C3D03060E VRRM = Silicon Carbide Schottky Diode IF (TC=135C) = Z-Rec Rectifier (R) Q c Features * * * * * * * = 5A 7.6 nC Package 600-Volt Schottky Rectifier Zero Reverse Recovery Current Zero Forward Recovery Voltage High-Frequency Operation Temperature-Independent Switching Behavior Extremely Fast Switching Positive Temperature Coefficient on VF TO-252-2 Benefits * * * * * 600 V Replace Bipolar with Unipolar Rectifiers Essentially No Switching Losses Higher Efficiency Reduction of Heat Sink Requirements Parallel Devices Without Thermal Runaway PIN 1 CASE PIN 2 Applications * * * * Switch Mode Power Supplies (SMPS) Boost diodes in PFC or DC/DC stages Free Wheeling Diodes in Inverter stages AC/DC converters Part Number Package Marking C3D03060E TO-252-2 C3D03060 Maximum Ratings (TC = 25 C unless otherwise specified) Symbol Parameter Unit Test Conditions VRRM Repetitive Peak Reverse Voltage 600 V VRSM Surge Peak Reverse Voltage 600 V VDC DC Blocking Voltage 600 V Continuous Forward Current 11 5 A TC=25C TC=135C TC=158C 18 13.5 A TC=25C, tP=10 mS, Half Sine Wave D=0.3 TC=110C, tP=10 mS, Half Sine Wave D=0.3 IF 1 Value 3 IFRM Repetitive Peak Forward Surge Current IFSM Non-Repetitive Peak Forward Surge Current 26 23 A TC=25C, tP=10 mS, Half Sine Wave D=0.3 TC=110C, tP=10 mS, Half Sine Wave D=0.3 IFSM Non-Repetitive Peak Forward Surge Current 100 A TC=25C, tP=10 S, Pulse Ptot Power Dissipation 47 20 W TC=25C TC=110C 200 V/ns VR=0-600V -55 to +175 C dV/dt Diode dV/dt ruggedness TJ , Tstg Operating Junction and Storage Temperature C3D03060E Rev. 5, 10-2020 Note Fig. 3 Fig. 4 Electrical Characteristics Symbol Parameter Typ. Max. Unit VF Forward Voltage 1.5 1.8 1.7 2.4 V IR Reverse Current 4 8 20 80 QC Total Capacitive Charge C EC Test Conditions Note IF = 3 A TJ=25C IF = 3 A TJ=175C Fig. 1 A VR = 600 V TJ=25C VR = 600 V TJ=175C Fig. 2 7.6 nC VR = 400 V, IF = 3A di/dt = 500 A/S TJ = 25C Fig. 5 Total Capacitance 166 14 11 pF VR = 0 V, TJ = 25C, f = 1 MHz VR = 200 V, TJ = 25C, f = 1 MHz VR = 400 V, TJ = 25C, f = 1 MHz Fig. 6 Capacitance Stored Energy 1.1 J VR = 400 V Fig. 7 Note: This is a majority carrier diode, so there is no reverse recovery charge. Thermal Characteristics Symbol RJC Parameter Typ. Unit Note 3.2 C/W Fig. 8 Thermal Resistance from Junction to Case Typical Performance 100 10 TJ = -55 C Reverse Leakage ICurrent, (mA) IRR (uA) TJ = 25 C TJ = 75 C 6 TJ = 125 C 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 FowardVFVoltage, (V) VF (V) Figure 1. Forward Characteristics 2 80 TJ = 175 C 60 TJ = 125 C TJ = 75 C R TJ = 175 C F Foward I Current, (A) IF (A) 8 C3D03060E Rev. 5, 10-2020 3.5 4.0 40 TJ = 25 C TJ = -55 C 20 0 0 200 400 600 800 (V) VR (V) ReverseVVoltage, R Figure 2. Reverse Characteristics 1000 1200 Typical Performance 40 50 10% Duty 20% Duty 30% Duty 50% Duty 70% Duty DC 35 25 40 35 PTot (W) IF(peak) (A) 30 45 20 15 30 25 20 15 10 10 5 5 0 25 50 75 100 125 150 0 175 25 50 75 TC C 175 Conditions: TJ = 25 C Ftest = 1 MHz Vtest = 25 mV 160 140 Capacitance C (pF) (pF) 8 6 C CapacitiveQCharge, (nC) QC (nC) 180 4 120 100 80 60 40 2 20 0 0 0 100 200 300 400 500 600 700 (V) VR (V) ReverseVVoltage, R Figure 5. Total Capacitance Charge vs. Reverse Voltage 3 150 Figure 4. Power Derating Conditions: TJ = 25 C 10 125 TC C Figure 3. Current Derating 12 100 C3D03060E Rev. 5, 10-2020 0 1 10 100 (V) VR (V) ReverseVVoltage, R Figure 6. Capacitance vs. Reverse Voltage 1000 Typical Performance 3 2 1.5 C Capacitance StoredE Energy, (mJ) EC (J) 2.5 1 0.5 0 0 100 200 300 400 500 600 700 Reverse V Voltage, (V) VR (V) R Thermal Resistance (C/W) Figure 7. Capacitance Stored Energy 0.5 1 0.3 0.1 100E-3 0.05 0.02 0.01 SinglePulse 10E-3 1E-6 10E-6 100E-6 1E-3 T (Sec) 10E-3 Figure 8. Transient Thermal Impedance 4 C3D03060E Rev. 5, 10-2020 100E-3 1 Package Dimensions Package TO-252-2 SYMBOL MILLIMETERS MIN MAX A 2.159 2.413 A1 0 0.13 b 0.64 0.89 b2 0.653 1.143 b3 5.004 5.6 c 0.457 0.61 c2 0.457 0.864 D 5.867 6.248 D1 5.21 - E 6.35 6.73 E1 4.32 - e Tjb June 2015 MX+DI+PSI 4.58 BSC H 9.65 10.414 L 1.106 1.78 L2 0.51 BSC L3 0.889 1.27 L4 0.64 1.01 0 8 Recommended Solder Pad Layout TO-252-2 Part Number Package Marking C3D03060E TO-252-2 C3D03060 Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering 5 C3D03060E Rev. 5, 10-2020 Diode Model Diode Model CSD10060 VfVfT T==VTV+T+If*R If*RT T V -3 -3) 0.96+(T * -1.1*10 VTT==0.92 + (Tj * J-1.35*10 ) -4 -3 R 0.145+(T J* 9.5*10 RT =0.052 + (T * 0.29*10 ) ) T= j Note: Tj = Diode Junction Temperature In Degrees Celsius, valid from 25C to 175C VT RT Notes * RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfpseed representative or from the Product Ecology section of our website at http:// www.wolfspeed.com/Power/Tools-and-Support/Product-Ecology. * REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. * This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems. Related Links * * * Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products#SiCSchottkyDiodes Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2 SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i Copyright (c) 2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 6 C3D03060E Rev. 5, 10-2020 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power