This is information on a product in full production.
August 2018 DS10690 Rev 6 1/144
STM32L071x8 STM32L071xB
STM32L071xZ
Access line ultra-low-power 32-bit MCU Arm
®
-based Cortex
®
-M0+,
up to 192KB Flash, 20KB SRAM, 6KB EEPROM, ADC
Datasheet - production data
Features
Ultra-low-power platform
1.65 V to 3.6 V power supply
-
40 to 125 °C temperature range
0.29 µA Standby mode (3 wakeup pins)
0.43 µA Stop mode (16 wakeup lines)
0.86 µA Stop mode + RTC + 20 KB RAM
retention
Down to 93 µA/MHz in Run mode
5 µs wakeup time (from Flash memory)
41 µA 12-bit ADC conversion at 10 ksps
Core: Arm
®
32-bit Cortex
®
-M0+ with MPU
From 32 kHz up to 32 MHz max.
0.95 DMIPS/MHz
Memories
Up to
192 KB Flash memory with ECC(2 banks
with read-while-write capability)
–20 KB RAM
6 KB of data EEPROM with ECC
20-byte backup register
Sector protection against R/W operation
Up to 84 fast I/Os (78 I/Os 5V tolerant)
Reset and supply management
Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
Ultra-low-power POR/PDR
Programmable voltage detector (PVD)
Clock sources
1 to 25 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
High speed internal 16 MHz factory-trimmed RC
(+/- 1%)
Internal low-power 37 kHz RC
Internal multispeed low-power 65 kHz to
4.2 MHz RC
PLL for CPU clock
Pre-programmed bootloader
USART, I2C, SPI supported
Development support
Serial wire debug supported
Rich Analog peripherals
12-bit ADC 1.14 Msps up to 16 channels (down
to 1.65 V)
2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)
7-channel DMA controller, supporting ADC, SPI,
I2C, USART, Timers
Up to 10x peripheral communication interfaces
4
x USART (
2 with
ISO 7816, IrDA), 1x UART
(low power)
Up to 6x SPI 16 Mbits/s
3
x I2C (
2 with
SMBus/PMBus)
11x timers: 2x 16-bit with up to 4 channels, 2x 16-bit
with up to 2 channels, 1x 16-bit ultra-low-power
timer, 1x SysTick, 1x RTC, 2x 16-bit basic, and 2x
watchdogs (independent/window)
CRC calculation unit, 96-bit unique ID
All packages are ECOPACK
®
2
Table 1. Device summary
Reference Part number
STM32L071x8 STM32L071V8, STM32L071K8,
STM32L071C8
STM32L071xB STM32L071VB, STM32L071RB,
STM32L071CB, STM32L071KB
STM32L071xZ STM32L071VZ, STM32L071RZ,
STM32L071CZ, STM32L071KZ
FBGA
LQFP32 7x7 mm
LQFP48 7x7 mm
LQFP64 10x10 mm
LQFP100 14x14 mm
WLCSP49
(3.294x3.258 mm)
UFBGA64
TFBGA64
5x5mm
UFBGA100
7x7 mm
FBGA
UFQFPN32
5x5 mm
www.st.com
Contents STM32L071xx
2/144 DS10690 Rev 6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12.1 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 28
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 29
3.14.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
DS10690 Rev 6 3/144
STM32L071xx Contents
4
3.15.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.15.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 32
3.15.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 32
3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 33
3.16 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 33
3.17 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 61
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Contents STM32L071xx
4/144 DS10690 Rev 6
6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.17 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
7.4 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5 TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.7 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.8 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.9 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DS10690 Rev 6 5/144
STM32L071xx List of tables
7
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Ultra-low-power STM32L071xx device features and peripheral counts . . . . . . . . . . . . . . . 12
Table 3. Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16
Table 4. CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 9. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 10. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 11. STM32L071xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 12. USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 13. SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 15. STM32L071xxx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 16. Alternate functions port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 17. Alternate functions port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 18. Alternate functions port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 19. Alternate functions port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 20. Alternate functions port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 21. Alternate functions port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 22. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 23. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 24. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 25. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 27. Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 28. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 29. Current consumption in Run mode, code with data processing running from
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 30. Current consumption in Run mode vs code type,
code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 31. Current consumption in Run mode, code with data processing running from RAM . . . . . . 66
Table 32. Current consumption in Run mode vs code type,
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 33. Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 34. Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 35. Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 36. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 37. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 72
Table 38. Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 39. Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 40. Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 76
Table 41. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 42. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 43. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 44. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
List of tables STM32L071xx
6/144 DS10690 Rev 6
Table 45. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 46. 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 47. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 48. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 49. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 50. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 51. Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 52. Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 86
Table 53. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 54. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 55. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 56. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 57. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 58. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 59. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 60. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 61. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 62. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 63. RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 64. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 65. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 66. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 67. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 68. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 69. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 70. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 71. SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 72. SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 73. SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 74. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 75. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 77. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 116
Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 79. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 80. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 121
Table 81. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 82. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 123
Table 83. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 84. WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 127
Table 85. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 129
Table 86. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 132
Table 87. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 88. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 89. STM32L071xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
DS10690 Rev 6 7/144
STM32L071xx List of tables
7
Table 90. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
List of figures STM32L071xx
8/144 DS10690 Rev 6
List of figures
Figure 1. STM32L071xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3. STM32L071xx LQFP100 pinout - 14 x 14 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 5. STM32L071xx LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 6. STM32L071xx UFBGA64/TFBGA64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 7. STM32L071xx WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8. STM32L071xx LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 9. STM32L071xx LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 10. STM32L071xx UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 17. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 18. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 19. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 20. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 21. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 22. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 23. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 24. HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 25. VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 26. VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 27. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 29. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 30. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 31. Power supply and reference decoupling (VREF+ not connected to VDDA) . . . . . . . . . . . . 100
Figure 32. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 101
Figure 33. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 34. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 35. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 36. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 37. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 112
Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 40. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 41. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DS10690 Rev 6 9/144
STM32L071xx List of figures
9
Figure 42. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 43. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 117
Figure 44. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 118
Figure 45. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 46. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 47. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 49. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 50. TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 51. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 52. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 53. WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 128
Figure 55. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 129
Figure 56. LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 131
Figure 58. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 132
Figure 59. LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 60. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 61. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 62. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 63. Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Introduction STM32L071xx
10/144 DS10690 Rev 6
1 Introduction
The ultra-low-power STM32L071xx are offered in 9 different package types from 32 pins to
100 pins. Depending on the device chosen, different sets of peripherals are included, the
description below gives an overview of the complete range of peripherals proposed in this
family.
These features make the ultra-low-power STM32L071xx microcontrollers suitable for a wide
range of applications:
Gas/water meters and industrial sensors
Healthcare and fitness equipment
Remote control and user interface
PC peripherals, gaming, GPS equipment
Alarm system, wired and wireless sensors, video intercom
This STM32L071xx datasheet should be read in conjunction with the STM32L0x1xx
reference manual (RM0377).
For information on the Arm®(a) Cortex
®
-M0+ core please refer to the Cortex
®
-M0+ Technical
Reference Manual, available from the www.arm.com website.
Figure 1 shows the general block diagram of the device family.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS10690 Rev 6 11/144
STM32L071xx Description
33
2 Description
The access line ultra-low-power STM32L071xx microcontrollers incorporate the high-
performance Arm
®
Cortex
®
-M0+ 32-bit RISC core operating at a 32 MHz frequency, a
memory protection unit (MPU), high-speed embedded memories (up to
192
Kbytes of Flash
program memory,
6
Kbytes of data EEPROM and
20
Kbytes of RAM) plus an extensive
range of enhanced I/Os and peripherals.
The STM32L071xx devices provide high power efficiency for a wide range of performance.
It is achieved with a large choice of internal and external clock sources, an internal voltage
adaptation and several low-power modes.
The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware
oversampling, two ultra-low-power comparators, several timers, one low-power timer
(LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick
which can be used as timebases. They also feature two watchdogs, one watchdog with
independent clock and window capability and one window watchdog based on bus clock.
Moreover, the STM32L071xx devices embed standard and advanced communication
interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART
(LPUART), .
The STM32L071xx also include a real-time clock and a set of backup registers that remain
powered in Standby mode.
The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down
to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR
option. They are available in the -40 to +125 °C temperature range. A comprehensive set of
power-saving modes allows the design of low-power applications.
Description STM32L071xx
12/144 DS10690 Rev 6
2.1 Device overview
Table 2. Ultra-low-power STM32L071xx device features and peripheral counts
Peripheral STM32L
071K8
STM32L
071C8
STM32L
071V8
STM32L
071KB
STM32L
071CB
STM32L
071VB
STM32L
071RB
STM32L
071KZ
STM32L
071CZ
STM32L
071VZ
STM32L
071RZ
Flash (Kbytes) 64 Kbytes 128 Kbytes 192 Kbytes
Data EEPROM (Kbytes) 3 Kbytes 6 Kbytes
RAM (Kbytes) 20 Kbytes
Timers
General-
purpose 4
Basic 2
LPTIMER 1
RTC/SYSTICK/IWDG
/WWDG 1/1/1/1
Com.
interfaces
SPI/I2S 4(3)(1)/0 6(4)(2)/1 4(3)(1)/0 6(4)(2)/1 4(3)(1)/0 6(4)(2)/1
I2C23 2 3 2 3
USART 344
(3) 44
(3) 4
LPUART 1
GPIOs 23 37 84 25(3) 40(4) 84 51(5) 25(3) 40(4) 84 51(5)
Clocks:
HSE/LSE/HSI/MSI/LSI 1/1/1/1/1
12-bit synchronized
ADC
Number of channels
1
10
1
13
1
16
1
10
1
13(4) 1
16
1
16(5) 1
10
1
13(4) 1
16
1
16(5)
Comparators 2
Max. CPU frequency 32 MHz
Operating voltage 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option
Operating
temperatures
Ambient temperature: –40 to +125 °C
Junction temperature: –40 to +130 °C
Packages UFQFPN
32 LQFP48
LQFP/
UFBGA
100
UFQFPN/
LQFP32
LQFP48,
WLCSP49
LQFP/
UFBGA
100
LQFP/
TFBGA
64
UFQFPN/
LQFP32
LQFP48,
WLCSP49
LQFP/
UFBGA
100
LQFP/
TFBGA
64
1. 3 SPI interfaces are USARTs operating in SPI master mode.
2. 4 SPI interfaces are USARTs operating in SPI master mode.
3. UFQFPN32 has 2 GPIOs and 1 UART less than LQFP32.
4. LQFP48 has three GPIOs less than WLCSP49.
5. TFBGA64 has one GPIO, one ADC input less than LQFP64.
DS10690 Rev 6 13/144
STM32L071xx Description
33
Figure 1. STM32L071xx block diagram
CORTEX M0+ CPU
Fmax:32MHz
SWD
MPU
NVIC
GPIO PORT A
GPIO PORT B
Temp
sensor
RESET & CLK
FLASH
EEPROM
BOOT
RAM
DMA1
AHB: Fmax 32MHz
CRC
BRIDGE
A
P
B
2
FIREWALL
DBG
EXTI
ADC1
SPI1
USART1
TIM21
COMP1
LSE
TIM22
BRIDGE
A
P
B
1
TIM6
RAM 1K
I2C1
I2C2
USART2
LPUART1
SPI2/I2S
TIM2
IWDG
RTC
WWDG
LPTIM1
BCKP REG
HSE HSI 16M
PLL
MSI
LSI
PMU
REGULATOR
VDD
VDDA
VREF_OUT
NRST
PVD_IN
OSC32_IN,
OSC32_OUT
OSC_IN,
OSC_OUT
WKUPx
PA[0:15]
PB[0:8]
AINx
MISO, MOSI,
SCK, NSS
RX, TX, RTS,
CTS, CK
2ch
2ch
INP, INM, OUT
IN1, IN2,
ETR, OUT
SCL, SDA,
SMBA
SCL, SDA
RX, TX, RTS,
CTS, CK
RX, TX, RTS,
CTS
MISO/MCK,
MOSI/SD,
SCK/CK, NSS/
WS
4ch
SWD
MSv35454V1
COMP2 INP, INM, OUT
TIM7
I2C3 SCL, SDA,
SMBA
USART4 RX, TX, RTS,
CTS, CK
USART5 RX, TX, RTS,
CTS, CK
TIM3 4ch
Description STM32L071xx
14/144 DS10690 Rev 6
2.2 Ultra-low-power device continuum
The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary
core up to Arm
®
Cortex
®
-M4, including Arm
®
Cortex
®
-M3 and Arm
®
Cortex
®
-M0+. The
STM32Lx series are the best choice to answer your needs in terms of ultra-low-power
features. The STM32 ultra-low-power series are the best solution for applications such as
gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in
features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers,
128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly
cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and
long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all
STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other
hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to
respond to the latest market feature and efficiency requirements.
DS10690 Rev 6 15/144
STM32L071xx Functional overview
33
3 Functional overview
3.1 Low-power modes
The ultra-low-power STM32L071xx support dynamic voltage scaling to optimize its power
consumption in Run mode. The voltage from the internal low-drop regulator that supplies
the logic can be adjusted according to the system’s maximum operating frequency and the
external voltage supply.
There are three power consumption ranges:
Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz
Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the low-
speed clock (max 131 kHz), execution from SRAM or Flash memory, and internal
regulator in low-power mode to minimize the regulator's operating current. In Low-
power run mode, the clock frequency and the number of enabled peripherals are both
limited.
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the Run
mode with the regulator on.
Stop mode with RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low-power mode.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the
processor can serve the interrupt or resume the code. The EXTI line source can be any
GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event
(if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup
events, the USART/I2C/LPUART/LPTIMER wakeup events.
Functional overview STM32L071xx
16/144 DS10690 Rev 6
Stop mode without RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and
LSE crystal oscillators are disabled.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The voltage regulator is in the low-power mode. The device can be woken up from Stop
mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or
resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the
comparator 1 event or comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events.
Standby mode with RTC
The Standby mode is used to achieve the lowest power consumption and real time
clock. The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
Standby mode without RTC
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire VCORE domain is powered off. The
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off.
After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
Table 3. Functionalities depending on the operating power supply range
Operating power supply range(1)
Functionalities depending on the operating power
supply range
ADC operation Dynamic voltage scaling
range
VDD = 1.65 to 1.71 V ADC only, conversion time
up to 570 ksps
Range 2 or
range 3
VDD = 1.71 to 1.8 V(2) ADC only, conversion time
up to 1.14 Msps Range 1, range 2 or range 3
VDD = 1.8 to 2.0 V(2) Conversion time up to 1.14
Msps Range1, range 2 or range 3
DS10690 Rev 6 17/144
STM32L071xx Functional overview
33
VDD = 2.0 to 2.4 V Conversion time up to 1.14
Msps Range 1, range 2 or range 3
VDD = 2.4 to 3.6 V Conversion time up to 1.14
Msps Range 1, range 2 or range 3
1. GPIO speed depends on VDD voltage. Refer to Table 60: I/O AC characteristics for more information about
I/O speed.
2. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.
Table 4. CPU frequency range depending on dynamic voltage scaling
CPU frequency range Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws) Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws) Range 2
32 kHz to 4.2 MHz (0ws) Range 3
Table 3. Functionalities depending on the operating power supply range (continued)
Operating power supply range(1)
Functionalities depending on the operating power
supply range
ADC operation Dynamic voltage scaling
range
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (1)(2)
IPs Run/Active Sleep
Low-
power
run
Low-
power
sleep
Stop Standby
Wakeup
capability
Wakeup
capability
CPU Y -- Y -- -- --
Flash memory O O O O -- --
RAM Y Y Y Y Y --
Backup registers Y Y Y Y Y Y
EEPROM O O O O -- --
Brown-out reset
(BOR) OOOOOOOO
DMA O O O O -- --
Programmable
Voltage Detector
(PVD)
OOOOOO-
Power-on/down
reset (POR/PDR) YYYYYYYY
Functional overview STM32L071xx
18/144 DS10690 Rev 6
High Speed
Internal (HSI) OO----
(3) --
High Speed
External (HSE) OOOO-- --
Low Speed Internal
(LSI) OOOOO O
Low Speed
External (LSE) OOOOO O
Multi-Speed
Internal (MSI) OOYY-- --
Inter-Connect
Controller YYYYY --
RTC O O O O O O O
RTC Tamper O O O O O O O O
Auto WakeUp
(AWU) OOOOOOOO
USART O O O O O(4) O--
LPUART O O O O O(4) O--
SPI O O O O -- --
I2C O O -- -- O(5) O--
ADC O O -- -- -- --
Temperature
sensor OOOOO --
Comparators O O O O O O --
16-bit timers O O O O -- --
LPTIMER O O O O O O
IWDG O O O O O O O O
WWDG O O O O -- --
SysTick Timer O O O O --
GPIOs O O O O O O 2 pins
Wakeup time to
Run mode 0 µs 0.36 µs 3 µs 32 µs 3.5 µs 50 µs
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)(2)
IPs Run/Active Sleep
Low-
power
run
Low-
power
sleep
Stop Standby
Wakeup
capability
Wakeup
capability
DS10690 Rev 6 19/144
STM32L071xx Functional overview
33
3.2 Interconnect matrix
Several peripherals are directly interconnected. This allows autonomous communication
between peripherals, thus saving CPU resources and power consumption. In addition,
these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run, Low-power sleep and Stop modes.
