
     
February 2004 Digital Audio Solutions
Data M anua
l
SLES038C
iii
Contents
Section Title Page
1 Introduction 1−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features 1−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Terminal Assignments 1−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Hardware Block Diagram 1−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Functional Block Diagram 1−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Ordering Information 1−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Terminal Functions 1−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Operational Modes 1−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.1 Terminal-Controlled Modes 1−9. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.2 I2C Bus-Controlled Modes 1−10. . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Hardware Architecture 2−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Input and Output Serial Audio Ports (SAPs) 2−3. . . . . . . . . . . . . . . . . . . . . .
2.1.1 SAP Configuration Options 2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Processing Flow—SAP Input to SAP Output 2−10. . . . . . . . . . .
2.2 DPLL and Clock Management 2−14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Controller 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 8051 Microprocessor 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 I2C Bus Controller 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Digital Audio Processor (DAP) Arithmetic Unit 2−21. . . . . . . . . . . . . . . . . . .
2.5 Reset 2−23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Power Down 2−23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Watchdog Timer 2−24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 General-Purpose I/O (GPIO) Ports 2−24. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.1 GPIO Functionality—I2C Master Mode 2−25. . . . . . . . . . . . . . . .
2.8.2 GPIO Functionality—I2C Slave Mode 2−26. . . . . . . . . . . . . . . . . .
3 Firmware Architecture 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 I2C Coefficient Number Formats 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 28-Bit 5.23 Number Format 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 48-Bit 25.23 Number Format 3−2. . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Input Crossbar Mixers 3−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 3D Effects Block 3−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 CH1/CH2 Effects Block 3−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 CH3 Effects Block 3−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Biquad Filters 3−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Bass and Treble Processing 3−11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Treble and Bass Processing and Concurrent I2C
Read Transactions 3−15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Soft Volume/Loudness Processing 3−17. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
3.6.1 Soft Volume 3−17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.2 Loudness Compensation 3−24. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.3 Time Alignment and Reverb Delay Processing 3−26. . . . . . . . . .
3.7 Dynamic Range Control (DRC) 3−29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1 DRC Implementation 3−31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2 Compression/Expansion Coefficient Computation
Engine Parameters 3−33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.3 DRC Compression/Expansion Implementation Examples 3−35
3.8 Spectrum Analyzer/VU Meter 3−45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9 Dither 3−47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.1 Dither Seeds 3−48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.2 Dither Mix Options 3−50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.3 Dither Gain Mixers 3−50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.4 Dither Statistics 3−51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 Output Crossbar Mixers 3−54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Electrical Specifications 4−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Absolute Maximum Ratings Over Operating Temperature Ranges 4−1. .
4.2 Recommended Operating Conditions 4−1. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Electrical Characteristics Over Recommended Operating
Conditions 4−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 TAS3100 Timing Characteristics 4−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Master Clock Signals Over Recommended Operating
Conditions 4−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 Control Signals Over Recommended Operating Conditions 4−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.3 Serial Audio Port Slave Mode Signals Over Recommended
Operating Conditions ) 4−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4 Serial Audio Port Master Mode Signals Over Recommended
Operating Conditions 4−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.5 I2C Slave Mode Interface Signals Over Recommended
Operating Conditions 4−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1 I2C Subaddress Table A−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2 TAS3103 Firmware Block Diagram A−19. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
List of Illustrations
Figure Title Page
2−1 TAS3103 Detailed Hardware Block Diagram 2−2. . . . . . . . . . . . . . . . . . . . . . . . . . .
2−2 Discrete Serial Data Formats 2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−3 Four-Channel TDM Serial Data Formats 2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−4 SAP Configuration Subaddress Fields 2−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−5 Recommended Procedure for Issuing SAP Configuration Updates 2−5. . . . . . .
2−6 Format Options: Input Serial Audio Port 2−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−7 TDM Format Options: Output Serial Audio Port 2−8. . . . . . . . . . . . . . . . . . . . . . . .
2−8 Discrete Format Options: Output Serial Audio Port 2−9. . . . . . . . . . . . . . . . . . . . .
2−9 Word Size Settings 2−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−10 8 CH TDM Format Using SAP Modes 0101 and 1000 2−10. . . . . . . . . . . . . . . .
2−11 6 CH Data, 8 CH Transfer TDM Format Using SAP Modes
0101 and 1000 2−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−12 SAP Input-to-Output Latency 2−11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−13 SAP Input-to-Output Latency for I2S Format Conversions 2−12. . . . . . . . . . . . .
2−14 DPLL and Clock Management Block Diagram 2−15. . . . . . . . . . . . . . . . . . . . . . .
2−15 I2C Slave Mode Communication Protocol 2−17. . . . . . . . . . . . . . . . . . . . . . . . . . .
2−16 I2C Subaddress Access Protocol 2−18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−17 Digital Audio Processor Arithmetic Unit Block Diagram 2−21. . . . . . . . . . . . . . . .
2−18 DAP Arithmetic Unit Data Word Structure 2−22. . . . . . . . . . . . . . . . . . . . . . . . . . .
2−19 DAP ALU Operation With Intermediate Overflow 2−22. . . . . . . . . . . . . . . . . . . . .
2−20 TAS3103 Reset Circuitry 2−23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−21 GPIO Port Circuitry 2−25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−22 Volume Adjustment Timing—Master I2C Mode 2−27. . . . . . . . . . . . . . . . . . . . . . .
3−1 5.23 Format 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−2 Conversion Weighting Factors—5.23 Format to Floating Point 3−1. . . . . . . . . . .
3−3 Alignment of 5.23 Coefficient in 32-Bit I2C Word 3−2. . . . . . . . . . . . . . . . . . . . . . .
3−4 25.23 Format 3−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−5 Alignment of 5.23 Coefficient in 32-Bit I2C Word 3−3. . . . . . . . . . . . . . . . . . . . . . .
3−6 Alignment of 25.23 Coefficient in Two 32-Bit I2C Words 3−3. . . . . . . . . . . . . . . . .
3−7 Serial Input Port to Processing Node Topology 3−5. . . . . . . . . . . . . . . . . . . . . . . . .
3−8. Input Mixer and Effects Block Topology—Internal Processing
Nodes A, B, C, D, E, and F 3−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−9 Input Mixer Topology—Internal Processing Nodes G and H 3−7. . . . . . . . . . . . . .
vi
3−10 TAS3103 3D Effects Processing Block 3−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−11 Biquad Filter Structure and Coefficient Subaddress Format 3−10. . . . . . . . . . . .
3−12 Bass and Treble Filter Selections 3−12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−13 Bass and Treble Application Example—Subaddress Parameters 3−14. . . . . . .
3−14 I2C Bass/Treble Activity Monitor Procedure 3−16. . . . . . . . . . . . . . . . . . . . . . . . .
3−15 Soft Volume and Loudness Compensation Block Diagram 3−18. . . . . . . . . . . . .
3−16 Detailed Block Diagram—Soft Volume and Loudness Compensation 3−25. . .
3−17 Delay Line Memory Implementation 3−27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−18 Maximum Delay Line Lengths 3−28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−19 DRC Positioning in TAS3103 Processing Flow 3−29. . . . . . . . . . . . . . . . . . . . . . .
3−20 Dynamic Range Compression (DRC) Transfer Function Structure 3−30. . . . . .
3−21 DRC Block Diagram 3−32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−22 DRC Input Word Structure for 0-dB Channel Processing Gain 3−36. . . . . . . . .
3−23 DRC Transfer Curve—Example 1 3−38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−24 DRC Transfer Curve—Example 2 3−40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−25 DRC Transfer Curve—Example 3 3−42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−26 DRC Transfer Curve—Example 4 3−44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−27 Spectrum Analyzer/VU Meter Block Diagram 3−46. . . . . . . . . . . . . . . . . . . . . . . .
3−28 Logarithmic Number Conversions—Spectrum Analyzer/VU Meter 3−47. . . . . .
3−29 Dither Data Block Diagram 3−49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−30 Dither Data Magnitude (Gain = 1.0) 3−51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−31 Triangular Dither Statistics 3−52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−32 Triangular Dither Statistics 3−53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−33 Processing Node to Serial Output Port Topology 3−55. . . . . . . . . . . . . . . . . . . . .
3−34 Output Crossbar Mixer Topology 3−56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4−1 Master Clock Signals Timing Waveforms 4−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4−2 Control Signals Timing Waveforms 4−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4−3 Serial Audio Port Slave Mode Timing Waveforms 4−5. . . . . . . . . . . . . . . . . . . . . .
4−4 TAS3100 Serial Audio Port Master Mode Timing Waveforms 4−6. . . . . . . . . . . . .
4−5 I2C SCL and SDA Timing Waveforms 4−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4−6 I2C Start and Stop Conditions Timing Waveforms 4−8. . . . . . . . . . . . . . . . . . . . . .
vii
List of Tables
Table Title Page
2−1 TAS3103 Throughput Latencies vs MCLK and LRCLK 2−13. . . . . . . . . . . . . . . . .
2−2 TAS3103 Clock Default Settings 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−3 I2C EEPROM Data 2−19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−4 Four Byte Write Exceptions—Reserved and Factory-Test I2C
Subaddresses 2−20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−5 Four Byte Read Exceptions—Reserved and Factory-Test I2C
Subaddresses 2−21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−6 GPIO Port Functionality—I2C Master Mode 2−25. . . . . . . . . . . . . . . . . . . . . . . . . .
3−1 Biquad Filter Breakout 3−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−2 Bass Shelf Filter Indices for 1/2-dB Adjustments 3−14. . . . . . . . . . . . . . . . . . . . . .
3−3 Treble Shelf Filter Indices for 1/2-dB Adjustments 3−15. . . . . . . . . . . . . . . . . . . . .
3−4 Volume Adjustment Gain Coefficients 3−20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−5 DRC Example 2 Parameters 3−39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−6 DRC Example 3 Parameters 3−41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−7 DRC Example 4 Parameters 3−45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−8 Mixer Gain Setting for LSB Dither Data Insertion 3−50. . . . . . . . . . . . . . . . . . . . . .
viii
1−1
1 Introduction
The TAS3103 is a fully configurable digital audio processor that preserves high-quality audio by using a 48-bit data
path, 28-bit filter coefficients, and a single cycle 28 x 48-bit multiplier and 76-bit accumulator. Because of the
coefficient-configurable fixed-program architecture of the TAS3103, a complete set of user-specific audio processing
functions can be realized, with short development times, in a small, low power, low-cost device. A personal computer
(PC) GUI-based software development package and a comprehensive evaluation board provide additional facilities
to further reduce development times. The TAS3103 uses 1.8-V core logic with 3.3-V I/O buffers, and requires only
3.3-V power. The TAS3103 is available in a 38-pin TSSOP package.
