0603D****AW CP0603D****AW
CP0603D****BW
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-5
-15
-25
-35
0
-2
-4
-6
-8
-10
-12
-14
-16
Coupling, Return Loss,
Isolation (dB)
Insertion Loss (dB)
0.8 1.0 1.2 1.4 1.6
Frequency (GHz)
1.8 2.0 2.2 2.4
I. Loss
Coupling
Return Loss
Isolation
0
-10
-20
-30
-40
-5
-15
-25
-35
-45
0
-2
-1
-4
-3
-6
-5
-8
-7
-9
Coupling, Return Loss,
Isolation (dB)
Insertion Loss (dB)
0.8 1.0 1.2 1.4 1.6
Frequency (GHz)
1.8 2.0 2.2 2.4
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603D0836AW 824 - 849 13.50 23
CP0603D0881AW 869 - 894 13.00
GSM CP0603D0902AW 890 - 915
CP0603D0947AW 935 - 960 12.50 0.50 22 21
E-GSM CP0603D0897AW 880 - 915 13.00
CP0603D0942AW 925 - 960 12.50
PDC CP0603D1441AW 1429 - 1453 9.00 1.00 18 19
PCN CP0603D1747AW 1710 - 1785 8.00 17 18
CP0603D1842AW 1805 - 1880 7.50
PCS CP0603D1880AW 1850 - 1910
CP0603D1960AW 1930 - 1990 1.40 17
PHP CP0603D1907AW 1895 - 1920 7.00 16
DECT CP0603D1890AW 1880 - 1900
Wireless LAN CP0603D2442AW 2400 - 2484 5.50 2.00 15 15
Important: Couplers can be used at any frequency within the indicated range.
Coupler P/N CP0603D****BW
Frequency Coupling I. Loss Return Directivity
Application P/N Band [dB] max. Loss [dB]
Examples [MHz] [dB] [dB]
AMPS CP0603D0836BW 824 - 849 20.00 36
CP0603D0881BW 869 - 894 19.50
GSM CP0603D0902BW 890 - 915 35
CP0603D0947BW 935 - 960 19.00 0.25
E-GSM CP0603D0897BW 880 - 915 19.50 36
CP0603D0942BW 925 - 960 19.00 35
PDC CP0603D1441BW 1429 - 1453 15.50 0.40 30
PCN CP0603D1747BW 1710 - 1785 14.00 0.50 28
19
CP0603D1842BW 1805 - 1880
PCS CP0603D1880BW 1850 - 1910 13.50
CP0603D1960BW 1930 - 1990 0.55 27
PHP CP0603D1907BW 1895 - 1920 13.00
DECT CP0603D1890BW 1880 - 1900
Wireless LAN CP0603D2442BW 2400 - 2484 11.00 0.70 24
46
3
The ITF SMD Coupler is based on thin-film multilayer technology.
The technology provides a miniature part with excellent high frequency
performance and rugged construction for reliable automatic assembly.
The ITF Coupler is offered in a variety of frequency bands compatible with
various types of high frequency wireless systems.
W
B
L
T
A
0805
L2.03±0.1 (0.080±0.004)
W1.55±0.1 (0.061±0.004)
T0.98±0.1 (0.039±0.004)
A0.56±0.25 (0.022±0.010)
B0.35±0.15 (0.014±0.006)
CP
Style
Directional Coupler
0805
Size
0805
A
Layout Type
(see layout types)
0902
Frequency
MHz
A
Sub Type
(see layout
sub-types)
W
Termination
Code
W = Nickel/Solder
(Sn/Pb)
TR
Packaging Code
TR = Tape and Reel
HOW TO ORDER
Thin-Film Directional Couplers
CP0805 Type
GENERAL DESCRIPTION
ITF (Integrated Thin-Film) TECHNOLOGY
FEATURES
• Small Size: 0805
• Frequency Range: 800MHz - 3GHz
• Characteristic Impedance: 50
• Operating / Storage Temp.:
-40°C to +85°C
• Power Rating: 3W Continuous
• Low Profile
• Rugged Construction
• Taped and Reeled
APPLICATIONS
• Mobile Communications
• Satellite TV Receivers
• GPS
• Vehicle Location Systems
• Wireless LAN’s
QUALITY INSPECTION
Finished parts are 100% tested for electrical parameters and
visual characteristics. Each production lot is evaluated on a
sample basis for:
• Static Humidity: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR, 4 hours
TERMINATION
Nickel/Solder coating (Sn, Pb) compatible with automatic
soldering technologies: reflow, wave soldering, vapor phase
and manual.
2.33
(0.092)
0.60
(0.024)
0.65
(0.026)
2.25
(0.089)
Recommended Pad Layout Dimensions mm (inches)
NOTE: Components must be mounted on the board with the white
(Alumina) side DOWN.
DIMENSIONS: millimeters (inches)
(Top View)
47
3
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805A0836AW 824 - 849 16.5±1
CP0805A0881AW 869 - 894 16±1 0.25
GSM CP0805A0902AW 890 - 915 16±1
CP0805A0947AW 935 - 960 15.5±1 1.2
E-GSM CP0805A0897AW 880 - 915 16±1
CP0805A0942AW 925 - 960 15.5±1
PDC CP0805A1441AW 1429 - 1453 12±1 0.5 1.3
PCN CP0805A1747AW 1710 - 1785 10.5±1 0.7
CP0805A1842AW 1805 - 1880 10±1 0.8
PCS CP0805A1880AW 1850 - 1910 9.5±1 1.4
CP0805A1960AW 1930 - 1990 9.5±1
PHP CP0805A1907AW 1895 - 1920 9.5±1
DECT CP0805A1890AW 1880 - 1900 9.5±1
Thin-Film Directional Couplers
CP0805 Layout Types
Type: A
Sub-Type: A
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
0.60 0.80 1.00 1.20 1.40
Frequency (GHz)
dB
I. Loss (dB)
1.60
0
-1
1.80 2.00
COUP
Port
RF IN
Port
50 OHM
(External
Resistor)
RF OUT
Port
LAYOUT
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805A0836BW 824 - 849 19±1
CP0805A0881BW 869 - 894 18.5±1 0.25 1.2
GSM CP0805A0902BW 890 - 915 18±1
CP0805A0947BW 935 - 960 18±1
E-GSM CP0805A0897BW 880 - 915 18.5±1
CP0805A0942BW 925 - 960 18±1
PDC CP0805A1441BW 1429 - 1453 14.5±1 0.35
PCN CP0805A1747BW 1710 - 1785 12.5±1 0.5
CP0805A1842BW 1805 - 1880 12.5±1
PCS CP0805A1880BW 1850 - 1910 12±1 0.6
CP0805A1960BW 1930 - 1990 11.5±1 0.7 1.4
PHP CP0805A1907BW 1895 - 1920 12±1 0.6
DECT CP0805A1890BW 1880 - 1900 12±1
Wireless LAN CP0805A2442BW 2400 - 2484 10±1 0.9
Type: A
Sub-Type: B
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
0.60 0.80 1.00 1.20 1.40
Frequency (GHz)
dB
I. Loss (dB)
1.60
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
1.80 2.00
COUP
Port
RF IN
Port
50 OHM
(External
Resistor)
RF OUT
Port
LAYOUT
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805A0836CW 824 - 849 14±1
CP0805A0881CW 869 - 894 13.5±1 0.5
GSM CP0805A0902CW 890 - 915 13.5±1
CP0805A0947CW 935 - 960 13±1 1.4
E-GSM CP0805A0897CW 880 - 915 13.5±1
CP0805A0942CW 925 - 960 13±1
PDC CP0805A1441CW 1429 - 1453 9.5±1 1.15 1.8
PCN CP0805A1747CW 1710 - 1785 8±1 1.6
CP0805A1842CW 1805 - 1880 8±1
PCS CP0805A1880CW 1850 - 1910 7.5±1 1.75 2.2
Cp0805A1960CW 1930 - 1990 7.5±1
PHP CP0805A1907CW 1895 - 1920 7.5±1
DECT CP0805A1890CW 1880 - 1900 7.5±1
Wireless LAN CP0805A2442CW 2400 - 2484 6±1 2.5
Type: A
Sub-Type: C
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
0.60 0.80 1.00 1.20 1.40
Frequency (GHz)
dB
1.60 1.80 2.00 2.20 2.40
COUP
IN
50 OHM
OUT
LAYOUT
Important: Couplers can be used at any frequency within the indicated range.
48
3
COUP
IN
50 OHM
OUT
LAYOUT
Thin-Film Directional Couplers
CP0805 Layout Types
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805A0836EW 824 - 849 11±1
CP0805A0881EW 869 - 894 10.5±1 0.85 1.4
GSM CP0805A0902EW 890 - 915 10.5±1
CP0805A0947EW 935 - 960 10±1
E-GSM CP0805A0897EW 880 - 915 10.5±1
CP0805A0942EW 925 - 960 10±1
PDC CP0805A1441EW 1429 - 1453 7±1 1.8 1.8
PCN CP0805A1747EW 1710 - 1785 5.5±1
CP0805A1842EW 1805 - 1880 5.5±1 2.7 2.2
PCS CP0805A1880EW 1850 - 1910 5±1
Cp0805A1960EW 1930 - 1990 5±1
PHP CP0805A1907EW 1895 - 1920 5±1 3.15 2.4
DECT CP0805A1890EW 1880 - 1900 5±1
Wireless LAN CP0805A2442EW 2400 - 2484 4±1 4.2
Type: A
Sub-Type: E
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
0.50 0.75 1.00 1.25 1.50
Frequency (GHz)
dB
1.75 2.00
I. Loss (dB)
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805A0836DW 824 - 849 13.0±1
CP0805A0881DW 869 - 894 12.5±1 0.5 1.4
GSM CP0805A0902DW 890 - 915 12.5±1
CP0805A0947DW 935 - 960 12±1
E-GSM CP0805A0897DW 880 - 915 12.5±1
CP0805A0942DW 925 - 960 12±1
PDC CP0805A1441DW 1429 - 1453 8.5±1 1.25 1.8
PCN CP0805A1747DW 1710 - 1785 7±1
CP0805A1842DW 1805 - 1880 7±1 1.85
PCS CP0805A1880DW 1850 - 1910 7±1
Cp0805A1960DW 1930 - 1990 6.5±1 2.15 2.1
PHP CP0805A1907DW 1895 - 1920 6.5±1
DECT CP0805A1890DW 1880 - 1900 7±1 1.85 1.8
Wireless LAN CP0805A2442DW 2400 - 2484 5.5±1 2.4 2.1
Type: A
Sub-Type: D
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
0.60 0.80 1.00 1.20 1.40
Frequency (GHz)
dB
1.60 1.80 2.00 2.20 2.40
COUP
IN
50 OHM
OUT
LAYOUT
COUP Port
RF IN
Port
50 OHM (External Resistor)
RF OUT
Port
LAYOUT
Type: B
Sub-Type: A
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
1.00 1.20 1.40 1.60 1.80
Frequency (GHz)
dB
I. Loss (dB)
2.00
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
2.20 2.40
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805B0836AW 824 - 849 21.5±1
CP0805B0881AW 869 - 894 21±1
GSM CP0805B0902AW 890 - 915 21±1
CP0805B0947AW 935 - 960 20.5±1 0.25
E-GSM CP0805B0897AW 880 - 915 21±1
CP0805B0942AW 925 - 960 20.5±1
PDC CP0805B1441AW 1429 - 1453 17±1
PCN CP0805B1747AW 1710 - 1785 15.5±1 1.2
Cp0805B1842AW 1805 - 1880 15.5±1 0.3
PCS CP0805B1880AW 1850 - 1910 15±1
CP0805B1960AW 1930 - 1990 14.5±1 0.4
PHP CP0805B1907AW 1895 - 1920 15±1 0.3
DECT CP0805B1890AW 1880 - 1900 15±1
Wireless LAN CP0805B2442AW 2400 - 2484 13±1 0.4
Important: Couplers can be used at any frequency within the indicated range.
49
3
Type: B
Sub-Type: C
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
1.10 1.30 1.50 1.70 1.90
Frequency (GHz)
dB
I. Loss (dB)
2.10
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
2.30 2.50
COUP Port
RF IN
Port
50 OHM (External Resistor)
RF OUT
Port
LAYOUT
Type: B
Sub-Type: B
I. Loss
Coupling
R. Loss
Isolation
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
1.00 1.20 1.40 1.60 1.80
Frequency (GHz)
dB
I. Loss (dB)
2.00
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
2.20 2.40 2.60
COUP Port
RF IN
Port
50 OHM (External Resistor)
RF OUT
Port
LAYOUT
Thin-Film Directional Couplers
CP0805 Layout Types
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805B0836BW 824 - 849 23.5±1
CP0805B0881BW 869 - 894 23±1
GSM CP0805B0902BW 890 - 915 22.5±1
CP0805B0947BW 935 - 960 22±1
E-GSM CP0805B0897BW 880 - 915 23±1
CP0805B0942BW 925 - 960 22±1 0.25
PDC CP0805B1441BW 1429 - 1453 18.5±1
PCN CP0805B1747BW 1710 - 1785 17±1
CP0805B1842BW 1805 - 1880 16.5±1 1.2
PCS CP0805B1880BW 1850 - 1910 16.5±1
CP0805B1960BW 1930 - 1990 16±1
PHP CP0805B1907BW 1895 - 1920 16±1
DECT CP0805B1890BW 1880 - 1900 16±1
Wireless LAN CP0805B2442BW 2400 - 2484 14±1 0.4
Application P/N Frequency Coupling I. Loss VSWR
Examples Band [MHz] [dB] max max
AMPS CP0805B0836CW 824 - 849 25±1
CP0805B0881CW 869 - 894 24.5±1
GSM CP0805B0902CW 890 - 915 24±1
CP0805B0947CW 935 - 960 24±1
E-GSM CP0805B0897CW 880 - 915 24.5±1
CP0805B0942CW 925 - 960 24±1 0.25
PDC CP0805B1441CW 1429 - 1453 20±1
PCN CP0805B1747CW 1710 - 1785 18.5±1
Cp0805B1842CW 1805 - 1880 18.5±1 1.2
PCS CP0805B1880CW 1850 - 1910 18±1
Cp0805B1960CW 1930 - 1990 17.5±1
PHP CP0805B1907CW 1895 - 1920 18±1
DECT CP0805B1890CW 1880 - 1900 18±1
Wireless LAN CP0805B2442CW 2400 - 2484 16±1 0.4
Important: Couplers can be used at any frequency within the indicated range.
50
3
Thin-Film Directional Couplers
CP0805 and CP0603 Test Jig
GENERAL DESCRIPTION
This jig is designed for the testing of CP0805 and CP0603
series Directional Couplers using a vector network analyzer.
It consists of a FR4 multi-layer substrate, having 50
microstrips as conducting lines and a ground plane in the
middle layer, located at a distance of 0.2mm from the
microstrips.
The connectors are SMA type (female), ‘Johnson Components
Inc.’ Product P/N: 142-0701-881.
The jig is designed for a full 2-port calibration. LOAD calibration
can be done either by a 50SMA termination, or by soldering
a 50chip resistor at the 50ports.
MEASUREMENT PROCEDURE
When measuring a component, it can be either soldered or
pressed by a non-metallic stick until all four ports touch the
appropriate pads. To measure the coupling (and the R. Loss)
place the component on the Port 1 & Port 2 pads. Use two
SMA 50terminations (male) to terminate the ports, which
are not connected to the network analyzer, and connect
the network analyzer to the two ports. A 90° rotation of
the component on its pads allows measuring a second
parameter (I. Loss).
ITF TEST JIG FOR COUPLER TYPES 0805 AND 0603 SMD
Connector (1 of 12)
P/N 142-0701-881
OpenShort
Load & Thru
Port 2
Port 2
Port 1
Port 1
50
50
50
50
Calibration Area
Coupler 0805
Coupler 0603
CP0805 SERIES DIRECTIONAL COUPLERS
Orientation and Tape and Reel Packaging Specification
COUP
RF
IN
RF
OUT
50
OHM COUP
RF
IN
RF
OUT
50
OHM COUP
RF
IN
RF
OUT
50
OHM
TYPE AC TYPE AD TYPE AE
COUP
RF
IN
RF
OUT
50
OHM COUP
RF
IN
RF
OUT
50
OHM
TYPE AA TYPE AB
COUP
RF
IN
RF
OUT
50
OHM
COUP
RF
IN
RF
OUT
50
OHM
COUP
RF
IN
RF
OUT
50
OHM
TYPE BA TYPE BB TYPE BC
(Top View)
The parts should be mounted on the PCB with White (Alumina)
side down and the "dark" side up.
51
3
TERMINALS (Top View)
Orientation in Tape
The ITF SMD 3dB 90° Coupler is based on thin-film multilayer
technology. The technology provides a miniature part with excellent
high frequency performance and rugged construction for reliable
automatic assembly.
The ITF 3dB 90° Coupler is offered in a variety of frequency bands
compatible with various types of high frequency wireless
systems.
APPLICATIONS
• Balanced Amplifiers and
Signal Distribution in
Mobile Communications
L
A
BW
T
DIMENSIONS:
millimeters (inches) Bottom View
L2.03±0.10
(0.080±0.004)
W1.55±0.10
(0.061±0.004)
T0.98±0.15
(0.037±0.006)
A0.56±0.25
(0.022±0.010)
B0.35±0.15
(0.014±0.006)
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
GENERAL DESCRIPTION
ITF TECHNOLOGY
1.76
(0.069)
2.24 (0.088)
GROUND
0.70
(0.028)
0.64
(0.025)
0.15 (0.006) TYP.
50
OHM
IN
OUT1
OUT2
50
OHM
Code Lette
r
Marking
IN
OUT1
OUT2
FEATURES
• Miniature 0805 size
• Low I. Loss
• High Isolation
• Power Handling:
10W RF CW
• Surface Mountable
• Supplied on Tape and Reel
• Operating Temperature
-40°C to +85°C
Recommended Pad Layout Dimensions mm (inches)
Part Number Frequency FOI. Loss @ FOPhase Balance Code Letter
[MHz] [dB] [deg] max. Marking
DB0805A0880AWTR 880±30 0.35 3 Y
DB0805A0915AWTR 915±30 0.35 3 V
DB0805A0967AWTR 967±30 0.35 3 V
DB0805A1350AWTR 1350±50 0.35 3 C
DB0805A1650AWTR 1650±50 0.35 3 F
DB0805A1800AWTR 1800±50 0.30 3 F
DB0805A1850AWTR 1850±50 0.30 3 K
DB0805A1900AWTR 1900±50 0.30 3 K
DB0805A1950AWTR 1950±50 0.25 3 K
DB0805A2140AWTR 2140±50 0.25 3 L
DB0805A2325AWTR 2325±50 0.25 3 T
ELECTRICAL PARAMETERS*
*With Recommended Pad Layout
Important: All intermediate frequencies within the
indicated range are readily available.