Consumption
VDD=1.8 to 3.6 V
(Typ)
Down to
140 µA/MHz
(from Flash
memory)
Down to
37 µA/MHz
(from Flash
memory)
Down to
8 µA
Down to
4.5 µA
0.4 µA (No
RTC) VDD=1.8 V
0.28 µA (No
RTC) VDD=1.8 V
0.8 µA (with
RTC) VDD=1.8 V
0.65 µA (with
RTC) VDD=1.8 V
0.4 µA (No
RTC) VDD=3.0 V
0.29 µA (No
RTC) VDD=3.0 V
1 µA (with RTC)
VDD=3.0 V
0.85 µA (with
RTC) VDD=3.0 V
1. Legend:
“Y” = Yes (enable).
“O” = Optional can be enabled/disabled by software)
“-” = Not available
2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.
3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the
peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need
it anymore.
4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup
on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep
running the HSI clock.
5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up
the HSI during reception.
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)(2)
IPs Run/Active Sleep
Low-
power
run
Low-
power
sleep
Stop Standby
Wakeup
capability
Wakeup
capability
Table 6. STM32L0xx peripherals interconnect matrix
Interconnect
source
Interconnect
destination Interconnect action Run Sleep
Low-
power
run
Low-
power
sleep
Stop
COMPx
TIM2,TIM21,
TIM22
Timer input channel,
trigger from analog
signals comparison
YY Y Y -
LPTIM
Timer input channel,
trigger from analog
signals comparison
YY Y Y Y
TIMx TIMx Timer triggered by other
timer YY Y Y -
Functional overview STM32L071xx
20/144 DS10690 Rev 6
3.3 Arm® Cortex
®
-M0+ core with MPU
The Cortex-M0+ processor is an entry-level 32-bit Arm Cortex processor designed for a
broad range of embedded applications. It offers significant benefits to developers, including:
a simple architecture that is easy to learn and program
ultra-low power, energy-efficient operation
excellent code density
deterministic, high-performance interrupt handling
upward compatibility with Cortex-M processor family
platform security robustness, with integrated Memory Protection Unit (MPU).
The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor
core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional
energy efficiency through a small but powerful instruction set and extensively optimized
design, providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32-
bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to its embedded Arm core, the STM32L071xx are compatible with all Arm tools and
software.
RTC
TIM21 Timer triggered by Auto
wake-up YY Y Y -
LPTIM Timer triggered by RTC
event YY Y Y Y
All clock
source TIMx
Clock source used as
input channel for RC
measurement and
trimming
YY Y Y -
GPIO
TIMx Timer input channel and
trigger YY Y Y -
LPTIM Timer input channel and
trigger YY Y Y Y
ADC Conversion trigger Y Y Y Y -
Table 6. STM32L0xx peripherals interconnect matrix (continued)
Interconnect
source
Interconnect
destination Interconnect action Run Sleep
Low-
power
run
Low-
power
sleep
Stop
DS10690 Rev 6 21/144
STM32L071xx Functional overview
33
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L071xx embed a nested vectored interrupt controller able to
handle up to 32 maskable interrupt channels and 4 priority levels.
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:
includes a Non-Maskable Interrupt (NMI)
provides zero jitter interrupt option
provides four interrupt priority levels
The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also
significantly reduces the overhead when switching from one ISR to another.
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to enter rapidly stop or standby mode.
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.4 Reset and supply management
3.4.1 Power supply schemes
VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
3.4.2 Power supply supervisor
The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
Two versions are available:
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
Functional overview STM32L071xx
22/144 DS10690 Rev 6
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive
at power-up.
The devices feature an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.4.3 Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in Run mode (nominal regulation)
LPR is used in the Low-power run, Low-power sleep and Stop modes
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32 KHz oscillator, RCC_CSR).
3.5 Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
Clock prescaler
To get the best trade-off between speed and current consumption, the clock frequency
to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching
Clock sources can be changed safely on the fly in Run mode through a configuration
register.
Clock management
To reduce power consumption, the clock controller can stop the clock to the core,
individual peripherals or memory.
System clock source
Three different clock sources can be used to drive the master clock SYSCLK:
1-25 MHz high-speed external crystal (HSE), that can supply a PLL
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able
to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1
MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE),
the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source
Two ultra-low-power clock sources that can be used to drive the real-time clock:
DS10690 Rev 6 23/144
STM32L071xx Functional overview
33
32.768 kHz low-speed external crystal (LSE)
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
RTC clock source
The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system
clock.
Startup clock
After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI).
The prescaler ratio and clock source can be changed by the application program as
soon as the code execution starts.
Clock security system (CSS)
This feature can be enabled by software. If an HSE clock failure occurs, the master
clock is automatically switched to HSI and a software interrupt is generated if enabled.
Another clock security system can be enabled, in case of failure of the LSE it provides
an interrupt or wakeup event which is generated if enabled.
Clock-out capability (MCO: microcontroller clock output)
It outputs one of the internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
Functional overview STM32L071xx
24/144 DS10690 Rev 6
Figure 2. Clock tree
MSv35455V1
Legend:
HSE = High-speed external clock signal
HSI = High-speed internal clock signal
LSI = Low-speed internal clock signal
LSE = Low-speed external clock signal
MSI = Multispeed internal clock signal
Watchdog LS
LSI RC
LSE OSC RTC
LSI tempo
@V33
/ 1,2,4,8,16
HSI16 RC
Level shifters
HSE OSC
Level shifters
LSU
1 MHz Clock
Detector
LSD
/ 8
LSE tempo
MSI RC
Level shifters
/ 2,4,8,16
/ 2,3,4
Level shifters
PLL
X
3,4,6,8,12,16,
24,32,48
APB1
PRESC
/ 1,2,4,8,16
AHB
PRESC
/ 1,2,…, 512
Clock
Source
Control
@V33
@V33
@V33
@V33
@V18
@V18
@V18
@V18
I2CCLK
LPUART/
UARTCLK
LPTIMCLK
LSE
HSI16
SYSCLK
PCLK
LSI
Peripheral
clock enable
PCLK1 to APB1
peripherals
not (sleep or
deepsleep)
not (sleep or
deepsleep)
not deepsleep
not deepsleep
HCLK
SysTick
Timer
CK_PWR
FCLK
PLLCLK
HSE
HSI16
MSI
LSE
LSI
HSE present or not
@V33
@VDDCORE
ck_rchs / 1,4 HSI16
MSI
1 MHz
ck_pllin
Enable Watchdog
RTC2 enable
ADC enable
ADCCLK
LSU LSD LSD
MCO
MCOSEL
PLLSRC
RTCSEL
System
Clock
32 MHz
max.
If (APB1 presc=1) x1
else x2)
to TIMx
Peripheral
clock enable
Peripheral
clock enable
Peripheral
clock enable
APB2
PRESC
/ 1,2,4,8,16
Peripheral
clock enable
PCLK2 to APB2
peripherals
32 MHz
max.
If (APB2 presc=1) x1
else x2)
to TIMx
Peripheral
clock enable
DS10690 Rev 6 25/144
STM32L071xx Functional overview
33
3.6 Low-power real-time clock and backup registers
The real time clock (RTC) and the 5 backup registers are supplied in all modes including
standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user
application data. They are not reset by a system reset, or when the device wakes up from
Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
Two programmable alarms with wake up from Stop and Standby mode capability
Periodic wakeup from Stop and Standby with programmable resolution and period
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from
Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 37 kHz)
The high-speed external clock
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated alternate function registers. All GPIOs are high current capable.
Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate
function configuration of I/Os can be locked if needed following a specific sequence in order
to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated
IO bus with a toggling speed of up to 32 MHz.
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 29 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected
to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC,
USARTs, I2C, LPUART, LPTIMER or comparator events.
Functional overview STM32L071xx
26/144 DS10690 Rev 6
3.8 Memories
The STM32L071xx devices have the following features:
20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
The non-volatile memory is divided into three arrays:
64, 128 or 192 Kbytes of embedded Flash program memory
6 Kbytes of data EEPROM
Information block containing 32 user and factory options bytes plus 8 Kbytes of
system memory
Flash program and data EEPROM are divided into two banks. This allows writing in one
bank while running code or reading data from the other bank.
The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:
Level 0: no protection
Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected
Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in
RAM selection disabled (debugline fuse)
The firewall protects parts of code/data from access by the rest of the code that is executed
outside of the protected area. The granularity of the protected code segment or the non-
volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the
volatile data segment (RAM).
The whole non-volatile memory embeds the error correction code (ECC) feature.
3.9 Boot modes
At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:
Boot from Flash memory
Boot from System memory
Boot from embedded RAM
The boot loader is located in System memory. It is used to reprogram the Flash memory by
using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), I2C1 (PB6, PB7) or
I2C2 (PB10, PB11), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32™
microcontroller system memory boot mode AN2606 for details.
DS10690 Rev 6 27/144
STM32L071xx Functional overview
33
3.10 Direct memory access (DMA)
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART,
general-purpose timers, and ADC.
3.11 Analog-to-digital converter (ADC)
A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital
converter is embedded into STM32L071xx device. It has up to 16 external channels and 3
internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and
PA5, are fast channels, while the others are standard channels.
The ADC performs conversions in single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling
rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all
frequencies (~25 µA at 10 kSPS, ~240 µA at 1MSPS). An auto-shutdown function
guarantees that the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate from a supply voltage down to
1.65 V.
The ADC features a hardware oversampler up to 256 samples, this improves the resolution
to 16 bits (see AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
3.12 Temperature sensor
The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN18 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
Functional overview STM32L071xx
28/144 DS10690 Rev 6
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.12.1 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available
for ADC). The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
3.13 Ultra-low-power comparators and reference voltage
The STM32L071xx embed two comparators sharing the same current bias and reference
voltage. The reference voltage can be internal or external (coming from an I/O).
One comparator with ultra low consumption
One comparator with rail-to-rail inputs, fast or slow mode.
The threshold can be one of the following:
External I/O pins
Internal reference voltage (VREFINT)
submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail
comparator.
Both comparators can wake up the devices from Stop mode, and be combined into a
window comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).
Table 7. Temperature sensor calibration values
Calibration value name Description Memory address
TSENSE_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3 V
0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2
TS ADC raw data acquired at
temperature of 130 °C
VDDA= 3 V
0x1FF8 007E - 0x1FF8 007F
Table 8. Internal voltage reference measured values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 25 °C
VDDA = 3 V
0x1FF8 0078 - 0x1FF8 0079
DS10690 Rev 6 29/144
STM32L071xx Functional overview
33
3.14 Timers and watchdogs
The ultra-low-power STM32L071xx devices include three general-purpose timers, one low-
power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.
Table 9 compares the features of the general-purpose and basic timers.
3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)
There are four synchronizable general-purpose timers embedded in the STM32L071xx
device (see Table 9 for differences).
TIM2, TIM3
TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit
prescaler. It features four independent channels each for input capture/output compare,
PWM or one-pulse mode output.
The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22
general-purpose timers via the Timer Link feature for synchronization or event chaining.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used
to generate PWM outputs.
TIM2/TIM3 have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
TIM21 and TIM22
TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit
prescaler. They have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3,
full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
Table 9. Timer feature comparison
Timer Counter
resolution Counter type Prescaler factor
DMA
request
generation
Capture/compare
channels
Complementary
outputs
TIM2,
TIM3 16-bit Up, down,
up/down
Any integer between
1 and 65536 Yes 4 No
TIM21,
TIM22 16-bit Up, down,
up/down
Any integer between
1 and 65536 No 2 No
TIM6,
TIM7 16-bit Up Any integer between
1 and 65536 Yes 0 No
Functional overview STM32L071xx
30/144 DS10690 Rev 6
3.14.2 Low-power Timer (LPTIM)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / one shot mode
Selectable software / hardware input trigger
Selectable clock source
Internal clock source: LSE, LSI, HSI or APB clock
External clock source over LPTIM input (working even with no internal clock
source running, used by the Pulse Counter Application)
Programmable digital glitch filter
Encoder mode
3.14.3 Basic timer (TIM6, TIM7)
These timers can be used as a generic 16-bit timebase.
3.14.4 SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches ‘0’.
3.14.5 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
3.14.6 Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
DS10690 Rev 6 31/144
STM32L071xx Functional overview
33
3.15 Communication interfaces
3.15.1 I2C bus
Up to three I2C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.
Each I2C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to
400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.
7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with
configurable mask) are also supported as well as programmable analog and digital noise
filters.
In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain
independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop
mode on address match.
Each I2C interface can be served by the DMA controller.
Refer to Table 11 for an overview of I2C interface features.
Table 10. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 11. STM32L071xx I2C implementation
I2C features(1)
1. X = supported.
I2C1 I2C2 I2C3
7-bit addressing mode X X X
10-bit addressing mode X X X
Standard mode (up to 100 kbit/s) X X X
Fast mode (up to 400 kbit/s) X X X
Fast Mode Plus with 20 mA output drive I/Os (up to 1
Mbit/s) XX
(2)
2. See Table 15: STM32L071xxx pin definition on page 40 for the list of I/Os that feature Fast Mode Plus
capability
X
Independent clock X - X
SMBus X - X
Wakeup from STOP X - X
Functional overview STM32L071xx
32/144 DS10690 Rev 6
3.15.2 Universal synchronous/asynchronous receiver transmitter (USART)
The four USART interfaces (USART1, USART2, USART4 and USART5) are able to
communicate at speeds of up to 4 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 driver enable (DE)
signals, multiprocessor communication mode, master synchronous communication and
single-wire half-duplex communication mode. USART1 and USART2 also support
SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto
baud rate feature and has a clock domain independent from the CPU clock, allowing to
wake up the MCU from Stop mode using baudrates up to 42 Kbaud.
All USART interfaces can be served by the DMA controller.
Table 12 for the supported modes and features of USART interfaces.
3.15.3 Low-power universal asynchronous receiver transmitter (LPUART)
The devices embed one Low-power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock. It can wake up the
system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop
mode are programmable and can be:
Start bit detection
Or any received data frame
Or a specific programmed data frame
Table 12. USART implementation
USART modes/features(1)
1. X = supported.
USART1 and USART2 USART4 and USART5
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode(2)
2. This mode allows using the USART as an SPI master.
XX
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X -
LIN mode X -
Dual clock domain and wakeup from Stop mode X -
Receiver timeout interrupt X -
Modbus communication X -
Auto baud rate detection (4 modes) X -
Driver Enable X X
DS10690 Rev 6 33/144
STM32L071xx Functional overview
33
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The USARTs with synchronous capability can also be used as SPI master.
One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or
slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output
channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the
I2S interfaces is configured in master mode, the master clock can be output to the external
DAC/CODEC at 256 times the sampling frequency.
The SPIs can be served by the DMA controller.
Refer to Table 13 for the differences between SPI1 and SPI2.
3.16 Cyclic redundancy check (CRC) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
3.17 Serial wire debug port (SW-DP)
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to
the MCU.