1.1 Features
Audio Input/Output
Four Serial Audio Input Channels
Three Serial Audio Output Channels
8-kHz to 96-kHz Sample Rates Supported
15 Stereo/TDM Data Formats Supported
Input/Output Data Format Selections Independent
16-, 18-, 20-, 24-, and 32-Bit Word Sizes Supported
Serial Master/Slave I2C Control Channel
Three Independent Monaural Processing Channels
Programmable Four Stereo Input Digital Mixer
3D Effect and Reverb Structure and Filters
Programmable 12 Band Digital Parametric EQ
Programmable Digital Bass and Treble Controls
Programmable Digital Soft Volume Control (24 dB to −- dB)
Soft Mute/Unmute
Programmable Dither
Programmable Loudness Compensation
VU Meter and Spectral Analysis I2C Output
Programmable Channel Delay (Up to 42 ms at 48 kHz)
192-dB Dynamic Range (Supports Up to 32-Bit Audio Data)
Dual Threshold Dynamic Range Compression/Expansion
Electrical and Physical
Single 3.3-V Power Supply
38-Pin TSSOP Package
Low Power Standby
1−2
1.2 Terminal Assignments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
SCLKIN
PWRDN
REGULATOR_EN
XTALI (1.8-V logic)
XTALO (1.8-V logic)
AVDD_BYPASS_CAP
A_VDDS (3.3 V)
AVSS
MCLKI
TEST
MICROCLK_DIV
I2C_SDA
I2C_SCL
SDIN1
SDIN2
SDIN3
SDIN4
GPIO0
GPIO1
LRCLK
ORIN
SCLKOUT2
SCLKOUT1
MCLKO
SDOUT3
SDOUT2
VDDS (3.3 V)
SDOUT1
DVDD_BYPASS_CAP
DVSS
I2CM_S
RST
CS1
CS0
PLL1
PLL0
GPIO3
GPIO2
DBT PACKAGE
(TOP VIEW)
1−3
1.3 Hardware Block Diagram
SDIN1
COEF
RAM
Data
RAM
Code
ROM
Data
Path
Memory
Interface
Delay
Memory
(4K x 16)
8051
MCU Control
Registers
Volume
Update
4
I2C_SCL
I2C_SDA
CS1
CS0
GPIO[3:0]
8
54
48
28
SDIN2
SDIN4
SDIN3
SDOUT1
SDOUT2
SDOUT3
LRCLK
SCLKIN
MCLKO
SCLKOUT1
SCLKOUT2 76-Bit
ALU
Digital Audio Processor
Serial
Audio
Port
Controller
(8-Bit)
4
External
Data
RAM
Internal
Data
RAM
Code
ROM 8
2828
64
Oscillator
and
PLL
XTALI
XTALO
PWRDN
PLL0
PLL1
TEST
48
64
64
64
64
64
64
I2C
Serial
Interface
RST
I2CM_S
1−4
1.4 Functional Block Diagram
Cross-
bar
Mixer
Multi-
Mode
3D
Effects
Block
Multi-
Mode
Serial
to
PCM
Input
Port
SDIN1
SDIN2
SDIN3
DRC
Center
Output
Cross-
bar
Multi-
plexer
Multi-
mode
PCM
to
Serial
Output
Port
PLL
and
Dividers
Oscillator
3 Mono Processing Channels
GPIO(3:0) CS0 CS1PLL1
VDDS DVSS
XTALI
Test PWRDN
LRCLK SCLKIN SCLKOUT1 SCLKOUT2 MCLKO
DVDD_
BYPASS_
SDIN4
Input Treble
and Soft
Volume Loudness
Compensation Ganged
DRC
Delay Programmable
Dither
Ch1
MCLKI
Ch1
Microprocessor
PLL0 MC/Div
Voltage Regulation
XTALO
or
Spectrum Analyzer
Bass
12
Biquad
Filters
Ch2
Ch3
Treble
and Soft
Volume Loudness
Compensation
Bass
12
Biquad
Filters
Treble
and Soft
Volume Loudness
Compensation
Bass
12
Biquad
Filters
VU Meter
Delay
Delay
SDOUT1
SDOUT2
SDOUT3
ORIN
Programmable
Dither
Programmable
Dither
Ch2
Ch3
I2C_
SDA I2C_
SCL I2C_
M_S CAP
AVSS A_VDDS
AVDD_
BYPASS_
CAP
I2S Clock Input/Generation
Ch3
RST
1−5
1.5 Ordering Information
TAPLASTIC
38-PIN TSSOP
(DBT)
0°C to 70°C TAS3103DBT
−40°C to 85°C TAS3103IDBT
1.6 Terminal Functions
TERMINAL
DESCRIPTION
PULLUP/
(2)
NAME NO. I/O TYPE(1)
DESCRIPTION
PULLUP/
DOWN(2)
A_VDDS (3.3 V) 7 PWR The PWR pin is used to input 3.3-V power to the DPLL and clock oscillator.
This pin can be connected to the same power source used to drive the DVSS
power pin. To achieve low DPLL jitter, this pin should be bypassed to AVSS
with a 0.01-µF capacitor (low ESR preferable).
None
AVDD_BYPASS_CAP 6 PWR AVDD_BYPASS_CAP is a pinout of the internally regulated 1.8-VDC power
used by the DPLL and crystal oscillator. This pin should be connected to pin 8
with a 0.01-µF capacitor (low ESR preferable). This pin must not be used to
power external devices.
None
AVSS 8 PWR AVSS is the ground reference for the internal DPLL and oscillator circuitry.
This pin needs to reference the same ground as DVSS power pin. To achieve
low DPLL jitter, ground noise at this pin must be minimized. The availability of
the AVSS pin allows a designer to use optimizing techniques such as star
ground connections, separate ground planes, or other quiet ground
distribution techniques to achieve a quiet ground reference at this pin.
None
CS0 24 I D CS0 is the LSB of a 2-bit code used to generate part of an I2C device address
that makes it possible to address four TAS3103 ICs on the same bus without
additional chip select logic. The pulldowns on the inputs select 00 as a default
when neither pin is connected.
Pulldown
CS1 25 I D CS1 is the MSB of a 2-bit code used to generate part of an I2C device address
that makes it possible to address four TAS3103 ICs on the same bus without
additional chip select logic.
Pulldown
DVDD_BYPASS_CAP 29 PWR DVDD_BYPASS_CAP is a pin-out of the internally regulated 1.8-V power
used by all internal digital logic. This pin must not be used to power external
devices. A low ESR capacitor of at least 470 nF should be placed as close to
the device as possible between this pin and pin 28.
None
DVSS 28 PWR DVSS is the digital ground pin. None
GPIO0 18 I/O D GPIO0 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO0 serves as a
volume up command for CH1/CH2.
Pullup
GPIO1 19 I/O D GPIO1 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO1 serves as a
volume down command for CH1/CH2.
Pullup
GPIO2 20 I/O D GPIO2 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO2 serves as a
volume up command for CH3.
Pullup
GPIO3 21 I/O D GPIO3 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO3 serves as a
volume down command for CH3.
Pullup
I2CM_S 27 I D I2CM_S is a non-latched input that determines whether the TAS3103 acts as
an I 2C master or slave. Logic high, or no connection, sets the TAS3103 as an
I2C master device. A logic low sets the TAS3103 as an I2C slave device. As a
master I2C device, the TAS3103 I2C port must have access to an external
EEPROM for input.
Pullup
1−6
TERMINAL PULLUP/
DOWN(2)
DESCRIPTION
NAME PULLUP/
DOWN(2)
DESCRIPTION
TYPE(1)
I/ONO.
I2C_SCL 13 I/O D I2C_SCL is the I2C clock pin. When the TAS3103 I2C port is a master,
I2C_SCL i s (1/2N) x (1/(M+1)) x 1/10 times the microprocessor clock, where N
and M are set to 2 and 8 respectively. When the TAS3103 I2C port is a slave,
input clock rates up to 400 kHz can be supported. This pin must be provided an
external pullup (5 k is recommended for most applications).
External
pullup
required
I2C_SDA 12 I/O D I2C_SDA i s the I2C bidirectional data pin. The TAS3103 I2C port can support
data rates up to 400K bits/sec. This pin must be provided an external pullup
(5 k is recommended for most applications).
External
pullup
required
LRCLK 38 I/O D LRCLK is either an input or an output, depending on whether the TAS3103 is in
a master or slave serial audio port mode, which is determined by bit 22 of
subaddress 0xF9.
Pulldown
MCLKI 9 I D MCLKI is a master clock input that provides an alternative to using a fixed
crystal frequency. In DPLL modes, the input frequency of this clock can range
from 2.8 MHz to 24.576 MHz. In PLL bypass mode, frequencies up to 136 MHz
can be used. Whenever MCLKI is not used and XTALI/XTALO provide the
master clock input, MCLKI must be grounded.
None
MCLKO 34 O D MCLKO is the master output clock pin. It is produced by dividing MCLKI/XTALI
by 1, 2, or 4 (depending on the setting of a subaddress control field). MCLKO is
provided to interconnect, without the need for additional glue logic, the
TAS3103 interfaces chips that require different multiples of the audio sample
rate (FS) as a master clock.
None
MICROCLK_DIV 11 I D MICROCLK_DIV sets the division ratio between the digital audio processing
clock and the internal microprocessor clock. The audio-processing clock is the
DPLL output clock if PLL_bypass is not enabled. The audio-processing clock
is MCLKI/XT ALI master clock if PLL_bypass is enabled. Logic high on this pin
sets the microprocessor clock equal to the audio-processing clock. A logic low
sets the microprocessor clock to 1/4 the digital audio-processing clock.
MICROCLK_DIV must be set low if the audio processing clock is > 36 MHz.
MICROCLK_DIV must be set high if the audio processing clock is 36 MHz.
Pulldown
ORIN 37 I D ORIN allows the processing of a multichannel signal set through two
TAS3103s without any additional components. One use of ORIN would be to
fully emulate a 6-channel audio processor at speeds up to a 96-kHz sample
rate with only two TAS3103s and no glue logic.
The two-chip configuration is accomplished by wiring the SDOUT1 port of on e
of the two TAS3103 chips to the ORIN port of the second TAS3103. Internal to
the chip, the ORIN input is OR’ed with internal SDOUT1 data to generate the
resulting output data on channel SDOUT1. For TDM output formats, the
SDOUT1 outputs of the two chips differ in phasing in both the left and right
channels to arrive at the proper composite output. For discrete outputs, one
chip contributes the left channel of the composite SDOUT1, and the other chip
contributes the right channel of the composite SDOUT1.
If not used, ORIN must be connected to ground.
Pulldown
PLL0 22 I D PLL0 is the LSB of a 2-bit code used to select four different modes of DPLL
multiplexer/input divider operation. PLL[1:0] values of 00, 01, and 10 select
the DPLL input clock to be MCLKI/XTALI divided by 1, 2, and 4 respectively. A
value o f 11 results in MCLKI/XTALI being substituted for the DPLL output. The
pullup/pulldown combination provides a default of 01 when neither pin is
connected.
Pullup
PLL1 23 I D PLL1 is the MSB of a 2-bit code used to select four different modes of DPLL
multiplexer/input divider operation. PLL[1:0] values of 00, 01, and 10 select
the DPLL input clock to be MCLKI/XTALI divided by 1, 2, and 4 respectively. A
value o f 11 results in MCLKI/XTALI being substituted for the DPLL output. The
pullup/pulldown combination provides a default of 01 when neither pin is
connected.
Pulldown
1−7
TERMINAL PULLUP/
DOWN(2)
DESCRIPTION
NAME PULLUP/
DOWN(2)
DESCRIPTION
TYPE(1)
I/ONO.
PWRDN 2 I D PWRDN powers down all logic and stops all clocks whenever logic high is
applied. However, the coefficient memory remains stable through a power
down cycle, as long as a reset is not sent after a power down cycle.
Pulldown
REGULATOR_EN 3 I D REGULATOR_EN is only used in factory tests. This pin should always be tied
to ground. None
RST 26 I D RST is the master reset input. Applying a logic low to this pin generates a
master reset. The master reset results in all coefficients being set to their
power-up default state, all data memories being cleared, and all logic signals
being returned to their default values.
Pullup
SCLKIN 1 I D SCLKIN is the serial audio port (SAP) input data clock. This clock is only used
when the SAP is a slave. In master mode, SCLKOUT1 internally provides the
serial input clock (SCLKOUT1 from a given TAS3103 must not be connected
to SCLKIN on the same TAS3103 chip).
Pulldown
SCLKOUT1 35 O D SCLKOUT1 is one of two serial output bit clocks. It is divided from
MCLKI/XTALI in master mode, and SCLKIN in slave mode. Subaddress
control fields determine the divide ratio in both cases. When the serial audio
port is in a master mode, SCLKOUT1 is used to receive incoming serial data
and should be wired to the data source(s) providing data to the SDIN inputs.
None
SCLKOUT2 36 O D SCLKOUT2 is one of two serial output bit clocks. It is divided from
MCLKI/XTALI in master mode, and SCLKIN in slave mode. Subaddress
control fields determine the divide ratio in both cases. SCLKOUT2 is always
used to clock out serial data from the three serial SDOUT output data
channels. SCLKOUT2 is provided separately from SCLKOUT1 to allow
discrete in to TDM out and TDM in to discrete out data format conversions
without the use of external glue logic.
Output
SDIN1 14 I D SDIN1, SDIN2, SDIN3, and SDIN4 are the four TAS3103 serial data input
ports. All four input ports support four discrete (stereo) data formats. SDIN1 is
the only data input port that also supports eleven time division multiplexed
data formats. All four ports are capable of receiving data with bit rates up to
24.576 MHz.
Pulldown
SDIN2 15 I D SDIN2 is one of the four TAS3103 serial data input ports. SDIN2 supports four
discrete (stereo) data formats, and is capable of receiving data with bit rates
up to 24.576 MHz.
Pulldown
SDIN3 16 I D SDIN3 is one of the four TAS3103 serial data input ports. SDIN4 supports four
discrete (stereo) data formats, and is capable of receiving data with bit rates
up to 24.576 MHz.
Pulldown
SDIN4 17 I D SDIN4 is one of the four TAS3103 serial data input ports. SDIN4 supports four
discrete (stereo) data formats, and is capable of receiving data with bit rates
up to 24.576 MHz.
Pulldown
SDOUT1 30 O D SDOUT1, SDOUT2, and SDOUT3 are the three TAS3103 serial data output
ports. All three output ports support four discrete (stereo) data formats.
SDOUT1 is the only data output port that also supports eleven time division
multiplexed data formats. All three ports are capable of outputting data at bit
rates up to 24.576 MHz.
None
SDOUT2 32 O D SDOUT2 is one of the three serial data output ports. SDOUT2 supports four
discrete (stereo) data formats, and is capable of outputting data at bit rates up
to 24.576 MHz.
None
SDOUT3 33 O D SDOUT3 is one of the three serial data output ports. SDOUT3 supports four
discrete (stereo) data formats, and is capable of outputting data at bit rates up
to 24.576 MHz.
None
TEST 10 I D TEST is only used in factory tests. This pin must be left unconnected or
grounded. Pulldown
1−8
TERMINAL PULLUP/
DOWN(2)
DESCRIPTION
NAME PULLUP/
DOWN(2)
DESCRIPTION
TYPE(1)
I/ONO.
VDDS (3.3 V) 31 - PWR VDDS is the 3.3-V pin that powers (1) the 1.8-V internal power regulator used
to supply logic power to the chip and (2) the I/O ring. It is recommended that
this pin be bypassed to DVSS (pin 28) with a low ESR capacitor in the range of
0.01 µF.
None
XTALI (1.8-V logic) 4 I A XTALO and XTALI provide a master clock for the TAS3103 via use of an
external fundamental mode crystal. XTALI is the 1.8-V input port for the
oscillator circuit. See Note 3 for recommended crystal type and accompanying
circuitry. This pin should be grounded when the MCLKI pin is used as the
source for the master clock.
None
XTALO (1.8-V logic) 5 O A XTALO and XTALI provide a master clock for the TAS3103 via use of an
external fundamental mode crystal. XTALO is the 1.8-V output drive to the
crystal. XTALO can support crystal frequencies between 2.8 MHz and
20 MHz. See Note 3 for recommended crystal type and accompanying
circuitry. This pin should be left unconnected in applications using an external
clock input to MCLKI.
None
NOTES: 1. TYPE: A = analog; D = 3.3-V digital; PWR = power/ground/decoupling
2. All pullups are 20-µA weak pullups and all pulldowns are 20-µA weak pulldowns. The pullups and pulldowns are included to assure
proper input logic levels if the pins are left unconnected (pullups => logic 1 input; pulldowns => logic 0 input). Devices that drive inputs
with pullups must be able to sink 20 µA while maintaining a logic 0 drive level. Devices that drive inputs with pulldowns must be able
to source 20 µA, while maintaining a logic 1 drive level.
3. Crystal type and recommended circuit:
OSC
Circuit
XO
XI
C1
C2
rd
AVSS
TAS3103
Crystal type = parallel-mode, fundamental-mode crystal
rd = drive level control resistor—vendor specified
CL = Crystal load capacitance (capacitance of circuitry between the two terminals of the crystal)
CL = (C1× C2) / (C1 + C2) + CS (where CS = board stray capacitance ~2 pF)
Example: Vendor recommended CL = 18 pF, CS = 3 pF C1 = C2 = 2 x (18 − 3) = 30 pF
1.7 Operational Modes
The TAS3103 operation is governed by I/O terminal voltage level settings and register / coefficient settings within the
TAS3103. The terminal settings are wholly sufficient to address all external environments - allowing the remaining
configuration settings to be determined by either I2C commands or by the content of an I2C serial EEPROM (when
the I2C master mode is selected).
1−9
1.7.1 Terminal-Controlled Modes
1.7.1.1 Clock Control
PLL1 PLL0 DAP CLOCK
0 0 11 x MCLK
0 1 (11 x MCLK)/2
1 0 (11 x MCLK)/4
1 1 MCLK (PLL bypass)
MICROCLK_DIV MICROPROCESSOR CLOCK
0DAP clock/4
1DAP clock
XTALIMCLKI
Reference
Divider PLL
PLL0
Digital
Audio Processor
(DAP) Clock
MICROCLK_DIV
MCLK
PLL1
÷ 11
Microprocessor
Clock < 36 MHz
Microprocessor
Scaler
1400 x Fs 3 DAP Clock 3 136 MHz
1.7.1.2 I2C Bus Setup SLAVE ADDRESS CS1 CS0
0x68/69 0 0
0x6A/6B 0 1
0x6C/D 1 0
0x6E/6F 1 1
I2CM_S I2C BUS MODE
0 Slave
1 Master
a6 = 0 a5 = 1 a4 = 1 a3 = 0 a2 = 1 a1=CS1 a0=CS0 R/W ACK
SDA
SCL 123456789
Start
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
TAS3103 I2C Slave Address
1.7.1.3 Power-Down/Sleep Selection
PWRDN POWER STATUS
0 Active
1Power down/sleep
1−10
1.7.2 I2C Bus-Controlled Modes
SUBADDRESS(es) PARAMETER(s)
0x00 – Starting I2C Check Word
0xFC – Ending I2C Check Word S Check words apply to I2C master mode only
S In master I2C mode, the two check words are compared after EEPROM
download. If comparison fails, a second attempt is made. If the second
m
s
b
SSlave Addr Ack Sub-Addr Ack xxxxxxx Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck
download. If comparison fails, a second attempt is made. If the second
comparison fails, the parameters default to the slave default values.
S In slave I2C mode, the default value for both check words is:
0x81_42_24_18
Input Mixer 28-Bit Gain Coefficients
0x01 − 0x33
Output Mixer 28-Bit Gain Coefficients
0x84 – 0xA1
Gain Coefficient
(Format = 5.23)
28
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck Node 32 or 48 48 Node
Effects Block BiQuad Filter Coefficients
0x34−0x4B b0
28
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck a1
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck a2
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b0
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b2
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b1
b1
b2
a1
a2
28
28
28
28
28
48 76 76
48
48
76
76
76 48
48
76
Magnitude
Truncation
48
z−1 z−1
z−1
z−1
Σ
NOTE: All gain coefficients 5.23 numbers.
Reverberation Block Gains
Reverberation Block Subaddress
Gain Coefficient G0
(Format = 5.23)
Channel 1 0x4C
(Format = 5.23)
28
48 48 48
Channel 2 0x4D
48 48 48
Σ
Channel 3 0x4E Gain Coefficient G1
(Format = 5.23)
(Format = 5.23)
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck G0
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck G1
28
Reverberation
Delay
Reverberation Block
48
1−11
SUBADDRESS(es) PARAMETER(s)
Cascaded (Twelve/Channel) Main Filter BiQuads
MAIN FILTER
BLOCK Subaddress
b0
Channel 1 0x4F−0x5A
b0
28
48 76 76 Magnitude 48
Channel 2 0x5B−0x66
28
48 76 76
Magnitude
Truncation
48
Σ
Channel 3 0x67−0x72
b1
a
1
Truncation
b1a1
28 28
z−1 z−1
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck a1
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck a2
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b0
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b2
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b1NOTE: All gain coefficients 5.23 numbers
b2a2
28
28
28
28
48
48
76
76
76 48
48
76
z
−1
z
−1
z−1
z−1
Bass and Treble Gain Coefficients
Inline Gain Coeeficient
Channel 1 = 0x73
Inline Gain Coeeficient
(Format = 5.23)
28
Channel 2 = 0x74
Bass Σ
Treble
28
Channel 3 = 0x75
Bass
Shelf Filter Σ
Treble
Shelf Filter
Bypass Gain Coeeficient
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck Bypass Gain
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck Inline Gain
Bypass Gain Coeeficient
(Format = 5.23)
28
Bass and Treble Block
1−12
Dynamic Range Control (DRC) Mixer Coefficients
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck Word1
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck Word2
CH1
0x76 = Mix u to i
0x79 = Mix j to i
CH2 0x77 = Mix v to k
0x7A = Mix l to k
CH3
0x78 = Mix w to m
0x7B = Mix n to m
CH1− 0x7C Word 1 = Mix j to o − Inline
Word 2 = Mix j to o − Bypass
CH2− 0x7D Word 1 = Mix l to p − Inline
Word 2 = Mix l to p − Bypass
CH1−0x7E
Word 1 = Mix n to q − Inline
Word 2 = Mix n to q − Bypass
CH 1
Bass and Treble
Block
u
CH 1 Soft
Volume
Loudness j
Mix_u_to_i Mix_j_to_i
i
Dynamic
Range Control
vl
CH 2 Soft
Volume
Loudness
Mix_v_to_k kMix_l_to_k
Dynamic
Range Control
wn
Loudness
Mix_w_to_m mMix_n_to_m
Mix_j_to_o_via_DRC_mult
Mix_l_to_p_via_DRC_mult
o
p
DRC_bypass_1
DRC_bypass_2
Mix_n_to_q_via_DRC_mult
q
DRC_bypass_3
CH 2
Bass and Treble
Block
CH 3
Bass and Treble
Block
CH 3 Soft
Volume
CH1
CH2
CH3
ΣΣΣ
Σ
Σ
ΣΣ
Σ
Σ
Σ Σ
Σ
1−13
SUBADDRESS(es) PARAMETER(s)
Dither Mix Gain Coefficients
Channel 1 0x7F = Mix Dither 1 to o − 28-Bit Coefficient
Channel 2 0x80 = Mix Dither 2 to p − 28-Bit Coefficient
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck o
Channel 1
Loudness / Soft Volume
Processed Output
Dynamic
Range Control
Dither 1
Mix_Dither1_to_o
Dither−Processed Audio Out _ CH
1
Σ
Channel 2 0x80 = Mix Dither 2 to p − 28-Bit Coefficient
Channel 3 0x81 = Mix Dither 3 to q − 28-Bit Coefficient
p
Channel 2
Loudness / Soft Volume
Processed Output
Range Control
Mix_Dither2_to_p
Dither 2
Dither−Processed Audio Out _ CH 2
Σ
q
Channel 3
Loudness / Soft Volume
Processed Output
Dynamic
Range Control Mix_Dither3_to_q
Dither 3
Dither−Processed Audio Out _ CH
3
Σ
Channel 3 to Channel 1 and Channel 2 Mix Gain Coefficients
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck
32-Bit Truncate
Node o Channel 1
Processed Audio
Delay 1
Mix−Delay3_to_o
Σ
Channel 1 0x82 = Mix Channel 3 Output to o − 28-Bit Coefficient
Channel 2 0x83 = Mix Channel 3 Output to p − 28-Bit Coefficient
Mix−Delay3_to_o
Node p Delay 2 Channel 2
Processed Audio
32-Bit Truncate
Σ
Mix−Delay3_to_p
Node q Channel 3
Processed Audio
Delay 3
32-Bit Truncate
Σ
1−14
Soft Volume and Loudness Subaddress
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxx l
s
ba1
b0
b1
b2
a1
a2
28
28
28
28
28
z−1 z−1
z−1
z−1
All biquad gain coefficients 5.23 numbers.