52
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-3.8
850 865 880 895 910
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
850 855 880 905 930
Frequency (MHz)
dB
880 ± 30MHz DB0805A0880AWTR
53
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-2.8
-3.2
-3.4
-3.6
-3.8
885 900 915 930 945
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
865 890 915 940 965
Frequency (MHz)
dB
915 ± 30MHz DB0805A0915AWTR
54
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-2.8
-3.2
-3.4
-3.6
-3.8
937 952 967 982 997
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
917 942 967 992 1017
Frequency (MHz)
dB
967± 30MHz DB0805A0967AWTR
55
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-3.8
1300 1350 1400
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
1300 1350 1400
Frequency (MHz)
dB
1350 ± 50MHz DB0805A1350AWTR
56
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-2.8
1550 1600 1650 1700 1750
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
1550 1600 1650 1700 1750
Frequency (MHz)
dB
1650 ± 50MHz DB0805A1650AWTR
57
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-2.8
1750 1775 1800 1825 1850
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
1750 1775 1800 1825 1850
Frequency (MHz)
dB
1800 ± 50MHz DB0805A1800AWTR
58
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-2.8
1800 1825 1850 1875 1900
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
1800 1825 1850 1875 1900
Frequency (MHz)
dB
1850 ± 50MHz DB0805A1850AWTR
59
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
1850 1875 1900 1925 1950
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
1850 1875 1900 1925 1950
Frequency (MHz)
dB
1900 ± 50MHz DB0805A1900AWTR
60
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-2.8
1900 1925 1950 1975 2000
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
1900 1925 1950 1975 2000
Frequency (MHz)
dB
1950 ± 50MHz DB0805A1950AWTR
61
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.4
-3.6
-3.8
-2.6
-2.8
2040 2090 2140 2190 2240
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
2140 2090 2140 2190 2240
Frequency (MHz)
dB
2140 ± 50MHz DB0805A2140AWTR
62
3
Thin-Film Directional Couplers
DB0805 3dB 90° Couplers
I. Loss 1
I. Loss 2
-3.0
-3.2
-3.3
-3.4
-3.5
-3.1
2275 2300 2325 2350 2375
Frequency (MHz)
dB
R. Loss
Isolation
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
2275 2300 2325 2350 2375
Frequency (MHz)
dB
2325 ± 50MHz DB0805A2325AWTR
63
3
Thin-Film Directional Couplers
DB0805 3dB 90° Test Jigs
GENERAL DESCRIPTION
These jigs are designed for testing the DB0805 3dB 90°
Couplers using a Vector Network Analyzer.
They consist of a dielectric substrate, having 50microstrips
as conducting lines and a bottom ground plane located at a
distance of 0.254mm from the microstrips.
The substrate used is Neltec’s NH9338ST0254C1BC.
The connectors are SMA type (female), ‘Johnson Components
Inc.’ Product P/N: 142-0701-841.
Both a measurement jig and a calibration jig are provided.
The calibration jig is designed for a full 2-port calibration, and
consists of an open line, short line and through line. LOAD
calibration can be done by a 50SMA termination.
When measuring a component, it can be either soldered or
pressed using a non-metallic stick until all four ports touch
the appropriate pads. Set the VNA to the relevant frequency
band. Connect the VNA using a 10dB attenuator on the jig
terminal connected to port 2. Follow the VNAs instruction
manual and use the calibration jig to perform a full 2-port
calibration in the required bandwidths.
Place the coupler on the measurement jig as follows:
Input (Coupler) Connector 1 (Jig) Output 1 (Coupler) Connector 3 (Jig)
50(Coupler) Connector 2 (Jig) Output 2 (Coupler) Connector 4 (Jig)
To measure R. Loss and I. Loss 1 connect:
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) Port 2 (VNA)
Connector 2 (Jig) 50Connector 4 (Jig) 50
To measure R. Loss and I. Loss 2 connect:
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) 50
Connector 2 (Jig) 50Connector 4 (Jig) Port 2 (VNA)
To measure Isolation connect:
Connector 1 (Jig) 50Connector 3 (Jig) Port 1 (VNA)
Connector 2 (Jig) 50Connector 4 (Jig) Port 2 (VNA)
MEASUREMENT PROCEDURE
Measurement Jig
Connector 1
Connector 2
Connector 4
Connector 3
Calibration Jig
Short Line
to GND
Load &
Through
Load &
Through
Connector
Johnson
P/N 142-0701-841
Open
Line
64
Thin-Film Technology
Integrated Thin-Film
Low-Pass Filters
4
65
4
LP
Style
0603
Size
0603
A
Type
XXXX
Frequency
MHz
A
Sub-Type
N
Termination
LGA
Ni/Lead Free Solder
TR
Taped & Reeled
Thin-Film Low Pass Filter
LP0603 Lead-Free LGA Type
GENERAL DESCRIPTION
The LP0603 ITF (Integrated Thin Film) Lead-Free LGA Low
Pass Filter is based on thin-film multilayer technology. The
technology provides a miniature part with excellent high
frequency performance and rugged construction for reliable
automatic assembly.
The ITF Low Pass Filters are offered in a variety of frequency
bands compatible with various types of high frequency
wireless systems.
FEATURES
• Miniature Size: 0603
• Frequency Range: 900MHz -2.4GHz
• Characteristic Impedance: 50 Ohm
• Operating/Storage Temperature: -40°C to +85°C
• Power Rating: 3W Continuous
• Low Profile
• Rugged Construction
• Lead Free
• Taped and Reeled
APPLICATIONS
• Mobile communications
• Satellite TV receivers
• GPS
• Vehicle location systems
• Wireless LANs
• RFID
LAND GRID ARRAY ADVANTAGES
• Inherent Low Profile
• Self Alignment during Reflow
• Excellent Solderability
• Low Parasitics
• Better Heat Dissipation
FINAL QUALITY INSPECTION
Finished parts are 100% tested for electrical parameters and
visual characteristics. Each production lot is evaluated on a
sample basis for:
• Static Humidity: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR, 4 hours
TERMINATION
Nickel/Lead-Free Solder coating compatible with automatic
soldering technologies: reflow, wave soldering, vapor phase
and manual.
HOW TO ORDER
66
4
DIMENSIONS: millimeters (inches)
(Bottom View)
L1.6±0.1
(0.063±0.004)
W0.84±0.1
(0.033±0.004)
T0.60±0.1
(0.024±0.004)
A0.25±0.05
(0.010±0.002)
B0.20±0.05
(0.008±0.002)
S0.05±0.05
(0.002±0.002)
TERMINALS AND ORIENTATION IN TAPE
(Top View)
RECOMMENDED PAD LAYOUT (mm)
ELECTRICAL CHARACTERISTICS
(Guaranteed over –40°C to +85°C Operating Temperature Range)
Thin-Film Low Pass Filter
LP0603 Lead-Free LGA Type
L
T
S
W
B
A
1.75 (0.069)
0.50
(0.020)
0.40
(0.016)
1.10
(0.043)
OUT GND
GND
IN
OUT GND
GND
IN
P/N Frequency I. Loss VSWR Attentuation
Band [MHz] [dB] max typ.
[dB] [dB]
LP0603A0902ANTR 890-915 0.35 typ 1.4 25 @ 2xF0
(0.5 max) 14 @ 3xF0
LP0603A0947ANTR 935-960 0.35 typ 1.4 25 @ 2xF0
(0.5 max) 17 @ 3xF0
LP0603A1747ANTR 1710-1785 0.3 typ 1.4 25 @ 2xF0
(0.5 max) 17 @ 3xF0
LP0603A1842ANTR 1805-1880 0.3 typ 1.4 27 @ 2xF0
(0.5 max) 15 @ 3xF0
LP0603A1880ANTR 1840-1920 0.3 typ 1.4 25 @ 2xF0
(0.5 max) 17 @ 3xF0
LP0603A1950ANTR 1920-1980 0.3 typ 1.4 27 @ 2xF0
(0.5 max) 15 @ 3xF0
LP0603A2140ANTR 2110-2170 0.3 typ 1.4 27 @ 2xF0
(0.5 max) 17 @ 3xF0
LP0603A2442ANTR 2412-2472 0.3 typ 1.4 25 @ 2xF0
(0.5 max) 17 @ 3xF0
Note: additional frequencies available upon request
67
4
Thin-Film Low Pass Filter
LP0603 Lead-Free LGA Type Test Jig
LP0603A0902ANTR
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
LP0603A0947ANTR
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
LP0603A1747ANTR
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
LP0603A1842ANTR
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
LP0603A1880ANTR
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
LP0603A1950ANTR
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
68
4
Thin-Film Low Pass Filter
LP0603 Lead-Free LGA Type Test Jig
LP0603A2140ANTR
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Frequency (GHz)
Attentuation (dB)
S21 F0
2*F0
3*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
LP0603A2442ANTR
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Frequency (GHz)
Attentuation (dB)
S21
3*F0
2*F0
S11
0
-5
-10
-15
-20
-25
-30
–35
-40
-45
-50
GENERAL DESCRIPTION
These jigs are designed for testing the LP0603 LGA Low
Pass Filters using a Vector Network Analyzer.
They consist of a dielectric substrate, having 50microstrips
as conducting lines and a bottom ground plane located at a
distance of 0.127mm from the microstrips.
The substrate used is Neltec’s NH9338ST0127C1BC (or
similar).
The connectors are SMA type (female), ‘Johnson
Components Inc.’ Product P/N: 142-0701-841 (or similar).
Both a measurement jig and a calibration jig are provided.
The calibration jig is designed for a full 2-port calibration, and
consists of an open line, short line and through line. LOAD
calibration can be done by a 50SMA termination.
MEASUREMENT PROCEDURE
Follow the VNAs instruction manual and use the calibration
jig to perform a full 2-Port calibration in the required band-
widths.
Solder the filter to the measurement jig as follows:
Input Connector 1 (Jig) GND (Filter) GND (Jig)
(Filter)
Output Connector 2 (Jig) GND (Filter) GND (Jig)
(Filter)
Set the VNA to the relevant frequency band. Connect the
VNA using a 10dB attenuator on the jig terminal connected
to port 2 (using an RF cable).
TEST JIG FOR LP0603 LEAD-FREE LGA LOW PASS FILTER
Connector 1
Connector 2
Load &
Through
Short line to
GND
Connector
Johnson
P/N 152-0701-841
Open
line
Load &
OUT
Measurement Calibration Jig
69
4
LP
Style
Low Pass
0805A
Size
0805
0902
Frequency
MHz
AW
Termination
Nickel/Solder (Sn/Pb)
TR
Packaging Code
TR = Tape and Reel
Thin-Film Low Pass Filter
LP0805 Type Harmonic
GENERAL DESCRIPTION
The ITF (Integrated Thin-Film) SMD Filter is based on thin-film
multilayer technology. The technology provides a miniature
part with excellent high frequency performance and rugged
construction for reliable automatic assembly.
The ITF Filter is offered in a variety of frequency bands com-
patible with various types of high frequency wireless systems.
FEATURES
• Small Size: 0805
• Frequency Range: 800MHz - 3.5GHz
• Characteristic Impedance: 50
• Operating / Storage Temp.: -40°C to +85°C
• Power Rating: 3W Continuous
• Low Profile
• Rugged Construction
• Taped and Reeled
APPLICATIONS
• Mobile Communications
• Satellite TV Receivers
• GPS
• Vehicle Location Systems
• Wireless LAN’s
FINAL QUALITY INSPECTION
Finished parts are 100% tested for electrical parameters and
visual/mechanical characteristics. Each production lot is
evaluated on a sample basis for:
• Static Humidity: 85°C, 85% RH, 160 hours
• Endurance: 125°C, IR4 hours
TERMINATION
Nickel/Solder coating (Sn, Pb) compatible with automatic
soldering technologies: reflow, wave soldering, vapor phase
and manual.
DIMENSIONS: millimeters (inches)
L2.03±0.1
(0.080±0.004)
W1.55±0.1
(0.061±0.004)
T1.02±0.1
(0.040±0.004)
A0.56±0.25
(0.022±0.010)
B0.35±0.15
(0.014±0.006)
HOW TO ORDER
TERMINALS AND LAYOUT (Top View)
Orientation in Tape
IN GND
TYPE A TYPE B TYPE C TYPE D
OUT GND
IN GND
OUT GND
IN GND
OUT GND
IN GND
OUT GND
70
4
Thin-Film Low Pass Filter
LP0805 Type Harmonic
ELECTRICAL CHARACTERISTICS
Application Part Frequency I. Loss VSWR Attenuation Layout
Number Band (MHz) max max (dB) Typical Type
E-GSM
LP0805A0897AW
880 - 915 A
LP0805A0942AW
925 - 960 A
GSM
LP0805A0902AW
890 - 915 A
LP0805A0947AW
935 - 960 A
LP0805A1119AW
1007 - 1231 A
AMPS
LP0805A0836AW
824 - 849 A
LP0805A0881AW
869 - 894 A
PCN
LP0805A1747AW
1710 - 1785 0.4dB 1.7 30 @ 2XFo D
LP0805A1842AW
1805 - 1880 (0.3dB typ) 20 @ 3xFo D
PCS
LP0805A1880AW
1850 - 1910 D
LP0805A1960AW
1930 - 1990 D
PHP
LP0805A1907AW
1895 - 1920 D
DECT
LP0805A1890AW
1880 - 1900 D
3G
LP0805A2150AW
1935 - 2365 B
Wireless LAN
LP0805A2442AW
2400 - 2484 B
WLL
LP0805A3500AW
3400 ~ 3600 C
Typical Electrical Performance
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70024681357 109
Frequency (GHz)
dB
LP0805A1950AWTR
Fo
2Fo 3Fo
0
-10
-20
-30
-40
-50
-60
-7000.511.522.5 3 3.5 4
Frequency (GHz)
dB
LP0805A1119AWTR
Fo
2Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-7001 2 3 4 5 678910
Frequency (GHz)
dB
LP0805A2150AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70024681357 109
Frequency (GHz)
dB
LP0805A2442AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70024681357 109111312
Frequency (GHz)
dB
LP0805A3500AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70024681357 109
Frequency (GHz)
dB
LP0805A1747AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70012340.5 1.5 2.5 3.5
Frequency (GHz)
dB
LP0805A0967AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70024681357 109
Frequency (GHz)
dB
LP0805A1842AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70012340.5 1.5 2.5 3.5
Frequency (GHz)
dB
LP0805A0836AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-7001230.5 1.5 2.5 3.5
Frequency (GHz)
dB
LP0805A0881AWTR
2Fo
Fo
3Fo
0
-10
-20
-30
-40
-50
-60
-70012340.5 1.5 2.5 3.5
Frequency (GHz)
dB
LP0805A0902AWTR
71
4
Thin-Film Low Pass Filter
LP0805 Test Jig
GENERAL DESCRIPTION
This jig is designed for the testing of the 0805 Low Pass Filter
using a vector network analyzer.
It consists of a FR4 multi-layer substrate, having 50
microstrips as conducting lines and a ground plane in the
middle layer, located at a distance of 0.2mm from the
microstrips.
The connectors are SMA type (female), ‘Johnson Components
Inc.’ Product P/N: 142-0701-881.
CALIBRATION AND
MEASUREMENT PROCEDURE
The jig is designed for a full 2-port calibration. LOAD calibra-
tion is carried out using a 50SMA termination.
To measure a component, it can be either soldered or
pressed down by a non-metallic stick until all four ports
touch the appropriate pads.
ITF TEST JIG FOR LOW PASS FILTER 0805
Connector
p/n 142-0701-881
(6x)
OpenOpen
Short
Thru/Load
Connector
p/n 142-0701-881
(6x)
INOUT
GND
Calibration Measurement
72
Thin-Film Products
Designer Kits
Accu-P®/Accu-L®Kits
5
73
5
RF/Microwave Thin-Film Products
Designer Kits (Special Kits Available Upon Request)
Volts Capacitors Tolerance
Value pF
1.0 A
1.1 A
1.2 A
1.3 A
1.4 A
1.5 A
1.6 A
1.7 A
25 1.8 A
1.9 A
2.0 A
2.1 B
2.2 B
2.3 B
2.4 B
2.5 B
2.6 B
2.7 B
2.8 B
2.9 B
3.0 B
16 3.1 B
3.3 B
3.4 B
3.6 B
3.9 B
4.1 B
10 4.3 B
4.5 B
4.7 B
300 Capacitors, 10 each of 30 values
Tolerance A = ± 0.05pF G = ± 2%
B = ± 0.1pF J = ±5%
600 Capacitors, 20 each of 30 values
Tolerance A = ± 0.05pF
B = ± 0.1pF
G = ± 2%
Volts Capacitors Tolerance
Value pF
0.1 A
0.2 A
0.3 A
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
25 1.0 B
1.1 B
1.2 B
1.3 B
1.5 B
1.8 B
2.0 B
2.2 B
2.4 B
2.7 B
3.0 B
16 3.3 B
3.6 B
3.9 B
4.7 B
5.6 B
6.8 B
10 7.5 B
8.2 B
10.0 G
12.0 G
Accu-P®
Designer Kit Type 1700
Order Number: Accu-P® 0201KIT02
Accu-P®
Designer Kit Type 1800
Order Number: Accu-P® 0201KIT03
Volts Capacitors Tolerance
Value pF
0.1 A
0.2 A
0.3 A
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
1.0 B
1.1 B
25 1.2 B
1.5 B
1.8 B
2.0 B
2.2 B
2.4 B
2.7 B
3.0 B
3.3 B
3.9 B
4.7 B
5.6 B
6.8 B
8.2 B
16 10.0 G
12.0 G
10 15.0 G
18.0 G
22.0 G
Accu-P®
Designer Kit Type 1300
Order Number: Accu-P® 0402KIT01
600 Capacitors, 20 each of 30 values
Tolerance A = ± 0.05pF
B = ± 0.1pF
G = ± 2%
600 Capacitors, 20 each of 30 values
Tolerance A = ± 0.05pF
B = ± 0.1pF
Volts Capacitors Tolerance
Value pF
0.1 A
0.2 A
0.3 A
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
1.0 B
1.1 B
1.2 B
1.5 B
50 1.8 B
2.0 B
2.2 B
2.4 B
2.7 B
3.0 B
3.3 B
3.9 B
4.7 B
5.6 B
6.8 B
8.2 B
10.0 G
12.0 G
15.0 G
25 18.0 G
22.0 G
Volts Capacitors Tolerance
Value pF
1.0 A
1.1 A
1.2 A
1.3 A
1.4 A
1.5 A
1.6 A
1.7 A
1.8 A
1.9 A
2.0 A
2.1 B
2.2 B
25 2.3 B
2.4 B
2.5 B
2.6 B
2.7 B
2.8 B
2.9 B
3.0 B
3.1 B
3.3 B
3.4 B
3.6 B
3.9 B
4.1 B
4.3 B
4.5 B
4.7 B
Accu-P®
Designer Kit Type 1400
Order Number: Accu-P® 0402KIT02
Accu-P®
Designer Kit Type 900
Order Number: Accu-P® 0603KIT01
Volts Capacitors Tolerance
Value pF
0.1 A
0.2 A
0.3 A
0.4 A
0.5 B
0.7 B
0.8 B
0.9 B
1.0 B
1.2 B
100 1.5 B
1.8 B
2.0 B
2.2 B
2.7 B
3.3 B
3.9 B
4.7 B
5.6 B
6.8 B
8.2 B
10.0 G
12.0 G
50 15.0 G
18.0 G
22.0 G
27.0 J
25 33.0 J
39.0 J
47.0 J
Accu-P®
Designer Kit Type 800
Order Number: Accu-P® 0805KIT02
600 Capacitors, 20 each of 30 values
Tolerance A = ± 0.05pF
B = ± 0.1pF
600 Capacitors, 20 each of 30 values
Tolerance A = ± 0.05pF
B = ± 0.1pF
G = ± 2%
Volts Capacitors Tolerance
Value pF
1.0 B
1.5 B
1.8 B
2.2 B
2.7 B
3.3 B
4.7 B
100 5.6 B
6.8 B
10.0 G
12.0 G
18.0 G
22.0 G
27.0 G
33.0 G
74
5
RF/Microwave Thin-Film Products
Designer Kits (Special Kits Available Upon Request)
300 Capacitors, 20 each of 15 values
Tolerance P = ± 0.02pF
300 Capacitors, 20 each of 15 values
Tolerance P= ± 0.02pF
150 Capacitors, 10 each of 15 values
Tolerance B = ± 0.1pF
G = ± 2%
Inductance
Value (nH) Tolerance
1.2
C
1.5
C
1.8
C
2.2
C
2.7
C
3.3
C
3.9
C
4.7
C
5.6
C
6.8
C
8.2
C
10
G
12
G
15
G
280 Inductors, 20 each of 14 values
Tolerance C = ±0.2nH
G = ±2%
Accu-L®
Designer Kit Type 1600
Order Number: Accu-L® 0603KIT02
Inductance
Value (nH) Tolerance
1.8 C
2.2 C
2.7 C
3.3 C
3.9 C
4.7 C
5.6 C
6.8 D
8.2 D
10.0 J
12.0 J
15.0 J
18.0 J
22.0 J
Accu-L®
Designer Kit Type 1100
Order Number: Accu-L® 0805KIT02
280 Inductors, 20 each of 14 values
Tolerance C = ±0.2nH
D = ±0.5nH
J = ±5%
300 Capacitors, 20 each of 15 values
Tolerance P= ± 0.02pF
Accu-P®
Designer Kit Type 700
Order Number: Accu-P® 1210KIT02
Accu-P®
Designer Kit Type 2100
Order Number: Accu-P® 0402KIT03
Volts Capacitors Tolerance
Value pF
0.05 P
0.10 P
0.15 P
0.20 P
0.25 P
0.30 P
0.35 P
25 0.40 P
0.45 P
0.50 P
0.55 P
0.60 P
0.65 P
0.70 P
0.75 P
Accu-P®
Designer Kit Type 2200
Order Number: Accu-P® 0603KIT02
Volts Capacitors Tolerance
Value pF
0.05 P
0.10 P
0.15 P
0.20 P
0.25 P
0.30 P
0.35 P
50 0.40 P
0.45 P
0.50 P
0.55 P
0.60 P
0.65 P
0.70 P
0.75 P
Accu-P®
Designer Kit Type 2000
Order Number: Accu-P® 0201KIT04
Volts Capacitors Tolerance
Value pF
0.05 P
0.10 P
0.15 P
0.20 P
0.25 P
0.30 P
0.35 P
25 0.40 P
0.45 P
0.50 P
0.55 P
0.60 P
0.65 P
0.70 P
0.75 P
75
RF/Microwave
MLC’s
AQ Series
CDR Series
Porcelain and Ceramic
RF/Microwave
Multilayer Capacitors
High Voltage RF Power Capacitors 6
76
6
Microwave MLC’s
AQ Series
L
W
T
L
W
T
A
101J
1R5
Approx. L x W x T
L = .110"/2.8mm
W = .110"/2.8mm
T = .102"/2.59mm max.
AQ13/14
Approx. L x W x T
L = .055"/1.4mm
W = .055"/1.4mm
T = .057"/1.45mm max.
AQ11/12
L
bw
W
T
Approx. L x W x T
L = .063"/1.60mm
W = .032"/.813mm
T = .035"/.889mm max.
AQ06
bw bw
These porcelain and ceramic dielectric multilayer
capacitor (MLC) chips are best suited for RF/
Microwave applications typically ranging from 10
MHz to 4.2 GHz. Characteristic is a fine grained,
high density, high purity dielectric material imper-
vious to moisture with heavy internal palladium
electrodes.
These characteristics lend well to applications
requiring:
1) high current carrying capabilities;
2) high quality factors;
3) very low equivalent series resistance;
4) very high series resonance;
5) excellent stability under stresses of
changing voltage, frequency, time
and temperature.
Case Length (L) Width (W) Thickness (T) Band Width (bw)
AQ06 .063±.006 .032±.006 .035 Max. .014±.006
(1.60±.152) (.813±.152) (.889) (.357 +.152)
AQ11 .055±.015 .055±.015 .020/.057 .010 + .010 -.005
(1.40±.381) (1.40±.381) (.508/1.45) (.254 +.254 -.127)
AQ12 .055 + .015 - .010 .055±.015 .020/.057 .010 + .010 -.005
(1.40+ .381 - .254) (1.40±.381) (.508/1.45) (.254 +.254 -.127)
AQ13 .110±.020 .110±.020 .030/.102 .015±.010
(2.79±.508) (2.79±.508) (.762/2.59) (.381±.254)
AQ14 .110 + .020 - .010 .110±.010 .030/.102 .015±.010
(2.79 +.889 -.254) (2.79±.508) (.762/2.59) (.381±.254)
MECHANICAL DIMENSIONS: inches (millimeters)
*For Tape and Reel packaging details see page 88
PACKAGING
Standard Packaging = Waffle Pack (for T&R packaging see page 88)
AQ11/12 maximum quantity per waffle pack is 100.
AQ13/14 maximum quantity is 80.
AQ
AVX Style
AQ06, AQ11,
AQ12, AQ13,
AQ14
11
Case Size
(See Chart)
E
Voltage
Code
5 = 50V
1 = 100V
E = 150V
2 = 200V
V = 250V
9 = 300V
7 = 500V
M100 J A
Failure Rate
Code
A = Not
Applicable
1
Termination
Style Code
ME
Packaging*
Code
HOW TO ORDER
Temperature
Coefficient Code
M = +90±20ppm/°C (AQ06/11/12/13/14)
A = 0±30ppm/°C (AQ11/12/13/14)
C = 15% (“J” Termination only) (AQ12/14)
1 = Pd/Ag
(AQ11/13 only)
7 = Ag/Ni/Au
(AQ11/13 only)
J = Nickel Barrier
Sn/Pb (60/40) -
(AQ06/12/14
only)
Capacitance
Tolerance Code
A = ±.05 pF
B = ±.1 pF
C = ±.25 pF
D = ±.5 pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
N = ±30%
Capacitance
EIA Capacitance Code in pF.
First two digits = significant
figures or “R” for decimal
place.
Third digit = number of zeros
or after “R” significant figures.
3A = 13" Reel
(AQ06 only)
6A = Waffle Pack
(AQ06 only)
ME = 7" Reel
RE = 13" Reel
WE = Waffle Pack
1A = 7" Reel
(AQ06 only)
77
6
Microwave MLC’s
AQ Series
ELECTRICAL SPECIFICATIONS
AQ06, AQ11, AQ12, AQ13, AQ14
M & A C
Temperature Coefficient (M) +90 ±20PPM/°C and ±15%
(A) 0 ±30PPM/°C
Capacitance Range 0.1 pF to 5100 pF 0.001µF to 0.1µF
Capacitance Tolerance ±0.1 pF to ±20% ±10%, ±20%, ±30%
Operating Temperature -55°C + 125°C -55°C to +125°C
Quality Factor or Dissipation Factor Per MIL-PRF-55681/4 2.5% @ 1kHz
Insulation Resistance Per MIL-PRF-55681
106megohm to 470 pF @ +25°C 104megohm min @ 25°C & R VDC
105megohm to 470 pF @ +125°C 103megohm min @ 25°C & R VDC
105megohm above 470 pF @ +25°C
104megohm above 470 pF @ +125°C
Aging None <3% per decade hour
Piezoelectric Effects None None
Dielectric Withstanding Voltage 2.5 x rated voltage 2.5 x rated voltage
(for 500V rated 1.5 x rated voltage) (for 500V rated 1.5 x rated voltage)
ENVIRONMENTAL CHARACTERISTICS
Will meet or exceed performance characteristics as outlined in MIL-PRF-55681/4.
REQUIREMENT MIL-STD-202
METHOD
Life 108, Condition F
Shock 213, Condition J
Vibration 204, Condition B
Immersion 104, Condition B
Salt Spray 101, Condition B
Solderability 208
Thermal Shock 107, Condition B
Terminal Strength 211
Temperature Cycling 102, Condition C
Moisture Resistance 106
Barometric Pressure 105, Condition B
Resistance to Soldering Heat 210, Condition C
QUALITY FACTOR vs. FREQUENCY (Typical)
Capacitance @ 30 MHz @ 150 MHz @ 500 MHz @ 1000 MHz
1 pF 30000 4000 800 350
10 pF 9000 2000 400 150
30 pF 5000 800 200 60
100 pF 2800 400 70 25
200 pF 1500 250 40 12
CAPACITANCE AND SIZE vs.
SERIES SELF RESONANT FREQUENCY (Typical) DIMENSIONS: inches (millimeters)
Case Size (Nominal) 1 pF 10 pF 50 pF 100 pF
AQ06 .063 x .032 x .035 9.6 GHz 3.2 GHz 1.5 GHz 1.0 GHz
(1.60 x .813 x .889)
AQ11/12 .055 x .055 x .057 9.6 GHz 3.2 GHz 1.5 GHz 1.0 GHz
(1.40 x 1.40 x 1.45)
AQ13/14 .110 x .110 x .102 6.4 GHz 2.2 GHz 1.0 GHz 0.7 GHz
(2.79 x 2.79 x 2.59)
78
6
Microwave MLC’s
AQ Series Available Capacitance/Size/WVDC/T.C.
Case Length Width Thickness Band Width Avail. Term.
06 .063±.006 (1.60±.152) .032±.006 (.813±.152) .035 Max. (.889) .014±.006 (.357 +.152) J
11 .055±.015 (1.40±.381) .055±.015 (1.40±.381) .020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127) 1 & 7
12 .055±.025 (1.40±.635) .055±.015 (1.40±.381) .020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127) J
13 .110±.020 (2.79±.508) .110±.020 (2.79±.508) .030/.102 (.762/2.59) .015±.010 (.381±.254) 1 & 7
14 .110 +0.035 -0.020 (2.79 +.889 -.508) .110±.020 (2.79±.508) .030/.102 (.762/2.59) .015±.010 (.381±.254) J
TABLE I: TC: M (+90±20PPM/°C)
CASE SIZE 06, 11, 12, 13 & 14 DIMENSIONS: inches (millimeters)
Cap. pF Cap. Tol. WVDC
0.1 B 250
0.2 B 250
0.3 B,C 250
0.4 B,C 250
0.5 B, C, D 250
0.6 B, C, D 250
0.7 B, C, D 250
0.8 B, C, D 250
0.9 B, C, D 250
1.0 B, C, D 250
1.1 B, C, D 250
1.2 B, C, D 250
1.3 B, C, D 250
1.4 B, C, D 250
1.5 B, C, D 250
1.6 B, C, D 250
1.7 B, C, D 250
1.8 B, C, D 250
1.9 B, C, D 250
2.0 B, C, D 250
2.2 B, C, D 250
2.4 B, C, D 250
2.7 B, C, D 250
3.0 B, C, D 250
3.3 B, C, D 250
3.6 B, C, D 250
3.9 B, C, D 250
4.3 B, C, D 250
4.7 B, C, D 250
5.1 B, C, D 250
5.6 B, C, D 250
6.2 B, C, D 250
6.8 B, C, J, K, M 250
7.5 B, C, J, K, M 250
8.2 B, C, J, K, M 250
9.1 B, C, J, K, M 250
10 F, G, J, K, M 250
11 F, G, J, K, M 250
12 F, G, J, K, M 250
13 F, G, J, K, M 250
15 F, G, J, K, M 250
16 F, G, J, K, M 250
18 F, G, J, K, M 250
20 F, G, J, K, M 250
22 F, G, J, K, M 250
24 F, G, J, K, M 250
27 F, G, J, K, M 250
30 F, G, J, K, M 250
33 F, G, J, K, M 250
36 F, G, J, K, M 50
39 F, G, J, K, M 50
43 F, G, J, K, M 50
47 F, G, J, K, M 50
51 F, G, J, K, M 50
56 F, G, J, K, M 50
62 F, G, J, K, M 50
68 F, G, J, K, M 50
75 F, G, J, K, M 50
82 F, G, J, K, M 50
91 F, G, J, K, M 50
100 F, G, J, K, M 50
120 F, G J K M 50
Cap. pF Cap. Tol. WVDC
0.1 B 150
0.2 B 150
0.3 B,C 150
0.4 B,C 150
0.5 B, C, D 150
0.6 B, C, D 150
0.7 B, C, D 150
0.8 B, C, D 150
0.9 B, C, D 150
1.0 B, C, D 150
1.1 B, C, D 150
1.2 B, C, D 150
1.3 B, C, D 150
1.4 B, C, D 150
1.5 B, C, D 150
1.6 B, C, D 150
1.7 B, C, D 150
1.8 B, C, D 150
1.9 B, C, D 150
2.0 B, C, D 150
2.2 B, C, D 150
2.4 B, C, D 150
2.7 B, C, D 150
3.0 B, C, D 150
3.3 B, C, D 150
3.6 B, C, D 150
3.9 B, C, D 150
4.3 B, C, D 150
4.7 B, C, D 150
5.1 B, C, D 150
5.6 B, C, D 150
6.2 B, C, D 150
6.8 B, C, J, K, M 150
7.5 B, C, J, K, M 150
8.2 B, C, J, K, M 150
9.1 B, C, J, K, M 150
10 F, G, J, K, M 150
11 F, G, J, K, M 150
12 F, G, J, K, M 150
13 F, G, J, K, M 150
15 F, G, J, K, M 150
16 F, G, J, K, M 150
18 F, G, J, K, M 150
20 F, G, J, K, M 150
22 F, G, J, K, M 150
24 F, G, J, K, M 150
27 F, G, J, K, M 150
30 F, G, J, K, M 150
33 F, G, J, K, M 150
36 F, G, J, K, M 150
39 F, G, J, K, M 150
43 F, G, J, K, M 150
47 F, G, J, K, M 150
51 F, G, J, K, M 150
56 F, G, J, K, M 150
62 F, G, J, K, M 150
68 F, G, J, K, M 150
75 F, G, J, K, M 150
82 F, G, J, K, M 150
91 F, G, J, K, M 150
100 F, G, J, K, M 150
Case: AQ06 Case: AQ11, AQ12 Case: AQ13, AQ14
Cap. pF Cap. Tol. WVDC
0.1 B 500
0.2 B 500
0.3 B,C 500
0.4 B,C 500
0.5 B, C, D 500
0.6 B, C, D 500
0.7 B, C, D 500
0.8 B, C, D 500
0.9 B, C, D 500
1.0 B, C, D 500
1.1 B, C, D 500
1.2 B, C, D 500
1.3 B, C, D 500
1.4 B, C, D 500
1.5 B, C, D 500
1.6 B, C, D 500
1.7 B, C, D 500
1.8 B, C, D 500
1.9 B, C, D 500
2.0 B, C, D 500
2.2 B, C, D 500
2.4 B, C, D 500
2.7 B, C, D 500
3.0 B, C, D 500
3.3 B, C, D 500
3.6 B, C, D 500
3.9 B, C, D 500
4.3 B, C, D 500
4.7 B, C, D 500
5.1 B, C, D 500
5.6 B, C, D 500
6.2 B, C, D 500
6.8 B, C, J, K, M 500
7.5 B, C, J, K, M 500
8.2 B, C, J, K, M 500
9.1 B, C, J, K, M 500
10 F, G, J, K, M 500
11 F, G, J, K, M 500
12 F, G, J, K, M 500
13 F, G, J, K, M 500
15 F, G, J, K, M 500
16 F, G, J, K, M 500
18 F, G, J, K, M 500
20 F, G, J, K, M 500
22 F, G, J, K, M 500
24 F, G, J, K, M 500
27 F, G, J, K, M 500
30 F, G, J, K, M 500
33 F, G, J, K, M 500
36 F, G, J, K, M 500
39 F, G, J, K, M 500
43 F, G, J, K, M 500
47 F, G, J, K, M 500
51 F, G, J, K, M 500
56 F, G, J, K, M 500
62 F, G, J, K, M 500
68 F, G, J, K, M 500
75 F, G, J, K, M 500
82 F, G, J, K, M 500
91 F, G, J, K, M 500
Cap. pF Cap. Tol. WVDC
100 F, G, J, K, M 500
110 F, G, J, K, M 300
120 F, G, J, K, M 300
130 F, G, J, K, M 300
150 F, G, J, K, M 300
160 F, G, J, K, M 300
180 F, G, J, K, M 300
200 F, G, J, K, M 300
220 F, G, J, K, M 200
240 F, G, J, K, M 200
270 F, G, J, K, M 200
300 F, G, J, K, M 200
330 F, G, J, K, M 200
360 F, G, J, K, M 200
390 F, G, J, K, M 200
430 F, G, J, K, M 200
470 F, G, J, K, M 200
510 F, G, J, K, M 150
560 F, G, J, K, M 150
620 F, G, J, K, M 150
680 F, G, J, K, M 150
750 F, G, J, K, M 150
820 F, G, J, K, M 150
910 F, G, J, K, M 150
1000 F, G, J, K, M 150
79
6
Microwave MLC’s
AQ Series Available Capacitance/Size/WVDC/T.C.
TABLE II: TC: A (0±30PPM/°C)
CASE SIZE 06, 11, 12, 13 & 14 DIMENSIONS: inches (millimeters)
Cap. pF Cap. Tol. WVDC
0.1 B 150
0.2 B 150
0.3 B,C 150
0.4 B,C 150
0.5 B, C, D 150
0.6 B, C, D 150
0.7 B, C, D 150
0.8 B, C, D 150
0.9 B, C, D 150
1.0 B, C, D 150
1.1 B, C, D 150
1.2 B, C, D 150
1.3 B, C, D 150
1.4 B, C, D 150
1.5 B, C, D 150
1.6 B, C, D 150
1.7 B, C, D 150
1.8 B, C, D 150
1.9 B, C, D 150
2.0 B, C, D 150
2.2 B, C, D 150
2.4 B, C, D 150
2.7 B, C, D 150
3.0 B, C, D 150
3.3 B, C, D 150
3.6 B, C, D 150
3.9 B, C, D 150
4.3 B, C, D 150
4.7 B, C, D 150
5.1 B, C, D 150
5.6 B, C, D 150
6.2 B, C, D 150
6.8 B, C, J, K, M 150
7.5 B, C, J, K, M 150
8.2 B, C, J, K, M 150
9.1 B, C, J, K, M 150
10 F, G, J, K, M 150
11 F, G, J, K, M 150
12 F, G, J, K, M 150
13 F, G, J, K, M 150
15 F, G, J, K, M 150
16 F, G, J, K, M 150
18 F, G, J, K, M 150
20 F, G, J, K, M 150
22 F, G, J, K, M 150
Case: AQ11, AQ12
Cap. pF Cap. Tol. WVDC
24 F, G, J, K, M 150
27 F, G, J, K, M 150
30 F, G, J, K, M 150
33 F, G, J, K, M 150
36 F, G, J, K, M 150
39 F, G, J, K, M 150
43 F, G, J, K, M 150
47 F, G, J, K, M 150
51 F, G, J, K, M 150
56 F, G, J, K, M 150
62 F, G, J, K, M 150
68 F, G, J, K, M 150
75 F, G, J, K, M 150
82 F, G, J, K, M 150
91 F, G, J, K, M 150
100 F, G, J, K, M 150
110 F, G, J, K, M 50
120 F, G, J, K, M 50
130 F, G, J, K, M 50
150 F, G, J, K, M 50
160 F, G, J, K, M 50
180 F, G, J, K, M 50
200 F, G, J, K, M 50
220 F, G, J, K, M 50
240 F, G, J, K, M 50
270 F, G, J, K, M 50
300 F, G, J, K, M 50
330 F, G, J, K, M 50
360 F, G, J, K, M 50
390 F, G, J, K, M 50
430 F, G, J, K, M 50
470 F, G, J, K, M 50
510 F, G, J, K, M 50
560 F, G, J, K, M 50
620 F, G, J, K, M 50
680 F, G, J, K, M 50
750 F, G, J, K, M 50
820 F, G, J, K, M 50
910 F, G, J, K, M 50
1000 F, G, J, K, M 50
Case: AQ13, AQ14
Cap. pF Cap. Tol. WVDC
0.1 B 500
0.2 B 500
0.3 B,C 500
0.4 B,C 500
0.5 B, C, D 500
0.6 B, C, D 500
0.7 B, C, D 500
0.8 B, C, D 500
0.9 B, C, D 500
1.0 B, C, D 500
1.1 B, C, D 500
1.2 B, C, D 500
1.3 B, C, D 500
1.4 B, C, D 500
1.5 B, C, D 500
1.6 B, C, D 500
1.7 B, C, D 500
1.8 B, C, D 500
1.9 B, C, D 500
2.0 B, C, D 500
2.2 B, C, D 500
2.4 B, C, D 500
2.7 B, C, D 500
3.0 B, C, D 500
3.3 B, C, D 500
3.6 B, C, D 500
3.9 B, C, D 500
4.3 B, C, D 500
4.7 B, C, D 500
5.1 B, C, D 500
5.6 B, C, D 500
6.2 B, C, D 500
6.8 B, C, J, K, M 500
7.5 B, C, J, K, M 500
8.2 B, C, J, K, M 500
9.1 B, C, J, K, M 500
10 F, G, J, K, M 500
11 F, G, J, K, M 500
12 F, G, J, K, M 500
13 F, G, J, K, M 500
15 F, G, J, K, M 500
16 F, G, J, K, M 500
18 F, G, J, K, M 500
20 F, G, J, K, M 500
22 F, G, J, K, M 500
24 F, G, J, K, M 500
27 F, G, J, K, M 500
30 F, G, J, K, M 500
33 F, G, J, K, M 500
36 F, G, J, K, M 500
39 F, G, J, K, M 500
43 F, G, J, K, M 500
47 F, G, J, K, M 500
Cap. pF Cap. Tol. WVDC
51 F, G, J, K, M 500
56 F, G, J, K, M 500
62 F, G, J, K, M 500
68 F, G, J, K, M 500
75 F, G, J, K, M 500
82 F, G, J, K, M 500
91 F, G, J, K, M 500
100 F, G, J, K, M 500
110 F, G, J, K, M 300
120 F, G, J, K, M 300
130 F, G, J, K, M 300
150 F, G, J, K, M 300
160 F, G, J, K, M 300
180 F, G, J, K, M 300
200 F, G, J, K, M 300
220 F, G, J, K, M 200
240 F, G, J, K, M 200
270 F, G, J, K, M 200
300 F, G, J, K, M 200
330 F, G, J, K, M 200
360 F, G, J, K, M 200
390 F, G, J, K, M 200
430 F, G, J, K, M 200
470 F, G, J, K, M 200
510 F, G, J, K, M 150
560 F, G, J, K, M 150
620 F, G, J, K, M 150
680 F, G, J, K, M 150
750 F, G, J, K, M 150
820 F, G, J, K, M 150
910 F, G, J, K, M 150
1000 F, G, J, K, M 150
1100 F, G, J, K, M 50
1200 F, G, J, K, M 50
1300 F, G, J, K, M 50
1500 F, G, J, K, M 50
1600 F, G, J, K, M 50
1800 F, G, J, K, M 50
2000 F, G, J, K, M 50
2200 F, G, J, K, M 50
2400 F, G, J, K, M 50
2700 F, G, J, K, M 50
3000 F, G, J, K, M 50
3300 F, G, J, K, M 50
3600 F, G, J, K, M 50
3900 F, G, J, K, M 50
4300 F, G, J, K, M 50
4700 F, G, J, K, M 50
5000 F, G, J, K, M 50
5100 F, G, J, K, M 50
TABLE III: TC: C (±15%) CASE SIZE 12 & 14
Cap. pF Cap. Tol. WVDC
1000 K, M, N 50
1200
K, M, N
50
1500
K, M, N
50
1800
K, M, N
50
2000
K, M, N
50
Cap. pF Cap. Tol. WVDC
2200
K, M, N
50
2700
K, M, N
50
3300
K, M, N
50
3900
K, M, N
50
4700
K, M, N
50
Cap. pF Cap. Tol. WVDC
5100
K, M, N
50
5600
K, M, N
50
6800
K, M, N
50
8200
K, M, N
50
10000
K, M, N
50
Case: AQ12
Cap. pF Cap. Tol. WVDC
5000 K, M, N 50
6800 K, M, N 50
8200 K, M, N 50
10000 K, M, N 50
12000 K, M, N 50
Case: AQ14
Cap. pF Cap. Tol. WVDC
15000 K, M, N 50
18000 K, M, N 50
27000 K, M, N 50
33000 K, M, N 50
39000 K, M, N 50
Cap. pF Cap. Tol. WVDC
47000 K, M, N 50
68000 K, M, N 50
82000 K, M, N 50
100000 K, M, N 50
Case Length Width Thickness Band Width Avail. Term.
06 .063±.006 (1.60±.152) .032±.006 (.813±.152) .035 Max. (.889) .014±.006 (.357 +.152) J
11 .055±.015 (1.40±.381) .055±.015 (1.40±.381) .020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127) 1 & 7
12 .055±.025 (1.40±.635) .055±.015 (1.40±.381) .020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127) J
13 .110±.020 (2.79±.508) .110±.020 (2.79±.508) .030/.102 (.762/2.59) .015±.010 (.381±.254) 1 & 7
14 .110 +0.035 -0.020 (2.79 +.889 -.508) .110±.020 (2.79±.508) .030/.102 (.762/2.59) .015±.010 (.381±.254) J
Cap. pF Cap. Tol. WVDC
0.1 B 250
0.2 B 250
0.3 B,C 250
0.4 B,C 250
0.5 B, C, D 250
0.6 B, C, D 250
0.7 B, C, D 250
0.8 B, C, D 250
0.9 B, C, D 250
1.0 B, C, D 250
1.1 B, C, D 250
1.2 B, C, D 250
1.3 B, C, D 250
1.4 B, C, D 250
1.5 B, C, D 250
1.6 B, C, D 250
1.7 B, C, D 250
1.8 B, C, D 250
1.9 B, C, D 250
2.0 B, C, D 250
2.2 B, C, D 250
2.4 B, C, D 250
2.7 B, C, D 250
3.0 B, C, D 250
3.3 B, C, D 250
3.6 B, C, D 250
3.9 B, C, D 250
4.3 B, C, D 250
4.7 B, C, D 250
5.1 B, C, D 250
5.6 B, C, D 250
6.2 B, C, D 250
6.8 B, C, J, K, M 250
7.5 B, C, J, K, M 250
8.2 B, C, J, K, M 250
9.1 B, C, J, K, M 250
10 F, G, J, K, M 250
11 F, G, J, K, M 250
12 F, G, J, K, M 250
13 F, G, J, K, M 250
15 F, G, J, K, M 250
16 F, G, J, K, M 250
18 F, G, J, K, M 250
20 F, G, J, K, M 250
22 F, G, J, K, M 250
24 F, G, J, K, M 250
27 F, G, J, K, M 250
30 F, G, J, K, M 250
33 F, G, J, K, M 250
36 F, G, J, K, M 50
39 F, G, J, K, M 50
43 F, G, J, K, M 50
47 F, G, J, K, M 50
51 F, G, J, K, M 50
56 F, G, J, K, M 50
62 F, G, J, K, M 50
68 F, G, J, K, M 50
75 F, G, J, K, M 50
82 F, G, J, K, M 50
91 F, G, J, K, M 50
100 F, G, J, K, M 50
120 F, G J K M 50
Case: AQ06
80
6
L
W
T
L
W
T
A
470J
100J
CDR13/14CDR11/12
bw bw
PACKAGING
Standard Packaging = Waffle Pack (for T&R packaging see page 88)
AQ11/12 maximum quantity per waffle pack is 100.
AQ13/14 maximum quantity is 80.
Per MIL-C-55681 AVX Length (L) Width (W) Thickness (T) Termination Band (bw)
Style Max Min Max Min
CDR11 AQ11 .055±.015 .055±.015 .057 .020 .020 .005
(1.40±.381) (1.40±.381) (1.45) (.508) (.508) (.127)
CDR12 AQ12 .055±.025 .055±.015 .057 .020 .020 .005
(1.40±.635) (1.40±.381) (1.45) (.508) (.508) (.127)
CDR13 AQ13 .110±.020 .110±.020 .102 .030 .025 .005
(2.79±.508) (2.79±.508) (2.59) (.762) (.635) (.127)
CDR14 AQ14 .110 +.035 -0.20 .110±.020 .102 .030 .025 .005
(2.79 +.889 -.508) (2.79±.508) (2.59) (.762) (.635) (.127)
CROSS REFERENCE: AVX/MIL-PRF-55681
Microwave MLC’s
CDR Series — MIL-PRF-55681 (RF/Microwave Chips)
MILITARY DESIGNATION PER MIL-PRF-55681
CDR12
MIL Style
CDR11, CDR12,
CDR13, CDR14
BG
Voltage
Temperature
Limits
101
Capacitance
A
Rated Voltage
Code
A = 50V
B = 100V
C = 200V
D = 300V
E = 500V
K
Capacitance
Tolerance Code
B = ±.1 pF
C = ±.25 pF
D = ±.5 pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
U
Termination
Finish (Military
Designations)
Code
S
Failure Rate
Level
M = 1.0%
P = .1%
R = .01%
S = .001%
HOW TO ORDER
BG = +90±20 ppm/°C
with and without
rated voltage from
-55°C to + 125°C
BP = 0±30ppm/°C
with and without
rated voltage from
-55°C to +125°C
M = Palladium/Silver
(CDR11 & 13 only)
N = Silver, Nickel, Gold
(CDR11 & 13 only)
S = Solder Coated, Final
(CDR12 & 14 only)
U = Base Metallization, Barrier Metal,
Solder Coated.
(Solder M.P. 200°C or less)
(CDR12 & 14 only)
W = Base Metallization, Barrier Metal,
Tinned (Tin or Tin/Lead Alloy)
(CDR12 & 14 only)
Y = 100% Tin
Z = Base Metallization, Barrier Metal
(TIn Lead Alloy With 4% Lead Min.)
EIA Capacitance Code in pF.
First two digits = significant figures
or “R” for decimal place.
Third digit = number of zeros or
after “R” significant figures.
81
6
Microwave MLC’s
CDR Series — MIL-PRF-55681 (RF/Microwave Chips)
TABLE I: STYLES CDR11 AND CDR12 CAPACITOR CHARACTERISTICS
Type Rated temperature
Designation Capacitance Capacitance and WVDC
1/ in pF tolerance V/Temperature
CDR1 -B-0R1AB-- 0.1 B BG, BP 50
CDR1 -B-0R2AB-- 0.2 B BG, BP 50
CDR1 -B-0R3A--- 0.3 B, C BG, BP 50
CDR1 -B-0R4A--- 0.4 B, C BG, BP 50
CDR1 -B-0R5A--- 0.5 B, C, D BG, BP 50
CDR1 -B-0R6A--- 0.6 B, C, D BG, BP 50
CDR1 -B-0R7A--- 0.7 B, C, D BG, BP 50
CDR1 -B-0R8A--- 0.8 B, C, D BG, BP 50
CDR1 -B-0R9A--- 0.9 B, C, D BG, BP 50
CDR1 -B-1R0A--- 1.0 B, C, D BG, BP 50
CDR1 -B-1R1A--- 1.1 B, C, D BG, BP 50
CDR1 -B-1R2A--- 1.2 B, C, D BG, BP 50
CDR1 -B-1R3A--- 1.3 B, C, D BG, BP 50
CDR1 -B-1R4A--- 1.4 B, C, D BG, BP 50
CDR1 -B-1R5A--- 1.5 B, C, D BG, BP 50
CDR1 -B-1R6A--- 1.6 B, C, D BG, BP 50
CDR1 -B-1R7A--- 1.7 B, C, D BG, BP 50
CDR1 -B-1R8A--- 1.8 B, C, D BG, BP 50
CDR1 -B-1R9A--- 1.9 B, C, D BG, BP 50
CDR1 -B-2R0A--- 2.0 B, C, D BG, BP 50
CDR1 -B-2R1A--- 2.1 B, C, D BG, BP 50
CDR1 -B-2R2A--- 2.2 B, C, D BG, BP 50
CDR1 -B-2R4A--- 2.4 B, C, D BG, BP 50
CDR1 -B-2R7A--- 2.7 B, C, D BG, BP 50
CDR1 -B-3R0A--- 3.0 B, C, D BG, BP 50
CDR1 -B-3R3A--- 3.3 B, C, D BG, BP 50
CDR1 -B-3R6A--- 3.6 B, C, D BG, BP 50
CDR1 -B-3R9A--- 3.9 B, C, D BG, BP 50
CDR1 -B-4R3A--- 4.3 B, C, D BG, BP 50
CDR1 -B-4R7A--- 4.7 B, C, D BG, BP 50
CDR1 -B-5R1A--- 5.1 B, C, D BG, BP 50
CDR1 -B-5R6A--- 5.6 B, C, D BG, BP 50
CDR1 -B-6R2A--- 6.2 B, C, D BG, BP 50
CDR1 -B-6R8A--- 6.8 B, C, J, K, M BG, BP 50
CDR1 -B-7R5A--- 7.5 B, C, J, K, M BG, BP 50
CDR1 -B-8R2A--- 8.2 B, C, J, K, M BG, BP 50
CDR1 -B-9R1A--- 9.1 B, C, J, K, M BG, BP 50
CDR1 -B-100A--- 10 F, G, J, K, M BG, BP 50
CDR1 -B-110A--- 11 F, G, J, K, M BG, BP 50
CDR1 -B-120A--- 12 F, G, J, K, M BG, BP 50
CDR1 -B-130A--- 13 F, G, J, K, M BG, BP 50
CDR1 -B-150A--- 15 F, G, J, K, M BG, BP 50
CDR1 -B-160A--- 16 F, G, J, K, M BG, BP 50
CDR1 -B-180A--- 18 F, G, J, K, M BG, BP 50
CDR1 -B-200A--- 20 F, G, J, K, M BG, BP 50
CDR1 -B-220A--- 22 F, G, J, K, M BG, BP 50
CDR1 -B-240A--- 24 F, G, J, K, M BG, BP 50
CDR1 -B-270A--- 27 F, G, J, K, M BG, BP 50
Type Rated temperature
Designation Capacitance Capacitance and WVDC
1/ in pF tolerance V/Temperature
CDR1 -B-300A--- 30 F, G, J, K, M BG, BP 50
CDR1 -B-330A--- 33 F, G, J, K, M BG, BP 50
CDR1 -B-360A--- 36 F, G, J, K, M BG, BP 50
CDR1 -B-390A--- 39 F, G, J, K, M BG, BP 50
CDR1 -B-430A--- 43 F, G, J, K, M BG, BP 50
CDR1 -B-470A--- 47 F, G, J, K, M BG, BP 50
CDR1 -B-510A--- 51 F, G, J, K, M BG, BP 50
CDR1 -B-560A--- 56 F, G, J, K, M BG, BP 50
CDR1 -B-620A--- 62 F, G, J, K, M BG, BP 50
CDR1 -B-680A--- 68 F, G, J, K, M BG, BP 50
CDR1 -B-750A--- 75 F, G, J, K, M BG, BP 50
CDR1 -B-820A--- 82 F, G, J, K, M BG, BP 50
CDR1 -B-910A--- 91 F, G, J, K, M BG, BP 50
CDR1 -B-101A--- 100 F, G, J, K, M BG, BP 50
CDR1 -B-111A--- 110 F, G, J, K, M BP 50
CDR1 -B-121A--- 120 F, G, J, K, M BP 50
CDR1 -B-131A--- 130 F, G, J, K, M BP 50
CDR1 -B-151A--- 150 F, G, J, K, M BP 50
CDR1 -B-161A--- 160 F, G, J, K, M BP 50
CDR1 -B-181A--- 180 F, G, J, K, M BP 50
CDR1 -B-201A--- 200 F, G, J, K, M BP 50
CDR1 -B-221A--- 220 F, G, J, K, M BP 50
CDR1 -B-241A--- 240 F, G, J, K, M BP 50
CDR1 -B-271A--- 270 F, G, J, K, M BP 50
CDR1 -B-301A--- 300 F, G, J, K, M BP 50
CDR1 -B-331A--- 330 F, G, J, K, M BP 50
CDR1 -B-361A--- 360 F, G, J, K, M BP 50
CDR1 -B-391A--- 390 F, G, J, K, M BP 50
CDR1 -B-431A--- 430 F, G, J, K, M BP 50
CDR1 -B-471A--- 470 F, G, J, K, M BP 50
CDR1 -B-511A--- 510 F, G, J, K, M BP 50
CDR1 -B-561A--- 560 F, G, J, K, M BP 50
CDR1 -B-621A--- 620 F, G, J, K, M BP 50
CDR1 -B-681A--- 680 F, G, J, K, M BP 50
CDR1 -B-751A--- 750 F, G, J, K, M BP 50
CDR1 -B-821A--- 820 F, G, J, K, M BP 50
CDR1 -B-911A--- 910 F, G, J, K, M BP 50
CDR1 -B-102A--- 1000 F, G, J, K, M BP 50
1/Complete type designation will include additional symbols to indicate style,
voltage-temperature limits, capacitance tolerance (where applicable), termina-
tion finish (“M” or “N” for style CDR11, and “S”, “U” or “W” for style CDR12)
and failure rate level.
82
6
Microwave MLC’s
CDR Series — MIL-PRF-55681 (RF/Microwave Chips)
TABLE II: STYLES CDR13 AND CDR14 CAPACITOR CHARACTERISTICS
Type Rated temperature
Designation Capacitance Capacitance and WVDC
1/ in pF tolerance V/Temperature
CDR1 -B-0R1*B-- 0.1 B BG, BP 200/500
CDR1 -B-0R2*B-- 0.2 B BG, BP 200/500
CDR1 -B-0R3*--- 0.3 B, C BG, BP 200/500
CDR1 -B-0R4*--- 0.4 B, C BG, BP 200/500
CDR1 -B-0R5*--- 0.5 B, C, D BG, BP 200/500
CDR1 -B-0R6*--- 0.6 B, C, D BG, BP 200/500
CDR1 -B-0R7*-- 0.7 B, C, D BG, BP 200/500
CDR1 -B-0R8*--- 0.8 B, C, D BG, BP 200/500
CDR1 -B-0R9*--- 0.9 B, C, D BG, BP 200/500
CDR1 -B-1R0*--- 1.0 B, C, D BG, BP 200/500
CDR1 -B-1R1*--- 1.1 B, C, D BG, BP 200/500
CDR1 -B-1R2*--- 1.2 B, C, D BG, BP 200/500
CDR1 -B-1R3*--- 1.3 B, C, D BG, BP 200/500
CDR1 -B-1R4*--- 1.4 B, C, D BG, BP 200/500
CDR1 -B-1R5*--- 1.5 B, C, D BG, BP 200/500
CDR1 -B-1R6*--- 1.6 B, C, D BG, BP 200/500
CDR1 -B-1R7*--- 1.7 B, C, D BG, BP 200/500
CDR1 -B-1R8*--- 1.8 B, C, D BG, BP 200/500
CDR1 -B-1R9*--- 1.9 B, C, D BG, BP 200/500
CDR1 -B-2R0*--- 2.0 B, C, D BG, BP 200/500
CDR1 -B-2R1*--- 2.1 B, C, D BG, BP 200/500
CDR1 -B-2R2*-- 2.2 B, C, D BG, BP 200/500
CDR1 -B-2R4*--- 2.4 B, C, D BG, BP 200/500
CDR1 -B-2R7*--- 2.7 B, C, D BG, BP 200/500
CDR1 -B-3R0*--- 3.0 B, C, D BG, BP 200/500
CDR1 -B-3R3*--- 3.3 B, C, D BG, BP 200/500
CDR1 -B-3R6*--- 3.6 B, C, D BG, BP 200/500
CDR1 -B-3R9*--- 3.9 B, C, D BG, BP 200/500
CDR1 -B-4R3*--- 4.3 B, C, D BG, BP 200/500
CDR1 -B-4R7*--- 4.7 B, C, D BG, BP 200/500
CDR1 -B-5R1*--- 5.1 B, C, D BG, BP 200/500
CDR1 -B-5R6*--- 5.6 B, C, D BG, BP 200/500
CDR1 -B-6R2*--- 6.2 B, C, D BG, BP 200/500
CDR1 -B-6R8*--- 6.8 B, C, J, K, M BG, BP 200/500
CDR1 -B-7R5*--- 7.5 B, C, J, K, M BG, BP 200/500
CDR1 -B-8R2*--- 8.2 B, C, J, K, M BG, BP 200/500
CDR1 -B-9R1*--- 9.1 B, C, J, K, M BG, BP 200/500
CDR1 -B-100*--- 10 F, G, J, K, M BG, BP 200/500
CDR1 -B-110*--- 11 F, G, J, K, M BG, BP 200/500
CDR1 -B-120*--- 12 F, G, J, K, M BG, BP 200/500
CDR1 -B-130*--- 13 F, G, J, K, M BG, BP 200/500
CDR1 -B-150*--- 15 F, G, J, K, M BG, BP 200/500
CDR1 -B-160*--- 16 F, G, J, K, M BG, BP 200/500
CDR1 -B-180*--- 18 F, G, J, K, M BG, BP 200/500
CDR1 -B-200*--- 20 F, G, J, K, M BG, BP 200/500
CDR1 -B-220*--- 22 F, G, J, K, M BG, BP 200/500
CDR1 -B-240*--- 24 F, G, J, K, M BG, BP 200/500
CDR1 -B-270*--- 27 F, G, J, K, M BG, BP 200/500
CDR1 -B-300*--- 30 F, G, J, K, M BG, BP 200/500
CDR1 -B-330*--- 33 F, G, J, K, M BG, BP 200/500
CDR1 -B-360*--- 36 F, G, J, K, M BG, BP 200/500
CDR1 -B-390*--- 39 F, G, J, K, M BG, BP 200/500
CDR1 -B-430*--- 43 F, G, J, K, M BG, BP 200/500
CDR1 -B-470*--- 47 F, G, J, K, M BG, BP 200/500
CDR1 -B-510*--- 51 F, G, J, K, M BG, BP 200/500
Type Rated temperature
Designation Capacitance Capacitance and WVDC
1/ in pF tolerance V/Temperature
CDR1 -B-560*--- 56 F, G, J, K, M BG, BP 200/500
CDR1 -B-620*--- 62 F, G, J, K, M BG, BP 200/500
CDR1 -B-680*--- 68 F, G, J, K, M BG, BP 200/500
CDR1 -B-750*--- 75 F, G, J, K, M BG, BP 200/500
CDR1 -B-820*--- 82 F, G, J, K, M BG, BP 200/500
CDR1 -B-910*--- 91 F, G, J, K, M BG, BP 200/500
CDR1 -B-101*--- 100 F, G, J, K, M BG, BP 200/500
CDR1 -B-111‡--- 110 F, G, J, K, M BG, BP 200/300
CDR1 -B-121‡--- 120 F, G, J, K, M BG, BP 200/300
CDR1 -B-131‡--- 130 F, G, J, K, M BG, BP 200/300
CDR1 -B-151‡--- 150 F, G, J, K, M BG, BP 200/300
CDR1 -B-161‡--- 160 F, G, J, K, M BG, BP 200/300
CDR1 -B-181‡--- 180 F, G, J, K, M BG, BP 200/300
CDR1 -B-201‡--- 200 F, G, J, K, M BG, BP 200/300
CDR1 -B-221C--- 220 F, G, J, K, M BG, BP 200
CDR1 -B-241C--- 240 F, G, J, K, M BG, BP 200
CDR1 -B-271C--- 270 F, G, J, K, M BG, BP 200
CDR1 -B-301C--- 300 F, G, J, K, M BG, BP 200
CDR1 -B-331C--- 330 F, G, J, K, M BG, BP 200
CDR1 -B-361C--- 360 F, G, J, K, M BG, BP 200
CDR1 -B-391C--- 390 F, G, J, K, M BG, BP 200
CDR1 -B-431C--- 430 F, G, J, K, M BG, BP 200
CDR1 -B-471C--- 470 F, G, J, K, M BG, BP 200
CDR1 -B-511B--- 510 F, G, J, K, M BG, BP 100
CDR1 -B-561B--- 560 F, G, J, K, M BG, BP 100
CDR1 -B-621B--- 620 F, G, J, K, M BG, BP 100
CDR1 -B-681A--- 680 F, G, J, K, M BG, BP 50
CDR1 -B-751A--- 750 F, G, J, K, M BG, BP 50
CDR1 -B-821A--- 820 F, G, J, K, M BG, BP 50
CDR1 -B-911A--- 910 F, G, J, K, M BG, BP 50
CDR1 -B-102A--- 1000 F, G, J, K, M BG, BP 50
CDR1 -B-112A--- 1100 F, G, J, K, M BP 50
CDR1 -B-122A--- 1200 F, G, J, K, M BP 50
CDR1 -B-132A--- 1300 F, G, J, K, M BP 50
CDR1 -B-152A--- 1500 F, G, J, K, M BP 50
CDR1 -B-162A--- 1600 F, G, J, K, M BP 50
CDR1 -B-182A--- 1800 F, G, J, K, M BP 50
CDR1 -B-202A--- 2000 F, G, J, K, M BP 50
CDR1 -B-222A--- 2200 F, G, J, K, M BP 50
CDR1 -B-242A--- 2400 F, G, J, K, M BP 50
CDR1 -B-272A--- 2700 F, G, J, K, M BP 50
CDR1 -B-302A--- 3000 F, G, J, K, M BP 50
CDR1 -B-332A--- 3300 F, G, J, K, M BP 50
CDR1 -B-362A--- 3600 F, G, J, K, M BP 50
CDR1 -B-392A--- 3900 F, G, J, K, M BP 50
CDR1 -B-432A--- 4300 F, G, J, K, M BP 50
CDR1 -B-472A--- 4700 F, G, J, K, M BP 50
CDR1 -B-502A--- 5000 F, G, J, K, M BP 50
CDR1 -B-512A--- 5100 F, G, J, K, M BP 50
1/Complete type designation will include additional symbols to indicate style,
voltage-temperature limits, capacitance tolerance (where applicable), termina-
tion finish (“M” or “N” for style CDR13, and “S”, “U” or “W” for style CDR14)
and failure rate level.
*C=200V; E=500V.
‡C=200V; D=300V.
83
6
Microwave MLC’s
Performance Curves
AVX CORPORATION
100 1000
Frequency (MHz)
1 Picofarad 10 Picofarad 100 Picofarad
1000
100
10
Q
10000
TYPICAL Q vs. FREQUENCY
AQ11/12
MIL-PRF-55681E - BG
STANDARD - M
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. CAPACITANCE
AQ11/12
MIL-PRF-55681E - BG
STANDARD - M
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
1000
100
10
Q
10000
TYPICAL Q vs. CAPACITANCE
AQ11/12
MIL-PRF-55681E - BG
STANDARD - M
AVX CORPORATION
100 1000
Frequency (MHz)
100 Picofarad10 Picofarad3.3 Picofarad
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. FREQUENCY
AQ11/12
MIL-PRF-55681E - BG
STANDARD - M
84
6
Microwave MLC’s
Performance Curves
AVX CORPORATION
100 1000
Frequency (MHz)
10 Picofarad1 Picofarad 47 Picofarad 330 Picofarad
1000
100
10
Q
10000
TYPICAL Q vs. FREQUENCY
AQ13/14
MIL-PRF-55681E - BG
STANDARD - M
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. CAPACITANCE
AQ13/14
MIL-PRF-55681E - BG
STANDARD - M
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
1000
100
10
Q
10000
TYPICAL Q vs. CAPACITANCE
AQ13/14
MIL-PRF-55681E - BG
STANDARD - M
AVX CORPORATION
100 1000
Frequency (MHz)
100 Picofarad15 Picofarad1 Picofarad
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. FREQUENCY
AQ13/14
MIL-PRF-55681E - BG
STANDARD - M
85
6
Microwave MLC’s
Performance Curves
AVX CORPORATION
100 1000
Frequency (MHz)
1 Picofarad 15 Picofarad 100 Picofarad
1000
100
10
Q
10000
TYPICAL Q vs. FREQUENCY
AQ11/12
MIL-PRF-55681E - BP
STANDARD - A
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. CAPACITANCE
AQ11/12
MIL-PRF-55681E - BP
STANDARD - A
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
1000
100
10
Q
10000
TYPICAL Q vs. CAPACITANCE
AQ11/12
MIL-PRF-55681E - BP
STANDARD - A
AVX CORPORATION
100 1000
Frequency (MHz)
100 Picofarad15 Picofarad1 Picofarad
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. FREQUENCY
AQ11/12
MIL-PRF-55681E - BP
STANDARD - A
86
6
Microwave MLC’s
Performance Curves
AVX CORPORATION
100 1000
Frequency (MHz)
2 Picofarad 15 Picofarad 100 Picofarad
1000
100
10
Q
10000
TYPICAL Q vs. FREQUENCY
AQ13/14
MIL-PRF-55681E - BP
STANDARD - A
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. CAPACITANCE
AQ13/14
MIL-PRF-55681E - BP
STANDARD - A
AVX CORPORATION
110100
Capacitance (pF)
250 MHz 500 MHz 1000 MHz
1000
100
10
Q
10000
TYPICAL Q vs. CAPACITANCE
AQ13/14
MIL-PRF-55681E - BP
STANDARD - A
AVX CORPORATION
100 1000
Frequency (MHz)
100 Picofarad47 Picofarad15 Picofarad
0.1
0.01
ESR (ohms)
1
TYPICAL ESR vs. FREQUENCY
AQ13/14
MIL-PRF-55681E - BP
STANDARD - A
87
Microwave MLC’s
Performance Curves
TYPICAL RESONANT FREQUENCY vs. CAPACITANCE
AVX AQ11-14 (CDR11-14)
Parallel Resonant
Frequency
Series Resonant
Frequency
AQ11/12
AQ11/12
AQ13/14
AQ13/14
10
1.0
0.11.0 10 100 1000
Capacitance (pF)
Frequency (GHz)
TYPICAL RESONANT FREQUENCY vs. CAPACITANCE
AVX 0603
10
1.0
0.1110 100 1000
Capacitance (pF)
Frequency (GHz)
Parallel Resonant
Frequency
Series Resonant
Frequency
6
88
6
Microwave MLC’s
Automatic Insertion Packaging
TAPE & REEL: All tape and reel specifications are in compliance with EIA RS481 (equivalent to IEC 286 part 3).
Sizes AQ11/12 through 13/14, CDR11/12 through 13/14.
—8mm carrier
—7" reel: 0.040" thickness = 2000 pcs
0.075" thickness = 2000 pcs
—13" reel: 0.075" thickness = 10,000 pcs
REEL DIMENSIONS:millimeters (inches)
“U” Series - 0603/0805/1210 Size Chips
—8mm carrier
—7" reel: 0603 & 0805 0.40" thickness = 4000 pcs
0805 . 0.040" thickness & 1210= 2000 pcs
—13" reel: 0.075" thickness = 10,000 pcs
Tape A B* C D* N W1W2W3
Size(1) Max. Min. Min. Min. Max.
7.9 Min.
+1.0
8mm 8.4
-0.0
14.4 (.311)
+.060
(.331
-0.0
)(.567) 10.9 Max.
330 1.5 13.0±0.20 20.2 50 (.429)
(12.992) (.059) (.512±.008) (.795) (1.969)
11.9 Min.
+2.0
12mm 12.4
-0.0
18.4 (.469)
(.488
+.076
)(.724) 15.4 Max.
-0.0
(.607)
EMBOSSED CARRIER CONFIGURATION
8 & 12 MM TAPE ONLY
CONSTANT DIMENSIONS
Tape D0EP0P2TT1G1G2
Size Max.
+0.10
8mm 8.4
-0.0
1.75 ± 0.10 4.0 ± 0.10 2.0 ± 0.05 0.600 0.10 0.75 0.75
+.004
and (.059
-0.0
)(.069 ± .004) (.157 ± .004) (.079 ± .002) (.024) (.004) (.030) (.030)
12mm Max. Min. Min.
See See
Note 3 Note 4
Metric dimensions will govern.
English measurements rounded and for reference only.
(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.
VARIABLE DIMENSIONS
Tape Size B1D1FP1RT2WA0B0K0
Max. Min. Min.
See Note 6 See Note 5 See Note 2
+0.3
8mm 4.55 1.0 3.5 ± 0.05 4.0 ± 0.10 25 2.5 Max 8.0
-0.1
See Note 1
+.012
(.179) (.039) (.138 ± .002) (.157 ± .004) (.984) (.098) (.315
-.004
8.2 1.5 5.5 ± 0.05 4.0 ± 0.10 30 6.5 Max 12.0 ± .30
12mm (.323) (.059) (.217 ± .002) (.157 ± .004) (1.181) (.256) (.472 ± .012) See Note 1
NOTES:
1. A0, B0, and K0are determined by the max. dimensions to the ends of the
terminals extending from the component body and/or the body dimensions of
the component. The clearance between the end of the terminals or body of the
component to the sides and depth of the cavity (A0, B0, and K0) must be within
0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also
prevent rotation of the component within the cavity of not more than 20 degrees
(see sketches C & D).
2. Tape with components shall pass around radius “R” without damage. The
minimum trailer length (Note 2 Fig. 3) may require additional length to provide R
min. for 12mm embossed tape for reels with hub diameters approaching N min.
(Table 4).
3. G1dimension is the flat area from the edge of the sprocket hole to either the
outward deformation of the carrier tape between the embossed cavities or to
the edge of the cavity whichever is less.
4. G2dimension is the flat area from the edge of the carrier tape opposite the
sprocket holes to either the outward deformation of the carrier tape between the
embossed cavity or to the edge of the cavity whichever is less.
5. The embossment hole location shall be measured from the sprocket hole
controlling the location of the embossment. Dimensions of embossment
location and hole location shall be applied independent of each other.
6. B1dimension is a reference dimension for tape feeder clearance only.
)
Hi-Q®High RF Power
MLC Surface Mount Capacitors
For 600V to 4000V Application
PRODUCT OFFERING
Hi-Q®, high RF power, surface mount MLC capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. They are designed to handle high power and
high voltage levels for applications in RF power amplifiers, inductive
heating, high magnetic field environments (MRI coils), medical and
industrial electronics.
Capacitance Range 10pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1MHz)
Capacitance Tolerances ±1%, ±2%, ±5%, ±10%, ±20%
Dissipation Factor 25°C 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000VDC
Insulation Resistance 100K Mmin. @ +25°C and 500VDC
10K Mmin. @ +125°C and 500VDC
Dielectric Strength 120% of rated WVDC
DIELECTRIC PERFORMANCE CHARACTERISTICS
HOW TO ORDER
AVXVoltage Temperature Capacitance Code Capacitance Test Termination
Style 600V = C Coefficient (2 significant digits Tolerance Level 1 = Pd/Ag
HQCC 1000V = A C0G = A + no. of zeros) A = Standard T = Solderable
HQCE 1500V = S Examples: Plate
2000V = G 10 pF = 100
2500V = W 100 pF = 101
3000V = H 1,000 pF = 102
4000V = J 22,000 pF = 223
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
HIGH VOLTAGE CAPACITANCE VALUES (pF)
Style 600 1000 1500 2000 2500 3000 4000
WDC WVDC WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max. min./max. min./max.
HQCC
2,200 - 2,700 1,500 - 1,800 820 - 1,200 470 - 680 330 - 390 10 - 270
HQCE
5,600 - 6,800 3,300 - 4,700 2,200 - 2,700 1,200 - 1,800 820 - 1,000 470-680 10-390
A A 271 J A T 1 A
Packaging
1 = 7" Reel
3 = 13" Reel
9 = Bulk
Special
Code
A = Standard
HQCC
STYLE HQCC HQCE
(L) Length 5.84 ± 0.51 9.4 ± 0.51
(0.230 ± 0.020) (0.370 ± 0.020)
(W) Width 6.35 ± 0.51 9.9 ± 0.51
(0.250 ± 0.020) (0.390 ± 0.020)
(T) Thickness 3.3 max. 3.3 max.
Max. (0.130 max.) (0.130 max.)
(t) terminal 0.64 ± 0.38 0.64 ± 0.38
(0.025 ± 0.015) (0.025 ± 0.015)
DIMENSIONS millimeters (inches)
L
W
T
t
89
6
90
RF/Microwave
NP0 Capacitors
“U” Series
Ceramic C0G (NP0) Microwave
Multilayer Capacitors
7
91
7
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
GENERAL INFORMATION
“U” Series capacitors are C0G (NP0) chip capacitors spe-
cially designed for “Ultra” low ESR for applications in the
communications market. Max ESR and effective capacitance
are met on each value producing lot to lot uniformity.
Sizes available are EIA chip sizes 0603, 0805, and 1210.
Size A B C D E
0402 0.039±0.004 (1.00±0.1) 0.020±0.004 (0.50±0.1) 0.024 (0.6) max N/A N/A
0603 0.060±0.010 (1.52±0.25) 0.030±0.010 (0.76±0.25) 0.036 (0.91) max 0.010±0.005 (0.25±0.13) 0.030 (0.76) min
0805 0.079±0.008 (2.01±0.2) 0.049±0.008 (1.25±0.2) 0.040±0.005 (1.02±0.127) 0.020±0.010 (0.51±0.254) 0.020 (0.51) min
1210 0.126±0.008 (3.2±0.2) 0.098±0.008 (2.49±0.2) 0.050±0.005 (1.27±0.127) 0.025±0.015 (0.635±0.381) 0.040 (1.02) min
ELECTRICAL CHARACTERISTICS
Capacitance Values and Tolerances:
Size 0402 - 0.2 pF to 22 pF @ 1 MHz
Size 0603 - 1.0 pF to 100 pF @ 1 MHz
Size 0805 - 1.6 pF to 160 pF @ 1 MHz
Size 1210 - 2.4 pF to 1000 pF @ 1 MHz
Temperature Coefficient of Capacitance (TC):
0±30 ppm/°C (-55° to +125°C)
Insulation Resistance (IR):
1012 min. @ 25°C and rated WVDC
1011 min. @ 125°C and rated WVDC
Working Voltage (WVDC):
Size Working Voltage
0402 - 50, 25 WVDC
0603 - 200, 100, 50 WVDC
0805 - 200, 100 WVDC
1210 - 200, 100 WVDC
Dielectric Working Voltage (DWV):
250% of rated WVDC
Equivalent Series Resistance Typical (ESR):
0402 - See Performance Curve, page 92
0603 - See Performance Curve, page 92
0805 - See Performance Curve, page 92
1210 - See Performance Curve, page 92
Marking: Laser marking EIA J marking standard
(except 0603) (capacitance code and
tolerance upon request).
MILITARY SPECIFICATIONS
Meets or exceeds the requirements of MIL-C-55681
A
B
DD
E
C
A
BC
A
B
DD
E
C
A
B
DD
E
C
0805
Case Size
0402
0603
0805
1210
1
Voltage
Code
3 = 25V
5 = 50V
1 = 100V
2 = 200V
U
Dielectric =
Ultra Low
ESR
100
Capacitance
J
Capacitance
Tolerance
Code
B = ±0.1pF
C = ±0.25pF
D = ±0.5pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
A
Failure Rate
Code
A = Not
Applicable
T
Termination
T= Plated Ni
and Tin
2
Packaging
Code
A
Special
Code
A = Standard
HOW TO ORDER
EIA Capacitance Code in pF.
First two digits = significant figures
or “R” for decimal place.
Third digit = number of zeros or
after “R” significant figures.
2 = 7" Reel
4 = 13" Reel
9 = Bulk
DIMENSIONS: inches (millimeters)
0402 0603 0805 1210
inches (mm)
92
7
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
CAPACITANCE RANGE
ULTRA LOW ESR, “U” SERIES
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
0.2 B,C 50V N/A N/A N/A
0.3
0.4
0.5 B,C
0.6 B,C,D
0.7
0.8
0.9 B,C,D
3.9 pF
4.7 pF
5.1 pF
6.8 pF
10.0 pF
15.0 pF
1
0.1
0.01
0500 1000 1500 2000 2500
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
0603 “U” SERIES
10 pF
15 pF
3.3 pF
1
0.1
0.01
0500 1000 1500 2000 2500
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
0402 “U” SERIES
10.0 pF
100 pF
1
0.1
0.01
0500 1000 1500 2000 2500
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
0805 “U” SERIES
10 pF
100 pF
300 pF
1
0.1
0.01
0500 1000 1500 2000
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
1210 “U” SERIES
ESR Measured on the Boonton 34A
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
1.0 B,C,D 50V 200V 200V 200V
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2 B,C,D
6.8 B,C,J,K,M
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
7.5 B,C,J,K,M 50V 200V 200V 200V
8.2
9.1 B,C,J,K,M
10 F,G,J,K,M
11
12
13
15
18
20 100
22
24
27
30 50V
33 N/A
36
39
43
47
51
56
68
75
82
91 F,G,J,K,M
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
100 F,G,J,K,M N/A 100V 200V 200V
110 50V
120
130 200V
140 100V
150 50V
160 N/A 100V
180 N/A
200
220
270
300
330
360
390
430
470 100
510
560
620
680
750
820
910
1000 F,G,J,K,M
93
7
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
TYPICAL
SERIES RESONANT FREQUENCY
“U” SERIES CHIP
1210
0805
0603
0402
10
1.0
0.11.0 10 100 1000
Capacitance (pF)
Frequency (GHz)
94
RF/Microwave
AQ 12 & 14 and “U” Series
Designer Kits
8
95
8
Designer Kits
Tuning Kits: AQ12/AQ14 Series
Porcelain (+90) Ceramic (NP0)
AQ12 AQ14 AQ12 AQ14
Kit 1500 UZ
Capacitor
Value pF Tolerance*
0.1 B
0.2 B
0.3 B
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
1.0 B
1.1 B
1.2 B
1.3 B
1.4 B
1.5 B
1.6 B
1.7 B
1.8 B
1.9 B
2.0 B
2.1 B
2.2 B
2.4 B
2.7 B
3.0 B
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
5.1 C
5.6 C
6.2 C
6.8 J
7.5 J
8.2 J
9.1 J
10.0 J
380 Capacitors 10 each of 38 values. All chips are laser marked.
*Tolerance: B =±0.1pF, C =±0.25pF, J =±5%.
Kit 2500 UZ
Capacitor
Value pF Tolerance*
0.1 B
0.2 B
0.3 B
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
1.0 B
1.1 B
1.2 B
1.3 B
1.4 B
1.5 B
1.6 B
1.7 B
1.8 B
1.9 B
2.0 B
2.1 B
2.2 B
2.4 B
2.7 B
3.0 B
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
5.1 C
5.6 C
6.2 C
6.8 J
7.5 J
8.2 J
9.1 J
10.0 J
Kit 1501 UZ
Capacitor
Value pF Tolerance*
0.1 B
0.2 B
0.3 B
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
1.0 B
1.1 B
1.2 B
1.3 B
1.4 B
1.5 B
1.6 B
1.7 B
1.8 B
1.9 B
2.0 B
2.1 B
2.2 B
2.4 B
2.7 B
3.0 B
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
5.1 C
5.6 C
6.2 C
6.8 J
7.5 J
8.2 J
9.1 J
10.0 J
Kit 2501 UZ
Capacitor
Value pF Tolerance*
0.1 B
0.2 B
0.3 B
0.4 B
0.5 B
0.6 B
0.7 B
0.8 B
0.9 B
1.0 B
1.1 B
1.2 B
1.3 B
1.4 B
1.5 B
1.6 B
1.7 B
1.8 B
1.9 B
2.0 B
2.1 B
2.2 B
2.4 B
2.7 B
3.0 B
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
5.1 C
5.6 C
6.2 C
6.8 J
7.5 J
8.2 J
9.1 J
10.0 J
TUNING KITS
Solder Plated, Nickel Barrier
96
8
EVALUATION KITS
Solder Plated, Nickel Barrier
Porcelain (+90) Ceramic (NP0)
AQ12 AQ14 AQ12 AQ14
Kit 1000 UZ
Capacitor
Value pF Tolerance*
.5 B
1.0 B
1.2 B
1.5 B
1.8 B
2.0 B
2.2 B
2.4 C
2.7 C
3.0 C
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
6.8 J
8.2 J
10.0 J
12.0 J
15.0 J
18.0 J
22.0 J
27.0 J
33.0 J
39.0 J
47.0 J
56.0 J
68.0 J
82.0 J
100.0 J
Kit 2000 UZ
Capacitor
Value pF Tolerance*
1.0 B
1.2 B
1.5 B
1.8 B
2.0 B
2.2 B
2.4 C
2.7 C
3.0 C
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
5.1 C
5.6 C
6.2 C
6.8 J
8.2 J
10.0 J
12.0 J
15.0 J
18.0 J
22.0 J
27.0 J
33.0 J
39.0 J
47.0 J
56.0 J
68.0 J
82.0 J
100.0 J
120.0 J
150.0 J
180.0 J
220.0 J
240.0 J
270.0 K
330.0 K
390.0 K
470.0 K
560.0 K
680.0 K
820.0 K
1000.0 K
Kit 1001 UZ
Capacitor
Value pF Tolerance*
.5 B
1.0 B
1.5 B
1.8 B
2.0 B
2.2 B
2.4 C
2.7 C
3.0 C
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
6.8 J
8.2 J
10.0 J
12.0 J
15.0 J
22.0 J
27.0 J
33.0 J
39.0 J
47.0 J
56.0 J
68.0 J
82.0 J
100.0 J
470.0 J
1000.0 J
Kit 2001 UZ
Capacitor
Value pF Tolerance*
1.0 B
1.5 B
1.8 B
2.0 B
2.2 B
2.4 C
2.7 C
3.0 C
3.3 C
3.6 C
3.9 C
4.3 C
4.7 C
5.1 C
5.6 C
6.2 C
6.8 J
8.2 J
10.0 J
12.0 J
15.0 J
22.0 J
27.0 J
33.0 J
39.0 J
47.0 J
56.0 J
68.0 J
82.0 J
100.0 J
120.0 J
150.0 J
180.0 J
220.0 J
240.0 J
270.0 K
330.0 K
390.0 K
470.0 K
560.0 K
680.0 K
820.0 K
1000.0 K
2700.0 K
5100.0 K
300 Capacitors 10 each of 30 values.
All chips are laser marked.
*Tolerance: B = ±0.1 pF, C = ±0.25
pF, J = ±5%.
450 Capacitors 10 each of 45 values.
All chips are laser marked.
*Tolerance: B = ±0.1 pF, C = ±0.25
pF, J = ±5%, K = ±10%
300 Capacitors 10 each of 30 values.
All chips are laser marked.
*Tolerance: B = ±0.1 pF, C = ±0.25
pF, J = ±5%.
450 Capacitors 10 each of 45 values.
All chips are laser marked.
*Tolerance: B = ±0.1 pF, C = ±0.25
pF, J = ±5%, K = ±10%
NOTE: Order by Kit Number
Example: Kit 1000 UZ
Designer Kits
Evaluation Kits: AQ12/AQ14 Series
97
8
“U” SERIES KITS
Solder Plated, Nickel Barrier
0805 1210
0402 0603
Kit 4000 UZ**
Cap. Cap.
Value Tol.† Value Tol.†
pF pF
1.0 ±.25pF 6.8 ±.25pF
1.2 ±.25pF 7.5 ±.25pF
1.5 ±.25pF 8.2 ±.25pF
1.8 ±.25pF 10.0 ±5%
2.0 ±.25pF 12.0 ±5%
2.4 ±.25pF 15.0 ±5%
2.7 ±.25pF 18.0 ±5%
3.0 ±.25pF 22.0 ±5%
3.3 ±.25pF 27.0 ±5%
3.9 ±.25pF 33.0 ±5%
4.7 ±.25pF 39.0 ±5%
5.6 ±.25pF 47.0 ±5%
Kit 3000 UZ***
Cap. Cap. Cap.
Value Tol.† Value Tol.† Value Tol.†
pF pF pF
1.0 C 7.5 C 33 J
1.5 C 8.2 C 36 J
2.2 C 9.1 C 39 J
2.4 C 10.0 J 47 J
2.7 C 12.0 J 56 J
3.0 C 15.0 J 68 J
3.3 C 18.0 J 82 J
3.9 C 22.0 J 100 J
4.7 C 24.0 J 130 J
5.6 C 27.0 J 160 J
Kit 3500 UZ***
Cap. Cap. Cap.
Value Tol.† Value Tol.† Value Tol.†
pF pF pF
2.2 C 18 J 68 J
2.7 C 20 J 82 J
4.7 C 24 J 100 J
5.1 C 27 J 120 J
6.8 C 30 J 130 J
8.2 C 36 J 240 J
9.1 C 39 J 300 J
10 J 47 J 390 J
13 J 51 J 470 J
15 J 56 J 680 J
** 240 Capacitors 10 each of 24 values.
* 150 Capacitors 10 each of 15 values.
Kit 5000 UZ*
Cap. Cap.
Value Tol.† Value Tol.†
pF pF
0.5 B 4.7 B
1.0 B 5.6 B
1.5 B 6.8 B
1.8 B 8.2 B
2.2 B 10.0 J
2.4 B 12.0 J
3.0 B 15.0 J
3.6 B
Designer Kits
Communication Kits “U” Series
†Tolerance – B = ±0.1pF
C = ±0.25pF
J = ±5%
*** 300 Capacitors 10 each of 30 values.
98
Introduction
to
Microwave Capacitors
9
99
9
Typical Microwave Circuit Applications
Microwave MLC, SLC, or Thin-Film capacitor applications in
MIC circuits can be grouped into the following categories:
• DC Block (in series with an MIC transmission line)
• RF Bypass (in shunt with transmission lines)
• Source Bypass (in shunt with active device)
• Impedance Matching
This chapter discusses these applications and the perfor-
mance parameters of microwave capacitors affecting these
applications.
DC Block
In the DC block application, the chip capacitor is placed in
series with the transmission line to prevent the DC voltage
from one circuit from affecting another circuit.
The capacitance is chosen so that the reactance is only a
fraction of an ohm at the lowest microwave frequency of
interest.
The largest value capacitor is used as long as the self-resonant
frequency is still much higher than the highest frequency of
interest.
RF Bypass
The RF bypass application is used to effectively short out the
RF to ground. The capacitor value is also picked to be as
large as possible without approaching the self-resonance of
the capacitor.
Source Bypass
The source bypass application is the same as the RF bypass
except the capacitor is used in conjunction with an active
device.
In this application the chip capacitor is butted up to the
source of the microwave FET device mounted on the MIC
circuit. This is done to minimize the length of the wire bond
from the source of the FET to the capacitor. The shorter the
wire bond, the lower the corresponding inductance.
Figure 1
The top side of the capacitor should be completely metal-
lized so that the bond wire from the FET to the edge of the
capacitor is minimized.
The height of the capacitor must be less than or equal to the
height of the FET, usually about 0.005 inches. If the capaci-
tor is higher than the FET, the capacitor will interfere with the
bonding tool when wire bonding to the FET.
Impedance Matching
The impedance matching application is to use the chip
capacitor to provide the required reactance at a specific
point in the circuit.
This is usually the most critical application in terms of the
capacitor maintaining a tight tolerance over temperature and
from unit-to-unit.
The other applications only require that the capacitance for
the DC block and RF bypass maintains a low reactance and
the tolerance can be as much as ±50%. Whereas the imped-
ance matching function often requires ±1% tolerance.
In general, microwave capacitors should have the following
properties:
• Low-loss
• Operate very much below the self-resonant frequency
The power handling capability should be commensurate
with the expected power performance of the circuit
• Capable of wire bonding and gap welding
• Low variation of capacitance over temperature
• Low unit-to-unit variations in capacitance
• Low dimensional variations from unit-to-unit
Typical SLC applications in MIC circuits are shown in:
Figure 2. Typical MIC Microwave Attenuator Hybrid with SLC’s.
“C” indicates SLC locations.
Introduction to
Microwave Capacitors
Microwave Capacitors in MICs
SIMPLIFIED RF SPECTRUM
ELF. VLF. LF
500 MHz
60 cm
3 GHz
10 cm
WAVEGUIDE
SYSTEMS
COAXIAL
SYSTEMS
DISTRIBUTED NET
LUMPED NET
MF. HF VHF UHF SHF. EHF
300 KHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz
1 km 100 m 10 m 1 m 10 cm 1 cm
AM
BROADCAST
FM
BROADCAST
SATELLITE
(COMMERCIAL)
RFIN
RFOUT
DD
RCC
D
C
C
C
R
DR
D
BIAS
100
9
Scattering Parameters
Generally, transmission and reflections coefficient measure-
ments completely characterize any black box or network.
Transmission and reflections parameters — attenuation
(gain), phase shift, and complex impedance — can be
described in terms of a set of linear parameters called
“scattering” or “s” parameters. Knowing these characteristic
parameters, one can predict the response of cascaded
or parallel networks accurately. Unlike y or h parameters
which require short circuit and open circuit terminations, “s”
parameters are determined with the input and output ports
terminated in the characteristic impedance of the transmis-
sion line which is a much more practical condition to obtain
at RF and microwave frequencies.
To summarize, “s” parameters are more useful at microwave
frequencies because:
1. Equipment to measure total voltage and total currents
at the ports of the networks is not readily available.
2. Short and open circuits are difficult to achieve over a
broad band of frequencies because of lead inductance
and capacitance. Furthermore, these measurements
typically require tuning stubs separately adjusted at
each frequency to reflect short and open circuits to the
device terminals, and this makes the process inconve-
nient and tedious.
3. Active devices such as transistors and negative resis-
tance diodes are very often not short- or open-circuit
stable.
