HCPL-T250 1.5 Amp Output Current IGBT Gate Drive Optocoupler Data Sheet Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product Description Features The HCPL-T250 contains GaAs LED. The LED is optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocou pler makes it ideally suited for directly driving IGBTs with ratings up to 1200 V/25 A. For IGBTs with higher ratings, the HCPL-T250 can be used to drive a discrete power stage which drives the IGBT gate. * * * * * * * * * 8 VCC Input threshold current (IFLH): 5 mA (max.) Supply current (ICC): 11 mA (max.) Supply voltage (VCC): 1535 V Output current (IO): 0.5 A (min.) Switching time (tPLH/tPHL): 0.5 s (max.) Isolation voltage (VISO): 3750 Vrms (min.) UL 1577 recognized: File No. E55361 CSA approved IEC/EN/DIN EN 60747-5-2 approved with VIORM = 630 Vpeak * 5 kV/s Minimum Common Mode Rejection (CMR) at Vcm = 1500 V * Creepage distance: 7.4 mm Clearance: 7.1 mm 7 VO Applications 6 VO 5 VEE Functional Diagram N/C 1 ANODE 2 CATHODE 3 N/C 4 Q1 Q2 SHIELD * * * * IGBT/MOSFET gate drive AC/brushless DC motor drives Industrial inverters Switch mode power supplies Truth Table LED Vout ON HIGH OFF LOW A 0.1 F bypass capacitor must be connected between pins 5 and 8. CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Ordering Information HCPL-T250 is UL Recognized with 3750 Vrms for 1 minute per UL1577. Option Part Number RoHS Compliant -000E Non RoHS Compliant Package Surface Mount Gull Wing Tape & Reel IEC/EN/DIN EN 60747-5-2 Quantity No option X X 50 per tube -300E #300 -500E HCPL-T250 -060E #500 X X X 300 mil DIP-8 #060 X 1000 per reel -360E #360 X X X 50 per tube -560E #560 X X X 1000 per reel X 50 per tube 50 per tube To order, choose a part number from the part number column and combine with the desired option from the op tion column to form an order entry. Example 1: HCPL-T250-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant. Example 2: HCPL-T250 to order product of 300 mil DIP package in tube packaging and non RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation `#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use `-XXXE'. Package Outline Drawings Standard DIP Package 9.65 0.25 (0.380 0.010) 8 7 7.62 0.25 (0.300 0.010) 6 5 6.35 0.25 (0.250 0.010) A T250 DATE CODE YYWW PIN ONE 1 2 3 4 1.78 (0.070) MAX. 1.19 (0.047) MAX. 3.56 0.13 (0.140 0.005) 4.70 (0.185) MAX. + 0.076 - 0.051 + 0.003) (0.010 - 0.002) 0.254 5 TYP. PIN ONE 0.51 (0.020) MIN. 2.92 (0.115) MIN. 1.080 0.320 (0.043 0.013) 0.65 (0.025) MAX. DIMENSIONS IN MILLIMETERS AND (INCHES). 2.54 0.25 (0.100 0.010) NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. Gull Wing Surface Mount Option 300 LAND PATTERN RECOMMENDATION 9.65 0.25 (0.380 0.010) 8 7 6 1.016 (0.040) 5 6.350 0.25 (0.250 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 1.19 (0.047) MAX. 1.780 (0.070) MAX. 9.65 0.25 (0.380 0.010) 7.62 0.25 (0.300 0.010) 3.56 0.13 (0.140 0.005) 1.080 0.320 (0.043 0.013) 0.635 0.25 (0.025 0.010) 0.635 0.130 2.54 (0.025 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 2.0 (0.080) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 12 NOM. Solder Reflow Thermal Profile 300 TEMPERATURE (C) PREHEATING RATE 3C + 1C/-0.5C/SEC. REFLOW HEATING RATE 2.5C 0.5C/SEC. 200 PEAK TEMP. 245C PEAK TEMP. 240C 2.5C 0.5C/SEC. 30 SEC. 160C 150C 140C SOLDERING TIME 200C 30 SEC. 3C + 1C/-0.5C 100 PREHEATING TIME 150C, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE ROOM TEMPERATURE 0 0 50 100 150 200 TIME (SECONDS) Note: Non-halide flux should be used. Recommended Pb-Free IR Profile tp Tp TEMPERATURE TL Tsmax 260 +0/-5 C TIME WITHIN 5 C of ACTUAL PEAK TEMPERATURE 20-40 SEC. 217 C RAMP-UP 3 C/SEC. MAX. 150 - 200 C RAMP-DOWN 6 C/SEC. MAX. Tsmin ts PREHEAT 60 to 180 SEC. 25 tL 60 to 150 SEC. t 25 C to PEAK TIME NOTES: THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 C, Tsmin = 150 C Note: Non-halide flux should be used. PEAK TEMP. 230C 250 Regulatory Information The HCPL-T250 has been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361. CSA Approved under CSA Component Acceptance Notice #5, File CA 88324. IEC/EN/DIN EN 60747-5-2 Approved under: IEC 60747-5-2:1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01. (Option 060 only) Insulation and Safety Related Parameter Symbol Value Units Conditions Minimum External Air Gap L(101) 7.1 mm Measured from input terminals to (Clearance) output terminals, shortest distance through air. Minimum External Tracking L(102) 7.4 mm Measured from input terminals to (Creepage) output terminals, shortest distance path along body. Minimum Internal Plastic Gap 0.08 mm Insulation thickness between emitter (Internal Clearance) and detector; also known as distance through insulation Tracking Resistance CTI 175 Volts DIN IEC 112/VDE 0303 Part 1 (Comparative Tracking Index) Isolation Group IIIa Material Group (DIN VDE 0110, 1/89, Table 1) Absolute Maximum Ratings (Compared with HCPL-3120) HCPL-3120 HCPL-T250 Parameter Symbol Units Min. Max. Min. Max. Operating Temperature TA C- 40 100-20 85 "High" Peak Output Current IOH(PEAK) A 2.5 1.5 "High" Peak Output Current IOL(PEAK) A 2.5 1.5 Storage Temperature TS C-55 125-55 125 Average Input Current IF(AVG) mA 25 20 Peak Transient Input Current IF(TRAN) A 1.0 1.0 (<1 s Pulse Width, 300 pps) Reverse Input Voltage VR V 5 5 Supply Voltage (VCC - VEE) V 0 35 0 35 Output Voltage VO V 0 VCC 0 VCC Output Power Dissipation PO mW 250 250 Lead Solder Temperature 260C for 10 sec., 1.6 mm below seating plane Solder Reflow Temperature Profile See Package Outline Drawings section Note 1 2 3 Notes: 1. Maximum pulse width = 10 s, maximum duty cycle = 0.2%. See HCPL-3120 Applications section for additional details on limiting IOH(PEAK). 2. Derate linearly above 70C free-air temperature at a rate of 0.3 mA/C. 3. Derate lineraly above 70C free-air temperature at a rate of 4.8 mW/C. Recommended Operating Conditions Parameter Power Supply Voltage Input Current (ON) Input Voltage (OFF) Symbol Min. VCC - VEE 15 IF(ON) 7 VF(OFF)-3.6 Max. 30 16 0.8 Units V mA V DC Electrical Specifications (Compared with HCPL-3120) Over recommended operating conditions (IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specified. HCPL-3120 HCPL-T250Test Parameter Symbol Units Min. Typ.* Max. Min. Typ.* Max. Conditions Input Forward VF V 1.2 1.5 1.8 1.6 1.8 IF = 10 mA Voltage Temperature VF /TA mV/C-1.6-2.0 IF = 10 mA Coefficient of Forward Voltage Input Reverse IR A 10 10 VR = 5 V Current Input Capacitance CIN pF 60 60 250 VF = 0 V, F = 1 MHz High Level IOH A 0.5 1.5 0.5 1.5 VO = VCC - 4 V Output Current 2.0 N.A. VO = VCC - 15 V Low Level IOL A 0.5 2.0 0.5 2.0 VO = VCC - 4 V Output Current 2.0 N.A. VO = VCC - 15 V High Level VOH V VCC - 4 VCC - 3 VCC - 4 VCC - 3 IO = -100 mA Output Voltage Low Level VOL V VEE +0.1 VEE +0.5 VEE +0.8 VEE +2.5 IO = 100 mA Output Voltage High Level ICCH mA 2.0 5 7 11 Output Open Supply CurrentntSupply Current IF = 7 to 16 mA Low Level ICCL mA 2.0 5 7.5 11 Output Open Supply Current VF = -3.0 to +0.8 V Threshold Input IFLH mA 2.3 5 1.2 5 IO = 0 mA, Current Low to VO > 5 V High Threshold Input VFHL V 0.8 0.8 Voltage High to Low Supply Voltage VCC V 15 30 15 30 Capacitance CI-0 pF 0.6 1.0 (Input-Output) Resistance RI-0 1012 1012 (Input-Output) *All typical values at TA = 25C and VCC - VEE = 3 V, unless otherwise noted. Note Switching Specifications (AC) (Compared with HCPL-3120) Over recommended operating conditions (TA = -40 to 100C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specified. HCPL-3120 HCPL-T250 (-40C ~ 100C) (-20C ~ 85C) Test Parameter Symbol Units Min. Typ.* Max. Min. Typ.* Max. Conditions Propagation Delay tPHL s 0.1 0.27 0.5 0.27 0.5 Time to High Output Level Propagation Delay Time to Low Output Level TPLH s 0.1 0.3 0.5 Output Rise Time tR s 0.1 N.A. Output Fall Time tF s 0.1 N.A. 0.3 0.5 Rg = 10 Cg = 10 nF, f = 10 kHz, Duty Cycle = 50% Pulse Width Distortion PWD s 0.3 N.A. Propagation Delay Difference Between Any Two Parts (tPHL - tPLH) PDD s-0.35 0.35 N.A. N.A. Note 4 Output High |CMH| kV/s 25 35 5 TA = 25C Level Common VCC = 30 V Mode Transient HCPL IF = 10 mA Immunity-3120 VCM = 1500 V HCPL IF = 10 mA -T250 VCM = 600 V 5 Output Low |CML| kV/s 25 35 5 TA = 25C Level Common VF = 0 V Mode Transient HCPL Immunity-3120 VCM = 1500 V HCPL -T250 VCM = 600 V 5 *All typical values at TA = 25C and VCC - VEE = 30 V, unless otherwise noted. Notes: 4. The difference between tPHL and tPLH between any two HCPL-3120 parts under the same test condition. 5. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15.0 V). 6. Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the out put will remain in a low state (i.e., VO < 1.0 V). For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright (c) 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2144EN AV02-0166EN - October 16, 2007