Table 13. SPI/I2S implementation
SPI features(1)
1. X = supported.
SPI1 SPI2
Hardware CRC calculation X X
I2S mode - X
TI mode X X
Pin descriptions STM32L071xx
34/144 DS10690 Rev 6
4 Pin descriptions
Figure 3. STM32L071xx LQFP100 pinout - 14 x 14 mm
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
MSv35459V2
VDD
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PE2
PE3
PE4
PE5
PE6
VDD
PC14-OSC32_IN
PC15-OSC32_OUT
PH9
PH10
PH0-OSC_IN
NRST
PC0
PC1
PC2
PC3
VSSA
VREF-
VREF+
PA0
PA1
PA2
VDDIO2
VSS
PA13
PA12
PA 11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
LQFP100
PC13
PH1-OSC_OUT
VDDA
VDD
DS10690 Rev 6 35/144
STM32L071xx Pin descriptions
53
Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
Figure 5. STM32L071xx LQFP64 pinout - 10 x 10 mm
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
MSv35460V2
123 9
1011 12
J
K
L
45678
B
A
C
D
E
F
G
H
M
PH0-
OSC_IN
VDDPC0
PH10
PH1-
OSC_
OUT
NRST
VSSA PC1
VREF
-PC3
PA1
PA2
VREF
+
PD11
PA4
PA6
PA7
PC5
PB0 PB1
PE8
PE7
PD9
PE9
PE12
PE11 PE13
PB10
PE14
PB11
PE15
PB12
PD15 PD14 PD13
VDD
IO2 VDD
PD12
PB2
PE3 PE1 PB8 BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
PA11
PC10
PC12
PD1
PD3
PD4
PD6
PB6PB7
PB9PE2
PE4
PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 VDD PA10
PC9
PA8PA9
VSS
PE6
PC14-
OSC32
_IN
PC15-
OSC32
_OUT
VDD VSS PC8 PC7 PC6
VSS
VSSPH9
PC2 PD10
PB13PB14PB15PD8PC4PA5
VDDA
PA0 PA3 PE10
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VDD
PC13
PC 14-O SC 32_IN
PC 15-OSC 32_OU T
P H0 -OS C_IN
P H1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSS A
VDD A
PA0
PA 1
PA 2
VDD
VS S
PB 9
PB 8
BOO T0
PB 7
PB 6
PB 5
PB 4
PB 3
PD2
PC12
PC11
PC10
PA 15
PA 14
VDDIO2
VSS
PA 1 3
PA 1 2
PA 1 1
PA 1 0
PA 9
PA 8
PC9
PC8
PC7
PC6
PB 15
PB 14
PB 13
PB 12
PA 3
VSS
VD D
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB 0
PB 1
PB 2
PB1 0
PB1 1
VSS
VD D
LQFP64
MSv35457V2
Pin descriptions STM32L071xx
36/144 DS10690 Rev 6
Figure 6. STM32L071xx UFBGA64/TFBGA64 ballout - 5x 5 mm
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
PC14-
OSC32
_IN
PC15-
OSC32
_OUT
PH0-
OSC_IN
MSv35458V2
A
B
C
D
E
F
G
H
1234 56 7 8
PH1-
OSC_
OUT
NRST
VSSA
VREF
+
VDDA
PC13
VDD
VSS
VDD
PC1
PC2
PA0
PA1
PB9 PB4 PB3 PA15 PA14 PA13
PB8 BOOT
0PD2 PC11 PC10 PA12
PB7 PB5 PC12 PA10 PA9 PA11
PB6 VSS VSS VSS PA8 PC9
PC0 VDD VDD VDD
IO2 PC7 PC8
PA2 PA5 PB0 PC6 PB15 PB14
PA3 PA6 PB1 PB2 PB10 PB13
PA4 PA7 PC4 PC5 PB11 PB12
DS10690 Rev 6 37/144
STM32L071xx Pin descriptions
53
Figure 7. STM32L071xx WLCSP49 ballout
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
PA10
VDD
IO2
MSv36157V3
A
B
C
D
E
F
123 4 56
PA12
PA8
PB15
PB14
PA15
PA14
PA13
PA11
PA9
PB13
PB3 PB5 BOOT0 VDD
PB4 PB6 PB8 PC13
PB7 PC1 PC0 PC15-
OSC32
_OUT
PB1 VSS NRST
PH1-
OSC_
OUT
PB2 PA1 PA0 PC2
PB11 PA7 PA4 VDDA
7
PB9
VDD
PC14-
OSC32
_IN
PH0-
OSC_IN
VREF+
PA2
GPB12 VDD PB10 PB0 PA6 PA3
PA5
Pin descriptions STM32L071xx
38/144 DS10690 Rev 6
Figure 8. STM32L071xx LQFP48 pinout - 7 x 7 mm
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
Figure 9. STM32L071xx LQFP32 pinout
1. The above figure shows the package top view.
44 43 42 41 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 21 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDDIO2
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA
VDDA
PA0
PA1
PA2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
LQFP48
MS34745V2
MSv35429V3
32 31 30 29 28 27 26 25
24
23
22
20
19
18
17
891011121
314 15 16
1
2
3
4
5
6
7
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
NRST
VDDA
PA0
PA1
PA2
VSS
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PC14-OSC32_IN
PC15-OSC32_OUT
VDD
21
LQFP32
DS10690 Rev 6 39/144
STM32L071xx Pin descriptions
53
Figure 10. STM32L071xx UFQFPN32 pinout
1. The above figure shows the package top view.
2. PA11 and PA12 input/output (greyed out pins) are supplied by VDDIO2.
MSv35461V3
32 31 30 29 28 27 26 25
24
23
22
20
19
18
17
891011121314 15 16
1
2
3
4
5
6
7
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
VDDIO2
PA13
PA12
PA11
PA10
PA9
PA8
NRST
VDDA
PA0
PA1
PA2
VDD
VSS
BOOT0
PB7
PB6
PB5
PB4
PA14
PC14-OSC32_IN
PC15-OSC32_OUT
VDD
21
VSS
VSSA
Table 14. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.
Pin functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Pin descriptions STM32L071xx
40/144 DS10690 Rev 6
Table 15. STM32L071xxx pin definition
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
- - - - - - 1 B2 PE2 I/O FT - TIM3_ETR -
- - - - - - 2 A1 PE3 I/O FT - TIM22_CH1,
TIM3_CH1 -
- - - - - - 3 B1 PE4 I/O FT - TIM22_CH2,
TIM3_CH2 -
------4C2 PE5 I/OFT- TIM21_CH1,
TIM3_CH3 -
------5D2 PE6 I/OFT- TIM21_CH2,
TIM3_CH4
RTC_TAMP3/
WKUP3
1- 1 1B2B66 E2 VDD S - - - -
- - 2 2 A2 B7 7 C1 PC13 I/O FT - -
RTC_TAMP1/
RTC_TS/
RTC_OUT/WKUP2
21 3 3A1C68 D1
PC14-
OSC32_IN
(PC14)
I/O FT - - OSC32_IN
32 4 4B1C79 E1
PC15-
OSC32_OUT
(PC15)
I/O TC - - OSC32_OUT
------10F2 PH9 I/OFT- - -
------11G2 PH10 I/OFT- - -
--5 5C1D612F1
PH0-OSC_IN
(PH0) I/O TC - - OSC_IN
--6 6D1D713G1
PH1-
OSC_OUT
(PH1)