There are four scattering parameters for a two-port network:
S11, S12, S21, and S22.
S11 is the reflection coefficient at the input port with the
output port terminated in a 50 ohm load.
S12 is the reverse transmission coefficient in a 50 ohm
system.
S21 is the forward transmission coefficient in a 50 ohm
system.
S22 is the reflection coefficient at the output port with the
input port terminated into a 50 ohm load.
The reflection coefficients can be directly related to the
impedance of the device by the equation:
Eq.1. ZIN/ZO = (1 + S11)/(1 - S11)
where ZIN= input impedance
ZO = characteristic impedance of
the transmission line
This equation also defines the Smith Chart.
Return Loss
Return loss is the ratio of the incident power to the reflected
power at a point on the transmission line and is expressed in
decibels. The reflected power from a discontinuity is
expressed as a certain number of decibels below the inci-
dent power upon the discontinuity. It can be shown that
return loss can be related to the reflection coefficient and
VSWR:
Eq. 2. RL (dB) = 10 *log (Pinc/Pref)
= 20 *log (Einc/Eref) = 20 *log (1/Rho)
Eq. 3. Rho = (VSWR - 1)/(VSWR + 1)
Eq. 4. VSWR = (1 + Rho)/(1 - Rho)
where Rho = reflection coefficient
RL = return loss
Pinc = power incident
Pref = power reflected
Einc = voltage incident
Eref = voltage reflected
VSWR = voltage standing wave ratio
By the above equation, when the reflection coefficient is 1,
the return loss is zero. In this case, no signal is lost and all
the signal incident upon the discontinuity was returned to the
source. As the reflection coefficient approaches zero, the
return loss approaches infinity. That is, the more perfect the
load, the less the reflection from that load.
The return loss can be improved by an attenuator.
Assume that we connect a perfectly matched 3 dB attenua-
tor into a short circuit as shown in Figure 3.
Figure 3
The indicated 100 mw is decreased to 50 mw at the output
of the 3 dB attenuator. This 50 mw is reflected from the short
circuit back through the attenuator in the reverse direction
and one-half of this reflected power is lost in the 3 dB atten-
uator. The reflected power at the input is 25 mw. Notice the
return loss is equal to twice the attenuation because it is the
“round trip” loss. This example shows that VSWR is
decreased when attenuation exists on a transmission line
and also that a high VSWR can be decreased by placing an
attenuator in the line.
Mismatch Loss
Mismatch loss is a measure of power loss caused by reflec-
tion. It is the ratio of incident power to the difference between
incident and reflected power and is expressed in dBs as
follows:
Eq. 5. Mismatch loss (dB) = 10 *log
[Pinc/(Pinc - Pref)]
= 10
*log
[1/(1-Rho = 2)]
PINC
PINC
PREF
PREF
SHORT CIRCUIT
3 dB ATTEN ____ = -6 dB
Introduction to
Microwave Capacitors
Microwave Parameters
101
9
The mismatch loss for various values of VSWR is tabulated
as follows:
Table I
VSWR Mismatch Loss
1.00 0.00 dB
1.20 0.04 dB
1.40 0.12 dB
1.50 0.18 dB
1.70 0.30 dB
2.00 0.51 dB
2.50 0.88 dB
3.00 1.25 dB
Insertion Loss Measurement
Insertion loss is measured by the substitution method. The
insertion loss of the measurement system is used as a refer-
ence. Then the DUT (Device Under Test) is inserted into the
setup and the new insertion loss is measured. The difference
between the two losses is the insertion loss of the DUT.
The insertion loss is measured using the test setup as shown
in Figure 5.
In order to accurately measure the insertion loss, source
VSWR and load VSWR must be extremely Iow. It is assumed
during calibration (loss of the measurement system with
the DUT removed from the test setup) that the VSWR of the
generator and the load does not contribute any mismatch
losses. As discussed in the section on mismatch loss, any
VSWR above 1.2:1 may cause a minimum error of 0.04 dB.
In addition, the two VSWRs may be additive or subtractive
depending on the phasing of the reflections. For example,
source and load VSWRs of 1.2:1 can add to create an error
of 0.08 dB. The mismatches usually exhibit themselves as
amplitude ripple as a function of frequency. It is important
when measuring low insertion losses that precautions are
taken to ensure low source and load VSWRs and to keep the
mismatch losses due to the two VSWRs to a small fraction
of the expected insertion loss of the DUT.
In using the scalar network analyzer it is a temptation to nor-
malize the amplitude response regardless what the actual
response is during calibration. It is advisable to eliminate the
amplitude ripple first before normalizing the scalar analyzer.
One way is to make use of the fact that VSWRs can be
improved by the use of matched attenuators. Often, 10 dB
attenuators are placed before and after the DUT to provide a
minimum of 20 dB return loss which corresponds to source
and load VSWRs of less than 1.20:1. This will reduce the
uncertainties due to mismatch losses to less than 0.02 dB.
Return Loss Measurement
The return loss is measured by the following method: The
test port is terminated by a short circuit so that all the inci-
dent power is reflected. A detector on the bridge measures
this power and this power is used as the reference for the
incident power. The test port is then terminated by the DUT
and the reflected power now measured. The difference
between the power levels is the return loss.
Figure 5. Return Loss Measurement:
Establishing a Reference
SWR BRIDGE
DETECTOR
INCIDENT
POWER
(1) (2) (3) (4) (5)
(8)
(6) (7)
N GPC-7 SMA SMA GPC-7 GPC-7
REFLECTION TRANSMISSION
(1) Wiltron 6647A 10MHz - 18GHz sweepers
(2) Wiltron 560-97-A50
(3) OSM 2082-2700-00
(4) Device under test
(5) OSM 2082-2700-00
(6) OSM 7082-6193-10
(7) Wiltron 560-7A50
SWEEP
GENERATOR
SWR
AUTOTESTING GPC-7
TO SMA
GPC-7
TO SMA
DUT ATTEN DET
SCALAR
ANALYZER
Test set-up for:
(1) Insertion loss
(2) VSWR
______________
Figure 4
Introduction to
Microwave Capacitors
Microwave Parameters
102
9
Figure 6
• All incident power is reflected at the short circuit.
• The detector measures the reflected power.
An SWR bridge usually has a directivity of 35 to 40 dB.
In other words, only a minute fraction of the incident power
reaches the detector (the dotted line path) that is not
reflected off the short circuit.
The DUT is substituted for the short circuit and the oppo-
site port is terminated by a matched termination (50 ohms).
The reflected power depends on the DUT and is sensed by
the detector.
The return loss is the difference between this reflected
power and that measured with a reference short circuit.
• A significant improvement in calibrating a 0 dB return loss
reference by averaging the short circuit and open circuit
reflected powers.
The dotted line in the figure below shows the reflections
due to an open circuit.
• The solid line in the figure below shows the reflections due
to a short circuit.
• Since the phase difference between short circuit and open
circuit is 180 degrees.
By taking the average between these two voltages, the
actual full reflection is very closely approximated.
Figure 7
Note that the insertion loss and return loss can be measured
simultaneously by using the dual trace feature of the Wiltron
Scalar Analyzer. Furthermore, the two measurements can be
done by using a controller such as the HP85 computer for
semi-automatic testing.
The calibration for 0 dB return loss can be improved by aver-
aging the short circuit and open circuit reflected powers.
Since the phase difference is 180 degrees, the average
closely approximates the actual full reflection.
Decibels
The decibel, abbreviated “dB,” is one-tenth of the interna-
tional transmission unit known as the “bel.” The origin of the
bel is the logarithm to the base 10 of the power ratio. It is
the power to which the number 10 must be raised in order
to equal the given number. The number 10 is raised to the
second power, or squared, in order to get 100. Therefore,
the log of 100 is 2.
The decibel is expressed mathematically by the equation:
Eq. 6 dB = 10 * log (P2/P1)
P2 = larger power
P1 = lower power
The use of log tables can be avoided in practical applications
where exact values of the power are not required. One only
needs to know that a factor of 2 is equal to 3 dB and a fac-
tor of 10 is equal to 10 dB and the rest of the conversions
are derived from these two relationships. The use of dBs
reduces multiplication into an addition. For example:
3dB = 2
6dB = 2 x 2 = 4
9dB = 2 x 2 x 2 = 8
10dB = 10
20dB = 100
The technique is based on the fact that 3, 6, and/or 9 dB
can be added or subtracted (in some combination) to any
decibel value. Adding or subtracting 10 to a decibel value
simply multiplies or divides the number by ten. Examples:
1. 17dB = 20dB - 3dB
20dB is 10dB + 10dB or is equal to 100.
3dB is equal to 2
Therefore, 20 dB - 3dB = 100/2 = 50
2. 36dB = 30dB + 6dB
1000 x 4 = 4000
Decibel:
The decibel is not a unit of power but merely is a logarithmic
expression of a ratio of two numbers. The unit of power may
be expressed in terms of dBm, where “m” is the unit, mean-
ing above or below one milliwatt. Since one mw is neither
above nor below 1 mw, 1 mw= 0 dBm.
Nepers:
An alternate unit called the neper is defined in terms of the
logarithm to the base “e.” e = 2.718.
1 neper = 8.686dB
1dB = 0.1151 neper
SHORT OPEN
A
B
C
E0
f1f2
A1
C1B1
ACTUAL
FULL
REFLECTION
AVERAGING THE SHORT CIRCUIT AND OPEN CIRCUIT
REFERENCES FOR HIGHER ACCURACY
PREFERRED REFLECTION CALIBRATION
Introduction to
Microwave Capacitors
Microwave Parameters
SWR BRIDGE INCIDENT
DUT 50 OHM
TERMINATION
INPUT
REFLECTED
DETECTOR
DUT IN PLACE
103
9
Capacitance
Microwave chip capacitors, although closely approx-
imating an ideal capacitor, nonetheless also contain
parasitic elements that are important at microwave fre-
quencies. The equivalent circuit is shown below:
Figure 8. Equivalent Circuit of a
Microwave Capacitor
where, C = desired capacitance
LS= parasitic series inductance
RS= series resistance
CP= parasitic parallel capacitance,
Rp, the parallel resistance is not shown as it is of concern
only at dc and low frequencies.
The primary capacitance, C, is typically determined by mea-
surement at 1 MHz where the effects of Rs, Ls, and Cp
become negligible compared to the reactance of C. The
value of C determined at this low frequency is also valid
at microwave frequencies when the dielectric constant has
a very low variation versus frequency, as is typical in the
modern dielectrics employed in microwave capacitors.
The equivalent impedance of the capacitor at any frequency is:
Eq. 7.Zs = 1
sCp + 1
Rs + sLs + 1/s
Cs
where s = j2f, f = frequency
Series and Parallel Resonance
Ideally, the impedance magnitude of a series mounted
capacitor will vary monotonically from infinite at dc to zero at
infinite frequency. However, the parasitics associated with
any capacitor result in a nonideal response.
Figure 9 shows the magnitude, :Z (F):, as a function of
frequency.
Figure 10 shows Z(f) on the Smith Chart, which includes
magnitude and phase.
Eq. 8. In general, an impedance is represented by Z=R + j X.
The Smith Chart maps the entire impedance half plane for
R > 0 into the interior of a unit circle. The Smith Chart is a
mapping of the reflection coefficient, S11, of an impedance.
S11 = (Z- ZO) / (Z + ZO). ZO is a reference impedance, typ-
ically 50 ohms, and is in the center of the chart. The central
horizontal axis is for X = O, with R < 50 to the left of center,
and R > 50 to the right of center.
Figures 9 and 10 also show the point of series resonance (LS
in series with C), and parallel resonance (LS in parallel with
CP).
Figure 9. SLC Impedance Magnitude vs. Frequency
Figure 10. SLC Impedance on Smith Chart
Because there is always some parasitic inductance associat-
ed with capacitors, there will be a frequency at which the
inductive reactance will equal that of the capacitor. This is
known as the series resonant frequency (SRF). At the SRF,
the capacitor will appear as a small resistor (RS). The trans-
mission loss through a series mounted capacitor at its series
resonant frequency will be low.
At frequencies above the SRF, the capacitor begins to act
like an inductor.
When used as a DC block, the capacitor will begin to exhib-
it gradually higher insertion loss above the SRF. In other
words, the capacitor will cause a high frequency rolloff of its
transmission amplitude response.
When used as an RF bypass, as for the source of an FET, the
inductance will cause the FET to become unstable which can
cause oscillations or undesirable effects on the gain
response of the FET amplifier.
Beyond the SRF, there is a frequency called the parallel
resonant frequency (PRF). This occurs when the reactance of
the series inductor equals that of the parallel capacitor.
SERIES RESONANCE
PARALLEL
RESONANCE
COORDINATES IN OHMS
FREQUENCY IN GHz
500250150100
50
25
10
0
j10
j25
j50
-j10
-j25
-j50
j100
j150
j250
-j100
-j150
-j250
INDUCTIVE
CAPACITIVE
RS
RS
LS
S
P
Z ()
RS QP2
RS QP2
___
1
CP
___
1
C
CR
S
CP
LS
Introduction to
Microwave Capacitors
Electrical Model
104
9
At this parallel resonant frequency, the capacitor will appear
as a large resister whose value is RPRF defined as:
Eq. 9. RPRF = Rs x QPX QP; where, QP= 1/RS
WP/CP
WP= 2fPRF
The parasitic parallel capacitance is usually very small which
results in a parallel resonant frequency that is much higher
than the series resonance.
For capacitor usage in RF impedance matching and tuning
applications, the maximum practical frequency for use is up
to 0.5 times the SRF.
For DC filtering and RF shorting applications, best perfor-
mance is obtained near the SRF.
At frequencies above the SRF, but below the PRF, the SLC
can be used as a low loss inductor with a built-in DC block
for bypassing and decoupling.
The series resonant frequency (SRF) of an SLC can be
measured by mounting the capacitor in series on a 50 ohm
transmission line as shown in Figure 11.
Figure 11
At its series resonant frequency (SRF), the SLC will appear as
a small resistance. This measurement can be performed with
a vector network analyzer such as the Hewlett Packard
8510. The SRF is at the frequency for which the phase of the
input reflection coefficient, S11, is crossing the real axis on
the Smith Chart at 180 degrees.
The resonant frequency will be lowered by the inductance
associated with the bonding attachment to the capacitor
(i.e., bonding wires, ribbons, leads, etc.). The actual resonant
frequency of the capacitor by itself can be determined by
taking out the effects of the bonding attachment inductance.
Using the low frequency measurements of the primary
capacitance alone, the inductance of the capacitor can be
derived from the resonant frequency. With AVX SLC’s, the
inductance is low enough so that the practical operating fre-
quencies achieved can be beyond 20 GHz.
Equivalent Series Resistance
The equivalent series resistance is the RS in the electrical
model. At the SRF, the ESR can be readily determined on the
Smith Chart display of the capacitor’s impedance. However,
the ESR is not necessarily constant with frequency and its
value is typically determined by an insertion loss measure-
ment of the capacitor at the desired frequency.
The insertion loss is a combination of reflective and absorp-
tive components. The absorptive component is the part
associated with the value of the ESR (i.e., the loss in RS).
Because of the low values of ESR in microwave capacitors
(on the order of 0.01 ohm), the insertion loss measurement
is very difficult to make, but can be made with a test fixture
similar to that shown in Figure 11, but with the input and out-
put 50 ohm impedances transformed down to some more
convenient impedance level, Rref, to obtain a more accurate
measurement.
When used as a DC block in the transmission line test fixture,
the forward transmission coefficient, S21, and the input
reflection coefficient, S11, can be measured to determine:
Eq. 10. Dissipative Loss.
DL=(1-:S11:^2)/(:S21:^2)
Eq. 11. Reflection Loss.
RL=(1-:S11:^2) where S11 and S21 are expressed
as complex phasors.
From the dissipative loss, DL, the ESR can be determined
as:
Eq. 12. ESR = Rref * [1 - SQRT(DL)]/[1 + SQRT(DL)]
The ESR typically increases with operating temperature and
self-heating under high power. This increase can be seen
directly in the lab by measuring the insertion loss of the
capacitor as a function of temperature.
A low ESR is especially necessary in SLC’s when used in
series with transistors in low noise amplifiers, high gain
amplifiers, or high power amplifiers. For example, an ESR of
1 ohm in series with a base input impedance of 1 ohm would
result in a serious compromise in ampIifier gain and noise
figure by up to 3 dB.
Power Rating
The RF power rating of chip capacitors is dependent on:
• Thermal Breakdown
• Voltage Breakdown
Thermal Breakdown
Thermal breakdown is self-heating caused by RF power dis-
sipated in the capacitor.
If the resultant heat generated is greater than what can be
conducted away through the leads or other means of heat
sinking, the capacitor temperature will rise.
CHIP CAPACITOR
50 ohm
LINE
50 ohm
LINE
Introduction to
Microwave Capacitors
Electrical Model
105
9
As the capacitor temperature increases, the dissipation fac-
tor and ESR of the capacitor also increase which creates a
thermal runaway situation.
The small signal insertion loss is used to determine the per-
centage of power which is dissipated in the capacitor.
For instance, if the insertion loss is:
0.01 dB then .2% of the incident power is lost as heat
0.10 dB then 2% of the incident power is lost as heat
1.00 dB then 20% of the incident power is lost as heat
The capacitor will heat up according to the amount of power
dissipated in the capacitor and the heat sinking provided.
Even very low ESR, 0.01 ohm at 1 GHz, can be significant
when passing power through a series mounted capacitor
into a typically low impedance bipolar transistor base input
with an input impedance of only 1 ohm. If 1% of 10 watts is
dissipated in the capacitor, this 100 milliwatt of power causes
a very large increase in the capacitor temperature dependent
on its heat sinking in the MIC circuit.
Voltage Breakdown
The voltage breakdown also limits the maximum power
handling capability of the capacitor.
The voltage breakdown properties of the capacitors is
dependent on the following:
• dielectric material
• voids in the material
• form factor
• separation of the electrodes
Most microwave capacitors have a DC voltage rating of 50
VDC. This is much greater than typical DC voltages of 3 to
15 volts present on an MIC circuit.
Dielectric Constant Measurement at
Microwave Frequencies
The measurement of dielectric constants at low frequencies
is easily done by measuring the capacitance of a substrate
of known dimensions and calculating the dielectric constant.
The resonance method is used in measuring dielectric
constants at microwave frequencies of metallized ceramic
substrates. This is based on the model of the high dielectric
constant substrate as a parallel plate dielectrically loaded
waveguide resonator. By observing the resonant frequencies
and knowing the dimensions of the substrate, the dielectric
constant is calculated by fitting the resonances into a table
of expected fundamental and higher order modes. This
method can be measured by connecting the corners of the
substrates to the center conductors of either an APC-7 or
Type N connector. The test setup is the same as for insertion
loss measurements. This method as described in the litera-
ture for an alumina substrate with a dielectric constant of
approximately 10 and a substrate height of 0.025 inches can
be measured to an accuracy of 2%. The Napoli-Hughes
Method uses an open circuit assumption for the unmetallized
edges which can be radiative. This inaccuracy is reduced if
thinner substrates or if higher dielectric constant substrates
are used which will tend to reduce radiation. Higher accuracy
can be achieved by metallizing all six sides of the substrate
except for the corners where the RF is coupled to the sub-
strate. This method as reported by Howell provided more
consistent results.
m = 2
m = 1
m = 0
n = 1 2 3 4
2f0
2L
W
___ f0
W
___ f0
L
f0
AUTO
TESTER DETECTOR
FROM
SWEEP
GENERATOR
SCALAR
ANALYZER
Figure 12
Dispersion Curve of a Rectangular Resonator
Figure 13
Test Configuration for Resonance Measurements
Introduction to
Microwave Capacitors
Electrical Model
106
9
Introduction to
Microwave Capacitors
Transmission Lines
Propagation Constant and
Characteristic Impedance
The incident waves of voltage and current decrease in mag-
nitude and vary in phase as one goes toward the receiving
end of the transmission line which has losses. The propaga-
tion constant is a measure of the phase shift and attenuation
along the line.
attenuation per unit length of line is called the attenuation
constant. (dB or nepers per unit length)
• phase constant, phase shift per unit length. (radians per
unit length)
• angular frequency, 2 * pi * f
(R+jwL) - complex series impedance per unit length of line.
(G+jwC) - complex shunt admittance per unit length of line.
Eq. 13. Z0for lossless case: Z0=
Figure 14
This figure shows generation of standing waves on a short-
ed transmission line. Dotted lines to the right of the short cir-
cuit represent the distance the wave would have traveled in
absence of the short. Dotted vectors represent the reflected
wave. The heavy solid line represents the vector sum of the
incident and refected waves. (d) and (e) represent instanta-
neous voltages and currents at different intervals of time.
Standing Waves
Standing waves on the lossless transmission line:
An incident wave will not be reflected if the transmission line
is terminated in either matched load or if the transmission line
is infinitely long. Otherwise, reflected waves will be present.
In other words, any impedance will cause reflections.
Let us consider the case of a lossless transmission line ter-
minated in a short line. In this case all of the incident wave
will be reflected. See Figure 15.
The dotted sine wave to the right of the short circuit in the
diagram indicates the position and distance the wave would
have traveled in the absence of the short circuit. With the
short circuit placed at X, the wave travels the same distance
back toward the generator. In order to satisfy the boundary
conditions, the voltage at the short circuit must be zero at all
times. This is accomplished by a reflected wave which is
equal in magnitude and reversed in polarity (shown by the
superimposed reflected wave and the resultant total voltage
on the line). Note that the total voltage is twice the amplitude
of the incident voltage at a quarter wavelength back toward
the generator and the total voltage is zero at one-half wave-
length from the short.
Figure 15
Figure 16
V
I
X
DISTANCE ALONG LINE
PURE TRAVELING WAVE
AMPLITUDE
V = Instantaneous voltage
I = Instantaneous current
Pure traveling waves: V & I in the lossless case are in phase.
V & I also reverse polarity every half wavelength.
+
-
rxlx
gxcx
x
DISTRIBUTED PARAMETER MODEL
OF A SECTION OF TRANSMISSION LINES:
X
G = Conductance per unit length
R = Resistance per unit length
C = Capacitance per unit length
L = Inductance per unit length
= Incremental length
where
11
12
10
E1
Ei
E1
Er
2Ei
1 3
3
3
2
2
2 4
4
2
2
31
1
3
4
4
3
2
D
X
WAVE CIRCUIT
(a)
(b)
(c)
(d) (e)
RESULTANT
RESULTANT
SHORT
SHORT
SHORT
7
6
5
4
3
2
1
1
2
3
4
5
6
7
1
2
3
4
5
6
7
7
6
5
4
3
2
1
2E1
5
6
LC
107
9
Introduction to
Microwave Capacitors
Transmission Lines
Figure 17
Figure 18
The total voltage pattern is called a standing wave. Standing
waves exist as the result of two waves of the same frequency
traveling in opposite directions on a transmission line.
The total voltage at any instant has a sine wave distribution
along the line with zero voltage at the short and zero points at
half wave intervals from the short circuit. The points of zero
voltages are called voltage nodes and the points of maximum
voltage halfway between these nodes are called antinodes.
Open Circuit:
At a distance of one-quarter wavelength from the short, the
voltage is found to be twice the amplitude of the incident
voltage, which is equivalent to an open circuit. Therefore, this
same distribution would be obtained if an open circuit were
placed a quarter wavelength from the short. In the case the
first node is located a quarter wavelength from the open and
the first antinode is right as the open. The node-to-node
spacing remains half wavelength as is the antinode-to-antinode
spacing.
Voltage Standing Wave Ratio:
The voltage standing wave ratio is defined as the ratio of the
maximum voltage to the minimum voltage on a transmission
line. This ratio is most frequently referred to as VSWR (Viswar).
Eq. 14. VSWR = Emax =Ei+ Er=1 + Rho
Emin Ei- Er1 - Rho
where Rho = reflective coefficient
If the transmission line is terminated in a short or open circuit,
the reflected voltage, Er, is equal to the incident voltage, Ei.
From the above equation the reflection coefficient is 1.0, and
the VSWR is infinite. If a matched termination is connected to
the line, the reflected wave is zero, the reflection coefficient is
zero, and the VSWR is zero.
TWO
WIRE
MICROSTRIP
COAXIAL
RECTANGULAR
WAVEGUIDE
RIDGED
WAVEGUIDE
CIRCULAR
WAVEGUIDE
CROSS SECTIONAL CONFIGURATIONS OF
VARIOUS TYPES OF GUIDING STRUCTURES
FIELD ORIENTATION OF A COAXIAL LINE
DIRECTION OF PROPAGATION
IEH
V
±
108
9
Microwave Integrated Circuit Hybrids
A Microwave Integrated Circuit Hybrid (MIC) is a microwave
circuit that uses integrated circuit production techniques
involving such factors as thin or thick films, substrates,
dielectrics, conductors, resistors, and microstrip lines, to
build passive assemblies on a dielectric. Active elements
such as microwave diodes and transistors are usually added
after photo resist, masking, etching, and deposition process-
es have been completed. MICs usually are enclosed as
shielded microstrip to prevent electromagnetic interference
with other components or systems. This section will discuss
some of the important characteristics of MICs, such as:
• MIC substrates
• MIC metallization
• MIC components
MIC Substrates:
Microstrip employs circuitry that is large compared to the
wavelength of the frequency used with the circuit. For this
reason, the etched metal patterns often are distributed cir-
cuits with transmission lines etched directly onto the MIC
substrate. Figure 19 shows the pertinent dimensional para-
meters for a microstrip transmission line.
For the current discussion we are most interested in the high-
er microwave frequencies. The MIC circuit design requires a
uniform and predictable substrate characteristic. Several
types of substrates in common usage are: alumina, sapphire,
quartz, and beryllium oxide. Key requirements for a MIC sub-
strate are that it have:
• Low dielectric loss
• Uniform dielectric constant
• Smooth finish
• Low expansion coefficient
Figure 19. MIC Microstrip Outline
The characteristic impedance of the microstrip line is depen-
dent primarily on the following:
Width of the conductor: Increase in the width “W” of the
conductor will decrease the ZO of the microstrip line.
Height of the substrate: Increase in the height “H” of the
substrate will increase the ZO of the microstrip line.
Dielectric Constant: Increase of the dielectric constant of
the substrate will decrease the ZO of the microstrip line.
Table II shows a brief listing of substrate properties.
Table II
The dependence of ZO to the above parameters is as shown:
Eq. 15. ZO(f) = 377 * H/(W)/Sqrt (Er)
where, H = height of the substrate
W = width of the microstrip
conductor
Er = dielectric constant of the
substrate
A graph of ZO versus W/H for several values of dielectric
constants is shown below:
Figure 20
The most popular substrate material is alumina which has a
dielectric constant of between 9.6 and 10.0 depending on
the vendor and the purity. Other substrates are used where
the specified unique properties of the material (beryllia for
high power, ferrites for magnetic properties) are demanded
by design.
2.3
2.55
4.8
6.8
10
Z0 - MICROSTRIP IMPEDANCE ()
MICROSTRIP W/H
100
5040
3020
.1 .2 .3 .4 .5 12345
7.5 10
1000
500
400
300
200
100
50
40
30
20
10
5
4
3
2
1
STRIP
CONDUCTOR
h
W
DIELECTRIC
GROUND PLANE
Material Alumina Sapphire Quartz Beryllium
Oxide
Relative 9.8* 11.7 3.8 6.6
Dielectric
Constant, Er
Loss 0.0001 0.0001 0.0001 0.0001
Tangent at
10 GHz
Thermal 0.3 0.4 0.01 2.5
Conductivity
K, in W/CM/
Deg. C
*Alumina Erdepends on vendor and purity.
Introduction to
Microwave Capacitors
Incorporation of Capacitors into Microwave Integrated Circuit Hybrids
109
9
MIC Metallization:
MIC metallization is a thin film of two or more layers of met-
als. A base metallization layer is deposited onto the sub-
strate, another layer may be optionally deposited on top of
this, and then a final gold layer is deposited onto the surface.
The base metallization is chosen for its adhesion to the sub-
strate and for compatibility with the next layer.
The base metallization is usually lossy at microwave fre-
quencies. The losses due to this metallization can be kept to
a minimum if its thickness does not exceed one “skin depth”
of the metal.
Skin effect defines a phenomenon at microwave frequencies
where the current travelling along a conductor does not pen-
etrate the conductor but remains on the surface of the con-
ductor. The “skin depth” indicates how far the microwave
current will penetrate into the metal. The “skin depth” is
smaller as the frequency increases.
By keeping the lossy metallization as thin as possible, more
of the microwave current will propagate in the top metalliza-
tion gold layer and loss is minimized.
Typical metallization schemes used in the industry are:
• Chromium-Gold: Cr-Au
• Nichrome-Gold: NiCr-Au
• Chromium-Copper-Gold: Cr-Cu-Au
• Titanium-Tungsten-Gold: TiW-Au
• Others
MIC Components:
Microstrip has advantages over other microwave circuit
topologies in that active semiconductors and passive com-
ponents can easily be incorporated to make active hybrid
circuits. It is possible to mix high and low frequency circuitry
to attain a “system-on-a substrate.”
Passive Components:
On MIC circuits, the passive components are either distrib-
uted or lumped elements. The distributed components are
usually realized by etched patterns on the substrate metal-
lization. The lumped components are capacitors, resistors,
and inductors; and whenever possible components are
derived by etching them directly on the MlC metallization thin
film. Chip components are used when they offer advantages
such as:
• Component values are beyond that realizable by thin film
techniques on the MIC substrates,
• Smaller size is required,
• High power capability is required.
Capacitors, resistors, and inductors are discussed in the
following:
Capacitors:
A lumped capacitor can be realized by the parallel gap
capacitance of an area of metallization on the top of the sub-
strate to the ground plane. Values of capacitance that can be
obtained by this method are usually less than a few pico-
farads. At microwave frequencies if the capacitor size in any
one dimension begins to approach a quarter-wavelength, a
resonance will occur.
Large values of capacitance can be achieved with a dielec-
tric constant between the capacitor plates while maintaining
the small size required for MIC circuits.
Chip capacitors can be fabricated on substrate with a dielec-
tric constant up to 5000. This higher dielectric constant
allows a much smaller size capacitor for a given capacitance
value which is a very desirable feature both from the real
estate aspect and the self-resonance aspect.
Resistors:
MIC resistors are often realized by using a resistive base layer
on the MIC substrate metallization, and by etching the prop-
er pattern to expose the resistive layer in the MIC circuitry.
The exact value of the resistor is determined by:
• resistivity of the resistive base layer, and
• length and width of the resistor.
Thin film resistive base layers are usually the following:
• tantalum nitrite, or
• nickel-chrome (nichrome).
When chip resistors are used, they are mounted and con-
nected in the same way as the chip capacitors.
Inductors:
Inductors are often realized by using narrow etched
microstrip lines which provides inductance on the order of
1 to 5 nanohenrys.
Higher values up to 50 nanohenrys are obtained by etching
a round or square spiral onto the MIC metallization.
Even higher values can be obtained by using wound wire
inductors or chip inductors which are wire coils encased in a
ceramic.
Both types of discrete inductors are attached to the circuit
by the same means as the capacitors.
Introduction to
Microwave Capacitors
Incorporation of Capacitors into Microwave Integrated Circuit Hybrids
110
9
Active components:
The active devices in the MIC circuit can be made of entirely
different materials than the substrates and are usually
attached to the substrates by eutectic soldering or conduc-
tive epoxy.
Typical active devices on MIC circuits are the following:
• GaAs FETs
• Bipolar Transistors
• Schottky Barrier Diodes
• PIN Diodes
• Various other Semiconductors
The active devices can be either in:
• a plastic or ceramic package with metal leads, or
• chip form.
The packaged devices are commonly used at a lower
frequency range than the chip devices since they exhibit
more parasitic circuit elements that limit their performance at
higher frequency.
The advantages of packaged devices are protection of the
devices during transport and mounting, ease of characteri-
zation, and ease of mounting onto the MIC circuit.
Chip Component Attach:
The methods of attachment of the chip components to the
substrate are usually by:
• eutectic solder die attach, and
• epoxy die attach.
1. Eutectic Die Attach
The eutectic die attach method can be used with several
alloys. Eutectic defines the exact alloy combination at which
the solidus to liquidus transition takes place at one particular
temperature. Other combinations have transition states with
wider temperature ranges. For instance, the eutectic tem-
perature for the following alloys are:
Table III
For best results, the eutectic attach is performed under an
inert gas atmosphere, typically nitrogen, to reduce oxidation
at high temperatures. The eutectic must be selected so that
the die attach operations will not interfere with prior solder-
ing operations and itself will not be disturbed by subsequent
process steps. The metallization should be able to undergo
400°C without any blistering or other adhesion degradation.
2. Epoxy Die Attach
The epoxy die attach method uses silver or gold conductive
particles in an epoxy. The epoxy for chip attach on MIC
circuits is a one-part type which cures at temperatures of from
125°C to 200°C. The curing time is a function of temperature.
A cure time of 30 minutes at 150°C is a good compromise for
high reliability and a reasonable cure time.
Chip Components Interconnection:
The chip components are interconnected to the MIC circuit
by means of:
• wire bonding, and
• miniature parallel gap welding.
Introduction to
Microwave Capacitors
Incorporation of Capacitors into Microwave Integrated Circuit Hybrids
Alloy Eutectic Eutectic
Composition Temperature
Gold Germanium 88% Au 12% Ge 356°C
Gold Tin 80% Au 20% Sn 280°C
111
Other Products
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given
herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements
or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not
recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are
typical and may not apply to all applications.
© AVX Corporation
CONNECTORS
2mm Hard-Metric for CompactPCI®
Automotive Connectors
Board to Board Connectors –
SMT and Through-Hole
Card Edge
Compression
Custom Designed Connectors
Customized Backpanel, Racking and
Harnessing Services
DIN 41612 Connectors
FFC/FPC Connectors
Insulation Displacement Connectors
I/O Connectors
Memory Card Connectors
CF, PCMCIA, SD, MMC
MOBOTM, I/O, Board to Board and
Battery Connectors
Press-fit Connectors
Varicon®
Wire to Board, Crimp or IDC
PASSIVES
Capacitors
Multilayer Ceramic
Tantalum
Microwave
Glass
Film
Power Film
Power Ceramic
Ceramic Disc
Trimmer
BestCap™
Resistors
Arrays
Timing Devices
Resonators
Oscillators
Crystals
Filters
EMI
SAW
Dielectric
Thin Film
Inductors
Fuses
Capacitors
Couplers
Baluns
Filters
Integrated Passive
Components
Low Inductance Chip Arrays
Capacitor Arrays
Dual Resonance Chips
Custom IPCs
Voltage Suppressors,
Varistors and Thermistors
Acoustical Piezos
For more information please visit
our website at
http://www.avx.com
A KYOCERA GROUP COMPANY
AVX
RF Microwave/Thin-Film
Products
S-RFMTF00M904-C
Contact:
AVX Myrtle Beach, SC
Corporate Offices
Tel: 843-448-9411
FAX: 843-448-1943
AVX Northwest, WA
Tel: 360-699-8746
FAX: 360-699-8751
AVX North Central, IN
Tel: 317-848-7153
FAX: 317-844-9314
AVX Mid/Pacific, CA
Tel: 510-661-4100
FAX: 510-661-4101
AVX Southwest, AZ
Tel: 602-678-0384
FAX: 602-678-0385
AVX South Central, TX
Tel: 972-669-1223
FAX: 972-669-2090
AVX Southeast, GA
Tel: 404-608-8151
FAX: 770-972-0766
AVX Canada
Tel: 905-238-3151
FAX: 905-238-0319
AVX Limited, England
European Headquarters
Tel: ++44 (0) 1252-770000
FAX: ++44 (0) 1252-770001
AVX/ELCO, England
Tel: ++44 (0) 1638-675000
FAX: ++44 (0) 1638-675002
AVX S.A., France
Tel: ++33 (1) 69-18-46-00
FAX: ++33 (1) 69-28-73-87
AVX GmbH, Germany
Tel: ++49 (0) 8131-9004-0
FAX: ++49 (0) 8131-9004-44
AVX srl, Italy
Tel: ++390 (0)2 614-571
FAX: ++390 (0)2 614-2576
AVX Czech Republic
Tel: ++420 465-358-111
FAX: ++420 465-323-010
A KYOCERA GROUP COMPANY
http://www.avx.com
AVX/Kyocera, Singapore
Asia-Pacific Headquarters
Tel: (65) 6286-7555
FAX: (65) 6488-9880
AVX/Kyocera, Hong Kong
Tel: (852) 2-363-3303
FAX: (852) 2-765-8185
AVX/Kyocera, Korea
Tel: (82) 2-785-6504
FAX: (82) 2-784-5411
AVX/Kyocera, Taiwan
Tel: (886) 2-2698-8778
FAX: (886) 2-2698-8777
AVX/Kyocera, Malaysia
Tel: (60) 4-228-1190
FAX: (60) 4-228-1196
Elco, Japan
Tel: 045-943-2906/7
FAX: 045-943-2910
Kyocera, Japan - AVX
Tel: (81) 75-604-3426
FAX: (81) 75-604-3425
Kyocera, Japan - KDP
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425
AVX/Kyocera, Shanghai, China
Tel: 86-21 6886 1000
FAX: 86-21 6886 1010
AVX/Kyocera, Tianjin, China
Tel: 86-22 2576 0098
FAX: 86-22 2576 0096
USA
EUROPE
ASIA-PACIFIC