Advisory
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 5 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Ma sk Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRF IRDICO M Inter rup t Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if
the loopback path is selected (the loopback signal is overwritten by TU-AIS).
Advisory
August 5, 1999
Device Advisory for Version 5 of the Device
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Copyright © 2002 Agere Systems Inc.
All Rights Reserved
August 5, 1999
AY99-025SONT (Must accompany DS02-245BBAC)
For additional information, contact your Agere Systems Accou nt Ma na ger or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA:Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3 2 10 -12, 32/F, Tower 2, Th e Ga teway, Ha rb ou r Ci ty, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 7000 624624, FAX (44) 1344 488 045
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
VT Alarms (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Section 6.2.1.1.8.C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V fail-
ure (nonconformance to GR 253, R6-71).
VT-3. Inappro priate Termina tion of VT Lo ss of Pointer Defect Condit ion
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-
mance to GR 253, R6-183).
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0)
Device Advisory for Version 2 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Ma sk Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRF IRDICO M Inter rup t Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if
the loopback is selected (the loopback signal is overwritten by TU-AIS).
2Agere Systems Inc.
Advisory, Re v. 2
August 5, 1999
Device Advisory for Version 2 of the Device
TMPR28051 STS-1/AU-3 (STM-0)
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
EI-4. Forcing AIS Condition
In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of
0x1E must be programmed for E1 AIS.
VT Mapping (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Secti on 6.2.1 . 1.8 .C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V
failure (nonconformance to GR 253, R6-71).
VT-3. Inappropria t e Termination of VT Los s of Pointer Defect Condi tion
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-
mance to GR 253, R6-183).
Agere Systems Inc. 3
Advisory, Rev. 2
August 5, 1999 Device Advisory for Version 2 of the Device
TMPR28051 STS-1/AU-3 (STM-0)
VT Mapping (VT) (continued)
VT-5. C-Bit Decoding
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This
will force downstream equipment to experience a reframe.
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).
Table VT-5. Minimum Time (in Seconds) to
False Decode Severity of the C Bit
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.
Test Pattern (TP) Generator/Monitor
TP-1. Test Pattern Insert
The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data.
TP-2. Test Pattern Drop
The test pattern detector always inverts the clock coming into the block before retiming the data.
Jitter Attenuation (JA)
JA-1. Jitter Attenuator
The digital jitter attenuator buffers are not functional. The DJACTL bit in register 0x01 should be set to 0 in this
device. Putting the device in the jitter attenuator mode (DJACTL = 1) causes loss of transmission.
BER Theoretical Actual
10–3 125 0.25
10–4 12500 2.5
10–5 1250000 25
10–6 1.25e+8 250
10–7 1.25e+10 2500
10–8 1.25e+12 2.5e+4
10–9 1.25e+14 2.5e+5
10–10 1.25e+16 2.5e+6
Advisory, Rev. 2
August 5, 1999
Device Advisory for Version 2 of the Device
TMPR28051 STS-1/AU-3 (STM-0)
Copyright © 2002 Agere Systems Inc.
All Rights Reserved
August 5, 1999
AY99-026SONT-2 (Replaces AY99-026SONT and must accompany DS02-245BBAC)
For additional information, contact your Agere Systems Accou nt Ma na ger or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA:Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3 2 10 -12, 32/F, Tower 2, Th e Ga teway, Ha rb ou r Ci ty, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 7000 624624, FAX (44) 1344 488 045
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.
STS Path Overhead (POH)
POH-1. False H4LOMF Indication
Forcing a SONET/SDH line level decrement (H1, H2) from a value of either 348 or 347 results in false H4LOMF
indications.
Loss of Data (LOD)
LOD-1. Loss of DS1/E1 Data
Simultaneously forcing VT pointer adjustments while forcing SONET/SDH decrements from values of 348 and 347
results in loss of DS1/E1 data.
AY99-026SONT-2 Replaces AY99-026SONT to Incorporate the Following Updates
Added issues RA-5 and EI-3 to the document.
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 3 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Ma sk Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRF IRDICO M Inter rup t Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if
the loopback is selected (the loopback signal is overwritten by TU-AIS).
2Agere Systems Inc.
Advisory, Re v. 2
August 5, 1999
Device Advisory for Version 3 of the Device
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
EI-4. Forcing AIS Condition
In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of
0x1E must be programmed for E1 AIS.
VT Mapping (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Secti on 6.2.1 . 1.8 .C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V
failure (nonconformance to GR 253, R6-71).
VT-3. Inappropria t e Termination of VT Los s of Pointer Defect Condi tion
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-
mance to GR 253, R6-183).
Agere Systems Inc. 3
Advisory, Rev. 2
August 5, 1999 Device Advisory for Version 3 of the Device
TMPR28051 STS-1/AU-3 (STM-0) Mapper
VT Mapping (VT) (continued)
VT-5. C-Bit Decoding
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This
will force downstream equipment to experience a reframe.
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).
Table VT-5. Minimum Time (in Seconds) to
False Decode Severity of the C Bit
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.
Test Pattern (TP) Generator/Monitor
TP-1. Test Pattern Insert
The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data.
TP-2. Test Pattern Drop
The test pattern detector always inverts the clock coming into the block before retiming the data.
Device Version (DV)
DV-1. Device Version Repor t
The device version register, 0x16, reports the device version as 0x02.
BER Theoretical Actual
10–3 125 0.25
10–4 12500 2.5
10–5 1250000 25
10–6 1.25e+8 250
10–7 1.25e+10 2500
10–8 1.25e+12 2.5e+4
10–9 1.25e+14 2.5e+5
10–10 1.25e+16 2.5e+6
Advisory, Rev. 2
August 5, 1999
Device Advisory for Version 3 of the Device
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Copyright © 2002 Agere Systems Inc.
All Rights Reserved
August 5, 1999
AY99-027SONT-2 (Replaces AY99-027SONT and must accompany DS02-245BBAC)
For additional information, contact your Agere Systems Accou nt Ma na ger or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA:Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3 2 10 -12, 32/F, Tower 2, Th e Ga teway, Ha rb ou r Ci ty, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 7000 624624, FAX (44) 1344 488 045
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.
AY99-027SONT-2 Replaces AY99-027SONT to Incorporate the Following Updates
Added issues RA-5 and EI-3 to the document.
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 4 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Ma sk Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRF IRDICO M Inter rup t Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if
the loopback is selected (the loopback signal is overwritten by TU-AIS).
2Agere Systems Inc.
Advisory, Re v. 2
August 5, 1999
Device Advisory for Version 4 of the Device
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
VT Mapping (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Secti on 6.2.1 . 1.8 .C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V
failure (nonconformance to GR 253, R6-71).
VT-3. Inappropria t e Termination of VT Los s of Pointer Defect Condi tion
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-
mance to GR 253, R6-183).
Agere Systems Inc. 3
Advisory, Rev. 2
August 5, 1999 Device Advisory for Version 4 of the Device
TMPR28051 STS-1/AU-3 (STM-0) Mapper
VT Mapping (VT) (continued)
VT-5. C-Bit Decoding
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This
will force downstream equipment to experience a reframe.
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).
Table VT-5. Minimum Time (in Seconds) to
False Decode Severity of the C Bit
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.
Device Version (DV)
DV-1. Device Version Repor t
The device version register, 0x16, reports the device version as 0x03.
AY99-028SONT-2 Replaces AY99-028SONT to Incorporate the Following Updates
Added issues RA-5 and E1-3 to the document.
BER Theoretical Actual
10–3 125 0.25
10–4 12500 2.5
10–5 1250000 25
10–6 1.25e+8 250
10–7 1.25e+10 2500
10–8 1.25e+12 2.5e+4
10–9 1.25e+14 2.5e+5
10–10 1.25e+16 2.5e+6
Copyright © 2002 Agere Systems Inc.
All Rights Reserved
August 5, 1999
AY99-028SONT-2 (Replaces AY99-028SONT and must accompany DS02-245BBAC)
For additional information, contact your Agere Systems Accou nt Ma na ger or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA:Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3 2 10 -12, 32/F, Tower 2, Th e Ga teway, Ha rb ou r Ci ty, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 7000 624624, FAX (44) 1344 488 045
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.
Data Sheet
May 2002
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Features
Maps signals in one of the following ways:
— Maps up to 28 asynchronous DS1 signals to
SONET S TS-1 v ia VT Group s , or SD H AU- 3 via
TUG-2.
— Maps up to 21 asynchronous E1 signals to SDH
AU-3 via TUG-2, or SONET STS-1 via VT
Groups.
— Maps any valid combination of DS1/E1 signals
at the VT Group/TUG-2 level.
PLL-free receive operation using built-in digital jit-
ter attenuators.
High-speed microprocessor interface configurable
to operate with most commercial microprocessors.
Inserts valid B1, B2, and B3 bit interleaved parity
(BIP) in the transmit direction.
Detects and counts B1, B2, and B3 BIP-8 errors on
either a bit or block basis for performance monitor-
ing in the receive direction.
Detects and counts V5 BIP-2 errors on either a bit
or block basis for performance monitoring.
Configurable continuous B1, B2, B3, and V5 BIP-2
error insertion.
Configurable remote error indication (REI) inser-
tion for B2, B3, and V5 BIP-2 errors.
Detects and counts remote errors.
Built-in test pattern insertion and drop for setup
and maintenance.
Configur abl e VT1.5/TU- 11 slot se lec ti on for DS1
insertion and drop.
Configurable VT2/TU-12 slot selection for E1
insertion and drop.
Detects STS-1 path loss of pointer (LOP-P), loss of
H4 multiframe (H4LOMF), path alarm indication
signal (AIS-P), and path remote defect indication
(RDI-P).
Automatic receive monitor functions include VT/TU
remote defect indication (RDI-V), VT/TU remote
error indication (REI-V), BIP-2 errors, VT/TU AIS
(AIS-V), and VT/TU loss of pointer (LOP-V).
Automatic receive monitoring functions can be
configured to provide an interrupt to the control
system, or the device can be operated in a polled
mode.
User configurable for VT/TU label, AIS-V, RDI-V,
REI-V, force BIP-2 errors, or unequipped tributary
insertion.
Typical 3.3 V operation with 5 V TTL tolerant I/O
and boundary scan.
–40 °C to +85 °C temperature range.
208-pin shrink quad flat pack (SQFP) package.
Provides alarm and control features to easily
implement the latest release of the following stan-
dards:
GR253-CORE (12/97 with the exception of
GR-253 section 6.2.1.1.8.C), G.707 (3/96),
G.783 (1/94), G.823.393, T1.105-1995,
T1.105.02-1995, T1.105.03-1994,
T1.105.03A-1995, T1.105.07-1996,
T1.105.09-1996, ETS300.147 (1/95),
ETS300.417-1-1 (1/96).
Applications
SONET/SDH path termination multiplexers
SONET/SDH add/drop multiplexers
SONET/SDH cross connects
Digital access cross connects
DS1/E1 broadcast
SONET/SDH test equipment
Description
The Agere Systems Inc. TMPR28051 device is
designed to map any valid combination of DS1 and
E1 signals into a stream at a rate of 51.84 Mbits/s.
This device provides all of the functions necessary to
insert and drop any valid combination up to 28 asyn-
chronous DS1 signals or 21 asynchronous E1 sig-
nals into an SPE.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
2Agere Systems Inc.
Table of Contents
Contents Page
Features ...................................................................................................................................................................1
Applications ..............................................................................................................................................................1
Description ...... ............. ............ ............. ............. ............. ............. ............. ...... ............. ....... ............. ............. ............1
Block Diag ram ................... ................... ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ...... . ................... ......5
Pin Information .........................................................................................................................................................6
Nomenclature Assumptions ....................................................................................................................................10
DS1/E1 to STS-1 Block Descriptions .....................................................................................................................10
LOC and AIS Monitor .........................................................................................................................................10
DS1/E1 Loopback Select Logic ..........................................................................................................................10
Input Select Logic ...............................................................................................................................................10
Elastic Store .......................................................................................................................................................11
VT Generate .......................................................................................................................................................11
STS-1/AU-3 Generat e ................ ...... ....... ...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ............. ....... ...... ....13
SPE Insertion Logic ............................................................................................................................................14
STS-1 to DS1/E1 Block Descriptions .....................................................................................................................16
Loopback Select Logic .......................................................................................................................................16
SPE Locate .........................................................................................................................................................16
STS-1/AU-3 Termin ate ........ ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... ...... ............. ....... ...... ....16
SPE Drop Logic ..................................................................................................................................................17
VT Terminate ......................................................................................................................................................17
Jitter Attenuate ...................................................................................................................................................18
Drop Select Logic ...............................................................................................................................................18
Test Pattern Block Descriptions .............................................................................................................................19
Test Pattern Insert ..............................................................................................................................................19
Test Pattern Drop ...............................................................................................................................................19
Microprocessor Interface Description .....................................................................................................................20
Overview ..... ...... ....... ...... ...... ....... ...... .................... ...... ....... ...... ....... ...... ...... ....... ...... ............. ....... ...... ....... ..........20
Microprocessor Configuration Modes .................................................................................................................20
Microprocessor Interface Pins ............................................................................................................................21
Register Architecture Map ..................................................................................................................................23
Register Architecture Description .......................................................................................................................37
I/O Timing ...........................................................................................................................................................60
Absolute Maximum Ratings ....................................................................................................................................65
Handling Precautions .............. ....... ...... ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... ...... ....... ..........65
Operating Conditi ons ............... .................... ...... ....... ...... ....... ...... ....... ...... ...... .................... ................... ....... ...... ....66
Electrical Characteristics ........................................................................................................................................66
Timing Characteristics ............................................................................................................................................67
Operational Timing .............................................................................................................................................67
Transmit Sy nc Timing ................. ...... .................... ...... ....... ...... ....... ...... ...... ....... ...... .................... ...... ....... ...... ....70
Receive Sync Timing ........... ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... ................... ....... ...... ....71
Typical Uses ...........................................................................................................................................................72
Path Termination Multiplex .................................................................................................................................72
Digital Cross Connect .........................................................................................................................................72
Test Pattern Use—Complete System .................................................................................................................73
Test Pattern Use—End to End ...........................................................................................................................73
Outline Diagram ......................................................................................................................................................74
208-Pin SQFP ....................................................................................................................................................74
Ordering Information ...............................................................................................................................................75
DS02-245 BBAC Replaces DS99-06 8S ONT to Incorpor ate the Foll owi ng U pdat es .... ....... ...... ....... ...... ....... ...... ....7 5
DS99-068SONT Replaced DS98-100TIC to Incorporate the Following Updates ..................................................75
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
3Agere Systems Inc.
List of Figures
Figures Page
Figure 1. Block Diagram ...........................................................................................................................................5
Figure 2. Pin Diagram of 208-Pin SQFP ..................................................................................................................6
Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61
Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61
Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62
Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62
Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63
Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63
Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) ...................................................................64
Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) .................................................................64
Figure 11. Interface Data Timing ............................................................................................................................68
Figure 12. Serial Mode Transmit Sync Timing .......................................................................................................70
Figure 13. Bus Mode Transmit Sync Timing ..........................................................................................................70
Figure 14. Nonbus Parallel Mode Transmit Sync Timing .......................................................................................71
Figure 15. Bus Parallel Mode Receive Sync Timing ..............................................................................................71
Figure 16. SDH/SONET Path Termination Multiplex Application ...........................................................................72
Figure 17. Digital Cross Connect Application .........................................................................................................72
Figure 18. Test Pattern Usage for Complete System ............................................................................................73
Figure 19. Test Pattern Usage for End-to-End Operation ......................................................................................73
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
4Agere Systems Inc.
List of Tables
Tables Page
Table 1. Pin Descriptions ......................................................................................................................................... 7
Table 2. VT1.5 Overhead Byte Format (V5) .......................................................................................................... 11
Table 3. RFI-V, RDI-V Description ........................................................................................................................ 11
Table 4. VT1.5 Superframe ................................................................................................................................... 12
Table 5. VT2 Superframe ...................................................................................................................................... 12
Table 6. STS-1 Overhead Byte Allocation ............................................................................................................. 13
Table 7. G1 Path Condition/Performance Byte Format ......................................................................................... 13
Table 8. VT1.5 SPE Insertion Format .................................................................................................................... 15
Table 9. Mapping of VT1.5 # to (VT Group #, VT #) .............................................................................................. 15
Table 10. VT2 SPE Insertion Format ..................................................................................................................... 15
Table 11. Mapping of VT2 # to (VT Group #, VT #) ............................................................................................... 15
Table 12. Microprocessor Configuration Modes .................................................................................................... 20
Table 13. Mode [1—4] Microprocessor Pin Definitions ......................................................................................... 21
Table 14. Device Register Map ............................................................................................................................. 23
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits .................................................... 37
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection .............................................................................. 47
Table 17. DS1/E1 Insertion Selection Format ....................................................................................................... 49
Table 18. Registers 0x33—0x4E: VT Drop Selection ............................................................................................ 49
Table 19. VT Drop Selection Format ..................................................................................................................... 50
Table 20. VT to Address Mapping ......................................................................................................................... 50
Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control ................................................................... 51
Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring .................................................................................... 52
Table 23. Registers 0x88—0x89: Signal Override Control .................................................................................... 53
Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls ...................................................................... 54
Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control .............................................................. 55
Table 26. Register 0xBF: Block Control ................................................................................................................ 56
Table 27. Registers 0xC0—0xFD: Detected BIP Errors ........................................................................................ 57
Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value .............................................................. 57
Table 29. Registers 0xC0—0xFD: Detected REI Errors ........................................................................................ 58
Table 30. Registers 0xFE—0xFF: Reserved ......................................................................................................... 58
Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes .......................................................................... 59
Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes ......................................................................... 59
Table 33. Microprocessor Interface I/O Timing Specifications .............................................................................. 60
Table 34. Absolute Maximum Ratings ................................................................................................................... 65
Table 35. ESD Protection Characteristics.............................................................................................................. 65
Table 36. Recommended Operating Conditions ................................................................................................... 66
Table 37. Logic Interface Characteristics .............................................................................................................. 66
Table 38. Input Clock Specifications ..................................................................................................................... 67
Table 39. Input Timing Specifications .................................................................................................................... 68
Table 40. Output Clock Specifications ................................................................................................................... 69
Table 41. Output Timing Specifications ................................................................................................................. 69
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
5Agere Systems Inc.
Description (continued)
On the STS-1 side, the device can be configured for either a serial bit stream or an 8-bit parallel bus. This allows
the device to drive an OC-1 optical signal directly and also allows for modular growth in terminal or add/drop appli-
cations.
On the DS1/E1 side, the device is designed to interface with the Agere T7698FL3/T7693 Quad Line Transceiver,
or equivalent, using the internal digital jitter attenuator buffer for PLL-free operation.
The TMPR28051 device contains built-in test pattern insertion and drop that allows end-to-end testing for initial
setup or maintenance without the need for external test equipment. Built-in loopbacks at both the STS-1 and DS1/
E1 sides provide maximum flexibility for use in a number of SONET/SDH or DS1/E1 products including terminal
multiplexers, add/drop multiplexers, and digital cross connects. A high-speed microprocessor interface and full
user programmability for VT slot insertion and drop provide maximum flexibility for DS1/E1 I/O configuration.
Block Diagram
The block diagram is shown in Figure 1. For illustration purposes, only two of the DS1/E1 bidirectional blocks are
shown.
5-4875(F).ar.10
Note: “n” represents 28 or 21 for DS1 or E1, respectively.
Figure 1. Block Diagram
MICROPROCESSOR
INTERFACE
STS-1/AU-3
TERMINATE
DS1/E1 #1 IN
ELASTIC
STORE
SPE
INSERTION
LOGIC
VT
GENERATE
ELASTIC
STORE
VT
GENERATE
DS1/E1 #n IN
STS-1/AU-3
GENERATE
DS1/E1 #1 OUT
SPE
DROP
LOGIC
VT
TERMINATE
VT
TERMINATE
DS1/E1 #n OUT
STS-1/AU-3 IN
INPUT
SELECT
LOGIC
LOOP-
SELECT
LOGIC
INPUT
SELECT
LOGIC
SPE
LOCATE
DROP
SELECT
LOGIC
LOC AND
TEST
PATTERN
INSERT
TEST
PATTERN
DROP
BACK
LOOP-
SELECT
LOGIC
BACK
DROP
SELECT
LOGIC
LOOP-
SELECT
LOGIC
BACK
STS-1/AU-3 OUT
AIS
MONITOR
LOC AND
AIS
MONITOR
JITTER
ATTENUATE
JITTER
ATTENUATE
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
6Agere Systems Inc.
Pin Information
5-4873(F).cr.5
Figure 2. Pin Diagram of 208-Pin SQFP
ICT
VSS
TCLK19
TDATA19
RCLK19
RDATA19
VDD
RDATA20
RCLK20
TDATA20
TCLK20
TCLK21
VDD
TDATA21
RCLK21
RDATA21
RDATA22
RCLK22
TDATA22
TCLK22
TCLK23
VSS
TDATA23
RCLK23
RDATA23
RDATA24
VDD
RCLK24
TDATA24
TCLK24
TCLK25
VSS
TDATA25
RCLK25
RDATA25
VDD
RDATA26
RCLK26
TDATA26
TCLK26
VDD
TCLK27
TDATA27
RCLK27
RDATA27
VDD
RDATA28
RCLK28
TDATA28
TCLK28
RESET
VSS
VSS
VSS
TCLK10
TDATA10
RCLK10
RDATA10
RDATA9
RCLK9
TDATA9
TCLK9
TCLK8
VDD
TDATA8
RCLK8
RDATA8
RDATA7
RCLK7
TDATA7
TCLK7
TCLK6
VSS
TDATA6
RCLK6
RDATA6
RDATA5
VDD
RCLK5
TDATA5
TCLK5
TCLK4
VSS
TDATA4
RCLK4
RDATA4
RDATA3
RCLK3
TDATA3
TCLK3
TCLK2
VDD
TDATA2
RCLK2
RDATA2
RDATA1
RCLK1
TDATA1
TCLK1
AD7
AD6
AD5
VSS
VDD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
E1BLUECLK
VSS
TCLK11
TDATA11
RCLK11
RDATA11
RDATA12
RCLK12
TDATA12
TCLK12
TCLK13
TDATA13
VDD
RCLK13
RDATA13
RDATA14
RCLK14
TDATA14
TCLK14
TDO
TRST
VSS
TMS
TDI
TCK
RDY_DTACK
VSS
RD_R/W
MPMODE
MPMUX
ALE_AS
VSS
WR_DS
TCLK15
TDATA15
RCLK15
RDATA15
RDATA16
RCLK16
TDATA16
VDD
TCLK16
TCLK17
TDATA17
RCLK17
RDATA17
RDATA18
RCLK18
TDATA18
TCLK18
VSS
VSS
VSS
VSS
AD4
AD3
AD2
AD1
AD0
A7
A6
A5
A4
A3
VDD
A2
A1
A0
VDD
RSTS1PAR
RSTS1DATA0
RSTS1DATA1
RSTS1DATA2
VSS
RSTS1DATA3
RSTS1DATA4
RSTS1DATA5
RSTS1DATA6
VSS
RSTS1DATA7
VSS
RSTS1CLK
VDD
VSS
RSTS1SERIAL
INT
CS
TSTS1CLKOUT
TSTS1CLKIN
TSTS1SYNC
TSTS1SERIAL/TSTS1DATA7
TSTS1DATA6
VDD
TSTS1DATA5
TSTS1DATA4
TSTS1DATA3
TSTS1DATA2
TSTS1DATA1
TSTS1DATA0
TSTS1PAR
DS1BLUECLK
DS1_E1N
VSS
VDD
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
7Agere Systems Inc.
Pin Information (continued)
Table 1. Pin Descriptions
* Iu indicates an internal pull-up; Id indicates an int ernal pull-down. All I/O not explicitly st ated with a buf fer type are 5 V TTL comp atible; they will
tolerate 5 V at their inputs.
Pin Symbol Type* Name/Description
47, 39, 38, 30,
29, 20, 19, 11,
10, 3, 206, 199,
198, 190, 175,
167, 166, 159,
154, 146, 145,
137, 136, 127,
126, 117, 115,
107
TCLK[1:28] O Transmit DS1/E1 Clock. DS1/E1 clock output. E1 signals can only
occupy TC LK[ 1:21 ].
46, 41, 37, 32,
28, 22, 18, 13, 9,
4, 205, 200, 197,
191, 174, 169,
165, 160, 153,
147, 143, 138,
134, 128, 124,
118, 114, 108
TDATA[1:28] O Transmit DS1/E1 Data. Transmit data output. E1 signals can only
occupy TDATA[1:21].
45, 42, 36, 33,
27, 23, 17, 14, 8,
5, 204, 201, 195,
192, 173, 170,
164, 161, 152,
148, 142, 139,
133, 129, 123,
119, 113, 109
RCLK[1:28] IuReceive DS1/E1 Clock. Receive clock input. These pins have an
internal 20 k pull-up resistor. E1 signals can only occupy RCLK[1:21].
44, 43, 35, 34,
25, 24, 16, 15, 7,
6, 203, 202, 194,
193, 172, 171,
163, 162, 151,
149, 141, 140,
132, 131, 122,
120, 112, 110
RDATA[1:28] IuReceive DS1/E1 Data. Receive data input. These pins have an inter-
nal 20 k pull-up resistor. E1 signals can only occupy RDATA[1:21].
102 DS1_E1N I DS1/E1 Input Identifier . If thi s pi n is p ull ed hig h, t he devi ce w ill de faul t
to DS1 to STS-1 mode and transmit 0s in the unused overhead bytes
and 00 in the SS bits of H1. If pulled low, the device will default to E1 to
AU-3 mode and transmit 1s in the unused overhead bytes and 10 in
the SS bits of H1. This default selection can be overridden by setting
TOVERRIDE and ROVERRIDE bits in registers 0x88 (bit 0) and 0x89
(bit 0), respectively. The seven VT Groups can then be individually pro-
grammed to carry either DS1 (TVTG-1. . . 7 = 1, RVTG-1. . . 7 = 1) or
E1 (TVTG-1. . . 7 = 0, RVTG-1. . . 7 = 0) signals.
101 DS1BLUECLK I DS1 Blue Signal Clock. In the event of a loss of input DS1 clock or an
unprovisioned DS1 output, this clock signal is used to generate the
DS1 blue signal (all 1s). This clock must be 1.544 MHz ± 32 ppm or 16
times this rate when using the digital jitter attenuator.
208 E1BLUECLK I E1 Blue Signal Clock. In the event of a loss of input E1 clock or an
unprovisioned E1 output, this clock signal is used to generate the E1
blue signal (all 1s). This clock must be 2.048 MHz ± 50 ppm or 16
times this rate when using the digital jitter attenuator.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
8Agere Systems Inc.
Pin Information (continued)
Table 1. Pin Descriptions (continued)
* Iu indicates an internal pull-up; Id indicates an internal pul l-down. All I/ O not expli citly stated wit h a buf fer type are 5 V TTL compati ble; they will
tolerate 5 V at their inputs.
Pin Symbol Type* Name/Description
179 MPMUX I Microprocessor Multiplex Mode. Setting MPMUX = 1 allows the micropro-
cessor interface to accept the multiplexed address and data signals. Setting
MPMUX = 0 allows the microprocessor interface to accept demultiplexed
(separate) address and data signals.
180 MPMODE I Microprocessor Mode. When MPMODE = 1, the device uses the address
latch enable type microprocessor read/write protocol with separate read and
write controls. Setting MPMODE = 0 allows the device to use the address
strobe type microprocessor read/write protocol with a separate data strobe
and a combined read/write control.
181 RD_R/W IRead (Active-Low). If MPMODE = 1, this pin is asserted low by the micropro-
cessor to initiate a read cycle.
Read/Write. If MPM OD E = 0, thi s pi n is ass er t ed hi gh by th e m icr op ro ce ss o r
to indicate a read cycle or asserted low to indicate a write cycle.
178 ALE_AS IAddress Latch Enable. If MPMODE = 1, this pin becomes the address latch
enable for the microprocessor. When this pin transitions from high to low, the
address bus inputs are latched into the internal registers.
Address Strobe (Active-Low). If MPMODE = 0, this pin becomes the
address strobe for the microprocessor. When this pin transitions from high to
low, the address bus inputs are latched into the internal registers.
87 CS IuChip Select (Active-Low). This pin is asserted low by the microprocessor to
enable the microprocessor interface (see Microprocessor Configuration
Modes section on page 20). This pin has an internal 100 k pull-up resistor.
86 INT O Interrupt. This pin is asserted high to indicate an interrupt produced by an
alarm condition in register 3 or 5. The activation of this pin can be masked by
micropr oc esso r regis te rs 4 and 6.
183 RDY_DTACK OReady. If MPMODE = 1, this pin is asserted high to indicate the device has
completed a read or write operation. This pin is in a high-impedance state
when CS is high.
Data Transfer Acknowledge (Active-Low). If MPMODE = 0, this pin is
asserted low to indicate the device has completed a read or write operation.
48—50,
55—59 AD[7:0] I/O Microprocessor Interface Address/Data Bus. If MPMUX = 0, these pins
become the bidirectional, 3-statable data bus. If MPMUX = 1, these pins
become the multiplexed address/data bus.
60—64,
66—68 A[7:0] I Microprocessor Interface Address. If MPMUX = 0, these pins become the
address bus for the microprocessor interface registers.
176 WR_DS IWrite (Active-Low). If MPMODE = 1, this pin is asserted low by the micro-
processor to initiate a wr ite cycle.
Data Strobe (Active-Low). If MPMODE = 0, this pin becomes the data
strobe for the microprocessor . When R/W = 0 (write), a low applied to this pin
latches the signal on the data bus into internal registers.
106 RESET IuHardware Reset (Active-Low). If RESET is forced low, all internal states in
the transceiver paths are reset and data flow through each channel will be
interrupted (see Device-Level Control, Alarm, and Mask Bits (0x00—0x16)
section on page 37). This pin has an internal 20 k pull-up resistor.
184 TCK IuBoundary-Scan Clock. This pin ha s an internal 20 k pull-up resistor.
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
9Agere Systems Inc.
Pin Information (continued)
Table 1. Pin Descriptions (continued)
* Iu indicates an internal pull-up; Id indicates an int ernal pull-down. All I/O not explicitly st ated with a buf fer type are 5 V TTL comp atible; they will
tolerate 5 V at their inputs.
Pin Symbol Type* Name/Description
185 TDI IuBoundary-Scan Input Data. This pin h as an internal 20 k pull-up
resistor.
186 TMS IuBoundary-Scan Mode Select. This pin has an internal 20 k pull-up
resistor.
188 TRST IdBoundary-Scan Reset (Active-Low). This pin has an internal 20 k
pull-down resistor.
189 TDO O Boundary-Scan Output Data.
89 TSTS1CLKIN I Transmit STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial
input data, or 19.44 MHz or 6.4 8 MHz f or byte-wide data.
90 TSTS1SYNC I Transmit STS-1 Sync. The STS-1 sync pulse can be either J0 for
8 kHz only or a composite of J0J1V1 for 2 kH z.
92,
94—99 TSTS1DATA[6:0] O T ransmit STS-1 Dat a. In the byte-wide output mode, this is bit 6—bit 0
of the data bus. TSTS1DATA7 is the most significant bit of the outpu t
byte.
100 TSTS1PAR O Transmit STS-1 Parity. The parity output is only defined for byte-wide
data. The device can be provisioned to source either an odd or even
parity.
91 TSTS1SERIAL/
TSTS1DATA7 OTransmit STS-1 Serial Data/Transmit STS-1 Data Bit 7 (MSB). In
serial mode, this pin provides 51.84 Mbits/s serial data. In parallel
mode, this pin provides TSTS1DATA7.
88 TSTS1CLKOUT O Transmit STS-1 Output Clock.
82 RSTS1CLK I Receive STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial
input data, or 19.44 MHz or 6.4 8 MHz f or byte-wide data.
80, 78—75,
73—71 RSTS1DATA[7:0] IuReceive STS-1 Data. In the byte-wide input mode, this is the data bus
with RSTS1DAT A7 as the most significant bit of the input byte. This pin
has an internal 100 k pul l-up resist or.
70 RSTS1PAR IuReceive STS-1 Parity. The parity input is only defined for byte-wide
data. The device can be provisioned to accept either an odd or even
parity. This pin has an internal 100 k pull-up resistor.
85 RSTS1SERIAL I Receive STS-1 Serial Data. If the device is operating in the serial
mode, then RSTS1SERIAL is used as the input data pin. In the bus
mode, this pin is used to synchronize byte 1 of 3 (see Figure 15,
page 71).
156 ICT IuIn-Circuit Test Control (Active-Low). If ICT is forced low, all output
pins are placed in the high-impedance state. This pin has an internal
20 k pull-up resistor.
1, 2, 21, 31,
51, 53, 54, 74,
79, 81, 84,
103, 105, 125,
135, 155, 157,
158, 177, 182,
187, 207
VSS IGround Reference for Digital Circuitry.
12, 26, 40, 52,
65, 69, 83, 93,
104, 1 1 1, 1 16,
121, 130, 144,
150, 168, 196
VDD IPower Supply for Digital Circuitry.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
10 Agere Systems Inc.
Nomenclature Assumptions
The mapping methods (VT1.5, VT2, and VT Group in
ANSI
nomenclature; TU-11, TU-12, and TUG-2 in ITU
nomenclature) are analogous, and for the rest of this
document will be referred to as VT1.5, VT2, or VT
Group. STS-1 and AU-3 are also analogous with a few
minor differences.
For the remainder of this document, the 51.84 Mbits/s
signals are referred to as STS-1.
DS1/E1 to STS-1 Block Descriptions
In the descriptions of the block diagram of Figure 1,
some of the control bits exist for each of the DS1/E1 or
VT signals.
Upon start-up, the device will set all of the input data
types (DS1 or E1) based on the level of the DS1_E1N
pin (pin 102). DS1_E1N controls the value transmitted
in the unused overhead bytes and the value of the
transmitted spare bits (SS) in the H1 byte. If this pin is
high, then all of the VT Groups are populated with DS1
signals. If this pin is low, then all of the VT Groups are
populated with E1 signals.
This default selection can be overridden by setting
TOVERRIDE and ROVERRIDE bits in registers 0x88
(bit 0) and 0x89 (bit 0), respectively. The seven VT
Groups can then be individually programmed to carry
either DS1 (TVTG-1 . . . 7 = 1, RVTG-1 . . . 7 = 1) or E1
(TVTG-1 . . . 7 = 0, RVTG-1 . . . 7 = 0) signals.
LOC and A IS Mo ni tor
The incoming DS1/E1 signal is first checked for loss of
clock (LOC). LOC is reported to the microprocessor via
the DS1/E1LO C[1: 21] and DS1 LO C[22 :28] bit
(LOC = 1, 0 otherwise) in registers 0x17—0x32 (bit 6)
and also via the AISLOCCOM composite bit in register
0x05 (bit 1). If LOC is present, the device inserts DS1/
E1 AIS towards the STS-1 using the blue signal clock.
The incoming DS1/E1 data (RDATA[28:1]) is
retimed immediately by the associated DS1/E1 clock
(RCLK[28:1]). The edge of the clock that is used to
retime the data is user-provisionable at the device level
to either the rising edge (RXDS1EDGE = 1) in register
0x02 (bit 1) or falling edge (RXDS1EDGE = 0) in regis-
ter 0x02 (bit 1).
After being retimed, the incoming data stream is
checked for AIS. The device will declare AIS if the input
data is at logic 1 for 3 ms. The device will withstand up
to ei ght er ror s in t he 3 ms pe ri od. AIS is re por ted to t he
microprocessor via the AISLOCCOM composite bit in
register 0x05 (bit 1) and the individual
DS1/E1AIS[1:21] and DS1AIS[22:28] bits in registers
0x17—0x32 (bit 7).
The blue signal clock input signal to the device can be
at the exact DS1/E1 rate (1.544/2.048 MHz) or at 16
times the DS1/E1 rate (24.704/32.768 MHz), with a tol-
erance of 32 ppm or 50 ppm for DS1 or E1, respec-
tively. This allows users of the Agere T7698FL3/T7693
devices to reuse the XCLK on the board. The
TMPR28051 is provisioned to accept the exact DS1
rate by default (BLUECLKSEL = 0 in bit 2 of register
0x00), but can be changed to perform the divide-by-16
function (BLUECLKSEL = 1 in bit 2 of register 0x00).
The duty cycle of the clock can be 45%/55% because
the data is retimed internally in the device. The duty
cycle requires a much tighter tolerance when used for
XCLK as described earlier.
DS1/E1 Loopback Selec t Logic
The first stage after retiming the signal into the device
is selection of the externally received DS1/E1
(DS1/E1LB[1:21] or DS1LB[22:28] = 0) or the looped
back DS1/E1 (DS1/E1LB[1:21] or DS1LB[22:28] = 1).
This selection is provisionable per DS1/E1 input in reg-
isters 0x17—0x32 (bit 5).
Input Select Logic
Once the DS1/E1 data sources have been selected,
the DS1/E1 for each VT tributary is selected. This
selection requires 5 bits per slot to determine
which DS1/E1 input to use by provisioning
DS1/E1INS[4:0]_[1:21] or DS1INS[4:0]_[22:28] bits in
registers 0x17—0x32 (bits 4 thro ugh 0). The range
[1:28] following the _ refers to the target VT #. Refer to
Table 8 on p age 15 and Table 10 on p age 15 fo r det ails
on the VT locations within the SPE.
The numbering scheme for the five provisioned bits
ranges from 00001 to 11100 where the binary value of
the 5 bits corresponds to the DS1/E1 input. For
instance, the value 00001 corresponds to selecting
DS1/E1 #1.
The unused value of 00000 results in VT unequipped
being transmitted. This is the default value for all the
VT sl ots a t power up. VT u nequip ped has a valid po inter
and all-zero payload.
The unused values of 11101—11110 will cause AIS-V
to be inserted for that VT slot.
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
11Agere Systems Inc.
DS1/E1 to STS-1 Block Descriptions
(continued)
Input Select Logic (continued)
The value of 11111 will cause the internally generated
test pattern to be inserted for that VT slot.
There are no restrictions on the number of VT slots that
any given DS1/E1 input can supply (e.g., up to 28
VT1. 5 slots can sel ect the same DS1 input).
This block can also be used to insert the test pattern
(see Test Pattern Insert section on page 19).
Elastic Store
The selected DS1/E1 clock and data signals are fed to
an elastic store that is used to synchronize the incom-
ing DS1/E1 to the local STS-1 clock. This block deter-
mines the need for positive/zero/negative (P/Z/N)
stuffing for each input. Data that is transmitted from this
block is synchronized to the local transmit STS-1 clock
(TSTS1CLK). This block allows the device to accept
DS1 signals at 1.544 Mbits/s ± 130 ppm with up to ±5
unit intervals peak jitter, or E1 signals at 2.048 Mbits/s
± 130 ppm with up to ±5 unit intervals peak jitter.
VT Genera te
This block generates the VT superframe. Unless AIS-V
is being forced, the superframe is built with a fixed out-
put pointer value of decimal 78 in all the VT1.5 slots.
The VT size field is set to 11 binary, and the new data
flag is set to 0110 binary. This corresponds to 0x6C4E
for the V1 and V2 bytes within the VT1.5 superframe.
Also, unless AIS-V is being forced, the superframe is
built with a fixed output pointer value of decimal 105 in
all the VT2 slots. The VT size field is set to 10 binary,
and the new data flag is set to 0110 binary. This corre-
sponds to 0x6869 for the V1 and V2 bytes within the
VT2 superframe.
In this block, the DS1/E1 data is placed into the VT, and
the VT overhead is generated. The format of the VT
overhead byte, V5, is shown in Table 2.
Table 2. VT1.5 Overhead Byte Format (V5)
Each VT can be provisioned to insert AIS-V by assign-
ing VTAISINS[1:28] = 1 in registers 0x4F—0x6A (bit 3).
AIS-V consists of overwriting the entire VT payload and
overhead with ones.
RDI-V can be automatically inserted by the device
(VTRFIRDIEN[1:28] = 1 in registers 0x4F—0x6A, bit 6)
or written into the V5 byte under control of the micro-
processor (VTRFIRDIEN[1:28] = 0 in registers
0x4F—0x6A, bit 6). In the automatic mode, the values
for bit 4 (RFI-V) and bit 8 (RDI-V) are defined in
Table 3. The automatic insertion mode may not meet
the different standards body requirements unless the
VT PTE at both ends of the path (and any intermediate
NEs provisioned to perform intermediate-path PM on
that path) support the protocol defined in Table 3. To
meet the different standards requirements, the micro-
processor mode allows programming the RDI-V and
RFI-V bits in registers 0x4F—0x6A by programming
VTRFIINS[1:28] (bit 5) and VTRDIINS[1:28] (bit 4),
respectively.
Table 3. RFI-V, RDI-V Description
The VT label for each VT is also provisionable through
the microprocessor by programming the
VTLABINS[2:0]_[1:28] in registers 0x4F—0x6A, bit 2
through bit 0.
Bit #12 3 4 567 8
BIP-2 REI-V RFI-V Signal
Label RDI-V
Bit 4 Bit 8 Description
0 0 No alarm
0 1 AIS-V or LOP-V
1 0 VT payload mismatch
1 1 VT unequipped
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
12 Agere Systems Inc.
DS1/E1 to STS-1 Block Descriptions
(continued)
VT Generate (continued)
In addition to generating the superframe, this block
automatically generates the BIP-2 signal. Each VT can
be configured to intentionally insert continuous BIP-2
errors for troubleshooting purposes (BIP2ERINS[1:28]
= 1 in bit 7 of registers 0x4F—0x6A). This BIP error
insert field forces errors on both BIP-2 bits.
The resultant VT1.5 and VT2 superframes are shown
in Table 4 and Table 5,
Where:
Byte[24/3 2:1] = informati on bit
O = overhead bit
R = fixed stuff bit
V1, V2, V3 = pointer and pointer action bytes
S1, S2 = stuff opportunity bits
V4 = reserved
C1, C2 = stuff indication bits
V5 = VT overhead byte
J2, Z6/N2, Z7/K4 = unused
Table 4. VT1.5 Superframe
Table 5. VT2 Superframe
V1
V5
RRRRRRIR
Byte 1
:
Byte 24
V2
J2
C1C2OOOOIR
Byte 1
:
VT1.5 Byte 24
Superframe V3
Z6/N2
C1C2OOOOIR
Byte 1
:
Byte 24
V4
Z7/K4
C1C2RRRS1S2R
Byte 1
:
Byte 24
V1
V5
RRRRRRRR
Byte 1
:
Byte 32
RRRRRRRR
V2
J2
C1C2OOOORR
Byte 1
:
Byte 32
RRRRRRRR VT2
V3 Superframe
Z6/N2
C1C2OOOORR
Byte 1
:
Byte 32
RRRRRRRR
V4
Z7/K4
C1C2RRRRRS1
S2 Byte 1[6:0]
:
Byte 32
RRRRRRRR
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
13Agere Systems Inc.
DS1/E1 to STS-1 Block Descriptions
(continued)
VT Genera te (continued)
The device would transmit 0 in each of the O bits when
the DS1_E1N pin is pulled high. If DS1_E1N is pulled
low, the device will transmit 1 in each of the O bits.
The R bits are always set to 1.
The device transmits all 1s in the J2, Z6/N2, and Z7/K4
bytes.
The device can be configured such that any detected
BIP-2 errors in the VT receive side result in REI-V
being written into the corresponding transmit VT slot
(when REI_EN = 1 in bit 7 of register 0x01).
STS-1/AU-3 Generate
The device generates an STS-1 signal based on an
incoming clock (TSTS1CLK) and frame sync pulse
(TSTS1SYNC). The frame sync pulse can be a single
clock-period wide to ind icate an 8 kHz sync, or it can
contain pulses in three clock periods to indicate a com-
posite 2 kHz sync. (See the Transmit Sync Timing sec-
tion, page 70.)
The STS-1 frame is 9 rows x 90 columns that repeats
at an 8 kHz rate. Each column is 1-byte wide. The
STS-1 frame contains three columns of transport over-
head, one column of path overhead, and 86 columns of
payload.
The 36 bytes of STS-1 overhead are allocated as
shown in Table 6.
Table 6. STS-1 Overhead Byte Allocation
The overhead bytes that are inserted by the device are
described below. All of the remaining overhead bytes
are given a fixed value of all 0s when DS1_E1N (bit 0
in register 0x07) is high, or all 1s when DS1_E1N is
low.
The device inserts the correct frame pattern of 0xF628
into the A1 and A2 bytes.
The device inserts a fixed value of 0x01 into the J0
byte.
The device generates and inserts valid B1, B2, and B3
BIP-8 even parity bytes into the STS-1 overhead.
These bytes are forced to odd parity when
B[1:3]ERRINS = 1 in bit 6 through bit 4 of register 0x00.
The device will provide an STS-1 pointer with a fixed
value of 522 (decimal) with 0110 in the new data flag
(NDF) bits. The SS bits are determined by the level of
the DS1_E1N pin. When this pin is high, the device
puts 00 in the SS bits. When this pin is low, the device
puts 10 in the SS bits. This pointer value indicates that
the J1 path overhead byte follows immediately after the
J0 line overhead byte.
The J1 byte is used for path trace. This byte repetitively
transmits a 64-byte fixed length sequence to verify
end-to-end connectivity. These 64 bytes are program-
mable by the microprocessor by provisioning
TJ1BYTE[7:0]_[64:1] in registers 0xC0—0xFF (when
TJ1BYTE = 1 in register 0xBF). The method for pro-
gramming these bits is described in detail in the regis-
ter description of the transmit J1 path trace bytes,
page 59.
The F2 byte can be provisioned by the microprocessor
(F2INS-[7:0]) in register 0x10.
The device inserts a value of 0x02 into the C2 byte,
indicating VT structured STS-1 SPE.
The three least significant bits of the K2 byte can be
provisioned by the microprocessor (K2INS-[6:8]) in reg-
ister 0x11.
The four least significant bits of the S1 byte can be pro-
visioned by the microprocessor (S1INS-[3:0]) in regis-
ter 0x13.
The M0 byte is used to report B2 line REI (REI-L) when
REI_EN = 1 in register 0x01. This register contains the
number of B2 BIP-8 errors detected in the current
receive frame circuitry when REI_EN = 1 (bit 7 0f regis-
ter 0x01). Valid values for these 4 bits are 0000—1000.
The G1 byte is used to convey path condition and per-
formance back to the far end. The format of the G1
byte is shown in Table 7.
Table 7. G1 Path Condition/Performance Byte
Format
Col. 1 Col. 2 Col. 3 Col. 4
Row 1 A1 A2 J0 J1
Row 2 B1 E1 F1 B3
Row 3 D1 D2 D3 C2
Row 4 H1 H2 H3 G1
Row 5 B2 K1 K2 F2
Row 6 D4 D5 D6 H4
Row 7 D7 D8 D9 Z3/F3
Row 8 D10 D11 D12 Z4/K3
Row 9 S1 M0 E2 Z5/N1
Bit #1234 5 678
REI-P User-Provisioned
RDI-P
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
14 Agere Systems Inc.
DS1/E1 to STS-1 Block Descriptions
(continued)
STS-1/AU-3 Generate (continued)
Path remote error indicator (REI-P) reports the number
of remote errors. The four REI-P bits contain the num-
ber of B3 BIP-8 errors detected in the current frame
when REI_EN = 1 (bit 7 of register 0x01). Valid values
for these 4 bits are 0000—1000. The path remote
defect indicator (RDI-P) bits report back such condi-
tions as receive AIS-P, signal failure, and path trace
mismatch. These bits, 5 through 8 of the G1 byte
(G1INS-[5:8] in register 0x11), are user programmable
by the microprocessor and are not inserted automati-
cally b y the devic e.
The H4 byte is inserted using the reduced H4 coding
sequence format, where the 6 most significant bits are
ones, and the 2 least significant bits take on the follow-
ing values: 00-01-10-11-00, etc. The value of 00 indi-
cates that the next STS-1 SPE contains the V1
overhead byte.
The STS-1 can be provisioned to send AIS-P
(TXPAISINS = 1 in bit 5 of register 0x01). Writing AIS-P
consists of writing all 1s into the H1—H3 bytes and the
entire SPE.
The transmitted STS-1 can be configured to scramble
the output data (STS1SCR = 1 in bit 2 of register 0x01)
or transmit the data without scrambling (STS1SCR = 0
in bit 2, register 0x01). It is useful to turn off SONET
scrambling if the data is going to be immediately multi-
plexed into a higher rate SONET signal. When
STS1SCR = 1 in register 0x01, the device scrambles
the outgoing STS-1 frame according to the SONET
frame synchronous scrambling sequence 1 + x6 + x7.
The sequence is reset to 1111111 at the beginning of
the byte following the C1 byte and scrambles all of the
STS-1 data except the A1, A2, and C1 bytes. When
this bit is 0, then the transmit data is not scrambled by
the device.
SPE Insertion Logic
In addition to the one column of path overhead and 84
columns of VT payload, the STS-1 SPE also contains
two columns of fixed stuff bytes. The path overhead is
located in column #1, while column #30 and column
#59 contain the fixed stuff bytes. The remaining col-
umns contain the interleaved VT data as shown in
Table 8.
The SPE insertion logic block acts in conjunction with
the STS-1 frame generate block to place the VT infor-
mation in the transmitted data stream.
The cross-referencing between the VT1.5 # listed in
Table 8 and the standard format (VT Group #, VT #)
listed in GR-253-CORE section 3.2.4 is shown in
Table 9.
The cross-referencing between the VT2 # listed in
Table 10 and the standard format (VT Group #, VT #)
listed in GR-253-CORE section 3.2.4 is shown in
Table 11.
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
15Agere Systems Inc.
DS1/E1 to STS-1 Block Descriptions (continued)
SPE Insertion Logi c (continued)
Table 8. VT1.5 SPE Insertion Format
SPE Column # 1234567891
01
12
82
93
03
13
25
75
85
96
06
16
28
18
28
38
48
58
68
7
P
A
T
H
O
H
V
T
1
.
5
#
1
V
T
1
.
5
#
2
V
T
1
.
5
#
3
V
T
1
.
5
#
4
V
T
1
.
5
#
5
V
T
1
.
5
#
6
V
T
1
.
5
#
7
V
T
1
.
5
#
8
V
T
1
.
5
#
9
V
T
1
.
5
#
1
0
• • • V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
F
I
X
E
D
V
T
1
.
5
#
1
V
T
1
.
5
#
2
• • • V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
F
I
X
E
D
V
T
1
.
5
#
1
V
T
1
.
5
#
2
V
T
1
.
5
#
3
• • • V
T
1
.
5
#
2
2
V
T
1
.
5
#
2
3
V
T
1
.
5
#
2
4
V
T
1
.
5
#
2
5
V
T
1
.
5
#
2
6
V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
Table 9. Mapping of VT1.5 # to (VT Group #, VT #)
VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #)
1 1, 1 8 1, 2151, 3221, 4
2 2, 1 9 2, 2162, 3232, 4
3 3, 1103, 2173, 3243, 4
4 4, 1 11 4, 2 18 4, 3 25 4, 4
5 5, 1125, 2195, 3265, 4
6 6, 1136, 2206, 3276, 4
7 7, 1147, 2217, 3287, 4
Table 10. VT2 SPE Insertion Format
SPE Column # 1234567891
01
12
82
93
03
13
25
75
85
96
06
16
28
18
28
38
48
58
68
7
P
A
T
H
O
H
V
T
2
#
1
V
T
2
#
2
V
T
2
#
3
V
T
2
#
4
V
T
2
#
5
V
T
2
#
6
V
T
2
#
7
V
T
2
#
8
V
T
2
#
9
V
T
2
#
1
0
• • • V
T
2
#
6
V
T
2
#
7
F
I
X
E
D
V
T
2
#
8
V
T
2
#
9
• • • V
T
2
#
1
3
V
T
2
#
1
4
F
I
X
E
D
V
T
2
#
1
5
V
T
2
#
1
6
V
T
2
#
1
7
• • • V
T
2
#
1
5
V
T
2
#
1
6
V
T
2
#
1
7
V
T
2
#
1
8
V
T
2
#
1
9
V
T
2
#
2
0
V
T
2
#
2
1
Table 11. Mapping of VT2 # to (VT Group #, VT #)
VT2 # (VT Group #, VT #) VT2 # (VT Group #, VT #) VT2 # (VT Group #, VT #)
1 1, 1 8 1, 2 15 1, 3
2 2, 1 9 2, 2 16 2, 3
3 3, 1103, 2173, 3
4 4, 1 11 4, 2 18 4, 3
5 5, 1125, 2195, 3
6 6, 1136, 2206, 3
7 7, 1147, 2217, 3
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
16 Agere Systems Inc.
DS1/E1 to STS-1 Block Descriptions
(continued)
SPE Insertion Logi c (continued)
The device can transmit the data as either a serial bit
stream (TXSERIAL = 1 in register 0x02, bit 6) or as a
parallel byte of data (TXSERIAL = 0 in register 0x02, bit
6). There are two parallel modes of operation: bus
mode and nonbus mode. Bus mode allows multiple
TMPR28051 devices to operate on a 19.44 MHz bus;
in nonbus mode, the device transmits data in a
point-to-point fashion at 6.48 MHz. In either parallel
mode, the device sends a parity bit with the data.
This parity bit is configurable to be either odd
(TXPARITY = 1 in register 0x02, bit position 4) or even
(TXPARITY = 0 in register 0x02, bit position 4) parity.
The bus mode of operation requires the device to
select which STS-1 time slot of the three that are avail-
able to transmit data. The TBUSMODE bit (bit 2) in reg-
ister 0x12 determines whether the device operates in
bus mode (TBUSMODE = 1) or nonbus mode
(TBUSMODE = 0). By default, the device powers up in
bus mode. The TBUSPOS bits (bit 1 and bit 0) in regis-
ter 0x12 determine in which of the three time slots the
device transmits. By default, the device does not trans-
mit (TBUSPOS-[1:0] = 00 in register 0x12), but it can
be co nfigu red to tra nsmi t duri ng any of th e thr ee STS- 1
time slots on the 19.44 MHz bus.
In all three modes, the device frame sync input allows
the 8 kHz STS-1 frames as well as the 2 kHz VT super-
frames to be aligned.
STS-1 to DS1/E1 Block Descriptions
Loopback Select Logic
The device can be configured to loop back the transmit
STS-1 (STS1LB = 1 in bit 0 of register 0x01) or accept
the receive STS-1 signal (STS1LB = 0 in bit 0 of regis-
ter 0x01). When the receive STS-1 signal is selected,
the user can configure which edge of the clock to use
to retime the data (RXSTS1EDGE = 1 in bit 3 of regis-
ter 0x02 uses the rising edge; RXSTS1EDGE = 0 in
bit 3 of register 0x02 uses the falling edge).
SPE Locate
The device can receive data as either a serial bit
stream (RXSERIAL = 1 in bit 7 of register 0x02) or as a
parallel byte (RXSERIAL = 0 in bit 7 of register 0x02).
In the parallel mode, the device receives a parity bit
with the data. This bit is configurable to odd
(RXPARITY = 1 in bit 5 of register 0x02) or even
(RXPARITY = 0 in bit 5 of register 0x02) parity. Errors
in this bit are reported to the microprocessor
(RXPARER in bit 6 of register 0x03).
The bus mode of operation is similar to normal opera-
tion in the DS1/E1 to STS-1 direction. The device
defaults to the bus mode (RBUSMODE = 1 in bit 5 of
register 0x12) of operation and listens to none of the
receive channels (RBUSPOS-[1:0] = 00 in bit 4 and
bit 3 of register 0x12). The sync pulse is used only to
define time slot #1 of the three that are possible. Bus
mode operation requires at least one sync pulse to
define the time slot.
The STS-1 locate block performs the functions neces-
sary to locate the SPE. The device will frame on the
incoming STS-1 signal, and indicate when it is in the
out of frame (OOF) condition (STS1OOF = 1 in bit 0 of
register 0x03) or loss of frame (LOF) condition
(STS1LOF = 1 in bit 1 of register 0x03). Loss of frame
is defined as being in the OOF condition for 3 ms or
more. Both the OOF and LOF are current state condi-
tions; they hold their value for a minimum of 500 µs
after the event. The indications reset if the condition is
no longer true.
The device monitors the received data bytes for contin-
uous ones or zeros. If the number of continuous data
bytes exceeds the provisioned value (LOSDET-[7:0] in
register 0x91), then loss of signal (STS1LOS = 1 in
bit 0 of register 0x05) is declared. If the value in
LOSDET- [7:0] in register 0x91 is 0x00, then LOS is not
declared.
STS-1/AU-3 Terminate
The STS-1 terminate block can descramble the output
data (STS1DSCR = 1 in bit 1 of register 0x01) or output
the received data without descrambling
(STS1DSCR = 0 in bit 1 of register 0x01). It is useful to
turn off descrambling if the data is received locally from
a higher-rate signal where descrambling has already
taken place.
For performance monitoring purposes, there are a
number of BIP and REI error counters (registers
0xC0—0xFF) in the receive section of the device. All of
these internal counters are comprised of a running
error counter and a hold register that presents stable
results to the microprocessor. The counts in all of the
running counters are latched to the hold registers when
LATCH_CNT (bit 3) in register 0x00 is written from 0 to
1. This also resets all of the running counters. The
results are then held until read by the microprocessor.
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
17Agere Systems Inc.
STS-1 to DS1/E1 Block Descriptions
(continued)
STS-1/AU-3 Terminate (continued)
All of the internal counters have the ability to store
more than one second of counts. As long as the
LATCH_CNT (bit 3) in register 0x00 occurs every sec-
ond or faster, no counts will be lost. In case this does
not happen, all of the running counters will hold their
maximum value rather than roll over to zeros.
The device performs pointer interpretation on the
incoming signal to locate the start of the SPE. The
pointer interpretation block will indicate when the
device is in the path loss of pointer (LOP-P) or path AIS
(AIS-P) condition.
Loss of pointer condition is declared as the result of
either of the following conditions:
1. Continuous NDF—If the device receives 1001 in the
NDF field for nine consecutive frames, then LOP-P
is declared.
2. Invalid pointer values—If the device receives nine
frames consecutively of a pointer that is not a nor-
mal value, NDF, AIS-P, increment, or decrement,
then LOP-P is declared. The SS bits do not contrib-
ute to LOP-P when DS1_E1N is high; otherwise, a
non-10 value in the SS bits will contribute to
LOP-P.
AIS-P is declared on three consecutive frames with all
1s in the H1 and H2 bytes.
AIS-P and LOP-P are mutually exclusive conditions. If
neither STS1PAIS (bit 3 in register 0x03) or STS1LOP
(bit 2 in register 0x03) is a logic 1, then the pointer
interpreter declares a normal pointer. As part of the
normal operation, the device will respond appropriately
to valid NDF, increment, and decrement indications.
Increment and decrement operations will be counted
by the device and presented to the microprocessor via
the SPTR+[7:0] and SPTR–[7:0] bits in registers 0xFE
and 0xFF, respectively.
The B1, B2, and B3 BIP-8 values are recalculated and
compared to the received values. Any differences are
counted by the appropriate error counter
(B[1:3]BIPCNT-[15:0] in registers 0xC0—0xC5 when
BIP_CNTS = 1 in register 0xBF). In addition, B2 and
B3 REI errors are also counted in registers
0xC2—0xC5 (B[2:3]REI-[15:0]; register 0xBF settings:
REI_CNTS = 1 and BIP_CNTS = 0). The running and
latched counts for both B1 and B2 counters are held at
zero during OOF. The running and latched counts for
B3 counters are held at zero during OOF as well as
LOP-P.
The device can be provisioned to count bits in error
(BIPBLKCNT = 0 in bit 1 of register 0x00) or blocks in
error (BIPBLKCNT = 1 in bit 0 of register 0x00).
The J1 byte is terminated within the device. This con-
sists of writing the receive J1 sequentially in a 64-byte
register (modulo 64).
At start-up, the receive J1 byte register is all 0s. When-
ever the received J1 byte value does not match the
current J1 byte in the register, the path trace mismatch
TRACEER bit (bit 7 in register 0x03) is set to logic 1.
This allows the user to read the 64-byte register once,
and then ignore it unless differences are received.
TRACEER bit (bit 7 in register 0x03) is masked during
AIS-P and LOP-P.
The F2 byte (F2-[7:0] in register 0x0B), the C2 byte
(C2-[7:0] in register 0x0C), the 3 least significant bits of
the K2 byte (K2-[6:8] in register 0x0D), the 4 least sig-
nificant bits of the S1 byte (S1-[3:0] in register 0x14),
and the 4 least significant bits of the G1 byte (G1-[5:8]
in register 0x0D) are monitored by the microprocessor .
The number of consistent, consecutive frames to
update the values of all of these monitored bytes can
be set by the user to anywhere between 2 and 15
frames (F2#DET-[3:0] in register 0x0E, C2#DET-[3:0]
in register 0x0E, K2#DET-[3:0] in register 0x0F,
G1#DET-[3:0] in register 0x0F). None of these regis-
ters will update during OOF condition.
SPE Drop Logic
The SPE drop lo gic uses the H4 mu ltif rame in dicat or to
identify the V1 byte and drop the data to the correct VT
termination blocks. Loss of multiframe synchronization
will be reported to the microprocessor (H4LOMF = 1 in
bit 4 of register 0x03).
VT Terminate
The VT terminate block performs VT pointer interpreta-
tion on the received signal to locate the VT overhead.
LOP-V (VTLOP[1:28] bit 6 in registers 0x6B—0x86)
and AIS-V (VTAIS[1:28] bit 3 in registers 0x6B—0x86)
are reported to the microprocessor. LOP-V is declared
as a result of either of the following conditions:
1. Continuous NDF—If the device receives 1001 in the
NDF field for nine consecutive superframes, then
LOP-V is declared.
2. Invalid pointer values—If the device receives nine
frames consecutively of a pointer that is not a nor-
mal value, NDF, AIS-V, increment, or decrement,
then LOP-V is declared. The SS bits do contribute
to LOP-V.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
18 Agere Systems Inc.
STS-1 to DS1/E1 Block Descriptions
(continued)
VT Terminate (continued)
AIS-V is declared on three consecutive superframes
with all 1s in the V1 and V2 bytes.
AIS-V and LOP-V are mutually exclusive conditions. If
neither VTAI S[1 :28] (bit 3 in registers 0x6B—0x86) or
VTLOP[1:28] (bit 6 in registers 0x6B—0x86) is a
logic 1, then the poin ter interpreter declares a normal
pointer. As part of the normal operation, the device will
respond appropriately to valid NDF, increment, and
decrement indications. Increment and decrement oper-
ations will be counted by the device and presented to
the microprocessor via bits VT[1:28]PTR+[3:0] in regis-
ters 0xC6—0xFF (BIP_CNTS = 1), and via
VT[1:28]PTR–[3:0] in registers 0xC6—0xFF
(REI_CNTS = 1 and BIP_CNTS = 0), respectively.
Mismatches between the expected VT size bits, bit 11
for VT1.5 and bit 10 for VT2, and the actual received
SS size bits are reported to the microprocessor
VTSIZEER[1:28] bit (bit 7 in registers 0x6B—0x86).
Once the V5 byte is located, the device checks for
received BIP-2 errors (B2BIPCNT-[15:0] in registers
0xC0—0xC1 when BIP_CNTS bit in register 0xBF is
set to 1) and received REI (B[2:3]REI-[15:0] in registers
0xC2—0xC5 when REI_CNTS and BIP_CNTS in reg-
ister 0xBF are set to a 1 and 0, respectively). In addi-
tion to reporting the occurrence of BIP-2 errors and
REI, the device also maintains a count of each of these
on a per VT basis (VTREI[7:0]_[1:28] in registers
0xC7—0xFD: REI_CNTS = 1, BIP_CNTS = 0, and
BIP2CNT[7:0]_[1:28] in registers 0xC7—0xFD:
BIP_CNTS = 1). These running and latched counts for
both BIP-2 and REI counters are held at zero during
OOF, LOP-P, LOP-V, and AIS-V.
Additionally, the device checks for received RFI-V and
RDI-V (bit 5 and bit 4, respectively, in registers
0x6B—0x86) and received VT label
(VTLAB[2:0]_[1:28], bit 2 through bit 0 in registers
0x6B—0x86). Whenever the device receives three
consecutive consistent values for the VT label fields
that are different from the current values, it latches the
new value and reports the change to the microproces-
sor. When a 1 is received in VTRDI0_[1:28], bit 4 in
registers 0x6B—0x86 (represents bit 8 of the VT V5
overhead byte), for 10 consecutive superframes, it
declares an RDI-V condition.
Jitter Attenuate
Each of the 28 VTs has a built-in digital jitter attenuator
to remove the effects of mapping jitter and pointer
adjustment jitter. The bits in registers 0x8A—0x8F are
used to control various aspects of the digital jitter atten-
uator. Two programmable terms are used to set the
2nd-order loop damping factor and natural frequency of
the PLL. These terms are the gain threshold, set by
DJAGTHR[23:0] in registers 0x8D—0x8F, and scale
value, set by DJASCALE[15:0] in registers
0x8B—0x8C. The PLL bandwidth can be set using the
above registers to accommodate various system con-
straints.
The digital jitter attenuator block can be enabled by set-
ting the bit DJACTL = 1 (bit 4) in register 0x01. These
digital jitter attenuators require a blue signal clock that
runs at 16 times the nominal output rate.
The digital jitter attenuators are designed to meet cur-
rent jitter specifications as well as maximum time inter-
val error (MTIE) requirements. The clock transmitted
from this block nominally has a 50% duty cycle. The jit-
ter attenuator block can be bypassed by setting
DJACTL = 0 (bit 4) in register 0x01. If this block is
bypassed, the output produces gapped clock and data.
Drop Select Logic
Once the VT has been terminated, the source VT for
each DS1/E1 output is selected. This selection
req uir es 5 bi t s pe r s lot to det erm ine whi ch V T t o us e by
programming VTDROP[4:0]_[1:28] bits (bits 4 through
0 in registers 0x33—0x4E). The numbering scheme for
the five provisioned bits ranges from 00001 to 11100,
where the binary value of the 5 bits corresponds to the
VT source. For instance, the value 00001 corresponds
to selecting VT Group 1, VT #1.
The unused values of 00000 and 11101—11110 will
cause AIS to be inserted for that DS1 output. By
default, all DS1/E1 outputs reset to a value of 00000 on
powerup, which causes all of the DS1/E1s to transmit
AIS (all 1s) using the blue signal clock.
The value of 11111 will insert the test pattern as
described next.
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
19Agere Systems Inc.
Test Pattern Block Descriptions
The device contains a test pattern generator and a test
pattern detector for use in maintenance and trouble-
shooting.
Test Pattern Insert
The test pattern generator is capable of transmitting
four different test patterns (XMT_PAT-[1:0] in bit posi-
tions 0 and 1 of register 0x08). In addition to a 215 – 1,
a 220 – 1, and a 223 – 1 sequence, the device can also
transmit a QRSS sequence. The QRSS pattern is a
220 – 1 pseudorandom bit sequence defined by the
equation 1 + x17 + x20 = 0, with a 14 zero limit.
As can be seen in Figure 1 on page 5, this test pattern
can be inserted in the place of any of the transmitted or
received DS1/E1 signals. The test pattern can also be
provisioned to be framed (XMT_FRAME = 1 in bit 2 of
register 0x08) or unframed (XMT_FRAME = 0 in bit 2
of register 0x08). The framed sequence can be either
DS1 SF format (TP_DS1E1N = 1 in bit 7 of register
0x09) or E1 format (TP_DS1E1N = 0 in bit 7 of register
0x09). The test pattern can also be forced to transmit a
bit error (ERROR_INS bit in register 0x08, bit position
3, is forced to make low to high transition). The test pat-
terns are O.151 compliant, so they can be used to drive
external test equipment as well as to perform internal
maintenance and troubleshooting.
Test Pattern Drop
The test pattern detector can detect the same four test
sequences generated by the test pattern generator
(RCV_PAT-[1:0] in bit positions 4 and 5 of register
0x08). When the detector is out of synchronization, the
device continuously monitors the input data signal for
matches with the expected data signal. When the
device detects 32 matches in a row, it declares itself in
sync (TPOOS = 0 in bit 7 of register 0x0A), and the
error detector is enabled. If the device detects eight
consecutive bit mismatches, the test pattern detector
declares itself out of sync (TPOOS = 1), and starts
searching again.
The test pattern detector can be configured to look for
a framed (RCV_FRAME = 1 in bit 6 of register 0x08) or
unframed (RCV_FRAME = 0 in bit 6 of register 0x08)
signal.
While in sync, the device counts the number of times
the input data differs from the expected data in a 7-bit
counter, TPERR-[6:0] (bit 0 through bit 6 in register
0x0A), that holds its count when it reaches the maxi-
mum value of 128. This counter is reset when the
LATCH_TP bit (bit 7) in register 0x08 makes a 0 to 1
transition.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
20 Agere Systems Inc.
Microprocessor Interface Description
Overview
The device is equipped with an asynchronous microprocessor interface that allows operation with most commer-
cially available microprocessors. Inputs MPMUX and MPMODE are used to configure this interface into one of four
possible modes. The MPMUX setting selects either a multiplexed 8-bit address/data bus (AD[7:0]), or a demulti-
plexed 8-bit address bus (A[7:0]) and an 8-bit data bus (AD[7:0]). The MPMODE setting selects the associated set
of registers within the device.
The microprocessor interface can operate at speeds up to 33 MHz in interrupt-driven or polled mode without
wait-states. To conform to standards, there are a limited number of default powerup or reset states. All read/write
registers must be written by the microprocessor on system start-up to guarantee proper device functionality.
Microp roc essor Configur atio n M odes
Table 12 highlights the four microprocessor modes controlled by the MPMUX and MPMODE inputs.
Table 12. Microprocessor Configuration Modes
Mode MPMODE MPMUX Address/Data
Bus Generic Control, Data, and Output Pin Names
Mode 1 0 0 DeMUXed CS, AS, DS, R/W, A[7:0], AD[7:0], INT, DTACK
Mode 2 0 1 MUXed CS, AS, D S, R/W, AD[7:0], INT, DTACK
Mode 3 1 0 DeMUXed CS, ALE, RD, WR, A[7:0], AD[7:0], INT, RDY
Mode 4 1 1 MUXed CS, ALE, RD, WR, AD[7:0], INT, RDY
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
21Agere Systems Inc.
Microprocessor Interface Description (continued)
Micropro cessor Interface Pins
The mode [1—4] specific pin definitions are given in Table 13. Note that the microprocessor interface uses the
same set of pins in all modes.
Table 13. Mode [1—4] Microprocessor Pin Definitions
Configuration Device Pin
Name Generic Pin
Name Pin Type Assertion
Sense Function
Mode 1 W R _DS DS Input Active-Low Data Strobe
RD_R/W R/W Input Read/Write
R/W = 1 for Read
R/W = 0 for Write
ALE_AS AS Input Address Strobe
CS CS Input Active-Lo w Ch ip Se lec t
INT INT Output Active-High Interrupt
RDY_DTACK DTACK Output Active-Low Dat a Acknowledge
AD[7:0] AD[7:0] I/O Data Bus
A[7:0] A[7:0] Input Address Bus
Mode 2 W R _DS DS Input Active-Low Data Strobe
RD_R/W R/W Input Read/Write
R/W = 1 for Read
R/W = 0 for Write
ALE_AS AS Input Address Strobe
CS CS Input Active-Lo w Ch ip Se lec t
INT INT Output Active-High Interrupt
RDY_DTACK DTACK Output Active-Low Dat a Acknowledge
AD[7:0] AD[7:0] I/O Address/Data Bus
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
22 Agere Systems Inc.
Microprocessor Interface Description (continued)
Microprocessor Interface Pins (continued)
Table 13. Mode [1—4] Microprocessor Pin Definitions (continued)
Configuration Device Pin
Name Generic Pin
Name Pin
Type Assertion
Sense Function
Mode 3 WR _DS WR Input Active-Low Write
RD_R/W RD Input —Read
ALE_AS ALE Input Address Latch
Enable
CS CS Input A c tiv e-Low Chip Sele ct
INT INT Output Active-High Interrupt
RDY_DTACK RDY Output Active-Low Ready
AD[7:0] AD[7:0] I/O Data Bus
A[7:0] A[7:0] Input Address Bus
Mode 4 WR _DS WR Input Active-Low Write
RD_R/W RD Input Read
ALE_AS ALE Input Address Latch
Enable
CS CS Input A c tiv e-Low Chip Sele ct
INT INT Output Active-High Interrupt
RDY_DTACK RDY Output Active-Low Ready
AD[7:0] AD[7:0] I/O Address/Data Bus
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
23Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map
The register bank architecture of the microprocessor interface is shown in Table 14. All addresses referred to in
this section are given in hexadecimal and binary notation, where hexadecimal is the left column and binary is the
right column under Address.
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF (see the Register Architecture Description section, page 57—page 59).
Table 14. Device Register Map
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Control, Alarm, and Mask Bit Registers
00 00000000 TEST_CNT B1ERRINS B2ERRINS B3ERRINS LATCH_CNT BLUECLKSEL BIPBLKCNT 0
01 00000001 REI_EN AUTO_LRDI TXPAISINS DJACTL 0 STS1SCR STS1DSCR STS1LB
02 00000010 RXSERIAL TXSERIAL RXPARITY TXPARITY RXSTS1EDGE TXSTS1EDGE RXDS1EDGE TXDS1EDGE
03 00000011 TRACEER RXPARER 0 H4LOMF STS1PAIS STS1LOP STS1LOF STS1OOF
04 00000100 TRACEERMSK RXPARERMSK 0 H4LOMFMSK STS1PAISMSK STS1LOPMSK STS1LOFMSK STS1OOFMSK
05 00000101 ESOFCOM VTSIZECOM VTLOPCOM VTRFIRDICOM VTAISCOM VTLABCOM AISLOCCOM STS1LOS
06 00000110 ESOFMSK VTSIZEMSK VTLOPMSK VTRFIRDIMSK VTAISMSK VTLABMSK AISLOCMSK STS1LOSMSK
07 00000111 0 0 0 0000DS1_E1N
08 00001000 LATCH_TP RCV_FRAME RCV_PAT-1 RCV_PAT-0 ERROR_INS XMT_FRAME XMT_PAT-1 XMT_PAT-0
09 00001001 TP_DS1E1N TP_INVERT TPDROPSIDE TPDROP-4 TPDROP-3 TPDROP-2 TPDROP-1 TPDROP-0
0A 00001010 TPOOS TPERR-6 TPERR-5 TPERR-4 TPERR-3 TPERR-2 TPERR-1 TPERR-0
0B 00001011 F2-7 F2-6 F2-5 F2-4 F2-3 F2-2 F2-1 F2-0
0C 00001100 C2-7 C2-6 C2-5 C2-4 C2-3 C2-2 C2-1 C2-0
0D 00001101 G1-5 G1-6 G1-7 G1-8 0 K2-6 K2-7 K2-8
0E 00001110 C2#DET-3 C2#DET-2 C2#DET-1 C2#DET-0 F2#DET-3 F2#DET-2 F2#DET-1 F2#DET-0
0F 00001111 G1#DET-3 G1#DET-2 G1#DET-1 G1#DET-0 K2#DET-3 K2#DET-2 K2#DET-1 K2#DET-0
10 00010000 F2INS-7 F2INS-6 F2INS-5 F2INS-4 F2INS-3 F2INS-2 F2INS-1 F2INS-0
11 00010001 G1INS-5 G1INS-6 G1INS-7 G1INS-8 0 K2INS-6 K2INS-7 K2INS-8
12 00010010 0 0 RBUSMODE RBUSPOS-1 RBUSPOS-0 TBUSMODE TBUSPOS-1 TBUSPOS-0
13 00010011 0 0 0 0 S1INS-3 S1INS-2 S1INS-1 S1INS-0
14 00010100 S1#DET-3 S1#DET-2 S1#DET-1 S1#DET-0 S1-3 S1-2 S1-1 S1-0
15 00010101 DEVID-7 DEVID-6 DEVID-5 DEVID-4 DEVID-3 DEVID-2 DEVID-1 DEVID-0
16 00010110 0 0 0 0 DEVVER-3 DEVVER-2 DEVVER-1 DEVVER-0
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
24 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DS1/E1 Insertion Selection Registers
17 00010111 DS1/E1AIS1 DS1/E1LOC1 DS1/E1LB1 DS1/E1INS4_1 DS1/E1INS3_1 DS1/E1INS2_1 DS1/E1INS1_1 DS1/E1INS0_1
18 00011000 DS1/E1AIS2 DS1/E1LOC2 DS1/E1LB2 DS1/E1INS4_2 DS1/E1INS3_2 DS1/E1INS2_2 DS1/E1INS1_2 DS1/E1INS0_2
19 00011001 DS1/E1AIS3 DS1/E1LOC3 DS1/E1LB3 DS1/E1INS4_3 DS1/E1INS3_3 DS1/E1INS2_3 DS1/E1INS1_3 DS1/E1INS0_3
1A 00011010 DS1/E1AIS4 DS1/E1LOC4 DS1/E1LB4 DS1/E1INS4_4 DS1/E1INS3_4 DS1/E1INS2_4 DS1/E1INS1_4 DS1/E1INS0_4
1B 00011011 DS1/E1AIS5 DS1/E1LOC5 DS1/E1LB5 DS1/E1INS4_5 DS1/E1INS3_5 DS1/E1INS2_5 DS1/E1INS1_5 DS1/E1INS0_5
1C 00011100 DS1/E1AIS6 DS1/E1LOC6 DS1/E1LB6 DS1/E1INS4_6 DS1/E1INS3_6 DS1/E1INS2_6 DS1/E1INS1_6 DS1/E1INS0_6
1D 00011101 DS1/E1AIS7 DS1/E1LOC7 DS1/E1LB7 DS1/E1INS4_7 DS1/E1INS3_7 DS1/E1INS2_7 DS1/E1INS1_7 DS1/E1INS0_7
1E 00011110 DS1/E1AIS8 DS1/E1LOC8 DS1/E1LB8 DS1/E1INS4_8 DS1/E1INS3_8 DS1/E1INS2_8 DS1/E1INS1_8 DS1/E1INS0_8
1F 00011111 DS1/E1AIS9 DS1/E1LOC9 DS1/E1LB9 DS1/E1INS4_9 DS1/E1INS3_9 DS1/E1INS2_9 DS1/E1INS1_9 DS1/E1INS0_9
20 00100000 DS1/E1AIS10 DS1/E1LOC10 DS1/E1LB10 DS1/E1INS4_10 DS1/E1INS3_10 DS1/E1INS2_10 DS1/E1INS1_10 DS1/E1INS0_10
21 00100001 DS1/E1AIS11 DS1/E1LOC11 DS1/E1LB11 DS1/E1INS4_11 DS1/E1INS3_11 DS1/E1INS2_11 DS1/E1INS1_11 DS1/E1INS0_11
22 00100010 DS1/E1AIS12 DS1/E1LOC12 DS1/E1LB12 DS1/E1INS4_12 DS1/E1INS3_12 DS1/E1INS2_12 DS1/E1INS1_12 DS1/E1INS0_12
23 00100011 DS1/E1AIS13 DS1/E1LOC13 DS1/E1LB13 DS1/E1INS4_13 DS1/E1INS3_13 DS1/E1INS2_13 DS1/E1INS1_13 DS1/E1INS0_13
24 00100100 DS1/E1AIS14 DS1/E1LOC14 DS1/E1LB14 DS1/E1INS4_14 DS1/E1INS3_14 DS1/E1INS2_14 DS1/E1INS1_14 DS1/E1INS0_14
25 00100101 DS1/E1AIS15 DS1/E1LOC15 DS1/E1LB15 DS1/E1INS4_15 DS1/E1INS3_15 DS1/E1INS2_15 DS1/E1INS1_15 DS1/E1INS0_15
26 00100110 DS1/E1AIS16 DS1/E1LOC16 DS1/E1LB16 DS1/E1INS4_16 DS1/E1INS3_16 DS1/E1INS2_16 DS1/E1INS1_16 DS1/E1INS0_16
27 00100111 DS1/E1AIS17 DS1/E1LOC17 DS1/E1LB17 DS1/E1INS4_17 DS1/E1INS3_17 DS1/E1INS2_17 DS1/E1INS1_17 DS1/E1INS0_17
28 00101000 DS1/E1AIS18 DS1/E1LOC18 DS1/E1LB18 DS1/E1INS4_18 DS1/E1INS3_18 DS1/E1INS2_18 DS1/E1INS1_18 DS1/E1INS0_18
29 00101001 DS1/E1AIS19 DS1/E1LOC19 DS1/E1LB19 DS1/E1INS4_19 DS1/E1INS3_19 DS1/E1INS2_19 DS1/E1INS1_19 DS1/E1INS0_19
2A 00101010 DS1/E1AIS20 DS1/E1LOC20 DS1/E1LB20 DS1/E1INS4_20 DS1/E1INS3_20 DS1/E1INS2_20 DS1/E1INS1_20 DS1/E1INS0_20
2B 00101011 DS1/E1AIS21 DS1/E1LOC21 DS1/E1LB21 DS1/E1INS4_21 DS1/E1INS3_21 DS1/E1INS2_21 DS1/E1INS1_21 DS1/E1INS0_21
2C 00101100 DS1AIS22 DS1LOC22 DS1LB22 DS1INS4_22 DS1INS3_22 DS1INS2_22 DS1INS1_22 DS1INS0_22
2D 00101101 DS1AIS23 DS1LOC23 DS1LB23 DS1INS4_23 DS1INS3_23 DS1INS2_23 DS1INS1_23 DS1INS0_23
2E 00101110 DS1AIS24 DS1LOC24 DS1LB24 DS1INS4_24 DS1INS3_24 DS1INS2_24 DS1INS1_24 DS1INS0_24
2F 00101111 DS1AIS25 DS1LOC25 DS1LB25 DS1INS4_25 DS1INS3_25 DS1INS2_25 DS1INS1_25 DS1INS0_25
30 00110000 DS1AIS26 DS1LOC26 DS1LB26 DS1INS4_26 DS1INS3_26 DS1INS2_26 DS1INS1_26 DS1INS0_26
31 00110001 DS1AIS27 DS1LOC27 DS1LB27 DS1INS4_27 DS1INS3_27 DS1INS2_27 DS1INS1_27 DS1INS0_27
32 00110010 DS1AIS28 DS1LOC28 DS1LB28 DS1INS4_28 DS1INS3_28 DS1INS2_28 DS1INS1_28 DS1INS0_28
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
25Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Drop Selection Registers
33 00110011 0 RXESOF1 TXESOF1 VTDROP4_1 VTDROP3_1 VTDROP2_1 VTDROP1_1 VTDROP0_1
34 00110100 0 RXESOF2 TXESOF2 VTDROP4_2 VTDROP3_2 VTDROP2_2 VTDROP1_2 VTDROP0_2
35 00110101 0 RXESOF3 TXESOF3 VTDROP4_3 VTDROP3_3 VTDROP2_3 VTDROP1_3 VTDROP0_3
36 00110110 0 RXESOF4 TXESOF4 VTDROP4_4 VTDROP3_4 VTDROP2_4 VTDROP1_4 VTDROP0_4
37 00110111 0 RXESOF5 TXESOF5 VTDROP4_5 VTDROP3_5 VTDROP2_5 VTDROP1_5 VTDROP0_5
38 00111000 0 RXESOF6 TXESOF6 VTDROP4_6 VTDROP3_6 VTDROP2_6 VTDROP1_6 VTDROP0_6
39 00111001 0 RXESOF7 TXESOF7 VTDROP4_7 VTDROP3_7 VTDROP2_7 VTDROP1_7 VTDROP0_7
3A 00111010 0 RXESOF8 TXESOF8 VTDROP4_8 VTDROP3_8 VTDROP2_8 VTDROP1_8 VTDROP0_8
3B 00111011 0 RXESOF9 TXESOF9 VTDROP4_9 VTDROP3_9 VTDROP2_9 VTDROP1_9 VTDROP0_9
3C 00111100 0 RXESOF10 TXESOF10 VTDROP4_10 VTDROP3_10 VTDROP2_10 VTDROP1_10 VTDROP0_10
3D 00111101 0 RXESOF11 TXESOF11 VTDROP4_11 VTDROP3_11 VTDROP2_11 VTDROP1_11 VTDROP0_11
3E 00111110 0 RXESOF12 TXESOF12 VTDROP4_12 VTDROP3_12 VTDROP2_12 VTDROP1_12 VTDROP0_12
3F 00111111 0 RXESOF13 TXESOF13 VTDROP4_13 VTDROP3_13 VTDROP2_13 VTDROP1_13 VTDROP0_13
40 01000000 0 RXESOF14 TXESOF14 VTDROP4_14 VTDROP3_14 VTDROP2_14 VTDROP1_14 VTDROP0_14
41 01000001 0 RXESOF15 TXESOF15 VTDROP4_15 VTDROP3_15 VTDROP2_15 VTDROP1_15 VTDROP0_15
42 01000010 0 RXESOF16 TXESOF16 VTDROP4_16 VTDROP3_16 VTDROP2_16 VTDROP1_16 VTDROP0_16
43 01000011 0 RXESOF17 TXESOF17 VTDROP4_17 VTDROP3_17 VTDROP2_17 VTDROP1_17 VTDROP0_17
44 01000100 0 RXESOF18 TXESOF18 VTDROP4_18 VTDROP3_18 VTDROP2_18 VTDROP1_18 VTDROP0_18
45 01000101 0 RXESOF19 TXESOF19 VTDROP4_19 VTDROP3_19 VTDROP2_19 VTDROP1_19 VTDROP0_19
46 01000110 0 RXESOF20 TXESOF20 VTDROP4_20 VTDROP3_20 VTDROP2_20 VTDROP1_20 VTDROP0_20
47 01000111 0 RXESOF21 TXESOF21 VTDROP4_21 VTDROP3_21 VTDROP2_21 VTDROP1_21 VTDROP0_21
48 01001000 0 RXESOF22 TXESOF22 VTDROP4_22 VTDROP3_22 VTDROP2_22 VTDROP1_22 VTDROP0_22
49 01001001 0 RXESOF23 TXESOF23 VTDROP4_23 VTDROP3_23 VTDROP2_23 VTDROP1_23 VTDROP0_23
4A 01001010 0 RXESOF24 TXESOF24 VTDROP4_24 VTDROP3_24 VTDROP2_24 VTDROP1_24 VTDROP0_24
4B 01001011 0 RXESOF25 TXESOF25 VTDROP4_25 VTDROP3_25 VTDROP2_25 VTDROP1_25 VTDROP0_25
4C 01001100 0 RXESOF26 TXESOF26 VTDROP4_26 VTDROP3_26 VTDROP2_26 VTDROP1_26 VTDROP0_26
4D 01001101 0 RXESOF27 TXESOF27 VTDROP4_27 VTDROP3_27 VTDROP2_27 VTDROP1_27 VTDROP0_27
4E 01001110 0 RXESOF28 TXESOF28 VTDROP4_28 VTDROP3_28 VTDROP2_28 VTDROP1_28 VTDROP0_28
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
26 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Tx VT Overhead Insertion Control Registers
4F 01001111 BIP2ERINS1 VTRFIRDIEN1 VTRFIINS1 VTRDIINS1 VTAISINS1 VTLABINS2_1 VTLABINS1_1 VTLABINS0_1
50 01010000 BIP2ERINS2 VTRFIRDIEN2 VTRFIINS2 VTRDIINS2 VTAISINS2 VTLABINS2_2 VTLABINS1_2 VTLABINS0_2
51 01010001 BIP2ERINS3 VTRFIRDIEN3 VTRFIINS3 VTRDIINS3 VTAISINS3 VTLABINS2_3 VTLABINS1_3 VTLABINS0_3
52 01010010 BIP2ERINS4 VTRFIRDIEN4 VTRFIINS4 VTRDIINS4 VTAISINS4 VTLABINS2_4 VTLABINS1_4 VTLABINS0_4
53 01010011 BIP2ERINS5 VTRFIRDIEN5 VTRFIINS5 VTRDIINS5 VTAISINS5 VTLABINS2_5 VTLABINS1_5 VTLABINS0_5
54 01010100 BIP2ERINS6 VTRFIRDIEN6 VTRFIINS6 VTRDIINS6 VTAISINS6 VTLABINS2_6 VTLABINS1_6 VTLABINS0_6
55 01010101 BIP2ERINS7 VTRFIRDIEN7 VTRFIINS7 VTRDIINS7 VTAISINS7 VTLABINS2_7 VTLABINS1_7 VTLABINS0_7
56 01010110 BIP2ERINS8 VTRFIRDIEN8 VTRFIINS8 VTRDIINS8 VTAISINS8 VTLABINS2_8 VTLABINS1_8 VTLABINS0_8
57 01010111 BIP2ERINS9 VTRFIRDIEN9 VTRFIINS9 VTRDIINS9 VTAISINS9 VTLABINS2_9 VTLABINS1_9 VTLABINS0_9
58 01011000 BIP2ERINS10 VTRFIRDIEN10 VTRFIINS10 VTRDIINS10 VTAISINS10 VTLABINS2_10 VTLABINS1_10 VTLABINS0_10
59 01011001 BIP2ERINS11 VTRFIRDIEN11 VTRFIINS11 VTRDIINS11 VTAISINS11 VTLABINS2_11 VTLABINS1_11 VTLABINS0_11
5A 01011010 BIP2ERINS12 VTRFIRDIEN12 VTRFIINS12 VTRDIINS12 VTAISINS12 VTLABINS2_12 VTLABINS1_12 VTLABINS0_12
5B 01011011 BIP2ERINS13 VTRFIRDIEN13 VTRFIINS13 VTRDIINS13 VTAISINS13 VTLABINS2_13 VTLABINS1_13 VTLABINS0_13
5C 01011100 BIP2ERINS14 VTRFIRDIEN14 VTRFIINS14 VTRDIINS14 VTAISINS14 VTLABINS2_14 VTLABINS1_14 VTLABINS0_14
5D 01011101 BIP2ERINS15 VTRFIRDIEN15 VTRFIINS15 VTRDIINS15 VTAISINS15 VTLABINS2_15 VTLABINS1_15 VTLABINS0_15
5E 01011110 BIP2ERINS16 VTRFIRDIEN16 VTRFIINS16 VTRDIINS16 VTAISINS16 VTLABINS2_16 VTLABINS1_16 VTLABINS0_16
5F 01011111 BIP2ERINS17 VTRFIRDIEN17 VTRFIINS17 VTRDIINS17 VTAISINS17 VTLABINS2_17 VTLABINS1_17 VTLABINS0_17
60 01100000 BIP2ERINS18 VTRFIRDIEN18 VTRFIINS18 VTRDIINS18 VTAISINS18 VTLABINS2_18 VTLABINS1_18 VTLABINS0_18
61 01100001 BIP2ERINS19 VTRFIRDIEN19 VTRFIINS19 VTRDIINS19 VTAISINS19 VTLABINS2_19 VTLABINS1_19 VTLABINS0_19
62 01100010 BIP2ERINS20 VTRFIRDIEN20 VTRFIINS20 VTRDIINS20 VTAISINS20 VTLABINS2_20 VTLABINS1_20 VTLABINS0_20
63 01100011 BIP2ERINS21 VTRFIRDIEN21 VTRFIINS21 VTRDIINS21 VTAISINS21 VTLABINS2_21 VTLABINS1_21 VTLABINS0_21
64 01100100 BIP2ERINS22 VTRFIRDIEN22 VTRFIINS22 VTRDIINS22 VTAISINS22 VTLABINS2_22 VTLABINS1_22 VTLABINS0_22
65 01100101 BIP2ERINS23 VTRFIRDIEN23 VTRFIINS23 VTRDIINS23 VTAISINS23 VTLABINS2_23 VTLABINS1_23 VTLABINS0_23
66 01100110 BIP2ERINS24 VTRFIRDIEN24 VTRFIINS24 VTRDIINS24 VTAISINS24 VTLABINS2_24 VTLABINS1_24 VTLABINS0_24
67 01100111 BIP2ERINS25 VTRFIRDIEN25 VTRFIINS25 VTRDIINS25 VTAISINS25 VTLABINS2_25 VTLABINS1_25 VTLABINS0_25
68 01101000 BIP2ERINS26 VTRFIRDIEN26 VTRFIINS26 VTRDIINS26 VTAISINS26 VTLABINS2_26 VTLABINS1_26 VTLABINS0_26
69 01101001 BIP2ERINS27 VTRFIRDIEN27 VTRFIINS27 VTRDIINS27 VTAISINS27 VTLABINS2_27 VTLABINS1_27 VTLABINS0_27
6A 01101010 BIP2ERINS28 VTRFIRDIEN28 VTRFIINS28 VTRDIINS28 VTAISINS28 VTLABINS2_28 VTLABINS1_28 VTLABINS0_28
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
27Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map (continued)
Table 14. Device Register Map (continu ed)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Rx VT Drop Monitoring Registers
6B 01101011 VTSIZEER1 VTLOP1 VTRDI1_1 VTRDI0_1 VTAIS1 VTLAB2_1 VTLAB1_1 VTLAB0_1
6C 01101100 VTSIZEER2 VTLOP2 VTRDI1_2 VTRDI0_2 VTAIS2 VTLAB2_2 VTLAB1_2 VTLAB0_2
6D 01101101 VTSIZEER3 VTLOP3 VTRDI1_3 VTRDI0_3 VTAIS3 VTLAB2_3 VTLAB1_3 VTLAB0_3
6E 01101110 VTSIZEER4 VTLOP4 VTRDI1_4 VTRDI0_4 VTAIS4 VTLAB2_4 VTLAB1_4 VTLAB0_4
6F 01101111 VTSIZEER5 VTLOP5 VTRDI1_5 VTRDI0_5 VTAIS5 VTLAB2_5 VTLAB1_5 VTLAB0_5
70 01110000 VTSIZEER6 VTLOP6 VTRDI1_6 VTRDI0_6 VTAIS6 VTLAB2_6 VTLAB1_6 VTLAB0_6
71 01110001 VTSIZEER7 VTLOP7 VTRDI1_7 VTRDI0_7 VTAIS7 VTLAB2_7 VTLAB1_7 VTLAB0_7
72 01110010 VTSIZEER8 VTLOP8 VTRDI1_8 VTRDI0_8 VTAIS8 VTLAB2_8 VTLAB1_8 VTLAB0_8
73 01110011 VTSIZEER9 VTLOP9 VTRDI1_9 VTRDI0_9 VTAIS9 VTLAB2_9 VTLAB1_9 VTLAB0_9
74 01110100 VTSIZEER10 VTLOP10 VTRDI1_10 VTRDI0_10 VTAIS10 VTLAB2_10 VTLAB1_10 VTLAB0_10
75 01110101 VTSIZEER11 VTLOP11 VTRDI1_11 VTRDI0_11 VTAIS11 VTLAB2_11 VTLAB1_11 VTLAB0_11
76 01110110 VTSIZEER12 VTLOP12 VTRDI1_12 VTRDI0_12 VTAIS12 VTLAB2_12 VTLAB1_12 VTLAB0_12
77 01110111 VTSIZEER13 VTLOP13 VTRDI1_13 VTRDI0_13 VTAIS13 VTLAB2_13 VTLAB1_13 VTLAB0_13
78 01111000 VTSIZEER14 VTLOP14 VTRDI1_14 VTRDI0_14 VTAIS14 VTLAB2_14 VTLAB1_14 VTLAB0_14
79 01111001 VTSIZEER15 VTLOP15 VTRDI1_15 VTRDI0_15 VTAIS15 VTLAB2_15 VTLAB1_15 VTLAB0_15
7A 01111010 VTSIZEER16 VTLOP16 VTRDI1_16 VTRDI0_16 VTAIS16 VTLAB2_16 VTLAB1_16 VTLAB0_16
7B 01111011 VTSIZEER17 VTLOP17 VTRDI1_17 VTRDI0_17 VTAIS17 VTLAB2_17 VTLAB1_17 VTLAB0_17
7C 01111100 VTSIZEER18 VTLOP18 VTRDI1_18 VTRDI0_18 VTAIS18 VTLAB2_18 VTLAB1_18 VTLAB0_18
7D 01111101 VTSIZEER19 VTLOP19 VTRDI1_19 VTRDI0_19 VTAIS19 VTLAB2_19 VTLAB1_19 VTLAB0_19
7E 01111110 VTSIZEER20 VTLOP20 VTRDI1_20 VTRDI0_20 VTAIS20 VTLAB2_20 VTLAB1_20 VTLAB0_20
7F 01111111 VTSIZEER21 VTLOP21 VTRDI1_21 VTRDI0_21 VTAIS21 VTLAB2_21 VTLAB1_21 VTLAB0_21
80 10000000 VTSIZEER22 VTLOP22 VTRDI1_22 VTRDI0_22 VTAIS22 VTLAB2_22 VTLAB1_22 VTLAB0_22
81 10000001 VTSIZEER23 VTLOP23 VTRDI1_23 VTRDI0_23 VTAIS23 VTLAB2_23 VTLAB1_23 VTLAB0_23
82 10000010 VTSIZEER24 VTLOP24 VTRDI1_24 VTRDI0_24 VTAIS24 VTLAB2_24 VTLAB1_24 VTLAB0_24
83 10001000 VTSIZEER25 VTLOP25 VTRDI1_25 VTRDI0_25 VTAIS25 VTLAB2_25 VTLAB1_25 VTLAB0_25
84 10000100 VTSIZEER26 VTLOP26 VTRDI1_26 VTRDI0_26 VTAIS26 VTLAB2_26 VTLAB1_26 VTLAB0_26
85 10000101 VTSIZEER27 VTLOP27 VTRDI1_27 VTRDI0_27 VTAIS27 VTLAB2_27 VTLAB1_27 VTLAB0_27
86 10000110 VTSIZEER28 VTLOP28 VTRDI1_28 VTRDI0_28 VTAIS28 VTLAB2_28 VTLAB1_28 VTLAB0_28
Reserved Register
87 10000111 0 0 0 0 0 0 0 0
Signal Override Control Registers
88 10001000 TVTG-7 TVTG-6 TVTG-5 TVTG-4 TVTG-3 TVTG-2 TVTG-1 TOVERRIDE
89 10001001 RVTG-7 RVTG-6 RVTG-5 RVTG-4 RVTG-3 RVTG-2 RVTG-1 ROVERRIDE
Jitter Attenuator Control Registers
8A 10001010 SCALETHR-7 SCALETHR-6 SCALETHR-5 SCALETHR-4 SCALETHR-3 SCALETHR-2 SCALETHR-1 SCALETHR-0
8B 10001011 DJASCALE-15 DJASCALE-14 DJASCALE-13 DJASCALE-12 DJASCALE-11 DJASCALE-10 DJASCALE-9 DJASCALE-8
8C 10001100 DJASCALE-7 DJASCALE-6 DJASCALE-5 DJASCALE-4 DJASCALE-3 DJASCALE-2 DJASCALE-1 DJASCALE-0
8D 10001101 DJAGTHR-23 DJAGTHR-22 DJAGTHR-21 DJAGTHR-20 DJAGTHR-19 DJAGTHR-18 DJAGTHR-17 DJAGTHR-16
8E 10001110 DJAGTHR-15 DJAGTHR-14 DJAGTHR-13 DJAGTHR-12 DJAGTHR-11 DJAGTHR-10 DJAGTHR-9 DJAGTHR-8
8F 10001111 DJAGTHR-7 DJAGTHR-6 DJAGTHR-5 DJAGTHR-4 DJAGTHR-3 DJAGTHR-2 DJAGTHR-1 DJAGTHR-0
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
28 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Register
90 10010000 00000000
STS-1 LOS Detect/Test Pattern Edge Control Register
91 10010001 LOSDET-7 LOSDET-6 LOSDET-5 LOSDET-4 LOSDET-3 LOSDET-2 LOSDET-1/
TP_EDGE-1 LOSDET-0/
TP_EDGE-0
Reserved Registers
92 10010010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
93 10010011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
94 10010100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
95 10010101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
96 10010110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
97 10010111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
98 10011000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
99 10011001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
9A 10011010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
9B 10011011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
9C 10011100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
9D 10011101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
9E 10011110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
9F 10011111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A0 10100000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A1 10100001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A2 10100010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A3 10100011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A4 10100100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A5 10100101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A6 10100110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A7 10100111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A8 10101000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
A9 10101001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
AA 10101010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
AB 10101011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
AC 10101100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
AD 10101101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
AE 10101110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
AF 10101111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B0 10110000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B1 10110001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B2 10110010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B3 10110011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B4 10110100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
29Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Registers (continued)
B5 10110101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B6 10110110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B7 10110111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B8 10111000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
B9 10111001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
BA 10111010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
BB 10111011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
BC 10111100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
BD 10111101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
BE 10111110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED
Block Control Register
BF 10111111 0 0 0 0 TJ1BYTE RJ1BYTE REI_CNTS BIP_CNTS
Block Registers 0xC0—0xFF: Detected BIP Errors
Register 0xBF Setting: BIP_CNTS = 1
C0 11000000 B1BIPCNT-15 B1BIPCNT-14 B1BIPCNT-13 B1BIPCNT-12 B1BIPCNT-11 B1BIPCNT-10 B1BIPCNT-9 B1BIPCNT-8
C1 11000001 B1BIPCNT-7 B1BIPCNT-6 B1BIPCNT-5 B1BIPCNT-4 B1BIPCNT-3 B1BIPCNT-2 B1BIPCNT-1 B1BIPCNT-0
C2 11000010 B2BIPCNT-15 B2BIPCNT-14 B2BIPCNT-13 B2BIPCNT-12 B2BIPCNT-11 B2BIPCNT-10 B2BIPCNT-9 B2BIPCNT-8
C3 11000011 B2BIPCNT-7 B2BIPCNT-6 B2BIPCNT-5 B2BIPCNT-4 B2BIPCNT-3 B2BIPCNT-2 B2BIPCNT-1 B2BIPCNT-0
C4 11000100 B3BIPCNT-15 B3BIPCNT-14 B3BIPCNT-13 B3BIPCNT-12 B3BIPCNT-11 B3BIPCNT-10 B3BIPCNT-9 B3BIPCNT-8
C5 11000101 B3BIPCNT-7 B3BIPCNT-6 B3BIPCNT-5 B3BIPCNT-4 B3BIPCNT-3 B3BIPCNT-2 B3BIPCNT-1 B3BIPCNT-0
C6 11000110 VT1PTR+3 VT1PTR+2 VT1PTR+1 VT1PTR+0 BIP2CNT11_1 BIP2CNT10_1 BIP2CNT9_1 BIP2CNT8_1
C7 11000111 BIP2CNT7_1 BIP2CNT6_1 BIP2CNT5_1 BIP2CNT4_1 BIP2CNT3_1 BIP2CNT2_1 BIP2CNT1_1 BIP2CNT0_1
C8 11001000 VT2PTR+3 VT2PTR+2 VT2PTR+1 VT2PTR+0 BIP2CNT11_2 BIP2CNT10_2 BIP2CNT9_2 BIP2CNT8_2
C9 11001001 BIP2CNT7_2 BIP2CNT6_2 BIP2CNT5_2 BIP2CNT4_2 BIP2CNT3_2 BIP2CNT2_2 BIP2CNT1_2 BIP2CNT0_2
CA 11001010 VT3PTR+3 VT3PTR+2 VT3PTR+1 VT3PTR+0 BIP2CNT11_3 BIP2CNT10_3 BIP2CNT9_3 BIP2CNT8_3
CB 11001011 BIP2CNT7_3 BIP2CNT6_3 BIP2CNT5_3 BIP2CNT4_3 BIP2CNT3_3 BIP2CNT2_3 BIP2CNT1_3 BIP2CNT0_3
CC 11001100 VT4PTR+3 VT4PTR+2 VT4PTR+1 VT4PTR+0 BIP2CNT11_4 BIP2CNT10_4 BIP2CNT9_4 BIP2CNT8_4
CD 11001101 BIP2CNT7_4 BIP2CNT6_4 BIP2CNT5_4 BIP2CNT4_4 BIP2CNT3_4 BIP2CNT2_4 BIP2CNT1_4 BIP2CNT0_4
CE 11001110 VT5PTR+3 VT5PTR+2 VT5PTR+1 VT5PTR+0 BIP2CNT11_5 BIP2CNT10_5 BIP2CNT9_5 BIP2CNT8_5
CF 11001111 BIP2CNT7_5 BIP2CNT6_5 BIP2CNT5_5 BIP2CNT4_5 BIP2CNT3_5 BIP2CNT2_5 BIP2CNT1_5 BIP2CNT0_5
D0 11010000 VT6PTR+3 VT6PTR+2 VT6PTR+1 VT6PTR+0 BIP2CNT11_6 BIP2CNT10_6 BIP2CNT9_6 BIP2CNT8_6
D1 11010001 BIP2CNT7_6 BIP2CNT6_6 BIP2CNT5_6 BIP2CNT4_6 BIP2CNT3_6 BIP2CNT2_6 BIP2CNT1_6 BIP2CNT0_6
D2 11010010 VT7PTR+3 VT7PTR+2 VT7PTR+1 VT7PTR+0 BIP2CNT11_7 BIP2CNT10_7 BIP2CNT9_7 BIP2CNT8_7
D3 11010011 BIP2CNT7_7 BIP2CNT6_7 BIP2CNT5_7 BIP2CNT4_7 BIP2CNT3_7 BIP2CNT2_7 BIP2CNT1_7 BIP2CNT0_7
D4 11010100 VT8PTR+3 VT8PTR+2 VT8PTR+1 VT8PTR+0 BIP2CNT11_8 BIP2CNT10_8 BIP2CNT9_8 BIP2CNT8_8
D5 11010101 BIP2CNT7_8 BIP2CNT6_8 BIP2CNT5_8 BIP2CNT4_8 BIP2CNT3_8 BIP2CNT2_8 BIP2CNT1_8 BIP2CNT0_8
D6 11010110 VT9PTR+3 VT9PTR+2 VT9PTR+1 VT9PTR+0 BIP2CNT11_9 BIP2CNT10_9 BIP2CNT9_9 BIP2CNT8_9
D7 11010111 BIP2CNT7_9 BIP2CNT6_9 BIP2CNT5_9 BIP2CNT4_9 BIP2CNT3_9 BIP2CNT2_9 BIP2CNT1_9 BIP2CNT0_9
D8 11011000 VT10PTR+3 VT10PTR+2 VT10PTR+1 VT10PTR+0 BIP2CNT11_10 BIP2CNT10_10 BIP2CNT9_10 BIP2CNT8_10
D9 11011001 BIP2CNT7_10 BIP2CNT6_10 BIP2CNT5_10 BIP2CNT4_10 BIP2CNT3_10 BIP2CNT2_10 BIP2CNT1_10 BIP2CNT0_10
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
30 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Detected BIP Errors (continued)
DA 11011010 VT11PTR+3 VT11PTR+2 VT11PTR+1 VT11PTR+0 BIP2CNT11_11 BIP2CNT10_11 BIP2CNT9_11 BIP2CNT8_11
DB 11011011 BIP2CNT7_11 BIP2CNT6_11 BIP2CNT5_11 BIP2CNT4_11 BIP2CNT3_11 BIP2CNT2_11 BIP2CNT1_11 BIP2CNT0_11
DC 11011100 VT12PTR+3 VT12PTR+2 VT12PTR+1 VT12PTR+0 BIP2CNT11_12 BIP2CNT10_12 BIP2CNT9_12 BIP2CNT8_12
DD 11011101 BIP2CNT7_12 BIP2CNT6_12 BIP2CNT5_12 BIP2CNT4_12 BIP2CNT3_12 BIP2CNT2_12 BIP2CNT1_12 BIP2CNT0_12
DE 11011110 VT13PTR+3 VT13PTR+2 VT13PTR+1 VT13PTR+0 BIP2CNT11_13 BIP2CNT10_13 BIP2CNT9_13 BIP2CNT8_13
DF 11011111 BIP2CNT7_13 BIP2CNT6_13 BIP2CNT5_13 BIP2CNT4_13 BIP2CNT3_13 BIP2CNT2_13 BIP2CNT1_13 BIP2CNT0_13
E0 11100000 VT14PTR+3 VT14PTR+2 VT14PTR+1 VT14PTR+0 BIP2CNT11_14 BIP2CNT10_14 BIP2CNT9_14 BIP2CNT8_14
E1 11100001 BIP2CNT7_14 BIP2CNT6_14 BIP2CNT5_14 BIP2CNT4_14 BIP2CNT3_14 BIP2CNT2_14 BIP2CNT1_14 BIP2CNT0_14
E2 11100010 VT15PTR+3 VT15PTR+2 VT15PTR+1 VT15PTR+0 BIP2CNT11_15 BIP2CNT10_15 BIP2CNT9_15 BIP2CNT8_15
E3 11100011 BIP2CNT7_15 BIP2CNT6_15 BIP2CNT5_15 BIP2CNT4_15 BIP2CNT3_15 BIP2CNT2_15 BIP2CNT1_15 BIP2CNT0_15
E4 11100100 VT16PTR+3 VT16PTR+2 VT16PTR+1 VT16PTR+0 BIP2CNT11_16 BIP2CNT10_16 BIP2CNT9_16 BIP2CNT8_16
E5 11100101 BIP2CNT7_16 BIP2CNT6_16 BIP2CNT5_16 BIP2CNT4_16 BIP2CNT3_16 BIP2CNT2_16 BIP2CNT1_16 BIP2CNT0_16
E6 11100110 VT17PTR+3 VT17PTR+2 VT17PTR+1 VT17PTR+0 BIP2CNT11_17 BIP2CNT10_17 BIP2CNT9_17 BIP2CNT8_17
E7 11100111 BIP2CNT7_17 BIP2CNT6_17 BIP2CNT5_17 BIP2CNT4_17 BIP2CNT3_17 BIP2CNT2_17 BIP2CNT1_17 BIP2CNT0_17
E8 11101000 VT18PTR+3 VT18PTR+2 VT18PTR+1 VT18PTR+0 BIP2CNT11_18 BIP2CNT10_18 BIP2CNT9_18 BIP2CNT8_18
E9 11101001 BIP2CNT7_18 BIP2CNT6_18 BIP2CNT5_18 BIP2CNT4_18 BIP2CNT3_18 BIP2CNT2_18 BIP2CNT1_18 BIP2CNT0_18
EA 11101010 VT19PTR+3 VT19PTR+2 VT19PTR+1 VT19PTR+0 BIP2CNT11_19 BIP2CNT10_19 BIP2CNT9_19 BIP2CNT8_19
EB 11101011 BIP2CNT7_19 BIP2CNT6_19 BIP2CNT5_19 BIP2CNT4_19 BIP2CNT3_19 BIP2CNT2_19 BIP2CNT1_19 BIP2CNT0_19
EC 11101100 VT20PTR+3 VT20PTR+2 VT20PTR+1 VT20PTR+0 BIP2CNT11_20 BIP2CNT10_20 BIP2CNT9_20 BIP2CNT8_20
ED 11101101 BIP2CNT7_20 BIP2CNT6_20 BIP2CNT5_20 BIP2CNT4_20 BIP2CNT3_20 BIP2CNT2_20 BIP2CNT1_20 BIP2CNT0_20
EE 11101110 VT21PTR+3 VT21PTR+2 VT21PTR+1 VT21PTR+0 BIP2CNT11_21 BIP2CNT10_21 BIP2CNT9_21 BIP2CNT8_21
EF 11101111 BIP2CNT7_21 BIP2CNT6_21 BIP2CNT5_21 BIP2CNT4_21 BIP2CNT3_21 BIP2CNT2_21 BIP2CNT1_21 BIP2CNT0_21
F0 11110000 VT22PTR+3 VT22PTR+2 VT22PTR+1 VT22PTR+0 BIP2CNT11_22 BIP2CNT10_22 BIP2CNT9_22 BIP2CNT8_22
F1 11110001 BIP2CNT7_22 BIP2CNT6_22 BIP2CNT5_22 BIP2CNT4_22 BIP2CNT3_22 BIP2CNT2_22 BIP2CNT1_22 BIP2CNT0_22
F2 11110010 VT23PTR+3 VT23PTR+2 VT23PTR+1 VT23PTR+0 BIP2CNT11_23 BIP2CNT10_23 BIP2CNT9_23 BIP2CNT8_23
F3 11110011 BIP2CNT7_23 BIP2CNT6_23 BIP2CNT5_23 BIP2CNT4_23 BIP2CNT3_23 BIP2CNT2_23 BIP2CNT1_23 BIP2CNT0_23
F4 11110100 VT24PTR+3 VT24PTR+2 VT24PTR+1 VT24PTR+0 BIP2CNT11_24 BIP2CNT10_24 BIP2CNT9_24 BIP2CNT8_24
F5 11110101 BIP2CNT7_24 BIP2CNT6_24 BIP2CNT5_24 BIP2CNT4_24 BIP2CNT3_24 BIP2CNT2_24 BIP2CNT1_24 BIP2CNT0_24
F6 11110110 VT25PTR+3 VT25PTR+2 VT25PTR+1 VT25PTR+0 BIP2CNT11_25 BIP2CNT10_25 BIP2CNT9_25 BIP2CNT8_25
F7 11110111 BIP2CNT7_25 BIP2CNT6_25 BIP2CNT5_25 BIP2CNT4_25 BIP2CNT3_25 BIP2CNT2_25 BIP2CNT1_25 BIP2CNT0_25
F8 11111000 VT26PTR+3 VT26PTR+2 VT26PTR+1 VT26PTR+0 BIP2CNT11_26 BIP2CNT10_26 BIP2CNT9_26 BIP2CNT8_26
F9 11111001 BIP2CNT7_26 BIP2CNT6_26 BIP2CNT5_26 BIP2CNT4_26 BIP2CNT3_26 BIP2CNT2_26 BIP2CNT1_26 BIP2CNT0_26
FA 11111010 VT27PTR+3 VT27PTR+2 VT27PTR+1 VT27PTR+0 BIP2CNT11_27 BIP2CNT10_27 BIP2CNT9_27 BIP2CNT8_27
FB 11111011 BIP2CNT7_27 BIP2CNT6_27 BIP2CNT5_27 BIP2CNT4_27 BIP2CNT3_27 BIP2CNT2_27 BIP2CNT1_27 BIP2CNT0_27
FC 11111100 VT28PTR+3 VT28PTR+2 VT28PTR+1 VT28PTR+0 BIP2CNT11_28 BIP2CNT10_28 BIP2CNT9_28 BIP2CNT8_28
FD 11111101 BIP2CNT7_28 BIP2CNT6_28 BIP2CNT5_28 BIP2CNT4_28 BIP2CNT3_28 BIP2CNT2_28 BIP2CNT1_28 BIP2CNT0_28
Received SONET/SDH Pointer Value Registers
Register 0xBF Setting: BIP_CNTS = 1
FE 11111110 SPTR+7 SPTR+6 SPTR+5 SPTR+4 SPTR+3 SPTR+2 SPTR+1 SPTR+0
FF 11111111 SPTR–7 SPTR–6 SPTR–5 SPTR–4 SPTR–3 SPTR–2 SPTR–1 SPTR–0
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
31Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 B it 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Detected REI Errors
Register 0xBF Settings: REI_CNTS = 1, BIP_CNTS = 0
C0 11000000 0 0 0 00000
C1 11000001 0 0 0 00000
C2 11000010 B2REI-15 B2REI-14 B2REI-13 B2REI-12 B2REI-11 B2REI-10 B2REI-9 B2REI-8
C3 11000011 B2REI-7 B2REI-6 B2REI-5 B2REI-4 B2REI-3 B2REI-2 B2REI-1 B2REI-0
C4 11000100 B3REI-15 B3REI-14 B3REI-13 B3REI-12 B3REI-11 B3REI-10 B3REI-9 B3REI-8
C5 11000101 B3REI-7 B3REI-6 B3REI-5 B3REI-4 B3REI-3 B3REI-2 B3REI-1 B3REI-0
C6 11000110 VT1PTR–3 VT1PTR–2 VT1PTR–1 VT1PTR–0 0 VTREI10_1 VTREI9_1 VTREI8_1
C7 11000111 VTREI7_1 VTREI6_1 VTREI5_1 VTREI4_1 VTREI3_1 VTREI2_1 VTREI1_1 VTREI0_1
C8 11001000 VT2PTR–3 VT2PTR–2 VT2PTR–1 VT2PTR–0 0 VTREI10_2 VTREI9_2 VTREI8_2
C9 11001001 VTREI7_2 VTREI6_2 VTREI5_2 VTREI4_2 VTREI3_2 VTREI2_2 VTREI1_2 VTREI0_2
CA 11001010 VT3PTR–3 VT3PTR–2 VT3PTR–1 VT3PTR–0 0 VTREI10_3 VTREI9_3 VTREI8_3
CB 11001011 VTREI7_3 VTREI6_3 VTREI5_3 VTREI4_3 VTREI3_3 VTREI2_3 VTREI1_3 VTREI0_3
CC 11001100 VT4PTR–3 VT4PTR–2 VT4PTR–1 VT4PTR–0 0 VTREI10_4 VTREI9_4 VTREI8_4
CD 11001101 VTREI7_4 VTREI6_4 VTREI5_4 VTREI4_4 VTREI3_4 VTREI2_4 VTREI1_4 VTREI0_4
CE 11001110 VT5PTR–3 VT5PTR–2 VT5PTR–1 VT5PTR–0 0 VTREI10_5 VTREI9_5 VTREI8_5
CF 11001111 VTREI7_5 VTREI6_5 VTREI5_5 VTREI4_5 VTREI3_5 VTREI2_5 VTREI1_5 VTREI0_5
D0 11010000 VT6PTR–3 VT6PTR–2 VT6PTR–1 VT6PTR–0 0 VTREI10_6 VTREI9_6 VTREI8_6
D1 11010001 VTREI7_6 VTREI6_6 VTREI5_6 VTREI4_6 VTREI3_6 VTREI2_6 VTREI1_6 VTREI0_6
D2 11010010 VT7PTR–3 VT7PTR–2 VT7PTR–1 VT7PTR–0 0 VTREI10_7 VTREI9_7 VTREI8_7
D3 11010011 VTREI7_7 VTREI6_7 VTREI5_7 VTREI4_7 VTREI3_7 VTREI2_7 VTREI1_7 VTREI0_7
D4 11010100 VT8PTR–3 VT8PTR–2 VT8PTR–1 VT8PTR–0 0 VTREI10_8 VTREI9_8 VTREI8_8
D5 11010101 VTREI7_8 VTREI6_8 VTREI5_8 VTREI4_8 VTREI3_8 VTREI2_8 VTREI1_8 VTREI0_8
D6 11010110 VT9PTR–3 VT9PTR–2 VT9PTR–1 VT9PTR–0 0 VTREI10_9 VTREI9_9 VTREI8_9
D7 11010111 VTREI7_9 VTREI6_9 VTREI5_9 VTREI4_9 VTREI3_9 VTREI2_9 VTREI1_9 VTREI0_9
D8 11011000 VT10PTR–3 VT10PTR–2 VT10PTR–1 VT10PTR–0 0 VTREI10_10 VTREI9_10 VTREI8_10
D9 11011001 VTREI7_10 VTREI6_10 VTREI5_10 VTREI4_10 VTREI3_10 VTREI2_10 VTREI1_10 VTREI0_10
DA 11011010 VT11PTR–3 VT11PTR–2 VT11PTR–1 VT11PTR–0 0 VTREI10_11 VTREI9_11 VTREI8_11
DB 11011011 VTREI7_11 VTREI6_11 VTREI5_11 VTREI4_11 VTREI3_11 VTREI2_11 VTREI1_11 VTREI0_11
DC 11011100 VT12PTR–3 VT12PTR–2 VT12PTR–1 VT12PTR–0 0 VTREI10_12 VTREI9_12 VTREI8_12
DD 11011101 VTREI7_12 VTREI6_12 VTREI5_12 VTREI4_12 VTREI3_12 VTREI2_12 VTREI1_12 VTREI0_12
DE 11011110 VT13PTR–3 VT13PTR–2 VT13PTR–1 VT13PTR–0 0 VTREI10_13 VTREI9_13 VTREI8_13
DF 11011111 VTREI7_13 VTREI6_13 VTREI5_13 VTREI4_13 VTREI3_13 VTREI2_13 VTREI1_13 VTREI0_13
E0 11100000 VT14PTR–3 VT14PTR–2 VT14PTR–1 VT14PTR–0 0 VTREI10_14 VTREI9_14 VTREI8_14
E1 11100001 VTREI7_14 VTREI6_14 VTREI5_14 VTREI4_14 VTREI3_14 VTREI2_14 VTREI1_14 VTREI0_14
E2 11100010 VT15PTR–3 VT15PTR–2 VT15PTR–1 VT15PTR–0 0 VTREI10_15 VTREI9_15 VTREI8_15
E3 11100011 VTREI7_15 VTREI6_15 VTREI5_15 VTREI4_15 VTREI3_15 VTREI2_15 VTREI1_15 VTREI0_15
E4 11100100 VT16PTR–3 VT16PTR–2 VT16PTR–1 VT16PTR–0 0 VTREI10_16 VTREI9_16 VTREI8_16
E5 11100101 VTREI7_16 VTREI6_16 VTREI5_16 VTREI4_16 VTREI3_16 VTREI2_16 VTREI1_16 VTREI0_16
E6 11100110 VT17PTR–3 VT17PTR–2 VT17PTR–1 VT17PTR–0 0 VTREI10_17 VTREI9_17 VTREI8_17
E7 11100111 VTREI7_17 VTREI6_17 VTREI5_17 VTREI4_17 VTREI3_17 VTREI2_17 VTREI1_17 VTREI0_17
E8 11101000 VT18PTR–3 VT18PTR–2 VT18PTR–1 VT18PTR–0 0 VTREI10_18 VTREI9_18 VTREI8_18
E9 11101001 VTREI7_18 VTREI6_18 VTREI5_18 VTREI4_18 VTREI3_18 VTREI2_18 VTREI1_18 VTREI0_18
EA 11101010 VT19PTR–3 VT19PTR–2 VT19PTR–1 VT19PTR–0 0 VTREI10_19 VTREI9_19 VTREI8_19
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
32 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Detected REI Errors (continued)
EB 11101011 VTREI7_19 VTREI6_19 VTREI5_19 VTREI4_19 VTREI3_19 VTREI2_19 VTREI1_19 VTREI0_19
EC 11101100 VT20PTR–3 VT20PTR–2 VT20PTR–1 VT20PTR–0 0 VTREI10_20 VTREI9_20 VTREI8_20
ED 11101101 VTREI7_20 VTREI6_20 VTREI5_20 VTREI4_20 VTREI3_20 VTREI2_20 VTREI1_20 VTREI0_20
EE 11101110 VT21PTR–3 VT21PTR–2 VT21PTR–1 VT21PTR–0 0 VTREI10_21 VTREI9_21 VTREI8_21
EF 11101111 VTREI7_21 VTREI6_21 VTREI5_21 VTREI4_21 VTREI3_21 VTREI2_21 VTREI1_21 VTREI0_21
F0 11110000 VT22PTR–3 VT22PTR–2 VT22PTR–1 VT22PTR–0 0 VTREI10_22 VTREI9_22 VTREI8_22
F1 11110001 VTREI7_22 VTREI6_22 VTREI5_22 VTREI4_22 VTREI3_22 VTREI2_22 VTREI1_22 VTREI0_22
F2 11110010 VT23PTR–3 VT23PTR–2 VT23PTR–1 VT23PTR–0 0 VTREI10_23 VTREI9_23 VTREI8_23
F3 11110011 VTREI7_23 VTREI6_23 VTREI5_23 VTREI4_23 VTREI3_23 VTREI2_23 VTREI1_23 VTREI0_23
F4 11110100 VT24PTR–3 VT24PTR–2 VT24PTR–1 VT24PTR–0 0 VTREI10_24 VTREI9_24 VTREI8_24
F5 11110101 VTREI7_24 VTREI6_24 VTREI5_24 VTREI4_24 VTREI3_24 VTREI2_24 VTREI1_24 VTREI0_24
F6 11110110 VT25PTR–3 VT25PTR–2 VT25PTR–1 VT25PTR–0 0 VTREI10_25 VTREI9_25 VTREI8_25
F7 11110111 VTREI7_25 VTREI6_25 VTREI5_25 VTREI4_25 VTREI3_25 VTREI2_25 VTREI1_25 VTREI0_25
F8 11111000 VT26PTR–3 VT26PTR–2 VT26PTR–1 VT26PTR–0 0 VTREI10_26 VTREI9_26 VTREI8_26
F9 11111001 VTREI7_26 VTREI6_26 VTREI5_26 VTREI4_26 VTREI3_26 VTREI2_26 VTREI1_26 VTREI0_26
FA 11111010 VT27PTR–3 VT27PTR–2 VT27PTR–1 VT27PTR–0 0 VTREI10_27 VTREI9_27 VTREI8_27
FB 11111011 VTREI7_27 VTREI6_27 VTREI5_27 VTREI4_27 VTREI3_27 VTREI2_27 VTREI1_27 VTREI0_27
FC 11111100 VT28PTR–3 VT28PTR–2 VT28PTR–1 VT28PTR–0 0 VTREI10_28 VTREI9_28 VTREI8_28
FD 11111101 VTREI7_28 VTREI6_28 VTREI5_28 VTREI4_28 VTREI3_28 VTREI2_28 VTREI1_28 VTREI0_28
FE 11111110 0 0 0 00000
FF 11111111 0 0 0 00000
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
33Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes
Register 0xBF Settings: RJ1BYTE = 1, BIP_CNTS = 0, REI_CNTS = 0
C0 11000000 RJ1BYTE7_64 RJ1BYTE6_64 RJ1BYTE5_64 RJ1BYTE4_64 RJ1BYTE3_64 RJ1BYTE2_64 RJ1BYTE1_64 RJ1BYTE0_64
C1 11000001 RJ1BYTE7_63 RJ1BYTE6_63 RJ1BYTE5_63 RJ1BYTE4_63 RJ1BYTE3_63 RJ1BYTE2_63 RJ1BYTE1_63 RJ1BYTE0_63
C2 11000010 RJ1BYTE7_62 RJ1BYTE6_62 RJ1BYTE5_62 RJ1BYTE4_62 RJ1BYTE3_62 RJ1BYTE2_62 RJ1BYTE1_62 RJ1BYTE0_62
C3 11000011 RJ1BYTE7_61 RJ1BYTE6_61 RJ1BYTE5_61 RJ1BYTE4_61 RJ1BYTE3_61 RJ1BYTE2_61 RJ1BYTE1_61 RJ1BYTE0_61
C4 11000100 RJ1BYTE7_60 RJ1BYTE6_60 RJ1BYTE5_60 RJ1BYTE4_60 RJ1BYTE3_60 RJ1BYTE2_60 RJ1BYTE1_60 RJ1BYTE0_60
C5 11000101 RJ1BYTE7_59 RJ1BYTE6_59 RJ1BYTE5_59 RJ1BYTE4_59 RJ1BYTE3_59 RJ1BYTE2_59 RJ1BYTE1_59 RJ1BYTE0_59
C6 11000110 RJ1BYTE7_58 RJ1BYTE6_58 RJ1BYTE5_58 RJ1BYTE4_58 RJ1BYTE3_58 RJ1BYTE2_58 RJ1BYTE1_58 RJ1BYTE0_58
C7 11000111 RJ1BYTE7_57 RJ1BYTE6_57 RJ1BYTE5_57 RJ1BYTE4_57 RJ1BYTE3_57 RJ1BYTE2_57 RJ1BYTE1_57 RJ1BYTE0_57
C8 11001000 RJ1BYTE7_56 RJ1BYTE6_56 RJ1BYTE5_56 RJ1BYTE4_56 RJ1BYTE3_56 RJ1BYTE2_56 RJ1BYTE1_56 RJ1BYTE0_56
C9 11001001 RJ1BYTE7_55 RJ1BYTE6_55 RJ1BYTE5_55 RJ1BYTE4_55 RJ1BYTE3_55 RJ1BYTE2_55 RJ1BYTE1_55 RJ1BYTE0_55
CA 11001010 RJ1BYTE7_54 RJ1BYTE6_54 RJ1BYTE5_54 RJ1BYTE4_54 RJ1BYTE3_54 RJ1BYTE2_54 RJ1BYTE1_54 RJ1BYTE0_54
CB 11001011 RJ1BYTE7_53 RJ1BYTE6_53 RJ1BYTE5_53 RJ1BYTE4_53 RJ1BYTE3_53 RJ1BYTE2_53 RJ1BYTE1_53 RJ1BYTE0_53
CC 11001100 RJ1BYTE7_52 RJ1BYTE6_52 RJ1BYTE5_52 RJ1BYTE4_52 RJ1BYTE3_52 RJ1BYTE2_52 RJ1BYTE1_52 RJ1BYTE0_52
CD 11001101 RJ1BYTE7_51 RJ1BYTE6_51 RJ1BYTE5_51 RJ1BYTE4_51 RJ1BYTE3_51 RJ1BYTE2_51 RJ1BYTE1_51 RJ1BYTE0_51
CE 11001110 RJ1BYTE7_50 RJ1BYTE6_50 RJ1BYTE5_50 RJ1BYTE4_50 RJ1BYTE3_50 RJ1BYTE2_50 RJ1BYTE1_50 RJ1BYTE0_50
CF 11001111 RJ1BYTE7_49 RJ1BYTE6_49 RJ1BYTE5_49 RJ1BYTE4_49 RJ1BYTE3_49 RJ1BYTE2_49 RJ1BYTE1_49 RJ1BYTE0_49
D0 11010000 RJ1BYTE7_48 RJ1BYTE6_48 RJ1BYTE5_48 RJ1BYTE4_48 RJ1BYTE3_48 RJ1BYTE2_48 RJ1BYTE1_48 RJ1BYTE0_48
D1 11010001 RJ1BYTE7_47 RJ1BYTE6_47 RJ1BYTE5_47 RJ1BYTE4_47 RJ1BYTE3_47 RJ1BYTE2_47 RJ1BYTE1_47 RJ1BYTE0_47
D2 11010010 RJ1BYTE7_46 RJ1BYTE6_46 RJ1BYTE5_46 RJ1BYTE4_46 RJ1BYTE3_46 RJ1BYTE2_46 RJ1BYTE1_46 RJ1BYTE0_46
D3 11010011 RJ1BYTE7_45 RJ1BYTE6_45 RJ1BYTE5_45 RJ1BYTE4_45 RJ1BYTE3_45 RJ1BYTE2_45 RJ1BYTE1_45 RJ1BYTE0_45
D4 11010100 RJ1BYTE7_44 RJ1BYTE6_44 RJ1BYTE5_44 RJ1BYTE4_44 RJ1BYTE3_44 RJ1BYTE2_44 RJ1BYTE1_44 RJ1BYTE0_44
D5 11010101 RJ1BYTE7_43 RJ1BYTE6_43 RJ1BYTE5_43 RJ1BYTE4_43 RJ1BYTE3_43 RJ1BYTE2_43 RJ1BYTE1_43 RJ1BYTE0_43
D6 11010110 RJ1BYTE7_42 RJ1BYTE6_42 RJ1BYTE5_42 RJ1BYTE4_42 RJ1BYTE3_42 RJ1BYTE2_42 RJ1BYTE1_42 RJ1BYTE0_42
D7 11010111 RJ1BYTE7_41 RJ1BYTE6_41 RJ1BYTE5_41 RJ1BYTE4_41 RJ1BYTE3_41 RJ1BYTE2_41 RJ1BYTE1_41 RJ1BYTE0_41
D8 11011000 RJ1BYTE7_40 RJ1BYTE6_40 RJ1BYTE5_40 RJ1BYTE4_40 RJ1BYTE3_40 RJ1BYTE2_40 RJ1BYTE1_40 RJ1BYTE0_40
D9 11011001 RJ1BYTE7_39 RJ1BYTE6_39 RJ1BYTE5_39 RJ1BYTE4_39 RJ1BYTE3_39 RJ1BYTE2_39 RJ1BYTE1_39 RJ1BYTE0_39
DA 11011010 RJ1BYTE7_38 RJ1BYTE6_38 RJ1BYTE5_38 RJ1BYTE4_38 RJ1BYTE3_38 RJ1BYTE2_38 RJ1BYTE1_38 RJ1BYTE0_38
DB 11011011 RJ1BYTE7_37 RJ1BYTE6_37 RJ1BYTE5_37 RJ1BYTE4_37 RJ1BYTE3_37 RJ1BYTE2_37 RJ1BYTE1_37 RJ1BYTE0_37
DC 11011100 RJ1BYTE7_36 RJ1BYTE6_36 RJ1BYTE5_36 RJ1BYTE4_36 RJ1BYTE3_36 RJ1BYTE2_36 RJ1BYTE1_36 RJ1BYTE0_36
DD 11011101 RJ1BYTE7_35 RJ1BYTE6_35 RJ1BYTE5_35 RJ1BYTE4_35 RJ1BYTE3_35 RJ1BYTE2_35 RJ1BYTE1_35 RJ1BYTE0_35
DE 11011110 RJ1BYTE7_34 RJ1BYTE6_34 RJ1BYTE5_34 RJ1BYTE4_34 RJ1BYTE3_34 RJ1BYTE2_34 RJ1BYTE1_34 RJ1BYTE0_34
DF 11011111 RJ1BYTE7_33 RJ1BYTE6_33 RJ1BYTE5_33 RJ1BYTE4_33 RJ1BYTE3_33 RJ1BYTE2_33 RJ1BYTE1_33 RJ1BYTE0_33
E0 11100000 RJ1BYTE7_32 RJ1BYTE6_32 RJ1BYTE5_32 RJ1BYTE4_32 RJ1BYTE3_32 RJ1BYTE2_32 RJ1BYTE1_32 RJ1BYTE0_32
E1 11100001 RJ1BYTE7_31 RJ1BYTE6_31 RJ1BYTE5_31 RJ1BYTE4_31 RJ1BYTE3_31 RJ1BYTE2_31 RJ1BYTE1_31 RJ1BYTE0_31
E2 11100010 RJ1BYTE7_30 RJ1BYTE6_30 RJ1BYTE5_30 RJ1BYTE4_30 RJ1BYTE3_30 RJ1BYTE2_30 RJ1BYTE1_30 RJ1BYTE0_30
E3 11100011 RJ1BYTE7_29 RJ1BYTE6_29 RJ1BYTE5_29 RJ1BYTE4_29 RJ1BYTE3_29 RJ1BYTE2_29 RJ1BYTE1_29 RJ1BYTE0_29
E4 11100100 RJ1BYTE7_28 RJ1BYTE6_28 RJ1BYTE5_28 RJ1BYTE4_28 RJ1BYTE3_28 RJ1BYTE2_28 RJ1BYTE1_28 RJ1BYTE0_28
E5 11100101 RJ1BYTE7_27 RJ1BYTE6_27 RJ1BYTE5_27 RJ1BYTE4_27 RJ1BYTE3_27 RJ1BYTE2_27 RJ1BYTE1_27 RJ1BYTE0_27
E6 11100110 RJ1BYTE7_26 RJ1BYTE6_26 RJ1BYTE5_26 RJ1BYTE4_26 RJ1BYTE3_26 RJ1BYTE2_26 RJ1BYTE1_26 RJ1BYTE0_64
E7 11100111 RJ1BYTE7_25 RJ1BYTE6_25 RJ1BYTE5_25 RJ1BYTE4_25 RJ1BYTE3_25 RJ1BYTE2_25 RJ1BYTE1_25 RJ1BYTE0_25
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
34 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes (continued)
E8 11101000 RJ1BYTE7_24 RJ1BYTE6_24 RJ1BYTE5_24 RJ1BYTE4_24 RJ1BYTE3_24 RJ1BYTE2_24 RJ1BYTE1_24 RJ1BYTE0_24
E9 11101001 RJ1BYTE7_23 RJ1BYTE6_23 RJ1BYTE5_23 RJ1BYTE4_23 RJ1BYTE3_23 RJ1BYTE2_23 RJ1BYTE1_23 RJ1BYTE0_23
EA 11101010 RJ1BYTE7_22 RJ1BYTE6_22 RJ1BYTE5_22 RJ1BYTE4_22 RJ1BYTE3_22 RJ1BYTE2_22 RJ1BYTE1_22 RJ1BYTE0_22
EB 11101011 RJ1BYTE7_21 RJ1BYTE6_21 RJ1BYTE5_21 RJ1BYTE4_21 RJ1BYTE3_21 RJ1BYTE2_21 RJ1BYTE1_21 RJ1BYTE0_21
EC 11101100 RJ1BYTE7_20 RJ1BYTE6_20 RJ1BYTE5_20 RJ1BYTE4_20 RJ1BYTE3_20 RJ1BYTE2_20 RJ1BYTE1_20 RJ1BYTE0_20
ED 11101101 RJ1BYTE7_19 RJ1BYTE6_19 RJ1BYTE5_19 RJ1BYTE4_19 RJ1BYTE3_19 RJ1BYTE2_19 RJ1BYTE1_19 RJ1BYTE0_19
EE 11101110 RJ1BYTE7_18 RJ1BYTE6_18 RJ1BYTE5_18 RJ1BYTE4_18 RJ1BYTE3_18 RJ1BYTE2_18 RJ1BYTE1_18 RJ1BYTE0_18
EF 11101111 RJ1BYTE7_17 RJ1BYTE6_17 RJ1BYTE5_17 RJ1BYTE4_17 RJ1BYTE3_17 RJ1BYTE2_17 RJ1BYTE1_17 RJ1BYTE0_17
F0 11110000 RJ1BYTE7_16 RJ1BYTE6_16 RJ1BYTE5_16 RJ1BYTE4_16 RJ1BYTE3_16 RJ1BYTE2_16 RJ1BYTE1_16 RJ1BYTE0_16
F1 11110001 RJ1BYTE7_15 RJ1BYTE6_15 RJ1BYTE5_15 RJ1BYTE4_15 RJ1BYTE3_15 RJ1BYTE2_15 RJ1BYTE1_15 RJ1BYTE0_15
F2 11110010 RJ1BYTE7_14 RJ1BYTE6_14 RJ1BYTE5_14 RJ1BYTE4_14 RJ1BYTE3_14 RJ1BYTE2_14 RJ1BYTE1_14 RJ1BYTE0_14
F3 11110011 RJ1BYTE7_13 RJ1BYTE6_13 RJ1BYTE5_13 RJ1BYTE4_13 RJ1BYTE3_13 RJ1BYTE2_13 RJ1BYTE1_13 RJ1BYTE0_13
F4 11110100 RJ1BYTE7_12 RJ1BYTE6_12 RJ1BYTE5_12 RJ1BYTE4_12 RJ1BYTE3_12 RJ1BYTE2_12 RJ1BYTE1_12 RJ1BYTE0_12
F5 11110101 RJ1BYTE7_11 RJ1BYTE6_11 RJ1BYTE5_11 RJ1BYTE4_11 RJ1BYTE3_11 RJ1BYTE2_11 RJ1BYTE1_11 RJ1BYTE0_11
F6 11110110 RJ1BYTE7_10 RJ1BYTE6_10 RJ1BYTE5_10 RJ1BYTE4_10 RJ1BYTE3_10 RJ1BYTE2_10 RJ1BYTE1_10 RJ1BYTE0_10
F7 11110111 RJ1BYTE7_9 RJ1BYTE6_9 RJ1BYTE5_9 RJ1BYTE4_9 RJ1BYTE3_9 RJ1BYTE2_9 RJ1BYTE1_9 RJ1BYTE0_9
F8 11111000 RJ1BYTE7_8 RJ1BYTE6_8 RJ1BYTE5_8 RJ1BYTE4_8 RJ1BYTE3_8 RJ1BYTE2_8 RJ1BYTE1_8 RJ1BYTE0_8
F9 11111001 RJ1BYTE7_7 RJ1BYTE6_7 RJ1BYTE5_7 RJ1BYTE4_7 RJ1BYTE3_7 RJ1BYTE2_7 RJ1BYTE1_7 RJ1BYTE0_7
FA 11111010 RJ1BYTE7_6 RJ1BYTE6_6 RJ1BYTE5_6 RJ1BYTE4_6 RJ1BYTE3_6 RJ1BYTE2_6 RJ1BYTE1_6 RJ1BYTE0_6
FB 11111011 RJ1BYTE7_5 RJ1BYTE6_5 RJ1BYTE5_5 RJ1BYTE4_5 RJ1BYTE3_5 RJ1BYTE2_5 RJ1BYTE1_5 RJ1BYTE0_5
FC 11111100 RJ1BYTE7_4 RJ1BYTE6_4 RJ1BYTE5_4 RJ1BYTE4_4 RJ1BYTE3_4 RJ1BYTE2_4 RJ1BYTE1_4 RJ1BYTE0_4
FD 11111101 RJ1BYTE7_3 RJ1BYTE6_3 RJ1BYTE5_3 RJ1BYTE4_3 RJ1BYTE3_3 RJ1BYTE2_3 RJ1BYTE1_3 RJ1BYTE0_3
FE 11111110 RJ1BYTE7_2 RJ1BYTE6_2 RJ1BYTE5_2 RJ1BYTE4_2 RJ1BYTE3_2 RJ1BYTE2_2 RJ1BYTE1_2 RJ1BYTE0_2
FF 11111111 RJ1BYTE7_1 RJ1BYTE6_1 RJ1BYTE5_1 RJ1BYTE4_1 RJ1BYTE3_1 RJ1BYTE2_1 RJ1BYTE1_1 RJ1BYTE0_1
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
35Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes
Register 0xBF Settings: TJ1BYTE_RD = 1, BIP_CNTS = 0, REI_CNTS = 0, RJ1BYTE = 0
C0 11000000 TJ1BYTE7_64 TJ1BYTE6_64 TJ1BYTE5_64 TJ1BYTE4_64 TJ1BYTE3_64 TJ1BYTE2_64 TJ1BYTE1_64 TJ1BYTE0_64
C1 11000001 TJ1BYTE7_63 TJ1BYTE6_63 TJ1BYTE5_63 TJ1BYTE4_63 TJ1BYTE3_63 TJ1BYTE2_63 TJ1BYTE1_63 TJ1BYTE0_63
C2 11000010 TJ1BYTE7_62 TJ1BYTE6_62 TJ1BYTE5_62 TJ1BYTE4_62 TJ1BYTE3_62 TJ1BYTE2_62 TJ1BYTE1_62 TJ1BYTE0_62
C3 11000011 TJ1BYTE7_61 TJ1BYTE6_61 TJ1BYTE5_61 TJ1BYTE4_61 TJ1BYTE3_61 TJ1BYTE2_61 TJ1BYTE1_61 TJ1BYTE0_61
C4 11000100 TJ1BYTE7_60 TJ1BYTE6_60 TJ1BYTE5_60 TJ1BYTE4_60 TJ1BYTE3_60 TJ1BYTE2_60 TJ1BYTE1_60 TJ1BYTE0_60
C5 11000101 TJ1BYTE7_59 TJ1BYTE6_59 TJ1BYTE5_59 TJ1BYTE4_59 TJ1BYTE3_59 TJ1BYTE2_59 TJ1BYTE1_59 TJ1BYTE0_59
C6 11000110 TJ1BYTE7_58 TJ1BYTE6_58 TJ1BYTE5_58 TJ1BYTE4_58 TJ1BYTE3_58 TJ1BYTE2_58 TJ1BYTE1_58 TJ1BYTE0_58
C7 11000111 TJ1BYTE7_57 TJ1BYTE6_57 TJ1BYTE5_57 TJ1BYTE4_57 TJ1BYTE3_57 TJ1BYTE2_57 TJ1BYTE1_57 TJ1BYTE0_57
C8 11001000 TJ1BYTE7_56 TJ1BYTE6_56 TJ1BYTE5_56 TJ1BYTE4_56 TJ1BYTE3_56 TJ1BYTE2_56 TJ1BYTE1_56 TJ1BYTE0_56
C9 11001001 TJ1BYTE7_55 TJ1BYTE6_55 TJ1BYTE5_55 TJ1BYTE4_55 TJ1BYTE3_55 TJ1BYTE2_55 TJ1BYTE1_55 TJ1BYTE0_55
CA 11001010 TJ1BYTE7_54 TJ1BYTE6_54 TJ1BYTE5_54 TJ1BYTE4_54 TJ1BYTE3_54 TJ1BYTE2_54 TJ1BYTE1_54 TJ1BYTE0_54
CB 11001011 TJ1BYTE7_53 TJ1BYTE6_53 TJ1BYTE5_53 TJ1BYTE4_53 TJ1BYTE3_53 TJ1BYTE2_53 TJ1BYTE1_53 TJ1BYTE0_53
CC 11001100 TJ1BYTE7_52 TJ1BYTE6_52 TJ1BYTE5_52 TJ1BYTE4_52 TJ1BYTE3_52 TJ1BYTE2_52 TJ1BYTE1_52 TJ1BYTE0_52
CD 11001101 TJ1BYTE7_51 TJ1BYTE6_51 TJ1BYTE5_51 TJ1BYTE4_51 TJ1BYTE3_51 TJ1BYTE2_51 TJ1BYTE1_51 TJ1BYTE0_51
CE 11001110 TJ1BYTE7_50 TJ1BYTE6_50 TJ1BYTE5_50 TJ1BYTE4_50 TJ1BYTE3_50 TJ1BYTE2_50 TJ1BYTE1_50 TJ1BYTE0_50
CF 11001111 TJ1BYTE7_49 TJ1BYTE6_49 TJ1BYTE5_49 TJ1BYTE4_49 TJ1BYTE3_49 TJ1BYTE2_49 TJ1BYTE1_49 TJ1BYTE0_49
D0 11010000 TJ1BYTE7_48 TJ1BYTE6_48 TJ1BYTE5_48 TJ1BYTE4_48 TJ1BYTE3_48 TJ1BYTE2_48 TJ1BYTE1_48 TJ1BYTE0_48
D1 11010001 TJ1BYTE7_47 TJ1BYTE6_47 TJ1BYTE5_47 TJ1BYTE4_47 TJ1BYTE3_47 TJ1BYTE2_47 TJ1BYTE1_47 TJ1BYTE0_47
D2 11010010 TJ1BYTE7_46 TJ1BYTE6_46 TJ1BYTE5_46 TJ1BYTE4_46 TJ1BYTE3_46 TJ1BYTE2_46 TJ1BYTE1_46 TJ1BYTE0_46
D3 11010011 TJ1BYTE7_45 TJ1BYTE6_45 TJ1BYTE5_45 TJ1BYTE4_45 TJ1BYTE3_45 TJ1BYTE2_45 TJ1BYTE1_45 TJ1BYTE0_45
D4 11010100 TJ1BYTE7_44 TJ1BYTE6_44 TJ1BYTE5_44 TJ1BYTE4_44 TJ1BYTE3_44 TJ1BYTE2_44 TJ1BYTE1_44 TJ1BYTE0_44
D5 11010101 TJ1BYTE7_43 TJ1BYTE6_43 TJ1BYTE5_43 TJ1BYTE4_43 TJ1BYTE3_43 TJ1BYTE2_43 TJ1BYTE1_43 TJ1BYTE0_43
D6 11010110 TJ1BYTE7_42 TJ1BYTE6_42 TJ1BYTE5_42 TJ1BYTE4_42 TJ1BYTE3_42 TJ1BYTE2_42 TJ1BYTE1_42 TJ1BYTE0_42
D7 11010111 TJ1BYTE7_41 TJ1BYTE6_41 TJ1BYTE5_41 TJ1BYTE4_41 TJ1BYTE3_41 TJ1BYTE2_41 TJ1BYTE1_41 TJ1BYTE0_41
D8 11011000 TJ1BYTE7_40 TJ1BYTE6_40 TJ1BYTE5_40 TJ1BYTE4_40 TJ1BYTE3_40 TJ1BYTE2_40 TJ1BYTE1_40 TJ1BYTE0_40
D9 11011001 TJ1BYTE7_39 TJ1BYTE6_39 TJ1BYTE5_39 TJ1BYTE4_39 TJ1BYTE3_39 TJ1BYTE2_39 TJ1BYTE1_39 TJ1BYTE0_39
DA 11011010 TJ1BYTE7_38 TJ1BYTE6_38 TJ1BYTE5_38 TJ1BYTE4_38 TJ1BYTE3_38 TJ1BYTE2_38 TJ1BYTE1_38 TJ1BYTE0_38
DB 11011011 TJ1BYTE7_37 TJ1BYTE6_37 TJ1BYTE5_37 TJ1BYTE4_37 TJ1BYTE3_37 TJ1BYTE2_37 TJ1BYTE1_37 TJ1BYTE0_37
DC 11011100 TJ1BYTE7_36 TJ1BYTE6_36 TJ1BYTE5_36 TJ1BYTE4_36 TJ1BYTE3_36 TJ1BYTE2_36 TJ1BYTE1_36 TJ1BYTE0_36
DD 11011101 TJ1BYTE7_35 TJ1BYTE6_35 TJ1BYTE5_35 TJ1BYTE4_35 TJ1BYTE3_35 TJ1BYTE2_35 TJ1BYTE1_35 TJ1BYTE0_35
DE 11011110 TJ1BYTE7_34 TJ1BYTE6_34 TJ1BYTE5_34 TJ1BYTE4_34 TJ1BYTE3_34 TJ1BYTE2_34 TJ1BYTE1_34 TJ1BYTE0_34
DF 11011111 TJ1BYTE7_33 TJ1BYTE6_33 TJ1BYTE5_33 TJ1BYTE4_33 TJ1BYTE3_33 TJ1BYTE2_33 TJ1BYTE1_33 TJ1BYTE0_33
E0 11100000 TJ1BYTE7_32 TJ1BYTE6_32 TJ1BYTE5_32 TJ1BYTE4_32 TJ1BYTE3_32 TJ1BYTE2_32 TJ1BYTE1_32 TJ1BYTE0_32
E1 11100001 TJ1BYTE7_31 TJ1BYTE6_31 TJ1BYTE5_31 TJ1BYTE4_31 TJ1BYTE3_31 TJ1BYTE2_31 TJ1BYTE1_31 TJ1BYTE0_31
E2 11100010 TJ1BYTE7_30 TJ1BYTE6_30 TJ1BYTE5_30 TJ1BYTE4_30 TJ1BYTE3_30 TJ1BYTE2_30 TJ1BYTE1_30 TJ1BYTE0_30
E3 11100011 TJ1BYTE7_29 TJ1BYTE6_29 TJ1BYTE5_29 TJ1BYTE4_29 TJ1BYTE3_29 TJ1BYTE2_29 TJ1BYTE1_29 TJ1BYTE0_29
E4 11100100 TJ1BYTE7_28 TJ1BYTE6_28 TJ1BYTE5_28 TJ1BYTE4_28 TJ1BYTE3_28 TJ1BYTE2_28 TJ1BYTE1_28 TJ1BYTE0_28
E5 11100101 TJ1BYTE7_27 TJ1BYTE6_27 TJ1BYTE5_27 TJ1BYTE4_27 TJ1BYTE3_27 TJ1BYTE2_27 TJ1BYTE1_27 TJ1BYTE0_27
E6 11100110 TJ1BYTE7_26 TJ1BYTE6_26 TJ1BYTE5_26 TJ1BYTE4_26 TJ1BYTE3_26 TJ1BYTE2_26 TJ1BYTE1_26 TJ1BYTE0_26
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
36 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes (c ontinued)
E7 11100111 TJ1BYTE7_25 TJ1BYTE6_25 TJ1BYTE5_25 TJ1BYTE4_25 TJ1BYTE3_25 TJ1BYTE2_25 TJ1BYTE1_25 TJ1BYTE0_25
E8 11101000 TJ1BYTE7_24 TJ1BYTE6_24 TJ1BYTE5_24 TJ1BYTE4_24 TJ1BYTE3_24 TJ1BYTE2_24 TJ1BYTE1_24 TJ1BYTE0_24
E9 11101001 TJ1BYTE7_23 TJ1BYTE6_23 TJ1BYTE5_23 TJ1BYTE4_23 TJ1BYTE3_23 TJ1BYTE2_23 TJ1BYTE1_23 TJ1BYTE0_23
EA 11101010 TJ1BYTE7_22 TJ1BYTE6_22 TJ1BYTE5_22 TJ1BYTE4_22 TJ1BYTE3_22 TJ1BYTE2_22 TJ1BYTE1_22 TJ1BYTE0_22
EB 11101011 TJ1BYTE7_21 TJ1BYTE6_21 TJ1BYTE5_21 TJ1BYTE4_21 TJ1BYTE3_21 TJ1BYTE2_21 TJ1BYTE1_21 TJ1BYTE0_21
EC 11101100 TJ1BYTE7_20 TJ1BYTE6_20 TJ1BYTE5_20 TJ1BYTE4_20 TJ1BYTE3_20 TJ1BYTE2_20 TJ1BYTE1_20 TJ1BYTE0_20
ED 11101101 TJ1BYTE7_19 TJ1BYTE6_19 TJ1BYTE5_19 TJ1BYTE4_19 TJ1BYTE3_19 TJ1BYTE2_19 TJ1BYTE1_19 TJ1BYTE0_19
EE 11101110 TJ1BYTE7_18 TJ1BYTE6_18 TJ1BYTE5_18 TJ1BYTE4_18 TJ1BYTE3_18 TJ1BYTE2_18 TJ1BYTE1_18 TJ1BYTE0_18
EF 11101111 TJ1BYTE7_17 TJ1BYTE6_17 TJ1BYTE5_17 TJ1BYTE4_17 TJ1BYTE3_17 TJ1BYTE2_17 TJ1BYTE1_17 TJ1BYTE0_17
F0 11110000 TJ1BYTE7_16 TJ1BYTE6_16 TJ1BYTE5_16 TJ1BYTE4_16 TJ1BYTE3_16 TJ1BYTE2_16 TJ1BYTE1_16 TJ1BYTE0_16
F1 11110001 TJ1BYTE7_15 TJ1BYTE6_15 TJ1BYTE5_15 TJ1BYTE4_15 TJ1BYTE3_15 TJ1BYTE2_15 TJ1BYTE1_15 TJ1BYTE0_15
F2 11110010 TJ1BYTE7_14 TJ1BYTE6_14 TJ1BYTE5_14 TJ1BYTE4_14 TJ1BYTE3_14 TJ1BYTE2_14 TJ1BYTE1_14 TJ1BYTE0_14
F3 11110011 TJ1BYTE7_13 TJ1BYTE6_13 TJ1BYTE5_13 TJ1BYTE4_13 TJ1BYTE3_13 TJ1BYTE2_13 TJ1BYTE1_13 TJ1BYTE0_13
F4 11110100 TJ1BYTE7_12 TJ1BYTE6_12 TJ1BYTE5_12 TJ1BYTE4_12 TJ1BYTE3_12 TJ1BYTE2_12 TJ1BYTE1_12 TJ1BYTE0_12
F5 11110101 TJ1BYTE7_11 TJ1BYTE6_11 TJ1BYTE5_11 TJ1BYTE4_11 TJ1BYTE3_11 TJ1BYTE2_11 TJ1BYTE1_11 TJ1BYTE0_11
F6 11110110 TJ1BYTE7_10 TJ1BYTE6_10 TJ1BYTE5_10 TJ1BYTE4_10 TJ1BYTE3_10 TJ1BYTE2_10 TJ1BYTE1_10 TJ1BYTE0_10
F7 11110111 TJ1BYTE7_9 TJ1BYTE6_9 TJ1BYTE5_9 TJ1BYTE4_9 TJ1BYTE3_9 TJ1BYTE2_9 TJ1BYTE1_9 TJ1BYTE0_9
F8 11111000 TJ1BYTE7_8 TJ1BYTE6_8 TJ1BYTE5_8 TJ1BYTE4_8 TJ1BYTE3_8 TJ1BYTE2_8 TJ1BYTE1_8 TJ1BYTE0_8
F9 11111001 TJ1BYTE7_7 TJ1BYTE6_7 TJ1BYTE5_7 TJ1BYTE4_7 TJ1BYTE3_7 TJ1BYTE2_7 TJ1BYTE1_7 TJ1BYTE0_7
FA 11111010 TJ1BYTE7_6 TJ1BYTE6_6 TJ1BYTE5_6 TJ1BYTE4_6 TJ1BYTE3_6 TJ1BYTE2_6 TJ1BYTE1_6 TJ1BYTE0_6
FB 11111011 TJ1BYTE7_5 TJ1BYTE6_5 TJ1BYTE5_5 TJ1BYTE4_5 TJ1BYTE3_5 TJ1BYTE2_5 TJ1BYTE1_5 TJ1BYTE0_5
FC 11111100 TJ1BYTE7_4 TJ1BYTE6_4 TJ1BYTE5_4 TJ1BYTE4_4 TJ1BYTE3_4 TJ1BYTE2_4 TJ1BYTE1_4 TJ1BYTE0_4
FD 11111101 TJ1BYTE7_3 TJ1BYTE6_3 TJ1BYTE5_3 TJ1BYTE4_3 TJ1BYTE3_3 TJ1BYTE2_3 TJ1BYTE1_3 TJ1BYTE0_3
FE 11111110 TJ1BYTE7_2 TJ1BYTE6_2 TJ1BYTE5_2 TJ1BYTE4_2 TJ1BYTE3_2 TJ1BYTE2_2 TJ1BYTE1_2 TJ1BYTE0_2
FF 11111111 TJ1BYTE7_1 TJ1BYTE6_1 TJ1BYTE5_1 TJ1BYTE4_1 TJ1BYTE3_1 TJ1BYTE2_1 TJ1BYTE1_1 TJ1BYTE0_1
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
37Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption
Hexadecimal notation is used in both the Address and the Reset Default columns in all the register description
tables in this section.
Device-Level Control, Alarm, and Mask Bits (0x00—0x16)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x00 The bits in the register 0x00 are used for device-level con-
trol and error reporting. 0x00
7 TEST_CNT Factory Test Mode. TEST_CNT = 1 forces all internal
counters to test mode and is intended for factory use only.
This bit should always be set to 0.
6 B1ERRINS B1ERRINS, B2ERRINS, and B3ERRINS. B1ERRINS,
B2ERRINS, and B3ERRINS all cause continuous BIP-8
errors to be transmitted in their respective BIP-8 values.
5 B2ERRINS
4 B3ERRINS
3 LATCH_CNT Latch Count. The device has a number of BIP, REI, and
pointer adjustment counters that are all updated when the
LATCH_CNT bit is written from 0 to 1. Nothing happens
when the bit is written from 1 to 0. The only internal counter
that is not updated by this bit is the test pattern counter.
2 BLUECLKSEL The device can accept a blue signal clock at either the
exact DS1 rate (BLUECLKSEL = 0), or at 16 times the DS1
rate (BLUECLKSEL = 1).
1 BIPBLKCNT BIP Error Counter or BIP Block Counter. The
BIPBLKCNT bit is used to determine whether the BIP
counters count the number of BIP errors (BIPBLKCNT = 0)
or the number of BIP blocks that contain errors
(BIPBLKCNT = 1).
0—Reserved.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
38 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x01 The bits in register 0x01 are used to provision device-level
control bits. The functions of these bits are described
below.
0x00
7 REI_EN REI_Enable. When REI_EN = 1, the device will automati-
cally insert the appropriate REI into the transmitted Z2, G1,
V5 overhead bytes whenever it receives BIP errors. If
REI_EN = 0, then the automatic insertion of REI is dis-
abled.
6 AUTO_LRDI When AUTO_LRDI = 1, the device will automatically insert
line RDI.
5 TXPAISINS When TXPAISINS = 1, the device will write all 1s into the
pointer bytes (H1—H3) and all of the synchronous payload
envelope (SPE).
4 DJACTL The DJACTL is used to enable the use of the built-in digital
jitter attenuators. When DJACTL = 0, the gapped DS1/E1
clock and data are transmitted by the device; otherwise,
the smoothed clock and data are transmitted.
3—Reserved.
2 STS1SCR STS-1_Scramble. When STS1SCR = 1, the device scram-
bles the outgoing STS-1 frame according to the SONET
frame synchronous scrambling sequence 1 + x6 + x7. The
sequence is reset to 1111111 at the beginning of the byte
following the C1 byte and scrambles all of the STS-1 data
except the A1, A2, and C1 bytes. When this bit is 0, then
the transmit data is not scrambled.
1 STS1DSCR STS-1_Descramble. When STS1DSCR = 1, the device
descrambles the incoming STS-1 frame according to the
SONET frame synchronous descrambling sequence
1 + x6 + x7. The sequence is reset to 1111111 at the begin-
ning of the byte following the C1 byte and descrambles all
of the STS-1 data except the A1, A2, and C1 bytes. When
this bit is 0, then the received data is not descrambled.
0 STS1LB STS-1_Loopback. When STS1LB = 1, the transmitted data
is looped back to the receive side. When this bit is 0, the
device uses the received data.
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
39Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x02 The bits in register 0x02 are used to set the edges that
retime data into and out of the device. 0x00
7 RXS ERIAL Receive Seri al Data, Transmit Ser i al Data. Both the
RXSERIAL and TXSERIAL bits are used to set the type of
STS-1 data. When either serial bit is written to 1, the STS-1
rail runs in serial mode; otherwise, the STS-1 rail runs in
parallel mode.
6 TXSERIAL
5 RXPARITY Both the RXPARITY and TXPARITY bits determine the
type of parity for data buses. When these bits are written
with 1, odd parity is used; otherwise, even parity is used.
4 TXPARITY
3 RXSTS1EDGE When the edge register bits are set to 1, the data is retimed
(either in or out) by the rising clock edge; when set to a
logic 0, the data is retimed by the falling clock edge. Note
that the TSTS1SERIAL data always comes out on the ris-
ing edge of the TSTS1CLKOUT.
Note: The TXSTS1EDGE (bit 2) should always be set to 0
to avoid potential race condition inside the device.
2TXSTS1EDGE
1 RXDS1EDGE
0 TXDS1EDGE
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
40 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x03 The bits in register 0x03 are used to report problems at the
receive STS-1 level. 0x00
7 TRACEER The device monitors the received J1 byte for path trace
mismatches. When the received J1 byte pattern does not
match the pr evio usly re ceived pat tern, t hen TR ACEER = 1.
This is an event bit and is held until read.
6 RXPARER RXPARER = 1 reports a parity violation on the receive
STS-1 data bus when in parallel mode. This is an event bit
and is held until read.
5—Reserved.
4 H4LOMF The device monitors the incoming H4 byte for loss of multi-
frame indication (H4LOMF = 1). This is an event bit and is
held until read.
3 STS1PAIS STS1PAIS = 1 reports path AIS as detected by the receive
pointer interpreter. This is a current state bit with a mini-
mum persistence of 375 µs. The indications reset if the
condition is no longer true.
2 STS1LOP STS1LOP = 1 reports a loss of STS-1 pointer. T his is a cur-
rent state bit with a minimum persistence of 125 µs. The
indications reset if the condition is no longer true.
1 STS1LOF STS1LOF = 1 reports an out of frame condition that per-
sists for more than 3 ms. This is a current state bit with a
minimum persistence of 3 ms. The indications reset if the
condition is no longer true.
0 STS1OOF STS1OOF = 1 reports an out of frame condition on the
receive STS-1 signal. This is a current state bit with a mini-
mum persistence of 500 µs. The indications reset if the
condition is no longer true.
0x04 7 TRACEERMSK The bits in register 0x04 are used to mask the contributions
of the bits in register 0x03 to the microprocessor interrupt
output, INT. When any of these bits are at a logic 1 level,
the corresponding bit in register 0x03 is masked from con-
tributing to the output interrupt. The reset default for this
register masks all of the bits in register 0x03.
Bit 5 is reserved.
0xFF
6 RXPARERMSK
5—
4H4LOMFMSK
3 STS1PAISMSK
2 STS1LOPMSK
1 STS1LOFMSK
0 STS1OOFMSK
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
41Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x05 The bits in register 0x05 are used to report problems at the
receive DS1/E1 and VT level. The bits in this register are
composite bits. The bits that report the problems at the VT
level are located in 28 separate registers (one for each VT)
as described below . These composite bits are placed in the
register map to determine which type of error was
detected. When any one of the 28 VT bits indicates an
error, the corresponding composite bit indicates an error.
0x00
7 ESOFCOM ESOFCOM = 1 reports that the device has experienced
either a receive or a transmit elastic store overflow. This is
an event bit and is held until read.
6 VTSIZECOM VTSIZECOM = 1 reports incorrect VT size bits. The valid
VT size bits are 11 for VT1.5 and 10 for VT2.
5 VTLOPCOM VTLOPCOM = 1 reports LOP-V.
4 VTRFIRDICOM VTRFIRDICOM = 1 reports the fact that the VT RFI/RDI
bits have been received as a new consistent value for three
consecutive superframes. This is an event bit and is held
until read.
3 VTAISCOM VTAISCOM = 1 reports the fact that the V1 and V2 pointer
bytes are all 1s for three consecutive superframes.
2 VTLABCOM VTLABCOM = 1 reports change of state of the VT label. In
order for this bit to be set, the device must detect three
co nsecutive consis tent new values for the VT label. This is
an event bit and is held until read.
1 AISLOCCOM AISLOCCOM = 1 reports an AIS or LOC condition on DS1/
E1. This is a current state bit with a minimum persistence
of 2 ms. The indications reset if the condition is no longer
true.
0 STS1LOS STS1LOS = 1 reports an STS-1 loss of signal. The bits in
register 0x91 are used to set the number of 6.48 MHz clock
periods required to declare received STS-1 loss of signal. If
this value is 0x00, then STS1LOS is not declared. This is a
current state bit with a minimum persistence of 250 µs. The
indications reset if the condition is no longer true.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
42 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x06 7 ESOFMSK The bits in register 0x06 are used to mask the contributions
of the bits in register 0x05 to the microprocessor interrupt
output, INT. When any of these bits is 1, the corresponding
bit in register 0x05 is masked from contributing to the out-
put interrupt. The reset default for this register masks all of
the bits in register 0x05.
0xFF
6 VTSIZEMSK
5VTLOPMSK
4 VTRFIRDIMSK
3VTAISMSK
2VTLABMSK
1AISLOCMSK
0 STS1LOSMSK
0x07 This register reports the hardware selected device mode. 0x01
7—1 Reserved. These bits are set to 0 at reset.
0 DS1_E1N This bit reports the DS1_E1N value from the device input
pin.
0x08 The bits in register 0x08 are used to configure the test pat-
tern generator and detector. 0x00
7 LATCH_TP A 0 to 1 transition on LATCH_TP causes the running error
count to be latched and presented to the microprocessor.
6 RCV_FRAME RCV_FRAME = 1 causes a framed test pattern to be
expected; a 0 causes an unframed test pattern to be
expected.
5 RCV_PAT-1 RCV_PAT[1:0] determines the receive test pattern
sequence where 00 = QRSS, 01 = 223 – 1,
10 = 220 1, 11 = 215 – 1.
4 RCV_PAT-0
3 ERROR_INS ERROR_INS causes a single error to be inserted in the
data (not frame) bits after a 0 to 1 transition.
2 XMT_FRAME XMT_FRAME = 1 causes a framed test pattern to be gen-
erated; a 0 causes an unframed test pattern to be gener-
ated.
1 XMT_PAT-1 XMTPAT-[1:0] determines the transmit test pattern
sequence where 00 = QRSS, 01 = 223 – 1,
10 = 220 – 1, 11 = 215 – 1.
0 XMT_PAT-0
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
43Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x09 The bits in register 0x09 are used to set up the test pattern. 0x00
7 TP_DS1E1N TP_DS1E1N = 1 sets the frame sequence to DS1;
TP_DS1E1N = 0 sets the frame sequence to E1.
6 TP_INVERT TP_INVERT = 1 forces the test pattern sequence to be
inverted.
5 TPDROPSIDE When TPDROPSIDE = 1, the test pattern is dropped from
the SPE drop logic. The DS1/E1 output that is dropped is
described in the Microprocessor Interface Description (con-
tinued) section on page 50. When TPDROPSIDE = 0, the
DS1/E1 that is dropped is the same as described in the
DS1/E1 Insertion Selection section on page 47.
4 TPDROP-4 The TPDROP[4:0] bits are used to select the VT that needs
to be dropped.
3TPDROP-3
2TPDROP-2
1TPDROP-1
0TPDROP-0
0x0A The bits in register 0x0A indicate the condition of the test
pattern detector. 0x80
7 TPOOS If the test pattern detector has been able to synchronize on
the dropped signal, then TPOOS = 0.
6 TPERR-6 When TPOOS = 0, then the TPERR-[6:0] bits are used to
keep count of the number of bit errors the test pattern
detector has seen. This error count is cleared when the
register is read by the micr oproc es s or.
5TPERR-5
4TPERR-4
3TPERR-3
2TPERR-2
1TPERR-1
0TPERR-0
0x0B 7—0 F2-[7:0] The F2-[7:0] bits in register 0x0B are used to report the F2
receive byte in the path overhead. 0x00
0x0C 7—0 C2-[7:0] The C2-[7:0] bits in register 0x0C are used to report the
received C2 label byte in the path overhead. The default
value for this register indicates path unequipped.
0x00
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
44 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x0D The bits in register 0x0D are used to report path and sec-
tion overhea d. 0x00
7 G1-5 The G1-[5:8] are used to report the four least significant
bits of the G1 path overhead byte.
6G1-6
5G1-7
4G1-8
3—Reserved.
2 K2-6 The K2-[6:8] bits are used to report the three least signifi-
cant bits of the K2 section overhead byte.
1K2-7
0K2-8
0x0E The bits in register 0x0E are used to set the number of con-
secutive, consistent values required by registers 0x0B and
0x0C before updating their values.
0x33
7 C2#DET-3 The C2#DET-[3:0] bits are used to set the number of con-
secutive and consistent values required before updating
C2-[7:0] bits in register 0x0C.
6C2#DET-2
5C2#DET-1
4C2#DET-0
3 F2#DET-3 The F2#DET-[3:0] bits are used to set the number of con-
secutive and consistent values required before updating
F2-[7:0] bits in register 0x0B. Valid values for this register
range from 3 to 15. Any value less than 3 defaults to 2
inside the device.
2F2#DET-2
1F2#DET-1
0F2#DET-0
0x0F The bits in register 0x0F are used to set the number of con-
secutive, consistent values required by register 0x0D
before updating their values.
0x33
7 G1#DET-3 The G1#DET-[3:0] bits are used to set the number of con-
secutive and consistent values required before updating
G1-[5:8] bits in register 0x0D.
6G1#DET-2
5G1#DET-1
4G1#DET-0
3 K2#DET-3 The K2#DET-[3:0] bits are used to set the number of con-
secutive and consistent values required before updating
K2-[6:8] bits in register 0x0D. Valid values for this register
range from 3 to 15. Any value less than 3 defaults to 2
inside the device.
2 K2#DET-2
1 K2#DET-1
0 K2#DET-0
0x10 7—0 F2INS-[7:0] The F2INS-[7:0] bits in register 0x10 are used to set the
values to be transmitted in the F2 byte. 0x00
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
45Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x11 The bits in register 0x11 are used to set the values to be
transmitted in the G1 and K2 bytes. 0x00
7 G1INS-5 The G1INS-[5:8] bits are used to set values to be transmit-
ted in the four least significant bits of the G1 byte. The
G1 byte is written by the microprocessor.
6G1INS-6
5G1INS-7
4G1INS-8
3—Reserved.
2 K2INS-6 The K2INS-[6:8] bits are used to set the values to be trans-
mitted in the three least significant bits of the K2 byte.
AUTO_LRDI bit (bit 6 of register 0x01) should be set to 0
for K2INS-[6:8] insertion (i.e., K2 insertion) through the
microprocessor interface.
1K2INS-7
0K2INS-8
0x12 The bits in register 0x12 are used to set the bus mode of
operation for both the transmit and receive sides. 0x24
7—6 Reserved.
5 RBUSMODE The RBUSMODE bit sets the STS-1 receive side of the
device to the bus mode of operation when a 1; otherwise,
the device is set to nonbus mode.
4 RBUSPOS-1 The RBUSPOS-[1:0] sets the time slot for the receive side.
00 causes the receive side not to listen. Otherwise, the
time slots are determined by the binary value of these bits
as follows:
01 = time slot 1
10 = time slot 2
11 = time slot 3
3RBUSPOS-0
2 TBUSMODE The TBUSMODE bit sets the STS-1 transmit side of the
device to the bus mode of operation when a 1; otherwise,
the device is set to nonbus mode.
1 TBUSPOS-1 The TBUSPOS-[1:0] sets the time slot for the transmit
sides. 00 causes the transmit side not to transmit. Other-
wise, the time slots are determined by the binary value of
these bits as follows:
01 = time slot 1
10 = time slot 2
11 = time slot 3
0 TBUSPOS-0
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
46 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x13 7—4 Reserved. 0x00
3 S1INS-3 The S1INS-[3:0] bits in register 0x13 are used to set the
four least significant bits of the S1 path overhead byte.
2S1INS-2
1S1INS-1
0S1INS-0
0x14 The bits in register 0x14 are for the S1 path overhead byte. 0x30
7 S1#DET-3 The S1#DET-[3:0] bits are used to set the number of con-
secutive, consistent values required by the receive S1 byte
before updating the value. Valid values for these registers
range from 3 to 15. Any value less than 3 defaults to 2
inside the device.
6 S1#DET-2
5 S1#DET-1
4 S1#DET-0
3 S1-3 The S1-[3:0] bits are used to report the four least significant
bits of the S1 path overhead byte.
2S1-2
1S1-1
0S1-0
0x15 7—0 DEVID-[7:0] DEVID-[7:0] bits in register 0x15 are used to report the
device ID. 0x51
0x16 The DEVVER-[3:0] bits in register 0x16 are used to report
the device version. Anytime there are silicon changes that
modify the operation of this device, this register will be
incremented by 1.
Notes:
The reset default value is the device version.
Bits 7—4 are reserved.
7—4
3 DEVVER-3
2 DEVVER-2
1 DEVVER-1
0 DEVVER-0
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
47Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
DS1/E1 Insertion Selection
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x17—0x2B Registers 0x17—0x2B report DS1 or E1 conditions. Value is
0.
7 DS1/E1AIS[1:21] The DS1/E1AIS[1:21] bits report the received DS1/E1
AIS condition. When any of these bits is 1, the corre-
sponding DS1/E1 input has an AIS condition. This value
represents the current received state. The AIS condition
is not latched by these bits. The indication is reset when
the condition is no longer true.
6 DS1/E1LOC[1:21] The DS1/E1LOC[1:21] bits in bit 6 report the received
DS1/E1 loss of cloc k condition. When any of these bits
is 1, the corresponding DS1/E1 input has a received
loss of clock condition. This value represents the cur-
rent received state. The loss of clock condition is not
latched by these bits. The indication is reset when the
condition is no longer true.
5 DS1/E1LB[1:21] The DS1/E1LB[1:21] bits in bit 5 are used to force DS1/
E1 loopback from output to input. When any of these
bits is 1, the corresponding DS1/E1 input is overwritten
by the outgoing DS1/E1 signal for that location.
4 DS1/E1INS4_[1:21] The DS1/E1INS[4:0]_[1:21] bits in registers 0x17—
0x2B are used to select the DS1/E1 input for the trans-
mit VT1.5 slots. The DS1/E1 selected corresponds to
the decimal value of the programmed 5 bits. If these bits
contain 00000, the device will insert unequipped into the
corresponding VT1.5 slot. If these bits contain 11101—
11110, the device will insert AIS-V into the correspond-
ing VT1.5 slot. Since the device defaults all 28 of these
registers to the value 00000, all of the 28 VT1.5 slots
begin transmitting unequipped following reset. The
value 11111 inserts the test pattern. Addresses 0x17
0x32 correspond to VT1.5s as shown in Table 17,
page 49.
3 DS1/E1INS3_[1:21]
2 DS1/E1INS2_[1:21]
1 DS1/E1INS1_[1:21]
0 DS1/E1INS0_[1:21]
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
48 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection (continued)
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x2C—0x32 Registers 0x17—0x32 report DS1 conditions. Value is
0.
7 DS1AIS[22:28] The DS1/E1AIS[1:21] and DS1AIS[22:28] bits report the
received DS1 AIS condition. When any of these bits is 1,
the corresponding DS1 input has an AIS condition. This
value represents the current received state. The AIS condi-
tion is not latched by these bits. The indication is reset
when the condition is no longer true.
6 DS1LOC[22:28] The DS1/E1LOC[1:21] and DS1LOC[22:28] bits in bit 6
report the received DS1 loss of clock condition. When any
of these bits is 1, the corresponding DS1 input has a
received loss of clock condition. This value represents the
current received state. The loss of clock condition is not
latched by these bits. The indication is reset when the con-
dition is no longer true.
5 DS1LB[22:28] The DS1/E1LB[1:21] and DS1LB[22:28] bits in bit 5 are
used to force DS1 loopback from output to input. When any
of these bits is 1, the corresponding DS1 input is overwrit-
ten by the outgoing DS1 signal for that location.
4 DS1INS4_[22:28] The DS1/E1INS[4:0]_[1:21] and DS1INS[4:0]_[22:28] bits
in registers 0x17—0x32 are used to select the DS1 input
for the transmit VT1.5 slots. The DS1 selected corresponds
to the decimal value of the programmed 5 bits. If these bits
contain 00000, the device will insert unequipped into the
corresponding VT1.5 slot. If these bits contain 11101—
11110, the device will insert AIS-V into the corresponding
VT1.5 slot. Since the device defaults all 28 of these regis-
ters to the value 00000, all of the 28 VT1.5 slots begin
transmitting unequipped following reset. The value 11111
inserts the test pattern. Addresses 0x17—0x32 correspond
to VT1.5s as shown in Table 17, page 49.
3 DS1INS3_[22:28]
2 DS1INS2_[22:28]
1 DS1INS1_[22:28]
0 DS1INS0_[22:28]
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
49Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 17. DS1/E1 Insertion Selection Format
VT Drop Selection (0x33—0x4E)
Table 18. Registers 0x33—0x4E: VT Drop Selection
5 Programmed DS1/E1INS[4:0]_x Bits
VT1.5 # VT Group # VT # Address Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 1 1 17 0 0001
2 2 1 18 0 0010
3 3 1 19 0 0011
26 5 4 30 1 1010
27 6 4 31 1 1011
28 7 4 32 1 1100
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x33—0x4E 7 Reserved. V alue is
0.
6 RXESOF[1:28] The RXESOF[1:28] bits (see VT Drop Selection Registers,
Table 14, page 25) report the receive elastic store overflow
condition. When any of these bits is 1, the corresponding
DS1/E1 output has experienced an elastic store overflow.
This value is latched by these bits until read by the micro-
processor.
5 TXESOF[1:28] The TXESOF[1:28] bits (see Control, Alarm, and Mask Bit
Registers, Table 14, page 23) report the transmit elastic
store overflow condition. When any of these bits is 1, the
corresponding DS1/E1 input has experienced an elastic
store overflow . This value is latched by these bits until read
by the microproc ess or.
4 VTDROP4_[1:28] These bits in registers 0x33—0x4E are used to select the
VT1.5 slot for the DS1/E1 outputs. The VT1.5 selected in
Table 17 corresponds to the decimal value of these pro-
grammed 5 bits. If these bits contain 00000, or 11101—
11111, then the device inserts the following:
00000 = device does not transmit any clock or data
11101 = device inserts a DS1 AIS into the corresponding
DS1/E1 slot
11110 = device inserts a E1 AIS into the corresponding
DS1/E1 slot
11111= device inserts the test pattern
Since the device defaults these bits in all 28 of these regis-
ters to 00000, there will be no clock or data in any of the
28 DS1 or 21 E1 slots after reset. VTDROP[4:0]_[1:28],
bits 00001—11100, correspond to the specific VT1.5
streams as shown in Table , page 50. Address 0x33—
0x4E correspond to VTs as shown in Table 20, also on
page 50.
3 VTDROP3_[1:28]
2 VTDROP2_[1:28]
1 VTDROP1_[1:28]
0 VTDROP0_[1:28]
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
50 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 19. VT Drop Selection Format
Table 20. VT to Address Mapping
5 Programmed DS1/E1INS[4:0]_x or VT Drop Data Bits
VT1.5 Drop # VT Group # VT # Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 1100001
2 2100010
3 3100011
26 5411010
27 6411011
28 7411100
VT # Address
133
234
335
26 4C
27 4D
28 4E
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
51Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Tx VT Overhead Insertion Control (0x4F—0x6A)
Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x4F—0x6A The bits in these registers provision the transmitted VT
overhead byte, V5. V alue is
0.
7 BIP2ERINS[1:28] Each BIP2ERINS[1:28] bit = 1 forces the selected VT to
transmit inverted BIP-2 bits which causes the do wn-
stream receiver to declare continuous BIP-2 errors.
6 VTRFIRDIEN[1:28] The VTRFIRDIEN[1:28] bits control whether
RDI-V bits are inserted automatically by the device
(VTRFIRDIEN[1:28] = 1) or manually by the
microprocessor (VTRFIRDIEN[1:28] = 0).
5 VTRFIINS[1:28] The VTRFIINS[1:28] bits directly program the transmitted
RFI-V bits when the corresponding VTRFIRDIEN[1:28]
bits = 1.
4 VTRDIINS[1:28] The VTRDIINS[1:28] bits directly program the transmitted
RDI-V bits when the corresponding VTRFIRDIEN[1:28]
bits = 1.
3 VTAISINS[1:28] Each VTAISINS[1:28] bit = 1 forces AIS-V to be written
into the corresponding VT slot. This consists of writing all
1s into the selected VT slot.
2 VTLABINS2_[1:28] The VTLABINS[2:0]_[1:28] bits directly program the
transmitted VT label bits. These bits are used to carry
unequipped information (VTLABINS[2:0]_[1:28] = 000) as
well as specific payload mappings and AIS-V.
1 VTLABINS1_[1:28]
0 VTLABINS0_[1:28]
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
52 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Rx VT Drop Monitoring (0x6B—0x86)
Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x6B—0x86 The bits in register 0x6B—0x86 are used to report the VT
slot status. V alue is
0.
7 VTSIZEER[1:28] The VTSIZEER[1:28] bits report incorrect VT size bits
when the value is 1. M = 1 reports an AIS or LOC condition
on DS1/E1. These are current state bits with a minimum
persistence of 500 µs. The indications reset if the condition
is no longer true.
6 VTLOP[1:28] The VTLOP[1:28] bits report VT loss of pointer when the
value is 1. These are current state bits with a minimum per-
sistence of 500 µs. The indications reset if the condition is
no longer true.
5 VTRDI1_[1:28] The VTRDI[1:0]_[1:28] bits report VT RDI. These are cur-
rent state bits with a minimum persistence of 500 µs. The
indications reset if the condition is no longer true.
4 VTRDI0_[1:28]
3 VTAIS[1:28] Each VT AIS[1:28] bit = 1 reports that the V1 and V2 pointer
bytes are all 1s for three consecutive superframes. These
are current state bits with a minimum persistence of 1500
µs. The indications reset if the condition is no longer true.
2 VTLAB2_[1:28] The VTLAB[2:0]_[1:28] bits report the received VT labels.
These bits have a minimum persistence of 500 µs.
1 VTLAB1_[1:28]
0 VTLAB0_[1:28]
0x87 7—0 Reserved. 0x00
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
53Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 23. Registers 0x88—0x89: Signal Override Control
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x88 The bits in register 0x88 are used to override the DS1_E1N
signal pin. These bits represent the seven VT Groups and
can be individually programmed as follows.
0x00
7 TVTG-7 If TVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the
signal will be E1.
6TVTG-6
5TVTG-5
4TVTG-4
3TVTG-3
2TVTG-2
1TVTG-1
0 TOVERRIDE If TOVERRIDE = 1, then the type of signal in each VT
Group is determined by the 7 TVTG bits.
0x89 The bits in register 0x89 are used to override the DS1_E1N
signal pin. These bits represent the seven VT Groups and
can be individually programmed as follows.
0x00
7 RVTG-7 If RVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the
signal will be E1.
6RVTG-6
5RVTG-5
4RVTG-4
3RVTG-3
2RVTG-2
1RVTG-1
0 ROVERRIDE If ROVERRIDE = 1, then the type of signal in each VT
Group is determined by the 7 RVTG bits.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
54 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Digital Jitter Attenuator Controls (0x8A—0x8F)
Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x8A—0x8F The bits in registers 0x8A—0x8F are used to control vari-
ous aspects of the digital jitter attenuator. Two programma-
ble terms are used to set the 2nd order loop damping factor
and natural frequency of the PLL. These terms are the gain
threshold, set by DJAGTHR-[23:0] in registers
0x8D—0x8F, and scale value, set by DJASCALE-[15:0] in
registers 0x8B—0x8C. The PLL bandwidth can be set,
using the above registers, to accommodate various system
constraints.
See
below.
0x8A 7— 0 S CAL ETHR-[7 :0] S ca le Thres hol d. 0xFF
0x8B 7—0 DJASCALE-[15:8] Scale Value. 0x0F
0x8C 7—0 DJASCALE-[7:0] 0xCA
0x8D 7—0 DJAGTHR-[23:16] Gain Threshold. 0x00
0x8E 7—0 DJAGTHR-[15:8] 0xFE
0x8F 7—0 DJAGTHR-[7:0] 0x50
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
55Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0x91 The bits in register 0x91 are used to set the number of
6.48 MHz clock periods required to declare received STS-1
loss of signal. The two least significant bits have a dual pur-
pose and can also be used to program the edge on which
the QRSS pattern generator and detector data is clocked.
If this value is 0x00, then LOS is not declared; otherwise,
the device looks for an all-zeros or all-ones input signal for
the binary equivalent of this value in clock periods to
declare LOS.
0x00
7 LOSDET-7 These bits are used to set the number of 6.48 MHz clock
periods required to declare received STS-1 loss of signal.
6LOSDET-6
5LOSDET-5
4LOSDET-4
3LOSDET-3
2LOSDET-2
1LOSDET-1/
TP_EDGE-1 This bit has a dual purpose. It can either contribute to the
above count or can be programmed to set the edge on
which the test pattern detector data is clocked in. When set
to 0, the detector uses the rising edge of the selected input
clock to retime the data, or uses the falling edge otherwise.
0LOSDET-0/
TP_EDGE-0 This bit has a dual purpose. It can either contribute to the
above count or can be programmed to set the edge on
which the test pattern generator data is clocked out. When
set to 0, the generator uses the rising edge of the blue sig-
nal clock to retime the data, or uses the falling edge other-
wise.
0x92—0xBE 7—0 Reserved. V alue is
0.
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
56 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Block Control (0xBF)
Table 26. Register 0xBF: Block Control
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xBF The bits in register 0xBF control the information presented
to the microprocessor from the registers 0xC0—0xFF.
These last 64 bytes will display different results depending
on the value programmed into this byte. A hierarchy of
evaluation of these bytes occurs in the following three ways
presented in the description of bits 2, 1, 0.
0x00
7—4 Reserved. These bits are set to 0.
3 TJ1BYTE If TJ1BYTE = 1, the transmitted J1 byte values are pre-
sented. These registers are read/write. Any values written
into these registers will change the J1 byte values that are
transmitted.
2 RJ1BYTE If RJ1BYTE = 1, the received J1 bytes are presented
(read only).
1 REI_CNTS If REI_CNTS = 1, REI error information is presented
(read only).
0 BIP_CNTS If BIP_CNTS = 1, BIP error information is presented,
regardless of the values of the other bits in this register
(read only).
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
57Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Detected BIP Errors (0xC0—0xFD)
Table 27. Registers 0xC0—0xFD: Detected BIP Errors
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xC0—0xFD are used to count the
number of BIP errors detected by the device.
* These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page
29 and page 30.
These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page
29 and page 30.
Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value
When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xFE—0xFF are used to report the received
SONET/SDH pointer value.
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xC0 7—0 B1BIPCNT-[15:8] Registers 0xC0—0xC5. The first six registers in the
block, 0xC0—0xC5, are the BIP errors detected by B1,
B2, and B3.
V alue is
0.
0xC1 7—0 B1BIPCNT-[7:0]
0xC2 7—0 B2BIPCNT-[15:8]
0xC3 7—0 B2BIPCNT-[7:0]
0xC4 7—0 B3BIPCNT-[15:8]
0xC5 7—0 B3BIPCNT-[7:0]
0xC6—
0xFC* 7 VT[1:28]PTR+3 Registers 0xC6—0xFD. The remaining registers in the
block indicate the errors seen by the BIP-2 error detec-
tors in the individual VT1.5 slots.
Since the BIP-2 errors only require 12 bits, the VT pointer
increment counts are also presented in these registers.
The values in all of these counters are latched by the
LATCH_CNT bit in register 0x00. (See the STS-1/AU-3
Terminate section, page 16 and page 17.)
V alue is
0.
6 VT[1:28]PTR+2
5 VT[1:28]PTR+1
4 VT[1:28]PTR+0
3 BIP2CNT11_[1:28]
2 BIP2CNT10_[1:28]
1 BIP2CNT9_[1:28]
0 BIP2CNT8_[1:28]
0xC7—
0xFD7 BIP2CNT7_[1:28]
6 BIP2CNT6_[1:28]
5 BIP2CNT5_[1:28]
4 BIP2CNT4_[1:28]
3 BIP2CNT3_[1:28]
2 BIP2CNT2_[1:28]
1 BIP2CNT1_[1:28]
0 BIP2CNT0_[1:28]
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xFE 7—0 SPTR+[7:0] Register 0xFE. The SPTR+[7:0] bits report the SONET
pointer increment value. 0x00
0xFF 7—0 SPTR–[7:0] Register 0xFF. The SPTR–[7:0] bits report the SONET
pointer decrement value. 0x00
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
58 Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Detected REI Errors (0xC0—0xFD)
Table 29. Registers 0xC0—0xFD: Detected REI Errors
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xC0—0xFD
are used to count the number of REI errors detected by the device.
* These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page
31 and page 32.
These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page
31 and page 32.
Table 30. Registers 0xFE—0xFF: Reserved
When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xFE—0xFF are reserved.
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xC0 7—0 Reserved. These bits are set to 0. Value is
0.
0xC1 7—0
0xC2 7—0 B2REI-[15:8] Registers 0xC2—0xC5. The registers, 0xC2—0xC5, are
the REI errors detected by B2 and B3 (see the STS-1/AU-3
Terminate section, page 16 and page 17).
0xC3 7—0 B2REI-[7:0]
0xC4 7—0 B3REI-[15:8]
0xC5 7—0 B3REI-[7:0]
0xC6—
0xFC* 7 VT[1:28]PTR–3 Registers 0xC6—0xFD. The remaining registers in the
block indicate the errors seen by the REI error detectors in
the individual VT1.5 slots. Since the VT REI errors only
require 11 bits, the VT pointer decrement counts are also
presented in these registers. The values in all of these
counters is latched by the LATCH_CNT bit
(bit 3) in register 0x00. (See the STS-1/AU-3 Terminate
section, page 16 and page 17.)
Note: In registers 0xC6—0xFC, bit 3 is reser ved.
6 VT[1:28]PTR–2
5 VT[1:28]PTR–1
4 VT[1:28]PTR–0
3—
2 VTREI10_[1:28]
1 VTREI9_[1:28]
0 VTREI8_[1:28]
0xC7—
0xFD7 VTREI7_[1:28]
6 VTREI6_[1:28]
5 VTREI5_[1:28]
4 VTREI4_[1:28]
3 VTREI3_[1:28]
2 VTREI2_[1:28]
1 VTREI1_[1:28]
0 VTREI0_[1:28]
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xFE 7—0 Reserved. These bits are set to 0. 0x00
0xFF 7—0 0x00
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
59Agere Systems Inc.
Microprocessor Interface Description (continued)
Register Architectur e Descr iption (continued)
Receive J1 Path Trace Bytes (0xC0—0xFF)
Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 0 and RJ1BYTE = 1, the bytes in reg-
isters 0xC0—0xFF are used to read the received 64 path trace bytes.
Transmit J1 Path Trace Bytes (0xC0—0xFF)
Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 0 and RJ1BYTE = 1 and TJ1BYTE = 1, the bytes in regis-
ters 0xC0—0xFF are used to provision the transmit 64 path trace bytes.
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xC0—0xFF 7 RJ1BYTE7_[64:1] The receive J1 path trace byte RJ1BYTE[7:0]_64 corre-
sponds to the first byte in the 64-byte sequence, while the
J1 path trace byte RJ1BYTE[7:0]_1 corresponds to the
last byte in the 64-byte sequence. These specified
receive J1 byte values are continuously written, modulo
64, into the 0xC0—0xFF registers. If any received byte
does not match the previously received byte for its loca-
tion, then TRACEER bit (bit 7) in register 0x03 is set to 1.
V alue is
0.
6 RJ1BYTE6_[64:1]
5 RJ1BYTE5_[64:1]
4 RJ1BYTE4_[64:1]
3 RJ1BYTE3_[64:1]
2 RJ1BYTE2_[64:1]
1 RJ1BYTE1_[64:1]
0 RJ1BYTE0_[64:1]
Address
(Hex) Bit # Name Function Reset
Default
(Hex)
0xC0—0xFF 7 TJ1BYTE7_[64:1] The transmit J1 path trace byte TJ1BYTE[7:0]_64 corre-
sponds to the first byte in the 64-byte sequence, while the
J1 path trace byte TJ1BYTE[7:0]_1 corresponds to the
last byte in the 64-byte sequence. These registers can be
written by the microprocessor.
V alue is
0.
6 TJ1BYTE6_[64:1]
5 TJ1BYTE5_[64:1]
4 TJ1BYTE4_[64:1]
3 TJ1BYTE3_[64:1]
2 TJ1BYTE2_[64:1]
1 TJ1BYTE1_[64:1]
0 TJ1BYTE0_[64:1]
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
60 Agere Systems Inc.
Microprocessor Interface Description (continued)
I/O Timing
The I/O timing specifications for the microprocessor interface are given in Table 33. The microprocessor interface
pins use CMOS I/O levels (see pages 20—22 for pin listings). All outputs, except the address/data bus AD[7:0], are
rated for a capacitive load of 50 pF. The AD[7:0] outputs are rated for a 100 pF load. The minimum read and write
cycle time is 200 ns for all device configurations.
The read and write timing diagrams for all four microprocessor interface modes are shown in Figures 3—10.
Table 33. Microprocessor Interface I/O T i ming Specifications
Symbol Configuration Parameter Setup
(ns)
(Min)
Hold
(ns)
(Min)
Delay
(ns)
(Max)
t1 Modes 1 & 2 Address Valid to AS Asserted (Read, Write) 5 ——
t2 AS Asserted to Address Invalid (Read, Write) 10
t3 AS Asserted to DS Asserted 0
t4 R/W High (Read) to DS Asserted 25
t5 DS Asserted (Read, Write) to DTACK Asserted 20
t6 DTACK Asserted to Data Valid (Read) 24
t7 DS A sserted (Read) to Data Valid 44
t8 DS Negated (Read, Write) to AS Negated
t9 DS Negated (Read) to Data Invalid 15
t10 DS Negated (Read) to DTACK Nega ted 15
t11 AS (Read, Write) Asserted Width 75
t12 DS (Read) Asserted Width 35
t13 AS Asserted to R/W Low (Write) 7
t14 R/W Low (Write) to DS Asserted 20
t15 Data Valid to DS Asserted (Write) 7.5
t16 DS Negated to DTACK Negated (Write) 20
t17 DS Negated to Data Invalid (Write) 7.5
t18 DS (Write) Asserted Width 35
t19 Modes 3 & 4 Address Valid to ALE Asserted Low (Read, Write) 15
t20 ALE Asserted Low (Read, Write) to Address Invalid 10
t21 ALE Asserted Low to RD Asserted (Read) 30
t22 RD Asserted (Read ) to Data Valid 90
t23 RD Asserted (Read) to RDY Asserted 75
t24 RD Negated to Data Invalid (Read) 25
t25 RD Negated to RDY Negated (Read) 25
t26 ALE Asserted Low to WR Asserted (Write) 35
t27 CS Asserted to RDY Asserted Low 16
t28 Data Valid to WR Asserted (Write) 25
t29 WR Asserted (Write) to RDY Asserted 73
t30 WR Negated to RDY Negated (Write) 22
t31 WR Negated to Data Invalid 25
t32 ALE Asserted (Read, Write) Width 150
t33 RD Asserted (Read) Width 100
t34 WR Asserted (Write) Width 100
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
61Agere Systems Inc.
Microprocessor Interface Description (continued)
I/O Timing (continued)
5-3685(F).br.4
Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)
5-3686(F).br.5
Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)
t6
t7
t5
DS
AS
CS
MINIMUM READ CYCLE
VALID ADDRESS
VALID DATA
A[7:0]
R/W
t2
t3
t10
t9
t8
t4
t12
AD[7:0]
DTACK
t11
t1
t14
t5
t15
DS
AS
CS
MINIMUM WRITE CYCLE
VALID ADDRESS
VALID D ATA
A[7:0]
R/W
t2
t1
t13
t16
t17
t8
t18
AD[7:0]
DTACK
t11
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
62 Agere Systems Inc.
Microprocessor Interface Description (continued)
I/O Timing (continued)
5-3687(F)r.12
Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)
5-3688(F)r.12
Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)
t6
t7
t5
DS
AS
CS
MINIMUM READ CYCLE
VALID DATA
R/W
t3
t10
t9
t8
t4
t12
AD[7:0]
DTACK
t11
VALID
ADDRESS
VALID
ADDRESS
VALID
DATA
t2
t1
VALID
ADDRESS VALID
ADDRESS
VALID DATA
VALID
DATA
CS
AS
R/W
DS
DTACK
AD[7:0]
MINIMUM WRITE CYCLE
t11
t14 t8
t18
t16
t1
t13
t5
t2 t15 t17
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
63Agere Systems Inc.
Microprocessor Interface Description (continued)
I/O Timing (continued)
5-3689(F).br.4
Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)
5-3690(F).br.3
Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)
MINIMUM READ CYCLE
t32
VALID ADDRESS
ALE
CS
A[7:0]
RD
AD[7:0]
RDY
VALID DATA
t23 t25
t24t22
t19
t27
t21
t20
t33
CS
ALE
A[7:0]
WR
AD[7:0]
RDY
MINIMUM WRITE CYCLE
t19
t32
t20
VALID ADDRESS
t28
t34
t26
t31
t29 t30
t27
VALID DATA
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
64 Agere Systems Inc.
Microprocessor Interface Description (continued)
I/O Timing (continued)
5-3691(F)r.12
Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)
5-3692(F)r.13
Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)
CS
ALE
RD
AD[7:0]
RDY
MINIMUM READ CYCLE
t32
t33
t22
t23 t25
t20t27
t19
t21
t24
VALID
DATA VALID DATA
VALID
ADDRESS VALID
ADDRESS
CS
ALE
WR
AD[7:0]
RDY
VALID
DATA VALID
ADDRESS VALID
ADDRESS
VALID DATA
MIN IM U M W RITE CYCLE
t32
t26 t34
t29
t27 t30
t31t28
t20
t19
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
65Agere Systems Inc.
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These
are absolute stress ratings only . Functional operation of the device is not implied at these or any other conditions in
excess of those given in the operational sections of this device specification. Exposure to absolute maximum rat-
ings for extended periods can adversely affect device reliability.
Table 34. Absolute Maximum Ratings
Handling Precautions
Although ESD protection circuitry has been designed into this device, proper precautions must be taken to avoid
exposure to electrostatic discharge (ESD) and electrical overstress (EOS) during all handling, assembly, and test
operations. Agere employs both a human-body model (HBM) and a charged-device model (CDM) qualification
requirement in order to determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresh-
olds are dependent on the circuit parameters used in each of the models, as defined by JEDEC’s JESD22-A114
(HBM) and JESD22-C101 (CDM) standards.
Table 35. ESD Protection Characteristics
Parameter Symbol Min Max Unit
Power Supply (dc Voltage) VDD –0.5 4.6 V
Input V oltage VI–0.3 5.5 V
Output Voltage VO—3.63V
Storage Temperature Tstg –65 125 °C
Ambient Operating Temperature Range TA–40 85 °C
Device Minimum Threshold
HBM CDM Corner/All Noncorner
TMPR28051 2500 V 1000 V
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
66 Agere Systems Inc.
Operating Conditions
Electrical Characteristics
Table 37. Logic Interface Characteristics
* 100 pF allowed for AD[7:0] (pins 48 to 50 and 55 to 59).
Table 36. Recommended Operating Conditions
Parameter Symbol Min Typ Max Unit
Power Supply (dc Voltage) VDD 3.14 3.3 3.46 V
Ground VSS —0.0V
Input Voltage, High VIH —VDD – 1.0 5.25 V
Input Voltage, Low VIL —VSS 1.0 V
Ambient Temperature TA–40 85 °C
Power Dissipation, DS1
(TA = 23 °C, VDD = 3.3 V):
Full Loopback
Broadcast
Standby
PD
380
380
360
mW
mW
mW
Power Dissipation, E1
(TA = 23 °C, VDD = 3.3 V):
Full Loopback
Broadcast
Standby
450
450
430
mW
mW
mW
An internal 100 k pull-up is provided on the ICT, RESET, CS, TCK, TDI, TMS, TRST, RSTS 1DATA[7:0],
RSTS1PAR, E1BLUECLK, RCLK[28:1], and RDATA[28:1] pins. This requires these input pins to sink no more than
20 µA. All buffers use CMOS levels.
Parameter Symbol Test Conditions Min Max Unit
Input Voltage:
Low
High VIL
VIH
GND
VDD – 1.0 1.0
VDD V
V
Input Leakage IL——1.0µA
Output Voltage:
Low
High VOL
VOH –5.0 mA
5.0 mA GND
VDD – 1.0 0.5
VDD V
V
Input Capacitance CI— —3.0pF
Load Capacitance* CL 25 pF
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
67Agere Systems Inc.
Timing Characteristics
Operational Timing
The operational timing parameters can be grouped separately for clocks, inputs, and outputs. Table 38 lists the
transmit and receive input clock specifications for this device. (For definitions of the signal names, see the pin
descr ip tio ns in Table 1, pages 7—9.)
Table 38. Input Clock Specifications
Signal Name Parameter Min Max Unit
Input Clock Signals
TSTS1CLKIN Frequency 51.839 51.841 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter —1%
Frequency 19.439 19.441 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter 1 %
Frequency 6.479 6.481 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter 1 %
RCLK[1:28]
(DS1 Mode)
RCLK[1:21]
(E1 Mode)
Frequency 1.5437 1.5443 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter 1 %
Frequency 2.0484 2.0476 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter 1 %
RSTS1CLK Frequency 51.839 51.841 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter 1 %
JTAG Signal
TCK Frequency 0.5 12 MHz
Clock Pulse High Time 40 60 %
Peak-to-Peak Jitter 1 %
Rise/Fal l Time 15 ns
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
68 Agere Systems Inc.
Timing Characteristics (continued)
Operational Timing (continued)
Table 39 lists the setup time (tSU) and hold time (tH) specifications for the receive input and JTAG signals. The dig-
ital system interface timing is shown in Figure 11.
*These clock edges are programmable through the microprocessor interface.
Notes:
repres ents a low-to-high transition.
represents a high-to-low transition.
5-5342(F)r.5
Figure 11. Interface Data Timing
Table 39. Input Timing Specifications
Input Name Reference CLK*Setup Time
(tSU)Hold Time
(tH)Unit
Min Max Min Max
Receive Signals
TSTS1SYNC TSTS1CLKIN 5 —2—ns
RDATA[1:28] RCLK[1:28] ↑↓ 50 40 ns
RSTS1DATA[7:0] RSTS1CLK ↑↓ 15 2 ns
RSTS1PAR RSTS1CLK ↑↓ 15 2 ns
RSTS1SERIAL RSTS1CLK ↑↓ 5—2—ns
JTAG Signal
TDI TCK 50 50 ns
CLOCK IN
DATA IN
tSU tH
CLOCK OUT
DATA OUT
tPD
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
69Agere Systems Inc.
Timing Characteristics (continued)
Operational Timing (continued)
The output clock specifications are shown in Table 40.
*The duty-cycle distortion added to the TSTS1CLKOUT signal is 2% worst case when measured from 1.5 V in to 1.5 V out with a 2 ns rise
time input.
Table 41 lists the propagation delay (tPD) specifications for the output signals. The digital system interface timing is
shown in Figure 11, page 68.
* Propagation delay skew, tPLH—tPHL, is ±200 ps.
Notes:
represents a low-to-high transition.
represents a high-to-low transition.
Table 40. Output Clock Specifications
Signal Name Frequency Test
Conditions
Rise Time Fall Time
UnittRtF
Min Max Min Max
TCLK[1:28]
(DS1 Mode) 1.544 MHz ± 5% CL = 50 pF 30 30 ns
TCLK[1:28]
(E1 Mode) 2.048 MHz ± 5% CL = 50 pF 30 30 ns
TSTS1CLKOUT*51.84 MHz ± 5% CL = 15 pF 3 3 ns
19.44 MHz ± 5% CL = 15 pF 3 3 ns
6.48 MHz ± 5% CL = 15 pF 3 3 ns
Table 41. Output Timing Specifications
Output Name Reference CLK Test
Conditions
Propagation Delay *
UnittPD
Min Max
Transmi t Signals
TDATA[28:1] TCLK[1:28] ↑↓ CL = 25 pF 40 190 ns
TSTS1DATA[7:0] TSTS1CLKIN CL = 15 pF 2 12 ns
TSTS1PAR TSTS1CLKIN CL = 15 pF 2 12 ns
TSTS1DATA7 TSTS1CLKIN CL = 15 pF 03.5 ns
JTAG Signal
TDO TCK CL = 50 pF 1.5 17 ns
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
70 Agere Systems Inc.
Timing Characteristics (continued)
Transmit Sync Timing
In all transmit modes, the first bit/byte of the J0, J1, and V1 bytes are coincident with the sync pulse. The second
and third pulses in this composite signal are only needed to force V1 superframe alignment. If there are three sync
pulses as shown below, then V1 will be forced. The serial mode transmit sync timing is shown below in Figure 12.
5-6347(F)r.1
Note: The - symb ol followed by a number represents the bit number in the byte.
Figure 12. Serial Mode T ransmit Sync Timing
The bus mode transmit sync timing is shown below in Figure 13.
5-6347(F).a
Note: The # symbol followed by a number represents the active device on the bus.
Figure 13. Bus Mode Transmit Sync Timing
TSTS1CLK
TSTS1SYNC
TSTS1DATA J0-7 J0-6 J0-5 J0-4 J0-3 J0-2 J0-1 J0-0 J1-7 J1-6 J1-5 J1-4 J1-3 J1-2 J1-1 J1-0 V1-7 V1-6 V1-5 V1-4 V1-3 V1-2 V1-1 V1-0
TSTS1CLK
TSTS1SYNC
TSTS1DATA J0#1 J0#2 J0#3 J1#1 J1#2 J1#3 V1#1 V1#2 V1#3
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
71Agere Systems Inc.
Timing Characteristics (continued)
Transmit Sync Timing (continued)
The nonbus parallel mode transmit sync timing is shown below in Figure 14.
5-6347(F).b
Figure 14. Nonbus Parallel Mode Transmit Sync Timing
Receive Sync Timing
The only receive mode that requires a sync pulse is the bus mode. The sync pulse is required to align the device to
time slot #1. The bus parallel mode receive sync timing is shown below in Figure 15.
5-6347(F).cr.1
Note: The # symbol followed by a number represents the active device on the bus.
Figure 15. Bus Parallel Mode Receive Sync Timing
TSTS1CLK
TSTS1SYNC
TSTS1DATA J0 J1 V1
RSTS1CLK
RSTS1SERIAL
RSTS1DATA J0#1 J0#2 J0#3 J1#1 J1#2 J1#3 V1#1 V1#2 V1#3
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
72 Agere Systems Inc.
Typical Uses
Path Termination Multiplex
Using the device without internal loopbacks results in an SDH/SONET path terminating multiplex, as shown in
Figure 16.
5-4876(F)r.9
Note: n repre sents 28 or 21 for DS1 or E1, respectively.
Figure 16. SDH/SONET Path Termination Multiplex Application
Digital Cross Connect
Using the device with STS-1 internal loopbacks results in a digital cross connect, as shown in Figure 17.
5-4878(F)r.8
Note: n repre sents 28 or 21 for DS1 or E1, respectively.
Figure 17. Digital Cross Connect Application
DS1/E1 #1 IN ELASTIC
STORE
SPE
INSERTION
LOGIC
VT
GENERATE
ELASTIC
STORE VT
GENERATE
SPE
GENERATE
STS-1 OUT
SPE
DROP
LOGIC
VT
TERMINATE
VT
TERMINATE
SPE
LOCATE STS-1 IN
SPE
TERMINATE
LIU
DS1/E1 #1 OUT
DS1/E1 #n IN LIU
DS1/E1 #n OUT
STS/STM
DEMUX
LOGIC
STS/STM
MUX
LOGIC
JITTER
ATTENUATE
JITTER
ATTENUATE
TMPR28051
T7693
QUAD LIU
TMUX03155
LIU
ELASTIC
STORE SPE
INSERTION
LOGIC
VT
GENERATE
ELASTIC
STORE VT
GENERATE
SPE
GENERATE
SPE
DROP
LOGIC
VT
TERMINATE
VT
TERMINATE
SPE
LOCATE
SPE
TERMINATE
DS1/E1 LIU DS1/E1
DS1/E1 DS1/E1
LIU
LIU
#1 IN
#n IN
#1 OUT
#n OUT
T7693
QUAD LIU T7693
QUAD LIU
TMPR28051
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
73Agere Systems Inc.
Typical Uses (continued)
Test Pattern Use—Complete System
The internal test pattern generator can be used in conjunction with DS1 or E1 LIU devices that have built-in loop-
backs (such as the Agere T7698FL3/T7693) to do a complete system test, as shown in Figure 18.
5-4879(F)r.7
Figure 18. Test Pattern Usage for Complete System
Test Pa ttern Use —En d to End
The internal test pattern generator can be used to test connectivity within a link by setting up a test pattern inser-
tion at one end and a drop at the other, as shown in Figure 19.
5-4880(F)r.7
Figure 19. Test Pattern Usage for End-to-End Operation
LIU
TEST
PATTERN
INSERT
TEST
PATTERN
DROP
LIU
TEST
PATTERN
DROP
LOOPBACK
MODE TEST PATTERN SOURCE LOOPBACK
MODE
OPTI O NAL TEST PATT ERN DROP
DS1/E1 IN
DS1/E1 AIS
DS1/E1 AIS
DS1/E1 IN
TMPR28051
MAPPER
TMPR28051
MAPPER
TMPR28051
TEST
PATTERN
INSERT
TEST
PATTERN
DROP
TEST PATTERN SOURCE TEST PATTERN DROP
TMPR28051
MAPPER MAPPER
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
74 Agere Systems Inc.
Outline Diagram
208-Pin SQFP
Dimensions are in millimeters.
5-2196(F)r.14
156
105
30.60 ± 0.20
157208
1
52
53 104
28.00 ± 0.20
28.00
± 0.20
30.60
± 0.20
PIN #1 IDENTIFIER ZONE
4.10 MAX
0.08
3.40 ± 0.20
SEATING PLA NE
0.25 MIN
0.50 TYP
DETAIL BDETAIL A
0.50/0.75
GAGE PLANE
SEATING PLAN E
1.30 REF
0.25
DETAIL A DETAIL B
0.17/0.27
0.10 M
0.090/0.200
Data Sheet
May 2002 TMPR28051 STS-1/AU-3 (STM-0) Mapper
75Agere Systems Inc.
Ordering Information
DS02-245BBAC Replaces DS99-068SONT to Incorporate the Following Updates
1. Page 65, Table 35, ESD Protection Characteristics, information added and clarified information.
DS99-068SONT Replaced DS98-100TIC to Incorporate the Following Updates
1. Page 1, added bulleted items concerning 3.3 V operation, and alarm and control standards.
2. Page 5, Description (continued) section, replaced the Agere T7690/T7693 Quad Line Transceiver interfacing
device with the Agere T7698FL3/T7693 Quad Line Transceiver.
3. Page 5, Figure 1, Block Diagram, clarified block flow.
4. Page 6, changed pin 184 and all corresponding references to TCK.
5. Page 7, clarified Pin 102.
6. Page 10, organized Nomenclature Assumptions section from the text at the beginning of the Description sec-
tion.
7. Page 10—page 19, clarified block descriptions.
8. Page 14, 2nd paragraph, corrected the explanation of the reduced H4 coding sequence format from “alternate
between” to “take on the following values.”
9. Page 23—page 36, updated register map.
10. Page 37—page 59, updated register description text and placed text in tables.
11. Page 42, Table , Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits, corrected the test pat-
tern sequence for register XMT_PAT-0, bits 01 and 11 combinations.
12. Page 49, Table 18, Registers 0x33—0x4E: VT Drop Selection, corrected VTxDROP, bits 4 through 0, to
VT_DROP[4:0]_[1:28].
13. Page 54, Table 24, Registers 0x8A—0x8F: Digital Jitter Attenuator Controls, added the register default val-
ues.
14. Page 65, Table 34, Absolute Maximum Ratings, updated table, including input and output voltages.
15. Page 65, Table 35, ESD Threshold Voltage, added parameters and values.
16. Page 66, Table 36, Recommended Operating Conditions, updated to list 3.3 V power dissipation for DS1
and E1.
17. Page 67, Table 38, Input Clock Specifications, added to the document.
18. Page 69, Table 40, Output Clock Specifications, added to the document.
19. Page 70, Transmit Sync Timing section, expanded and corrected.
20. Page 71, Figure 15, Bus Parallel Mode Receive Sync T iming, corrected pin name.
21. Page 75, updated device code.
22.
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device
,
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device
,
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device
,
TMPR28051 STS-1/AU-3 (STM-0)
Data Addendum, included all printed advisories and an addendum through
version 4, each published in April 1999, (AY99-026SONT, AY99-027SONT, AY99-028SONT,
DA99-009SONT). An advisory was not issued for version 1 of the device.
Device Code Package Temperature Comcode
(Ordering Number)
TMPR28051-3-SL5 208-Pin SQFP –40 °C to +85 °C 108421678
Data Sheet
TMPR28051 STS-1/AU-3 (STM-0) Mapper May 2002
Copyright © 2002 Agere Systems Inc.
All Rights Reserved
May 2002
DS02-245BBAC (Replaces DS99-068S ON T)
For additional informatio n, co nta ct you r Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., 555 Un ion Boulevard, Ro om 30L-15P-BA , Allentown, PA 18 10 9-3 286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Ko wl oo n
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5 04 7- 1212 (Sh an ghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzh en)
JAPAN: (81) 3-5421-1600 (To kyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 7000 624624, FAX (44) 1344 488 045
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.
ANSI
is a registered trademark of American National Standards Institute, Inc.