I/O TC - - OSC_OUT
4 3 7 7 E1 D5 14 H2 NRST I/O - - - -
- - - 8 E3 C5 15 H1 PC0 I/O FTf -
LPTIM1_IN1,
EVENTOUT,
LPUART1_RX,
I2C3_SCL
ADC_IN10
DS10690 Rev 6 41/144
STM32L071xx Pin descriptions
53
- - - 9 E2 C4 16 J2 PC1 I/O FTf -
LPTIM1_OUT,
EVENTOUT,
LPUART1_TX,
I2C3_SDA
ADC_IN11
- - - 10 F2 E7 17 J3 PC2 I/O FTf -
LPTIM1_IN2,
SPI2_MISO/I2S2_MC
K
ADC_IN12
- - - 11 - - 18 K2 PC3 I/O FT - LPTIM1_ETR,
SPI2_MOSI/I2S2_SD ADC_IN13
- 4 8 12 F1 - 19 J1 VSSA S - - - -
------20K1 VREF- S-- - -
- - - - G1 E6 21 L1 VREF+ S - - - -
5 5 9 13 H1 F7 22 M1 VDDA S - - - -
6 6 10 14 G2 E5 23 L2 PA0 I/O TT
a-
TIM2_CH1,
USART2_CTS,
TIM2_ETR,
USART4_TX,
COMP1_OUT
COMP1_INM,
ADC_IN0,
RTC_TAMP2/
WKUP1
7 7 11 15 H2 E4 24 M2 PA1 I/O FT -
EVENTOUT,
TIM2_CH2,
USART2_RTS/
USART2_DE,
TIM21_ETR,
USART4_RX
COMP1_INP,
ADC_IN1
8 8 12 16 F3 F6 25 K3 PA2 I/O FT -
TIM21_CH1,
TIM2_CH3,
USART2_TX,
LPUART1_TX,
COMP2_OUT
COMP2_INM,
ADC_IN2
9 9 13 17 G3 G7 26 L3 PA3 I/O FT -
TIM21_CH2,
TIM2_CH4,
USART2_RX,
LPUART1_RX
COMP2_INP,
ADC_IN3
- - - 18 C2 - 27 D3 VSS S - - - -
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
Pin descriptions STM32L071xx
42/144 DS10690 Rev 6
-- -19D2-28H3 VDD S - - - -
10 10 14 20 H3 F5 29 M3 PA4 I/O TC -
SPI1_NSS,
USART2_CK,
TIM22_ETR
COMP1_INM,
COMP2_INM,
ADC_IN4
11 11 15 21 F4 G6 30 K4 PA5 I/O TC -
SPI1_SCK,
TIM2_ETR,
TIM2_CH1
COMP1_INM,
COMP2_INM,
ADC_IN5
12 12 16 22 G4 G5 31 L4 PA6 I/O FT -
SPI1_MISO,
TIM3_CH1,
LPUART1_CTS,
TIM22_CH1,
EVENTOUT,
COMP1_OUT
ADC_IN6
13 13 17 23 H4 F4 32 M4 PA7 I/O FT -
SPI1_MOSI,
TIM3_CH2,
TIM22_CH2,
EVENTOUT,
COMP2_OUT
ADC_IN7
- - - 24 H5 - 33 K5 PC4 I/O FT - EVENTOUT,
LPUART1_TX ADC_IN14
- - - 25 H6 - 34 L5 PC5 I/O FT - LPUART1_RX ADC_IN15
14 14 18 26 F5 G4 35 M5 PB0 I/O FT - EVENTOUT,
TIM3_CH3
ADC_IN8,
VREF_OUT
15 15 19 27 G5 D3 36 M6 PB1 I/O FT -
TIM3_CH4,
LPUART1_RTS/
LPUART1_DE
ADC_IN9,
VREF_OUT
- - 20 28 G6 E3 37 L6 PB2 I/O FT - LPTIM1_OUT,
I2C3_SMBA -
------38M7 PE7 I/OFT-
USART5_CK,
USART5_RTS/
USART5_DE
-
- - - - - - 39 L7 PE8 I/O FT - USART4_TX -
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
DS10690 Rev 6 43/144
STM32L071xx Pin descriptions
53
------40M8 PE9 I/OFT-
TIM2_CH1,
TIM2_ETR,
USART4_RX
-
------41L8 PE10 I/OFT- TIM2_CH2,
USART5_TX -
------42M9 PE11 I/OFT- TIM2_CH3,
USART5_RX -
------43L9 PE12 I/OFT- TIM2_CH4,
SPI1_NSS -
- - - - - - 44 M10 PE13 I/O FT - SPI1_SCK -
- - - - - - 45 M11 PE14 I/O FT - SPI1_MISO -
- - - - - - 46 M12 PE15 I/O FT - SPI1_MOSI -
- - 21 29 G7 G3 47 L10 PB10 I/O FT -
TIM2_CH3,
LPUART1_TX,
SPI2_SCK,
I2C2_SCL,
LPUART1_RX
-
- - 22 30 H7 F3 48 L11 PB11 I/O FT -
EVENTOUT,
TIM2_CH4,
LPUART1_RX,
I2C2_SDA,
LPUART1_TX
-
16 16 23 31 D6 D4 49 F12 VSS S - - - -
17 17 24 32 E5 G2 50 G12 VDD S - - - -
- - 25 33 H8 G1 51 L12 PB12 I/O FT -
SPI2_NSS/I2S2_WS,
LPUART1_RTS/
LPUART1_DE,
I2C2_SMBA,
EVENTOUT
-
- - 26 34 G8 F2 52 K12 PB13 I/O FTf -
SPI2_SCK/I2S2_CK,
MCO,
LPUART1_CTS,
I2C2_SCL,
TIM21_CH1
-
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
Pin descriptions STM32L071xx
44/144 DS10690 Rev 6
- - 27 35 F8 F1 53 K11 PB14 I/O FTf -
SPI2_MISO/I2S2_MC
K, RTC_OUT,
LPUART1_RTS/
LPUART1_DE,
I2C2_SDA,
TIM21_CH2
-
- - 28 36 F7 E1 54 K10 PB15 I/O FT - SPI2_MOSI/I2S2_SD,
RTC_REFIN -
------55K9 PD8 I/OFT- LPUART1_TX -
- - - - - - 56 K8 PD9 I/O FT - LPUART1_RX -
------57J12 PD10 I/OFT- - -
- - - - - - 58 J11 PD11 I/O FT - LPUART1_CTS -
------59J10 PD12 I/OFT- LPUART1_RTS/
LPUART1_DE -
------60H12 PD13 I/OFT- - -
------61H11 PD14 I/OFT- - -
------62H10 PD15 I/OFT- - -
- - - 37 F6 - 63 E12 PC6 I/O FT - TIM22_CH1,
TIM3_CH1 -
- - - 38 E7 - 64 E11 PC7 I/O FT - TIM22_CH2,
TIM3_CH2 -
- - - 39 E8 - 65 E10 PC8 I/O FT - TIM22_ETR,
TIM3_CH3 -
- - - 40 D8 - 66 D12 PC9 I/O FTf -
TIM21_ETR,
TIM3_CH4,
I2C3_SDA
-
18 18 29 41 D7 D1 67 D11 PA8 I/O FTf -
MCO, EVENTOUT,
USART1_CK,
I2C3_SCL
-
19 19 30 42 C7 E2 68 D10 PA9 I/O FTf -
MCO, USART1_TX,
I2C1_SCL,
I2C3_SMBA
-
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
DS10690 Rev 6 45/144
STM32L071xx Pin descriptions
53
20 20 31 43 C6 C1 69 C12 PA10 I/O FTf - USART1_RX,
I2C1_SDA -
21 21 32 44 C8 D2 70 B12 PA11 I/O FT -
SPI1_MISO,
EVENTOUT,
USART1_CTS,
COMP1_OUT
-
22 22 33 45 B8 B1 71 A12 PA12 I/O FT -
SPI1_MOSI,
EVENTOUT,
USART1_RTS/
USART1_DE,
COMP2_OUT
-
23 23 34 46 A8 C2 72 A11 PA13 I/O FT - SWDIO,
LPUART1_RX -
------73C11 VDD S-- - -
- - 35 47 D5 - 74 F11 VSS S - - - -
- 24 36 48 E6 A1 75 G11 VDDIO2 S - - - -
24 25 37 49 A7 B2 76 A10 PA14 I/O FT -
SWCLK,
USART2_TX,
LPUART1_TX
-
25 - 38 50 A6 A2 77 A9 PA15 I/O FT -
SPI1_NSS,
TIM2_ETR,
EVENTOUT,
USART2_RX,
TIM2_CH1,
USART4_RTS/
USART4_DE
-
- - - 51 B7 - 78 B11 PC10 I/O FT - LPUART1_TX,
USART4_TX -
- - - 52 B6 - 79 C10 PC11 I/O FT - LPUART1_RX,
USART4_RX -
- - - 53 C5 - 80 B10 PC12 I/O FT - USART5_TX,
USART4_CK -
------81C9 PD0 I/OFT- TIM21_CH1,
SPI2_NSS/I2S2_WS -
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
Pin descriptions STM32L071xx
46/144 DS10690 Rev 6
- - - - - - 82 B9 PD1 I/O FT - SPI2_SCK/I2S2_CK -
- - - 54 B5 - 83 C8 PD2 I/O FT -
LPUART1_RTS/
LPUART1_DE,
TIM3_ETR,
USART5_RX
-
------84B8 PD3 I/OFT-
USART2_CTS,
SPI2_MISO/I2S2_MC
K
-
------85B7 PD4 I/OFT-
USART2_RTS/
USART2_DE,
SPI2_MOSI/I2S2_SD
-
------86A6 PD5 I/OFT- USART2_TX -
------87B6 PD6 I/OFT- USART2_RX -
------88A5 PD7 I/OFT- USART2_CK,
TIM21_CH2 -
26 - 39 55 A5 A3 89 A8 PB3 I/O FT -
SPI1_SCK,
TIM2_CH2,
EVENTOUT,
USART1_RTS/
USART1_DE,
USART5_TX
COMP2_INM
27 26 40 56 A4 B3 90 A7 PB4 I/O FTf -
SPI1_MISO,
TIM3_CH1,
TIM22_CH1,
USART1_CTS,
USART5_RX,
I2C3_SDA
COMP2_INP
28 27 41 57 C4 A4 91 C5 PB5 I/O FT -
SPI1_MOSI,
LPTIM1_IN1,
I2C1_SMBA,
TIM3_CH2/TIM22_CH
2, USART1_CK,
USART5_CK,
USART5_RTS/
USART5_DE
COMP2_INP
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
DS10690 Rev 6 47/144
STM32L071xx Pin descriptions
53
29 28 42 58 D3 B4 92 B5 PB6 I/O FTf -
USART1_TX,
I2C1_SCL,
LPTIM1_ETR,
COMP2_INP
30 29 43 59 C3 C3 93 B4 PB7 I/O FTf -
USART1_RX,
I2C1_SDA,
LPTIM1_IN2,
USART4_CTS
COMP2_INP,
VREF_PVD_IN
31 30 44 60 B4 A5 94 A4 BOOT0 I - - - -
- - 45 61 B3 B5 95 A3 PB8 I/O FTf - I2C1_SCL -
- - 46 62 A3 A6 96 B3 PB9 I/O FTf -
EVENTOUT,
I2C1_SDA,
SPI2_NSS/I2S2_WS
-
- - - - - - 97 C3 PE0 I/O FT - EVENTOUT -
- - - - - - 98 A2 PE1 I/O FT - EVENTOUT -
32 31 47 63 D4 - 99 D3 VSS S - - - -
-324864E4A7100C4 VDD S - - - -
1. UFQFPN32 pinout differs from other STM32 devices except STM32L07xxx and STM32L8xxx.
Table 15. STM32L071xxx pin definition (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA/TFBGA64
WLCSP49
LQFP100
UFBG100
Pin descriptions STM32L071xx
48/144 DS10690 Rev 6
Table 16. Alternate functions port A
Port
AF0AF1AF2AF3AF4AF5AF6AF7
SPI1/SPI2/I2S2/U
SART1/2/
LPUART1/LPTIM
1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2/I2
C1/TIM2/21
SPI1/SPI2/I2S2/L
PUART1/
USART5/LPTIM1/
TIM2/3/EVENTOU
T/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/L
PUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
I2C3/LPUART1/
COMP1/2/
TIM3
Port A
PA0 - - TIM2_CH1 USART2_CTS TIM2_ETR USART4_TX COMP1_OUT
PA1 EVENTOUT TIM2_CH2 USART2_RTS/
USART2_DE TIM21_ETR USART4_RX -
PA2 TIM21_CH1 TIM2_CH3 USART2_TX - LPUART1_TX COMP2_OUT
PA3 TIM21_CH2 TIM2_CH4 USART2_RX - LPUART1_RX -
PA4 SPI1_NSS - - USART2_CK TIM22_ETR - -
PA5 SPI1_SCK - TIM2_ETR TIM2_CH1 - -
PA6 SPI1_MISO TIM3_CH1 LPUART1_CTS TIM22_CH1 EVENTOUT COMP1_OUT
PA7 SPI1_MOSI TIM3_CH2 - TIM22_CH2 EVENTOUT COMP2_OUT
PA8 MCO EVENTOUT USART1_CK - - I2C3_SCL
PA9 MCO - USART1_TX - I2C1_SCL I2C3_SMBA
PA10 - - USART1_RX - I2C1_SDA -
PA11 SPI1_MISO - EVENTOUT USART1_CTS - - COMP1_OUT
PA12 SPI1_MOSI - EVENTOUT USART1_RTS/
USART1_DE - - COMP2_OUT
PA13 SWDIO - - - - LPUART1_RX -
PA14 SWCLK - - - USART2_TX - LPUART1_TX -
PA15 SPI1_NSS TIM2_ETR EVENTOUT USART2_RX TIM2_CH1 USART4_RTS/
USART4_DE -
STM32L071xx Pin descriptions
DS10690 Rev 6 49/144
Table 17. Alternate functions port B
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2/I
2C1/TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/LPTIM
1/TIM2/3/EVENT
OUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
I2C3/LPUART1/
COMP1/2/
TIM3
Port B
PB0 EVENTOUT TIM3_CH3 - - - -
PB1 - TIM3_CH4 LPUART1_RTS/
LPUART1_DE ---
PB2 - - LPTIM1_OUT - - - I2C3_SMBA
PB3 SPI1_SCK TIM2_CH2 EVENTOUT USART1_RTS/
USART1_DE USART5_TX -
PB4 SPI1_MISO TIM3_CH1 TIM22_CH1 USART1_CTS USART5_RX I2C3_SDA
PB5 SPI1_MOSI LPTIM1_IN1 I2C1_SMBA TIM3_CH2/
TIM22_CH2 USART1_CK
USART5_CK,
USART5_RTS/
USART5_DE
-
PB6 USART1_TX I2C1_SCL LPTIM1_ETR - - - -
PB7 USART1_RX I2C1_SDA LPTIM1_IN2 - - USART4_CTS -
PB8 - - I2C1_SCL - - -
PB9 - EVENTOUT - I2C1_SDA SPI2_NSS/
I2S2_WS --
PB10 - TIM2_CH3 LPUART1_TX SPI2_SCK I2C2_SCL LPUART1_RX
PB11 EVENTOUT TIM2_CH4 LPUART1_RX - I2C2_SDA LPUART1_TX
PB12 SPI2_NSS/I2S2_WS LPUART1_RTS/
LPUART1_DE I2C2_SMBA EVENTOUT -
PB13 SPI2_SCK/I2S2_CK MCO LPUART1_CTS I2C2_SCL TIM21_CH1 -
PB14 SPI2_MISO/
I2S2_MCK RTC_OUT LPUART1_RTS/
LPUART1_DE I2C2_SDA TIM21_CH2 -
PB15 SPI2_MOSI/
I2S2_SD RTC_REFIN - - - - -
Pin descriptions STM32L071xx
50/144 DS10690 Rev 6
Table 18. Alternate functions port C
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2/I2C1/
TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3
/EVENTOUT/SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/E
VENTOUT
I2C3/LPUART1/
COMP1/2/
TIM3
Port C
PC0 LPTIM1_IN1 EVENTOUT LPUART1_RX I2C3_SCL
PC1 LPTIM1_OUT EVENTOUT LPUART1_TX I2C3_SDA
PC2 LPTIM1_IN2 SPI2_MISO/
I2S2_MCK
PC3 LPTIM1_ETR SPI2_MOSI/
I2S2_SD
PC4 EVENTOUT LPUART1_TX
PC5 LPUART1_RX
PC6 TIM22_CH1 TIM3_CH1
PC7 TIM22_CH2 TIM3_CH2
PC8 TIM22_ETR TIM3_CH3
PC9 TIM21_ETR TIM3_CH4 I2C3_SDA
PC10 LPUART1_TX USART4_TX
PC11 LPUART1_RX USART4_RX
PC12 USART5_TX USART4_CK
PC13
PC14
PC15
STM32L071xx Pin descriptions
DS10690 Rev 6 51/144
Table 19. Alternate functions port D
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2/I2C1/
TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3
/EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/E
VENTOUT
I2C3/LPUART1/
COMP1/2/TIM3
Port D
PD0 TIM21_CH1 SPI2_NSS/I2S2_WS - - - - - -
PD1 - SPI2_SCK/I2S2_CK - - - - - -
PD2 LPUART1_RTS/
LPUART1_DE TIM3_ETR - - - USART5_RX -
PD3 USART2_CTS SPI2_MISO/
I2S2_MCK -- - - -
PD4 USART2_RTS/
USART2_DE SPI2_MOSI/I2S2_SD - - - - - -
PD5 USART2_TX - - - - - - -
PD6 USART2_RX - - - - - - -
PD7 USART2_CK TIM21_CH2 - - - - - -
PD8 LPUART1_TX - - - - - -
PD9 LPUART1_RX - - - - - -
PD10 - - - - - - -
PD11 LPUART1_CTS - - - - - -
PD12 LPUART1_RTS/
LPUART1_DE --- - - -
PD13 - - - - - - -
PD14 - - - - - - -
PD15 - - - - - -
Pin descriptions STM32L071xx
52/144 DS10690 Rev 6
Table 20. Alternate functions port E
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/LPTI
M1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2/I2C1
/TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3
/EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
I2C3/LPUART1/
COMP1/2/TIM3
Port E
PE0 - EVENTOUT - - - - -
PE1 - EVENTOUT - - - - -
PE2 - TIM3_ETR - - - - -
PE3 TIM22_CH1 TIM3_CH1 - - - - -
PE4 TIM22_CH2 - TIM3_CH2 - - - - -
PE5 TIM21_CH1 - TIM3_CH3 - - - - -
PE6 TIM21_CH2 - TIM3_CH4 - - - - -
PE7 - - - - -
USART5_CK,
USART5_RTS/
USART5_DE
-
PE8 - - - - - USART4_TX -
PE9 TIM2_CH1 TIM2_ETR - - - USART4_RX -
PE10 TIM2_CH2 - - - - USART5_TX -
PE11 TIM2_CH3 - - - - - USART5_RX -
PE12 TIM2_CH4 - SPI1_NSS - - - - -
PE13 - SPI1_SCK - - - - -
PE14 - SPI1_MISO - - - - -
PE15 - SPI1_MOSI - - - - -
STM32L071xx Pin descriptions
DS10690 Rev 6 53/144
Table 21. Alternate functions port H
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/
I2S2/USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2
/I2C1/TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3/
EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
I2C3/
LPUART1/
COMP1/2/
TIM3
Port H
PH0 - - - - - - -
PH1 - - - - - - - -
Memory mapping STM32L071xx
54/144 DS10690 Rev 6
5 Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
DS10690 Rev 6 55/144
STM32L071xx Electrical characteristics
111
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
Electrical characteristics STM32L071xx
56/144 DS10690 Rev 6
6.1.6 Power supply scheme
Figure 13. Power supply scheme
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
MSv34740V1
Analog:
RC,PLL,COMP,
….
VDD
GP I/Os
OUT
IN Kernel logic
(CPU,
Digital &
Memories)
Standby-power circuitry
(OSC32,RTC,Wake-up
logic, RTC backup
registers)
N × 100 nF
+ 1 × 10 μF
Regulator
VSS
VDDA
VREF+
VREF-
VSSA
ADC
Level shifter
IO
Logic
VDD
100 nF
+ 1 μF
VREF
100 nF
+ 1 μF
VDDA
MSv34711V1
NxVDD
IDD
N × 100 nF
+ 1 × 10 μF NxVSS
VDDA
DS10690 Rev 6 57/144
STM32L071xx Electrical characteristics
111
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 22: Voltage characteristics,
Table 23: Current characteristics, and Table 24: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are
available on demand.
Table 22. Voltage characteristics
Symbol Definition Min Max Unit
VDD–VSS
External main supply voltage
(including VDDA, VDDIO2 VDD)(1)
1. All main power (VDD,, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 23 for maximum allowed injected current values.
Input voltage on FT and FTf pins VSS 0.3 VDD+4.0
Input voltage on TC pins VSS 0.3 4.0
Input voltage on BOOT0 VSS VDD + 4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDD| Variations between different VDDx power pins - 50
mV
|VDDA-VDDx|Variations between any VDDx and VDDA power
pins(3)
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and device operation. VDDIO2 is independent
from VDD and VDDA: its value does not need to respect this rule.
- 300
|ΔVSS|Variations between all different ground pins
including VREF- pin -50
VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA -0.4V
VESD(HBM)
Electrostatic discharge voltage
(human body model) see Section 6.3.11
Electrical characteristics STM32L071xx
58/144 DS10690 Rev 6
Table 23. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD(2) Total current into sum of all VDD power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
105
mA
ΣIVSS(2)
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
Total current out of sum of all VSS ground lines (sink)(1) 105
ΣIVDDIO2 Total current into VDDIO2 power line (source) 25
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100
IIO
Output current sunk by any I/O and control pin except FTf
pins 16
Output current sunk by FTf pins 22
Output current sourced by any I/O and control pin -16
ΣIIO(PIN)
Total output current sunk by sum of all IOs and control pins
except PA11 and PA12(2) 90
Total output current sunk by PA11 and PA12 25
Total output current sourced by sum of all IOs and control
pins(2) -90
IINJ(PIN)
Injected current on FT, FTf, RST and B pins -5/+0(3)
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)
must never be exceeded. Refer to Table 22 for maximum allowed input voltage values.
Injected current on TC pin ± 5(4)
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 22: Voltage characteristics for the maximum allowed input voltage
values.
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
Table 24. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DS10690 Rev 6 59/144
STM32L071xx Electrical characteristics
111
6.3 Operating conditions
6.3.1 General operating conditions
Table 25. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 32
MHzfPCLK1 Internal APB1 clock frequency - 0 32
fPCLK2 Internal APB2 clock frequency - 0 32
VDD Standard operating voltage
BOR detector disabled 1.65 3.6
VBOR detector enabled, at power-on 1.8 3.6
BOR detector disabled, after power-on 1.65 3.6
VDDA
Analog operating voltage (all
features) Must be the same voltage as VDD(1) 1.65 3.6 V
VDDIO2 Standard operating voltage - 1.65 3.6 V
VIN
Input voltage on FT, FTf and RST
pins(2)
2.0 V VDD 3.6 V -0.3 5.5
V
1.65 V VDD 2.0 V -0.3 5.2
Input voltage on BOOT0 pin - 0 5.5
Input voltage on TC pin - -0.3 VDD+0.3
PD
Power dissipation at TA = 85 °C
(range 6) or TA =105 °C (rage 7) (3)
UFBGA100 package - 351
mW
LQFP100 package - 488
UFBGA64 package - 308
TFBGA64 package - 313
LQFP64 package - 435
WLCSP49 package - 417
LQFP48 package - 370
UFQFPN32 package - 556
LQFP32 package - 333
Power dissipation at TA = 125 °C
(range 3) (3)
UFBGA100 package - 88
LQFP100 package - 122
UFBGA64 package - 77
TFBGA64 package - 78
LQFP64 package - 109
WLCSP49 package - 104
LQFP48 package - 93
UFQFPN32 package - 139
LQFP32 package - 83
Electrical characteristics STM32L071xx
60/144 DS10690 Rev 6
TA Temperature range
Maximum power dissipation (range 6) –40 85
°C
Maximum power dissipation (range 7) –40 105
Maximum power dissipation (range 3) –40 125
TJ
Junction temperature range (range 6) -40 °C TA 85 ° –40 105
Junction temperature range (range 7) -40 °C TA 105 °C –40 125
Junction temperature range (range 3) -40 °C TA 125 °C –40 130
1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA
can be tolerated during power-up and normal operation.
2. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 24: Thermal characteristics on
page 58).
Table 25. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
DS10690 Rev 6 61/144
STM32L071xx Electrical characteristics
111
6.3.2 Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in Table 25.
Table 26. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tVDD(1)
VDD rise time rate
BOR detector enabled 0 -
µs/V
BOR detector disabled 0 - 1000
VDD fall time rate
BOR detector enabled 20 -
BOR detector disabled 0 - 1000
TRSTTEMPO(1) Reset temporization
VDD rising, BOR enabled - 2 3.3
ms
VDD rising, BOR disabled(2) 0.4 0.7 1.6
VPOR/PDR
Power-on/power down reset
threshold
Falling edge 1 1.5 1.65
V
Rising edge 1.3 1.5 1.65
VBOR0 Brown-out reset threshold 0
Falling edge 1.67 1.7 1.74
Rising edge 1.69 1.76 1.8
VBOR1 Brown-out reset threshold 1
Falling edge 1.87 1.93 1.97
Rising edge 1.96 2.03 2.07
VBOR2 Brown-out reset threshold 2
Falling edge 2.22 2.30 2.35
Rising edge 2.31 2.41 2.44
VBOR3 Brown-out reset threshold 3
Falling edge 2.45 2.55 2.6
Rising edge 2.54 2.66 2.7
VBOR4 Brown-out reset threshold 4
Falling edge 2.68 2.8 2.85
Rising edge 2.78 2.9 2.95
VPVD0
Programmable voltage detector
threshold 0
Falling edge 1.8 1.85 1.88
Rising edge 1.88 1.94 1.99
VPVD1 PVD threshold 1
Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
VPVD2 PVD threshold 2
Falling edge 2.20 2.24 2.28
Rising edge 2.28 2.34 2.38
VPVD3 PVD threshold 3
Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
VPVD4 PVD threshold 4
Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
VPVD5 PVD threshold 5
Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
Electrical characteristics STM32L071xx
62/144 DS10690 Rev 6
6.3.3 Embedded internal reference voltage
The parameters given in Table 28 are based on characterization results, unless otherwise
specified.
VPVD6 PVD threshold 6
Falling edge 2.97 3.05 3.09
V
Rising edge 3.08 3.15 3.20
Vhyst Hysteresis voltage
BOR0 threshold - 40 -
mV
All BOR and PVD thresholds
excepting BOR0 -100-
1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.
Table 26. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 27. Embedded internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 25 °C
VDDA= 3 V
0x1FF8 0078 - 0x1FF8 0079
Table 28. Embedded internal reference voltage(1)
Symbol Parameter Conditions Min Typ Max Unit
VREFINT out(2) Internal reference voltage – 40 °C < TJ < +125 °C 1.202 1.224 1.242 V
TVREFINT Internal reference startup time - - 2 3 ms
VVREF_MEAS
VDDA and VREF+ voltage during
VREFINT factory measure -2.9933.01V
AVREF_MEAS
Accuracy of factory-measured
VREFINT value(3)
Including uncertainties
due to ADC and
VDDA/VREF+ values
-- ±5mV
TCoeff(4) Temperature coefficient –40 °C < TJ < +125 °C - 25 100 ppm/°C
ACoeff(4) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm
VDDCoeff(4) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V
TS_vrefint(4)(5)
ADC sampling time when
reading the internal reference
voltage
-510-µs
TADC_BUF(4) Startup time of reference
voltage buffer for ADC ---10µs
IBUF_ADC(4) Consumption of reference
voltage buffer for ADC - - 13.5 25 µA
IVREF_OUT(4) VREF_OUT output current(6) ---1µA
CVREF_OUT(4) VREF_OUT output load - - - 50 pF
DS10690 Rev 6 63/144
STM32L071xx Electrical characteristics
111
6.3.4 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified
otherwise.
The current consumption values are derived from the tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 25: General operating
conditions unless otherwise specified.
The MCU is placed under the following conditions:
All I/O pins are configured in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time and prefetch is adjusted depending on fHCLK
frequency and voltage range to provide the best CPU performance unless otherwise
specified.
When the peripherals are enabled fAPB1 = fAPB2 = fAPB
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used)
The HSE user clock applied to OSCI_IN input follows the characteristic specified in
Table 42: High-speed external user clock characteristics
For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins
For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise
The parameters given in Table 49, Table 25 and Table 26 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 25.
ILPBUF(4)
Consumption of reference
voltage buffer for VREF_OUT
and COMP
- - 730 1200 nA
VREFINT_DIV1(4) 1/4 reference voltage - 24 25 26
%
VREFINT
VREFINT_DIV2(4) 1/2 reference voltage - 49 50 51
VREFINT_DIV3(4) 3/4 reference voltage - 74 75 76
1. Refer to Table 40: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current
consumption (IREFINT).
