TAS5028
8 Channel Digital Audio PWM Processor
2004 DAV-Digital Audio/Speaker
Data M anual
SLES112
TM
Contents
iii
May 2004 SLES112
Contents
Section Page
1 Introduction 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 TAS5028 System Diagrams 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 TAS5028 Features 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1 Audio Input/Output 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.2 Audio Processing 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.3 PWM Processing 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.4 General Features 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Physical Characteristics 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1 Terminal Assignments 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2 Ordering Information 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.3 Terminal Descriptions 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 TAS5028 Functional Description 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.1 Power Supply 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.2 Clock, PLL, and Serial Data Interface 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.3 I2C Serial Control Interface 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.4 Device Control 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.5 Digital Audio Processor (DAP) 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 TAS5028 DAP Architecture 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5.1 TAS5028 DAP Architecture Diagrams 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5.2 I2C Coefficient Number Formats 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Input Crossbar Mixer 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Bass and Treble Controls 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8 Volume, Auto Mute, and Mute 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8.1 Auto Mute and Mute 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9 Output Mixer 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10 PWM 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.1 DC Blocking (High-Pass Enable / Disable) 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.2 De-Emphasis Filter 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.3 AM Interference Avoidance 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 TAS5028 Controls and Status 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 I2C Status Registers 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 General Status Register (0x01) 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Error Status Register (0x02) 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 TAS5028 Pin Controls 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Reset (RESET) 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Power Down (PDN) 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Backend Error (BKND_ERR) 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4 Speaker/Headphone Selector (HP_SEL) 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5 Mute (MUTE) 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Device Configuration Controls 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Channel Configuration Registers 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Headphone Configuration Registers 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3 Audio System Configurations 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.4 Recovery from Clock Error 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.5 Volume and Mute Update Rate 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.6 Modulation Index Limit 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents
iv May 2004SLES112
2.3.7 Inter-channel Delay 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Master Clock and Serial Data Rate Controls 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 PLL Operation 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Bank Controls 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Manual Bank Selection 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2 Automatic Bank Selection 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3 Bank Set 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.4 Bank Switch Timeline 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.5 Bank Switching Example 1 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.6 Bank Switching Example 2 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Electrical Specifications 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Dynamic Performance (At Recommended Operating Conditions at 25°C) 35 . . . . . . . . . . . . . . . . . . . .
3.3 Recommended Operating Conditions (Over 0°C to 70°C) 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Electrical Characteristics Over Recommended Operating Conditions 36 . . . . . . . . . . . . . . . . . . . . . . . .
3.5 PWM Operation at Recommended Operating Conditions Over 0°C to 70°C 36 . . . . . . . . . . . . . . . . . . .
3.6 Switching Characteristics 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1 Clock Signals Over Recommended Operating Conditions 36 . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.2 Serial Audio Port 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.3 I2C Serial Control Port Operation 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.4 Reset Timing (RESET) 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.5 Power-Down (PDN) Timing 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.6 Backend Error (BKND_ERR) 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.7 MUTE Timing—MUTE 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.8 Headphone Select (HP_SEL) 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.9 Volume Control 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Serial Audio Interface Control and Timing 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1 I2S Timing 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2 Left Justified 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.3 Right Justified 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 I2C Serial Control Interface (Slave Address 0x36) 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 General I2C Operation 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Single and Multiple Byte Transfers 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Single Byte Write 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Multiple Byte Write 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Incremental Multiple Byte Write 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 Single Byte Read 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Multiple Byte Read 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Serial Control I2C Register Summary 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Serial Control Interface Register Definitions 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Clock Control Register (0x00) 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 General Status Register 0 (0x01) 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Error Status Register (0x02) 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 System Control Register 1 (0x03) 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 System Control Register 2 (0x04) 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6 Channel Configuration Control Register (0x05-X0C) 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7 Headphone Configuration Control Register (0x0D) 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8 Serial Data Interface Control Register (0x0E) 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.9 Soft Mute Register (0x0F) 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Illustrations
v
May 2004 SLES112
6.10 Automute Control Register(0x14) 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11 Automute PWM Threshold and Backend Reset Period (0x15) 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.12 Modulation Index Limit Register (0x16) 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13 Interchannel Channel Delay Registers (0x1B - 0x22) and Offset Register (0x23) 58 . . . . . . . . . . . . . .
6.14 Bank Switching Command (0x40) 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.15 Input Mixer Registers (0x41 – 0x48, Channels 1 - 8) 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.16 Bass and Treble Bypass Register (0x89 – 0x90, Channels 1 - 8) 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17 8x2 Output Mixer Registers (0xAA – 0xAF) 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.18 8x3 Output Mixer Registers (0xB0 – 0xB1) 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.19 Volume Treble and Bass Slew Rates (0xD0) 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.20 Volume Registers (0xD1 - 0xD9) 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.21 Bass Filter Set Register (0xDA) 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.22 Bass Filter Index Register (0xDB) 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.23 Treble Filter Set Register (0xDC) 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.24 Treble Filter Index (0xDD) 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.25 AM Mode Register (0xDE) 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.26 General Control Register (0xE0) 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.27 Incremental Multiple Write Append Register (0xFE) 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 TAS5028 Example Application Schematic 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Illustrations
Figure Title Page
1-1 TAS5028 Functional Structure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-2 Typical TAS5028 Application (DVD Receiver) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-3 Recommended TAS5028 + TAS5121 Channel Configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-4 TAS5028 DAP Architecture With I2C Registers (Fs 96 kHz) 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-5 TAS5028 Architecture With I2C Registers (Fs = 176.4 kHz or Fs = 192 kHz) 13 . . . . . . . . . . . . . . . . . . . . . . .
1-6 TAS5028 Detailed Channel Processing 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-7 5.23 Format 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-8 Conversion Weighting Factors—5.23 Format to Floating Point 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-9 Alignment of 5.23 Coefficient in 32-Bit I2C Word 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-10 25.23 Format 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-11 Alignment of 523 Coefficient in 32-Bit I2C Word 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-12 Alignment of 2523 Coefficient in Two 32-Bit I2C Words 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-13 TAS5028 Digital Audio Processing 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-14 Input Crossbar Mixer 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-15 Auto Mute Threshold 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-16 Output Mixers 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-17 De-emphasis Filter Characteristics 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-18 Block Diagrams of Typical Systems Requiring TAS5028 Automatic AM Interference Avoidance Circuit 23
3-1 Slave Mode Serial Data Interface Timing 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2 SCL and SDA Timing 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3 Start and Stop Conditions Timing 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-4 Reset Timing 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
vi May 2004SLES112
3-5 Power-Down Timing 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-6 Error Recovery Timing 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7 Mute Timing 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8 HP_SEL Timing 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9 I2S Format 64 Fs Format 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10 Left Justified 64 Fs Format 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11 Right Justified 64 Fs Format 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1 Typical I2C Sequence 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2 Single Byte Write Transfer 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-3 Multiple Byte Write Transfer 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-4 Single Byte Read Transfer 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-5 Multiple Byte Read Transfer 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
Table Title Page
1-1 Serial Data Formats 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-2 TAS5028 Audio Processing Feature Sets 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-3 Bass and Treble Filter Selections 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-4 Linear Gain Step Size 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1 Device Outputs During Reset 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2 Values Set During Reset 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3 Device Outputs During Power Down 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4 Device Outputs During Backend Error 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-5 Description of the Channel Configuration Registers (0x05 to 0x0C) 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-6 Recommended TAS5028 Configurations for Texas Instruments Power Stages 29 . . . . . . . . . . . . . . . . . . . . . .
2-7 Audio System Configuration (General Control Register 0xE0) 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-8 Volume Ramp Rates in ms 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-9 Inter-Channel Delay Default Values 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-1 Clock Control Register 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-2 General Status Register (0x01) 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-3 Error Status Register (0X02) 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-4 System Control Register 1 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-5 System Control Register 2 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-6 Channel Configuration Control Registers 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-7 Headphone Configuration Control Register 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-8 Serial Data Interface Control Register Format 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-9 Soft Mute Register 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-10 Automute Control Register 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-11 Automute PWM Threshold and Backend Reset Period 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-12 Modulation Index Limit Register 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-13 Interchannel Channel Delay Registers 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-14 Channel Offset Register 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-15 Bank Switching Command 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-16 Input Mixer Registers Format (0x41 – 0x48, Channels 1 - 8) 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-17 Bass and Treble Bypass Register Format (0x89-0x90) 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-18 Output Mixer Control Register Format (Upper 4 Bytes) 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
vii
May 2004 SLES112
6-19 Output Mixer Control (Lower 4 Bytes) 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-20 Output Mixer Control (Upper 4 Bytes) 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-21 Output Mixer Control (Middle 4 Bytes) 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-22 Output Mixer Control (Lower 4 Bytes) 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-23 Volume Gain Update Rate (Slew Rate) 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-24 Treble and Bass Gain Step Size (Slew Rate) 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-25 Volume Registers 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-26 Master and Individual Volume Controls 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-27 Channel 8 Sub Woofer 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-28 Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration Right and
Left Surround in Eight Channel Configuration) 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-29 Channel 4 and 3 (Right and Left Rear) 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-30 Channel 7, 2, 1 (Center, Right Front, and Left Front) 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-31 Bass Filter Index Register 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-32 Bass Filter Index 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-33 Channel 8 Sub Woofer 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-34 Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration or Right
and Left Surround in Eight Channel Configuration) 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-35 Channel 4 and 3 (Right and Left Rear) 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-36 Channel 7, 2, 1 (Center, Right Front, and Left Front) 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-37 Treble Filter Index Register 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-38 Treble Filter Index 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-39 AM Mode Register 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-40 AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE) 71 . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-41 AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE) 71 . . . . . . . . . . . . . . . . . . . . . . . . . .
6-42 General Control Register 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
viii May 2004SLES112
Introduction
1
SLES112 — June 2004 TAS5028
1 Introduction
The TAS5028 is an eight channel digital pulse width modulator (PWM) that provides both advanced
performance and a high level of system integration. The TAS5028 is designed to interface seamlessly with
most audio digital signal processors. The TAS5028 automatically adjusts control configurations in response
to clock and data rate changes and idle conditions. This enables the TAS5028 to provide an easy to use control
interface with relaxed timing requirements.
The TAS5028 can drive eight channels of H-bridge power stages. Texas Instruments H-bridge parts TAS5111,
TAS5112, or TAS5182 + FETs are designed to work seamlessly with the TAS5028. The TAS5028 supports
both single-ended or bridge tied load configurations. The TAS5028 also provides a high performance
differential output to drive an external differential input analog headphone amplifier (such as the TPA112).
The TAS5028’s uses an AD modulation operating at a 384-kHz switching rate for 48-, 96-, and 192-kHz data.
The 8x oversampling combined with the 5th order noise shaper provides a broad flat noise floor and excellent
dynamic range from 20 Hz to 20 kHz.
The TAS5028 is clock slave only device. The TAS5028 receives MCLK, SCLK and LRCLK from other system
components. The TAS5028 accepts master clock rates of 128, 192, 256, 384, 512, and 768 Fs. The TAS5028
accepts a 64-Fs bit clock.
PWM_HPP& MR
PWM_HPP & ML
MCLK
XTL_ OUT
XTL_ IN
PLL_FLTM
PLL_FLTP
OSC CAP
SCLK
LRCLK
SDIN1
SDIN2
SDIN3
SDIN4
SDA
SCL
VR_PLL
AVDD_PLL
AVSS_PLL
AVDD_REF
VBGAP
VRA_PLL
VRD_PLL
DVDD
DVSS
AVDD
AVSS
PWM Section
Serial
Cntrl
IF
PWM AP& Am7 Center
PWM AP& AM4 R Sur
PWM AP& AM3 L Sur
PWM AP& AM8 Sub woofer
PWM AP& AM1 L
PWM AP& AM2 R
Clock, PLL, &
Serial Data I/F
PWM AP& AM5 L Back Sur
PWM L Line Out
PWM AP& AM6 R Back Sur
PWM R Line Out
8 x 2 Crossbar Mixer
Soft
Tone
Soft
Tone
Soft
Tone
Soft
Tone
Soft
Tone
Soft
Tone
Soft
Tone
Soft
Tone
8 x 8 Crossbar Mixer
Digital Audio Processor
VALID
System Control
DAP Control
PWM Control
Control
Output Control
8 4 8
0
Det
0
Det
0
Det
0
Det
0
Det
0
Det
0
Det
0
Det
88
9
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
PWM
De
Emph Interpo
late NSSRC
DC
Block
Volume
Control
Power Supply
Soft
Vol
Soft
Vol
Soft
Vol
Soft
Vol
Soft
Vol
Soft
Vol
Soft
Vol
Soft
Vol
8
RESET
PDN
MUTE
HP_SEL
BKND_ERR
Figure 1-1. TAS5028 Functional Structure
Introduction
2SLES112 — June 2004TAS5028
1.1 TAS5028 System Diagrams
Typical applications for the TAS5028 are 6- to 8-channel audio systems such as DVD receiver or AV receiver .
Figure 1-2 shows the basic system diagram of the DVD receiver.
DVD Loader
Power Supply
AM
FM
Tuner
Texas Instruments
Digital Audio Amplifier
MPEG Decoder
Front-Panel Controls
TAS5028
Figure 1-2. Typical TAS5028 Application (DVD Receiver)
Figure 1-3 sh o w s t h e r e commended channel configuration when using the TAS5028 with the TAS5121 power
stage. Note that each channel is normally dedicated to a particular function.
TAS5121
+-
TAS5121
+-
TAS5121
+-
TAS5121
+-
TAS5121
+-
TAS5121
+-
TAS5121
+-
TAS5121
+-
PWM_M_1
PWM_P_1
PWM_M_2
PWM_P_2
PWM_M_3
PWM_P_3
PWM_M_4
PWM_P_4
PWM_M_7
PWM_P_7
PWM_M_8
PWM_P_8
PWM_M_5
PWM_P_5
PWM_M_6
PWM_P_6
LEFTRIGHT
LEFT
SURROUND
CENTER
SUBWOOFER RIGHT
SURROUND
LEFT BACK
SURROUND
RIGHT BACK
SURROUND
SDIN1,2,3,4
(8 chan. PCM)
Clocks
I2C Control
& Status
HW Control
& Status
PWM to Analog
(Line Level)
PWM to Analog
(Headphone
Level)
Headphone
Out Right
Headphone
Out Left
PWM_HPML
PWM_HPPL
PWM_HPMR
PWM_HPPR
PWM_M_5
PWM_P_5
PWM_M_6
PWM_P_6
Lineout Right
Lineout Left
TAS5028
Figure 1-3. Recommended TAS5028 + TAS5121 Channel Configuration
Introduction
3
SLES112 — June 2004 TAS5028
1.2 TAS5028 Features
1.2.1 Audio Input / Output
Automatic Master Clock Rate and Data Sample Rate Detection
Eight Serial Audio Input Channels
Eight PWM Audio Output Channels Configurable as Six Channels With Stereo Line Out or Eight Channels
Line Output is a PWM Output to Drive an External Differential Input Operational Amplifier
Headphone PWM Output to Drive an External Differential Amplifier Like the TPA112
PWM Outputs Support Single Ended and Bridge Tied Loads
32-, 38-, 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz Sampling Rates
Data Formats: 16-, 20-, or 24-bit input Data Left, Right and I2S,
64 x Fs Bit Clock Rate
128, 192, 256, 384, 512, and 768 x Fs Master Clock Rates (Up to a Maximum of 50 MHz)
1.2.2 Audio Processing
48-Bit Processing Architecture With 76 bits of Precision for Most Audio Processing Features
Volume Control Range +36 dB to – 127 dB
- Master Volume Control Range of +18 dB to –100 dB
- Eight Individual Channel Volume Control Range of +18-dB to -127-dB
Programmable Soft Volume and Mute Update Rates
Four Bass and Treble Tone Controls with ±18-dB Range, Selectable Corner Frequencies, and 2nd Order
Slopes
- L, R, and C
- LS, RS
- LR, RR
- Sub
Full 8x8 Input Crossbar Mixer. Each Signal Processing Channel Input Can Be Any Ratio of the Eight Input
Channels
8x2 Output Mixer – Channels 1-6. Each Output Can Be Any Ratio of Any Two Signal Processed Channels
8x3 Output mixer – Channels 7 and 8. Each Output can be Any Ratio of Any Three Signal Processed
Channels
Three Coefficient Sets Stored on the Device Can be Selected Manually or Automatically (Based on
Specific Data Rates)
DC Blocking Filters
Able to Support a Variety of Bass Management Algorithms
Introduction
4SLES112 — June 2004TAS5028
1.2.3 PWM Processing
32-Bit Processing PWM Architecture With 40 Bits of Precision
8x Oversampling With 5th Order Noise Shaping at 32 – 48 kHz, 4x Oversampling at 88.2 kHz, and 96 kHz
and 2x Oversampling at 176.4 kHz and 192 kHz
>102-dB Dynamic Range
THD+N < 0.1%
20 – 20-kHz Flat Noise Floor for 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz Data Rates
Digital De-emphasis for 32-, 44.1-, and 48-kHz Data Rates
Flexible Automute Logic With Programmable Threshold and Duration for Noise Free Operation
Intelligent AM Interference Avoidance System Provides Clear AM Reception
Adjustable Modulation Limit
1.2.4 General Features
Automated Operation With an Easy to Use Control Interface
I2C Serial Control Slave Interface
Integrated AM Interference Avoidance Circuitry
Single 3.3-V Power Supply
64-Pin TQFP Package
5-V Tolerant Inputs
Introduction
5
SLES112 — June 2004 TAS5028
1.3 Physical Characteristics
1.3.1 Terminal Assignments
17
VR_PWM
PWM_P_4
PWM_M_4
PWM_P_3
PWM_M_3
PWM_P_2
PWM_M_2
PWM_P_1
PWM_M_1
VALID
DVSS
BKND_ERR
DVDD
DVSS
DVSS
VR_DIG
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VRA_PLL
PLL_FLT_RET
PLL_FLTM
PLL_FLTP
AVSS
AVSS
VRD_PLL
AVSS_PLL
AVDD_PLL
VBGAP
RESET
HP_SEL
PDN
MUTE
DVDD
DVSS 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
TQFP PACKAGE
(TOP VIEW)
VR_DPLL
OSC_CAP
XTL_OUT
XTL_IN
RESERVED
RESERVED
RESERVED
SDA
SCL
LRCLK
SCLK
SDIN4
SDIN3
SDIN2
SDIN1
RESERVED
RESERVED
MCLK
PWM_HPPR
PWM_HPMR
PWM_HPPL
PWM_HPML
PWM_P_6
PWM_M_6
PWM_P_5
PWM_M_5
DVDD_PWM
DVSS_PWM
PWM_P_8
PWM_M_8
PWM_P_7
PWM_M_7
1.3.2 Ordering Information
TA PLASTIC 64-PIN PQFP (PN)
0°C to 70°C TAS5028PAG
1.3.3 Terminal Descriptions
TERMINAL
I/O
5-V TERMIN-
DESCRIPTION
NO. NAME I/O
5-V
TOLERANT
TERMIN-
ATION DESCRIPTION
1 VRA_PLL Voltage reference for PLL analog supply 1.8 V. A pin-out of the internally regulated
1.8-V power used by PLL logic. A 0.1-µF low ESR capacitor should be connected
between this terminal and AVSS_PLL. This terminal must not be used to power
external devices.
2 PLL_FLT_RET AO PLL external filter return
3 PLL_FLTM AO PLL negative input. Connected to PLL_FLT_RTN via an RC network
4 PLL_FLTP AI PLL positive input. Connected to PLL_FLT_RTN via an RC network
5 AVSS P Analog ground
6 AVSS P Analog ground
Introduction
6SLES112 — June 2004TAS5028
TERMINAL DESCRIPTION
TERMIN-
ATION
5-V
TOLERANT
I/O
NO. DESCRIPTION
TERMIN-
ATION
5-V
TOLERANT
I/O
NAME
7 VRD_PLL P Voltage reference for PLL digital supply 1.8 V. A pin-out of the internally regulated
1.8-V power used by PLL logic. A 0.1-µF low ESR capacitor should be connected
between this terminal and AVSS_PLL. This terminal must not be used to power
external devices.
8 AVSS_PLL P Analog ground for PLL. This terminal should reference the same ground as power
terminal DVSS, but to achieve low PLL jitter; ground noise at this terminal must be
minimized. The availability of the AVSS terminal allows a designer to use
optimizing techniques such as star ground connections, separate ground planes,
or other quiet ground distribution techniques to achieve a quiet ground reference
at this terminal.
9 AVDD_PLL P 3.3-V analog power supply for PLL This terminal can be connected to the same
power source used to drive power terminal DVSS, but to achieve low PLL jitter, this
terminal should be bypassed to AVSS_PLL with a 0.1-µF low-ESR capacitor.
10 VBGAP P Band gap voltage reference. A pin-out of the internally regulated 1.2-V reference.
Typically has a 1-nF low ESR capacitor between VBGAP and AVSS_PLL. This
terminal must not be used to power external devices.
11 RESET DI 5 V Pull up System reset input, active low. A system reset is generated by applying a logic low
to this terminal. RESET is an asynchronous control signal that restores the
TAS5028 to its default conditions, sets the valid output low, and places the PWM
in the hard mute (M) state. Master volume is immediately set to full attenuation.
Upon the release of RESET, if PDN is high, the system performs a 4-5 ms. device
initialization and set the volume at mute.
12 HP_SEL DI 5 V Pull up Headphone in/out selector. When a logic low is applied, the headphone is selected
(speakers are off). When a logic high is applied, speakers are selected –
headphone is off.
13 PDN DI 5 V Pull up Power down, active low. PDN powers down all logic and stops all clocks whenever
a logic low is applied. The internal parameters are preserved through a power down
cycle, as long as a RESET is not active. The duration for system recovery from
power down is 100 ms.
14 MUTE DI 5 V Pull up Soft mute of outputs, active low (Muted signal = a logic low, normal operation = a
logic high) The mute control provides a noiseless volume ramp to silence.
Releasing mute provides a noiseless ramp to previous volume.
15 DVDD P Digital power 3.3-V supply for digital core and most of I/O buffers
16 DVSS P Digital ground for digital core and most of I/O buffers
17 VR_DPLL P Voltage reference for digital PLL supply 1.8 V. A pin-out of the internally regulated
1.8-V power used by digital PLL logic. A 0.1 - µF low ESR capacitor should be
connected between this terminal and DVSS_CORE. This terminal must not be
used to power external devices.
18 OSC_CAP AO Oscillator capacitor
19 XTL_OUT AO XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They
provide a reference clock for the TAS5028 via use of an external fundamental mode
crystal. XTL_OUT is the 1.8-V output drive to the crystal. See Note 4 for the
recommended crystal type.
20 XTL_IN AI XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They
provide a reference clock for the TAS5028 via use of an external fundamental mode
crystal. XTL_IN is the 1.8-V input port for the oscillator circuit. See Note 4 for the
recommended crystal type.
21 RESERVED Connect to digital ground
22 RESERVED Connect to digital ground
23 RESERVED Connect to digital ground
24 SDA DIO 5 V I2C serial control data interface input / output
25 SCL DI 5 V I2C serial control clock input output
26 LRCLK DI 5 V Serial audio data left / right clock (sampling rate clock)
27 SCLK DI 5 V Serial audio data clock (shift clock) SCLKIN is the serial audio port (SAP) input data
bit clock that is supplied to the serial bit clock to other I2S bus.
Introduction
7
SLES112 — June 2004 TAS5028
TERMINAL DESCRIPTION
TERMIN-
ATION
5-V
TOLERANT
I/O
NO. DESCRIPTION
TERMIN-
ATION
5-V
TOLERANT
I/O
NAME
28 SDIN4 DI 5 V Pulldown Serial audio data 4 input is one of the serial data input ports. SDIN4 supports four
discrete (stereo) data formats and is capable of inputting data at 64 Fs.
29 SDIN3 DI 5 V Pulldown Serial audio data 3 input is one of the serial data input ports. SDIN3 supports four
discrete (stereo) data formats and is capable of inputting data at 64 Fs.
30 SDIN2 DI 5 V Pulldown Serial audio data 2 input is one of the serial data input ports. SDIN2 supports four
discrete (stereo) data formats and is capable of inputting data at 64 Fs.
31 SDIN1 DI 5 V Pulldown Serial audio data 1 input is one of the serial data input ports. SDIN1 supports four
discrete (stereo) data formats and is capable of inputting data at 64 Fs.
32 RESERVED O
33 VR_DIG P Voltage reference for digital core supply 1.8 V. A pin-out of the internally regulated
1.8-V power used by digital core logic. A 0.47-µF low ESR capacitor should be
connected between this terminal and DVSS. This terminal must not be used to
power external devices
34 DVSS P Digital ground
35 DVSS P Digital ground
36 DVDD P 3.3-V digital power supply
37 BKND_ERR DI Pull up Active low. A backend error sequence is generated by applying logic low to this
terminal. The BKND_ERR results in all system parameters unaffected, while all
H-bridge drive signals going to a hard mute (M) state.
38 DVSS P Digital ground
39 VALID DO Output indicating validity of PWM outputs active high
40 PWM_M_1 DO PWM 1 output (differential -)
41 PWM_P_1 DO PWM 1 output (differential +)
42 PWM_M_2 DO PWM 2 output (differential -)
43 PWM_P_2 DO PWM 2 output (differential +)
44 PWM_M_3 DO PWM 3 output (differential -)
45 PWM_P_3 DO PWM 3 output (differential +)
46 PWM_M_4 DO PWM 4 output (differential -)
47 PWM_P_4 DO PWM 4 output (differential +)
48 VR_PWM P Voltage reference for digital PWM core supply 1.8 V. A pin-out of the internally
regulated 1.8-V power used by digital PWM core logic. A 0.1-µF low ESR capacitor
should be connected between this terminal and DVSS_PWM. This terminal must
not be used to power external devices.
49 PWM_M_7 DO PWM 7 (Line out L) output (differential -)
50 PWM_P_7 DO PWM 7 (Line out L) output (differential +)
51 PWM_M_8 DO PWM 8 (Line out R) output (differential -)
52 PWM_P_8 DO PWM 8 (Line out R) output (differential +)
53 DVSS_PWM P Digital ground for PWM
54 DVDD_PWM P 3.3-V digital power supply for PWM
55 PWM_M_5 DO PWM 5 output (differential -)
56 PWM_P_5 DO PWM 5 output (differential +)
57 PWM_M_6 DO PWM 6 output (differential -)
58 PWM_P_6 DO PWM 6 output (differential +)
59 PWM_HPML DO PWM left channel headphone (differential -)
60 PWM_HPPL DO PWM left channel headphone (differential +)
61 PWM_HPMR DO PWM right channel headphone (differential -)
62 PWM_HPPR DO PWM right channel headphone (differential +)
Introduction
8SLES112 — June 2004TAS5028
TERMINAL DESCRIPTION
TERMIN-
ATION
5-V
TOLERANT
I/O
NO. DESCRIPTION
TERMIN-
ATION
5-V
TOLERANT
I/O
NAME
63 MCLK DI 5 V Pulldown MCLK is a 3.3-V clock master clock input. The input frequency of this clock can
range from 4 MHz to 50 MHz.
64 RESERVED Connect to digital ground
NOTES: 1. Type: A = analog; D = 3.3-V digital; P = power / ground / decoupling; I = input; O = output
2. All pullups are 200-µA weak pullups and all pulldowns are 200-µA weak pull downs. The pullups and pulldowns are included to assure
proper input logic levels if the terminals are left unconnected (pullups => logic 1 input; pulldowns => logic 0 input). Devices that drive
inputs with pull ups must be able to sink 200 µA, while maintaining a logic 0 drive level. Devices that drive inputs with pulldowns must
be able to source 200 µA, while maintaining a logic ‘1’ drive level.
3. If desired, low ESR capacitance values can be implemented by paralleling two or more ceramic capacitors of equal value. Paralleling
capacitors of equal value provide an extended high frequency supply decoupling. This approach avoids the potential of producing
parallel resonance circuits that have been observed when paralleling capacitors of different values.
4. 13.5-MHz crystal (HCM49)
1.4 TAS5028 Functional Description
Figure 1 - 4 shows the TAS5028 functional structure. The next sections describe the TAS5028 functional
blocks:
Power Supply
Clock, PLL, and Serial Data Interface
Serial Control Interface
Device Control
Digital Audio Processor (DAP)
Pulse Width Modulation (PWM) Processor
1.4.1 Power Supply
The power supply section contains supply regulators that provide analog and digital regulated power for
various sections of the TAS5028. The analog supply supports the analog PLL, while digital supplies support
the digital PLL, the digital audio processor (DAP), the pulse width modulator (PWM), and the output control
(reclocker). The regulators can also be turned off when terminals RESET and PDN are both low.
1.4.2 Clock, PLL, and Serial Data Interface
The TAS5028 is a clock slave only device and it requires the use of an external 13.5 MHz crystal. It accepts
MCLK, SCLK, and LRCLK as inputs only.
The TAS5028 uses the external crystal to provide a time base for:
Continuous data and clock error detection and management
Automatic data rate detection and configuration
Automatic MCLK rate detection and configuration (automatic bank switching)
Supporting I2C operation/ communication while MCLK is absent
The TAS5028 automatically handles clock errors, data rate changes, and master clock frequency changes
without requiring intervention from an external system controller. This feature significantly reduces system
complexity and design.
Introduction
9
SLES112 — June 2004 TAS5028
1.4.2.1 Serial Audio Interface
The TAS5028 operates as a slave only / receive only serial data interface in all modes. The TAS5028 has four
PCM serial data interfaces to permit eight channels of digital data to be received though the SDIN1, SDIN2,
SDIN3, and SDIN4 inputs. The serial audio data is in MSB first, two’ s complement format.
The serial data input interface of the TAS5028 can be configured in right justified, I2S, or left-justified modes.
The serial data interface format is specified using the I2C data interface control register. The supported formats
and word lengths are shown in Table 1-1.
Table 1-1. Serial Data Formats
RECEIVE SERIAL DATA
INTERFACE FORMAT WORD LENGTHS
Right justified 16
Right justified 20
Right justified 24
I2S 16
I2S 20
I2S 24
Left Justified 16
Left Justified 20
Left Justified 24
Serial data is input on SDIN1, SDIN2, SDIN3, and SDIN4. The TAS5028 accepts 32-, 38-, 44.1-, 48-, 88.2-,
96-, 176.4-, and 192-kHz serial data in 16-, 20-, or 24-bit data in left, right, and I2S serial data formats using
a 64-Fs SCLK clock and a 128, 192, 256, 384, 512, or 768 x Fs MCLK rates (up to a maximum of 50 MHz).
The parameters of this clock and serial data interface are I2C configurable.
1.4.3 I2C Serial Control Interface
The TAS5028 has an I2C serial control slave interface (address 0x36) to receive commands from a system
controller. The serial control interface supports both normal-speed (100 kHz) and high-speed (400 kHz)
operations without wait states. Since the TAS5028 has a crystal time base, this interface operates even when
MCLK is absent.
The serial control interface supports both single byte and multi-byte read / write operations for status registers
and the general control registers associated with the PWM. However, for the DAP data processing registers,
the serial control interface also supports multiple byte (4 byte) write operations.
The I2C supports a special mode which permits I2C write operations to be broken up into multiple data write
operations that are multiples of 4 data bytes. These are 6 byte, 10 byte, 14 byte, 18 byte ... etc write operations
that are composed of a device address, read/write bit, and subaddress and any multiple of 4 bytes of data.
This permits the system to incrementally write large register values without blocking other I2C transactions.
In order to use this feature, the first chunk of data is written to the target I2C address and each chunk of
subsequent data is written to a special append register (0xFE), until all the data is written and a stop bit is sent.
An incremental read operation is not supported.
1.4.4 Device Control
The TAS5028 control section provides the control and sequencing for the TAS5028. The device control
provides both high and low level control for the serial control interface, clock and serial data interfaces, digital
audio processor, and pulse width modulator sections.
1.4.5 Digital Audio Processor (DAP)
The DAP arithmetic unit is used to implement all audio processing functions – soft volume, bass and treble
processing, and input and output mixing. Figure 1-6 shows the TAS5028 DAP architecture.
Introduction
10 SLES112 — June 2004TAS5028
The DAP accepts 24-bit data signal from the serial data interface and outputs 32-bit data to the PWM section.
The DAP supports two configurations, one for 32-kHz – 96-kHz data and one for 176.4-kHz to 192-kHz data.
1.4.5.1 TAS5028 Audio Processing Configurations
The 32 - 96 kHz configuration supports eight channels of data processing that can be configured as eight
channels or six channels with two channels for separate stereo line outputs.
The 176.4 - 192 kHz configuration supports three channels of signal processing with five channels passed
though (or derived from the three processed channels).
To efficiently support the processing requirements of both multi-channel 32 – 96-kHz data and the two channel
176.4 and 192-kHz data, the TAS5028 supports separate audio processing features for 32 –96-kHz data rates
and for 176.4 and 192 kHz. See Table 2 for a summary of TAS5028 processing feature sets.
1.4.5.2 TAS5028 Audio Signal Processing Functions
The DAP provides 7 primary signal processing functions.
1. The data processing input has a full 8x8 input crossbar mixer. This enables each input to be any ratio of
the eight input channels.
2. Two I2C programmable threshold detectors in each channel support auto mute.
3. Four soft bass and treble tone controls with ±18 dB range, programmable corner frequencies, and 2nd
order slopes. In 8-channel mode, bass and treble controls are normally configured as follows:
- Bass and Treble 1: Channel 1 (Left), Channel 2 (Right), and Channel 7 (Center)
- Bass and Treble 2: Channel 3 (Left Surround) and Channel 4 (Right Surround)
- Bass and Treble 3: Channel 5 (Left Back Surround) and Channel 6 (Right Back Surround)
- Bass and Treble 4: Channel 8 (Subwoofer)
4. Individual channel and master volume controls. Each control provides an adjustment range of +18 dB to
–127 dB. This permits a total volume device control range of +36 dB to –127 dB plus mute. The master
volume control can be configured to control six or eight channels. The DAP soft volume and mute update
interval is I2C programmable. The update is performed at a fixed rate regardless of the sample rate.
5. 8x2 output mixer (channels 1-6). Each output can be any ratio of any two signal processed channels.
6. 8x3 output mixer (channels 7 and 8). Each output can be any ratio of any three signal processed channels.
7. The DAP maintains three sets of coefficient banks that are used to maintain separate sets of sample rate
dependent parameters for the tone controls in RAM. These can be set to be automatically selected for
one or more data sample rates or can be manually selected under I2C program control. This feature
enables coef ficients for different sample rates to be stored in the TAS5028 and then select when needed.
Introduction
11
SLES112 — June 2004 TAS5028
Table 1-2. TAS5028 Audio Processing Feature Sets
FEATURE 32 - 96 kHz
8 CHANNEL FEATURE SET 32 - 96 kHz
6 + 2 LINE OUT FEATURE SET 176.4- AND 192-kHz
FEATURE SET
Signal processing
channels 86 + 2 3
Pass through channels N/A 5
Master volume 1 for eight channels 1 for six channels 1 for three channels
Individual channel
volume controls 8 3
Bass and treble tone
controls
Four Bass and Treble tone controls
with ±18 dB range, programmable
corner frequencies, and 2nd order
slopes
L, R and C (Ch 1, 2, and 7)
LS, RS (Ch 3 and 4)
LBS, RBS (Ch 5 and 6)
Sub (Ch 8)
Four Bass and Treble tone controls
with ±18 dB range, programmable
corner frequencies, and 2nd order
slopes
L, R and C (Ch 1, 2, and 7)
LS, RS (Ch 3 and 4)
Sub, (Ch 8)
Line L and R (Ch 5 and 6)
Two Bass and Treble tone controls
with ±18 dB range, programmable
corner frequencies, and 2nd order
slopes
L and R (Ch 1 and 2)
Sub (Ch 8)
Input output
mapping/mixing
Each of the eight signal-processing channels input can be any ratio of the
eight input channels.
Each of the eight outputs can be any ratio of any two processed channels.
Each of the three
signal-processing channels or the
five pass-though channels inputs
can be any ratio of the eight input
channels.
Each of the eight outputs can be
any ratio of any of the three
processed or five bypass
channels.
DC blocking filters
(Implemented in PWM
Section) Eight channels
Digital de-emphasis
(Implemented in PWM
Section)
Eight channels for 32 kHz, 44.1 kHz,
and 48 kHz Six channels for 32 kHz, 44.1 kHz,
and 48 kHz N/A
Number of Coefficient
sets Stored Three additional coefficient sets can be stored in memory
1.5 TAS5028 DAP Architecture
1.5.1 TAS5028 DAP Architecture Diagrams
Figure 1-4 shows the TAS5028 DAP architecture for Fs = 96 kHz. Note the TAS5028 bass management
architecture shown in channels 1, 2, 7, and 8. Note that the I2C registers are shown to help the designer
configure the TAS5028.
Figure 1-5 shows the TAS5028 architecture for Fs = 176.4 kHz or Fs = 192 kHz. Note that only channels 1,
2, and 8 contain all the features. Channels 3-7 are pass-through except for master volume control.
Figure 1-6 shows TAS5028 detailed channel processing. The output mixer is 8X2 for channels 1-6 and *X3
for channels 7 and 8.
Introduction
12 SLES112 — June 2004TAS5028
DAP7
Volume
(0xD7)
DAP8
Volume
(0xD8)
Master Vol
(0xD9)
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
IP Mixer 1
(I2C 0x41)
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
IP Mixer 2
(I2C 0x42)
IP Mixer 3
(I2C 0x43)
IP Mixer 4
(I2C 0x44)
IP Mixer 5
(I2C 0x45)
IP Mixer 6
(I2C 0x46)
IP Mixer 7
(I2C 0x47)
IP Mixer 8
(I2C 0x48)
Bass &
Treble 1
(0xDA-
0xDD)
L to
PWM1
OP Mixer 1
(I2C 0xAA)
8X2 Output
Mixer
Bass &
Treble 1
(0xDA-
0xDD)
R to
PWM2
OP Mixer 2
(I2C 0xAB)
8X2 Output
Mixer
Bass &
Treble 2
(0xDA-
0xDD)
LS to
PWM3
OP Mixer 3
(I2C 0xAC)
8X2 Output
Mixer
Bass &
Treble 2
(0xDA-
0xDD)
RS to
PWM4
OP Mixer 4
(I2C 0xAD)
8X2 Output
Mixer
Bass &
Treble 3
(0xDA-
0xDD)
LBS to
PWM5
OP Mixer 5
(I2C 0xAE)
8X2 Output
Mixer
Bass &
Treble 3
(0xDA-
0xDD)
RBS to
PWM6
OP Mixer 6
(I2C 0xAF)
8X2 Output
Mixer
Bass &
Treble 1
(0xDA-
0xDD)
C to
PWM7
OP Mixer 7
(I2C 0xB0)
8X3 Output
Mixer
Bass &
Treble 4
(0xDA-
0xDD)
Sub to
PWM8
OP Mixer 8
(I2C 0xB1)
8X3 Output
Mixer
DAP1
Volume
(0xD1)
Master Vol
(0xD9)
DAP2
Volume
(0xD2)
Master Vol
(0xD9)
DAP3
Volume
(0xD3)
Master Vol
(0xD9)
DAP4
Volume
(0xD4)
Master Vol
(0xD9)
DAP5
Volume
(0xD5)
Master Vol
(0xD9)
DAP6
Volume
(0xD6)
Master Vol
(0xD9)
Master Vol
(0xD9)
SDIN1-L(L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L(LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L(LS)
SDIN2-R(RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L(LS)
SDIN2-R (RS)
SDIN3-L(LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L(LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R(RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L(LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R(RBS)
SDIN4-L(C)
SDIN4-R (LFE)
SDIN1-L(L)
SDIN1-R(R)
SDIN2-L(LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R(RBS)
SDIN4-L (C)
SDIN4-R(LFE)
Default Input Is BOLD
Figure 1-4. TAS5028 DAP Architecture With I2C Registers (Fs 96 kHz)
Introduction
13
SLES112 — June 2004 TAS5028
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
IP Mixer 1
(I2C 0x41)
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
IP Mixer 2
(I2C 0x42)
IP Mixer 3
(I2C 0x43)
IP Mixer 4
(I2C 0x44)
IP Mixer 5
(I2C 0x45)
IP Mixer 6
(I2C 0x46)
IP Mixer 7
(I2C 0x47)
IP Mixer 8
(I2C 0x48)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
SDIN1-L (L)
SDIN1-R (R)
SDIN2-L (LS)
SDIN2-R (RS)
SDIN3-L (LBS)
SDIN3-R (RBS)
SDIN4-L (C)
SDIN4-R (LFE)
Bass &
T reble 1
(0xDA-
0xDD)
L to
PWM1
OP Mixer 1
(I2C 0xAA)
8X2 Output
Mixer
Bass &
T reble 1
(0xDA-
0xDD)
R to
PWM2
OP Mixer 2
(I2C 0xAB)
8X2 Output
Mixer
LS to
PWM3
OP Mixer 3
(I2C 0xAC)
8X2 Output
Mixer
RS to
PWM4
OP Mixer 4
(I2C 0xAD)
8X2 Output
Mixer
LBS to
PWM5
OP Mixer 5
(I2C 0xAE)
8X2 Output
Mixer
RBS to
PWM6
OP Mixer 6
(I2C 0xAF)
8X2 Output
Mixer
C to
PWM7
OP Mixer 7
(I2C 0xB0)
8X3 Output
Mixer
Bass &
T reble 4
(0xDA-
0xDD)
Sub to
PWM8
OP Mixer 8
(I2C 0xB1)
8X3 Output
Mixer
DAP1
Volume
(0xD1)
Master Vol
(0xD9)
DAP2
Volume
(0xD2)
Master Vol
(0xD9)
DAP8
Volume
(0xD8)
Master Vol
(0xD9)
Master Vol
(0xD9)
Master Vol
(0xD9)
Master Vol
(0xD9)
Master Vol
(0xD9)
Master Vol
(0xD9)
Default input is BOLD
Figure 1-5. TAS5028 Architecture With I2C Registers (Fs = 176.4 kHz or Fs = 192 kHz)
Introduction
14 SLES112 — June 2004TAS5028
Bass and
Treble
Input Mixer
Trunc PWM
Proc
Volume
A_to_ipmix
B_to_ipmix
A
SDIN1 B
C_to_ipmix
D_to_ipmix
C
SDIN2 D
E_to_ipmix
F_to_ipmix
E
SDIN3 F
G_to_ipmix
H_to_ipmix
G
SDIN4 H
Left
Left
Left
Left
Right
Right
Right
Right
Channel
Volume
Master
Volume
Bass and Treble
Bypass
Bass and Treble
In-Line
Output
Gain Output Mixer Sums
Any Two Or
Three Channels
PWM
Output
One or Two Other
Channel Outputs
From Seven Available
32-Bit
Figure 1-6. TAS5028 Detailed Channel Processing
1.5.2 I2C Coefficient Number Formats
The architecture of the TAS5028 is contained in ROM resources within the TAS5028 and cannot be altered.
However, mixer gain, level offset, and filter tap coefficients, which can be entered via the I2C bus interface,
provide a user with the flexibility to set the TAS5028 to a configuration that achieves the system level goals.
The firmware is executed in a 48-bit signed fixed-point arithmetic machine. The most significant bit of the 48-bit
data path is a sign bit, and the 47 lower bits are data bits. Mixer gain operations are implemented by multiplying
a 48-bit signed data value by a 28-bit signed gain coef ficient. The 76-bit signed output product is then truncated
to a signed 48-bit number. Level offset operations are implemented by adding a 48-bit signed of fset coef ficient
to a 48-bit signed data value. In most cases, if the addition results in overflowing the 48-bit signed number
format, saturation logic is used. This means that if the summation results in a positive number that is greater
than 0x7FFF_FFFF_FFFF (the spaces are used to ease the reading of the hexadecimal number), the number
is set to 0x7FFF_FFFF_FFFF. If the summation results in a negative number that is less than
0x8000_0000_0000 0000, the number is set to 0x8000_0000_0000 0000.
1.5.2.1 28-Bit 5.23 Number Format
All mixer gain coefficients are 28-bit coefficients using a 5.23 number format. Numbers formatted as 5.23
numbers means that there are 5 bits to the left of the decimal point and 23 bits to the right of the decimal point.
This is shown in the Figure 1-7.
2-23 Bit
S_xxxx.xxxx_xxxx_xxxx_xxxx_xxx
2-4 Bit
2-1 Bit
20 Bit
Sign Bit
23 Bit
Figure 1-7. 5.23 Format
Introduction
15
SLES112 — June 2004 TAS5028
The decimal value of a 5.23 format number can be found by following the weighting shown in Figure 1-8. If
the most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct
number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must
be inverted, a 1 added to the result, and then the weighting shown in Figure 1 -8 applied to obtain the
magnitude of the negative number.
(1 or 0) x 23 + (1 or 0) x 22 + + (1 or 0) x 20 + (1 or 0) x 2-1 + + (1 or 0) x 2-4 + + (1 or 0) x 2-23
23 Bit 22 Bit 20 Bit 2-1 Bit 2-4 Bit 2-23 Bit
Figure 1-8. Conversion Weighting Factors—5.23 Format to Floating Point
Gain coef ficients, entered via the I2C bus, must be entered as 32-bit binary numbers. The format of the 32-bit
number (4-byte or 8-digit hexadecimal number) is shown in Figure 1-9.
u
Coefficient
Digit 8
u u u S x x x
Coefficient
Digit 7
x. x x x
Coefficient
Digit 6
x x x x
Coefficient
Digit 5
x x x x
Coefficient
Digit 4
x x x x
Coefficient
Digit 3
x x x x
Coefficient
Digit 2
x x x x
Coefficient
Digit 1
Fraction
Digit 5
Sign
Bit
0
Fraction
Digit 6
Fraction
Digit 4
Fraction
Digit 3
Fraction
Digit 2
Fraction
Digit 1
Integer
Digit 1
u = unused or don’t care bits
Digit = hexadecimal digit
Figure 1-9. Alignment of 5.23 Coefficient in 32-Bit I2C Word
As Figure 1-9 shows, the hex value of the integer part of the gain coefficient cannot be concatenated with the
hex value of the fractional part of the gain coefficient to form the 32-bit I2C coefficient. The reason is that the
28-bit coefficient contains 5 bits of integer, and thus the integer part of the coefficient occupies all of one hex
digit and the most significant bit of the second hex digit. In the same way, the fractional part occupies the lower
3 bits of the second hex digit, and then occupies the other five hex digits (with the eighth digit being the
zero-valued most significant hex digit).
1.5.2.2 48-Bit 25.23 Number Format
All level adjustment and threshold coefficients are 48-bit coefficients using a 25.23 number format. Numbers
formatted as 25.23 numbers means that there are 25 bits to the left of the decimal point and 23 bits to the right
of the decimal point. This is shown in Figure 1-10.
Introduction
16 SLES112 — June 2004TAS5028
2-23 Bit
S_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx
20 Bit
216 Bit
222 Bit
Sign Bit
223 Bit
2-1 Bit
2-10 Bit
Figure 1-10. 25.23 Format
Figure 1-11 shows the derivation of the decimal value of a 48-bit 25.23 format number.
(1 or 0) x 223 + (1 or 0) x 222 + + (1 or 0) x 20 + (1 or 0) x 2-1 + + (1 or 0) x 2-23
223 Bit 222 Bit 20 Bit 2-1 Bit 2-23 Bit
Figure 1-11. Alignment of 5.23 Coefficient in 32-Bit I2C Word
Two 32-bit words must be sent over the I2C bus to download a level or threshold coef ficient into the TAS5028.
The alignment of the 48-bit, 25.23 formatted coefficient in the 8-byte (two 32-bit words) I2C word is shown in
Figure 1-12.
Introduction
17
SLES112 — June 2004 TAS5028
u
Coefficient
Digit 16
u u u u u u u
Coefficient
Digit 15
u u u u
Coefficient
Digit 14
u u u u
Coefficient
Digit 13
S x x x
Coefficient
Digit 12
x x x x
Coefficient
Digit 11
x x x x
Coefficient
Digit 10
x x x x
Coefficient
Digit 9
Word 1
(Most
Significant
Word)
Integer
Digit 3
Integer
Digit 4
(Bits 23 - 21)
Integer
Digit 2
Integer
Digit 1
Sign
Bit
x
Coefficient
Digit 8
xx x x x x x
Coefficient
Digit 7
x. x x x
Coefficient
Digit 6
xx x x
Coefficient
Digit 5
xxxx
Coefficient
Digit 4
xxxx
Coefficient
Digit 3
xxxx
Coefficient
Digit 2
xx x x
Coefficient
Digit 1
Word 2
(Least
Significant
Word)
Fraction
Digit 5
Integer
Digit 4
(Bit 20)
0
Fraction
Digit 6
Fraction
Digit 4
Fraction
Digit 3
Fraction
Digit 2
Fraction
Digit 1
Integer
Digit 6
Integer
Digit 5
u = unused or don’t care bits
Digit = hexadecimal digit
Figure 1-12. Alignment of 25.23 Coefficient in Two 32-Bit I2C Words
1.5.2.3 TAS5028 Audio Processing
The TAS5028 digital audio processing is designed such that noise produced by filter operations is maintained
below the smallest signal amplitude of interest, as shown in Figure 1-13. The TAS5028 achieves this by
increasing the precision of the signal representation substantially above the number of bits that are absolutely
necessary to represent the input signal.
Maximum Signal
Amplitude
Signal bits
output
Noise Floor as a
result of additional
precision
Ideal Input Desired Output
Reduced
SNR signal
output
Noise Floor with no
additional precision
Possible Outputs
Filter
Operation
Signal bits
input
Overflow Values retained by
overflow bits
Figure 1-13. TAS5028 Digital Audio Processing
Introduction
18 SLES112 — June 2004TAS5028
Similarly, the TAS5028 carries additional precision in the form of overflow bits to permit the value of
intermediate calculations to exceed the input precision without clipping. The TAS5028 advanced digital audio
processor achieves both of these important performance capabilities by using a high performance digital audio
processing architecture with a 48-bit data path, 28-bit filter coefficients, and a 76-bit accumulator.
1.6 Input Crossbar Mixer
The TAS5028 has a full 8x8 input crossbar mixer. This mixer permits each signal processing channel input
to be any ratio of any of the eight input channels. The control parameters for the input crossbar mixer are
programmable via the I2C interface. See the Input Mixer Register (0x41-0x48, channels 1-8) section.
SUM
Gain Coefficient
28
48
Input 1
Gain Coefficient
28
48
Input 2
Gain Coefficient
28
48
Input 8
48
48
48
Figure 1-14. Input Crossbar Mixer
1.7 Bass and Treble Controls
From 32-kHz to 96-kHz data, the TAS5028 has four Bass and Treble tone controls. Each control has a ±18-dB
control range with selectable corner frequencies and 2nd order slopes. These controls operate four channel
groups:
L, R & C (Channels 1, 2, and 7)
LS, RS (Channels 3 and 4)
LBS, RBS (or alternately called L and R Lineout.) (Channels 5 and 6)
Sub (Channel 8)
For 176.4 kHz and 192 kHz data, the TAS5028 has two Bass and Treble tone controls. Each control has a
±18-dB I2C control range with selectable corner frequencies and 2nd order slopes. These controls operate
two channel groups:
L & R
Sub
The bass and treble filters utilize a soft update rate that does not produce artifacts during adjustment.
Introduction
19
SLES112 — June 2004 TAS5028
Table 1-3. Bass and Treble Filter Selections
FS
(kHz) 3-dB CORNER FREQUENCIES
FILTER
SET 1 FILTER
SET 1 FILTER
SET 2 FILTER
SET 2 FILTER
SET 3 FILTER
SET 3 FILTER
SET 4 FILTER
SET 4 FILTER
SET 5 FILTER
SET 5
BASS TREBLE BASS TREBLE BASS TREBLE BASS TREBLE BASS TREBLE
32 42 917 83 1833 125 3000 146 3667 167 4333
38 49 1088 99 2177 148 3562 173 4354 198 5146
44.1 57 1263 115 2527 172 4134 201 5053 230 5972
48 63 1375 125 2750 188 4500 219 5500 250 6500
88.2 115 2527 230 5053 345 8269 402 10106 459 11944
96 125 2750 250 5500 375 9000 438 11000 500 13000
176.4 230 5053 459 10106 689 16538 804 20213 919 23888
192 250 5500 500 11000 750 18000 875 22000 1000 26000
The I2C registers that control Bass and Treble are:
Bass and Treble By-Pass Register (0x89 – 0x90, channels 1-8)
Bass and Treble Slew Rates (0xD0)
Bass Filter Sets 1-5 (0xDA)
Bass Filter Index (0xDB)
Treble Filter Sets 1-5 (0xDC)
Treble Filter Index (0xDD)
1.8 Volume, Auto Mute, and Mute
The TAS5028 provides individual channel and master volume controls. Each control provides an adjustment
range of +18.0618 dB to –100 dB in 0.25 dB increments. This permits a total volume device control range of
+36 dB to –100 dB plus mute. The master volume control can be configured to control six or eight channels.
The TAS5028 has a master soft mute control that can be enabled by a terminal or I2C command. The device
also has individual channel soft mute controls that can are enabled via I2C.
The soft volume and mute update rates are programmable. The soft adjustments are performed using a soft
gain linear update with an I2C programmable linear step size at a fixed temporal rate. The linear soft gain step
size can be varied from 0.5 to 0.003906.
Table 1-4. Linear Gain Step Size
STEP SIZE (GAIN) 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.007813 0.003906
Time to go from 36.124 db to -127 dB in ms 10.67 21.33 42.67 85.34 170.67 341.35 682.70 1365.4
Time to go from 18.062 db to -127 dB in ms 1.33 2.67 5.33 10.67 21.33 42.67 85.33 170.67
Time to go from 0 db to -127 dB in ms 0.17 0.33 0.67 1.33 2.67 5.33 10.67 21.33
Introduction
20 SLES112 — June 2004TAS5028
1.8.1 Auto Mute and Mute
The TAS5028 has individual channel automute controls that are enabled via the I2C interface. There are two
separate detectors used to trigger the automute:
Input Auto Mute: All channels are muted when all 8 inputs to the TAS5028 are less in magnitude than the
input threshold value for a programmable amount of time.
Output Auto Mute: A single channel is muted when the output of the DAP section is less in magnitude than
the input threshold value for a programmable amount of time.
The detection period and thresholds for these two detectors are the same.
This time interval is selectable via I2C to be from 1 ms. to 110 ms. The increments of time are 1, 2, 3, 4, 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 ms. This interval is independent of the sample rate. The default
value is mask programmable.
The input threshold value is an unsigned magnitude that is expressed as a bit position. This value is adjustable
via I 2C. The range of the input threshold adjustment is from below the LSB (bit position 0) to below bit position
12 in a 24 bit input data word (bit positions 8 to 20 in the DSPE). This provides an input threshold that can be
adjusted for 12 to 24 bits of data. The default value is mask programmable.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DVD Data Range
CD Data Range
Threshold Range
24-Bit Input
32-Bit in DSPE
Representation
Figure 1-15. Auto Mute Threshold
The auto mute state is exited when the TAS5028 receives one sample that is greater that the output threshold.
The output threshold can be one of two values:
Equal to the input threshold
6 dB (one bit position) greater than the input threshold
The value for the output threshold is selectable via I2C. The default value is mask programmable.
The system latency enables the data value that is above the threshold to be preserved and output.
A mute command initiated by automute, master mute, individual I2C mute, the AM interference mute
sequence, or the bank switch mute sequence overrides an unmute command or a volume command. While
a mute command is activated, the commanded channels transition to the mute state. When a channel is
unmuted, it goes to the last commanded volume setting that has been received for that channel.
1.9 Output Mixer
The TAS5028 provides an 8x2 output mixer for channels 1, 2, 3, 4, 5, and 6. For channels 7 and 8 the TAS5028
provides an 8x3 output mixer. These mixers allow each output to be any ratio of any two (three) signal
processed channels. The control parameters for the output crossbar mixer are programmable via the I2C
interface.
Introduction
21
SLES112 — June 2004 TAS5028
Output
Gain Coefficient
28
48
Select
Output
N
Gain Coefficient
28
48
48
48
Output
Gain Coefficient
28
48
Gain Coefficient
28
48
48
48
Gain Coefficient
28
48
48
1, 2, 3, 4, 7 or 8
5 or 6
Select
Output
N
Select
Output
N
Select
Output
N
Select
Output
N
Figure 1-16. Output Mixers
1.10 PWM
The TAS5028 has eight channels of high performance digital PWM Modulators that are designed to drive
switching output stages (backends) in both single-ended (SE) and H-bridge (bridge tied load) configuration.
The TAS5028 device uses noise-shaping and sophisticated error correction algorithms to achieve high power
efficiency and high-performance digital audio reproduction. The TAS5028 uses an AD1 PWM modulation
combined with a 5th order noise shaper to provide a 102-dB SNR from 20 to 20 kHz.
The PWM section accepts 32-bit PCM data from the DAP and outputs eight PWM audio output channels
configurable as either:
Six channels to drive power stages + two channels to drive a differential input active filter to provide a
separately controllable stereo line out
Eight channels to drive power stages
The TAS5028 PWM section output supports both single-ended and bridge-tied loads.
The PWM section provides a headphone PWM output to drive an external differential amplifier like the
TPA112. The headphone circuit uses the PWM modulator for channels 1 and 2. The headphone will not
operate while the six or eight backend drive channels are operating. The headphone will be enabled via a
headphone select terminal or I2C command.
The PWM section has individual channel dc blocking filters that can be enabled and disabled. The filter cutoff
frequency is less than 1 Hz.
The PWM section has individual channel de-emphasis filters for 32, 44.1, and 48 kHz that can be enabled and
disabled.
Introduction
22 SLES112 — June 2004TAS5028
The interpolator, noise shaper, and PWM sections provide a PWM output with the following features:
Up to 8x over sampling.
- 8x at FS = 32 kHz, 38 kHz, 44.1 kHz, 48 kHz
- 4x at FS = 88.2 kHz, 96 kHz
- 2x at FS = 176.4 kHz, 192 kHz
5th order noise shaping
100-dB dynamic range 0 – 20 kHz (TAS5028 + TAS5111 system measured at speaker terminals)
THD < 0.01%
Adjustable maximum modulation limit of 93.8% to 99.2%
3.3-V digital signal
1.10.1 DC Blocking (High-Pass Enable / Disable)
Each input channel incorporates a first order digital high-pass filter to block potential dc components. The filter
–3 dB point is approximately 0.89-Hz at 44.1-kHz sampling rate. The high-pass filter can be enabled and
disabled via the I2C interface.
1.10.2 De-Emphasis Filter
For audio sources that have been pre-emphasized, a precision 50 µs/15 µs de-emphasis filter is provided to
support the sampling rates of 32 kHz, 44.1 kHz, and 48 kHz. Figure 1-17 shows a graph of the de-emphasis
filtering characteristics. De-emphasis is set using two bits in the system control register.
Response - dB
-10
0
Frequency - kHz
3.18 (50 µs) 10.6 (15 µs)
Figure 1-17. De-emphasis Filter Characteristics
1.10.3 AM Interference Avoidance
Digital amplifiers can degrade AM reception as a result of their RF emissions. Texas Instruments patented AM
interference avoidance circuit provides a flexible system solution for a wide variety of digital audio
architectures. During AM reception, the TAS5028 adjusts the radiated emissions to provide an emission clear
zone for the tuned AM frequency. The inputs to the TAS5028 for this operation are the tuned AM frequency,
the IF frequency, and the sample rate. The sample rate is automatically detected.
Introduction
23
SLES112 — June 2004 TAS5028
Analog
Receiver Audio
DSP
ADC
PCM1802 TAS5508 TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
Digital
Receiver Audio
DSP TAS5508 TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
TAS5111
The Digital Receiver or the Audio
DSP provides the Master and Bit
clocks
Audio DSP provides the master
and bit clocks
Figure 1-18. Block Diagrams of Typical Systems Requiring TAS5028 Automatic AM Interference
Avoidance Circuit
Introduction
24 SLES112 — June 2004TAS5028
TAS5028 Controls and Status
25
SLES112 — June 2004 TAS5028
2 TAS5028 Controls and Status
The TAS5028 provides control and status information from both the I2C registers and device pins.
This section describes some of these controls and status functions. The I2C summary and detailed register
descriptions are contained in sections at the end of this document.
2.1 I2C Status Registers
The TAS5028 has two status registers that provide general device information. These are the General Status
Register 0 (0x01) and the Error Status Register (0x02).
2.1.1 General Status Register (0x01)
Device identification code
Clip indicator – The TAS5028 has a clipping indicator. Writing to the register clears the indicator.
Bank switching is busy
2.1.2 Error Status Register (0x02)
No internal errors (the valid signal is high)
A clock error has occurred – These are sticky bits that are cleared by writing to the register.
- LRCLK error – When the number of MCLKs per LRCLK is incorrect
- SCLK error – When the number of SCLKS per LRCLK is incorrect
- Frame slip – When the number of MCLKs per LRCLK changes by more than 10 MCLK cycles
- PLL phase-lock error
This error status register is normally used for system development only.
2.2 TAS5028 Pin Controls
The TAS5028 provide a number of terminal controls to manage the device operation. These controls are:
RESET
PDN
BKND_ERR
HP_SEL
MUTE
2.2.1 Reset (RESET)
The TAS5028 is placed in the reset mode by setting the RESET terminal low or by the power up reset circuitry
when power is applied.
RESET is an asynchronous control signal that restores the TAS5028 to the hard mute state (M). Master
volume is immediately set to full attenuation (there is no ramp down). Reset initiates the device reset without
an MCLK input. As long as the RESET terminal is held low, the device is in the reset state. During reset, all
I2C and serial data bus operations are ignored.
Table 2-1 shows the device output signals while RESET is active.
Table 2-1. Device Outputs During Reset
SIGNAL SIGNAL STATE
Valid Low
PWM P-outputs Low (M-State)
PWM M-outputs Low (M-State)
SDA Signal Input (not driven)
TAS5028 Controls and Status
26 SLES112 — June 2004TAS5028
Because RESET is an asynchronous signal, clicks and pops produced during the application (the leading
edge) of RESET cannot be avoided. However, the transition from the hard mute state (M) to the operational
state is performed using a quiet start up sequence to minimize noise. This control uses the PWM reset and
unmute sequence to shut down and start up the PWM. A detailed description of these sequences is contained
in the PWM section. If a completely quiet reset or power down sequence is desired, MUTE should be applied
before applying RESET.
The rising edge of the reset pulse begins device initialization before the transition to the operational mode.
During device initialization, all controls are reset to their initial states. Table 2-2 shows the default control
settings following a reset.
Table 2-2. Values Set During Reset
CONTROL SETTING
Clock register Not valid
High pass Disabled
Unmute from clock error Hard unmute
Post DAP detection automute Enabled
Eight Ch PreDAP detection automute Enabled
De-emphasis De-emphasis disabled
Channel configuration control Configured for the default setting
Headphone configuration control Configured for the default setting
Serial data interface format I2S 24 bit
Individual channel mute No channels are muted
Automute delay 5 ms
Automute threshold 1 < 8 bits
Automute threshold 2 Same as automute threshold 1
Modulation limit Maximum modulation limit of 97.7%
Six (or eight – low) channel configuration Eight channels
Slew rate limit Disengaged for all channels
Interchannel delay -32, 0, –16, 16, –24, 8, –8, -24
Shutdown PWM on error Enabled
Volume and mute update rate Volume ramp 85 ms
Treble and bass slew rate Update every 1.31 ms
Bank switching Manual bank selection is enabled
Auto bank switching map All channels use Bank 1
Input mixer coefficients Input N -> Channel N, no attenuation
Output mixer coefficients Channel N -> Output N, no attenuation
Subwoofer sum into Ch1 and 2 (5508) Gain of 0
Ch1 and 2 sum in subwoofer (5508) Gain of 0
Bass and treble bypass Gain of 1
Bass and treble Inline Gain of 0
Master volume Mute
Individual channel volumes 0 dB
All bass and treble Indexes 0x12 neutral
Treble filter sets Filter Set 3
Bass filter sets Filter Set 3
AM interference enable Disabled
AM interference IF 455
AM interference select sequence 1
T uned freq and mode 0000 , BCD
TAS5028 Controls and Status
27
SLES112 — June 2004 TAS5028
After the initialization time, the TAS5028 starts the transition to the operational state with the Master volume
set at mute.
Since the TAS5028 has an external crystal time base, following the release of RESET, the TAS5028 sets the
MCLK and data rates and perform the initialization sequences. The PWM outputs are held at a mute state until
the master volume is set to a value other than mute via I2C.
2.2.2 Power Down (PDN)
TheTAS5028 can be placed into the power down mode by holding the PDN terminal low. When power down
mode is entered, both the PLL and the oscillator are shut down. Volume is immediately set to full attenuation
(there is n o ramp down). This control uses the PWM mute sequence that provides a low click and pop transition
to the hard mute state (M). A detailed description of the PWM mute sequence is contained in the PWM section.
Power down is an asynchronous operation that does not require MCLK to go into the power down state. To
initiate the power-up sequence requires MCLK to be operational and the TAS5028 to receive 5 MCLKs prior
to the release of PDN.
As long as the PDN terminal is held low the device is in the power down state with the PWM outputs in a hard
mute (M) state. During power down, all I2C and serial data bus operations are ignored. Table 2-3 shows the
device output signals while PDN is active.
Table 2-3. Device Outputs During Power Down
SIGNAL SIGNAL STATE
Valid Low
PWM P-outputs M-state = low
PWM M-outputs M-state = low
SDA Signal input
Following the application of PDN, the TAS5028 does not perform a quiet shutdown to prevent clicks and pops
produced during the application (the leading edge) of this command. The application of PDN immediately
performs a PWM stop. A quiet stop sequence can be performed by first applying MUTE before PDN.
When PDN is released, the system goes to the end state specified by MUTE and BKND_ERR pins and the
I2C register settings.
The crystal time base allows the TAS5028 to determine the CLK rates. Once these rates are determined, the
TAS5028 unmutes the audio.
2.2.3 Backend Error (BKND_ERR)
Backend error is used to provide error management for backend error conditions. Backend error is a level
sensitive signal. Backend error can be initiated by bringing the BKND_ERR terminal low for a minimum 5
MCLK cycles. When BKND_ERR is brought low, the PWM sets either six or eight channels into the PWM
backend error state. This state is described in the PWM section. Once the backend error sequence is initiated,
a delay of 5 ms is performed before the system starts the output re-initialization sequence. After the
initialization time, the TAS5028 begins normal operation. Backend error does not affect other PWM modulator
operations
The number of channels that are affected by the BKND_ERR signal is dependent upon the 6-channel
configuration signal. If the I2C setting 6-channel configuration is false, the TAS5028 places all eight PWM
outputs in the PWM backend error state, while not affecting any other internal settings or operations. If the
I2C setting six configuration is true, the TAS5028 brings the PWM outputs 1-6 to a backend error state, while
not affecting any other internal settings or operations. Table 2-4 shows the device output signal states during
backend error.
TAS5028 Controls and Status
28 SLES112 — June 2004TAS5028
Table 2-4. Device Outputs During Backend Error
SIGNAL SIGNAL STATE
Valid Low
PWM P-outputs M-State - low
PWM M-outputs M-State - low
HPPWM P-outputs M-State - low
HPPWM M-outputs M-State - low
SDA Signal Input (not driven)
2.2.4 Speaker / Headphone Selector (HP_SEL)
The HP_SEL terminal enables the headphone output or the speaker outputs. The headphone output receives
the processed data output from DAP and PWM channels 1 and 2.
In 6-channel configuration this feature does not affect the two lineout channels.
When low, the headphone output is enabled. In this mode the speaker outputs are disabled. When high, the
speaker outputs are enabled and the headphone is disabled.
Changes in the pin logic level results in a state change sequence using soft mute to the hard mute (M) state
for both speaker and headphone followed by a soft unmute.
When HP_SEL is low, the configuration of channels 1 and 2 are defined by the headphone configuration
register. When HP_SEL is high, the channel 1 and 2 configuration registers define the configuration of
channels 1 and 2.
2.2.5 Mute (MUTE)
The mute control provides a noiseless volume ramp to silence. Releasing mute provides a noiseless ramp
to previous volume. The TAS55508 has both a master and individual channel mute commands. A terminal
is also provided for the master MUTE. The low active master Mute I2C register and the MUTE terminal are
logically O r’ed together. If either is set to low, a mute on all channels is performed. The master mute command
operates on all channels regardless on whether the system is in six or eight channel configuration.
When MUTE is invoked, the PWM output stops switching and then goes to an idle state.
The master Mute terminal is used to support a variety of other operations in the TAS5028, such as setting the
inter-channel delay, the serial interface format, and the clock rates. A mute command by the master mute
terminal, individual I2C mute, the AM interference mute sequence, the bank switch mute sequence, or
automute overrides an unmute command or a volume command. While a mute is active, the commanded
channels will be placed in a mute state. When a channel is unmuted, it goes to the last commanded volume
setting that has been received for that channel.
2.3 Device Configuration Controls
The TAS5028 provides a number of system configuration controls that are set at initialization and following
a reset.
Channel Configuration
Headphone Configuration
Audio System Configurations
Recovery from Clock Error
Volume and Mute Update Rate
Modulation Index Limit
Inter-channel Delay
Master Clock and Data Rate Controls
Bank Controls
TAS5028 Controls and Status
29
SLES112 — June 2004 TAS5028
2.3.1 Channel Configuration Registers
In order for the TAS5028 to have full control of the power stages, registers 0x05 to 0x0C must be programmed
to reflect the proper power stage and how each one should be controlled. Channel configuration registers
consist of eight registers, one for each channel.
The primary reason for using these registers is that different power stages require different handling during
start up, mute/unmute, shutdown, and error recovery. The TAS5028 must select the sequence that gives the
best click and pop performance and insure that the bootstrap capacitor is charged correctly during start up.
This sequence depends on which power stage is present at the TAS5028 output.
Table 2-5. Description of the Channel Configuration Registers (0x05 to 0x0C)
BIT DESCRIPTION
D7 Enable/disable error recovery sequence. In case the BKND_RECOVERY pin is pulled low, this register determines if this channel is
to follow the error recovery sequence or to continue with no interruption.
D6 Determines if the power stage needs the TAS5028 VALID pin to go low to reset the power stage. Some power stages can be reset
by a combination of PWM signals. For these devices, it is recommended to set this bit low, since the VALID pin is shared for power
stages. This provides better control of each power stage.
D5 Determines if the power stage needs the TAS5028 VALID pin to go low to mute the power stage. Some power stages can be muted
by a combination of PWM signals. For these devices, it is recommended to set this bit low, since the VALID pin is shared for power
stages. This provides better control of each power stage.
D4 Inverts the PWM output. Inverting the PWM output can be an advantage if the power stage input pin are opposite the TAS5028 PWM
pinout. This makes routing on the PCB easier. To keep the phase of the output the speaker terminals must also be inverted.
D3 The power stage TAS5182 has a special PWM input. To ensure that the TAS5028 has full control in all occasions, the PWM output
must be remapped.
D2 Can be used to handle click and pop for some applications.
D1 This bit is normally used together with D2. For some power stages, both PWM signals must be high to get the desired operation of
both speaker outputs to be low. This bit sets the PWM outputs high-high during mute.
D0 Not used
Table 2-6 lists the optimal setting for each output stage configuration. Note that the default value is applicable
in all configurations except the TAS5182 SE/BTL configuration.
Table 2-6. Recommended TAS5028 Configurations for Texas Instruments Power Stages
DEVICE ERROR RECOVERY CONFIGURATION D7 D6 D5 D4 D3 D2 D1 D0
Default RES BTL 1 1 1 0 0 0 0 0
RES
BTL 1 1 1 0 0 0 0 0
TAS5111
RES SE 1 1 1 0 0 0 0 0
TAS5111
AUT
BTL 0 1 1 0 0 0 0 0
AUT SE 0 1 1 0 0 0 0 0
RES
BTL 1 1 0 0 0 0 0 0
TAS5112
RES SE 1 1 0 0 0 0 0 0
TAS5112
AUT
BTL 0 1 0 0 0 0 0 0
AUT SE 0 1 0 0 0 0 0 0
TAS5182
RES
BTL 1 1 1 0 1 0 0 0
TAS5182 RES SE 1 1 1 0 1 0 0 0
RES: The output stage requires VALID to go low to recover from a shutdown.
AUT: The power stage can auto recover from a shutdown.
BTL: Bridge tied load configuration
SE: Single-ended configuration
2.3.2 Headphone Configuration Registers
The headphone configuration controls are identical to the speaker configuration controls. The headphone
configuration control settings are used in place of the speaker configuration control settings for channels 1
and 2 when the headphones are selected. In reality however, there is only one used configuration setting for
headphones and that is the default setting.
TAS5028 Controls and Status
30 SLES112 — June 2004TAS5028
2.3.3 Audio System Configurations
The TAS5028 can be configured to comply with various audio systems: 5.1-channel system, 6-channel
system, 7.1-channel system and 8-channel system.
The audio system configuration is set in the General Control Register (0xE0). Bits D31 – D2 must be zero and
D0 is don’t care.
D1 Sets number of speakers in the system, including possible line outputs
D1 must be configured as the following according to the audio system in the application:
Table 2-7. Audio System Configuration (General Control Register 0xE0)
AUDIO SYSTEM D31-D2 D1 D0
DEFAULT 0 0 X
6 channel or 5.1 0 1 X
8 channel or 7.1 0 0 X
2.3.3.1 Using Line Outputs in 6-Channel Configurations
The audio system can be configured for a 6-channel configuration (with 2 line outs) by writing a 1 to bit D1
of register 0xE0 (General Control Register). In this configuration, channel 5 and 6 processing are exactly the
same as the other channels, except that Master Volume has no effect.
Note that in 6-channel configuration, channels 5 and 6 are unaffected by backend error (BKND_ERR goes
low).
To use channels 5 and 6 as dry unprocessed line outs, the following setup should be done:
Channel 5 volume and channel 6 volume should be set for a constant output such as 0 dB.
Bass and Treble for channels 5 and 6 can be used if desired.
If a down mix is desired on the channel 5 and 6 as line out, the down mixing can be performed using the
channel 5 and channel 6 input mixers.
2.3.4 Recovery from Clock Error
The TAS5028 can be set to either perform a volume ramp up during the recovery sequence of a clock error
or to simply come up in the last state (or desired state if a volume or tone update was in progress). This feature
is enabled via I2C system control register 0x03.
TAS5028 Controls and Status
31
SLES112 — June 2004 TAS5028
2.3.5 Volume and Mute Update Rate
The TAS5028 has fixed soft volume and mute ramp durations. The ramps are linear. The soft volume and mute
ramp rates are adjustable by programming the I2C register 0xD0 for the appropriate number of steps to be
512, 1024, or 2048. The update is performed at a fixed rate regardless of the sample rate.
In normal speed, the update rate is 1 step every 4 / Fs seconds.
In double speed, the update is 1 step every 8 / Fs seconds.
In quad speed, the update is 1 step every 16 / Fs seconds.
Because of processor loading, the update rate can increase for some increments by +1/Fs to +3/Fs. However,
the variance of the total time to go from +18 dB to mute is less than 25%.
Table 2-8. Volume Ramp Rates in ms
NUMBER OF STEPS
SAMPLE RATE (KHZ)
NUMBER OF STEPS 44.1, 88.2, 176.4 32, 48, 96, 192
512 46.44 ms 42.67 ms
1024 92.88 ms 85.33 ms
2048 185.76 ms 170.67 ms
2.3.6 Modulation Index Limit
PWM modulation is a linear function of the audio signal. When the audio signal is 0, the PWM modulation is
50%. When the audio signal increases towards full scale, the PWM modulation increases towards 100%. For
negative signals, the PWM modulations fall below 50% towards 0%.
However, there is a limit to the maximum modulation possible. During the off-time period, the power stage
connected to the TAS5028 output needs to get ready for he next on-time period. The maximum possible
modulation is then set by the power stage requirements. All Texas Instruments power stages needs maximum
modulation to be 97.7%. This is also the default setting of the TAS5028. Default settings can be changed in
the Modulation Index Register (0x16).
Note that no change should be made to this register when using Texas Instruments power stages.
2.3.7 Inter-channel Delay
An 8-bit value can be programmed to each of the eight PWM inter-channel delay registers to add a delay per
channel from 0 to 255 clock cycles. The delays correspond to cycles of the high-speed internal clock, DCLK.
The default values are shown in Table 2-9.
Table 2-9. Inter-Channel Delay Default Values
I2C SUB-ADDRESS CHANNEL INTER-CHANNEL DELAY DEFAULT (DCLK PERIODS)
0x1B 1 -24
0x1C 2 0
0x1D 3 -16
0x1E 4 +16
0x1F 5 -24
0x20 6 +8
0x21 7 -8
0x22 8 +24
TAS5028 Controls and Status
32 SLES112 — June 2004TAS5028
This delay is generated in the PWM and can be changed at any time through the serial control interface I2C
registers 0x1B – 0x22. The absolute offset for channel 1 is set in I2C sub-address 0x23.
NOTE:If used correctly, setting the PWM channel delay can optimize the performance of a
pure path digital amplifier system. The setting is based upon the type of backend power device
that is used and the layout. These values are set during initialization using the I2C serial
interface. Unless otherwise noted, use the default values given in Table 2-9.
2.4 Master Clock and Serial Data Rate Controls
The TAS5028 function only as a receiver of the MCLK (master clock), SCLK (shift clock), and LRCLK (left/right
clock) signals that controls the flow of data on the four serial data interfaces. The 13.5-MHz external crystal
allows the TAS5028 to automatically detect MCLK and the data rate.
The MCLK frequency can be 64 x Fs, 128 x Fs, 196 x Fs, 256 x Fs, 384 x Fs, 512 x Fs, or 768 x Fs.
The TAS5028 operates with the serial data interface signals LRCLK and SCLK synchronized to MCLK.
However, there is no constraint as to the phase relationship of these signals. The TAS5028 accepts a 64 x
Fs SCLK rate and a 1 x Fs LRCLK.
If the phase of SCLK or LRCLK drifts more than ±10 MCLK cycles since the last RESET, the TAS5028 performs
a clock error and resynchronize the clock timing.
The clock and serial data interface have several control parameters:
MCLK Ratio 64 Fs, 128 Fs, 196 Fs, 256 Fs, 384 Fs, 512 Fs, or 768 Fs) - I2C parameter
Data Rate 32, 38, 44.1,48, 88.2, 96, 176.4, 192 kHz - I2C parameter
AM Mode Enable / Disable - I2C parameter
During AM interference avoidance, the clock control circuitry utilizes three other configuration inputs:
Tuned AM Frequency (for AM interference avoidance) (550 - 1750 kHz) - I2C parameter
Frequency Set Select (1-4) - I2C parameter
Sample Rate - I2C parameter or auto detected
2.4.1 PLL Operation
The TAS5028 uses two internal clocks generated by two internal phase-locked loops (PLLs), the digital PLL
(DPLL) and the analog PLL (APLL). The analog PLL provides the reference clock for the PWM. The digital
PLL provides the reference clock for the digital audio processor and the control logic.
The master clock MCLK input provides the input reference clock for the APLL. The external 13.5-MHz crystal
provides the input reference clock for the digital PLL. The crystal provides a time base to support a number
of operations, including the detection of the MCLK ratio, the data rate, and clock error conditions. The crystal
time base provides a constant rate for all controls and signal timing.
Even if MCLK is not present, the TAS5028 can receive and store I2C commands and provide status.
2.5 Bank Controls
The TAS5028 permits the user to specify and assign sample rate dependent parameters for Tone in one of
three banks that can be manually selected or selected automatically based upon the data sample rate. Each
bank can be enabled for one or more specific sample rates via I2C bank control register 0x40. Each bank set
holds the following values:
Five Bass Filter-Set Selections (Register 0xDA)
Five Treble Filter-Set Selections (Register 0xDC)
The default selection for bank control is manual bank with bank 1 selected. Note that if bank switching is used,
Bank 2 and Bank 3 must be programmed on power-up since the default values are all zeroes. If bank switching
is used and Bank 2 and Bank 3 are not programmed correctly, then the output of the TAS5028 could be muted
when switching to those banks.
TAS5028 Controls and Status
33
SLES112 — June 2004 TAS5028
2.5.1 Manual Bank Selection
The three bank selection bits of the bank control register allow the appropriate bank to be manually selected
(000 = Bank 1, 001 = Bank 2, 010 = Bank 3). In the manual mode, when a write occurs to the Bass or Treble
coefficients, the current selected bank is updated. If audio data is streaming to the TAS5028, during a manual
bank selection, the TAS5028 first performs a mute sequence, then performs the bank switch, and finally
restores the volume using an un-mute sequence.
A mute command initiated by the bank switch mute sequence overrides an un-mute command or a volume
command. While a mute is active, the commanded channels are muted. When a channel is unmated, the
volume level goes to the last commanded volume setting that has been received for that channel.
If MCLK or SCLK is stopped, the TAS5028 performs a bank switch operation. If the clocks should start up once
the manual bank switch command has been received, the bank switch operation is performed during the 5-ms
silent start sequence.
2.5.2 Automatic Bank Selection
To enable automatic bank selection, a value of 3 is written into in the bank selection bits of the bank control
register. Banks are associated with one or more sample rates by writing values into the Bank 1 or Bank 2 data
rate selection registers. The automatic base selection is performed when a frequency change is detected
according to the following scheme:
1. The system scans Bank 1 data rate associations to see if the Bank 1 is assigned for that data rate.
2. If Bank 1 is assigned, then the Bank 1 coefficients will be loaded.
3. If it is not then, the system scans the bank 2 to see if Bank 1 is assigned for that data rate.
4. If Bank 2 is assigned, then the Bank 2 coefficients will be loaded.
5. If it is not then, the system loads the Bank 3 coefficients.
The default is that all frequencies are enabled for Bank 1. This default is expressed as a value of all 1s in th e
Bank 1 auto-selection byte and all 0s in the bank 2 auto-section byte.
2.5.2.1 Coefficients Write Operations While Automatic Bank Switch Is Enabled
In automatic mode if a write occurs to the Tone coefficient, the bank that is written to is the current bank.
2.5.3 Bank Set
Bank set is used to provide a secure way to update the bank coefficients in both the manual and automatic
switching modes without causing a bank switch to occur. Bank set mode does not alter the current bank
register mapping. It simply enables any bank’s coefficients to be updated while inhibiting any bank switches
from taking place. In manual mode, this enables the coef ficients to be set without switching banks. In automatic
mode this prevents a clock error or data rate change from corrupting a bank coefficient write.
To update the coefficients of a bank, a value of 4, 5, or 6 is written into in the bank selection bits of the bank
control register. This enables the Tone coefficient values of bank 1, 2, or 3 to be respectively updated.
Once the coef ficients of the bank have been updated, the bank selection bits are then returned to the desired
manual or automatic bank selection mode.
2.5.4 Bank Switch Timeline
After a bank switch is initiated (manual or automatic), no I2C writes to the TAS5028 should occur before a
minimum of 186 ms. This value is determined by the volume ramp rates for a particular sample rate.
2.5.5 Bank Switching Example 1
Problem: The audio unit containing a TAS5028 needs to handle different audio formats with different sample
rates. Format #1 requires Fs = 32 kHz, Format #2 requires Fs = 44.1 kHz, and Format #3 requires F s = 4 8 kHz.
The sample-rate dependent parameters in the TAS5028 require different coef ficients and data depending on
the sample rate.
TAS5028 Controls and Status
34 SLES112 — June 2004TAS5028
Strategy: Use the TAS5028 bank switching feature to allow for managing and switching three banks
associated with the three sample rates, 32 kHz (Bank 1), 44.1 kHz (Bank 2), and 48 kHz (Bank 3).
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:
Generate bank-related coef ficients (see above) for sample rates 32 kHz, 44.1 kHz, and 48 kHz and include
the same in the micro-based TAS5028 I2C firmware.
On TAS5028 power up or reset, the micro runs the following TAS5028 Initialization code:
- Update Bank 1 (Write 0x00048040 to register 0x40).
- Write bank-related I2C registers with appropriate values for Bank 1.
- Write Bank 2 (Write 0x00058040 to register 0x40).
- Load bank-related I2C registers with appropriate values for Bank 2.
- Write Bank 3 (Write 0x00068040 to register 0x40).
- Load bank-related I2C registers with appropriate values for Bank 3.
- Select automatic bank switching (write 0x00038040 to register 0x40)
Now when the audio media changes, the TAS5028 automatically detects the incoming sample rate and
automatically switches to the appropriate bank.
In this example any sample rates other then 32 kHz and 44.1 kHz will use Bank 3. If other sample rates are
used, then the banks need to be set-up differently.
2.5.6 Bank Switching Example 2
Problem: The audio system uses all of the sample rates supported by the TAS5028. How can the automatic
bank switching be set up to handle this situation?
Strategy: Use the TAS5028 bank switching feature to allow for managing and switching three banks
associated with sample rates as follows:
Bank 1: Coefficients for 32 kHz, 38 kHz, 44.1 kHz, and 48 kHz
Bank 2: Coefficients for 88.2kHz and 96 kHz
Bank 3: Coefficients for 176.4 kHz and 192 kHz
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:
Generate bank-related coef ficients for sample rates 48 kHz (Bank 1), 96 kHz (Bank 2), and 192 kHz (Bank
3) and include the same in the micro-based TAS5028 I2C firmware.
On TAS5028 power-up or reset, the micro runs the following TAS5028 Initialization code:
- Update Bank 1 (Write 0x0004F00C to register 0x40).
- Write bank-related I2C registers with appropriate values for Bank 1.
- Write Bank 2 (Write 0x0005F00C to register 0x40).
- Load bank-related I2C registers with appropriate values for Bank 2.
- Write Bank 3 (Write 0x0006F00C to register 0x40).
- Load bank-related I2C registers with appropriate values for Bank 3.
- Select automatic bank switching (Write 0x0003F00C to register 0x40)
Now when the audio media changes, the TAS5028 automatically detects the incoming sample rate and
automatically switches to the appropriate bank.
Electrical Specifications
35
SLES112 — June 2004 TAS5028
3 Electrical Specifications
3.1 Absolute Maximum Ratings{
UNITS
Supply voltage, DVDD and DVD_PWM -0.3 V to 3.6 V
Supply voltage, AVDD_PLL -0.3 V to 3.6 V
3.3-V digital input -0.5 V to DVDD + 0.5 V
Input voltage 5 V tolerant(2) digital input -0.5 V to 6 V
Input voltage
1.8 V LVCMOS(3) -0.5 V to VREF(1) + 0.5 V
Input clamp current, IIK (VI < 0 or VI > 1.8 V ±20 mA
Output clamp current, IOK (VO < 0 or VO > 1.8 V) ±20 mA
Operating free air temperature 0°C to 70°C
Storage temperature range, Tstg -65°C to 150°C
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. VREF is a 1.8-V supply derived from regulators internal to the TAS5028 chip. VREF is on terminals VRA_PLL, VRD_PLL, VR_DPLL,
VR_DIG, and VR_PWM. These terminals are provided to permit use of external filter capacitors, but should not be used to source
power to external devices.
2. 5-V tolerant inputs are RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, SDIN4, SDA, and SCL.
3. VRA_PLL, VRD_PLL, VR_DPLL, VR_DIG, VR_PWM
DISSIPATION RATING TABLE (High-k Board, 1055C Junction)
PACKAGE TA 255C
POWER RATING DERATING FACTOR
ABOVE TA = 255CTA = 705C
POWER RATING
PAG 1869 mW 23.36 mW/°C818 mW
3.2 Dynamic Performance (At Recommended Operating Conditions at 255C)
PARAMETER TEST CONDITIONS MIN NOM MAX UNITS
Dynamic range 32 kHz to 192 kHz TAS5028 + TAS5111 A-weighted 102 dB
Total harmonic distortion
TAS5111 A at 1 W 0.1%
Total harmonic distortion TAS5028 ouput 0.01%
Frequency response
32-kHz to 96-kHz sample rates ±0.1
Frequency response 176.4, 192-kHz sample rates ±0.2 dB
3.3 Recommended Operating Conditions (Over 05C to 705C) MIN NOM MAX UNITS
Digital supply voltage, DVDD and DVDD_PWM 3 3.3 3.6 V
Analog supply voltage, AVDD_PLL 3 3.3 3.6 V
3.3 V 2
High-level input voltage, VIH 5-V tolerant(4) 2V
High level input voltage, VIH
1.8-V LVCMOS (XTL_IN) 1.26
3.3 V 0.8
Low-level input voltage, VIL 5-V tolerant(4) 0.8 V
Low level input voltage, VIL
1.8-V (XTL_IN) 0.54
Operating ambient air temperature range, TA-20 25 70 °C
Operating junction temperature range, TJ-20 105 °C
NOTE 4: 5-V tolerant inputs are SDA, SCL, RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, and SDIN4.
Electrical Specifications
36 SLES112 — June 2004TAS5028
3.4 Electrical Characteristics Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
V
High level output voltage
3.3 V TTL and 5 V(6) tolerant IOH = -4 mA 2.4
V
VOH High-level output voltage 1.8-V LVCMOS (XTL_OUT) IOH = - 0.55 mA 1.44 V
V
Low level output voltage
3.3-V TTL and 5 V(6) tolerant IOL = 4 mA 0.5
V
VOL Low-level output voltage 1.8-V LVCMOS (XTL_OUT) IOL = 0.75 mA 0.5 V
IOZ High-impedance output current 3.3-V TTL ±20 µA
3.3-V TTL VI = VIL ±1
IIL Low-level input current 1.8-V LVCMOS (XTL_IN) VI = VIL ±1µA
IIL
Low level input current
5 V tolerant(5) VI = 0 V DVDD = 3 V ±1
µA
3.3-V TTL VI = VIH ±1
IIH High-level input current 1.8-V LVCMOS (XTL_IN) VI = VIH ±1µA
IIH
High level input current
5 V tolerant(5) VI = 5.5 V DVDD = 3 V ±20
µA
Fs = 48 kHz 140
Digital supply voltage DVDD
Fs = 96 kHz 150
mA
I
Input supply current
Digital supply voltage, DVDD Fs = 192kHz 155 mA
IDD Input supply current Power down 8
Analog supply voltage AVDD
Normal 20
mA
Analog supply voltage, AVDD Power down 2mA
NOTES: 5. 5-V tolerant inputs are SDA, SCL, RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, and SDIN4.
6. 5-V tolerant outputs are SCL and SDA
3.5 PWM Operation at Recommended Operating Conditions Over 05C to 705C
PARAMETER TEST CONDITIONS MODE VALUE UNITS
32-kHz data rate ±4% 12 x sample rate 384 kHz
Output sample rate 1X – 8 x over sampled 44.1-, 88.2-, 176.4-kHz data rate ±4% 8, 4, and 2 x sample rate 352.8 kHz
Output sample rate 1X 8 x over sampled
48, 96, 192 kHz data rate ±4% 8, 4, and 2 x sample rate 384 kHz
3.6 Switching Characteristics
3.6.1 Clock Signals Over Recommended Operating Conditions (Unless Otherwise
Noted)
3.6.1.1 PLL Input Parameters and External Filter Components{
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
fXTALI Frequency, XTAL IN Only use 13.5-MHz crystal 1000 ppm 13.5 MHz
fMCLKI Frequency, MCLK (1 / tcyc2) 2 50 MHz
MCLK duty cycle duty cycle 40% 50% 60%
MCLK minimum high time 2-V MCLK = 49.152 MHz, Within the min
and max duty cycle constraints 5 ns
MCLK minimum low time 0.8-V MCLK = 49.152 MHz,
Within the min and max duty cycle constraints 5 ns
LRCLK allowable drift before LRCLK reset 10 MCLKs
External PLL filter cap C1 SMD 0603 Y5V 100 nF
External PLL filter cap C2 SMD 0603 Y5V 10 nF
External PLL filter resistor R SMD 0603, metal film 200
External VRA_PLL decoupling SMD, Y5V 100 nF
See the TAS5028 Example Application Schematic section.
Electrical Specifications
37
SLES112 — June 2004 TAS5028
3.6.2 Serial Audio Port
3.6.2.1 Serial Audio Ports Slave Mode Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
fSCLKIN Frequency, SCLK 64 x fs CL = 30 pF 2.048 12.288 MHz
tsu1 Setup time, LRCLK to SCLK rising edge 10 ns
th1 Hold time, LRCLK from SCLK rising edge 10 ns
tsu2 Setup time, SDIN to SCLK rising edge 10 ns
th2 Hold time, SDIN from SCLK rising edge 10 ns
LRCLK frequency 32 48 192 kHz
SCLK duty cycle 40% 50% 60%
LRCLK duty cycle 40% 50% 60%
SCLK rising edges between LRCLK rising edges 64 64 SCLK
edges
LRCLK clock edge with respect to the falling edge of SCLK -1/4 1/4 SCLK
period
th1 tsu1
tsu2
th2
SCLK
(Input)
LRCLK
(Input)
SDIN1
SDIN2
SDIN3
Figure 3-1. Slave Mode Serial Data Interface Timing
Electrical Specifications
38 SLES112 — June 2004TAS5028
3.6.3 I2C Serial Control Port Operation
3.6.3.1 Timing Characteristics for I2C Interface Signals Over Recommended Operating
Conditions (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS MIN MAX UNITS
fSCL Frequency, SCL No wait states 400 kHz
tw(H) Pulse duration, SCL high 0.6 µs
tw(L) Pulse duration, SCL low 1.3 µs
trRise time, SCL and SDA 300 ns
tfFall time, SCL and SDA 300 ns
tsu1 Setup time, SDA to SCL 100 ns
th1 Hold time, SCL to SDA 0 ns
t(buf) Bus free time between stop and start condition 1.3 µs
tsu2 Setup time, SCL to start condition 0.6 µs
th2 Hold time, start condition to SCL 0.6 µs
tsu3 Setup time, SCL to stop condition 0.6 µs
CLLoad capacitance for each bus line 400 pF
SCL
SDA
tw(H) tw(L) trtf
tsu1 th1
Figure 3-2. SCL and SDA Timing
SCL
SDA
th2 t(buf)
tsu2 tsu3
Start Condition Stop Condition
Figure 3-3. Start and Stop Conditions Timing
Electrical Specifications
39
SLES112 — June 2004 TAS5028
3.6.4 Reset Timing (RESET)
3.6.4.1 Control Signal Parameters Over Recommended Operating Conditions (Unless
Otherwise Noted) PARAMETER MIN TYP MAX UNITS
tr(DMSTATE) Time to M-STATE low 370 ns
tw(RESET) Pulse duration, RESET active 400 None ns
tr(I2C_ready) Time to enable I2C 3 ms
tr(run) Device startup time 10 ms
tw(RESET)
Earliest time
that M-State
could be exited
RESET
M-State
tr(DMSTATE) = ~ < 300 ns
tr(I2C_ready)
Start system
tr(run)
Determine SCLK rate
and MCLK ratio Enable I2C
Figure 3-4. Reset Timing
Since a crystal time base is used, the system determines the CLK rates. Once the data rate and master clock
ratio is determined, the system outputs audio if a master volume command is issued.
3.6.5 Power-Down (PDN) Timing
3.6.5.1 Control Signal Parameters Over Recommended Operating Conditions (Unless Otherwise
Noted)
PARAMETER MIN TYP MAX UNITS
tp(DMSTATE) Time to M-STATE low 300 µs
Number of MCLKs preceding the release of PDN 5
tsu Device startup time 120 ms
PDN
M-State
tsu
tp(DMSTATE) = ~ < 300 µs
Figure 3-5. Power-Down Timing
Electrical Specifications
40 SLES112 — June 2004TAS5028
3.6.6 Backend Error (BKND_ERR)
3.6.6.1 Control Signal Parameters Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER MIN TYP MAX UNITS
tw(ER) Pulse duration, BKND_ERR active 350 None ns
tp(valid_low) <100 µs
tp(valid_high) I2C programmable to be between 1 to 10 ms -25 25 % of interval
ERR_RCVRY
tp(valid_low)
M-State
tw(ER)
tp(valid_high)
Normal
Operation Normal
Operation
Figure 3-6. Error Recovery Timing
3.6.7 MUTE Timing—MUTE
3.6.7.1 Control Signal Parameters Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER MIN TYP MAX UNITS
td(VOL Volume ramp time Defined by rate setting(1) ms
NOTE 1: See the Volume Treble and Base Slew Rate Register (0xD0) section.
td(VOL)
VOLUME
MUTE
Normal
Operation
M-State Normal
Operation
td(VOL)
Figure 3-7. Mute Timing
Electrical Specifications
41
SLES112 — June 2004 TAS5028
3.6.8 Headphone Select (HP_SEL)
3.6.8.1 Control Signal Parameters Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER MIN MAX UNITS
tw(MUTE) Pulse duration, HP_SEL active 350 None ns
td(VOL) Soft volume update time Defined by rate setting(2) ms
t(SW) Switch-over time 0.2 1 ms ms
NOTE 2: See the Volume Treble and Base Slew Rate Register (0xD0) section.
td(VOL)
HP Volume
HP_SEL
M-State
td(VOL)
Spkr Volume
t(SW)
td(VOL)
Spkr Volume
HP_SEL
M-State
td(VOL)
HP Volume
t(SW)
(Internal Device State)
Figure 3-8. HP_SEL Timing
Serial Audio Interface Control and Timing
42 SLES112 — June 2004TAS5028
3.6.9 Volume Control
3.6.9.1 Control Signal Parameters Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER TEST CONDITIONS MIN MAX UNITS
Maximum attenuation before mute Individual volume, master volume or a
combination of both -127 dB
Maximum gain Individual volume, master volume 18 dB
Maximum volume before the onset of clipping 0-dB input, any modulation limit 0 dB
3.7 Serial Audio Interface Control and Timing
3.7.1 I2S Timing
I2S timing uses an LRCLK to define when the data being transmitted is for the left channel and when it is for
the right channel. The LRCLK is low for the left channel and high for the right channel. A bit clock running at
64 × Fs is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes
state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of
bit clock. The TAS5028 masks unused trailing data bit positions.
23 22
SCLK
32 Clks
LRCLK (Note Reversed Phase) Left Channel
24-Bit Mode
9 8 5 4 1 0
19 18
20-Bit Mode
5 4 1 0
16-Bit Mode
1 015 14
MSB LSB
23 22
SCLK
32 Clks
Right Channel
9 8 5 4 1 0
19 18 5 4 1 0
1 015 14
MSB LSB
2-Channel I
2
S (Philips Format) Stereo Input
NOTE: All data presented in 2s complement form with MSB first.
Figure 3-9. I2S Format 64 Fs Format
Serial Audio Interface Control and Timing
43
SLES112 — June 2004 TAS5028
3.7.2 Left Justified
Left justified (LJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and
when it i s for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock
running at 6 4 × Fs is used to clock in the data. The first bit of data appears on the data lines at the same time
the LRCLK toggles. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5028
masks unused trailing data bit positions.
23 22
SCLK
32 Clks
LRCLK
Left Channel
24-Bit Mode
9 8 5 4 1 0
MSB LSB
23 22
32 Clks
LRCLK
Right Channel
9 8 5 4 1 0
MSB LSB
NOTE: All data presented in 2s complement form with MSB first.
18
20-Bit Mode
5 4 1 019
14
16-Bit Mode
1 015
18 5 4 1 019
14 1 015
2-Channel Left-Justified Stereo Input
Figure 3-10. Left Justified 64 Fs Format
Serial Audio Interface Control and Timing
44 SLES112 — June 2004TAS5028
3.7.3 Right Justified
Right justified (RJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and
when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock
running at 6 4 × Fs is used to clock in the data. The first bit of data appears on the data 8-bit clock periods (for
24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before
L/RCLK transitions. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5028
masks unused leading data bit positions.
23 22
SCLK
32 Clks
LRCLK
Left Channel
24-Bit Mode
19 18 15 14 1 0
19 18
20-Bit Mode
15 14 1 0
16-Bit Mode
1 015 14
MSB LSB
2-Channel Right-Justified (Sony Format) Stereo Input
23 22
32 Clks
Right Channel
19 18 15 14 1 0
19 18 15 14 1 0
1 015 14
MSB LSB
NOTE: All data presented in 2s complement form with MSB first.
Figure 3-11. Right Justified 64 Fs Format
I2C Serial Control Interface (Slave Address 0x36)
45
SLES112 — June 2004 TAS5028
4I
2C Serial Control Interface (Slave Address 0x36)
The TAS5028 has a bidirectional I2C interface that compatible with the I2C (Inter IC) bus protocol and supports
both 100 Kbps and 400 Kbps data transfer rates for single and multiple byte write and read operations. This
is a slave only device that does not support a multi-master bus environment or wait state insertion. The control
interface is used to program the registers of the device and to read device status.
The TAS5028 supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus
operation (400 kHz maximum). The TAS5028 performs all I2C operations without I2C wait cycles.
4.1 General I2C Operation
The I2C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits
in a system. Data is transferred on the bus serially one bit at a time. The address and data can be transferred
in byte (8 bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on
the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with
the master device driving a start condition on the bus and ends with the master device driving a stop condition
on the bus. The bus uses transitions on the data terminal (SDA) while the clock is high to indicate a start and
stop conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop.
Normal data bit transitions must occur within the low time of the clock period. These conditions are shown in
Figure 4-1. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication
with another device and then wait for an acknowledge condition. The TAS5028 holds SDA low during
acknowledge clock period to indicate an acknowledgement. When this occurs, the master transmits the next
byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All
compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external
pullup resistor must be used for the SDA and SCL signals to set the high level for the bus.
7 Bit Slave Address R/
W8 Bit Register Address (N)A8 Bit Register Data For
Address (N)
Start Stop
SDA
SCL
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
A
7 6 5 4 3 2 1 0
8 Bit Register Data For
Address (N)
7 6 5 4 3 2 1 0
AA
Figure 4-1. Typical I2C Sequence
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the
last wo r d t r a n s fers, the master generates a stop condition to release the bus. A generic data transfer sequence
is shown in Figure 4-1.
The 7-bit address for the TAS5028 is 0011011.
4.2 Single and Multiple Byte Transfers
The serial control interface supports both single-byte and multiple-byte read / write operations for status
registers and the general control registers associated with the PWM. However, for the DAP data processing
registers, the serial control interface supports only multiple byte (4 bytes) read / write operations.
During multiple byte read operations, the TAS5028 responds with data, a byte at a time, starting at the
subaddress assigned, as long as the master device continues to respond with acknowledges. If a particular
subaddress does not contain 32 bits, the unused bits are read as logic 0.
During multiple byte write operations, the TAS5028 compares the number of bytes transmitted to the number
of bytes that are required for each specific sub address. If a write command is received for a mixer coefficient,
the TAS5028 expects to receive one 32-bit word. If fewer than 32 bits are required when a stop command (or
another start command) is received, the data received is discarded.
I2C Serial Control Interface (Slave Address 0x36)
46 SLES112 — June 2004TAS5028
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The
TAS5028 also supports sequential I2C addressing. For write transactions, if a subaddress is issued followed
by data for that subaddress and the fifteen subaddresses that follow, a sequential I2C write transaction has
taken place, and the data for all 16 subaddresses is successfully received by the TAS5028. For I2C sequential
write transactions, the subaddress then serves as the start address and the amount of data subsequently
transmitted, before a stop or start is transmitted, determines how many subaddresses are written. As was true
for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a
partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However,
all other data written is accepted; just the incomplete data is discarded.
4.3 Single Byte Write
As shown in Figure 4-2, a single byte data write transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction
of the data transfer. For a write data transfer, the read/write bit will be a 0. After receiving the correct I2C device
address and the read/write bit, the TAS5028 device responds with an acknowledge bit. Next, the master
transmits the address byte or bytes corresponding to the TAS5028 internal memory address being accessed.
After receiving the address byte, the TAS5028 again responds with an acknowledge bit. Next, the master
device transmits the data byte to be written to the memory address being accessed. After receiving the data
byte, the TAS5028 again responds with an acknowledge bit. Finally, the master device transmits a stop
condition to complete the single byte data write transfer.
A6 A5 A4 A3 A2 A1 A0 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK
Start
Condition
Stop
Condition
Acknowledge Acknowledge Acknowledge
I2C Device Address and
Read/Write Bit Sub-Address Data Byte
Figure 4-2. Single Byte Write Transfer
4.4 Multiple Byte Write
A multiple byte data write transfer is identical to a single byte data write transfer except that multiple data bytes
are transmitted by the master device to TAS5028 as shown in Figure 4-3. After receiving each data byte, the
TAS5028 responds with an acknowledge bit.
D7 D0 ACK
Stop
Condition
Acknowledge
I2C Device Address and
Read/Write Bit Sub-Address Last Data Byte
A6 A5 A1 A0 R/W ACK A7 A5 A1 A0 ACK D7 ACK
Start
Condition Acknowledge Acknowledge Acknowledge
First Data Byte
A4 A3A6
Other Data Bytes
ACK
Acknowledge
D0 D7 D0
Figure 4-3. Multiple Byte Write Transfer
4.5 Incremental Multiple Byte Write
The I2C supports a special mode which permits I2C write operations to be broken up into multiple data write
operations that are multiples of 4 data bytes. These are 6 byte, 10 byte, 14 byte, 18 byte, ... etc., write
operations that are composed of a device address, read/write bit, and subaddress and any multiple of 4 bytes
of data. This permits the system to incrementally write large register values without blocking other I2C
transactions.
This feature is enabled by the append subaddress function in the TAS5028. This function enables the
TAS5028 to append 4 bytes of data to a register that was opened by a previous I2C register write operation
but has not received its complete number of data bytes. Since the length of the long registers is a multiple of
4 bytes, using 4-byte transfers will have only an integer number of append operations.
I2C Serial Control Interface (Slave Address 0x36)
47
SLES112 — June 2004 TAS5028
When the correct number of bytes has been received, the TAS5028 starts processing the data.
The procedure to perform an incremental multi-byte write operation is as follows:
1. Start a normal I2C write operation by sending the device address, write bit, register subaddress, and the
first four bytes of the data to be written. At the end of that sequence, send a stop condition. At this point,
the register has been opened and accepts the remaining data that is sent by writing 4-byte blocks of data
to the append subaddress (0xFE).
2. At a later time, one or more append data transfers are performed to incrementally transfer the remaining
number of bytes in sequential order to complete the register write operation. Each of these append
operations will be composed of the device address, write bit, append subaddress (0xFE), and four bytes
of data followed by a stop condition.
3. The operation will be terminated due to an error condition and the data will be flushed:
a. If a new subaddress is written to the TAS5028 before the correct number of bytes have been written.
b. If more or less than 4 bytes are data written at the beginning or during any of the append operations.
c. If a read bit is sent.
4.6 Single Byte Read
As shown in Figure 4-4, a single byte data read transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit. For the data read transfer, both a write
followed b y a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal
memory address to be read. As a result, the read/write bit will be a 0. After receiving the TAS5028 address
and the read/write bit, the TAS5028 responds with an acknowledge bit. In addition, after sending the internal
memory address byte or bytes, the master device transmits another start condition followed by the TAS5028
address and the read/write bit again. This time the read/write bit will be a 1, indicating a read transfer. After
receiving the TAS5028 and the read/write bit the TAS5028 again responds with an acknowledge bit. Next, the
TAS5028 transmits the data byte from the memory address being read. After receiving the data byte, the
master device transmits a not acknowledge followed by a stop condition to complete the single byte data read
transfer.
A6 A5 A0 R/W ACK A7 A6 A5 A4 A0 ACK A6 A5 A0 ACK
Start
Condition
Stop
Condition
Acknowledge Acknowledge Acknowledge
I2C Device Address and
Read/Write Bit Sub-Address Data Byte
D7 D6 D1 D0 ACK
I2C Device Address and
Read/Write Bit
Not
Acknowledge
R/WA1 A1
Repeat Start
Condition
Figure 4-4. Single Byte Read Transfer
4.7 Multiple Byte Read
A multiple byte data read transfer is identical to a single byte data read transfer except that multiple data bytes
are transmitted by the TAS5028 to the master device as shown in Figure 4-5. Except for the last data byte,
the master device responds with an acknowledge bit after receiving each data byte.
A6 A0 ACK
Acknowledge
I2C Device Address and
Read/Write Bit
R/WA6 A0 R/W ACK A0 ACK D7 D0 ACK
Start
Condition
Stop
Condition
Acknowledge Acknowledge Acknowledge
Last Data Byte
ACK
First Data Byte
Repeat Start
Condition Not
Acknowledge
I2C Device Address and
Read/Write Bit Sub-Address Other Data Bytes
A7 A6 A5 D7 D0 ACK
Acknowledge
D7 D0
Figure 4-5. Multiple Byte Read Transfer
I2C Serial Control Interface (Slave Address 0x36)
48 SLES112 — June 2004TAS5028
Serial Control I2C Register Summary
49
SLES112 — June 2004 TAS5028
5 Serial Control I2C Register Summary
The TAS5028 slave address is 0x36. See the Serial Control I2C Register Bit Definitions chapter for complete
bit definitions.
Note that u indicates unused bits.
I2C
SUBADDRESS TOTAL
BYTES REGISTER FIELDS DESCRIPTION OF CONTENTS DEFAULT STATE
0x00 1 Clock control register Set data rate and MCLK frequency 1. Fs = 48 kHz
2. MCLK = 256 Fs = 12.288 MHz
0x01 1 General status register Clip indicator and ID code for the
TAS5028 0x01
0x02 1 Error status register PLL, SCLK, LRCLK, and frame slip
errors No errors
0x03 1 System control register 1 PWM high pass, clock set, un-mute
select
1. PWM high pass disabled
2. Auto clock set
3. Hard un-mute on clock error
recovery
0x04 1 System control register 2 Automute and de-emphasis control
1. Automute timeout disable
2. Post-DAP detection automute
enabled
3. 8-Ch device input detection
automute enabled
4. Un-mute threshold 6 dB over input
5. No de-emphasis
0x05 – 0x0C 1Channel configuration registers Configure channels 1, 2, 3, 4, 5, 6, 7,
and 8
1. Enable backend reset
2. Valid low for reset
3. Valid low for mute
4. Normal BEPolarity
5. Don’t remap the output for the
TAS5182
6. Don’t go low-low in mute
7. Don’t remap Hi-Z state to
low-low state
0x0D 1 Headphone configuration
register Configure headphone output
1. Disable backend reset sequence
2 Valid does not have to be low for
reset
3. Valid does not have to be low for
mute
4. Normal BEPolarity
5. Don’t remap output to comply
with 5182
6. Don’t go low-low in mute
7. Don’t remap Hi-Z state to
low-low state
0x0E 1 Serial data interface register Set serial data interface to right
justified, I2S, or left justified 24-bit I2S
0x0F 1 Soft mute register Soft mute for channels 1, 2, 3, 4, 5, 6,
7, and 8 Un-mute all channels
0x10 – 0x13 RESERVED
0x14 1 Automute control Set auto-mute delay and threshold 1. Set auto-mute delay = 5 ms
2. Set auto-mute threshold less
than bit 8
0x15 1 Automute PWM threshold and
backend reset period Set PWM auto-mute threshold, set
backend reset period 1. Set the PWM threshold the same
as the TAS5028 input threshold
2. Set backend reset
period = 5 ms
0x16 1 Modulation limit register Set modulation index 97.7%
0x17-0x1A RESERVED
Serial Control I2C Register Summary
50 SLES112 — June 2004TAS5028
I2C
SUBADDRESS DEFAULT STATEDESCRIPTION OF CONTENTSREGISTER FIELDS
TOTAL
BYTES
0x1B–0x22 1/Reg. Inter-channel delay registers Set inter-channel delay
Channel 1 delay = -23 DCLK
periods
Channel 2 delay = 0 DCLK periods
Channel 3 delay = -16 DCLK
periods
Channel 4 delay = +16 DCLK
periods
Channel 5 delay = -24 DCLK
periods
Channel 6 delay = 8 DCLK periods
Channel 7 delay = -8 DCLK
periods
Channel 8 delay = 24 DCLK
periods
0x23 1 Inter-channel offset Absolute delay offset for channel 1
(0 – 255) Minimum absolute default = 0
DCLK periods
0x24-0x3F RESERVED
0x40 4 Bank switching command
register Set up DAP coefficients bank
switching for banks 1, 2, and 3 Manual selection – Bank 1
0x41–0x48 32/Reg See the Input Mixer Registers
(0x41 – 0x48, Channels 1 – 8)
section 8X8 input crossbar mixer setup
SDIN1-Left to input mixer 1
SDIN1-Right to input mixer 2
SDIN2-Left to input mixer 3
SDIN2-Right to input mixer 4
SDIN3-Left to input mixer 5
SDIN3-Right to input mixer 6
SDIN4-Left to input mixer 7
SDIN4-Right to input mixer 8
0x49–0x88 RESERVED
0x89–0x90 8 Bass and Treble Bypass
Ch 1 - 8 Bypass bass and treble for
channels 1-8 Bass and treble bypassed for all
channels
0x91–0xA9 RESERVED
0xAA 8 sel op1-8 and mix to S Select 0 to 2 of eight channels to
output mixer S Select channel 1 to PWM 1
0xAB 8 sel op1-8 and mix to T Select 0 to 2 of eight channels to
output mixer T Select channel 2 to PWM 2
0xAC 8 sel op1-8 and mix to U Select 0 to 2 of eight channels to
output mixer U Select channel 3 to PWM 3
0xAD 8 sel op1-8 and mix to V Select 0 to 2 of eight channels to
output mixer V Select channel 4 to PWM 4
0xAE 8 sel op1-8 and mix to W Select 0 to 2 of eight channels to
output mixer W Select channel 5 to PWM 5
0xAF 8 sel op1-8 and mix to X Select 0 to 2 of eight channels to
output mixer X Select channel 6 to PWM 6
0xB0 12 sel op1-8 and mix to Y Select 0 to 3 of eight channels to
output mixer Y Select channel 7 to PWM 7
0xB1 12 sel op1-8 and mix to Z Select 0 to 3 of eight channels to
output mixer Z Select channel 8 to PWM 8
0xB2–0xCF RESERVED
0xD0 4 Vol, T and B slew rates U (31:24), U (23:16), U (15:12)
VSR(11:8), TBSR(7:0) 0x00, 0x00, 0x02, 0x3F
0xD1 4 Ch1 volume Channel 1 volume 0 dB
0xD2 4 Ch2 volume Channel 2 volume 0 dB
0xD3 4 Ch3 volume Channel 3 volume 0 dB
0xD4 4 Ch4 volume Channel 4 volume 0 dB
Serial Control I2C Register Summary
51
SLES112 — June 2004 TAS5028
I2C
SUBADDRESS DEFAULT STATEDESCRIPTION OF CONTENTSREGISTER FIELDS
TOTAL
BYTES
0xD5 4 Ch5 volume Channel 5 volume 0 dB
0xD6 4 Ch6 volume Channel 6 volume 0 dB
0xD7 4 Ch7 volume Channel 7 volume 0 dB
0xD8 4 Ch8 volume Channel 8 volume 0 dB
0xD9 4 Master volume Master volume Mute
OXDA 4 Bass filter set (1-5) Bass filter set (all channels) Filter set 3
0xDB 4 Bass filter index Bass filter level (all channels) 0 dB
0xDC 4 Treble filter set (1-5) Treble filter set (all channels) Filter set 3
0xDD 4 Treble filter index Treble filter level (all channels) 0 dB
0xDE 4 AM mode and tuned frequency
register Set-up AM mode for AM-interference
reduction AM mode disabled
Select sequence 1
IF frequency = 455 kHz
Use BCD-tuned frequency
0xDF RESERVED
0xE0 4 General control register Six or eight channel configuration Eight channel configuration
0xE1–0xFD RESERVED
0xFE 4 (min) Multiple bit writer append
register Special register N/A
0xFF RESERVED
Serial Control I2C Register Summary
52 SLES112 — June 2004TAS5028
Serial Control Interface Register Definitions
53
SLES112 — June 2004 TAS5028
6 Serial Control Interface Register Definitions
Unless otherwise noted, the I2C register default values are in bold font.
Note that u indicates unused bits.
6.1 Clock Control Register (0x00)
Bit D1 is Don’t Care.
Table 6-1. Clock Control Register
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 - - - - 32-kHz data rate
0 0 1 - - - - 38-kHz data rate
0 1 0 - - - - 44.1-kHz data rate
0 1 1 - - - - 48-kHz data rate
1 0 0 - - - - 88.2-kHz data rate
1 0 1 - - - - 96-kHz data rate
1 1 0 - - - - 176.4-kHz data rate
1 1 1 - - - - 192-kHz data rate
- - - 0 0 0 MCLK frequency = 64
- - - 0 0 1 MCLK frequency = 128
- - - 0 1 0 MCLK frequency = 192
- - - 0 1 1 MCLK frequency = 256
- - - 1 0 0 MCLK frequency = 384
- - - 1 0 1 MCLK frequency = 512
- - - 1 1 0 MCLK frequency = 768
- - - 1 1 1 Reserved
- - - - - - 1 Clock register is valid (read only)
- - - - - - 0 Clock register is not valid (read only)
6.2 General Status Register 0 (0x01)
Table 6-2. General Status Register (0x01)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
1 - - - - - - - Clip indicator
- 1 - - - - - - Bank switching busy
- - 0 0 0 0 0 1 Identification code for TAS5028
6.3 Error Status Register (0x02)
Note that the error bits are sticky bits that are not cleared by the hardware. This means that the software must
clear the register (write zeroes) and than read them to determine if there are any persistent errors.
Table 6-3. Error Status Register (0X02)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
1 - - - - - - - PLL phase lock error
- 1 - - - - - - PLL auto lock error
- - 1 - - - - - SCLK error
- - - 1 - - - - LRCLK error
- - - - 1 - - - Frame slip
0 0 0 0 0 0 0 0 No errors
Serial Control Interface Register Definitions
54 SLES112 — June 2004TAS5028
6.4 System Control Register 1 (0x03)
Bit D5, D2, D1, and D0 are Don’t Care.
Table 6-4. System Control Register 1
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 - - - PWM high pass disabled
1 - - - PWM high pass enabled
- - 0 Soft unmute on recovery from clock error
- - 1 Hard unmute on recovery from clock error
6.5 System Control Register 2 (0x04)
Bit D3 and D2 are Don’t Care.
Table 6-5. System Control Register 2
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 - - - - - Reserved
- 0 - - - - PWM automute detection enabled
- 1 - - - - PWM automute detection disabled
0 - - - 8 Ch device input detection automute enabled
- - 1 - - - 8 Ch device input detection automute disabled
- - - 0 - - Unmute threshold 6 dB over input threshold
- - - 1 - - Unmute threshold equal to input threshold
- - - - 0 0 No de-emphasis
- - - - 0 1 De-emphasis for Fs = 32 kHz
- - - - 1 0 De-emphasis for Fs = 44.1 kHz
- - - - 1 1 De-emphasis for Fs = 48 kHz
6.6 Channel Configuration Control Register (0x05-X0C)
Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into x05, x06, x07, x08, x09, x0A, x0B, and x0C.
Bit D0 is Don’t Care.
Table 6-6. Channel Configuration Control Registers
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 - - - - - - Disable backend reset sequence for a channel - BEErrorRecEn
1 - - - - - - Enable backend reset sequence for a channel
- 0 - - - - - Valid does not have to be low for this channel to be reset BEValidRst
- 1 - - - - - Valid must be low for this channel to be reset
- - 0 - - - - Valid does not have to be low for this channel to be muted BEValidMute
- - 1 - - - - Valid must be low for this channel to be muted
- - - 0 - - - Normal BEPolarity
- - - 1 - - - Switches PWM+ and PWM- and invert audio signal
- - - - 0 - - Do not remap output to comply with 5182 interface
- - - - 1 - - Remap output to comply with 5182 interface
- - - - - 0 - Do not go to low low in mute - BELowMute
- - - - - 1 - Go to low-low in Mute
- - - - - - 0 Do not remap Hi-Z state to low-low state - BE5111BsMute
- - - - - - 1 Remap Hi-Z state to low-low state
Serial Control Interface Register Definitions
55
SLES112 — June 2004 TAS5028
6.7 Headphone Configuration Control Register (0x0D)
Bit D0 is Don’t Care.
Table 6-7. Headphone Configuration Control Register
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 - - - - - - Disable backend reset sequence for a channel - BEErrorRecEn
1 - - - - - - Enable backend reset sequence for a channel
- 0 - - - - - Valid does not have to be low for this channel to be reset BEValidRst
- 1 - - - - - Valid must be low for this channel to be reset
- - 0 - - - - Valid does not have to be low for this channel to be muted BEValidMute
- - 1 - - - - Valid must be low for this channel to be muted
- - - 0 - - - Normal BEPolarity
- - - 1 - - - Switches PWM+ and PWM- and invert audio signal
- - - - 0 - - Do not remap output to comply with 5182 interface
- - - - 1 - - Remap output to comply with 5182 interface
- - - - - 0 - Do not go to low low in mute - BELowMute
- - - - - 1 - Go to low-low in Mute
- - - - - - 0 Do not remap Hi-Z state to low-low state - BE5111BsMute
- - - - - - 1 Remap Hi-Z state to low-low state
6.8 Serial Data Interface Control Register (0x0E)
Nine serial modes can be programmed I2C.
Table 6-8. Serial Data Interface Control Register Format
RECEIVE SERIAL DATA
INTERFACE FORMAT WORD LENGTHS D7-D4 D3 D2 D1 D0
Right justified 16 0000 0 0 0 0
Right justified 20 0000 0 0 0 1
Right justified 24 0000 0 0 1 0
I2S 16 0000 0 0 1 1
I2S 20 0000 0 1 0 0
I2S 24 0000 0 1 0 1
Left justified 16 0000 0 1 1 0
Left justified 20 0000 0 1 1 1
Left justified 24 0000 1 0 0 0
Illegal 0000 1 0 0 1
Illegal 0000 1 0 1 0
Illegal 0000 1 0 1 1
Illegal 0000 1 1 0 0
Illegal 0000 1 1 0 1
Illegal 0000 1 1 1 0
Illegal 0000 1 1 1 1
Serial Control Interface Register Definitions
56 SLES112 — June 2004TAS5028
6.9 Soft Mute Register (0x0F)
Table 6-9. Soft Mute Register
D7 D6 D5 D4 D3 D2 D1 D0 Function
- - - - - - - 1 Soft Mute Channel 1
- - - - - - 1 - Soft Mute Channel 2
- - - - - 1 - - Soft Mute Channel 3
- - - - 1 - - - Soft Mute Channel 4
- - - 1 - - - - Soft Mute Channel 5
- - 1 - - - - - Soft Mute Channel 6
- 1 - - - - - - Soft Mute Channel 7
1 - - - - - - - Soft Mute Channel 8
0 0 0 0 0 0 0 0 Unmute All Channels
6.10 Automute Control Register(0x14)
Table 6-10. Automute Control Register
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
- - - - 0 0 0 0 Set input automute and PWM automute delay to 1 ms
- - - - 0 0 0 1 Set input automute and PWM automute delay to 2 ms
- - - - 0 0 1 0 Set input automute and PWM automute delay to 3 ms
- - - - 0 0 1 1 Set input automute and PWM automute delay to 4 ms
- - - - 0 1 0 0 Set input automute and PWM automute delay to 5 ms
- - - - 0 1 0 1 Set input automute and PWM automute delay to 10 ms
- - - - 0 1 1 0 Set input automute and PWM automute delay to 20 ms
- - - - 0 1 1 1 Set input automute and PWM automute delay to 30 ms
- - - - 1 0 0 0 Set input automute and PWM automute delay to 40 ms
- - - - 1 0 0 1 Set input automute and PWM automute delay to 50 ms
- - - - 1 0 1 0 Set input automute and PWM automute delay to 60 ms
- - - - 1 0 1 1 Set input automute and PWM automute delay to 70ms
- - - - 1 1 0 0 Set input automute and PWM automute delay to 80 ms
- - - - 1 1 0 1 Set input automute and PWM automute delay to 90 ms
- - - - 1 1 1 0 Set input automute and PWM automute delay to 100 ms
- - - - 1 1 1 1 Set input automute and PWM automute delay to 110 ms
0 0 0 0 - - - Set input automute threshold less than Bit 1 (zero input si
g
nal), lowest automute
0 0 0 1 - - - -
Set input automute threshold less than Bit 1 (zero input signal)
,
lowest automute
threshold.
0 0 1 0 - - - - Set input automute threshold less than Bit 2
0 0 1 1 - - - - Set input automute threshold less than Bit 3
0 1 0 0 - - - - Set input automute threshold less than Bit 4
0 1 0 1 - - - - Set input automute threshold less than Bit 5
0 1 1 0 - - - - Set input automute threshold less than Bit 6
0 1 1 1 - - - - Set input automute threshold less than Bit 7
1 0 0 0 - - - - Set input automute threshold less than Bit 8
1 0 0 1 - - - - Set input automute threshold less than Bit 9
1 0 1 0 - - - - Set input automute threshold less than Bit 10
1 0 1 1 - - - - Set input automute threshold less than Bit 11
1 1 0 0 - - - - Set input automute threshold less than Bit 12
1 1 0 1 - - - - Set input automute threshold less than Bit 13
1 1 1 0 - - - - Set input automute threshold less than Bit 14
1 1 1 1 - - - - Set input automute threshold less than Bit 15
Serial Control Interface Register Definitions
57
SLES112 — June 2004 TAS5028
6.11 Automute PWM Threshold and Backend Reset Period (0x15)
Table 6-11. Automute PWM Threshold and Backend Reset Period
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 0 - - - - Set PWM automute threshold equals input automute threshold
0 0 0 1 - - - - Set PWM automute threshold 1 bit more than input automute threshold
0 0 1 0 - - - - Set PWM automute threshold 2 bits more than input automute threshold
0 0 1 1 - - - - Set PWM automute threshold 3 bits more than input automute threshold
0 1 0 0 - - - - Set PWM automute threshold 4 bits more than input automute threshold
0 1 0 1 - - - - Set PWM automute threshold 5 bits more than input automute threshold
0 1 1 0 - - - - Set PWM automute threshold 6 bits more than input automute threshold
0 1 1 1 - - - - Set PWM automute threshold 7 bits more than input automute threshold
1 0 0 0 - - - - Set PWM automute threshold equals input automute threshold
1 0 0 1 - - - - Set PWM automute threshold 1 bit less than input automute threshold
1 0 1 0 - - - - Set PWM automute threshold 2 bits less than input automute threshold
1 0 1 1 - - - - Set PWM automute threshold 3 bits less than input automute threshold
1 1 0 0 - - - - Set PWM automute threshold 4 bits less than input automute threshold
1 1 0 1 Set PWM automute threshold 5 bits less than input automute threshold
1 1 1 0 Set PWM automute threshold 6 bits less than input automute threshold
1 1 1 1 Set PWM automute threshold 7 bits less than input automute threshold
- - - - 0 0 0 0 Set backend reset period < 1 ms
- - - - 0 0 0 1 Set backend reset period 1 ms
- - - - 0 0 1 0 Set backend reset period 2 ms
- - - - 0 0 1 1 Set backend reset period 3 ms
- - - - 0 1 0 0 Set backend reset period 4 ms
- - - - 0 1 0 1 Set backend reset period 5 ms
- - - - 0 1 1 0 Set backend reset period 6 ms
- - - - 0 1 1 1 Set backend reset period 7 ms
- - - - 1 0 0 0 Set backend reset period 8 ms
- - - - 1 0 0 1 Set backend reset period 9 ms
- - - - 1 0 1 0 Set backend reset period 10 ms
- - - - 1 0 1 1 Set backend reset period 10 ms
- - - - 1 1 X X Set backend reset period 10 ms
6.12 Modulation Index Limit Register (0x16)
Table 6-12. Modulation Index Limit Register
D7 D6 D5 D4 D3 D2 D1 D0 LIMIT
[DCLKS] MIN WIDTH
[DCLKS] MODULATION INDEX
0 0 0 1 2 99.2%
0 0 1 2 4 98.4%
0 1 0 3 6 97.7%
0 1 1 4 8 96.9%
1 0 0 5 10 96.1%
1 0 1 6 12 95.3%
1 1 0 7 14 94.5%
1 1 1 8 16 93.8%
Serial Control Interface Register Definitions
58 SLES112 — June 2004TAS5028
6.13 Interchannel Channel Delay Registers (0x1B - 0x22) and Offset Register (0x23)
Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into (0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, and 0x22).
Bits D1 and D0 are Don’t Care.
Table 6-13. Interchannel Channel Delay Registers
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 0 0 0 Minimum absolute delay, 0 DCLK cycles, default for channel 1
0 1 1 1 1 1 Maximum positive delay, 31 x 4 DCLK cycles
1 0 0 0 0 0 Maximum negative delay, -32 x 4 DCLK cycles
1 0 0 0 0 0 Default value for Channel 1 -32
0 0 0 0 0 0 Default value for Channel 2 0
1 1 0 0 0 0 Default value for Channel 3 -16
0 1 0 0 0 0 Default value for Channel 4 16
1 0 1 0 0 0 Default value for Channel 5 -24
0 0 1 0 0 0 Default value for Channel 6 8
1 1 1 0 0 0 Default value for Channel 7 -8
0 1 1 0 0 0 Default value for Channel 8 24
The offset register is mapped into 0x23.
Table 6-14. Channel Offset Register
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 0 0 0 0 0 Minimum absolute offset, 0 DCLK cycles default for channel 1
1 1 1 1 1 1 1 1 Maximum absolute delay, 255 DCLK cycles
Serial Control Interface Register Definitions
59
SLES112 — June 2004 TAS5028
6.14 Bank Switching Command (0x40)
Bits D31-D24, D22-D19 are Don’t Care.
Table 6-15. Bank Switching Command
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
Unused bits
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
- 0 0 0 Manual selection Bank 1
- 0 0 1 Manual selection Bank 2
- 0 1 0 Manual selection Bank 3
- 0 1 1 Automatic bank selection
- 1 0 0 Update the values in Bank 1
- 1 0 1 Update the values in Bank 2
- 1 1 0 Update the values in Bank 3
0 1 1 1 Update only the bank map
0 x x x Update the bank map using values in
D15-D0
1 x x x Do not update the bank map using
values in D15-D0
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
1 - - - - - - - 32-kHz data rate – Use Bank 1
- 1 - - - - - - 38-kHz data rate – Use Bank 1
- - 1 - - - - - 44.1-kHz data rate – Use Bank 1
- - - 1 - - - - 48-kHz data rate – Use Bank 1
- - - - 1 - - - 88.2-kHz data rate – Use Bank 1
- - - - - 1 - - 96-kHz data rate – Use Bank 1
- - - - - - 1 - 176.4-kHz data rate – Use Bank 1
- - - - - - - 1 192-kHz data rate – Use Bank 1
1 1 1 1 1 1 1 1 Default
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
1 - - - - - - - 32-kHz data rate – Use Bank 2
- 1 - - - - - - 38-kHz data rate – Use Bank 2
- - 1 - - - - - 44.1-kHz data rate – Use Bank 2
- - - 1 - - - - 48-kHz data rate – Use Bank 2
- - - - 1 - - - 88.2-kHz data rate – Use Bank 2
- - - - - 1 - - 96-kHz data rate – Use Bank 2
- - - - - - 1 - 176.4-kHz data rate – Use Bank 2
- - - - - - - 1 192-kHz data rate – Use Bank 2
1 1 1 1 1 1 1 1 Default
Serial Control Interface Register Definitions
60 SLES112 — June 2004TAS5028
6.15 Input Mixer Registers (0x41 – 0x48, Channels 1 - 8)
Input mixers 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into registers 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, and
0x48.
Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as
a 32-bit word with the upper 4 bits not used. For 8-gain coefficients, the total is 32 bytes.
Bold indicates the one channel that is passed through the mixer.
Table 6-16. Input Mixer Registers Format (0x41 – 0x48, Channels 1 - 8)
I2C
SUBADDRESS TOTAL
BYTES REGISTER
FIELDS DESCRIPTION OF CONTENTS DEFAULT STATE
A_to_ipmix[1] SDIN1-Left (Ch 1) A to Input Mixer 1 coefficient (default = 1)
U (31:28), A_1 (27:24), A_1 (23:16), A_1 (15:8), A_1 (7:0) 0x00, 0x80, 0x00, 0x00
B_to_ipmix[1] SDIN1-Right (Ch 2) B to Input Mixer 1 coefficient (default = 0)
U (31:28), B_1 (27:24), B_1 (23:16), B_1 (15:8), B_1 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[1] SDIN2-Left (Ch 3) C to Input Mixer 1 coefficient (default = 0)
U (31:28), C_1 (27:24), C_1 (23:16), C_1 (15:8), C_1 (7:0) 0x00, 0x00, 0x00, 0x00
0x41
32
D_to_ipmix[1] SDIN2-Right (Ch 4) D to Input Mixer 1 coefficient (default = 0)
U (31:28), D_1 (27:24), D_1 (23:16), D_1 (15:8), D_1 (7:0) 0x00, 0x00, 0x00, 0x00
0x41 32 E_to_ipmix[1] SDIN3-Left (Ch 5) E to Input Mixer 1 coefficient (default = 0)
U (31:28), E_1 (27:24), E_1 (23:16), E_1 (15:8), E_1 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[1] SDIN3-Right (Ch 6) F to Input Mixer 1 coefficient (default = 0)
U (31:28), F_1 (27:24), F_1 (23:16), F_1 (15:8), F_1 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[1] SDIN4-Left (Ch 7) G to Input Mixer 1 coefficient (default = 0)
U (31:28), G_1 (27:24), G_1 (23:16), G_1 (15:8), G_1 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[1] SDIN4-Right (Ch 8) H to Input Mixer 1 coefficient (default = 0)
U (31:28), H_1 (27:24), H_1 (23:16), H_1 (15:8), H_1 (7:0) 0x00, 0x00, 0x00, 0x00
A_to_ipmix[2] SDIN1-Left (Ch 1) A to Input Mixer 2 coefficient (default = 0)
U (31:28), A_2 (27:24), A_2 (23:16), A_2 (15:8), A_2 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[2] SDIN1-Right (Ch 2) B to Input Mixer 2 coefficient (default = 1)
U (31:28), B_2 (27:24), B_2 (23:16), B_2 (15:8), B_2 (7:0) 0x00, 0x80, 0x00, 0x00
C_to_ipmix[2] SDIN2-Left (Ch 3) C to Input Mixer 2 coefficient (default = 0)
U (31:28), C_2(27:24), C_2(23:16), C_2(15:8), C_2(7:0) 0x00, 0x00, 0x00, 0x00
0x42
32
D_to_ipmix[2] SDIN2-Right (Ch 4) D to Input Mixer 2 coefficient (default = 0)
U (31:28), D_2 (27:24), D_2 (23:16), D_2 (15:8), D_2 (7:0) 0x00, 0x00, 0x00, 0x00
0x42 32 E_to_ipmix[2] SDIN3-Left (Ch 5) E to Input Mixer 2 coefficient (default = 0)
U (31:28), E_2 (27:24), E_2 (23:16), E_2 (15:8), E_2 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[2] SDIN3-Right (Ch 6) F to Input Mixer 2 coefficient (default = 0)
U (31:28), F_2 (27:24), F_2 (23:16), F_2 (15:8), F_2 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[2] SDIN4-Left (Ch 7) G to Input Mixer 2 coefficient (default = 0)
U (31:28), G_2 (27:24), G_2 (23:16), G_2 (15:8), G_2 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[2] SDIN4-Right (Ch 8) H to Input Mixer 2 coefficient (default = 0)
U (31:28), H_2 (27:24), H_2 (23:16), H_2 (15:8), H_2 (7:0) 0x00, 0x00, 0x00, 0x00
Serial Control Interface Register Definitions
61
SLES112 — June 2004 TAS5028
I2C
SUBADDRESS TOTAL
BYTES REGISTER
FIELDS DESCRIPTION OF CONTENTS DEFAULT STATE
A_to_ipmix[3] SDIN1-Left (Ch 1) A to Input Mixer 3 coefficient (default = 0)
U (31:28), A_3 (27:24), A_3 (23:16), A_3 (15:8), A_3 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[3] SDIN1-Right (Ch 2) B to Input Mixer 3 coefficient (default = 0)
U (31:28), B_3 (27:24), B_3 (23:16), B_3 (15:8), B_3 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[3] SDIN2-Left (Ch 3) C to Input Mixer 3 coefficient (default = 1)
U (31:28), C_3 (27:24), C_3 (23:16), C_3 (15:8), C_3 (7:0) 0x00, 0x80, 0x00, 0x00
0x43
32
D_to_ipmix[3] SDIN2-Right (Ch 4) D to Input Mixer 3 coefficient (default = 0)
U (31:28), D_3 (27:24), D_3 (23:16), D_3 (15:8), D_3 (7:0) 0x00, 0x00, 0x00, 0x00
0x43 32 E_to_ipmix[3] SDIN3-Left (Ch 5) E to Input Mixer 3 coefficient (default = 0)
U (31:28), E_3 (27:24), E_3 (23:16), E_3 (15:8), E_3 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[3] SDIN3-Right (Ch 6) F to Input Mixer 3 coefficient (default = 0)
U (31:28), F_3 (27:24), F_3 (23:16), F_3 (15:8), F_3 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[3] SDIN4-Left (Ch 7) G to Input Mixer 3 coefficient (default = 0)
U (31:28), G_3 (27:24), G_3 (23:16), G_3 (15:8), G_3 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[3] SDIN4-Right (Ch 8) H to Input Mixer 3 coefficient (default = 0)
U (31:28), H_3 (27:24), H_3 (23:16), H_3 (15:8), H_3 (7:0) 0x00, 0x00, 0x00, 0x00
A_to_ipmix[4] SDIN1-Left (Ch 1) A to Input Mixer 4 coefficient (default = 0)
U (31:28), A_4 (27:24), A_4 (23:16), A_4 (15:8), A_4 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[4] SDIN1-Right (Ch 2) B to Input Mixer 4 coefficient (default = 0)
U (31:28), B_4 (27:24), B_4 (23:16), B_4 (15:8), B_4 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[4] SDIN2-Left (Ch 3) C to Input Mixer 4 coefficient (default = 0)
U (31:28), C_4 (27:24), C_4 (23:16), C_4 (15:8), C_4 (7:0) 0x00, 0x00, 0x00, 0x00
0x44
32
D_to_ipmix[4] SDIN2-Right (Ch 4) D to Input Mixer 4 coefficient (default = 1)
U (31:28), D_4 (27:24), D_4 (23:16), D_4 (15:8), D_4 (7:0) 0x00, 0x80, 0x00, 0x00
0x44 32 E_to_ipmix[4] SDIN3-Left (Ch 5) E to Input Mixer 4 coefficient (default = 0)
U (31:28), E_4 (27:24), E_4 (23:16), E_4 (15:8), E_4 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[4] SDIN3-Right (Ch 6) F to Input Mixer 4 coefficient (default = 0)
U (31:28), F_4 (27:24), F_4 (23:16), F_4 (15:8), F_4 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[4] SDIN4-Left (Ch 7) G to Input Mixer 4 coefficient (default = 0)
U (31:28), G_4 (27:24), G_4 (23:16), G_4 (15:8), G_4 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[4] SDIN4-Right (Ch 8) H to Input Mixer 4 coefficient (default = 0)
U (31:28), H_4 (27:24), H_4 (23:16), H_4 (15:8), H_4 (7:0) 0x00, 0x00, 0x00, 0x00
A_to_ipmix[5] SDIN1-Left (Ch 1) A to Input Mixer 5 coefficient (default = 0)
U (31:28), A_5 (27:24), A_5 (23:16), A_5 (15:8), A_5 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[5] SDIN1-Right (Ch 2) B to Input Mixer 5 coefficient (default = 0)
U (31:28), B_5 (27:24), B_5 (23:16), B_5 (15:8), B_5 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[5] SDIN2-Left (Ch 3) C to Input Mixer 5 coefficient (default = 0)
U (31:28), C_5 (27:24), C_5 (23:16), C_5 (15:8), C_5 (7:0) 0x00, 0x00, 0x00, 0x00
0x45
32
D_to_ipmix[5] SDIN2-Right (Ch 4) D to Input Mixer 5 coefficient (default = 0)
U (31:28), D_5 (27:24), D_5 (23:16), D_5 (15:8), D_5 (7:0) 0x00, 0x00, 0x00, 0x00
0x45 32 E_to_ipmix[5] SDIN3-Left (Ch 5) E to Input Mixer 5 coefficient (default = 1)
U (31:28), E_5 (27:24), E_5 (23:16), E_5 (15:8), E_5 (7:0) 0x00, 0x80, 0x00, 0x00
F_to_ipmix[5] SDIN3-Right (Ch 6) F to Input Mixer 5 coefficient (default = 0)
U (31:28), F_5 (27:24), F_5 (23:16), F_5 (15:8), F_5 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[5] SDIN4-Left (Ch 7) G to Input Mixer 5 coefficient (default = 0)
U (31:28), G_5 (27:24), G_5 (23:16), G_5 (15:8), G_5 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[5] SDIN4-Right (Ch 8) H to Input Mixer 5 coefficient (default = 0)
U (31:28), H_5 (27:24), H_5 (23:16), H_5 (15:8), H_5 (7:0) 0x00, 0x00, 0x00, 0x00
Serial Control Interface Register Definitions
62 SLES112 — June 2004TAS5028
I2C
SUBADDRESS TOTAL
BYTES REGISTER
FIELDS DESCRIPTION OF CONTENTS DEFAULT STATE
A_to_ipmix[6] SDIN1-Left (Ch 1) A to Input Mixer 6 coefficient (default = 0)
U (31:28), A_6 (27:24), A_6 (23:16), A_6 (15:8), A_6 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[6] SDIN1-Right (Ch 2) B to Input Mixer 6 coefficient (default = 0)
U (31:28), B_6 (27:24), B_6 (23:16), B_6 (15:8), B_6 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[6] SDIN2-Left (Ch 3) C to Input Mixer 6 coefficient (default = 0)
U (31:28), C_6 (27:24), C_6 (23:16), C_6 (15:8), C_6 (7:0) 0x00, 0x00, 0x00, 0x00
0x46
32
D_to_ipmix[6] SDIN2-Right (Ch 4) D to Input Mixer 6 coefficient (default = 0)
U (31:28), D_6 (27:24), D_6 (23:16), D_6 (15:8), D_6 (7:0) 0x00, 0x00, 0x00, 0x00
0x46 32 E_to_ipmix[6] SDIN3-Left (Ch 5) E to Input Mixer 6 coefficient (default = 0)
U (31:28), E_6 (27:24), E_6 (23:16), E_6 (15:8), E_6 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[6] SDIN3-Right (Ch 6) F to Input Mixer 6 coefficient (default = 1)
U (31:28), F_6 (27:24), F_6 (23:16), F_6 (15:8), F_6 (7:0) 0x00, 0x80, 0x00, 0x00
G_to_ipmix[6] SDIN4-Left (Ch 7) G to Input Mixer 6 coefficient (default = 0)
U (31:28), G_6 (27:24), G_6 (23:16), G_6 (15:8), G_6 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[6] SDIN4-Right (Ch 8) H to Input Mixer 6 coefficient (default = 0)
U (31:28), H_6 (27:24), H_6 (23:16), H_6 (15:8), H_6 (7:0) 0x00, 0x00, 0x00, 0x00
A_to_ipmix[7] SDIN1-Left (Ch 1) A to Input Mixer 7 coefficient (default = 0)
U (31:28), A_7 (27:24), A_7 (23:16), A_7 (15:8), A_7 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[7] SDIN1-Right (Ch 2) B to Input Mixer 7 coefficient (default = 0)
U (31:28), B_7 (27:24), B_7 (23:16), B_7 (15:8), B_7 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[7] SDIN2-Left (Ch 3) C to Input Mixer 7 coefficient (default = 0)
U (31:28), C_7 (27:24), C_7 (23:16), C_7 (15:8), C_7 (7:0) 0x00, 0x00, 0x00, 0x00
0x47
32
D_to_ipmix[7] SDIN2-Right (Ch 4) D to Input Mixer 7 coefficient (default = 0)
U (31:28), D_7 (27:24), D_7 (23:16), D_7 (15:8), D_7 (7:0) 0x00, 0x00, 0x00, 0x00
0x47 32 E_to_ipmix[7] SDIN3-Left (Ch 5) E to Input Mixer 7 coefficient (default = 0)
U (31:28), E_7 (27:24), E_7 (23:16), E_7 (15:8), E_7 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[7] SDIN3-Right (Ch 6) F to Input Mixer 7 coefficient (default = 0)
U (31:28), F_7 (27:24), F_7 (23:16), F_7 (15:8), F_7 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[7] SDIN4-Left (Ch 7) G to Input Mixer 7 coefficient (default = 1)
U (31:28), G_7 (27:24), G_7 (23:16), G_7 (15:8), G_7 (7:0) 0x00, 0x80, 0x00, 0x00
H_to_ipmix[7] SDIN4-Right (Ch 8) H to Input Mixer 7 coefficient (default = 0)
U (31:28), H_7 (27:24), H_7 (23:16), H_7 (15:8), H_7 (7:0) 0x00, 0x00, 0x00, 0x00
A_to_ipmix[8] SDIN1-Left (Ch 1) A to Input Mixer 8 coefficient (default = 0)
U (31:28), A_8 (27:24), A_8 (23:16), A_8 (15:8), A_8 (7:0) 0x00, 0x00, 0x00, 0x00
B_to_ipmix[8] SDIN1-Right (Ch 2) B to Input Mixer 8 coefficient (default = 0)
U (31:28), B_8 (27:24), B_8 (23:16), B_8 (15:8), B_8 (7:0) 0x00, 0x00, 0x00, 0x00
C_to_ipmix[8] SDIN2-Left (Ch 3) C to Input Mixer 8 coefficient (default = 0)
U (31:28), C_8 (27:24), C_8 (23:16), C_8 (15:8), C_8 (7:0) 0x00, 0x00, 0x00, 0x00
0x48
32
D_to_ipmix[8] SDIN2-Right (Ch 4) D to Input Mixer 8 coefficient (default = 0)
U (31:28), D_8 (27:24), D_8 (23:16), D_8 (15:8), D_8 (7:0) 0x00, 0x00, 0x00, 0x00
0x48 32 E_to_ipmix[8] SDIN3-Left (Ch 5) E to Input Mixer 8 coefficient (default = 0)
U (31:28), E_8 (27:24), E_8 (23:16), E_8 (15:8), E_8 (7:0) 0x00, 0x00, 0x00, 0x00
F_to_ipmix[8] SDIN3-Right (Ch 6) F to Input Mixer 8 coefficient (default = 0)
U (31:28), F_8 (27:24), F_8 (23:16), F_8 (15:8), F_8 (7:0) 0x00, 0x00, 0x00, 0x00
G_to_ipmix[8] SDIN4-Left (Ch 7) G to Input Mixer 8 coefficient (default = 0)
U (31:28), G_8 (27:24), G_8 (23:16), G_8 (15:8), G_8 (7:0) 0x00, 0x00, 0x00, 0x00
H_to_ipmix[8] SDIN4-Right (Ch 8) H to Input Mixer 8 coefficient (default = 1)
U (31:28), H_8 (27:24), H_8 (23:16), H_8 (15:8), H_8 (7:0) 0x00, 0x80, 0x00, 0x00
Serial Control Interface Register Definitions
63
SLES112 — June 2004 TAS5028
6.16 Bass and Treble Bypass Register (0x89 – 0x90, Channels 1 - 8)
Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into registers 0x89, 0x8A, 0x8B, 0x8C,0x8D, 0x8E, 0x8F, and
0x90. Eight bytes are written for each channel. Each gain coefficient is in 28-bit (5.23) format so 0x800000
is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper four bits not used.
Table 6-17. Bass and Treble Bypass Register Format (0x89-0x90)
REGISTER NAME TOTAL BYTES CONTENTS INITIALIZATION VALUE
Channel bass and
treble bypass
8
U 31:28), Bypass (27:24), Bypass (23:16), Bypass (15:8), Bypass (7:0) 0x00, 0x80, 0x00, 0x00
Channel bass and
treble inline
8U (31:28), Inline (27:24), Inline (23:16), Inline (15:8), Inline (7:0) 0x00, 0x00, 0x00, 0x00
6.17 8x2 Output Mixer Registers (0xAA – 0xAF)
Output mixers for channels 1–6 map to registers 0xAA – 0xAF.
Total data per register is 8 bytes.
Table 6-18. Output Mixer Control Register Format (Upper 4 Bytes)
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 Select channel 1 to output mixer
0 0 0 1 Select channel 2 to output mixer
0 0 1 0 Select channel 3 to output mixer
0 0 1 1 Select channel 4 to output mixer
0 1 0 0 Select channel 5 to output mixer
0 1 0 1 Select channel 6 to output mixer
0 1 1 0 Select channel 7 to output mixer
0 1 1 1 Select channel 8 to output mixer
G27 G26 G25 G24 Selected channel gain (upper 4 bits)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
G15 G14 G13 G12 G11 G10 G9 G8 Selected channel gain (continued)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
G7 G6 G5 G4 G3 G2 G1 G0 Selected channel gain (lower 8 bits)
Serial Control Interface Register Definitions
64 SLES112 — June 2004TAS5028
Table 6-19. Output Mixer Control (Lower 4 Bytes)
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 Select channel 1 to output mixer
0 0 0 1 Select channel 2 to output mixer
0 0 1 0 Select channel 3 to output mixer
0 0 1 1 Select channel 4 to output mixer
0 1 0 0 Select channel 5 to output mixer
0 1 0 1 Select channel 6 to output mixer
0 1 1 0 Select channel 7 to output mixer
0 1 1 1 Select channel 8 to output mixer
G27 G26 G25 G24 Selected channel gain (upper 4 bits)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
G15 G14 G13 G12 G11 G10 G9 G8 Selected channel gain (continued)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
G7 G6 G5 G4 G3 G2 G1 G0 Selected channel gain (lower 8 bits)
6.18 8x3 Output Mixer Registers (0xB0 – 0xB1)
Output mixers for channels 7 and 8 map to registers 0xB0 and 0xB1.
Total data per register is 12 bytes.
Table 6-20. Output Mixer Control (Upper 4 Bytes)
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 Select channel 1 to output mixer
0 0 0 1 Select channel 2 to output mixer
0 0 1 0 Select channel 3 to output mixer
0 0 1 1 Select channel 4 to output mixer
0 1 0 0 Select channel 5 to output mixer
0 1 0 1 Select channel 6 to output mixer
0 1 1 0 Select channel 7 to output mixer
0 1 1 1 Select channel 8 to output mixer
G27 G26 G25 G24 Selected channel gain (upper 4 bits)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
G15 G14 G13 G12 G11 G10 G9 G8 Selected channel gain (continued)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
G7 G6 G5 G4 G3 G2 G1 G0 Selected channel gain (lower 8 bits)
Serial Control Interface Register Definitions
65
SLES112 — June 2004 TAS5028
Table 6-21. Output Mixer Control (Middle 4 Bytes)
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 Select channel 1 to output mixer
0 0 0 1 Select channel 2 to output mixer
0 0 1 0 Select channel 3 to output mixer
0 0 1 1 Select channel 4 to output mixer
0 1 0 0 Select channel 5 to output mixer
0 1 0 1 Select channel 6 to output mixer
0 1 1 0 Select channel 7 to output mixer
0 1 1 1 Select channel 8 to output mixer
G27 G26 G25 G24 Selected channel gain (upper 4 bits)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
G15 G14 G13 G12 G11 G10 G9 G8 Selected channel gain (continued)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
G7 G6 G5 G4 G3 G2 G1 G0 Selected channel gain (lower 8 bits)
Table 6-22. Output Mixer Control (Lower 4 Bytes)
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 Select channel 1 to output mixer
0 0 0 1 Select channel 2 to output mixer
0 0 1 0 Select channel 3 to output mixer
0 0 1 1 Select channel 4 to output mixer
0 1 0 0 Select channel 5 to output mixer
0 1 0 1 Select channel 6 to output mixer
0 1 1 0 Select channel 7 to output mixer
0 1 1 1 Select channel 8 to output mixer
G27 G26 G25 G24 Selected channel gain (upper 4 bits)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
G15 G14 G13 G12 G11 G10 G9 G8 Selected channel gain (continued)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
G7 G6 G5 G4 G3 G2 G1 G0 Selected channel gain (lower 8 bits)
6.19 Volume Treble and Bass Slew Rates (0xD0)
Table 6-23. Volume Gain Update Rate (Slew Rate)
D31-D10 D9 D8 FUNCTION
0 0 0 512 step update at 4 Fs, 42.6 ms at 48 kHz
0 0 1 1024 step update at 4 Fs, 85.3 ms at 48 kHz
0 1 0 2048 step update at 4 Fs, 170 ms at 48 kHz
0 1 1 2048 step update at 4 Fs, 170 ms at 48 kHz
Serial Control Interface Register Definitions
66 SLES112 — June 2004TAS5028
Table 6-24. Treble and Bass Gain Step Size (Slew Rate)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 0 0 0 0 0 No operation
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 Minimum rate – Updates every 0.083 ms (every LRCLK at 48 kHz)
0 0 1 0 0 0 0 0 Update ever 0.67 ms (32 LRCLKs at 48 kHz)
0 0 1 1 1 1 1 1 Default rate - Updates every 1.31 ms (63 LRCLKs at 48 kHz). This is the
maximum constant time that can be set for all sample rates.
1 1 1 1 1 1 1 1 Minimum rate – Updates every 5.08 ms (every 255 LRCLKs at 48 kHz)
6.20 Volume Registers (0xD1 - 0xD9)
Channels 1, 2 , 3 , 4 , 5 , 6 , 7 , and 8 are mapped into registers 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, and
0xD8.
Master volume is mapped into register 0xD9.
Bits D31 - D12 are Don’t Care.
Table 6-25. Volume Registers
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
Unused bits
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
Unused bits
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
V11 V10 V9 V8 Volume
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
V7 V6 V5 V4 V3 V2 V1 V0 Volume
Serial Control Interface Register Definitions
67
SLES112 — June 2004 TAS5028
Table 6-26. Master and Individual Volume Controls
VOLUME INDEX (H) GAIN/INDEX EXPECTED ACTUAL
001 17.75 17.81 17.81
002 17.5 17.56 17.56
003 17.25 17.31 17.31
004 17 17.06 17.06
005 16.75 16.81 16.81
006 16.5 16.56 16.56
007 16.25 16.31 16.31
008 16 16.05 16.05
009 15.75 15.8 15.8
00A 15.5 15.55 15.55
00B 15.25 15.3 15.3
00C 15 15.05 15.05
00D 14.75 14.8 14.8
00E 14.5 14.55 14.55
00F 14.25 14.3 14.3
010 14 14.05 14.05
044 1 1 1
045 0.75 0.75 0.75
046 0.5 0.5 0.5
047 0.25 0.25 0.25
048 0 0 0
049 -0.25 -0.25 -0.25
04A -0.5 -0.5 -0.5
04B -0.75 -0.75 -0.75
04C -1 -1 -1
240 -126 -126.43 -126.43
241 -126.25 -126.68 -126.99
242 -126.5 -126.93 -126.99
243 -126.75 -127.19 -127.59
244 -127 -127.44 -127.59
245 Mute Mute Mute
TO
3FF Mute Mute Mute
6.21 Bass Filter Set Register (0xDA)
Bits D31-D27, D23-D19, D15-D11, and D7-D3 are Don’t Care.
Table 6-27. Channel 8 Sub Woofer
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Bass filter set 1
0 0 0 0 0 0 1 0 Bass filter set 2
0 0 0 0 0 1 1 1 Bass filter set 3
0 0 0 0 0 1 0 0 Bass filter set 4
0 0 0 0 0 1 0 1 Bass filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
Serial Control Interface Register Definitions
68 SLES112 — June 2004TAS5028
Table 6-28. Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration Right and
Left Surround in Eight Channel Configuration)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Bass filter set 1
0 0 0 0 0 0 1 0 Bass filter set 2
0 0 0 0 0 1 1 1 Bass filter set 3
0 0 0 0 0 1 0 0 Bass filter set 4
0 0 0 0 0 1 0 1 Bass filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
Table 6-29. Channel 4 and 3 (Right and Left Rear)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Bass filter set 1
0 0 0 0 0 0 1 0 Bass filter set 2
0 0 0 0 0 1 1 1 Bass filter set 3
0 0 0 0 0 1 0 0 Bass filter set 4
0 0 0 0 0 1 0 1 Bass filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
Table 6-30. Channel 7, 2, 1 (Center, Right Front, and Left Front)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Bass filter set 1
0 0 0 0 0 0 1 0 Bass filter set 2
0 0 0 0 0 1 1 1 Bass filter set 3
0 0 0 0 0 1 0 0 Bass filter set 4
0 0 0 0 0 1 0 1 Bass filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
6.22 Bass Filter Index Register (0xDB)
Index values above 0x24 are invalid.
Table 6-31. Bass Filter Index Register
I2C SUBADDRESS TOTAL BYTES REGISTER NAME DESCRIPTION OF CONTENTS DEFAULT STATE
0xDB Bass filter index
(BFI) 4Ch8_BFI (31:24), Ch65_BFI (23:16), Ch43_BFI
(15:8), Ch721_BFI (7:0) 0x12, 0x12, 0x12, 0x12,
Serial Control Interface Register Definitions
69
SLES112 — June 2004 TAS5028
Table 6-32. Bass Filter Index Table
TREBLE INDEX
VALUE ADJUSTMENT
(DB) TREBLE INDEX
VALUE ADJUSTMENT
(DB)
0x00 +18 0x13 -1
0x01 +17 0x14 -2
0x02 +16 0x15 -3
0x03 +15 0x16 -4
0x04 +14 0x17 -5
0x05 +13 0x18 -6
0x06 +12 0x19 -7
0x07 +11 0x1A -8
0x08 +10 0x1B -9
0x09 +9 0x1C -10
0x0A +8 0x1D -11
0x0B +7 0x1E -12
0x0C +6 0x1F -13
0x0D +5 0x20 -14
0x0E +4 0x21 -15
0x0F +3 0x22 -16
0x10 +2 0x23 -17
0x11 +1 0x24 -18
0x12 0
6.23 Treble Filter Set Register (0xDC)
Bits D31-D27 are Don’t Care.
Table 6-33. Channel 8 Sub Woofer
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Treble filter set 1
0 0 0 0 0 0 1 0 Treble filter set 2
0 0 0 0 0 1 1 1 Treble filter set 3
0 0 0 0 0 1 0 0 Treble filter set 4
0 0 0 0 0 1 0 1 Treble filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
Table 6-34. Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration or Right
and Left Surround in Eight Channel Configuration)
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Treble filter set 1
0 0 0 0 0 0 1 0 Treble filter set 2
0 0 0 0 0 1 1 1 Treble filter set 3
0 0 0 0 0 1 0 0 Treble filter set 4
0 0 0 0 0 1 0 1 Treble filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
Serial Control Interface Register Definitions
70 SLES112 — June 2004TAS5028
Table 6-35. Channel 4 and 3 (Right and Left Rear)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Treble filter set 1
0 0 0 0 0 0 1 0 Treble filter set 2
0 0 0 0 0 1 1 1 Treble filter set 3
0 0 0 0 0 1 0 0 Treble filter set 4
0 0 0 0 0 1 0 1 Treble filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
Table 6-36. Channel 7, 2, 1 (Center, Right Front, and Left Front)
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
0 0 0 0 0 0 0 0 No change
0 0 0 0 0 0 0 1 Treble filter set 1
0 0 0 0 0 0 1 0 Treble filter set 2
0 0 0 0 0 1 1 1 Treble filter set 3
0 0 0 0 0 1 0 0 Treble filter set 4
0 0 0 0 0 1 0 1 Treble filter set 5
0 0 0 0 0 1 1 0 Illegal
0 0 0 0 0 1 1 1 Illegal
6.24 Treble Filter Index (0xDD)
Index values above 0x24 are invalid.
Table 6-37. Treble Filter Index Register
I2C
SUBADDRESS TOTAL BYTES REGISTER
NAME DESCRIPTION OF CONTENTS DEFAULT STATE
0xDD Treble filter index (TFI) 4Ch8_TFI (31:24), Ch65_TFI (23:16), Ch43_TFI (15:8),
Ch721_TFI (7:0) 0x12,0x12,0x12,0x12
Table 6-38. Treble Filter Index
TREBLE INDEX VALUE ADJUSTMENT (DB) TREBLE INDEX VALUE ADJUSTMENT (DB)
0x00 +18 0x13 -1
0x01 +17 0x14 -2
0x02 +16 0x15 -3
0x03 +15 0x16 -4
0x04 +14 0x17 -5
0x05 +13 0x18 -6
0x\06 +12 0x19 -7
0x07 +11 0x1A -8
0x08 +10 0x1B -9
0x09 +9 0x1C -10
0x0A +8 0x1D -11
0x0B +7 0x1E -12
0x0C +6 0x1F -13
0x0D +5 0x20 -14
0x0E +4 0x21 -15
0x0F +3 0x22 -16
0x10 +2 0x23 -17
0x11 +1 0x24 -18
0x12 0
Serial Control Interface Register Definitions
71
SLES112 — June 2004 TAS5028
6.25 AM Mode Register (0xDE)
Bits D31-D21 are Don’t Care.
Table 6-39. AM Mode Register
D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION
Unused bits
D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION
0 - - - - AM mode disabled
1 - - - - AM mode enabled
- 0 0 - - Select sequence 1
- 0 1 - - Select sequence 2
- 1 0 - - Select sequence 3
- 1 1 - - Select sequence 4
- - - 0 - IF frequency 455
- - - 1 - IF frequency 262.5
- - - - 0 Use BCD tuned frequency
- - - - 1 Use binary tuned frequency
Table 6-40. AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
0 0 0 B0 - - - - BCD frequency (1000s kHz)
- - - - B3 B2 B1 B0 BCD frequency (100s kHz)
0 0 0 0 0 0 0 0 Default value
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
B3 B2 B1 B0 - - - - BCD frequency (10s kHz)
- - - - B3 B2 B1 B0 BCD frequency (1s kHz)
0 0 0 0 0 0 0 0 Default value
Table 6-41. AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE)
D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION
0 0 0 0 0 B10 B9 B8 Binary frequency (upper 3 bits)
0 0 0 0 0 0 0 0 Default value
D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION
B7 B6 B5 B4 B3 B2 B1 B0 Binary frequency (lower 8 bits)
0 0 0 0 0 0 0 0 Default value
6.26 General Control Register (0xE0)
Bits D31-D4 are zero. Bit D0 is Don’t Care.
Table 6-42. General Control Register
D31 – D4 D3 D2 D1 D0 FUNCTION
0 - 0 /8 channel configuration
0 - 1 6 channel configuration
6.27 Incremental Multiple Write Append Register (0xFE)
This is a special register used to append data to a previously opened register.
Serial Control Interface Register Definitions
72 SLES112 — June 2004TAS5028
TAS5028 Example Application Schematic
73
SLES112 - June 2004 TAS5028
7 TAS5028 Example Application Schematic
The following page contains an example application schematic for the TAS5028.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
RIGHT BACK
SURROUND
SPEAKER
OUTPUT
LEFT BACK
SURROUND
SPEAKER
OUTPUT
SUBWOOFER
SPEAKER
OUTPUT
CENTER
SPEAKER
OUTPUT
RIGHT
SURROUND
SPEAKER
OUTPUT
LEFT
SURROUND
SPEAKER
OUTPUT
LEFT
SPEAKER
OUTPUT
LINE OUTPUT
HEADPHONE OUTPUT
TAS5028 Example Application Schematic
RIGHT
SPEAKER
OUTPUT
(Circuit is Subject To Change Without Notice)
CH1 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
CH4 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
CH7 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
CH5 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
Left + Right Line Out
2 Channel Line Out (TLV272)
+3.3V
+5.0V
PWM_P_L
PWM_M_L
PWM_P_R
PWM_M_R
OUT_L
OUT_R
/OE
CH8 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
PSU and Interface Logic
+3.3V
+5.0V
GVDD
V-HBRIDGE
/RESET
PSVC_MCPU
/RESET_TAS5028
/OTW_TAS5121
/OTW
/BKND_ERR
/BKND_ERR_TAS5028
/SD1_TAS5121
/SD1
CONF_SEL
/VALID
/VALID_CH5+CH6
/LINE_OUT_ENABLE
/SD2
/SD2_TAS5121
PSVC_TAS5028
CH3 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
CH2 TAS5121 H-Bridge Output Stage
/SHUTDOWN_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
CH6 TAS5121 H-Bridge Output Stage
/SD1_TAS5121
PWM_P
PWM_M
/VALID
OUT_1
OUT_2
GVDD
V-HBRIDGE
/TEMP_WARNING
Left + Right Headphone
2 Channel Headphone Design (TPA112)
PWM_HPP_R
PWM_HPM_R
OUT_L
OUT_R
+5.0V
PWM_HPP_L
PWM_HPM_L
OUT_GND
+3.3V
GND
GND
+3.3V
GVDD
V-HBRIDGE
GVDD
V-HBRIDGE
GVDD
V-HBRIDGE
GVDD
V-HBRIDGE
V-HBRIDGE
GVDD
V-HBRIDGE
GVDD
V-HBRIDGE
GVDD
V-HBRIDGE
GVDD
+3.3V
GND
+3.3V
GND
+5.0V+3.3V
+5.0V
GVDDV-HBRIDGE +5.0V +3.3V
GND
GND
C25
220nF
2 1
J600
1
2
R21
1M
12
C14
100nF
2 1
C13
10nF
2 1
C17
100nF
2 1
C20
100nF
2 1
J951
Phono socket
2
3
4
1
R13
3.30R
1 2
X10
13.5MHz
J100
1
2
J400
1
2
J700
1
2
J800
1
2
C15
100nF
2 1
R12
2R
1 2
C11
100nF
2 1
C10
10nF
2 1
C29
100nF
2 1
R18
1R
12
J500
1
2
R20
22.0R
1 2
R10
200R
12
C28
15pF
21
R11
200R
12
C27
15pF
21
J300
1
2
C23
10uF
12
C21
100nF
2 1
C18
1nF
12
C26
10uF
12
J950
Phono socket
2
3
4
1
C16
10uF
12
C12
100nF
2 1
J200
1
2
C24
100nF
2 1
U10
TAS5028
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
32
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
22
VRA_PLL
PLL_FLT_RET
PLL_FLTM
PLL_FLTP
AVSS
AVSS
VRD_PLL
AVSS_PLL
AVDD_PLL
VBGAP
RESET
HP_SEL
PDN
MUTE
DVDD
DVSS
VR_DPLL
OSC_CAP
XTL_OUT
XTL_IN
RESERVED
RESERVED
SDA
SCL
LRCLK
SCLK
SDIN4
SDIN3
SDIN2
SDIN1
RESERVED
VR_PWM
PWM_P_4
PWM_M_4
PWM_P_3
PWM_M_3
PWM_P_2
PWM_M_2
PWM_P_1
PWM_M_1
VAILD
DVSS
BKND_ERR
DVDD
DVSS
DVSS
VR_DIG
RESERVED
MCLK
PWM_HPPR
PWM_HPMR
PWM_HPPL
PWM_HPML
PWM_P_6
PWM_M_6
PWM_P_5
PWM_M_5
DVDD_PWM
DVSS_PWM
PWM_P_8
PWM_M_8
PWM_P_7
PWM_M_7
RESERVED
R14
1R
1 2
C22
100nF
2 1
J900
Mini-Jack (3.5mm)
2
4
3
1
C19
10uF
12
/VALID_CH5+CH6
/VALID
/VALID
/VALID
/VALID
/VALID
/VALID
/RESET_TAS5028
/RESET
/BKND_ERR
/BKND_ERR_TAS5028
/OTW_TAS5121
/OTW
/SD1_TAS5121
/SD1
/SD2_TAS5121
/SD2
/VALID_CH5+CH6
/VALID
CONF_SEL
/VALID_CH5+CH6
/SD1_TAS5121
/OTW_TAS5121
/SD1_TAS5121
/OTW_TAS5121
/SD2_TAS5121
/OTW_TAS5121
/SD2_TAS5121
/OTW_TAS5121
/SD1_TAS5121
/OTW_TAS5121
/SD2_TAS5121
/OTW_TAS5121
/SD2_TAS5121
/OTW_TAS5121
/SD2_TAS5121
/OTW_TAS5121/LINE_OUT_ENABLE
PSVC_TAS5028
PSVC_MCPU
/LINE_OUT_ENABLE
/BKND_ERR_TAS5028/HP_SEL
/PDN_TAS5028
/VALID
/MUTE_TAS5028
MCLK
/RESET_TAS5028
SCL
SDA
LRCLK
SDIN4
SCLK
SDIN3
SDIN2
SDIN1
PACKAGE OPTION ADDENDUM
www.ti.com 30-Jul-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TAS5028PAG ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR
TAS5028PAGG4 ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
MECHANICAL DATA
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PAG (S-PQFP-G64) PLASTIC QUAD FLATPACK
0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
4040282/C 11/96
Gage Plane
33
0,17
0,27
16
48
1
7,50 TYP
49
64
SQ
9,80
1,05
0,95
11,80
12,20
1,20 MAX
10,20 SQ
17
32
0,08
0,50 M
0,08
0°–7°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions www.ti.com/lprfTI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated