SA303
SA303U 1
P r o d u c t I n n o v a t i o n F r o m
DESCRIPTION
       
designed primarily to drive three-phase Brushless
DC (BLDC) motors. Three independent half bridges
provide over 10 amperes peak output current under
microcontroller or DSC control. Thermal and short cir-
cuit monitoring is provided, which generates fault sig-
nals for the microcontroller to take appropriate action.
A block diagram is provided in Figure 1.
Additionally, cycle-by-cycle current limit offers user
programmable hardware protection independent of the
microcontroller. Output current is measured using an
innovative low loss technique. The SA303 is built using
a multi-technology process allowing CMOS logic con-
trol and complementary DMOS output power devices
on the same IC. Use of P-channel high side FETs en-
ables 60V operation without bootstrap or charge pump
circuitry.
The Power Quad surface mount package balances ex-
cellent thermal performance with the advantages of a

FEATURES
 

-
controllers and Digital Signal Controllers







Limit Protection

Signals
APPLICATIONS
 
 
 
3 Phase Switching Amplifier
SA303
P r o d u c t I n n o v a t i o n F r o m
FIGURE 1. BLOCK DIAGRAM
Copyright © Cirrus Logic, Inc. 2009
(All Rights Reserved)
http://www.cirrus.com
MAY 2009

SA303 Switching Amplifier
V s (p ha se A )
P G N D ( A & B )
Gate
Control
PWM
Signals
A
B
C
O u t A
O u t B
O u t C
P G N D ( C )
T E M P
GND
V s (p ha se B & C )
V
S
+
I
LIM
/D IS 1
S C
D IS 2
S G N D
P h as e A
P h as e C
P h as e B
Control
Logic
V
DD
Ia' Ib' Ic'
Ia'
Ib'
Ic'
Fault
Logic
Ia
Ic
Ib
A t
A b
B t
B b
C t
C b
V
DD
V
DD
V
DD
SA303
2 SA303U
P r o d u c t I n n o v a t i o n F r o m
1. CHARACTERISTICS AND SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Min Max Units
 VS60 V
 VDD  V
  (VDD V
 IOUT 10 A
 PD100
 TS °C
 TJ °C
 T   °C
 TA  °C
Parameter Test Conditions Min Typ Max Units
LOGIC
 1 V
  V
 0.3 V
 3.7 V
LIM/DIS1)  mA
POWER SUPPLY
VSUVLO  60 V
VS  V
VDD   V
S

SDD  30 mA
DD

SDD 6 mA
CURRENT LIMIT
th)  V
Vth 100 mV
OUTPUT
  3 A
 See Figure 10  ns
 See Figure 10  ns
DISABLE DELAY, TD(DIS) See Figure 10  ns
DIS) See Figure 11  ns
 See Figure 11  ns
FALL TIME, T(FALL)  ns
 3A Load  

 3A Load  
SPECIFICATIONS
SA303
SA303U 3
P r o d u c t I n n o v a t i o n F r o m

 
 -

at typical supply voltages and TC
 
dissipation to achieve high MTBF.
3. Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any