2. Guaranteed by test in production.
3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
4. Guaranteed by design.
5. Shortest sampling time can be determined in the application by multiple iterations.
6. To guarantee less than 1% VREF_OUT deviation.
Table 28. Embedded internal reference voltage(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L071xx
64/144 DS10690 Rev 6
Table 29. Current consumption in Run mode, code with data processing running from
Flash memory
Symbol Parameter Condition fHCLK
(MHz) Typ Max(1) Unit
IDD (Run
from Flash
memory)
Supply current in Run
mode code executed
from Flash memory
fHSE = fHCLK up to
16MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range3,
Vcore=1.2 V
VOS[1:0]=11
1 190 250
µA2 345 380
4 650 670
Range2,
Vcore=1.5 V
VOS[1:0]=10
4 0,8 0,86
mA
8 1,55 1,7
16 2,95 3,1
Range1,
Vcore=1.8 V
VOS[1:0]=01
81,92,1
16 3,55 3,8
32 6,65 7,2
MSI clock source
Range3,
Vcore=1.2 V
VOS[1:0]=11
0,065 39 130
µA0,524 115 210
4,2 700 770
HSI clock source
(16MHz)
Range2,
Vcore=1.5 V
VOS[1:0]=10
16 2,9 3,2
mA
Range1,
Vcore=1.8 V
VOS[1:0]=01
32 7,15 7,4
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
DS10690 Rev 6 65/144
STM32L071xx Electrical characteristics
111
Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS
Table 30. Current consumption in Run mode vs code type,
code with data processing running from Flash memory
Symbol Parameter Conditions fHCLK Typ Unit
IDD
(Run
from
Flash
memory)
Supply
current in
Run mode,
code
executed
from Flash
memory
fHSE = fHCLK up to
16 MHz included, fHSE
= fHCLK/2 above 16
MHz (PLL ON)(1)
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
Dhrystone
4 MHz
650
µA
CoreMark 655
Fibonacci 485
while(1) 385
while(1), 1WS,
prefetch OFF 375
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
Dhrystone
32 MHz
6,65
mA
CoreMark 6,9
Fibonacci 6,75
while(1) 5,8
while(1), prefetch
OFF 5,5
1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
MSv37843V1
0
0.50
1.00
1.50
2.00
2.50
3.00
3.50
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
IDD (mA)
VDD (V)
Electrical characteristics STM32L071xx
66/144 DS10690 Rev 6
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS
MSv37844V1
0
0.50
1.00
1.50
2.00
2.50
3.00
3.50
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
IDD (mA)
VDD (V)
Table 31. Current consumption in Run mode, code with data processing running from RAM
Symbol Parameter Condition fHCLK
(MHz) Typ Max(1) Unit
IDD (Run
from RAM)
Supply current in Run
mode code executed
from RAM, Flash
memory switched off
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range3,
Vcore=1.2 V
VOS[1:0]=11
1175230
µA2315360
4570630
Range2,
Vcore=1.5 V
VOS[1:0]=10
40,710,78
mA
81,351,6
16 2,7 3
Range1,
Vcore=1.8 V
VOS[1:0]=01
81,71,9
16 3,2 3,7
32 6,65 7,1
MSI clock
Range3,
Vcore=1.2 V
VOS[1:0]=11
0,065 38 98
µA0,524 105 160
4,2 615 710
HSI clock source
(16 MHz)
Range2,
Vcore=1.5 V
VOS[1:0]=10
16 2,85 3
mA
Range1,
Vcore=1.8 V
VOS[1:0]=01
32 6,85 7,3
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
DS10690 Rev 6 67/144
STM32L071xx Electrical characteristics
111
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Table 32. Current consumption in Run mode vs code type,
code with data processing running from RAM(1)
Symbol Parameter Conditions fHCLK Typ Unit
IDD (Run
from
RAM)
Supply current in
Run mode, code
executed from
RAM, Flash
memory switched
off
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
Dhrystone
4 MHz
570
µA
CoreMark 670
Fibonacci 410
while(1) 375
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
Dhrystone
32 MHz
6,65
mA
CoreMark 6,95
Fibonacci 5,9
while(1) 5,2
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Electrical characteristics STM32L071xx
68/144 DS10690 Rev 6
Table 33. Current consumption in Sleep mode
Symbol Parameter Condition fHCLK (MHz) Typ Max(1) Unit
IDD
(Sleep)
Supply current in
Sleep mode, Flash
memory switched
OFF
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range3,
Vcore=1.2 V
VOS[1:0]=11
1 43,5 110
µA
272140
4 130 200
Range2,
Vcore=1.5 V
VOS[1:0]=10
4 160 220
8 305 380
16 590 690
Range1,
Vcore=1.8 V
VOS[1:0]=01
8 370 460
16 715 840
32 1650 2000
MSI clock
Range3,
Vcore=1.2 V
VOS[1:0]=11
0,065 18 93
0,524 31,5 110
4,2 140 230
HSI clock source
(16 MHz)
Range2,
Vcore=1.5 V
VOS[1:0]=10
16 665 850
Range1,
Vcore=1.8 V
VOS[1:0]=01
32 1750 2100
Supply current in
Sleep mode, Flash
memory switched
ON
fHSE = fHCLK up to
16MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range3,
Vcore=1.2 V
VOS[1:0]=11
1 57,5 130
284160
4 150 220
Range2,
Vcore=1.5 V
VOS[1:0]=10
4 170 240
8 315 400
16 605 710
Range1,
Vcore=1.8 V
VOS[1:0]=01
8 380 470
16 730 860
32 1650 2000
MSI clock
Range3,
Vcore=1.2 V
VOS[1:0]=11
0,065 29,5 110
0,524 44,5 120
4,2 150 240
HSI clock source
(16MHz)
Range2,
Vcore=1.5 V
VOS[1:0]=10
16 680 930
Range1,
Vcore=1.8 V
VOS[1:0]=01
32 1750 2200
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
DS10690 Rev 6 69/144
STM32L071xx Electrical characteristics
111
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Table 34. Current consumption in Low-power run mode
Symbol Parameter Condition fHCLK
(MHz) Typ Max(1) Unit
IDD
(LP Run)
Supply
current in
Low-power
run mode
All peripherals
OFF, code
executed from
RAM, Flash
memory switched
OFF, VDD from
1.65 to 3.6 V
MSI clock = 65 kHz,
fHCLK= 32 kHz
TA = 40 to 25°C
0,032
9,45 12
µA
TA = 85°C 14 58
TA = 105°C 21 64
TA = 125°C 36,5 160
MSI clock = 65 kHz,
fHCLK= 65kHz
TA = 40 to 25°C
0,065
14,5 18
TA = 85°C 19,5 60
TA = 105°C 26 65
TA = 125°C 42 160
MSI clock=131 kHz,
fHCLK= 131 kHz
TA = 40 to 25°C
0,131
26,5 30
TA = 55°C 27,5 60
TA = 85°C 31 66
TA = 105°C 37,5 77
TA = 125°C 53,5 170
All peripherals
OFF, code
executed from
Flash memory,
VDD from 1.65 V
to 3.6 V
MSI clock = 65 kHz,
fHCLK= 32 kHz
TA = 40 to 25°C
0,032
24,5 34
TA = 85°C 30 82
TA = 105°C 38,5 90
TA = 125°C 58 120
MSI clock = 65 kHz,
fHCLK= 65 kHz
TA = 40 to 25°C
0,065
30,5 40
TA = 85°C 36,5 88
TA = 105°C 45 96
TA = 125°C 64,5 120
MSI clock =
131 kHz,
fHCLK= 131 kHz
TA = 40 to 25°C
0,131
45 56
TA = 55°C 48 96
TA = 85°C 51 110
TA = 105°C 59,5 120
TA = 125°C 79,5 150
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
Electrical characteristics STM32L071xx
70/144 DS10690 Rev 6
Figure 17. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS
MSv37845V2
0
5,0E-03
1,0E-02
1,5E-02
2,0E-02
2,5E-02
3,0E-02
3,5E-02
4,0E-02
4,5E-02
1,65 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6
-40
25
55
85
105
125
IDD (mA)
VDD (V)
Table 35. Current consumption in Low-power sleep mode
Symbol Parameter Condition Typ Max
(1) Unit
IDD
(LP Sleep)
Supply current in
Low-power sleep
mode
All peripherals
OFF, code
executed from
Flash memory, VDD
from 1.65 to 3.6 V
MSI clock = 65 kHz,
fHCLK= 32 kHz,
Flash memory OFF
TA = 40 to 25°C 4,7 -
µA
MSI clock = 65 kHz,
fHCLK= 32 kHz
TA = 40 to 25°C 17 24
TA = 85°C 19,5 30
TA= 105°C 23 47
TA= 125°C 32,5 70
MSI clock = 65 kHz,
fHCLK= 65 kHz
TA= 40 to 25°C 17 24
TA= 85°C 20 31
TA = 105°C 23,5 47
TA = 125°C 32,5 70
MSI clock = 131kHz,
fHCLK= 131 kHz
TA= 40 to 25°C 19,5 27
TA = 55°C 20,5 28
TA = 85°C 22,5 33
TA = 105°C 26 50
TA= 125°C 35 73
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
DS10690 Rev 6 71/144
STM32L071xx Electrical characteristics
111
Figure 18. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive
Table 36. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions Typ Max(1)
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
Unit
IDD (Stop) Supply current in Stop mode
TA = 40 to 25°C 0,43 1,00
µA
TA = 55°C 0,735 2,50
TA= 85°C 2,25 4,90
TA = 105°C 5,3 13,00
TA = 125°C 12,5 28,00
MSv37846V1
0
2.0E-03
4.0E-03
6.0E-03
8.0E-03
1.0E-02
1.2E-02
1.4E-02
1.6E-02
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
IDD (mA)
VDD (V)
Electrical characteristics STM32L071xx
72/144 DS10690 Rev 6
Figure 19. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks OFF
MSv37847V1
0
2.0E-03
4.0E-03
6.0E-03
8.0E-03
1.0E-02
1.2E-02
1.4E-02
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
IDD (mA)
VDD (V)
Table 37. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions Typ Max(1) Unit
IDD
(Standby)
Supply current in Standby
mode
Independent watchdog
and LSI enabled
TA = 40 to 25°C 0,855 1,70
µA
TA = 55 °C - 2,90
TA= 85 °C - 3,30
TA = 105 °C - 4,10
TA = 125 °C - 8,50
Independent watchdog
and LSI OFF
TA = 40 to 25°C 0,29 0,60
TA = 55 °C 0,32 1,20
TA = 85 °C 0,5 2,30
TA = 105 °C 0,94 3,00
TA = 125 °C 2,6 7,00
1. Guaranteed by characterization results at 125 °C, unless otherwise specified
DS10690 Rev 6 73/144
STM32L071xx Electrical characteristics
111
Table 38. Average current consumption during Wakeup
Symbol parameter System frequency
Current
consumption
during wakeup
Unit
IDD (Wakeup from
Stop)
Supply current during Wakeup from
Stop mode
HSI 1
mA
HSI/4 0,7
MSI clock = 4,2 MHz 0,7
MSI clock = 1,05 MHz 0,4
MSI clock = 65 KHz 0,1
IDD (Reset) Reset pin pulled down - 0,21
IDD (Power-up) BOR ON - 0,23
IDD (Wakeup from
StandBy)
With Fast wakeup set MSI clock = 2,1 MHz 0,5
With Fast wakeup disabled MSI clock = 2,1 MHz 0,12
Electrical characteristics STM32L071xx
74/144 DS10690 Rev 6
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following tables. The
MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked OFF
with only one peripheral clocked on
Table 39. Peripheral current consumption in Run or Sleep mode(1)
Peripheral
Typical consumption, VDD = 3.0 V, TA = 25 °C
Unit
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
Low-power
sleep and
run
APB1
CRS 2.5 2 2 2
µA/MHz
(fHCLK)
I2C1 11 9.5 7.5 9
I2C3 11 9 7 9
LPTIM1 10 8.5 6.5 8
LPUART1 8 6.5 5.5 6
SPI2 9 4.5 3.5 4
USART2 14.5 12 9.5 11
USART4 5 4 3 5
USART5 5 4 3 5
TIM2 10.5 8.5 7 9
TIM3 12 10 8 11
TIM6 3.5 3 2.5 2
TIM7 3.5 3 2.5 2
WWDG 3 2 2 2
APB2
ADC1(2) 5.5 5 3.5 4
µA/MHz
(fHCLK)
SPI1 4 3 3 2.5
USART1 14.5 11.5 9.5 12
TIM21 7.5 6 5 5.5
TIM22 7 6 5 6
FIREWALL 1.5 1 1 0.5
DBGMCU 1.5 1 1 0.5
SYSCFG 2.5 2 2 1.5
DS10690 Rev 6 75/144
STM32L071xx Electrical characteristics
111
Cortex-
M0+ core
I/O port
GPIOA 3.5 3 2.5 2.5
µA/MHz
(fHCLK)
GPIOB 3.5 2.5 2 2.5
GPIOC 8.5 6.5 5.5 7
GPIOD 1 0.5 0.5 0.5
GPIOE 8 6 5 6
GPIOH 1.5 1 1 0.5
AHB
CRC 1.5 1 1 1
µA/MHz
(fHCLK)
FLASH 0(3) 0(3) 0(3) 0(3)
DMA1 10 8 6.5 8.5
All enabled 204 162 130 202 µA/MHz
(fHCLK)
PWR 2.5 2 2 1 µA/MHz
(fHCLK)
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.
2. HSI oscillator is OFF for this measure.
3. Current consumption is negligible and close to 0 µA.
Table 39. Peripheral current consumption in Run or Sleep mode(1) (continued)
Peripheral
Typical consumption, VDD = 3.0 V, TA = 25 °C
Unit
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
Low-power
sleep and
run
Electrical characteristics STM32L071xx
76/144 DS10690 Rev 6
6.3.5 Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI or HSI16 RC
oscillator. The clock source used to wake up the device depends on the current operating
mode:
Sleep mode: the clock source is the clock that was set before entering Sleep mode
Stop mode: the clock source is either the MSI oscillator in the range configured before
entering Stop mode, the HSI16 or HSI16/4.
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 25.
Table 40. Peripheral current consumption in Stop and Standby mode(1)
Symbol Peripheral
Typical consumption, TA = 25 °C
Unit
VDD=1.8 V VDD=3.0 V
IDD(PVD / BOR) -0.71.2
µA
IREFINT --1.7
- LSE Low drive(2) 0.11 0,13
- LSI 0.27 0.31
-IWDG0.2 0.3
- LPTIM1, Input 100 Hz 0.01 0,01
- LPTIM1, Input 1 MHz 11 12
- LPUART1 - 0,5
- RTC 0.16 0,3
1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.
2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN
and OSC32_OUT.-
Table 41. Low-power mode wakeup timings
Symbol Parameter Conditions Typ Max Unit
tWUSLEEP Wakeup from Sleep mode fHCLK = 32 MHz 7 8
Number
of clock
cycles
tWUSLEEP_
LP
Wakeup from Low-power sleep mode,
fHCLK = 262 kHz
fHCLK = 262 kHz
Flash memory enabled 78
fHCLK = 262 kHz
Flash memory switched OFF 910
DS10690 Rev 6 77/144
STM32L071xx Electrical characteristics
111
tWUSTOP
Wakeup from Stop mode, regulator in Run
mode
fHCLK = fMSI = 4.2 MHz 5.0 8
µs
fHCLK = fHSI = 16 MHz 4.9 7
fHCLK = fHSI/4 = 4 MHz 8.0 11
Wakeup from Stop mode, regulator in low-
power mode
fHCLK = fMSI = 4.2 MHz
Voltage range 1 5.0 8
fHCLK = fMSI = 4.2 MHz
Voltage range 2 5.0 8
fHCLK = fMSI = 4.2 MHz
Voltage range 3 5.0 8
fHCLK = fMSI = 2.1 MHz 7.3 13
fHCLK = fMSI = 1.05 MHz 13 23
fHCLK = fMSI = 524 kHz 28 38
fHCLK = fMSI = 262 kHz 51 65
fHCLK = fMSI = 131 kHz 100 120
fHCLK = MSI = 65 kHz 190 260
fHCLK = fHSI = 16 MHz 4.9 7
fHCLK = fHSI/4 = 4 MHz 8.0 11
Wakeup from Stop mode, regulator in low-
power mode, code running from RAM
fHCLK = fHSI = 16 MHz 4.9 7
fHCLK = fHSI/4 = 4 MHz 7.9 10
fHCLK = fMSI = 4.2 MHz 4.7 8
tWUSTDBY
Wakeup from Standby mode
FWU bit = 1 fHCLK = MSI = 2.1 MHz 65 130
Wakeup from Standby mode
FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.2 3 ms
Table 41. Low-power mode wakeup timings (continued)
Symbol Parameter Conditions Typ Max Unit
Electrical characteristics STM32L071xx
78/144 DS10690 Rev 6
6.3.6 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the
recommended clock input waveform is shown in Figure 20.
Figure 20. High-speed external clock source AC timing diagram
Table 42. High-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency
CSS is ON or
PLL is used 1832MHz
CSS is OFF,
PLL not used 0832MHz
VHSEH OSC_IN input pin high level voltage
-
0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time 12 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
Cin(HSE) OSC_IN input capacitance - 2.6 - pF
DuCy(HSE) Duty cycle 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
ai18232c
OSC _ IN
EXTERNAL
STM32Lxx
CLOCK SOURCE
VHSEH
tf(HSE) tW(HSE)
IL
90%
10%
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
DS10690 Rev 6 79/144
STM32L071xx Electrical characteristics
111
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a low-
speed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 25.
Figure 21. Low-speed external clock source AC timing diagram
Table 43. Low-speed external user clock characteristics(1)
1. Guaranteed by design, not tested in production
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User external clock source
frequency
-
1 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage VSS -0.3V
DD
tw(LSE)
tw(LSE)
OSC32_IN high or low time 465 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 10
CIN(LSE) OSC32_IN input capacitance - - 0.6 - pF
DuCy(LSE) Duty cycle - 45 - 55 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
ai18233c
OSC 32_IN
EXTERNAL
STM32Lxx
CLOCK SOURCE
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
Electrical characteristics STM32L071xx
80/144 DS10690 Rev 6
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 44. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 22). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 22. HSE oscillator circuit diagram
Table 44. HSE oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 1 25 MHz
RFFeedback resistor - - 200 - kΩ
Gm
Maximum critical crystal
transconductance Startup - - 700 µA
/V
tSU(HSE)
(2)
2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is
enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
OSC_OUT
OSC_IN
f
HSE
to core
C
L1
C
L2
R
F
STM32
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
ai18235b
DS10690 Rev 6 81/144
STM32L071xx Electrical characteristics
111
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 45. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 23. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
Table 45. LSE oscillator characteristics(1)
Symbol Parameter Conditions(2) Min(2) Typ Max Unit
fLSE LSE oscillator frequency - 32.768 - kHz
Gm
Maximum critical crystal
transconductance
LSEDRV[1:0]=00
lower driving capability --0.5
µA/V
LSEDRV[1:0]= 01
medium low driving capability - - 0.75
LSEDRV[1:0] = 10
medium high driving capability --1.7
LSEDRV[1:0]=11
higher driving capability --2.7
tSU(LSE)(3) Startup time VDD is stabilized - 2 - s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software)
to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
fLSE
32.768 kHz
resonator
Resonator with integrated
capacitors
CL1
CL2
Electrical characteristics STM32L071xx
82/144 DS10690 Rev 6
6.3.7 Internal clock source characteristics
The parameters given in Table 46 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 25.
High-speed internal 16 MHz (HSI16) RC oscillator
Figure 24. HSI16 minimum and maximum value versus temperature
Table 46. 16 MHz HSI16 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI16 Frequency VDD = 3.0 V - 16 - MHz
TRIM(1)(2)
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
HSI16 user-
trimmed resolution
Trimming code is not a multiple of 16 - ± 0.4 0.7 %
Trimming code is a multiple of 16 - - ± 1.5 %
ACCHSI16
(2)
2. Guaranteed by characterization results.
Accuracy of the
factory-calibrated
HSI16 oscillator
VDDA = 3.0 V, TA = 25 °C -1(3)
3. Guaranteed by test in production.
-1
(3) %
VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 %
VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 %
VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 %
VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 %
VDDA = 1.65 V to 3.6 V
TA = 40 to 125 °C -5.45 - 3.25 %
tSU(HSI16)(2) HSI16 oscillator
startup time - - 3.7 6 µs
IDD(HSI16)(2) HSI16 oscillator
power consumption - - 100 140 µA
MSv34791V1
-6.00%
-5.00%
-4.00%
-3.00%
-2.00%
-1.00%
0.00%
1.00%
2.00%
3.00%
4.00%
-60 -40 -20 0 20 40 60 80 100 120 140
1.65V min
3V typ
3.6V max
1.65V max
3.6V min
DS10690 Rev 6 83/144
STM32L071xx Electrical characteristics
111
Low-speed internal (LSI) RC oscillator
Multi-speed internal (MSI) RC oscillator
Table 47. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
fLSI(1)
1. Guaranteed by test in production.
LSI frequency 26 38 56 kHz
DLSI(2)
2. This is a deviation for an individual part, once the initial frequency has been measured.
LSI oscillator frequency drift
0°C TA 85°C -10 - 4 %
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - - 200 µs
IDD(LSI)(3) LSI oscillator power consumption - 400 510 nA
Table 48. MSI oscillator characteristics
Symbol Parameter Condition Typ Max Unit
fMSI
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI range 0 65.5 -
kHz
MSI range 1 131 -
MSI range 2 262 -
MSI range 3 524 -
MSI range 4 1.05 -
MHzMSI range 5 2.1 -
MSI range 6 4.2 -
ACCMSI Frequency error after factory calibration - ±0.5 - %
DTEMP(MSI)(1)
MSI oscillator frequency drift
0 °C TA 85 °C -±3-
%
MSI oscillator frequency drift
VDD = 3.3 V, 40 °C TA 110 °C
MSI range 0 8.9 +7.0
MSI range 1 7.1 +5.0
MSI range 2 6.4 +4.0
MSI range 3 6.2 +3.0
MSI range 4 5.2 +3.0
MSI range 5 4.8 +2.0
MSI range 6 4.7 +2.0
DVOLT(MSI)(1) MSI oscillator frequency drift
1.65 V VDD 3.6 V, TA = 25 °C --2.5%/V
Electrical characteristics STM32L071xx
84/144 DS10690 Rev 6
IDD(MSI)(2) MSI oscillator power consumption
MSI range 0 0.75 -
µA
MSI range 1 1 -
MSI range 2 1.5 -
MSI range 3 2.5 -
MSI range 4 4.5 -
MSI range 5 8 -
MSI range 6 15 -
tSU(MSI) MSI oscillator startup time
MSI range 0 30 -
µs
MSI range 1 20 -
MSI range 2 15 -
MSI range 3 10 -
MSI range 4 6 -
MSI range 5 5 -
MSI range 6,
Voltage range 1
and 2
3.5 -
MSI range 6,
Voltage range 3 5-
tSTAB(MSI)(2) MSI oscillator stabilization time
MSI range 0 - 40
µs
MSI range 1 - 20
MSI range 2 - 10
MSI range 3 - 4
MSI range 4 - 2.5
MSI range 5 - 2
MSI range 6,
Voltage range 1
and 2
-2
MSI range 3,
Voltage range 3 -3
fOVER(MSI) MSI oscillator frequency overshoot
Any range to
range 5 -4
MHz
Any range to
range 6 -6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
Table 48. MSI oscillator characteristics (continued)
Symbol Parameter Condition Typ Max Unit
DS10690 Rev 6 85/144
STM32L071xx Electrical characteristics
111
6.3.8 PLL characteristics
The parameters given in Table 49 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 25.
6.3.9 Memory characteristics
RAM memory
Flash memory and data EEPROM
Table 49. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max(1)
1. Guaranteed by characterization results.
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
2- 24MHz
PLL input clock duty cycle 45 - 55 %
fPLL_OUT PLL output clock 2 - 32 MHz
tLOCK
PLL input = 16 MHz
PLL VCO = 96 MHz - 115 160 µs
Jitter Cycle-to-cycle jitter - ±
600 ps
IDDA(PLL) Current consumption on VDDA - 220 450
µA
IDD(PLL) Current consumption on VDD - 120 150
Table 50. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
STOP mode (or RESET) 1.65 - - V
Table 51. Flash memory and data EEPROM characteristics
Symbol Parameter Conditions Min Typ Max(1) Unit
VDD
Operating voltage
Read / Write / Erase -1.65-3.6V
tprog
Programming time for
word or half-page
Erasing - 3.28 3.94
ms
Programming - 3.28 3.94
Electrical characteristics STM32L071xx
86/144 DS10690 Rev 6
IDD
Average current during
the whole programming /
erase operation
TA = 25 °C, VDD = 3.6 V
- 500 700 µA
Maximum current (peak)
during the whole
programming / erase
operation
-1.52.5mA
1. Guaranteed by design.
Table 52. Flash memory and data EEPROM endurance and retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
NCYC(2)
Cycling (erase / write)
Program memory
TA = -40°C to 105 °C
10
kcycles
Cycling (erase / write)
EEPROM data memory 100
Cycling (erase / write)
Program memory
TA = -40°C to 125 °C
0.2
Cycling (erase / write)
EEPROM data memory 2
tRET(2)
2. Characterization is done according to JEDEC JESD22-A117.
Data retention (program memory) after
10 kcycles at TA = 85 °C
TRET = +85 °C
30
years
Data retention (EEPROM data memory)
after 100 kcycles at TA = 85 °C 30
Data retention (program memory) after
10 kcycles at TA = 105 °C
TRET = +105 °C
10
Data retention (EEPROM data memory)
after 100 kcycles at TA = 105 °C
Data retention (program memory) after
200 cycles at TA = 125 °C
TRET = +125 °C
Data retention (EEPROM data memory)
after 2 kcycles at TA = 125 °C
Table 51. Flash memory and data EEPROM characteristics
Symbol Parameter Conditions Min Typ Max(1) Unit
DS10690 Rev 6 87/144
STM32L071xx Electrical characteristics
111
6.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 53. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
Table 53. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25
°C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
4A
Electrical characteristics STM32L071xx
88/144 DS10690 Rev 6
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 54. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
frequency
range at
32 MHz
Unit
SEMI Peak level
VDD = 3.6 V,
TA = 25 °C,
LQFP100 package
compliant with IEC 61967-2
0.1 to 30 MHz -7
dBµV30 to 130 MHz 14
130 MHz to 1 GHz 9
EMI Level 2 -
DS10690 Rev 6 89/144
STM32L071xx Electrical characteristics
111
6.3.11 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 55. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Guaranteed by characterization results.
Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = +25 °C,
conforming to
ANSI/JEDEC JS-001
22000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C,
conforming to
ANSI/ESD STM5.3.1.
C4 500
Table 56. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +125 °C conforming to JESD78A II level A
Electrical characteristics STM32L071xx
90/144 DS10690 Rev 6
6.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator
frequency deviation).
The test results are given in the Table 57.
Table 57. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 -0 NA(1)
1. Current injection is not possible.
mA
Injected current on PA0, PA4, PA5, PC15,
PH0 and PH1 -5 0
Injected current on any other FT, FTf pins -5 (2)
2. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
NA(1)
Injected current on any other pins -5 (2) +5
DS10690 Rev 6 91/144
STM32L071xx Electrical characteristics
111
6.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the conditions summarized in Table 25. All I/Os are CMOS and TTL
compliant.
Table 58. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage
TC, FT, FTf, RST
I/Os - - 0.3VDD
V
BOOT0 pin - - 0.14VDD(1)
VIH Input high level voltage All I/Os 0.7 VDD --
Vhys
I/O Schmitt trigger voltage hysteresis
(2)
Standard I/Os - 10% VDD(3) -
BOOT0 pin - 0.01 -
Ilkg Input leakage current (4)
VSS VIN VDD
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os
--±50
nA
VSS VIN VDD,
PA11 and PA12 I/Os - - -50/+250
VSS VIN VDD
FTf I/Os - - ±100
VDD VIN 5 V
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os
- - 200
nA
VDD VIN 5 V
FTf I/Os - - 500
VDD VIN 5 V
PA11, PA12 and
BOOT0
--10µA
RPU Weak pull-up equivalent resistor(5) VIN = VSS 25 45 65 kΩ
RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 45 65 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Guaranteed by characterization.
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
3. With a minimum of 200 mV. Guaranteed by characterization results.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
Electrical characteristics STM32L071xx
92/144 DS10690 Rev 6
Figure 25. VIH/VIL versus VDD (CMOS I/Os)
Figure 26. VIH/VIL versus VDD (TTL I/Os)
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 59.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD(Σ) (see Table 23).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS(Σ) (see Table 23).
MSv34789V1
VDD (V)
VIHmin 2.0
VILmax 0.7
VIL/VIH (V)
1.3
2.0 3.6
CMOS standard requirements V
IHmin
= 0.7V
DD
V
ILmax
= 0.3V
DD
0.6
2.7 3.0 3.3
CMOS standard requirements VILmax = 0.3VDD
V
IHmin
= 0.39V
DD
+0.59 (all pins
except BOOT0, PC15, PH0/1
V
IHmin
= 0.45V
DD
+0.38 for
BOOT0, PC15, PH0/1
Input range not
guaranteed
MSv34790V1
VDD (V)
VIHmin 2.0
VILmax 0.8
VIL/VIH (V)
1.3
2.0 3.6
TTL standard requirements VIHmin = 2 V
V
ILmax
= 0.3V
DD
0.7
2.7 3.0 3.3
TTL standard requirements VILmax = 0.8 V
Input range not
guaranteed
V
IHmin
= 0.39V
DD
+0.59 (all pins
except BOOT0, PC15, PH0/1
V
IHmin
= 0.45V
DD
+0.38 for
BOOT0, PC15, PH0/1
DS10690 Rev 6 93/144
STM32L071xx Electrical characteristics
111
Output voltage levels
Unless otherwise specified, the parameters given in Table 59 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 25. All I/Os are CMOS and TTL compliant.
Table 59. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 23.
The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and
must not exceed ΣIIO(PIN).
Output low level voltage for an I/O
pin CMOS port(2),
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 23. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be
respected and must not exceed ΣIIO(PIN).
Output high level voltage for an I/O
pin VDD-0.4 -
VOL (1) Output low level voltage for an I/O
pin
TTL port(2),
IIO =+ 8 mA
2.7 V VDD 3.6 V
-0.4
VOH (3)(4)
4. Guaranteed by characterization results.
Output high level voltage for an I/O
pin
TTL port(2),
IIO = -6 mA
2.7 V VDD 3.6 V
2.4 -
VOL(1)(4) Output low level voltage for an I/O
pin
IIO = +15 mA
2.7 V VDD 3.6 V -1.3
VOH(3)(4) Output high level voltage for an I/O
pin
IIO = -15 mA
2.7 V VDD 3.6 V VDD-1.3 -
VOL(1)(4) Output low level voltage for an I/O
pin
IIO = +4 mA
1.65 V VDD < 3.6 V -0.45
VOH(3)(4) Output high level voltage for an I/O
pin
IIO = -4 mA
1.65 V VDD 3.6 V VDD-0.45 -
VOLFM+(1)(4) Output low level voltage for an FTf
I/O pin in Fm+ mode
IIO = 20 mA
2.7 V VDD 3.6 V -0.4
IIO = 10 mA
1.65 V VDD 3.6 V -0.4
Electrical characteristics STM32L071xx
94/144 DS10690 Rev 6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 60, respectively.
Unless otherwise specified, the parameters given in Table 60 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 25.
Table 60. I/O AC characteristics(1)
OSPEEDRx[1:0]
bit value(1) Symbol Parameter Conditions Min Max(2) Unit
00
fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400
kHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 100
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V - 125
ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 320
01
fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 2
MHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 0.6
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V - 30
ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 65
10
Fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 10
MHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 2
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V - 13
ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 28
11
Fmax(IO)out Maximum frequency(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 35
MHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 10
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 6
ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 17
Fm+
configuration(4)
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD = 2.5 V to 3.6 V
-1MHz
tf(IO)out Output fall time - 10
ns
tr(IO)out Output rise time - 30
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD = 1.65 V to 3.6 V
-350KHz
tf(IO)out Output fall time - 15
ns
tr(IO)out Output rise time - 60
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-8-ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port
configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 27.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed
description of Fm+ I/O configuration.
DS10690 Rev 6 95/144
STM32L071xx Electrical characteristics
111
Figure 27. I/O AC characteristics definition
6.3.14 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU , except when it is internally driven low (see Table 61).
Unless otherwise specified, the parameters given in Table 61 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 25.
ai14131d
10%
90%
50%
tr(IO)out
OUTPUT
EXTERNAL
ON CL
Maximum frequency is achieved if (tr + tf) ≤ (2/3)T and if the duty cycle is (45-55%)
when loaded by CL specified in the table “ I/O AC characteristics”.
10%
50%
90%
T
tf(IO)out
Table 61. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design.
NRST input low level voltage - VSS -0.8
V
VIH(NRST)(1) NRST input high level voltage - 1.4 - VDD
VOL(NRST)(1) NRST output low level
voltage
IOL = 2 mA
2.7 V < VDD < 3.6 V --
0.4
IOL = 1.5 mA
1.65 V < VDD < 2.7 V --
Vhys(NRST)(1) NRST Schmitt trigger voltage
hysteresis --10%V
DD(2)
2. 200 mV minimum value
-mV
RPU
Weak pull-up equivalent
resistor(3)
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is around 10%.
VIN = VSS 25 45 65 kΩ
VF(NRST)(1) NRST input filtered pulse - - - 50 ns
VNF(NRST)(1) NRST input not filtered pulse - 350 - - ns
Electrical characteristics STM32L071xx
96/144 DS10690 Rev 6
Figure 28. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The external capacitor must be placed as close as possible to the device.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 61. Otherwise the reset will not be taken into account by the device.
6.3.15 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 62 are derived from tests
performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions
summarized in Table 25: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
069
538
9''
,QWHUQDOUHVHW
([WHUQDO
UHVHWFLUFXLW
1567
)LOWHU
)
Table 62. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC ON
Fast channel 1.65 - 3.6
V
Standard channel 1.75(1) -3.6
VREF+ Positive reference voltage - 1.65 VDDA V
VREF- Negative reference voltage - - 0 -
IDDA (ADC)
Current consumption of the
ADC on VDDAand VREF+
1.14 Msps - 200 -
µA
10 ksps - 40 -
Current consumption of the
ADC on VDD(2)
1.14 Msps - 70 -
10 ksps - 1 -
fADC ADC clock frequency
Voltage scaling Range 1 0.14 - 16
MHzVoltage scaling Range 2 0.14 - 8
Voltage scaling Range 3 0.14 - 4
fS(3) Sampling rate 12-bit resolution 0.01 - 1.14 MHz
fTRIG(3) External trigger frequency
fADC = 16 MHz,
12-bit resolution - - 941 kHz
---171/f
ADC
VAIN Conversion voltage range - 0 - VREF+ V
DS10690 Rev 6 97/144
STM32L071xx Electrical characteristics
111
RAIN(3) External input impedance See Equation 1 and
Table 63 for details --50kΩ
RADC(3)(4) Sampling switch resistance - - - 1 kΩ
CADC(3) Internal sample and hold
capacitor ---8pF
tCAL(3)(5) Calibration time
fADC = 16 MHz 5.2 µs
-831/f
ADC
WLATENCY(6) ADC_DR register write
latency
ADC clock = HSI16
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles -
ADC clock = PCLK/2 - 4.5 - fPCLK
cycle
ADC clock = PCLK/4 - 8.5 - fPCLK
cycle
tlatr(3) Trigger conversion latency
fADC = fPCLK/2 = 16 MHz 0.266 µs
fADC = fPCLK/2 8.5 1/fPCLK
fADC = fPCLK/4 = 8 MHz 0.516 µs
fADC = fPCLK/4 16.5 1/fPCLK
fADC = fHSI16 = 16 MHz 0.252 - 0.260 µs
JitterADC ADC jitter on trigger
conversion fADC = fHSI16 -1-1/f
HSI16
tS(3) Sampling time
fADC = 16 MHz 0.093 - 10.03 µs
-1.5-160.51/f
ADC
tUP_LDO(3)(5) Internal LDO power-up time - - - 10 µs
tSTAB(3)(5) ADC stabilization time - 14 1/fADC
tConV(3) Total conversion time
(including sampling time)
fADC = 16 MHz,
12-bit resolution 0.875 - 10.81 µs
12-bit resolution 14 to 173 (tS for sampling +12.5
for successive approximation) 1/fADC
1. VDDA minimum value can be decreased in specific temperature conditions. Refer to Table 63: RAIN max for fADC = 16 MHz.
2. A current consumption proportional to the APB clock frequency has to be added (see Table 39: Peripheral current
consumption in Run or Sleep mode).
3. Guaranteed by design.
4. Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 63: RAIN max for
fADC = 16 MHz.
5. This parameter only includes the ADC timing. It does not take into account register access latency.
6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the
conversion is complete and has the same latency.
Table 62. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L071xx
98/144 DS10690 Rev 6
Equation 1: RAIN max formula
The simplified formula above (Equation 1) is used to determine the maximum external
impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
Table 63. RAIN max for fADC = 16 MHz(1)
Ts
(cycles)
tS
(µs)
RAIN max for
fast channels
(kΩ)
RAIN max for standard channels (kΩ)
VDD >
2.7 V
VDD >
2.4 V
VDD >
2.0 V
VDD >
1.8 V
VDD >
1.75 V
VDD > 1.65 V
and
TA > 10 °C
VDD > 1.65 V
and
TA > 25 °C
1.5 0.09 0.5 < 0.1 NA NA NA NA NA NA
3.5 0.22 1 0.2 < 0.1 NA NA NA NA NA
7.5 0.47 2.5 1.7 1.5 < 0.1 NA NA NA NA
12.5 0.78 4 3.2 3 1 NA NA NA NA
19.5 1.22 6.5 5.7 5.5 3.5 NA NA NA < 0.1
39.5 2.47 13 12.2 12 10 NA NA NA 5
79.5 4.97 27 26.2 26 24 < 0.1 NA NA 19
160.5 10.03 50 49.2 49 47 32 < 0.1 < 0.1 42
1. Guaranteed by design.
Table 64. ADC accuracy(1)(2)(3)
Symbol Parameter Conditions Min Typ Max Unit
ET Total unadjusted error
1.65 V < VDDA = VREF+< 3.6 V,
range 1/2/3
-2 4
LSB
EO Offset error - 1 2.5
EG Gain error - 1 2
EL Integral linearity error - 1.5 2.5
ED Differential linearity error - 1 1.5
ENOB
Effective number of bits 10.2 11
bits
Effective number of bits (16-bit mode
oversampling with ratio =256)(4) 11.3 12.1 -
SINAD Signal-to-noise distortion 63 69 -
dBSNR
Signal-to-noise ratio 63 69 -
Signal-to-noise ratio (16-bit mode
oversampling with ratio =256)(4) 70 76 -
THD Total harmonic distortion - -85 -73
DS10690 Rev 6 99/144
STM32L071xx Electrical characteristics
111
Figure 29. ADC accuracy characteristics
ET Total unadjusted error
1.65 V < VREF+ <VDDA < 3.6 V,
range 1/2/3
-2 5
LSB
EO Offset error - 1 2.5
EG Gain error - 1 2
EL Integral linearity error - 1.5 3
ED Differential linearity error - 1 2
ENOB Effective number of bits 10.0 11.0 - bits
SINAD Signal-to-noise distortion 62 69 -
dBSNR Signal-to-noise ratio 61 69 -
THD Total harmonic distortion - -85 -65
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.
Table 64. ADC accuracy(1)(2)(3) (continued)
Symbol Parameter Conditions Min Typ Max Unit
ET = total unajusted error: maximum deviation
between the actual and ideal transfer curves.
EO = offset error: maximum deviation
between the first actual transition and
the first ideal one.
EG = gain error: deviation between the last
ideal transition and the last actual one.
ED = differential linearity error: maximum
deviation between actual steps and the ideal ones.
EL = integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
7
6
5
4
3
2
1
023456
17 4093 4094 4095 4096 VDDA
VSSA
EO
ET
EL
EG
ED
1 LSB IDEAL
(1)
(3)
(2)
MS19880V2
Electrical characteristics STM32L071xx
100/144 DS10690 Rev 6
Figure 30. Typical connection diagram using the ADC
1. Refer to Table 62: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 31 or Figure 32,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed as close as possible to the chip.
Figure 31. Power supply and reference decoupling (VREF+ not connected to VDDA)
MSv34712V1
VDDA
AINx
IL±50nA
VT
RAIN(1)
Cparasitic
V
AIN
VT
RADC 12-bit
converter
C
ADC
Sample and hold ADC
converter
MS39601V1
VREF+
STM32Lxx
VDDA
VSSA / VREF–
1 μF // 100 nF
1 μF // 100 nF
DS10690 Rev 6 101/144
STM32L071xx Electrical characteristics
111
Figure 32. Power supply and reference decoupling (VREF+ connected to VDDA)
6.3.16 Temperature sensor characteristics
MS39602V1
VREF+/VDDA
STM32Lxx
1 μF // 100 nF
VREF–/VSSA
Table 65. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1 TS ADC raw data acquired at
temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B
TS_CAL2 TS ADC raw data acquired at
temperature of 130 °C, VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F
Table 66. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by characterization results.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 1.48 1.61 1.75 mV/°C
V130 Voltage at 130°C ±5°C(2)
2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.
640 670 700 mV
IDDA(TEMP)(3) Current consumption - 3.4 6 µA
tSTART(3)
3. Guaranteed by design.
Startup time - - 10
µs
TS_temp(4)(3)
4. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the temperature 10 - -
Electrical characteristics STM32L071xx
102/144 DS10690 Rev 6
6.3.17 Comparators
Table 67. Comparator 1 characteristics
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
VDDA Analog supply voltage - 1.65 3.6 V
R400K R400K value - - 400 - kΩ
R10K R10K value - - 10 -
VIN
Comparator 1 input voltage
range -0.6-V
DDA V
tSTART Comparator startup time - - 7 10 µs
td Propagation delay(2) --310
Voffset Comparator offset - - ±3±10 mV
dVoffset/dt Comparator offset variation in
worst voltage stress conditions
VDDA = 3.6 V, VIN+ = 0 V,
VIN- = VREFINT, TA = 25 °C0 1.5 10 mV/1000 h
ICOMP1 Current consumption(3) - - 160 260 nA
1. Guaranteed by characterization.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to
the reference.
3. Comparator consumption only. Internal reference voltage not included.
Table 68. Comparator 2 characteristics
Symbol Parameter Conditions Min Typ Max(1) Unit
VDDA Analog supply voltage - 1.65 - 3.6 V
VIN Comparator 2 input voltage range - 0 - VDDA V
tSTART Comparator startup time Fast mode - 15 20
µs
Slow mode - 20 25
td slow Propagation delay(2) in slow mode 1.65 V VDDA 2.7 V - 1.8 3.5
2.7 V VDDA 3.6 V - 2.5 6
td fast Propagation delay(2) in fast mode 1.65 V VDDA 2.7 V - 0.8 2
2.7 V VDDA 3.6 V - 1.2 4
Voffset Comparator offset error - ±4±20 mV
dThreshold/
dt
Threshold voltage temperature
coefficient
VDDA = 3.3V, TA = 0 to 50 °C,
V- = VREFINT,
3/4 VREFINT,
1/2 VREFINT,
1/4 VREFINT.
-15 30
ppm
/°C
ICOMP2 Current consumption(3) Fast mode - 3.5 5 µA
Slow mode - 0.5 2
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to
the reference.
3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.
DS10690 Rev 6 103/144
STM32L071xx Electrical characteristics
111
6.3.18 Timer characteristics
TIM timer characteristics
The parameters given in the Table 69 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
6.3.19 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm) : with a bit rate up to 100 kbit/s
Fast-mode (Fm) : with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s.
The I2C timing requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to the reference manual for details). The SDA and SCL I/O requirements
are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain.
When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is
disabled, but is still present. Only FTf I/O pins support Fm+ low level output current
maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os
characteristics).
All I2C SDA and SCL I/Os embed an analog filter (see Table 70 for the analog filter
characteristics).
Table 69. TIMx characteristics(1)
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
1-t
TIMxCLK
fTIMxCLK = 32 MHz 31.25 - ns
fEXT
Timer external clock frequency on CH1
to CH4
0f
TIMxCLK/2 MHz
fTIMxCLK = 32 MHz 0 16 MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock period when
internal clock is selected (timer’s
prescaler disabled)
- 1 65536 tTIMxCLK
fTIMxCLK = 32 MHz 0.0312 2048 µs
tMAX_COUNT Maximum possible count
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 32 MHz - 134.2 s
1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers.
Electrical characteristics STM32L071xx
104/144 DS10690 Rev 6
The analog spike filter is compliant with I2C timings requirements only for the following
voltage ranges:
Fast mode Plus: 2.7 V
VDD 3.6 V and voltage scaling Range 1
Fast mode:
–2 V VDD 3.6 V and voltage scaling Range 1 or Range 2.
–V
DD < 2 V, voltage scaling Range 1 or Range 2, Cload < 200 pF.
In other ranges, the analog filter should be disabled. The digital filter can be used instead.
Note: In Standard mode, no spike filter is required.
SPI characteristics
Unless otherwise specified, the parameters given in the following tables are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 25.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 70. I2C analog filter characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Max Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
Range 1
50(2)
2. Spikes with widths below tAF(min) are filtered.
100(3)
3. Spikes with widths above tAF(max) are not filtered
nsRange 2 -
Range 3 -
Table 71. SPI characteristics in voltage Range 1 (1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode
--
16
MHz
Slave mode
receiver 16
Slave mode
Transmitter
1.71<VDD<3.6V
--12
(2)
Slave mode
Transmitter
2.7<VDD<3.6V
--16
(2)
Duty(SCK)
Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
DS10690 Rev 6 105/144
STM32L071xx Electrical characteristics
111
tsu(NSS) NSS setup time Slave mode, SPI
presc = 2 4*Tpclk - -
ns
th(NSS) NSS hold time Slave mode, SPI
presc = 2 2*Tpclk - -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+
2
tsu(MI) Data input setup time
Master mode 0 - -
tsu(SI) Slave mode 3 - -
th(MI) Data input hold time
Master mode 7 - -
th(SI) Slave mode 3.5 - -
ta(SO Data output access time Slave mode 15 - 36
tdis(SO) Data output disable time Slave mode 10 - 30
tv(SO) Data output valid time
Slave mode
1.65 V<VDD<3.6 V -1841
Slave mode
2.7 V<VDD<3.6 V -1825
tv(MO) Master mode - 4 7
th(SO) Data output hold time
Slave mode 10 - -
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI)
which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be
achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
Table 71. SPI characteristics in voltage Range 1 (1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L071xx
106/144 DS10690 Rev 6
Table 72. SPI characteristics in voltage Range 2 (1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode
--
8
MHz
Slave mode Transmitter
1.65<VDD<3.6V 8
Slave mode Transmitter
2.7<VDD<3.6V 8(2)
Duty(SCK)
Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
tsu(MI) Data input setup time
Master mode 0 - -
tsu(SI) Slave mode 3 - -
th(MI) Data input hold time
Master mode 11 - -
th(SI) Slave mode 4.5 - -
ta(SO Data output access time Slave mode 18 - 52
tdis(SO) Data output disable time Slave mode 12 - 42
tv(SO) Data output valid time
Slave mode - 20 56.5
tv(MO) Master mode - 5 9
th(SO) Data output hold time
Slave mode 13 - -
th(MO) Master mode 3 - -
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
DS10690 Rev 6 107/144
STM32L071xx Electrical characteristics
111
Table 73. SPI characteristics in voltage Range 3 (1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode
--
2
MHz
Slave mode 2(2)
Duty(SCK)
Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
tsu(MI) Data input setup time
Master mode 1.5 - -
tsu(SI) Slave mode 6 - -
th(MI) Data input hold time
Master mode 13.5 - -
th(SI) Slave mode 16 - -
ta(SO Data output access time Slave mode 30 - 70
tdis(SO) Data output disable time Slave mode 40 - 80
tv(SO) Data output valid time
Slave mode - 30 70
tv(MO) Master mode - 7 9
th(SO) Data output hold time
Slave mode 25 - -
th(MO) Master mode 8 - -
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
Electrical characteristics STM32L071xx
108/144 DS10690 Rev 6
Figure 33. SPI timing diagram - slave mode and CPHA = 0
Figure 34. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
MSv41658V1
NSS input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
MISO output
MOSI input
tsu(SI)
th(SI)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(SO)
tsu(NSS)
ta(SO) tv(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(SO) tf(SCK)
Last bit IN
MSv41659V1
NSS input
CPHA=1
CPOL=0
SCK input
CPHA=1
CPOL=1
MISO output
MOSI input
tsu(SI) th(SI)
tw(SCKL)
tw(SCKH)
tsu(NSS)
tc(SCK)
ta(SO) tv(SO)
First bit OUT Next bits OUT
Next bits IN
Last bit OUT
th(SO) tr(SCK)
tf(SCK) th(NSS)
tdis(SO)
First bit IN Last bit IN
DS10690 Rev 6 109/144
STM32L071xx Electrical characteristics
111
Figure 35. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14136d
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Electrical characteristics STM32L071xx
110/144 DS10690 Rev 6
I2S characteristics
Note: Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
Table 74. I2S characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256 x 8K 256xFs (2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK
I2S clock frequency duty
cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode - 15
ns
th(WS) WS hold time Master mode 11 -
tsu(WS) WS setup time Slave mode 6 -
th(WS) WS hold time Slave mode 2 -
tsu(SD_MR) Data input setup time
Master receiver 0 -
tsu(SD_SR) Slave receiver 6.5 -
th(SD_MR) Data input hold time
Master receiver 18 -
th(SD_SR) Slave receiver 15.5 -
tv(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 77
tv(SD_MT) Master transmitter (after enable edge) - 8
th(SD_ST) Data output hold time
Slave transmitter (after enable edge) 18 -
th(SD_MT) Master transmitter (after enable edge) 1.5 -
1. Guaranteed by characterization results.
2. 256xFs maximum value is equal to the maximum clock frequency.
DS10690 Rev 6 111/144
STM32L071xx Electrical characteristics
111
Figure 36. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 37. I2S master timing diagram (Philips protocol)(1)
1. Guaranteed by characterization results.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Package information STM32L071xx
112/144 DS10690 Rev 6
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP100 package information
Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
1. Drawing is not to scale. Dimensions are in millimeters.
Table 75. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
125
26
100
76
75 51
50
1L_ME_V5
A2
A
A1
L1
L
c
b
A1
DS10690 Rev 6 113/144
STM32L071xx Package information
139
Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
1. Dimensions are expressed in millimeters.
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 75. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906c
Package information STM32L071xx
114/144 DS10690 Rev 6
Device marking for LQFP100
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 40. LQFP100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv39395V1
STM32L071
VZT6 R
WW
Revision code
Product identification(1)
Date code
Pin 1
indentifier
Y
DS10690 Rev 6 115/144
STM32L071xx Package information
139
7.2 UFBGA100 package information
Figure 41. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
A0C2_ME_V5
Seating plane
A1
eZ
Z
D
M
Øb (100 balls)
A
E
TOP VIEWBOTTOM VIEW
112
A1 ball
identifier
e
A
A2
Y
X
Z
ddd Z
D1
E1
eee ZYX
fff
Ø
Ø
M
MZ
A3
A4
A1 ball
index area
Package information STM32L071xx
116/144 DS10690 Rev 6
Figure 42. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 77. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A0C2_FP_V1
Dpad
Dsm
DS10690 Rev 6 117/144
STM32L071xx Package information
139
7.3 LQFP64 package information
Figure 43. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
5W_ME_V3
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
Package information STM32L071xx
118/144 DS10690 Rev 6
Figure 44. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909c
DS10690 Rev 6 119/144
STM32L071xx Package information
139
Device marking for LQFP64
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 45. LQFP64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv39396V1
Revision code
STM32L
Product identification(1)
Date code
YWW
Pin 1
indentifier
071RBT6
R
Package information STM32L071xx
120/144 DS10690 Rev 6
7.4 UFBGA64 package information
Figure 46. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package outline
1. Drawing is not to scale.
Table 79. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.080 0.130 0.180 0.0031 0.0051 0.0071
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.170 0.280 0.330 0.0067 0.0110 0.0130
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 3.450 3.500 3.550 0.1358 0.1378 0.1398
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 3.450 3.500 3.550 0.1358 0.1378 0.1398
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
A019_ME_V1
Seating plane
A1
eF
F
D
H
Øb (64 balls)
A
E
TOP VIEWBOTTOM VIEW
18
e
A
Y
X
Z
ddd Z
D1
E1
eee Z Y X
fff
Ø
Ø
M
MZ
A3
A4
A1 ball
identifier
A1 ball
index area
A2
DS10690 Rev 6 121/144
STM32L071xx Package information
139
Figure 47. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package recommended footprint
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 80. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Table 79. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A019_FP_V2
Dpad
Dsm
Package information STM32L071xx
122/144 DS10690 Rev 6
7.5 TFBGA64 package information
Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 81. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid
array package outline
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.200 - - 0.0472
A1 0.150 - - 0.0059 - -
A2 - 0.200 - - 0.0079 -
A4 - - 0.600 - - 0.0236
b 0.250 0.300 0.350 0.0098 0.0118 0.0138
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 - 3.500 - - 0.1378 -
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 - 3.500 - - 0.1378 -
e - 0.500 - - 0.0197 -
F - 0.750 - - 0.0295 -
R8_ME_V4
Seating plane
A1
eF
F
D
H
Øb (64 balls)
A
E
TOP VIEW BOTTOM VIEW
18
e
A
B
A
C
ddd C
D1
E1
eee C B A
fff
Ø
Ø
M
MC
A2
A4
A1 ball
identifier
A1 ball
index area
SIDE VIEW
DS10690 Rev 6 123/144
STM32L071xx Package information
139
Figure 49. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 82. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 1.125 mm
Pad trace width 0.100 mm
Table 81. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid
array package outline (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
R8_FP_V1
Dpad
Dsm
Package information STM32L071xx
124/144 DS10690 Rev 6
Device marking for TFBGA64
The following figure gives an example of topside marking versus ball A 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 50. TFBGA64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
L071RZH6
R
YWW
MSv39397V1
Product identification(1)
Date code = Year + week
Ball A1
Revision
code
DS10690 Rev 6 125/144
STM32L071xx Package information
139
7.6 WLCSP49 package information
Figure 51. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
Bottom view
Bump side Side view
Front view
Top view
Wafer back side
A1 ball location
e1
F
G
e
e
e2 E
D
A
A2
Detail A
A1
bbb Z
Detail A
(rotated 90 )
Seating plane
Note 1
Note 2
Bump
49x
eee Z
Orientation
reference
A1
(4x)
D
E
A3 A2
b
A038_ME_V1
A1
b
aaa
ccc
ddd
Z
Z
XY
Z
Package information STM32L071xx
126/144 DS10690 Rev 6
Figure 52. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
Table 83. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating
- 0.025 - - 0.0010 -
b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.259 3.294 3.329 0.1283 0.1297 0.1311
E 3.223 3.258 3.293 0.1269 0.1283 0.1296
e - 0.400 - - 0.0157 -
e1 - 2.400 - - 0.0945 -
e2 - 2.400 - - 0.0945 -
F - 0.447 - - 0.0176 -
G - 0.429 - - 0.0169 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
MS18965V2
Dsm
Dpad
DS10690 Rev 6 127/144
STM32L071xx Package information
139
Device marking for WLCSP49
The following figure gives an example of topside marking versus ball A 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 53. WLCSP49 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
Table 84. WLCSP49 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4
Dpad
260 µm max. (circular)
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed.
MSv39398V1
L071CZ6
Y WW
Product identification(1)
Ball 1
indentifier
Date code Revision code
R
Package information STM32L071xx
128/144 DS10690 Rev 6
7.7 LQFP48 package information
Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
5B_ME_V2
PIN 1
IDENTIFICATION
ccc C
C
D3
0.25 mm
GAUGE PLANE
b
A1
A
A2
c
A1
L1
L
D
D1
E3
E1
E
e
12
1
13
24
25
36
37
48
SEATING
PLANE
K
DS10690 Rev 6 129/144
STM32L071xx Package information
139
Figure 55. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
Table 85. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
9.70 5.80 7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911d
1348
Package information STM32L071xx
130/144 DS10690 Rev 6
Device marking for LQFP48
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 56. LQFP48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
STM32L
071CZT7
MSv36160V2
Pin 1
indentifier
Product identification(1)
Date code
YWW
Revision code
R
DS10690 Rev 6 131/144
STM32L071xx Package information
139
7.8 LQFP32 package information
Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
D
D1
D3
E3
E1
E
18
9
16
17
24
25
32
A1
L1
L
K
A1
A2
A
c
b
GAUGE PLANE
0.25 mm
SEATING
PLANE
C
PIN 1
IDENTIFICATION
ccc C
5V_ME_V2
e
Package information STM32L071xx
132/144 DS10690 Rev 6
Figure 58. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
Table 86. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
5V_FP_V2
18
9
16
17
24
25
32
9.70
7.30
7.30
1.20
0.30
0.50
1.20
6.10
9.70
0.80
6.10
DS10690 Rev 6 133/144
STM32L071xx Package information
139
Device marking for LQFP32
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 59. LQFP32 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
071KZT6
R
Y WW
MSv37839V1
Pin 1 indentifier
Product identification
(1)
Revision code
STM32L
Date code
Package information STM32L071xx
134/144 DS10690 Rev 6
7.9 UFQFPN32 package information
Figure 60. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
2. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this backside pad to PCB ground.
A0B8_ME_V3
1
32
PIN 1 Identifier
SEATINGPLANE
C
C
ddd
A
A1
A3
e
b
D1
b
E2
L
e
E1 E
D2 L
D
DS10690 Rev 6 135/144
STM32L071xx Package information
139
Figure 61. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
recommended footprint
1. Dimensions are expressed in millimeters.
Table 87. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 - - 0.050 - - 0.0020
A3 - 0.152 - - 0.0060 -
b 0.180 0.230 0.280 0.0071 0.0091 0.0110
D 4.900 5.000 5.100 0.1929 0.1969 0.2008
D1 3.400 3.500 3.600 0.1339 0.1378 0.1417
D2 3.400 3.500 3.600 0.1339 0.1378 0.1417
E 4.900 5.000 5.100 0.1929 0.1969 0.2008
E1 3.400 3.500 3.600 0.1339 0.1378 0.1417
E2 3.400 3.500 3.600 0.1339 0.1378 0.1417
e - 0.500 - - 0.0197 -
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd - - 0.080 - - 0.0031
A0B8_FP_V2
5.30
3.80
0.60
3.45
0.50
3.45
3.80
0.75
3.80
0.30
5.30
16
17
9
8
1
25
32
24
Package information STM32L071xx
136/144 DS10690 Rev 6
Device marking for UFQFPN32
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 62. UFQFPN32 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
L071KZ6
MSv36159V1
Pin 1
indentifier
Product identification(1)
Date code
YWW
Revision code
R
DS10690 Rev 6 137/144
STM32L071xx Package information
139
7.10 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 88. Thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
UFQFPN32 - 5 x 5 mm / 0.5 mm pitch 36
°C/W
Thermal resistance junction-ambient
LQFP32 - 7 x 7 mm / 0.8 mm pitch 60
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch 54
Thermal resistance junction-ambient
WLCSP49 - 0.4 mm pitch 48
Thermal resistance junction-ambient
TFBGA64 - 5 x 5 mm / 0.5 mm pitch 64
Thermal resistance junction-ambient
UFBGA64 - 5 x 5 mm / 0.5 mm pitch 65
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm / 0.5 mm pitch 46
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm / 0.5 mm pitch 41
Thermal resistance junction-ambient
UFBGA100 - 7 x 7 mm / 0.5 mm pitch 57
Package information STM32L071xx
138/144 DS10690 Rev 6
Figure 63. Thermal resistance
7.10.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
MSv37833V3
Temperature (°C)
PD (mW)
0
500
1000
1500
2000
2500
3000
3500
4000
125 100 75 50 25 0
LQFP64
LQFP48
TFBGA64
LQFP100
UFBGA100
WLCSP49
UQFN32
LQFPN32
UFBGA64
DS10690 Rev 6 139/144
STM32L071xx Ordering information
139
8 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 89. STM32L071xx ordering information scheme
Example: STM32 L 071 R 8 T 6 D TR
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
071 = Access line
Pin count
K = 32 pins
C = 48/49 pins
R = 64 pins
V = 100 pins
Flash memory size
8 = 64 Kbytes
B = 128 Kbytes
Z = 192 Kbytes
Package
T = LQFP
H = TFBGA
I = UFBGA
U = UFQFPN
Y = Standard WLCSP pins
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
3 = Industrial temperature range, –40 to 125 °C
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
Revision history STM32L071xx
140/144 DS10690 Rev 6
9 Revision history
Table 90. Document revision history
Date Revision Changes
02-Sep-2015 1 Initial release
26-Oct-2015 2
Changed confidentiality level to public.
Updated datasheet status to “production data”.
Modified ultra-low-power platform features on cover page.
In Table 15: STM32L071xxx pin definition:
changed pin name to VDDIO2 for the following pins: UFQFPN32
pin 24, LQFP48 pin 36, LQFP64 pin 48, UFBGA64 pin E5,
WLCSP49 pin A1, LQFP100 pin 75 and UFBGA100 pin G11.
Added note related to UFQFPN32.
In Section 6: Electrical characteristics, updated notes related to
values guaranteed by characterization.
Updated |ΔVSS| definition to include VREF- in Table 22: Voltage
characteristics.
Updated fTRIG and VAIN maximum value, added VREF+ and VREF- in
Table 62: ADC characteristics.
Added Section : Device marking for LQFP100.
Updated Figure 41: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch,
ultra fine pitch ball grid array package outline and Table 75:
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data.
Added Section : Device marking for LQFP100, Section : Device
marking for LQFP64, Section : Device marking for TFBGA64 and
Section : Device marking for WLCSP49.
Updated Figure 56: LQFP48 marking example (package top view).
DS10690 Rev 6 141/144
STM32L071xx Revision history
143
22-Mar-2016 3
Updated number of SPIs on cover page and in Table 2: Ultra-low-
power STM32L071xx device features and peripheral counts.
Changed minimum comparator supply voltage to 1.65 V on cover
page.
Added number of fast and standard channels in Section 3.11:
Analog-to-digital converter (ADC).
Updated Section 3.15.2: Universal synchronous/asynchronous
receiver transmitter (USART) and Section 3.15.4: Serial peripheral
interface (SPI)/Inter-integrated sound (I2S) to mention the fact that
USARTs with synchronous mode feature can be used as SPI master
interfaces.
Added baudrate allowing to wake up the MCU from Stop mode in
Section 3.15.2: Universal synchronous/asynchronous receiver
transmitter (USART) and Section 3.15.3: Low-power universal
asynchronous receiver transmitter (LPUART).
Changed VDDA minimum value to 1.65 V in Table 25: General
operating conditions.
Section 6.3.15: 12-bit ADC characteristics:
Table 62: ADC characteristics:
Distinction made between VDDA for fast and standard channels;
added note 1.
Added note 4. related to RADC.
Updated fTRIG. and VAIN maximum value.
Updated tS and tCONV.
Added VREF+.
Updated equation 1 description.
Updated Table 63: RAIN max for fADC = 16 MHz for fADC = 16 MHz
and distinction made between fast and standard channels.
Added Table 87: USART/LPUART characteristics.
Table 90. Document revision history
Date Revision Changes
Revision history STM32L071xx
142/144 DS10690 Rev 6
14-Sep-2017 4
Memories and I/Os moved after Core in Features.
Table 2: Ultra-low-power STM32L071xx device features and
peripheral counts: changed number of USART for
LQFP32/UFQFPN32 and added note 3.
Removed column "I/O operation" from Table 3: Functionalities
depending on the operating power supply range and added note
related to GPIO speed.
In Section 5: Memory mapping, replaced memory mapping
schematic by reference to the reference manual.
Update note related to PA11/12 below Figure 3: STM32L071xx
LQFP100 pinout - 14 x 14 mm, Figure 4: STM32L071xx UFBGA100
ballout - 7x 7 mm, Figure 5: STM32L071xx LQFP64 pinout - 10 x 10
mm, Figure 6: STM32L071xx UFBGA64/TFBGA64 ballout - 5x 5
mm, Figure 7: STM32L071xx WLCSP49 ballout, Figure 8:
STM32L071xx LQFP48 pinout - 7 x 7 mm and Figure 10:
STM32L071xx UFQFPN32 pinout.
Updated Figure 7: STM32L071xx WLCSP49 ballout.
Added mission profile compliance with JEDEC JESD47 in
Section 6.2: Absolute maximum ratings.
Removed CRS from Table 39: Peripheral current consumption in
Run or Sleep mode.
Updated minimum and maximum values of I/O weak pull-up
equivalent resistor (RPU) and weak pull-down equivalent resistor
(RPD) in Table 58: I/O static characteristics.
Updated minimum and maximum values of NRST weak pull-up
equivalent resistor (RPU) in Table 61: NRST pin characteristics.
Added note 2. related to the position of the external capacitor below
Figure 28: Recommended NRST pin protection.
Updated RAIN in Table 62: ADC characteristics.
Updated tAF maximum value for range 1 in Table 70: I2C analog filter
characteristics.
Removed Table 90: USART/LPUART characteristics.
NSS timing waveforms updated in Figure 33: SPI timing diagram -
slave mode and CPHA = 0 and Figure 34: SPI timing diagram - slave
mode and CPHA = 1(1).
Updated Figure 48: TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin
profile fine pitch ball grid array package outline.
Added reference to optional marking or inset/upset marks in all
package device marking sections. Updated note below marking
schematics.
Table 90. Document revision history
Date Revision Changes
DS10690 Rev 6 143/144
STM32L071xx Revision history
143
07-May-2018 5
Updated Arm logo and added Arm word mark notice in Section 1:
Introduction.
Removed Cortex logo.
Updated Table 5: Functionalities depending on the working mode
(from Run/active down to standby) to change I2C functionality to
disabled in Low-power Run and Low-power Sleep modes.
Section 4: Pin descriptions:
Changed PC14-OSC_IN into PC14-OSC32_IN in Figure 10:
STM32L071xx UFQFPN32 pinout.
Extended Figure 6 to UFBGA64.
Added UFBGA64 in Table 15: STM32L071xxx pin definition (same
pinout as TFBGA64
Swapped E5 and E6 signals for UFBGA64/TFBGA64.
Changed USARTx_RTS, USARTx_RTS_DE into
USARTx_RTS/USARTx_DE, and LPUART1_RTS,
LPUART1_RTS_DE into LPUART1_RTS/LPUART1_DE in
Table 15: STM32L071xxx pin definition and in all alternate function
tables.
Updated power dissipation (PD) in Table 25: General operating
conditions to add UFBGA64 package.
Updated tAF maximum value for range 1 in Table 70: I2C analog filter
characteristics.
Added Section 7.4: UFBGA64 package information. Added
UFBGA64 in Table 88: Thermal characteristics and Figure 63:
Thermal resistance
Updated Figure 60: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra
thin fine pitch quad flat package outline and added note related to
exposed pad; updated Table 87: UFQFPN32 - 32-pin, 5x5 mm,
0.5 mm pitch ultra thin fine pitch quad flat package mechanical data.
Updated Figure 48: TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin
profile fine pitch ball grid array package outline, Figure 49: TFBGA64
– 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid
array recommended footprint and Figure 82: TFBGA64
recommended PCB design rules (0.5 mm pitch BGA).
31-Aug-2018 6 Updated Table 15: STM32L071xxx pin definition.
Table 90. Document revision history
Date Revision Changes
STM32L071xx
144/144 DS10690 Rev 6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved