H04-004-03
22
MS6M 0741 3
1. Package Outline Drawing ᄖᒻ࿑
P:The details of terminals
P
47
05
㧺㧝
)
Notes
.غߪℂ⺰ኸᴺࠍ␜ߔޕ
2.┵ሶ㩕㩩㨹㩋ߪᩮరኸᴺߣߔࠆޕ
3.㧔ޓ㧕ౝኸᴺߪޔෳ⠨୯ߣߔࠆޕ
4.┵ሶ㧦㊄߼ߞ߈(┵ᢿ㕙ߪ㩜㨹㩁㩤)
"غ" means theoretical dimensions.
The dimensions of the terminals are defined at the bottom.
The dimensions in ( ) means referential values.
Terminals:Gold plating
㨁㨃
Dimensions in mm
Lot No.
Indication of Lot No.
Odered No. in monthly
Manufactured month
Last digit of manufactured year
(Jan.Sep.:㨪9,Oct.:O,Nov.:N,Dec.:D)
㧺㧞
Package type : P69
6MBP5RA20
5A 200V JAPAN O
H04-004-03
22
MS6M 0741 4
2Pin Descriptions
Main circuit
Description
Positive input supply voltage.
Output (U).
Output (V).
Output (W).
(For connection an external shunt-resistor)
Negative input supply voltage.
Control circuit
Symbol Description
GNDU High side ground (U).
VinU Logic input for IGBT gate drive (U).
VccU High side supply voltage (U).
GNDV High side ground (V).
VinV Logic input for IGBT gate drive (V).
VccV High side supply voltage (V).
GNDW High side ground (W).
VinW Logic input for IGBT gate drive (W).
VccW High side supply voltage (W).
GND Low side ground.
Vcc Low side supply voltage.
VinX Logic input for IGBT gate drive (X).
VinY Logic input for IGBT gate drive (Y).
㽿VinZ Logic input for IGBT gate drive (Z).
ALM Low side alarm signal output.
N2
W
N
Symbol
P
U
V
H04-004-03
22
MS6M 0741 5
3. Block Diagram
Pre-drover2 includes following functions.
(N-side)
. Amplifier for driver
2. Under voltage lockout circuit
3. IGBT chip over heating protection
4. Over current protection
5. Alarm signal output
Pre-drover includes following functions.
(P-side)
. Amplifier for driver
2. Under voltage lockout circuit
3. IGBT chip over heating protection
P
U
V
W
N1
N2
GND
ALM
㽿VinZ
VinY
VinX
Vcc
VccU
VinU
GNDU
VccV
VinV
GNDV
VccW
VinW
GNDW
RALM
1.5k
R1
6.75m
Pre-driver
Vcc
IN
OH
SGND
OUT
GND
Pre-driver
Vcc
IN
OH
SGND
OUT
GND
Pre-driver
Vcc
IN
OH
SGND
OUT
GND
Pre-driver2
Vcc
INX
INY
INZ
OHX
SGNDX
OUTX
OHY
SGNDY
OUTY
OHZ
SGNDZ
OUTZ
GND
ALM
PGND
OC
P
U
V
W
N1
N2
GND
ALM
㽿VinZ
VinY
VinX
Vcc
VccU
VinU
GNDU
VccV
VinV
GNDV
VccW
VinW
GNDW
RALM
1.5k
R1
6.75m
Pre-driver
Vcc
IN
OH
SGND
OUT
GND
Pre-driver
Vcc
IN
OH
SGND
OUT
GND
Pre-driver
Vcc
IN
OH
SGND
OUT
GND
Pre-driver2
Vcc
INX
INY
INZ
OHX
SGNDX
OUTX
OHY
SGNDY
OUTY
OHZ
SGNDZ
OUTZ
GND
ALM
PGND
OC
H04-004-03
22
MS6M 0741 6
4Absolute Maximum Ratings
Tc25 unless otherwise specified.
Symbol Min. Max. Units
Bus Voltage DC VDC 0 900 V
(between terminal P and N) Surge VDC(surge) 0 1000 V
Short operating Vsc 400 800 V
Collector-Emitter Voltage *1 Vces 0 1200 V
DC Ic - 15 A
1ms Icp - 30 A
Duty=78% *2 -Ic - 15 A
One transistor *3 Pc - 92 W
Supply Voltage of Pre-Driver *4 Vcc -0.5 20 V
Input Signal Voltage *5 Vin -0.5 Vcc+0.5 V
Input Signal Current Iin - 1 mA
Alarm Signal Voltage *6 VALM -0.5 Vcc V
Alarm Signal Current *7 ALM - 20 mA
Junction Temperature Tj - 150
Operating Case Temperature Topr -20 100
Storage Temperature Tstg -40 125
Solder Temperature *8 Tsol - 260
Isolating Voltage
(Terminal to base, 50/60Hz sine wave 1min.)
Screw Torque Mounting(M4)--2.0Nm
Note
*1 Vces shall be applied to the input voltage between terminal P and U or or W ,N and U or V or W.
*2 Duty=125/FWD Rth(j-c)/(Ic×VF MAX)=125/3.46/(15×3.1)×100=78%
*3 Pc=125/IGBT Rth(j-c)=125/1.36=92W
*4 VCC shall be applied to the input voltage between terminal No.3 and 1,6 and 4, 9 and 7,
11 and 10.
*5 V䌩䌮 shall be applied to the input voltage between terminal No.2 and 1, 5 and 4, 8 and 7,
12,13,14 and 10.
*6 䋺䌖
shall be applied to the voltage between terminal No.15 and 10.
*7 䋺䌉
shall be applied to the input current to terminal No.15.
*8 Immersion time 101sec
V
Items
Viso - AC2500
Collector Current
Collector Power Dissipation
H04-004-03
22
MS6M 0741 7
5. Electrical Characteristics
Tj25㷄䋬Vcc15V unless otherwise specified.
5.1 Main circuit
Symbol Min. Typ. Max. Units
䌃䌅1200V
Vin terminal open.
Terminal - - 2.8
Chip - 2.3 - V
Terminal - - 3.1
Chip - 2.3 - V
Turn-on time ton VDC600VTj=1251.2 - -
Turn-off time toff Ic15AFig.1Fig.6 - - 3.6 us
trr VDC600V
IF15A Fig.1Fig.6
5.2 Control circuit
Symbol Min. Typ. Max. Units
Supply current Switching Frequency
Supply current Iccn Tc-20100 Fig.7
ON 1.0 1.35 1.7
OFF 1.25 1.6 1.95
Input Zener Voltage Vz Rin20kȍ-8.0- V
Tc-201.1 - -
Alarm Signal Hold Time tALM Tc25-2.0-ms
Tc125--4.0
Current Limit Resistor RALM Alarm terminal 1425 1500 1575 ȍ
Shunt-Resistor for Between terminal
over current sense N1 and N2 -mȍ
Collector Current
at off signal input
Collector-Emitter
saturation voltage
Forward voltage of FWD
䌉䌣䋽15A
-䌉䌣䋽15A
Fig.2
R1 - 6.75
: 06kHz
Vin(th)
Item Conditions
Item Conditions
Reverse recovery time
ICES
VCE䋨䌳䌡䌴䋩
VF
9
0.8 - 28
mA
Input signal threshold voltage
of N-side pre-driver
of P-side pre-driver (one unit) Iccp
V
mA
mA0.5 -
0.3--
--1.0
H04-004-03
22
MS6M 0741 8
5.3 Protection Section Vcc䋽䋱䋵䌖䋩
Symbol Conditions Min. Typ. Max. Units
Over Current Protection Level Ioc Tj=12523 - - A
of Inverter circuit
Over Current Protection Delay time tdoc Tj=125-5-us
IGBT Chips Over Heating TjOH Surface 150 - -
Protection Temperature Level ofIGBT Chips
Over Heating Protection Hysteresis TjH - 20 -
Under Voltage Protection Level VUV 11.1 11.7 12.4 V
Under Voltage Protection Hysteresis VH 0.2 0.5 0.8
6. Thermal Characteristics 䋨䌔䌣䋽䋲䋵㷄䋩
Item Symbol Min. Typ. Max. Units
Junction to Case IGBT Rth(j-c) - - 1.36
Thermal Resistance *9 FWD Rth(j-c) - - 3.46
Case to Fin Thermal Resistance with Compound Rth(c-f) - 0.05 -
*9:(For 1device, Case is under the device)
7. Noise Immunity Vdc=600VVcc=15VTest Circuit Fig 5.
Item Conditions Min. Typ. Max. Units
Common mode Pulse width 1us,polarity ±,10 minutes ±2.0 - - kV
rectangular noise Judgeno over-current, no miss operating
Common mode Rise time 1.2us,Fall time 50us Interval 20s,10 times ±5.0 - - kV
lightning surge Judgeno over-current, no miss operating
8. Recommended Operating Conditions
Item Symbol Min. Typ. Max. Units
DC Bus Voltage VDC - - 800 V
Power Supply Voltage of Pre-Driver Vcc 13.5 15.0 16.5 V
Screw Torque (M4) - 1.3 - 1.7 Nm
9. Weight
Item Symbol Min. Typ. Max. Units
Weight Wt - 85 - g
Item
/W
H04-004-03
22
MS6M 0741 9
Figure 1. Switching Time Waveform Definitions
Figure 2. Input/Output Timing Diagram
Figure 3. Over-current Protection Timing Diagram
䋹䋰
䌏䌮
䌴䌯䌮
䌖䌩䌮
䌉䌣
䌴䌲
䌖䌩䌮䋨䌴䌨
䌖䌩䌮䋨䌴䌨
䋹䋰
䋵䋰
䌴䌯ff
1
䋰䋦
/Vin
Vge (Inside IPM)
Fault (Inside IPM)
/ALM
Gate Off
on
Gate On
2ms(typ.)
off
normal
tALM
tALMMax. tALMMax.
off
Fau l t Over-current,Over-heat or Under-voltage
on
ԘԙԚ
alarm
Necessary conditions for alarm reset (refer to to in figure2.)
This represents the case when a failure-causing Fault lasts for a period more than tALM.
The alarm resets when the input Vin is OFF and the Fault has disappeared.
This represents the case when the ON condition of the input Vin lasts for a period more
than tALM. The alarm resets when the Vin turns OFF under no Fault conditions.
This represents the case when the Fault disappears and the Vin turns OFF within tALM.
The alarm resets after lasting for a period of the specified time tALM.
on
/V i n
Ic
/A L M tdoc
Ioc
off
alarm
Ԙ
on
tdoc
ԙ
When a collector current over the OC level flows and the OFF command is input within
a period less than the trip delay time tdoc, the current is hard-interrupted and no alarm
is output.
When a collector current over the OC level flows for a period more than the trip delay
time tdoc, the current is soft-interrupted. If this is detected at the lower arm IGBTs,
an alarm is output.
Period :
Period :
H04-004-03
22
MS6M 0741 10
VccU
DC
15V
+
IPM
P
U
V
W
N
20k
VinU
GNDU
SW1
Vcc
DC
15V
20k
VinX
GND
SW2
Cooling
Fin
Earth
AC200V
4700p
Noise
CT
Figure 5. Noise Test Circuit
AVcc
Vin
GND
Icc P
U
V
W
N
P.G
+8V
fsw
IPM
DC
15V
Figure 7. Icc Test Circuit
Figure.4 Definition of tsc
Ic Ic Ic
IALM IALM
IALM
tSC
Vcc
Vin
GND
DC
5V
DC
300V
N
+
L
IPM
Ic
P
HCPL-
4504
20k
Vcc
Vin
GND
DC
5V
DC
300V
N
+
L
IPM
Ic
P
HCPL-
4504
20k
Figure 6. Switching Characteristics Test Circuit
H04-004-03
22
MS6M 0741 11
Input
(Vin) Alarm Output
(IGBT)
Low High ON
Low Low OFF
High - OFF
10. Truth table
10.1 IGBT Control
The following table shows the IGBT ON/OFF status with respect to the input signal Vin.
The IGBT turn-on when Vin is atLow” level under no alarm condition.
10.2 Fault Detection
(1) When a fault is detected at the high side, only the detected arm stops its output.
At that time the IPM dosen’t any alarm.
(2) When a fault is detected at the low side, all the lower arms stop their outputs and the IPM
outputs an alarm of the low side.
Alarm Output
High side High side High side
(U-phase) (V-phase) (W-phase)
High side UV OFF * * * High
(U-phase) TjOH OFF * * * High
High side UV * OF F * * High
(V-phase) TjOH * OFF * * High
High side UV * * OF F * High
(W-phase) TjOH * * OFF * High
OC * * * OFF Low
UV * * * OFF Low
TjOH * * * OFF Low
*Depend on input logic.
ALM
䌉䌇䌂䌔
Cause
of
Fault
Low side
Low side
H04-004-03
22
MS6M 0741 12
11. Cautions for design and application
1. Trace routing layout should be designed with particular attention to least stray capacity
between the primary and secondary sides of optical isolators by minimizing the wiring
length between the optical isolators and the IPM input terminals as possible.
䊐䉤䊃䉦䊒䊤䈫䌉䌐䌍䈱౉ജ┵ሶ㑆䈱㈩✢䈲ᭂജ⍴䈒䈚䇮䊐䉤䊃䉦䊒䊤䈱৻ᰴ஥䈫ᰴ஥䈱ᶋㆆኈ㊂䉕ዊ䈘䈒䈚䈢
䊌䉺䊷䊮䊧䉟䉝䉡䊃䈮䈚䈩䈘䈇䇯
2. Mount a capacitor between Vcc and GND of each high-speed optical isolator as close to
as possible.
㜞ㅦ䊐䉤䊃䉦䊒䊤䈱Vcc-GND㑆䈮䇮䉮䊮䊂䊮䉰䉕಴᧪䉎䈣䈔ㄭធ䈚䈩ข䉍ઃ䈔䈩䈘䈇䇯
3. For the high-speed optical isolator, use high-CMR type one with tpHL, tpLH 0.8µs.
㜞ㅦ䊐䉤䊃䉦䊒䊤䈲䇮tpHL,tpLH0.8us䇮㜞CMR䉺䉟䊒䉕䈗૶↪䈒䈣䈘䈇䇯
4. For the alarm output circuit, use low-speed type optical isolators with CTR 100%.
䉝䊤䊷䊛಴ജ࿁〝䈲䇮ૐㅦ䊐䉤䊃䉦䊒䊤CTR100%䈱䉺䉟䊒䉕䈗૶↪䈒䈣䈘䈇䇯
5. For the control power Vcc, use four power supplies isolated each. And they should be
designed to reduce the voltage variations.
೙ᓮ㔚ḮVcc䈲䇮⛘✼䈘䉏䈢䋴㔚Ḯ䉕૶↪䈚䈩䈒䈣䈘䈇䇯䉁䈢䇮㔚࿶ᄌേ䉕ᛥ䈋䈢⸳⸘䈫䈚䈩䈘䈇䇯
6. Suppress surge voltages as possible by reducing the inductance between the DC bus P
and N, and connecting some capacitors between the P and N terminals.
P-N㑆䈱⋥ᵹᲣ✢䈲಴᧪䉎䈣䈔ૐ䉟䊮䉻䉪䉺䊮䉴ൻ䈚䇮P-N┵ሶ㑆䈮䉮䊮䊂䊮䉰䉕ធ⛯䈜䉎䈭䈬䈚䈩䉰䊷
㔚࿶䉕ૐ󰶌䈚䈩䈘䈇䇯
7. To prevent noise intrusion from the AC lines, connect a capacitor of some 4700pF between
the three-phase lines each and the ground.
AC䊤䉟䊮䈎䉌䈱䊉䉟䉵ଚ౉䉕㒐䈓䈢䉄䈮䇮䋳⋧ฦ✢䋭䉝䊷䉴㑆䈮䋴䋷䋰䋰䌰䌆⒟䈱䉮䊮䊂䊮䉰䉕ធ⛯䈚䈩䈘䈇䇯
8. At the external circuit, never connect the control terminal GNDU to the main terminal
U-phase, GNDV to V-phase, GNDW to W-phase, and GND to N-phase. Otherwise,
malfunctions may be caused.
೙ᓮ┵ሶ䌇䌎䌄䌕䈫┵ሶ䌕⋧䇮೙ᓮ┵ሶ䌇䌎V䈫┵ሶV⋧䇮೙ᓮ┵ሶ䌇䌎䌄W䈫┵ሶW⋧䇮
೙ᓮ┵ሶ䌇䌎䌄䈫┵ሶN䉕ᄖㇱ࿁〝䈪ធ⛯䈚䈭䈇䈪䈘䈇䇯⺋േ૞䈱ේ࿃䈮䈭䉍䉁䈜䇯
9. Take note that an optical isolator’s response to the primary input signal becomes slow
if a capacitor is connected between the input terminal and GND.
౉ജ┵ሶ-GND㑆䈮䉮䊮䊂䊮䉰䉕ធ⛯䈜䉎䈫䇮䊐䉤䊃䉦䊒䊤৻ᰴ஥౉ജାภ䈮ኻ䈜䉎ᔕ╵ᤨ㑆䈏㐳䈒䈭䉍䉁䈜
䈱䈪䈗ᵈᗧ䈒䈣䈘䈇䇯
10. Taking the used isolator's CTR into account, design with a sufficient allowance to decide
the primary forward current of the optical isolator.
䊐䉤䊃䉦䊒䊤䈱৻ᰴ஥㔚ᵹ䈲䇮䈍૶䈇䈱䊐䉤䊃䉦䊒䊤䈱CTR䉕⠨ᘦ䈚䇮චಽ䈮૛⵨䉕䉅䈦䈢⸳⸘䈮䈚䈩䈘䈇䇯
H04-004-03
22
MS6M 0741 13
+50Ǵm
0
Heat sink
Mounting holes
11. Apply thermal compound to the surfaces between the IPM and its heat sink to reduce
the thermal contact resistance.
ធ⸅ᾲᛶ᛫䉕ዊ䈘䈒䈜䉎䈢䉄䈮䇮䌉䌐䌍䈫䊍䊷䊃䉲䊮䉪䈱㑆䈮䉰䊷䊙䊦䉮䊮䊌䉡䊮䊄䉕ႣᏓ䈚䈩䈘䈇䇯
12. Finish the heat sink surface within roughness of 10µm and flatness (camber) between screw
positions of 0 to +50µm. If the flatness is minus, the heat radiation becomes worse due to
a gap between the heat sink and the IPM. And, if the flatness is over +50µm, there is a danger
that the IPM copper base may be deformed and this may cause a dielectric breakdown.
䊍䊷䊃䉲䊮䉪⴫㕙䈱઀䈕䈲䇮☻䈘10umએ䇮䊈䉳૏⟎㑆䈪䈱ᐔမᐲ䋨෻䉍䋩䈲䇮0+50um䈫䈚䈩䈘䈇䇯ᐔမᐲ䈏䊙
䉟䊅䉴䈱႐ว䇮䊍䊷䊃䉲䊮䉪䈫IPM䈱㑆䈮㓗㑆䈏䈪䈐᡼ᾲ䈏ᖡൻ䈚䈜䇯䉁䈢䇮ᐔမᐲ䈏䋫50umએ䈱႐ว䌉䌐䌍䈱㌃
䍫䍼䍎䍛䈏ᄌᒻ䈚⛘✼⎕უ䉕⿠䈖䈜ෂ㒾ᕈ䈏䈅䉍䉁䈜䇯
13. This product is designed on the assumption that it applies to an inverter use. Sufficient
examination is required when applying to a converter use. Please contact Fuji Electric Co.,Ltd
if you would like to applying to converter use.
ᧄ⵾ຠ䈲䇮䉟䊮䊋䊷䉺↪ㅜ䈻䈱ㆡ↪䉕೨ឭ䈮⸳⸘䈘䉏䈩䈍䉍䉁䈜䇯䉮䊮䊋䊷䉺↪ㅜ䈻ㆡ↪䈘䉏䉎႐ว䈲䇮
චಽ䈭ᬌ⸛䈏ᔅⷐ䈪䈜䇯䉅䈚䇮䉮䊮䊋䊷䉺䈻ㆡ↪䈘䉏䉎႐ว䈲ᓮㅪ⛊䈒䈣䈘䈇䇯
14. There is thermal interference between nearby power devices,because the P619
PKG is a compact package. Therefore you measure the case temperature just
under the IGBT chips that showed in report MT6M04858, and estimate the chip
temperature.
䊌䉾䉬䊷䉳䉕ዊဳൻ䈚䈩䈇䉎䈢䉄䇮䊌䊪䊷⚛ሶ䈱ᾲᐓ󰶅䈏⠨䈋䉌䉏䉁䈜䇯䈠䈱ὑ䇮䉼䉾䊒󰶘ᐲផቯ䈲ᔅ䈝
MT6M04858䈮␜䈜䉼䉾䊒⋥䈱䉬䊷䉴󰶘ᐲ䉕󰶚ቯ䈚䈩ⴕ䈦䈩䈘䈇䇯
15. Please see the䇭䇺Fuji IGBT-IPM R SERIES APPLICATION MANUALRH983 and Fuji IGBT
MODULES N SERIES APPLICATION MANUAL RH982.
䇺ን჻IGBT-IPM R䉲䊥䊷䉵 䉝䊒䊥䉬䊷䉲䊢䊮䊙䊆䊠䉝䊦 RH983䇻෸䈶䇺IGBT䍱䍚䍼䍋䍎 N䉲䊥䊷 䉝䊒䊥䉬䊷䉲䊢
䊙䊆䊠䉝 RH982䇻䉕ᓮෳᾖ䈒䈣䈘䈇䇯
H04-004-03
22
MS6M 0741 14
12. Example of applied circuit ᔕ↪࿁〝଀
13. Package and Marking䇭󰩠൮઀᭽
Please see the MT6M4140 that is packing specification
󰩠൮઀᭽ᦠ 䌍䌔䋶䌍䋴䋱䋴䋰䉕ᓮෳᾖ䈒䈣䈘䈇䇯
14. Cautions for storage and transportation䇭଻▤䇮ㆇ៝䈱ᵈᗧ
Store the modules at the normal temperature and humidity (5 to 35°C, 45 to 75%).
Ᏹ󰶘ᏱḨ(535㷄䇮4575%)䈪଻ሽ䈚䈩䈘䈇䇯
Avoid a sudden change in ambient temperature to prevent condensation on the module
surfaces.
䊝䉳䊠䊷䊦䈱⴫㕙䈏⚿㔺䈚䈭䈇䉋䈉䇮ᕆỗ䈭󰶘ᐲᄌൻ䉕ㆱ䈔䈩䈘䈇䇯
Avoid places where corrosive gas generates or much dust exists.
⣣㘩ᕈ䉧䉴䈱⊒↢႐ᚲ䇮☳Ⴒ䈱ᄙ䈇႐ᚲ䈲ㆱ䈔䈩䈘䈇䇯
Store the module terminals under unprocessed conditions
䊝䉳䊠䊷䊦䈱┵ሶ䈲ᧂടᎿ䈱⁁ᘒ䈪଻▤䈜䉎䈖䈫䇯.
Avoid physical shock or falls during the transportation.
ㆇ៝ᤨ䈮ⴣ᠄䉕䈋䈢䉍⪭䈘䈞䈭䈇䈪䈘䈇䇯
15. Scope of application䇭ㆡ↪▸࿐
This specification is applied to the IGBT-IPM (type: 6MBP15RA120).
ᧄ઀᭽ᦠ䈲䇮IGBT-IPM (ဳᑼ䋺6MBP15RA120)䈮ㆡ↪䈜䉎䇯
16. Based safety standards䇭Ḱ᜚቟ోⷙᩰ
UL1557
20k
Opto-Coupler 10µF0.1µF
IF
Vcc
20k
IF
10µF0.1µF
33µF0.1µF
Vcc
3
2
1
6
5
4
9
8
7
11
12
13
14
15
10
IPM
Motor
P
U
V
W
N1
N2
20k
IF
Vcc
20k10µF0.1µF
IF
Vcc
IF
IF
20k
20k
20k
Opto-Coupler 10µF0.1µF
IF
Vcc
20k
Opto-Coupler 10µF0.1µF
IF
Vcc
20k
IF
10µF0.1µF
33µF0.1µF
Vcc
3
2
1
6
5
4
9
8
7
11
12
13
14
15
10
IPM
20k
IF
10µF0.1µF
33µF0.1µF
Vcc
3
2
1
6
5
4
9
8
7
11
12
13
14
15
10
IPM
Motor
P
U
V
W
N1
N2
20k
IF
Vcc
Motor
P
U
V
W
N1
N2
20k
IF
Vcc
20k10µF0.1µF
IF
Vcc
IF
IF
20k
20k
H04-004-03
22
MS6M 0741
7.Characteristics
․ᕈ
7-.Inverter
ࠗࡦࡃ࡯࠲ㇱ
5
0
5
10
15
20
0 0.5 1 1.5 2 2.5 3 3.5
Collector current vs. Collector-Emitter voltage (typ.)
Tj=125°C / Terminal
Vcc=13V
Vcc=15V
Vcc=17V
Collector Current : Ic (A)
Collector-Emitter voltage : Vce (V)
0
5
10
15
20
0 0.5 1 1.5 2 2.5 3 3.5
Collector current vs. Collector-Emitter voltage (typ.)
Tj=25°C / Terminal
Vcc=13V
Vcc=15V
Vcc=17V
Collector Current : Ic (A)
Collector-Emitter voltage : Vce (V)
0
5
10
15
20
0 0.5 1 1.5 2 2.5 3 3.5
Collector current vs. Collector-Emitter voltage (typ.)
Tj=125°C / Chip
Vcc=13V
Vcc=15V
Vcc=17V
Collector Current : Ic (A)
Collector-Emitter voltage : Vce (V)
0
5
10
15
20
0 0.5 1 1.5 2 2.5 3 3.5
Collector current vs. Collector-Emitter voltage (typ.)
Tj=25°C / Chip
Vcc=13V
Vcc=15V
Vcc=17V
Collector Current : Ic (A)
Collector-Emitter voltage : Vce (V)
0
5
10
15
20
00.511.522.53
Forward current vs. Forward voltage (typ.)
Chip
125°C 25°C
Forward Current : If (A)
Forward voltage : Vf (V)
0
5
10
15
20
00.511.522.53
Forward current vs. Forward voltage (typ.)
Terminal
125°C 25°C
Forward Current : If (A)
Forward voltage : Vf (V)
H04-004-03
22
MS6M 0741 6
0
0.5
1
1.5
2
2.5
3
0 2 4 6 8 10121416
Switching Loss vs. Collector Current (typ.)
Edc=600V,Vcc=15V,Tj=25°C
Eon
Eoff
Err
Switching loss : Eon,Eoff,Err (mJ/cycle)
Collector current : Ic (A)
0
0.5
1
1.5
2
2.5
3
0 2 4 6 8 10121416
Switching Loss vs. Collector Current (typ.)
Edc=600V,Vcc=15V,Tj=125°C
Eon
Eoff
Err
Switching loss : Eon,Eoff,Err (mJ/cycle)
Collector current : Ic (A)
0
30
60
90
20
50
80
20
0 200 400 600 800 000 200 400
Reversed biased safe operating area
Vcc=5V,Tj҇25(max.)
Collector current : Ic (A)
Collector-Emitter voltage : Vce (V)
SCSOA
(non-repetitive pulse)
RBSOA
(Repetitive pulse)
0.01
0.1
1
10
0.001 0.01 0.1 1
Transient thermal resistance
(max.)
Thermal resistance : Rth(j-c) (°C/W)
Pulse width :Pw (sec)
FWD
IGBT
0
20
40
60
80
100
0 20 40 60 80 100 120 140 160
Power derating for IGBT (per device)
(max.)
Collecter Power Dissipation : Pc (W)
Case Temperature : TcC)
0
10
20
30
40
50
0 20 40 60 80 100 120 140 160
Power derating for FWD (per device)
(max.)
Collecter Power Dissipation : Pc (W)
Case Temperature : Tc (°C)
H04-004-03
22
MS6M 0741
7
10
100
1000
10000
2 4 6 8 10 12 14 16
Switching time vs. Collector current (typ.)
Edc=600V,Vcc=15V,Tj=25°C
Switching time : ton,toff,tf (nSec)
Collector current : Ic (A)
toff
ton
tf
10
100
1000
10000
2 4 6 8 10 12 14 16
Switching time vs. Collector current (typ.)
Edc=600V,Vcc=15V,Tj=125°C
Switching time : ton,toff,tf (nSec)
Collector current : Ic (A)
toff
ton
tf
H04-004-03
22
MS6M 0741 19
Test
cate-
gories
Test items Test methods and conditions
Reference
norms EIAJ
ED-4701
Number
of
sample
Accept-
ance
number
1 Terminal strength Pull force : 40 N (main terminal) Test Method 401 5 ( 0 : 1 )
┵ሶᒝᐲ 10 N (control terminal) Method
(Pull test) Test time : 10 ±1 sec.
2 Mounting Strengt
h
Screw torque : 1.3 ~ 1.7 Nm (M4) Test Method 402 5 ( 0 : 1 )
✦ઃ䈔ᒝ Test time : 10 ±1 sec. method
3 Vibration Range of frequency : 10500 Hz Test Method 403 5 ( 0 : 1 )
ᝄേ Sweeping time : 15 min. Condition code B
Acceleration : 100 m/s2
Sweeping direction : Each X,Y,Z axis
Test time : 6 hr. (2hr./direction)
4 Shock Maximum acceleratio
n
:5000 m/s2Test Method 404 5 ( 0 : 1 )
ⴣ᠄ Pulse width 1.0 ms Condition code B
Direction : Each X,Y,Z axis
Test time : 3 times/direction
5 Solderabitlity Solder temp. : 235 ±5 Test Method 303 5( 0 : 1 )
䈲䉖䈣ઃ䈔ᕈ Immersion duration : 5.0 ±0.5 sec. Condition code A
Test time : 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
6 Resistance to Solder temp. : 260 ±5 Test Method 302 5( 0 : 1 )
soldering heat Immersion time : 10 ±1sec. Condition code A
䈲䉖䈣⠴ᾲᕈ Test time : 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
1 High temperature Storage temp. : 125 ±5 Test Method 201 5 ( 0 : 1 )
storage 㜞󰶘଻ሽ Test duration : 1000 hr.
2 Low temperature Storage temp. : -40 ±5 Test Method 202 5 ( 0 : 1 )
storage ૐ󰶘଻ሽ Test duration : 1000 hr.
3 Temperature Storage temp. : 85 ±2 Test Method 103 5 ( 0 : 1 )
humidity storage Relative humidity : 85 ±5% Test code C
㜞󰶘㜞Ḩ଻ሽ Test duration : 1000hr.
4 Unsaturated Test temp. : 120 2Test Method 103 5 ( 0 : 1 )
pressure cooker Atmospheric pressur
e
:1.7x105Pa Test code E
䊒䊧䉾䉲䊞䊷䉪䉾䉦
Test humidity : 85 5%
Test duration : 96 hr.
5 Temperature Test temp. : Minimum storage temp. -40 5Test Method 105 5 ( 0 : 1 )
cycle Maximum storage temp. 125 5
󰶘ᐲ䉰䉟䉪䊦 Normal temp. 5 ~ 35
Dwell time : Tmin ~ TN ~ Tmax ~ TN
1hr. 0.5hr. 1hr. 0.5hr.
Number of cycles : 100 cycles
6 Thermal shock +0 Test Method 307 5 ( 0 : 1 )
ᾲⴣ᠄ Test temp. : High temp. side 100 -
5
method
+5 Condition code A
Low temp. side 0 -
0
Fluid used : Pure water (running water)
Dipping time : 5 min. par each temp.
Transfer time : 10 sec.
Number of cycles : 10 cycles
Mechanical Tests
Environment Tests Mechanical Tests
Environment Tests
18. Reliability Test Items
H04-004-03
22
MS6M 0741 20
Item Characteristic Symbol Failure criteria Unit Note
Lower limit Upper limit
Electrical Leakage current ICES - USL×2 mA
characteristic Saturation voltage VCE(sat) - US1.2 V
Forward voltage VF - USL×1.2 V
Thermal IGBT th(j-c) -USL×1.2
/W
resistance FWD th(j-c) -USL×1.2
/W
Over Current Protection Ioc LS0.8 USL×1.2
Alarm signal hold time tALM LS0.8 USL×1.2 ms
Over heating Protection TcOH LSL×0.8 USL×1.2
Isolation voltage Viso Broken insulation -
Visual Visual inspection
inspection Peeling - The visual sample -
Plating
and the others
LSL : Lower specified limit.
USL : Upper specified limit.
Note :
Each parameter measurement read-outs shall be made after stabilizing the components at room
ambient for 2 hours minimum, 24 hours maximum after removal from the tests. And in case of the
wetting tests, for example, moisture resistance tests, each component shall be made wipe or dry
completely before the measurement.
Test
cate-
gories
Test items Test methods and conditions
Reference norms
EIAJ
ED-4701
Number
of
sample
Accept-
ance
number
1 High temperature Test temp. : Ta = 125 5Test Method 101 5 ( 1 : 0 )
reverse bias
(
T
j
150
)
㜞󰶘ㅒ䍨䍼䍏䍛 Bias Voltage : VC = 0.8×VCES
Bias Method : Applied DC voltage to C-E
Vcc = 15V
Test duration : 1000 hr.
2 Intermitted ON time : 2 sec. Test Method 106 5 ( 1 : 0 )
operating life OFF time : 18 sec.
(Power cycle) Test temp. : Tj=100 ±5deg
ᢿ⛯േ૞ Tj 150 , Ta=25 ±5
Number of cycles : 15000 cycles
Endurance
Tests
Endurance Tests
19. Failure Criteria
H04-004-03
22
MS6M 0741 21
1. This product shall be used within its absolute maximum rating (voltage, current, and temperature).
This product may be broken in case of using beyond the ratings.
⵾ຠ䈱⛘ኻᦨᄢቯᩰ䋨㔚࿶䋬㔚ᵹ䋬󰶘ᐲ╬䋩䈱▸࿐ౝ䈪ᓮ૶↪䈘䈇䇯⛘ኻᦨᄢቯᩰ䉕⿥䈋䈩૶↪䈜䉎䈫䇮⚛ሶ䈏
⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜䇯䇭
2. Connect adequate fuse or protector of circuit between three-phase line and this product to prevent
the equipment from causing secondary destruction.
৻䈱ᘦ䈱᡿䈪⚛ሶ䈏⎕უ䈚䈢႐ว䉕⠨ᘦ䈚䇮໡↪㔚Ḯ䈫ᧄ⵾ຠ䈱㑆䈮ㆡಾ䈭ኈ㊂䈱䊍䊠䊷䉵෶䈲䊑䊧䊷䉦䊷䉕
ᔅ䈝ઃ䈔䈩䋲ᰴ⎕უ䉕㒐䈇䈪䈒䈣䈘䈇䇯
3. When studying the device at a normal turn-off action, make sure that working paths of the turn-off
voltage and current are within the RBSOA specification. And ,when studying the device duty at
a short-circuit current non-repetitive interruption, make sure that the paths are also within the
SCSOAspecification. In case of use of IGBT-IPM over these specifications,it might be possible to
be broken.
ㅢᏱ䈱䉺䊷䊮䉥䊐േ૞䈮䈍䈔䉎⚛ሶ⽿ോ䈱ᬌ⸛䈱㓙䈮䈲䇮䉺䊷䊮䉥䊐㔚࿶䊶㔚ᵹ䈱േ૞゠〔䈏RBSOA઀᭽ౝ䈮䈅䉎
䈖䈫䉕⏕⹺䈚䈩䈘䈇䇯䉁䈢䇮㕖➅㄰䈚䈱⍴⛊㔚ᵹㆤᢿ䈮䈍䈔䉎⚛ሶ⽿ോ䈱ᬌ⸛䈮㓙䈚䈩䈲䇮SCSOA઀᭽ౝ䈪䈅䉎䉕
⏕⹺䈚䈩䈘䈇䇯䈖䉏䉌䈱઀᭽䉕⿧䈋䈩૶↪䈜䉎䈫䇮⚛ሶ䈏⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜
4. Use this product after realizing enough working on environment and considering of product's reliability
life. This product may be broken before target life of the system in case of using beyond the product's
reliability life.
⵾ຠ䈱૶↪ⅣႺ䉕චಽ䈮ᛠី䈚䇮⵾ຠ䈱ା㗬ᕈኼ๮䈏ḩ⿷䈪䈐䉎䈎ᬌ⸛䈱䇮ᧄ⵾ຠ䉕ㆡ↪䈚䈩䈘䈇䇯⵾ຠ䈱ା㗬ᕈ
ኼ๮䉕⿥䈋䈩૶↪䈚䈢႐ว䇮ⵝ⟎䈱⋡ᮡኼ๮䉋䉍೨䈮⚛ሶ䈏⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜
5. If the product had been used in the environment with acid, organic matter, and corrosive gas
(For example : hydrogen sulfide, sulfurous acid gas), the product's performance and appearance
can not be ensured easily.
㉄䊶᦭ᯏ‛䊶⣣㘩ᕈ䉧䉴䋨⎫ൻ᳓⚛䋬⎫㉄䉧䉴╬䋩䉕฽䉃ⅣႺ䈪૶↪䈘䉏䈢႐ว䇮⵾ຠᯏ⢻䊶ᄖⷰ䈭䈬䈱଻⸽
⥌䈚䈎䈰䉁䈜䇯
6. The thermal stress generated from rise and fall of Tj restricts the product lifetime.
You should estimate the Tj from power losses and thermal resistance, and design the inverter lifetime
within the number of cycles provided from the power cycle curve. (Technical Rep. No.: MT6M4057)
⵾ຠ䈱ኼ๮䈲䇮ធว󰶘ᐲ䈱᣹䈫㒠䈮䉋䈦䈩⿠䈖䉎ᾲ䉴䊃䊧䉴䈪᳿䉁䉍䉁䈜䇯៊ᄬ䈫ᾲᛶ᛫䈎䉌ǻTj䉕ផቯ䈚䇮䊌䊪䊷
䉰䉟䉪䊦ኼ๮䉦䊷䊑䈪᳿䉁䉎䉰䉟䉪䊦ᢙએ䈪䇮䉟䊮䊋䊷䉺䈱ኼ๮䉕⸳⸘䈚䈩䈘䈇(ᛛⴚ⾗ᢱʋMT6M4057)
7. Never add mechanical stress to deform the main or control terminal.
The deformed terminal may cause poor contact problem.
┵ሶ෸䈶೙ᓮ┵ሶ䈮ᔕജ䉕䈋䈩ᄌᒻ䈘䈞䈭䈇䈪䈘䈇䇯䇭┵ሶ䈱ᄌᒻ䈮䉋䉍䇮ធ⸅⦟䈭䈬䉕ᒁ䈐⿠䈖䈜႐ว䈏
䈅䉍䉁䈜䇯
8. If excessive static electricity is applied to the control terminals, the devices can be broken.
Implement some countermeasures against static electricity.
೙ᓮ┵ሶ䈮ㆊᄢ䈭㕒㔚᳇䈏ශട䈘䉏䈢႐ว䇮⚛ሶ䈏⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜䇯ข䉍ᛒ䈇ᤨ䈲㕒㔚᳇ኻ╷䉕
ታᣉ䈚䈩䈘䈇䇯
Warnings
H04-004-03
22
MS6M 0741 22
1. Fuji Electric is constantly making every endeavor to improve the product quality and reliability.
However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents
causing injury or death, damage to property like by fire, and other social damage resulted from
a failure or malfunction of the Fuji Electric semiconductor products, take some measures to keep
safety such as redundant design, spread-fire-preventive design, and malfunction-protective design.
ን჻㔚ᯏ䈲⛘䈋䈝⵾ຠ䈱ຠ⾰䈫ା㗬ᕈ䈱ะ䈮ദ䉄䈩䈇䉁䈜䇯䈚䈎䈚䇮ඨዉ૕⵾ຠ䈲᡿㓚䈏⊒↢䈚䈢䉍䇮⺋േ૞䈜
႐ว䈏䈅䉍䉁䈜䇯ን჻㔚ᯏ⵾ඨዉ૕⵾ຠ䈱᡿㓚䉁䈢䈲⺋േ૞䈏䇮⚿ᨐ䈫䈚䈩り᡿䊶Ἣἴ╬䈮䉋䉎⽷↥䈮ኻ䈜䉎
៊ኂ䉇␠ળ⊛䈭៊ኂ䉕⿠䈖䈘䈭䈇䉋䈉䈮౬㐳⸳⸘䊶ᑧ὾㒐ᱛ⸳⸘䊶⺋േ૞㒐ᱛ⸳⸘䈭䈬቟ో⏕଻䈱䈢䉄䈱ᚻᲑ䉕
⻠䈛䈩䈘䈇䇯
2. The application examples described in this specification only explain typical ones that used the Fuji
Electric products. This specification never ensure to enforce the industrial property and other rights,
nor license the enforcement rights.
ᧄ઀᭽ᦠ䈮⸥タ䈚䈩䈅䉎ᔕ↪଀䈲䇮ን჻㔚ᯏ⵾ຠ䉕૶↪䈚䈢ઍ⴫⊛䈭ᔕ↪଀䉕⺑᣿䈜䉎䉅䈱䈪䈅䉍䇮ᧄ઀᭽ᦠ䈮
䉋䈦䈩Ꮏᬺᚲ᦭ᮭ䇮䈠䈱ઁᮭ೑䈱ታᣉ䈮ኻ䈜䉎଻㓚䉁䈢䈲ታᣉᮭ䈱⸵⻌䉕ⴕ䈉䉅䈱䈪䈲䈅䉍䉁䈞䉖䇯
3. The product described in this specification is not designed nor made for being applied to the equipment
or systems used under life-threatening situations. When you consider applying the product of this
specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace
equipment, medical devices, atomic control systems and submarine relaying equipment or systems,
please apply after confirmation of this product to be satisfied about system construction and required
reliability.
ᧄ઀᭽ᦠ䈮⸥タ䈘䉏䈢⵾ຠ䈲䇮๮䈮䈎䈎䉒䉎䉋䈉䈭⁁ᴫ䈪૶↪䈘䉏䉎ᯏེ䈅䉎䈇䈲䉲䉴䊁䊛䈮↪䈇䉌䉏䉎䈖䈫䉕
⋡⊛䈫䈚䈩⸳⸘䊶⵾ㅧ䈘䉏䈢䉅䈱䈪䈲䈅䉍䉁䈞䉖䇯ᧄ઀᭽ᦠ䈱⵾ຠ䉕ゞᯏེ䇮⦁⥾䇮⥶ⓨቝቮ䇮ක≮ᯏེ䇮ේሶജ
೙ᓮ䇮ᶏᐩ⛮ᯏེ䈅䉎䈇䈲䉲䉴䊁䊛䈭䈬䇮․ᱶ↪ㅜ䈻䈱䈗೑↪䉕䈗ᬌ⸛䈱㓙䈲䇮䉲䉴䊁䊛᭴ᚑ෸䈶ⷐ᳞ຠ⾰䈮
ḩ⿷䈜䉎䈖䈫䉕䈗⏕⹺䈱䇮䈗೑↪䈘䈇䇯
Caution
If there is any unclear matter in this specification, please contact Fuji Electric Co., Ltd.