Parameter Test Conditions Min Typ Max Units
THERMAL
  
  
 Full temperature range   
    
FIGURE 2. 64-PIN QFP, PACKAGE STYLE HQ
SPECIFICATIONS, continued
SA303
4 SA303U
P r o d u c t I n n o v a t i o n F r o m
DIODE FORWARD VOLTAGE - TOP FET
(P-Channel)
0
1
2
3
4
5
FORWARD VOLTAGE (V)
CURRENT (A)
0.5 1.51.31.10.90.7
DIODE FORWARD VOLTAGE - BOTTOM FET
(N-Channel)
0
1
2
3
4
5
FORWARD VOLTAGE (V)
CURRENT (A)
0.5 1.51.31.10.90.7
ON RESISTANCE - TOP FET
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
IOUT,(A)
RDS(on),(Ω)
VS=11
VS=13
VS=15
VS>17
100 987654321
(P-Channel)
ON RESISTANCE - BOTTOM FET
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
10
IOUT,(A)
RDS(on),(Ω)
VS=11
VS=13
VS=15
VS=17
VS>22
0 987654321
(N-Channel)
POWER DERATING
0
20
40
60
80
100
120
CASE TEMPERATURE, TC
POWER DISSIPATION, PD
-40 12080400
VDD SUPPLY CURRENT
4.5
4.6
4.7
4.8
4.9
5
0 50 100 150 200 250 300
FREQUENCY (kHz)
VDD SUPPLY CURRENT (mA)
ONE PHASE SWITCHING @
50% DUTY CYCLE; VS=50V
VDD SUPPLY CURRENT
4
4.5
5
5.5
6
6.5
7
7.5
8
10 20 30 40 50 60
VS SUPPLY VOLTAGE (V)
VDD SUPPLY CURRENT (mA)
ONE PHASE SWITCHING
FREQUENCY = 20kHz
50% DUTY CYCLE
25°C
125°C
CURRENT SENSE
0.1
1
10
0.01 0.1 1 10
SENSE CURRENT (mA)
LOAD CURRENT (A)
VS SUPPLY CURRENT
20
40
60
80
100
120
140
160
180
0 50 100 150 200 250 300
FREQUENCY (kHz)
V
S
SUPPLY CURRENT (mA)
ONE PHASE SWITCHING @
50% DUTY CYCLE; VS=50V
0
V
S
SUPPLY CURRENT
0
5
10
15
20
25
V
S
SUPPLY VOLTAGE (V)
V
S
SUPPLY CURRENT (mA)
125°C
25°C
ONE PHASE SWITCHING
FREQUENCY = 20kHz
50% DUTY CYCLE
10 20 30 40 50 60
SA303
SA303U 5
P r o d u c t I n n o v a t i o n F r o m
FIGURE 3. EXTERNAL CONNECTIONS
TABLE 1. PIN DESCRIPTIONS
53
54
55
56
57
58
59
60
61
62
63
64
32
31
30
29
28
27
26
25
24
23
22
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
OUT C
OUT C
NC
VS B & C
VS B & C
VS B & C
VS B & C
NC
OUT B
OUT B
OUT B
NC
PGND A & B
PGND A & B
PGND A & B
PGND A & B
NC
OUT A
OUT A
OUT A
Ic
NC
SC
NC
Ib
NC
ILIM/DIS1
NC
SGND
NC
Bt
NC
Bb
NC
Ab
NC
At
NC
VDD
NC
OUT C
NC
PGND C
PGND C
PGND C
HS
HS
NC
Cb
NC
Ct
NC
NC
VS A
VS A
VS A
NC
HS
HS
TEMP
NC
DIS2
NC
Ia
Pin # Pin Name Signal Type 
 VS (phase A) Power 
 OUT C Power Output 
  Power 
3 SC Logic Output 
61 Cb Logic Input Logic high commands C phase lower FET to turn on
63 Ct Logic Input Logic high commands C phase upper FET to turn on
1 Ic Analog Output Phase C current sense output
Ib Analog Output Phase B current sense output
7 ILIM/DIS1 Logic Input/Output
As an output, logic high indicates cycle-by-cycle current limit, and
logic low indicates normal operation. As an input, logic high places
all outputs in a high impedance state and logic low disables the
cycle-by-cycle current limit function.
SA303
6 SA303U
P r o d u c t I n n o v a t i o n F r o m
Pin # Pin Name Signal Type 
 Power 
11 Bt Logic Input Logic high commands B phase upper FET to turn on
13 Bb Logic Input Logic high commands B phase lower FET to turn on
 Ab Logic Input Logic high commands A phase lower FET to turn on
17 At Logic Input Logic high commands A phase upper FET to turn on
 VDD Power 
 Ia Analog Output Phase A current sense output
  Logic Input Logic high places all outputs in a high impedance state
 TEMP Logic Output 
 OUT B Power Output 
 VS (phase B&C) Power 
 OUT A Power Output 
  Power 
  Mechanical Pins connected to the package heat slug






 --- 
1.2 Pin Descriptions
S: -

the VSS pins to handle load cur-

S

phases B & C. Both VS voltages are monitored for undervoltage conditions.
OUT A, OUT B, OUT C:-
tive load, it is recommended that two Schottky diodes with good switching characteristics (fast t specs) be
connected to each pin so that they are in parallel with the parasitic back-body diodes of the output FETs. (See

PGND: 


SC: Short Circuit output. If a condition is detected on any output which is not in accordance with the input com-
mands, this indicates a short circuit condition and the SC pin goes high. The SC signal is blanked for approxi-

SC pin. A high state on the SC output will not automatically disable the device. The SC pin includes an internal

Ab, Bb, Cb: These Schmitt triggered logic level inputs are responsible for turning the associated bottom, or lower


protection circuitry will turn off both FETs in order to prevent shoot-through on that output phase. Protection
circuitry also includes a dead-time generator, which inserts dead time in the outputs in the case of simultane-
ous switching of the top and bottom input signals.
TABLE 1. PIN DESCRIPTIONS - Cont.
SA303
SA303U 7
P r o d u c t I n n o v a t i o n F r o m
At, Bt, Ct: These Schmitt triggered logic level inputs are responsible for turning the associated top side, or upper
P-channel FET outputs on and off. Logic high turns the top P-channel FET on, and a logic low turns the top
P-channel FET off.
Ia, Ib, Ic: Current sense pins. The SA303 supplies a positive current to these pins which is proportional to the cur-
   
backbody diode of the P-channel FET or through external Schottky diodes are not registered on the current
-
-
tion of the phase current that can be monitored with ADC inputs of a processor or external circuitry.
The current sense pins are also internally compared with the current limit threshold voltage reference, Vth. If
the voltage on any current sense pin exceeds Vth, the cycle by cycle current limit circuit engages. Details of
this functionality are described in the applications section of this datasheet.
ILIM/DIS1: This pin is directly connected to the disable circuitry of the SA303. Pulling this pin to logic high places
OUT A, OUT B, and OUT C in a high impedance state. This pin is also connected internally to the output of the

current limit feature. Pulling this pin to a logic low effectively disables the cycle-by-cycle current limit feature.
SGND: This is the ground return connection for the VDD logic power supply pin. All internal analog and logic circuitry


Failure do to this may result in oscillations on the output pins during rising or falling edges.

-

DIS2: -
-
nected.
TEMP: 

HS: These pins are internally connected to the thermal slug on the reverse of the package. They should be con-

NC: These “no-connect” pins should be left unconnected.
2. SA303 OPERATION
-
                   

Current Limit fault signals provide important feedback to the system controller which can safely disable the output

information which can be used to regulate or limit torque.
SA303
8 SA303U
P r o d u c t I n n o v a t i o n F r o m
FIGURE 4. SYSTEM DIAGRAM
SA303 Switching Amplifier
BRUSHLESS
MOTOR
Vs (phase A)
PGND (A&B)
Current
monitor
Signals
Sensor – Hall Sensors
or
Sensorless – Input from Stator leads
A
B
C
OUT A
OUT B
OUT C
PGND (C)
GND
Vs (phase B&C)
Vs +
Sensing
circuits
GND
SGND
Gate
Control
Control
Logic
Fault
Logic
T E M P
I
LIM
/D IS 1
S C
Ia
Ic
Ib
V
DD
PWM
Signals
D IS 2
S G N D
A t
A b
B t
B b
C t
C b
M icro contro ller
or DSC
SA303
SA303U 9
P r o d u c t I n n o v a t i o n F r o m
SGND
Gate
Control
Vs
OUT A
PGND
At
Ab
SC
TEMP
SC
Logic
Temp
Sense
Ref
Ia
DIS2
ILIM/DIS1
UVLO
Ia'
+
_
Lim b
Lim c
+
_
Vdd
Lim a
Current
Sense
12k
12k
12k
12k
Vth

a single phase is shown.
FIGURE 5. INPUT AND OUTPUT STRUCTURES FOR A SINGLE PHASE
At, Bt, Ct
Ab, Bb, Cb
Ia, Ib, Ic
ILIM/DIS1
DIS
OUT A,
OUT B,
OUT C
Comments
0 0 X X X  Top and Bottom output FETs for that phase are turned off.
0 1 <Vth 0 0  Bottom output FET for that phase is turned on.
1 0 <Vth 0 0 VS Top output FET for that phase is turned on.
1 1 X X X  Both output FETs for that phase are turned off.
X X >Vth 1 X  Voltage on Ia, Ib, or Ic has exceeded Vth, which causes ILIM/DIS1 to go high.
This internally disables Top and Bottom output FETs for ALL phases.
X X X X 1  DIS
X X X Pulled
 X Pulling the ILIM/DIS1 pin high externally acts as a second disable input,
which disables ALL output FETs.
X X X Pulled
Low 0
Determined

inputs
Pulling the DIS

X X X X X  If VS is below the UVLO threshold all output FETs will be disabled.
TABLE 2. TRUTH TABLE
SA303
10 SA303U
P r o d u c t I n n o v a t i o n F r o m
2.1 LAYOUT CONSIDERATIONS
Output traces carry signals with very high dV/dt and dI/dt. Proper routing and adequate power supply bypassing

ringing at the outputs.
The VS supply should be bypassed with a surface mount ceramic capacitor mounted as close as possible to the VS
pins. Total inductance of the routing from the capacitor to the VS-

current should be placed near the SA303 as well. Capacitor types rated for switching applications are the only types
S connection and the bypass recommendation should

The bypassing requirements of the VDD   
DD

     

plane may be separated into power and logic sections connected by a pair of back to back Schottky diodes. This
isolates noise between signal and power ground traces and prevents high currents from passing between the plane
sections.


2.2 FAULT INDICATIONS
In the case of either an over-temperature or short circuit fault, the SA303 will take no action to disable the outputs.
Instead, the SC and TEMP signals are provided to an external controller, where a determination can be made re-
garding the appropriate course of action. In most cases, the SC pin would be connected to a FAULT input on the




disable inputs on the SA303.
        -
vides a hard wired shutdown of all outputs in re-
sponse to a fault indication. An SC or TEMP fault sets
the latch, pulling the disable pin high. The processor

can be used in safety critical applications to remove
software from the fault-shutdown loop, or simply to
reduce processor overhead.

the TEMP pin may be externally connected to the


       

thermal oscillations which can greatly reduce the life of the device.

The undervoltage lockout condition results in the SA303 unilaterally disabling all output FETs until VS is above
the UVLO threshold indicated in the spec table. There is no external signal indicating that an undervoltage lock
FIGURE 6. EXTERNAL FAULT LATCH
CIRCUIT
SA303
PROCESSOR
INTERRUPT
GPIO
PWM
SC
DIS2 TEMP
LATCHED FAULT
FAULT RESET
SA303
SA303U 11
P r o d u c t I n n o v a t i o n F r o m
out condition is in progress. The SA303 has two

phases B & C. The supply voltages on these pins
need not be the same, but the UVLO will engage

UVLO circuit prevents oscillations with typical
power supply variations.
2.4 CURRENT SENSE
External power shunt resistors are not required
with the SA303. Forward current in each top,
Pchannel output FET is measured and mirrored to
the respective current sense output pin, Ia, Ib and
Ic. By connecting a resistor between each cur-
rent sense pin and a reference, such as ground,
a voltage develops across the resistor that is pro-
portional to the output current for that phase. An
ADC can monitor the voltages on these resistors
for protection or for closed loop torque control
     
sense pins source current from the VDD supply.



2.5 CYCLE-BY-CYCLE CURRENT LIMIT
In applications where the current in the motor is not directly controlled, both the average current rating of the mo-


startup.
Because the output current of each upper output FET is measured, the SA303 is able to provide a very robust cur-
rent limit scheme. This enables the SA303 to safely and easily drive virtually any brushless motor through a startup
         
shows starting current and back EMF with and without current limit enabled.
If the voltage of any of the three current sense pins exceeds the current limit threshold voltage (Vth), all outputs are



peak current in each phase during each pwm cycle as illustrated in the timing diagram below. The ratio of average
to peak current depends on the inductance of the motor winding, the back EMF developed in the motor, and the
width of the pulse.
LIM/DIS1 goes high when
      

-
lation.
This oscillation can be seen on the ILIM
cycle may be incompatible with the current limit feature due to the absence of rising edges of At, Bt, and Ct except


current limit latch.
TIME
NON-LIMITED BACK EMF
LIMITED BACK EMF
LIMITED MOTOR CURRENT
NON-LIMITED MOTOR CURRENT

CURRENT
SA303
12 SA303U
P r o d u c t I n n o v a t i o n F r o m
The current limit feature may be disabled
by tying the ILIM    
current sense pins will continue to provide
top FET output current information.
Typically, the current sense pins source
current into grounded resistors which pro-
vide voltages to the current limit compara-
tors. If instead the current limit resistors
are connected to a voltage output DAC,
the current limit can be controlled dynami-
cally from the system controller. This tech-
nique essentially reduces the current limit
threshold voltage to (Vth-VDAC). During
expected conditions of high torque de-
mand, such as start-up or reversal, the
  -
cally to allow periods of high current. In
normal operation when low current is ex-
pected, the DAC output voltage can in-
crease, reducing the current limit setting
to provide more conservative fault protec-
tion.
2.6 EXTERNAL FLYBACK
DIODES
-
istics and lower forward voltage drop than the internal back-body di-

power dissipation and heating during commutation of the motor current.
-

better reverse recovery time and Schottky diodes typically have low
capacitance. Individual application requirements will be the guide when
determining the need for these diodes and for selecting the component
which is most suitable.

FIGURE 9. SCHOTTKY
DIODES
OUTA
OUTC
OUTB
VSVSVS
SA303
SA303
SA303U 13
P r o d u c t I n n o v a t i o n F r o m
FIGURE 10. TIMING DIAGRAMS
3. POWER DISSIPATION
The thermally enhanced package of the SA303 al-
lows several options for managing the power dissi-
pated in the three output stages. Power dissipation
      
of output power dissipation and switching losses.
Output power dissipation depends on the quadrant
     
are used to carry the reverse or commutating cur-
rents. Switching losses are dependent on the fre-
-
cal performance graphs.
    
selected to manage the average power dissipation
of the SA303. Applications vary widely and various
thermal techniques are available to match the re-
quired performance. The patent pending mounting
-
verted and suspended through a cutout in the PCB



JAD). Mounting the PCB parallel to
JAD). In applications


4. ORDERING AND PRODUCT STATUS INFORMATION
MODEL   
   
TOP INPUT
BOTTOM INPUT
DELAY TIMING
OUTPUT
DISABLE
td(fall) td(dis)td(rise) td(dis)
td(dis)
td(dis)
TOP INPUT
BOTTOM INPUT
OUTPUT
t(fall)
t(rise)
20%
80%
FIGURE 11. OUTPUT RESPONSE
SA303
14 SA303U
P r o d u c t I n n o v a t i o n F r o m
FIGURE 12. HEATSINK TECHNIQUE
PATENT PENDING
CONTACTING CIRRUS LOGIC SUPPORT

For inquiries via email, please contact tucson.support@cirrus.com.




to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant


for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-

does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
-

-
-





Cirrus Logic, Cirrus, and the Cirrus Logic logo designs, Apex and Apex Precision Power are trademarks of Cirrus Logic, Inc. All other brand and product names in
this document may be trademarks or service marks of their respective owners.