Description
Flat Top Package
The HSDL-4400 Series of flat top IR emitters uses an
untinted, nondiffused, truncated lens to provide a
wide radiation pattern that is useful for short distance
communication where alignment of the emitter and
detector is not critical. The HSDL-5400 Series of flat
top IR detectors uses the same truncated lens design
as the HSDL-4400 Series of IR emitters with the
added feature of a black tint that acts as an optical
filter to reduce the effects of ambient light, such as
sun, incandescent and fluorescent light from
interfering with the IR signal.
Dome Package
The HSDL-4420 Series of dome IR emitters uses an
untinted, nondiffused lens to provide a 24 degree
viewing angle with high on-axis intensity. The
HSDL-5420 Series of IR detectors uses the same lens
design as the HSDL-4420 IR emitter and optical filter
used in the HSDL-5400 IR detector.
Lead Configuration
All of these devices are made by encapsulating LED
and PIN photodiode chips on axial lead frames to
form molded epoxy subminiature packages. A variety
of lead configurations is available and includes:
surface mount gull wing, yoke lead, or Z-bend and
through hole lead bends at 2.54 mm (0.100 inch)
center spacing.
Technology
The subminiature solid state emitters utilize a highly
optimized LED material, transparent substrate
aluminum gallium arsenide, TS AlGaAs. This material
has a very high radiant efficiency, capable of pro-
ducing high light output over a wide range of drive
currents and temperature.
Features
Subminiature flat top and dome package
Size – 2x2 mm
IR emitter
875 nm TS AlGaAs
Intensity – 17 mW/sr
Speed – 40 ns
Wide range of drive currents
500 µA to 500 mA
IR detector
PIN photodiode
High sensitivity
Speed – 7.5 ns
Flexible lead configurations
Surface mount or through hole
Applications
Short distance IR links
IrDA compatible
Small handheld devices
Pagers
Industrial handhelds
Diffuse LANs
Wireless audio
HSDL-44xx IR Emitter Series
HSDL-54xx IR Detector Series
High-Performance IR Emitter and IR PIN Photodiode in
Subminiature SMT Package
Data Sheet
2
Device Selection Guide
IR Emitters
Part Number Device Description[1] Device Outline Drawing
HSDL-4400 LED, Flat Top, 110 deg A
HSDL-4420 LED, Dome, 24 deg B
IR Detectors
Part Number Device Description[1] Device Outline Drawing
HSDL-5400 PIN Photodiode, Flat Top, 110 deg C
HSDL-5420 PIN Photodiode, Dome, 28 deg D
Package Configuration Options
Option Package
Code Package Configuration Description Outline Drawing
011 Gull Wing Lead, Tape and Reel[2] E, J, M
021 Yoke Lead, Tape and Reel[2] Surface Mount Lead F, K, M
031 Z-Bend, Tape and Reel[2] G, L, M
1L1 2.54 mm (0.100 in) Center Long Leads; 10.4 mm (0.410 in) Thru Hole Lead H
1S1 Lead Spacing Short Leads; 3.7 mm (0.145 in) I
No Option Straight Leads[3] Prototyping A, B, C, D
Notes:
1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units per reel. Minimum order quantity
and order increment are in quantity of reels only.
3. Emitters and detectors are supplied in bulk form in bags of 50 units.
4. The HSDL-44xx and HSDL-54xx families are not designed to be used in medical devices with life support functions or in safety equipment (or similar
applications where components failures would result in loss of life or physical harm), eg. in automotive, medical or airline industries.
3
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE
LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.
4. CATHODE STRIPE MARKING IS DARK BLUE.
Package Dimensions
(A) Flat Top Emitters
(B) Dome Emitters
1.14
1.40
(0.045)
(0.055) 0.58
0.43
(0.023)
(0.017)
1.91
2.16
(0.075)
(0.085)
0.18
0.23
(0.007)
(0.009)
0.76 (0.030) MAX.
1.91
2.41
(0.075)
(0.095)
2.08
2.34
(0.082)
(0.092)
CATHODE
STRIPE
NOTE 4
0.46
0.56
(0.018)
(0.022)
1.40
1.65
(0.055)
(0.065)
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF. NOTE 3
ANODE
1.65
1.91
(0.065)
(0.075) DIA.
CATHODE
11.68
10.67
(0.460)
(0.420)
BOTH SIDES
NOTE 2
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF. NOTE 3
ANODE
1.65
1.91
(0.065)
(0.075) DIA.
CATHODE 0.46
0.56
(0.018)
(0.022)
NOTE 2
11.68
10.67
(0.460)
(0.420)
BOTH SIDES
0.94
1.24
(0.037)
(0.049)
2.08
2.34
(0.082)
(0.092)
CATHODE
STRIPE
NOTE 4
2.92 (0.115)
MAX.
0.76
0.89
(0.030)
(0.035)R.
0.63
0.38
(0.025)
(0.015)
0.18
0.23
(0.007)
(0.009)
1.91
2.16
(0.075)
(0.085)
2.03 (0.080)
1.78 (0.070)
0.79 (0.031)
0.53 (0.021)
4
(D) Dome Detectors
(C) Flat Top Detectors
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
3. CATHODE STRIPE MARKING IS DARK BLUE.
1.14
1.40
(0.045)
(0.055) 0.58
0.43
(0.023)
(0.017)
1.91
2.16
(0.075)
(0.085)
0.18
0.23
(0.007)
(0.009)
0.76 (0.030) MAX.
1.91
2.41
(0.075)
(0.095)
2.08
2.34
(0.082)
(0.092)
CATHODE
STRIPE
NOTE 3
0.46
0.56
(0.018)
(0.022)
1.40
1.65
(0.055)
(0.065)
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF.
CATHODE
1.65
1.91
(0.065)
(0.075) DIA.
ANODE
11.68
10.67
(0.460)
(0.420)
BOTH SIDES
NOTE 2
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF.
CATHODE
1.65
1.91
(0.065)
(0.075) DIA.
ANODE 0.46
0.56
(0.018)
(0.022)
NOTE 2
11.68
10.67
(0.460)
(0.420)
BOTH SIDES
0.94
1.24
(0.037)
(0.049)
2.08
2.34
(0.082)
(0.092)
CATHODE
STRIPE
NOTE 3
2.92 (0.115)
MAX.
0.76
0.89
(0.030)
(0.035)R.
0.63
0.38
(0.025)
(0.015)
0.18
0.23
(0.007)
(0.009)
1.91
2.16
(0.075)
(0.085)
2.03 (0.080)
1.78 (0.070)
0.79 (0.031)
0.53 (0.021)
5
0.76 (0.030)
MAX.
(F) Yoke Lead, Options 021
0.76 (0.030) MAX.
Package Dimensions
The following notes affect the
package outline drawings E
through I.
1. The pinout represents the
HSDL-54xx IR detectors
where the protruding support
tab is closest to the anode
lead. While the pinout is
reversed for the HSDL-44xx
IR emitters where the pro-
truding support tab is closest
to the cathode lead.
2. The protruding support tab of
the HSDL-54xx is connected
to the cathode lead. While the
protruding support tab of the
HSDL-44xx is connected to
the anode lead.
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
(E) Gull Wing Lead, Option 011
6
(G) Z-Bend Lead, Options 031
0.76 (0.030) MAX.
(H) Thru Hole Lead Option 1L1
(I) Thru Hole Lead Option 1S1
7
Package Dimensions: Surface Mount Tape and Reel Options
(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011
GULL WING LEAD
SUBMINIATURE PACKAGE
NOTES:
1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. 7 INCH REEL – 1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE.
8
(K) 12 mm Tape and Reel, Yoke Lead, Option 021
“YOKE” LEAD
SUBMINIATURE PACKAGE
9
(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031
Z-BEND LEAD
SUBMINIATURE PACKAGE
10
(M) 12 mm Tape and Reel
Convective IR Reflow Soldering
For information on IR reflow
soldering, refer to Application
Note 1060, Surface Mounting
SMT LED Components.
11
HSDL-44xx Absolute Maximum Ratings
Parameter Symbol Min. Max. Unit Ref.
Peak Forward Current (Duty Factor = 20%, IFPK 500 mA Fig. 7, 8
Pulse Width = 100 µs)
DC Forward Current IFDC 100 mA Fig. 6
Power Dissipation PDISS 100 mW
Reverse Voltage (IR = 100 µA) VR5V
Transient Forward Current (10 µs Pulse) IFTR 1.0 A [1]
Operating Temperature TO-40 85 °C
Storage Temperature TS-55 100 °C
Junction Temperature TJ110 °C
Lead Solder Temperature 260/5 s °C
[1.6 mm (0.063 in.) from body]
Reflow Soldering Temperatures
Convection IR 235/90 s °C Fig. 20
Vapor Phase 215/180 s °C
Note:
1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds.
HSDL-44xx Electrical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Forward Voltage VF1.30 1.50 1.70 V IFDC = 50 mA Fig. 2
2.15 IFPK = 250 mA
Forward Voltage VF/T -2.1 mV/°CI
FDC = 50 mA Fig. 3
Temperature Coefficient -2.1 IFDC = 100 mA
Series Resistance RS2IFDC = 100 mA
Diode Capacitance CO50 pF 0 V, 1 MHz
Reverse Voltage VR520 V I
R = 100 µA
Thermal Resistance, Rqjp 170 °C/W
Junction to Pin
12
HSDL-44XX Optical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Radiant On-Axis Intensity
HSDL-4400 IE1 3 8 mW/sr IFDC = 50 mA Fig. 4, 5
6I
FDC = 100 mA
15 IFPK = 250 mA
HSDL-4420 IE9 17 30 mW/sr IFDC = 50 mA Fig. 4, 5
32 IFDC = 100 mA
85 IFPK = 250 mA
Radiant On-Axis Intensity IE/T -0.35 %/°CI
FDC = 50 mA
Temperature Coefficient -0.35 IFDC = 100 mA
Viewing Angle
HSDL-4400 2q1/2 110 deg IFDC = 50 mA Fig. 9
HSDL-4420 2q1/2 24 deg IFDC = 50 mA Fig. 10
Peak Wavelength lPK 850 875 900 nm IFDC = 50 mA Fig. 1
Peak Wavelength l/T 0.25 nm/°CI
FDC = 50 mA
Temperature Coefficient
Spectral Width at FWHM l37 nm IFDC = 50 mA Fig. 1
Optical Rise and Fall tr/tf40 ns IFPK = 50 mA
Times, 10%-90%
Bandwidth fc9MHzI
FDC = 50 mA Fig. 11
± 10 mA
13
HSDL-54xx Absolute Maximum Ratings
Parameter Symbol Min. Max. Unit
Power Dissipation PDISS 150 mW
Reverse Voltage (IR = 100 µA) VR40 V
Operating Temperature TO-40 85 °C
Storage Temperature TS-55 100 °C
Junction Temperature TJ110 °C
Lead Solder Temperature [1.6 mm (0.063 in.) from body] 260/5 s °C
Reflow Soldering Temperatures
Convection IR 235/90 s °C
Vapor Phase 215/180 s °C
HSDL-54xx Electrical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Forward Voltage VF0.8 V IFDC = 1 mA
Breakdown Voltage VBR 40 V IR = 100 µA,
Ee = 0 mW/cm2
Reverse Dark Current ID15 nAV
R = 5 V, Fig. 12
Ee = 0 mW/cm2
Series Resistance RS2000 VR = 5 V,
Ee = 0 mW/cm2
Diode Capacitance CO5pFV
R = 0 V, Fig. 16
Ee = 0 mW/cm2
f = 1 MHz
Open Circuit Voltage VOC 375 mV Ee = 1 mW/cm2
lPK = 875 nm
Temperature Coefficient of VOC VOC/T -2.2 mV/K Ee = 1 mW/cm2
lPK = 875 nm
Short Circuit Current ISC Ee = 1 mW/cm2
HSDL-5400 1.6 µAlPK = 875 nm
HSDL-5420 4.3 µA
Temperature Coefficient of ISC ISC/T 0.16 %/K Ee = 1 mW/cm2
lPK = 875 nm
Thermal Resistance, Rqjp 170 °C/W
Junction to Pin
14
HSDL-54xx Optical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Photocurrent Ee = 1 mW/cm2Fig 14,
HSDL-5400 IPH 0.8 1.6 µAlPK = 875 nm 15
HSDL-5420 3.0 6.0 VR = 5 V
Temperature Coefficient of IPH IPH/T 0.1 %/K Ee = 1 mW/cm2Fig. 13
lPK = 875 nm
VR = 5 V
Radiant Sensitive Area A 0.15 mm2
Absolute Spectral Sensitivity S 0.5 A/W Ee = 1 mW/cm2
lPK = 875 nm
VR = 5 V
Viewing Angle
HSDL-5400 2q1/2 110 deg Fig. 18
HSDL-5420 28 Fig. 19
Wavelength of Peak Sensitivity lPK 875 nm Ee = 1 mW/cm2Fig. 17
VR = 5 V
Spectral Bandwidth l770- nm Ee = 1 mW/cm2Fig. 17
1000 VR = 5 V
Quantum Efficiency h70 % Ee = 1 mW/cm2
lPK = 875 nm,
VR = 5 V
Noise Equivalent Power NEP 6.2 x W/Hz1/2 VR = 5 V
10-15 lPK = 875 nm
Detectivity D 6.3 x cm* VR = 5 V
1012 Hz1/2/W lPK = 875 nm
Optical Rise and Fall Times, 10%-90% tr/tf7.5 ns VR = 5 V
RL = 1 k
lPK = 875 nm
Bandwidth fc50 MHz VR = 5 V
RL = 1 k
lPK = 875 nm
15
RELATIVE RADIANT INTENSITY
850 950
0
λ WAVELENGTH nm
900800
0.5
1.0
1.5
T
A
= 25 °C
I
FDC
= 50 mA
IFPK PEAK FORWARD CURRENT mA
1.0
1,000
1
VF FORWARD VOLTAGE V
1.5 2.0 2.5 3.00.50
10
100 TA = 25 °C
Figure 3. Forward voltage vs. ambient
temperature.
Figure 5. Normalized radiant intensity vs.
peak forward current (0 to 10 mA).
NORMALIZED RADIANT INTENSITY
0 500
5.00
0
I
FPK
PEAK FORWARD CURRENT mA
4.00
0.50
400
PULSE WIDTHS < 100 µs
100
2.50
200 300
1.00
1.50
2.00
3.00
3.50
4.50
T
A
= 25°C
NORMALIZED RADIANT INTENSITY
0.1 10
1.00
0.01
I
FPK
FORWARD CURRENT mA
0.10
1
T
A
= 25°C
IFDC MAXIMUM DC FORWARD CURRENT mA
-40 100
120
0
TA AMBIENT TEMPERATURE °C
60
-20
100
80
40
20
0 20406080
Rθja = 220 °C/W
Rθja = 270 °C/W
Rθja = 370 °C/W
IFPK PEAK FORWARD CURRENT mA
0.01 10
0
tPW PULSE WIDTH ms
300
500
400
200
100
0.1 1
DUTY FACTOR
7 %
10 %
20 %
50 %
I
FPK
PEAK FORWARD CURRENT mA
-40 100
600
0
T
A
AMBIENT TEMPERATURE °C
300
-20
500
400
200
100
0 20406080
PULSE WIDTHS < 100 µs
DUTY FACTOR
10 %
20 %
50 % 20 %
50 %
10 %
Figure 8. Maximum peak forward current vs.
ambient temperature. Derated based on
TJMAX = 110°C.
V
F
FORWARD VOLTAGE V
2.0
1.0
T
A
AMBIENT TEMPERATURE °C
-20
1.2
0 20406080
I
FDC
= 1 mA
1.8
1.6
1.4
I
FDC
= 50 mA
I
FDC
= 100 mA
Figure 1. Relative radiant intensity vs.
wavelength.
Figure 2. Peak forward current vs. forward
voltage.
Figure 4. Normalized radiant intensity vs.
peak forward current.
Figure 6. Maximum DC forward current vs.
ambient temperature. Derated based on
TJMAX = 110°C.
Figure 7. Maximum peak forward current vs.
duty factor.
16
Figure 12. Reverse dark current vs. ambient
temperature.
Figure 13. Relative reverse light current vs.
ambient temperature.
Figure 10. Relative radiant intensity vs. angular displacement HSDL-4420.
RELATIVE RADIANT INTENSITY
1.0
0
θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-100°
0.1
0.3
0.4
-80°-60°-40°-20°0°20°40°60°80°100°
0.9 IF = 50 mA
TA = 25°C
Figure 9. Relative radiant intensity vs. angular displacement HSDL-4400.
RELATIVE RADIANT INTENSITY
1.0
0
θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-50°
0.1
0.3
0.4
-40°-30°-20°-10°0°10°20°30°40°50°
0.9
I
F
= 50 mA
T
A
= 25°C
Figure 11. Relative radiant intensity vs.
frequency.
RELATIVE RADIANT INTENSITY
1E+5 1E+8
2
-10
f FREQUENCY Hz
-4
1E+6 1E+7
-7
-1
1
0
-2
-3
-5
-6
-8
-9
T
A
= 25°C
9 MHz
ID REVERSE DARK CURRENT nA
0 100
10.000
0.001
TA AMBIENT TEMPERATURE °C
0.100
80
VR = 5 V
20 40 60
0.010
1.000
NORMALIZED PHOTOCURRENT
-40 100
1.40
0.60
T
A
AMBIENT TEMPERATURE °C
1.00
80-20 20 40
0.80
1.20
1.30
1.10
0.90
0.70
060
V
R
= 5 V
17
NORMALIZED PHOTOCURRENT
0.01 10
10
0.01
E
e
IRRADIANCE mW/cm2
0.1
0.1
1
1
V
R
= 5 V
T
A
= 25°C
NORMALIZED PHOTOCURRENT
040
1.40
0.60
VR REVERSE VOLTAGE V
1.00
3552025
0.80
1.20
1.30
1.10
0.90
0.70
10 30
15
TA = 25°C
C
O
DIODE CAPACITANCE pF
0.1 100
5
0
V
R
REVERSE VOLTAGE V
4
3
2
1
101
E
e
= 0 mW/cm
2
f = 1 MHz
T
A
= 25°C
Figure 14. Reverse light current vs. irradiance Figure 15. Reverse light current vs. reverse
voltage.
Figure 16. Diode capacitance vs. reverse
voltage.
At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are
regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization
(CENELEC) EN60825-1. Please refer to Application Brief I-008 for more information.
Figure 17. Relative spectral sensitivity vs.
wavelength.
NORMALIZED PHOTOCURRENT
700 1100
1.2
0
λ WAVELENGTH nm
0.6
1050750 900 950
0.4
1.0
0.8
0.2
800 1000
850
V
R
= 5 V
T
A
= 25°C
Figure 19. Relative radiant intensity vs. angular displacement.
HSDL-5420.
NORMALIZED PHOTOCURRENT
1.0
0
θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-50°
0.1
0.3
0.4
-40°-30°-20°-10°0°10°20°30°40°50°
0.9
NORMALIZED PHOTOCURRENT
1.0
0
θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-100°
0.1
0.3
0.4
-80°-60°-40°-20°0°20°40°60°80°100°
0.9 V
R
= 5 V
T
A
= 25°C
Figure 18. Relative radiant intensity vs. angular displacement.
HSDL-5400.
18
Figure 20. Evaluation soldering profiles (polyled).
Process Zone Symbol DT Maximum DT/Dtime
Heat Up P1, R1 25°C to 160°C4°C/s
Solder Paste Dry P2, R2 160°C to 200°C 0.5°C/s
Solder Reflow P3, R3 200°C to 255°C (260°C at 10 seconds max) 4°C/s
P3, R4 255°C to 200°C-6°C/s
Cool Down P4, R5 200°C to 25°C-6°C/s
0
t-TIME (SECONDS)
T TEMPERATURE (°C)
230
200
160
120
80
50 150100 200 250 300
180
220
255
P1
HEAT
UP
P2
SOLDER PASTE DRY
P3
SOLDER
REFLOW
P4
COOL
DOWN
25
R1
R2
R3 R4
R5
60 sec.
MAX.
ABOVE
220°C
MAX. 260°C
For company and product information, please go to our web site: WWW.liteon.com or
http://optodatabook.liteon.com/databook/databook.aspx
Data subject to change. Copyright © 2007 Lite-On Technology Corporation. All rights reserved.