48 Loudness Compensation
4848
AUDIO OUTAUDIO IN
28
48
a2
b0
b1
b2
O
G
CH 1 = 0xA3
CH 2 = 0xA8
CH 3 = 0xAD
LO Is A 25.23 Format Number
CH 1 = 0xA4
CH 2 = 0xA9
CH 3 = 0xAE
G Is A 5.23 Format Number
CH 1 = 0xA5
CH 2 = 0xAA
CH 3 = 0xAF
O Is A 25.23 Format Number
SSlave Addr Ack Sub-Addr Ack 00000000 Ack 00000000 Ack Ack xxxxxxxx Ack LO MSBs
xxxxxxx
m
s
b
xxxxxxxx xxxxxxxx xxxxxxxl
s
bAck LO LSBs
xxxxxxxx
2LO
CH 1 = 0xA2
CH 2 = 0xA7
CH 3 = 0xAC
LG Is A 5.23 Format Number
LOUDNESS
BiQuad Coefficients
CH 1 = 0xA6
CH 2 = 0xAB
CH 3 = 0xB0
LG
( ) LG
Commanded 5.23
Volume Command
S Slave Addr Sub-Addr xxxxxxxx xxxxxxxx xxxxxxxx VCS
xxxxxxx v
c
s
0xF1
Original
Volume Commanded
Volume
VCS = 0 ttransition = 2048/FS
VCS = 1 ttransition = 4096/FS
SOFT VOLUME
ttransition
I2C Master Mode
I2C Slave Mode
V olume Commands − GPIO Terminals
GPIO0 − Volume Up − CH1 / CH2
GPIO1 − Volume Down − CH1 / CH2
GPIO2 − Volume Up − CH3
GPIO3 − Volume Down − CH1 / CH2
SSlave Addr Ack Sub-Addr xxxxxxxx xxxxxxxx xxxxxxxx xxxxx CCC
HHH
321
Mute / Unmute Command
0xF0
CH 1 = 0xF2
CH 2 = 0xF3
CH 3 = 0xF4
Mute Command = 1 => 0x0000000 Volume Control
Volume
Command
Volume Command
(5.23 Precision)
Note: Negative Volume Commands Result In Audio Polarity Inversion
= x16 BoostMAX
= 1/223 CutMAX (LSB)
= Zero Output For 0x0000000 Volume Control
Volume
Commands
I2C Bus
Ack Ack Ack
SSlave Addr Ack Sub-Addr Ack Ack Ack Ack Ack G
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
m
s
bxxx0000
m
s
bxxx0000
SSlave Addr Ack Sub-Addr Ack 00000000 Ack 00000000 Ack Ack xxxxxxxx Ack 0 MSBs
xxxxxxx
m
s
b
xxxxxxxx xxxxxxxx xxxxxxxl
s
bAck 0 LSBs
xxxxxxxxAck Ack Ack
Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Ack AckAck Ack Ack Ack
Ack Ack Ack Ack Ack
SSlave Addr Ack Sub-Addr Ack Ack Ack Ack Ack
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
m
s
bxxx0000 Σ
Soft Volume Loudness
S Mute/Unmute = 0xF0
S Volume Slew Command = 0xF1
Volume Command
Parameter
Volume Command
Subaddress
CH1 CH2 CH3
0xF2 0xF3 0xF4
Parameter Subaddress
CH1 CH2 CH3
LG 0xA2 0xA7 0xAC
LO 0xA3 0xA8 0xAD
G 0xA4 0xA9 0xAE
O 0xA5 0xAA 0xAF
BiQuad 0xA6 0xAB 0xB0
Σ
Σ
1−15
Subaddress — Dynamic Range Control (DRC) Block
SSlave Addr Ack Sub-Addr 00000000 O1-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack Ack 00000000 Ack Ack Ack
xxxxxxxx O1-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
00000000 O2-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack 00000000 Ack Ack Ack
xxxxxxxx O2-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
CH1/CH2 = 0xB4
CH3 = 0xB9
SSlave Addr Ack Sub-Addr 00000000 T1-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack Ack 00000000 Ack Ack Ack
xxxxxxxx T1-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
00000000 T2-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack 00000000 Ack Ack Ack
xxxxxxxx T2-LSBitsxxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
CH1/CH2 = 0xB2
CH3 = 0xB7
SSlave Addr Ack Sub-Addr K0
Ack Ack Ack Ack Ack
K1
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
K2
Ack Ack Ack Ack
CH1/CH2 = 0xB3
CH3 = 0xB8
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
xxxxxxxx
m
s
bxxx0000
m
s
bxxx0000
m
s
bxxx0000
SSlave Addr Ack Sub-Addr aa
Ack Ack Ack Ack Ack
1−aa
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
ad
Ack Ack Ack Ack
CH1/CH2 = 0xB5
CH3 = 0xBA
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
xxxxxxxx
m
s
bxxx0000
m
s
bxxx0000
m
s
bxxx0000
1−ad
Ack Ack Ack Ack
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
m
s
bxxx0000
SSlave Addr Ack Sub-Addr 00000000 ae
xxxxxxx
m
s
bxxxxxxxx
Ack Ack 00000000 Ack Ack Ack
xxxxxxxx 1−ae
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
CH1/CH2 = 0xB1
CH3 = 0xB6
Cut
Attack / Decay Control
Volume
ta −1/[FS x ln(1−aa)]
td −1/[FS x ln(1−ad)]
ta
td
DRC-Derived
Gain Coefficient
28
5.23 Format
5.23 Format
5.23 Format
25.23
Format
25.23
Format
K2
T2
K1
K0
T1
{
O1
{
O2
Compression / Expansion
Coefficient Computation
NOTE: Compression / Expansion / Compression Displayed
tWindow −1/[FS x ln(1−ae)] Where FS = Audio Sample Frequency
ae and (1−ae) Set Time Window Over Which RMS Value is Computed
Applies to DRC Servicing CH1/CH2 Only
Comparator
RMS
Voltage
Estimator
RMS
Voltage
Estimator
5.23 Format
32
32
Audio Input
CH1 or CH3
Audio Input
CH2
1−16
Spectrum Analyzer/VU Meter Spectrum Analyzer/VU Meter
BiQuad 1 to 10 Subaddresses = 0xBC to 0xC5
S Slave Addr Ack Sub-Addr a1
Ack Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
a2
Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
b0
Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
b1
Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
b2
Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
BiQuad 1
RMS Voltage
Estimator
Spectrum Analyzer / VU Meter
Log
RMS Window Time Constant Subaddress = 0xBB
BiQuad 1 RMS Voltage
Estimator
RMS Voltage
Log
S Slave Addr Ack Sub-Addr asaAck Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
1−asaAck Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
BiQuad 2
BiQuad 3
BiQuad 4
r
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Log
Log
Log
Spectrum Analyzer Output Subaddress = 0xFD BiQuad 4
s
co
der
RMS Voltage
Estimator Log
S Slave Addr Ack Sub-Addr BiQuad 1Ack Ackxxxxx.xxx
BiQuad 2
Ackxxxxx.xxx
BiQuad 3
Ackxxxxx.xxx
BiQuad 4
Ackxxxxx.xxx
BiQuad 5
Ackxxxxx.xxx
BiQuad 6
Ackxxxxx.xxx
BiQuad 7
Ackxxxxx.xxx
BiQuad 8
Ackxxxxx.xxx
BiQuad 9
Ackxxxxx.xxx
BiQuad 10
Ackxxxxx.xxx
BiQuad 5
BiQuad 6
BiQuad 7
BiQuad 9
BiQuad 10
s
t
Sub-Address Dec
od
BiQuad 8
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
tWindow −1/[FS x ln(1−asa)] Where FS = Audio Sample Frequency
asa and (1−asa) Set Time Window Over Which RMS Value Is
Computed
I2C Bus
Log
Log
Log
Log
Log
Log
VU Meter Output = 0xFE
S Slave Addr Ack Sub-Addr VU Meter Output 1
(BiQuad 5)
Ack Ackxxxxx.xxx
Ackxxxxx.xxx VU Meter Output 1
(BiQuad 6)
1−17
Dither Block
S Slave Addr Ack Sub-Addr Distribution 1 MixAck Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
Distribution 2 Mix
Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
LFSR1 Mix and LFSR2 Mix Are 5.23 Format Coefficients
S Slave Addr Ack Sub-Addr Dither SeedAck Ack Ack Ack Ackxxxxxx l
s
b
0000000000000000 m
s
bxxxxxx l
s
b
m
s
b
0xC6
0xC7
Condensed
LFSR2
Seed
Condensed
LFSR1
Seed
Linear Feedback Shift Register Block
Dither 1
Dither 2
Dither 3
LFSR1
LFSR2
Seed Build Logic
L
− W 0 +W
0.25
0.5
p
Output
Sampler
St1
St2
St3
St4
St5
St6
NOTE: W = 16.0 => 0x000008000000 in 25.23 Format
O
G
I
C
Σ
Σ
Σ
1−18
GPIO and Watchdog Timer Subaddresses
SUBADDRESS(es) PARAMETER(s)
0xC8−0xC9 Factory Test Subaddresses
0xCA−0xCF SDIN4 Input Mixers
0xD0−0xD1 CH1/CH2 to CH3 After Effects Mixers
0xD2−0xEA Reserved
GPIO0
GPIO1
GPIO2
GPIO3
DQ
DQ
DQ
DQ
Sample
Logic
0xEF
Down
Counter LD
LRCLK
Decode 0
Watchdog
Counter
Reset
0xEB
PWRDN
DATA PATH SWITCH
Reset
GPIODIR
3
READ
EN
Determines How Many Consecutive Logic 0 Samples
(Where Each Sample Is Spaced by GPIOFSCOUNT LRCLKs)
Are Required to Read a Logic 0 on a GPIO Input Port
S Slave Addr Sub-AddrAck 00000000Ack Ack 210
0000 Ack GPIOFSCOUNT Ack GPIO_samp_int Ack
31 24 23 20 19 16 15 8 7 0
S Slave Addr Sub-AddrAck 00000000Ack Ack
31 24
00000000
23 16
Ack 00000000
15 8
Ack 0000000x
70
Ack
1 (Default State)
Disables Watchdog
Timer
Decode 216
Microprocessor
Clock
Microprocessor Microprocessor
Firmware
Microprocessor
Bus
Microprocessor
Control
0xEE
GPIO_in_out
3
S Slave Addr Sub-AddrAck 00000000Ack Ack 210
Ack
31 24 23 16 0
00000000
15 8
00000000 Ack
74
0000 Ack
3
I2C Slave Mode
and
I2C Master Mode
Write
I2C Master
Mode Read
1−19
SUBADDRESS(es) PARAMETER(s)
0xEC−0xED Reserved/Factory Test Subaddresses
0xEE−0xEF—See Subaddress 0xEB GPIO Port I/O Values and GPIO Parameters
0xF0—See Subaddress 0xA2 Master Mute/Un-Mute
0xF1—Also See Subaddress 0xA2 and Subaddress 0xF5
S Slave Addr Ack Sub-Addr
tTransition = TBLC[7:0] x 1/LRCLK
Ack Ack Ack Ack Ackxxxxxxxx0000000 v
s
c
0000000000000000
Treble and Bass
Slew Rate
TBLC[7:0]
0xF1
31 24 23 16 15 8 7 0
Bass
Filter Set N
Treble
Filter Set N
tTransition = TBLC[7:0] x 1/LRCLK
0xF2−0xF4—See Subaddress 0xA2 CH1−CH3 Volume CMDS
1−20
Subaddress—Bass and Treble Shelf Filter Parameters
S Slave Addr Ack Sub-Addr Ack Ack Ack00000xxx00000000
0xF5
CH3
Ack00000xxx
CH2
Ack00000xxx
CH1
S Slave Addr Ack Sub-Addr Ack Ack Ack00000xxx00000000
0xF7
CH3
Ack00000xxx
CH2
Ack00000xxx
CH1
S Slave Addr Ack Sub-Addr Ack Ack Ackxxxxxxxx00000000
0xF6 Ackxxxxxxxx Ackxxxxxxxx
S Slave Addr Ack Sub-Addr Ack Ack Ackxxxxxxxx00000000
0xF8 Ackxxxxxxxx Ackxxxxxxxx
CH1
Treble Shelf Selection (Filter Index) CH2
CH3
CH1CH2CH3
Bass Shelf Selection (Filter Index)
Treble Filter Set Selection
Bass Filter Set Selection
BASS
FILTER 5
BASS
FILTER 4
BASS
FILTER 3
BASS
FILTER 2
BASS
FILTER 1 TREBLE
FILTER 5 TREBLE
FILTER 3 TREBLE
FILTER 1
TREBLE
FILTER 4 TREBLE
FILTER 2
MID-BAND
MAX BOOST
SHELF
MAX CUT
SHELF
Treble & Bass Filter Set Commands
0 => No Change
1 − 5 => Filter Sets 1 − 5
6 − 7 => Illegal (Behavior Indeterminate)
Treble & Bass Filter Shelf Commands
0 => Illegal (Behavior Indeterminate)
1 − 150 => Filter Shelves 1 − 150
1 => +18-dB Boost
150 => −18-dB Cut
151 − 255 => Illegal (Behavior Indeterminate)
FREQUENCY
S Slave Addr Ack Sub-Addr Ack Ack Ack0000000000000000
0xF1 Ack0000000 Ackxxxxxxxx
Treble/Bass Slew Rate = TBLC
(Slew Rate = TBLC/FS,
Where FS = Audio Sample Rate)
Treble/Bass Slew Rate Selection
V
C
S
07
FS
3-dB CORNERS (kHz)
FS
(LRCLK)
FILTER SET 5 FILTER SET 4 FILTER SET 3 FILTER SET 2 FILTER SET 1
(LRCLK)
BASS TREBLE BASS TREBLE BASS TREBLE BASS TREBLE BASS TREBLE
96 kHz 0.25 6 0.5 12 0.75 18 1 24 1.5 36
88.4 kHz 0.23 5.525 0.46 11.05 0.691 16.575 0.921 22.1 1.381 33.15
64 kHz 0.167 4 0.333 8 0.5 12 0.667 16 1 24
48 kHz 0.125 3 0.25 6 0.375 9 0.5 12 0.75 18
44.1 kHz 0.115 2.756 0.23 5.513 0.345 8.269 0.459 11.025 0.689 16.538
32 kHz 0.083 2 0.167 4 0.25 6 0.333 8 0.5 12
24 kHz 0.063 1.5 0.125 3 0.188 4.5 0.25 6 0.375 9
22.05 kHz 0.057 1.378 0.115 2.756 0.172 4.134 0.23 5.513 0.345 8.269
16 kHz 0.042 1 0.083 2 0.125 3 0.167 4 0.25 6
12 kHz 0.031 0.75 0.063 1.5 0.094 2.25 0.125 3 0.188 4.5
11.025 kHz 0.029 0.689 0.057 1.378 0.086 2.067 0.115 2.756 0.172 4.134
1−21
Word Size Code
I2S FORMAT, CLOCK MANAGEMENT, AND I2C M AND N ASSIGNMENTS
n[2:0]
02
m[3:0]
36
OSC
XTALI
0
1
2
3
MCLKO
0
1
2
PLL0
x11
PLL
MUX MUX
PLL
BYPASS
Digital Audio
Processor
Clock
PLL[1:0]
1
0
MUX
MICROCLK_DIV
1/(M+1)
I2C_SDA
0
1
2
3
4
5
6
7
MUX
MUX
CRYSTAL
0
1
2
3
MUX
1
0
MUX
0
1
2
3
4
5
6
7
MUX
0
1
2
3
4
5
6
7
MUX
1
0
MUX
0
1
SCLKIN
SCLKOUT2 SCLKOUT1
LRCLK
Microprocessor
Clock
0xFB
0xF9
DWFMT (Data Word Format)
Word Size
32 Bit
16 Bit
18 Bit
20 Bit
24 Bit
32 Bit
IM0/OM0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
Mode
Discrete, Left Justified
Discrete, Left Justified
Discrete, Right Justified
Discrete, I2S
Discrete, 16 − Bit Packed
TDM_LJ_8
TDM_LJ_6
TDM_LJ_4
TDM_I2S_8
TDM_I2S_6
TDM_I2S_4
TDM_20Bit_6
6 Ch, Single Chip, Crystal (LJ)
6 Ch, Single Chip (LJ)
6 Ch, Single Chip, Crystal (I2S)
6 Ch, Single Chip, 20 − Bit
AB assigns TDM time slots for those TDM
outputs involving two TAS3103s. For these
output formats, one of the TAS3103 chips
must be defined as AB = 0. The other
TAS3103 chip must be defined as AB = 1.
MCLKI
IW2/OW2
0
0
0
0
1
1
1
1
IW1/OW1
0
0
1
1
0
0
1
1
IW0/OW0
0
1
0
1
0
1
0
1
AckIOMAck
ÎÎ
OW[2:0]
15
IW[2:0]
0
AB
14 13 11 10 8
7
DWFMT
815
Ackz[2:0]IMS x[2:0]ICSAck x[2:0]y[2:0]w[1:0]000AckSub-AddrAckSlave AddrS
161819212223242627282931
OM[3:0]IM[3:0]
743 0
÷2
÷4
÷16
÷32
÷8
÷2
÷4
÷16
÷32
÷8
÷2
÷4
÷2
÷4
PLL1
÷4
I2C_SCL
÷2N
I2C
Sampling
Clock
÷10
I2C
Master
SCL
I2C
Module
÷32
÷64
÷128
÷192
÷256
÷512
÷384
00000000
Ack
Sub-AddrAckSlave AddrS Ack 00000000 Ack 00000000 Ack 0xxxxxxx Ack
IM1/OM1IM2/OM2IM3/OM3
XTALO
32 Bit
32 Bit
NOTE: F9 must not be updated without first muting all three monaural channels in the TAS3103.
See Section 2.1.1 for a detailed discussion of this restriction.
Serial Audio Port (AP) Mode Code
Input and output mode selections are independent.
Input and output word sizes are
independent.
1−22
Delay Channel 1 = 2 x {D1[11:0] + 1}
S Slave Addr Ack Sub-Addr D1 and R1Ack Ack Ack Ack Ackxxxxxxx l
s
b
m
s
bxxx0000
D2 and R2
Ack Ack Ack Ack
xxxxxxx l
s
b
m
s
bxxx0000
Note: 2 x (D1 + D2 + D3) + 3 x (R1 +R2 +R3) 4076
0xFA
l
s
b
l
s
b
xxxxxxx
xxxxxxx
m
s
bxxx0000
m
s
bxxx0000
D3 and R3Ack Ack Ack Ackxxxxxxx l
s
b
m
s
bxxx0000 l
s
b
xxxxxxx m
s
bxxx0000
Delay Reverb
Delay Channel 2 = 2 x {D2[11:0] + 1}
Delay Channel 3 = 2 x {D3[11:0] + 1}
Reserved
Reverb Channel 1 = 2 x {R1[11:0] + 1}
Reserved
Reverb Channel 2 = 2 x {R2[11:0] + 1}
Reverb Channel 3 = 2 x {R3[11:0] + 1}
Delay/Reverb Assignments
NOTE: Changes in reverb and delay assignments can result in unplesasant and extended audio artifacts.
It is recommended that the TAS3103 always be muted before making reverb and delay changes.
See section 3.6.3 for a detailed discussion of this restriction.
1−23
SUB-ADDRESS(ES) PARAMETER(S)
0xFC—See Subaddress 0x00 Ending I2C Check Word
0xFD−0xFE—See Subaddress 0xBB Spectrum Analyzer/VU Meter Ouputs
0xFF—Volume Busy Flag
0xFF—Volume Busy Flag
S Slave Addr Ack Sub-Addr Ack Ack0000000x
Volume
Flag
SVolume Flag = 0 No volume commands are active.
SVolume Flag = 1 One or more volume commands are
active.
1−24
2−1
2 Hardware Architecture
Figure 2−1 depicts the hardware architecture of the chip. The architecture consists of five major blocks:
Input Serial Audio Port (SAP)
Output Serial Audio Port (SAP)
DPLL and Clock Management
Controller
Digital Audio Processor (DAP)
2−2
76-Bit Adder
Regs Regs
32 Bits
32 Bits
32 Bits
32 Bits
SDIN1
32 Bits
SDIN2
32 Bits
SDIN3
32 Bits
SDIN4
INPUT SAP
256 Bits
64 Bits
OUTPUT SAP
SDOUT
3
SDOUT
2
SDOUT
1
SCLKIN
OSC
PLL and Clock Management
ORIN
I2C_SDA GPIO0
Controller
Arithmetic
Engine
Dual Port
Data RAM Coefficient
RAM
4K x 16
Delay Line
RAM Program
ROM
DAP
Instruction Decoder/Sequencer
Digital Audio Processor
(DAP)
Arithmetic Unit
MCLKO PLL1 PLL0 SCLKOUT1 LRCLK MICROCLK_DIV SCLKOUT2
CS0 CS1I2C_SCL GPIO1 GPIO2 GPIO3
Volume
Update
2K x 8
Data
RAM
16K x 8
Program
ROM
256 x 8
Data
RAM 8-Bit
WARP
8051 Microprocessor
1/2N
Reg
1/(M+1)
I2C
Master/Slave
Controller ÷10
Master
SCL
Reg
64 Bits
MCLKI XTALI XTALO
M
U
X
÷Y
÷X
M
U
X
÷Z
M
U
X
÷2÷2
M
U
X
MCLK
PLL
(x11)
M
U
X
÷2÷2
M
U
X
÷4
M
U
X
I2CM_S
Oversample Clock
Figure 2−1. TAS3103 Detailed Hardware Block Diagram
2−3
2.1 Input and Output Serial Audio Ports (SAPs)
The TAS3103 accepts data in various serial data formats including left/right justified and I2S, 16 through 32 bits,
discrete, or TDM. Sample rates from 8 kHz through 96 kHz are supported. Each TAS3103 has four input serial ports
and three output serial ports, labeled SDIN[4:1] and SDOUT[3:1] respectively. All ports accommodate stereo data
formats, and SDIN1 and SDOUT1 also accommodate time-division multiplex (TDM) data formats. The formats are
selectable via I2C commands. All input channels are assigned the same format and all output channels are assigned
the same format; and the two formats need not be the same. The TAS3103 can accommodate system architectures
that require data format conversions without the need for additional glue logic. If a TDM format is selected for the input
port, only SDIN1 is active; the other three input channels cannot be used. If a TDM format is selected for the output
port, only SDOUT1 is active; the other two channels cannot be used.
2.1.1 SAP Configuration Options
The TAS3103 serial interface data format options for discrete (stereo) data are detailed in Figure 2−2.
Left / Right
Justified
L
RCLK
SCLK
MSB−1 LSB LSB
Left Justified
LSB
LSB+1
LSB+1
Right Justified LSB
LSB+1
Bit 31 Bit 0 Bit 31 Bit 0 Bit 31
SCLK
LSB
Bit 0 Bit 31Bit 31
MSB
Bit 0
SCLK
Bit 31 Bit 31
Bit 0 Bit 0 Bit 31
Bit 31
Bit 0
MSB
I2S
I2S
MSB−1 MSB
MSB−1 MSB MSB−1 MSB
MSB−1 MSB
LSB+1LSB LSB+1 MSB−1 MSB MSB−1 MSB
Figure 2−2. Discrete Serial Data Formats
When the TAS3103 is transmitting serial data, it uses the negative edge of SCLK to output a new data bit. The
TAS3103 samples incoming serial data on the rising edge of SCLK.
The TDM modes on the TAS3103 only provide left justified and I2S formats, and each word in the TDM data stream
adheres to the bit placement shown in Figure 2−2. Figure 2−3 illustrates the output data stream for a 4-channel TDM
mode. Two cases are illustrated; an I2S data format case (SAP output mode 1010) and a left-justified data format case
(SAP output mode 0111).
MSB−1 LSB LSB LSB LSB MSB
Left
LRCLK
Data
LRCLK
Data
Justified MSB MSB−1MSB MSB−1MSB MSB−1MSB
LSBLSBLSBLSBMSB−1MSB
I2S
Left Channel 1 Left Channel 2 Right Channel 1 Right Channel 2
Left Channel 1 Left Channel 2 Right Channel 1 Right Channel 2
MSB−1MSB MSB−1MSB MSB−1MSB
Figure 2−3. Four-Channel TDM Serial Data Formats
2−4
A 16-bit field contained in the 32-bit word located at I2C subaddress 0xF9 configures both the input and output serial
audio ports. Figure 2−4 illustrates the format of this 16-bit field. The data is shown in the transmitted I2C protocol
format, and thus, in addition to the data, the start bit S, the slave address, the subaddress, and the acknowledges
required by every byte are also shown.
0xF9 DWFMT (Data Word Format)
Ack
IOMAck
Î
OW[2:0]
15
IW[2:0]
0
AB
14 13 11 10 8
7
DWFMT
815
AckxxxxxxxxAckSub-AddrAckSlave AddrS
2431
OM[3:0]IM[3:0]
743 0
xxxxxxxxAck
1623
Output
Port
Format
Input
Port
Format
Output Port
TDM Alignment
Input Port
Word
Size
Output Port
Word
Size
Figure 2−4. SAP Configuration Subaddress Fields
Commands to reconfigure the SAP cannot be issued as standalone commands, but must accompany mute and
unmute commands. The reason for this is that an SAP configuration change while a volume or bass or treble update
is taking place can cause the update to not properly be completed. Figure 2−5 shows the recommended procedure
for issuing SAP configuration update commands.
After a reset, ensure that 0xF9 is written before volume, treble, or bass.
2−5
Enter
Issue Mute Command
Vol
Busy
Yes
No
Vol
Busy
Yes
No
Issue SAP Configuration
Change Command
Issue Un-Mute Command
Vol
Busy
Yes
No
Exit
Mute Command = 0x00000007 at subaddress x0F0
Un-mute command = 0x00000000 at subaddress 0xF0
SAP configuration subaddress = 0x59
Volume busy flag = LSB of subaddress 0xFF. Logic 1 = busy
Figure 2−5. Recommended Procedure for Issuing SAP Configuration Updates
Figure 2−6, Figure 2−7, and Figure 2−8 tabularize the formatting and word size options available for the input SAP
and output SAP. In these figures, data formats are paired when the only dif ference between the pair is whether the
word placement within the LRCLK period is left justified or I2S. The TDM formats available include single chip TDM
output formats (SDOUT1chipA or SDOUT1chipB) and two chip TDM output formats (SDOUT1chipA OR’ed with
SDOUT1chipB). For two chip TDM output formats, the OR’ing operation is accomplished by routing SDOUT1 from
one of the two TAS3103 chips to ORIN of the other TAS3103 chip. The AB bit also comes into play for two chip TDM
formats; AB must be set to 1 on one of the two TAS3103 chips and set to 0 on the other TAS3103 chip. For a given
connection of SDOUT1 to ORIN, it does not matter which TAS3103 is set up as chip AB = 1 and which chip is set
up as chip AB = 0. However, the routing of the processed data to the output registers in the TAS3103 is dependent
on which chip is chip AB = 0 and which chip is chip AB = 1. Figure 2−10 and Figure 2−11 illustrate this dependence.
2−6
In Figure 2−10 and Figure 2−11, the paired TDM output formats 0101 and 1000 are unique in that each format, in
effect, services two distinct industry formats. For these two modes, if register Y in chip AB = 1 is set to zero (by
appropriate output mixer coefficient settings), the resulting format is a standard 8 CH TDM format. This option is
illustrated in Figure 2−7.
2−7
INPUT
IM[3:0]
FORMAT
WORDSIZE
DATA DISTRIBUTION: A, B, C, D, E, F, G, H = INPUT MIXER INPUTS
INPUT
TYPE
IM[3:0]
FORMAT
WORDSIZE
SDIN1 SDIN2 SDIN3
000X(1) Left justified All options valid LR
LR
LR
0010 Right justified All options valid
LR
AB
LR LR
DISCRETE
0011 I2SAll options valid except 32 bit AB
32 32 CD
32 32
EF
32 32
DISCRETE
0100 16-bit packed IW[2:0] = 001
LR
AB
16 16
Not available Not available
0101 8 CH transfer, left
justified All options valid LR Not available Not available
1000 8 CH transfer, I2SAll options valid except 32 bit GECAHFDB
32 32 32 32 32 32 32 32 Not available Not available
0110/1101
(2)(3) 6 CH, left justified All options valid LR Not available Not available
1001(3) 6 CH, I2SAll options valid except 32 bit ECA
32 32 32
FDB
32 32 32 Not available Not available
TIME
DIVISION
0111 4 CH, left justified All options valid LR Not available Not available
DIVISION
MULTIPLEX
(TDM) 1010 4 CH, I2SAll options valid except 32 bit CA
32 32
DB
32 32 Not available Not available
1011/1111(4) 6 CH, 20 bit IW[2:0] = 011
LR
ECA
20 20 20 4
FDB
20 20 20 4
Not available Not available
1100 6 CH data, 8 CH
transfer, left justified All options valid LR Not available Not available
1110 6 CH data, 8 CH
transfer, I2SAll options valid except 32 bit ECA FDB
32 32 32 32 32 32 32 32 Not available Not available
NOTES: 1. Left justified, stereo is the default input format.
2. IM[3:0] modes 0110 and 1101 are identical for the input SAP. OM[3:0] modes 0110 and 1101 do produce different results in the output SAP (see Figure 2−7).
3. If a 6 CH input format is selected, the output format must also be set to 6 CH. When in a 6 CH mode, data format selections—I2S and left justified—for the 6 Ch input
SAP can be made independent of the data format selections—I2S and left justified—made for the 6 CH output SAP.
4. IM[3:0] modes 1011 and 1111 are identical for the input SAP. OM[3:0] modes 1011 and 1111 do produce different results in the output SAP (see Figure 2−7).
Figure 2−6. Format Options: Input Serial Audio Port
2−8
OUTPUT
OM[3:0]
FORMAT
WORDSIZE
DATA DISTRIBUTION: U, V, W, X, Y, Z = OUTPUT MIXER OUTPUTS
OUTPUT
TYPE
OM[3:0]
FORMAT
WORDSIZE
SDOUT1 SDOUT2 SDOUT3
0101 8 CH, 2 chip, left
justified All options valid LR
UAB = 0 V W X
Not available Not available
1000 8 CH, 2 chip, I2SAll options valid except 32 bit
UAB = 0 V W X
32 32 32 32 32 32 32 32
AB = 1 U V W Y X
32 32 32 32 32 32 32 32
Not available Not available
0110(1) 6 CH, 2 chip, left
justified All options valid LR
UAB = 0 V W
Not available Not available
1001(1) 6 CH, 2 chip, I2SAll options valid except 32 bit
UAB = 0 V W
32 32 32 32 32 32
AB = 1 U WY
32 32 32 32 3232
Not available Not available
0111 4 CH, left justified All options valid LR Not available Not available
TIME
1010 4 CH, I2SAll options valid except 32 bit UV
32 32
WX
32 32 Not available Not available
TIME
DIVISION
MULTIPLEX
(TDM) 1011 6 CH, 2 chip,
20 bit OW[2:0] = 011
LR
UV
20 20 20 4
W
20 20 20 4
AB = 0
AB = 1 U
20 20 20 4
VW
20 20 20 4
Not available Not available
1100 6 CH data,
8 CH transfer,
left justified All options valid LR
Not available Not available
1110 6 CH data,
8 CH transfer,
I2SAll options valid except 32 bit UAB = 0 W X Z
32 32 32 32 32 32 32 32
V Y Not available Not available
1101(1) 6 CH,
left justified All options valid
LR
UVW
32 32 32
XYZ
32 32 32
Not available Not available
1111 6 CH, 20 bit OW[2:0] = 011
LR
UVW
20 20 20 4
XYZ
20 20 20 4
Not available Not available
NOTE 1: If a 6 CH output format is selected, the input format must also be set to 6 CH. When in a 6 CH mode, data format selections—I2S and left justified—for the output SAP can
be made independent of the data format selections—I2S and left justified—can be made for the input SAP.
Figure 2−7. TDM Format Options: Output Serial Audio Port
2−9
OUTPUT
OM[3:0]
FORMAT
WORDSIZE
DATA DISTRIBUTION: U, V, W, X, Y, Z = OUTPUT MIXER OUTPUTS
OUTPUT
TYPE
OM[3:0]
FORMAT
WORDSIZE
SDOUT1 SDOUT2 SDOUT3
000X(1) Left justified All options valid LR LR LR
0010 Right justified All options valid
LR
UV
LR
WX
LR
YZ
DISCRETE
0011 I2SAll options valid except 32 bit UV
32 32
WX
32 32
YZ
32 32
DISCRETE
0100 16-bit packed OW[2:0] = 001
LR
UV
16 16
Not available Not available
NOTE 1: Left justified, stereo is the default input format.
Figure 2−8. Discrete Format Options: Output Serial Audio Port
SAMPLE
SIZE
INPUT IW[2:0] OUTPUT OW[2:0]
SAMPLE
SIZE IW2 IW1 IW0 OW2 OW1 OW0
(32) 0 0 0 0 0 0
DEFAULT 16 Bit 0 0 1 0 0 1
18 Bit 0 1 0 0 1 0
20 Bit 0 1 1 0 1 1
24 Bit 1 0 0 1 0 0
32 Bit 1 0 1 1 0 1
(32) 1 1 0 1 1 0
(32) 1 1 1 1 1 1
(32) Reserved for future family members. Selection of 000, 110, or 111 in the
TAS3103 selects a 32-bit sample size.
Figure 2−9. Word Size Settings
2−10
U1
ORIN
TAS3103
SDOUT1
U2
ORIN
TAS3103
SDOUT1
(AB = ’1’)
(AB = ’0’)
LR
UU2
LRCLK
SDOUT1U1
32 32 32 32 32 32 32 32
LR
U
LRCLK
U2 V W X
32 32 32 32 32 32 32 32
U1 U V W 0 X
32 32 32 32 32 32 32 32
UU1 VU2 WU2 XU2
VU1 WU1 XU1
Figure 2−10. 8 CH TDM Format Using SAP Modes 0101 and 1000
U1
ORIN
TAS3103
SDOUT1
U2
ORIN
TAS3103
SDOUT1
(AB = 0)
(AB = 1)
LR
UU1
LRCLK
SDOUT1U1
32 32 32 32 32 32 32 32
LR
U
LRCLK
U1 V W 0
32 32 32 32 32 32 32 32
U2 U 0 W Y 0
32 32 32 32 32 32 32 32
UU2 VU1 WU1 YU2
WU2
Figure 2−11. 6 CH Data, 8 CH Transfer TDM Format Using SAP Modes 0101 and 1000
For these same two modes, if register X in chip AB = 0 is set to zero, and registers V and X in chip AB = 1 are set
to zero, the resulting format is a 6 CH data, 8 CH transfer format. This option is shown in Figure 2−11.
The data output format in Figure 2−11 is identical to that realized using data output formats 1100 and 1110 in
Figure 2−7. The dif ference is that SAP modes 1010 and 1000 provide six independent monaural channels to process
the data, whereas SAP modes 1100 and 1110 provide only three independent monaural channels to process the data.
2.1.2 Processing Flow—SAP Input to SAP Output
All SAP data format options other than I2S result in a two-sample delay from input to output, as illustrated in
Figure 2−12. Figure 2−12 is also relevant if I2S formatting is used for both the input SAP and the output SAP (the
polarity of LRCLK in Figure 2−12 has to be inverted in this case). However, if I 2S format conversions are performed
between input and output, the delay becomes either 1.5 samples or 2.5 samples, depending on the processing clock
frequency selected for the digital audio processor (DAP) relative to the sample rate of the incoming data. The input
to output delay for an I2S input format and a non-I2S output format is illustrated in Figure 2−13(a), and Figure 2−13(b)
illustrates the delay for a non-I2S input format and an I2S output format. In each case, two distinct input to output delay
times are shown: a 1.5 sample delay time if the processing time in the DAP is less than half the sample period, and
a 2.5 sample delay time if the processing time in the DAP is greater than half the sample period.
The departure from the two-sample input to output processing delay when I2S format conversions are performed is
due to the use of a common LRCLK. The I2S format uses the falling edge of LRCLK to begin a sample period, whereas
all other formats use the rising edge of LRCLK to begin a sample period. This means that the input SAP and digital
audio processor (DAP) operate on sample windows that are 180° out of phase with respect to the sample window
used by the output SAP. This phase difference results in the output SAP outputting a new data sample at the midpoint
of the sample period used by the DAP to process the data. If the processing cycle completes all processing tasks
before the midpoint of the processing sample period, the output SAP outputs this processed data. However, if the
processing time extends past the midpoint of the processing sample period, the output SAP outputs the data
processed during the previous processing sample period. In the former case, the delay from input to output is 1.5
samples. In the latter case, the delay from input to output is 2.5 samples.
2−11
SDIN1
SDOUT1
Sample Time N Sample Time N + 1 Sample Time N + 2
1st Half − Sample Time N
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel 1
U
V
B
SDIN2
SDOUT2
C
Channel 2
W
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
G
H
SDIN1
SDOUT1
Sample Time N Sample Time N + 1 Sample Time N + 2
2nd Half − Sample Time N
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel 1
U
V
B
SDIN2
SDOUT2
C
Channel 2
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
SDIN4 G
H
SDIN1
SDOUT1
Sample Time N Sample Time N + 1 Sample Time N + 2
Sample Time N + 1
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel 1
U
V
B
SDIN2
SDOUT2
C
Channel 2
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
G
H
SDIN1
SDOUT1
Sample Time N Sample Time N + 1 Sample Time N + 2
Sample Time N + 2
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel 1
U
V
B
SDIN2
SDOUT2
C
Channel 2
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
G
H
W
WW
SDIN4
SDIN4 SDIN4
Figure 2−12. SAP Input-to-Output Latency
2−12
L2
LRCLK
R2 L3 R3 L4 R4
L1, R1 L2, R2 L3, R3
L0 R0 L1 R1 L2
L1, R1 L2, R2 L3, R3
R0 L1 R1 L2 R2 L3
SDIN
Processing Cycle
Load Output Holding Registers
Holding Register Output Serial Registers
SDOUT
2.5
Cycle
Delay
1.5
Cycle
Delay
Processing Cycle
Load Output Holding Registers
Holding Register Output Serial Registers
SDOUT
(a) Left-Justified Input / I2S Output
L2
LRCLK
R2 L3 R3 L4 R4
L1, R1 L2, R2 L3, R3
L0 R0 L1 R1 L2
L1, R1 L2, R2 L3, R3
R0 L1 R1 L2 R2 L3
SDIN
Processing Cycle
Load Output Holding Registers
Holding Register Output Serial Registers
SDOUT
2.5
Cycle
Delay
1.5
Cycle
Delay
Processing Cycle
Load Output Holding Registers
Holding Register Output Serial Registers
SDOUT
(b) I2S Input / Left-Justified Output
Figure 2−13. SAP Input-to-Output Latency for I2S Format Conversions
The delay from input to output can thus be either 1.5 or 2.5 sample times when data format conversions are performed
that involves the I2S format. However, which delay time is obtained for a particular application is determinable and
fixed for that application, providing care is taken in the selection of MCLKI/XTALI with respect to the incoming sample
clock LRCLK.
2−13
Table 2−1 lists all viable clock selections for a given audio sample rate (LRCLK). The table only includes those clock
choices that allow enough processing throughput to accomplish all tasks within a given sample time (Ts = 1/LRCLK).
For each entry in the table, the DAP processing time is given in terms of whether the time is greater than 0.5 Ts
(resulting in an input to output delay of 2.5 Ts ), or less than 0.5 Ts (resulting in an input to output delay of 1.5 Ts ).
Table 2−1 is valid for both master and slave I2S modes (bit IMS at subaddress 0xF9 determines I2S master/slave
selection—see the DPLL and Clock Management section that follows). For all applications, MCLK must be 128
LRCLK (FS). In the I2S master mode, MCLK, SCLK (I2S bit clock) LRCLK are all harmonically related. Furthermore,
in the I2S master mode, if a master clock value given in Table 2−1 is used, the latency realized in performing I2S format
conversions, 1.5 samples or 2.5 samples, is stable and fixed over the duration of operation. However, greater care
must be taken for the I2S slave mode. In this mode, the device has the proper operational throughput to perform all
required computations as long as MCLK is 128 LRCLK. But there is no longer the requirement that MCLK be
harmonically related to SCLK and LRCLK. Values of MCLK could be chosen such that the output dithers between
latencies of 1.5 and 2.5 sample times. There may be cases where part of the data stream output exhibits sample time
latencies o f 1.5 Ts and the other portion of the output data stream exhibits sample time latencies of 2.5 Ts . To assure
that such cases do not happen in the I2S slave mode, the relationships between MCLK and LRCLK given in Table 2−1
should be followed for data format conversions involving the I2S format. The MCLKI/XTALI frequencies given in
Table 2−1 (if set to within ±5% of the nominal value shown) assure that the DAP processing time falls above 0.5 Ts
or below 0.5 Ts with enough margin to assure that there is no race condition between the outputting of data and the
completion of the processing tasks.
Table 2−1. TAS3103 Throughput Latencies vs MCLK and LRCLK
AUDIO
SAMPLE RATE
(LRCLK)
MASTER CLOCK(2)
(MCLKI/XTALI) DAP(1) CLOCK
(PLL_OUTPUT)
DAP CLOCK
CYCLES/LRC
LK
DAP
PROCESSING
TIME
THROUGHPU
T DELAY
96 kHz 24.576 MHz, 12.288 MHz 135.168 MHz 1408 > Ts/2 2.5 Ts
88.2 kHz 22.5792 MHz, 11.2896 MHz 124.1856 MHz 1408 > Ts/2 2.5 Ts
48 kHz
24.576 MHz, 12.288 MHz 135.168 MHz 2816 < Ts/2 1.5 Ts
48 kHz 24.576 MHz, 12.288 MHz, 6.144 MHz 67.584 MHz 1408 > Ts/2 2.5 Ts
44.1 kHz
22.5792 MHz, 11.2896 MHz 124.1856 MHz 2816 < Ts/2 1.5 Ts
44.1 kHz 22.5792 MHz, 11.2896 MHz, 5.6448 MHz 62.0928 MHz 1408 > Ts/2 2.5 Ts
32 kHz
16.384 MHz, 8.192 MHz 90.112 MHz 2816 < Ts/2 1.5 Ts
32 kHz 16.384 MHz, 8.192 MHz, 4.096 MHz 45.056 MHz 1408 > Ts/2 2.5 Ts
24.576 MHz, 12.2858 MHz 135.168 MHz 5632 < Ts/2 1.5 Ts
24 kHz 24.576 MHz, 12.2858 MHz, 6.144 MHz 67.584 MHz 2816 < Ts/2 1.5 Ts
24 kHz
12.288 MHz, 6.144 MHz, 3.072 MHz 33.792 MHz 1408 > Ts/2 2.5 Ts
22.5792 MHz, 11.2896 MHz 124.1856 MHz 5632 < Ts/2 1.5 Ts
22.05 kHz 22.5792 MHz, 11.2896 MHz, 5.6448 MHz 62.0928 MHz 2816 < Ts/2 1.5 Ts
22.05 kHz
11.2896 MHz, 5.6448 MHz, 2.8224 MHz 31.0464 MHz 1408 > Ts/2 2.5 Ts
24.576 MHz, 12.288 MHz 135.168 MHz 16896 < Ts/2 1.5 Ts
8 kHz
24.576 MHz, 12.288 MHz, 6.144 MHz 67.584 MHz 8448 < Ts/2 1.5 Ts
8 kHz 12.288 MHz, 6.144 MHz, 3.072 MHz 33.792 MHz 4224 < Ts/2 1.5 Ts
6.144 MHz, 3.072 MHz, 1.536 MHz 16.896 MHz 2112 > Ts/2 2.5 Ts
NOTES: 1. DAP clock is the internal digital audio processor clock. It is equal to 11 × MCLK1/XTALI, 11/2 × MCLKI/XTALI, or 11/4 × MCLKI/XTALI
(as determined by a bit field in I2C subaddress 0xF9). The DAP clock must always be greater than or equal to 1400 FS (LRCLK).
2. Unless in PLL bypass, MCLKI must be 20 MHz.
3. XTALI must always be 20 MHz.
2−14
2.2 DPLL and Clock Management
Clock management for the TAS3103 consists of two control structures:
Master clock management: oversees the selection of the clock frequencies for the microprocessor, the I2C
controller, and the digital audio processor (DAP). The master clock (MCLKI or XTALI) serves as the source
for these clocks. In most applications, the master clock is input to an on-chip digital phase lock loop (DPLL),
and the DPLL output is used to drive the microprocessor and DAP clocks. A DPLL bypass mode can also
be used, in which case the master clock is used to drive the microprocessor and DAP clocks.
Serial audio port (SAP) clock management: oversees SAP master/slave mode, the settings of SCLKOUT1
and SCLKOUT2, and the setting of LRCLK in the SAP master mode.
Figure 2−14 illustrates the clock circuitry in the TAS3103. The bold lines in Figure 2−14 highlight the default settings
at power turn on, or after a reset. Inputs MCLKI and XTALI source the master clock for the TAS3103. Within the
TAS3103, these two inputs are combined by an OR gate, and thus only one of these two sources can be active at
any one time. The source that is not active must be set to logic 0. In normal operation, the master clock is divided
by 1, 2, or 4 (as determined by the logic levels set at input pins PLL0 and PLL1) and then multiplied by 11 in frequency
by the on-chip DPLL. The DPLL output (or MCLKI/XTALI if the DPLL is bypassed) is the processing clock used by
the digital audio processor (DAP).
The DAP processing clock can also serve as the clock for the on-chip microprocessor, or the DAP clock can be divided
by four prior to sending it to the microprocessor. The input pin MICROCLK_DIV makes this clock choice. A logic 1
input level on this pin selects the DAP clock for the microprocessor clock; a logic 0 input level on this pin selects the
DAP clock/four for the microprocessor clock.
The selected microprocessor clock is also used to drive the clocks used by the I2C control block. Two parameters,
N and M, define the clocks used by the I2C control block. The I2C control block sampling frequency is set by 1/2N,
where N can range in value from 0 to 7. A 1/(1 + M) divisor followed by a 1/10 divisor generates the data bit clock
(SCL). This drived SCL clock is only used when the I2C control block is set to master mode (input pin I2CM_S = 1).
The default value for the I2C parameter N depends on whether the I2C controller is in a slave mode (I2CM_S = 0)
or a master mode (I2CM_S = 1). In the I2C master mode N = 2 (2N = 4), which assures that a 100-kHz I2C data clock
(SCL) can be generated when the digital audio processor (DAP) is running at its maximum frequency of 135 MHz.
In the I2C slave mode N = 1 (2N = 2), which assures the I2C controller an adequate over-sampling clock when the
DAP is running at the minimum clock frequency required to process 8-kHz audio data (approximately 11.2 MHz). In
I2C master mode, the values for M and N are fixed and cannot be changed.
2−15
SCLKIN
OSC
PLL and Clock Management
I2C_SDA
Digital Audio Processor
(DAP)
MCLKO PLL1 PLL0 SCLKOUT1 LRCLK MICROCLK_DIV SCLKOUT2
I2C_SCL
8-Bit
WARP
8051 Microprocessor
1/2N
1/(M+1)
I2C
Master/Slave
Controller ÷10
Master
SCL
MCLKI XTALI XTALO
M
U
X
÷Y = 64DEFAULT
M
U
X
M
U
X
÷2÷2
M
U
X
MCLK
PLL
(x11)
M
U
X
÷2÷2
M
U
X
÷4
M
U
X
Input
SAP
Microprocessor
and
I2C Bus Controller
Output
SAP
N = 1 (I2C Slave Default)
= 2 (I2C Master Default)
I2CM_S
÷ X = 1DEFAULT
÷ Z = 2DEFAULT
Oversample Clock
Figure 2−14. DPLL and Clock Management Block Diagram
When the SAP is in the master mode, the serial audio port (SAP) uses the MCLKI/XTALI master clock to drive the
serial port clocks SCLKOUT1, SLCKOUT2, and LRCLK. When the SAP is in the slave mode, LRCLK is an input and
SCLKOUT2 and SCLKOUT1 are derived from SCLKIN. As shown in Figure 2−14, SCLKOUT1 clocks data into the
input SAP and SCLKOUT2 clocks data from the output SAP. Two distinct clocks are required to support TDM to
discrete and discrete to TDM data format conversions. Such format conversions also require that SCLKIN be the
higher valued bit clock frequency. For TDM in/discrete out format conversions, SCLKIN must be equal to the input
bit clock. For discrete in/TDM out format conversions, SCLKIN must be equal to the output bit clock. The frequency
settings for SCLKOUT1, SCLKOUT2, and LRCLK in the SAP master mode, as well as the SAP master/slave mode
selection, are all controlled by I2C commands.
Table 2−2 lists the default settings at power turn on or after a received reset.
2−16
Table 2−2. TAS3103 Clock Default Settings
CLOCK DEFAULT SETTING
SCLKOUT1 SCLKIN
SCLKOUT2 SCLKIN
LRCLK Input
MCLKO MCLKI or XTALI
DAP processing clock Set by pins PLL0 and PLL1
Microprocessor clock Set by pin MICROCLK_DIV
I2C sampling clock I2C master mode
Microprocessor clock/4
I2C slave mode
Microprocessor clock/2
I2C master SCL I2C sampling clock/90
The selections provided by the dedicated TAS3103 input pins and the programmable settings provided by I2C
subaddress commands give the TAS3103 a wealth of clocking options. Table 2−1, in the section describing the serial
audio port (SAP), lists typical clocking selections for different audio sampling rates. However, the following clocking
restrictions must be adhered to:
MCLKI or XTALI 128 FS (NOTE: For some TDM modes, MCLKI or XTALI must be 256 FS)
DAP clock 1400 x FS
DAP clock < 136 MHz
Microprocessor clock/20 I2C SCL clock
Microprocessor clock 35 MHz
I2C oversample clock/10 I2C SCL clock
XTALI 12.288 MHz
MCLKI 25 MHz, unless PLL is bypassed
As long as these restrictions are met, all other clocking options are allowed.
2.3 Controller
The controller serves as the interface between the digital audio processor (DAP), the asynchronous I2C bus interface,
and the four general-purpose I/O (GPIO) pins. Included in the controller block is an industry-standard 8051
microprocessor and an I2C master/slave bus controller.
2.3.1 8051 Microprocessor
The 8051 microprocessor receives and distributes I2C write data, retrieves and outputs to the I2C bus controller the
required I2C read data, and participates in most processing tasks requiring multiframe processing cycles. The
microprocessor also controls the flow of data into and out of the GPIO pins, which includes volume control when in
the I2C master mode The microprocessor has its own data RAM for storing intermediate values and queuing I2C
commands, and a fixed program ROM. The microprocessor’s program cannot be altered.
2.3.2 I2C Bus Controller
The TAS3103 has a bidirectional, two-wire, I2C-compatible interface. Both 100K-bps and 400K-bps data transfer
rates are supported, and the TAS3103 controller can serve as either a master I2C device or a slave I2C device.
Master/slave operation is defined by the logic level input into pin I2CM_S (logic 1 = master mode, logic 0 = slave
mode).
If this input level is changed, the TAS3103 must be reset.
2−17
In the I2C master mode, data rate transfer is fixed at 100 kHz, assuming MCLKI or X TALI = 12.288 MHz, PLL0 = PLL1
= 0, and MICROCLK_DIV = 0. In the I2C slave mode, data rate transfer is determined by the master device. However,
the setting of I2C parameter N at subaddress 0xFB (see the PLL and Clock Management section) does play a role
in setting the data transfer rate. In the I2C slave mode, bit rates other than (and including) the I2C-specific 100K-bps
and 400K-bps bit rates can be obtained, but N must always be set so that the over-sample clock into the I2C
master/slave controller is at least a factor of 10 higher in frequency than SCL.
The I2C communication protocol for the I2C slave mode is shown in Figure 2−15.
I2C_SDA
I2C_SCL
C
S
1
S
Start
(By Master)
Slave Address
(By Master)
01 1 0 1 C
S
0
Read or Write
(By Master)
R
/
W
A
C
K
M
S
B
Acknowledge
(By TAS3103)
L
S
B
Data Byte
(By Transmitter)
A
C
K
Acknowledge
(By Receiver)
M
S
B
L
S
B
Data Byte
(By Transmitter)
A
C
K
Acknowledge
(By Receiver)
S
Stop
(By Master)
MSB MSB−1 MSB−2 LSB
Start Condition
I2C_SDA While I2C_SCL = 1 Stop Condition
I2C_SDA While I2C_SCL = 1
Bits CS1 and CS0 in the TAS3103 slave address are compared to the logic levels on pins CS0 and CS1 for address verification. This provides
the ability to address up to four TAS3103 chips on the same I2C bus.
Figure 2−15. I2C Slave Mode Communication Protocol
In the slave mode, the I2C bus is used to:
Update coefficient values and output data to those GPIO ports configured as output.
Read status flags, input data from those GPIO ports configured as inputs and retrieve spectrum
analyzer/VU meter data.
In the master mode, the I2C bus is used to download a user-specific configuration from an I2C compatible EEPROM.
In the slave mode only, specific registers and memory locations in the TAS3103 are accessible with the use of I2C
subaddresses. There are 256 such I2C subaddresses. The protocol required to access a specific subaddress is
presented in Figure 2−16.
As shown in Figure 2−16, a read transaction requires that the master device first issue a write transaction to give the
TAS3103 the subaddress to be used in the read transaction that follows. This subaddress assignment write
transaction is then followed by the read transaction. For write transactions, the subaddress is supplied in the first byte
of data written, and this byte is followed by the data to be written. For write transactions, the subaddress must always
be included in the data written. There cannot be a separate write transaction to supply the subaddress, as was
required for read transactions. If a subaddress assignment only write transaction is followed by a second write
transaction supplying the data, erroneous behavior results. The first byte in the second write transaction is interpreted
by the TAS3103 as another subaddress replacing the one previously written.
2−18
S
Start
(By Master)
TAS3103
Address
Acknowledge
(By TAS3103)
7-Bit Slave
Address
(By Master)
W
Write
(By Master)
ACK Subaddress
TAS3103
Subaddress
(By Master)
Acknowledge
(By TAS3103)
ACK S
Stop
(By Master)
S
Start
(By Master)
TAS3103
Address
Acknowledge
(By TAS3103)
7-Bit Slave
Address
(By Master)
R
Read
(By Master)
ACK Data
Data
(By TAS3103)
ACK Data
Data
(By TAS3103)
Acknowledge
(By Master)
ACK
Acknowledge
(By Master)
S
Stop
(By Master
)
NAK
No Acknowledge
(By Master)
S
Start
(By Master)
TAS3103
Address
Acknowledge
(By TAS3103)
7-Bit Slave
Address
(By Master)
W
Write
(By Master)
ACK Data
Data
(By Master)
ACK Data
Data
(By Master)
ACK S
Stop
(By Master)
ACKSubaddress
TAS3103
Subaddress
(By Master)
Acknowledge
(By TAS3103)
ACK
Acknowledge
(By TAS3103) Acknowledge
(By TAS3103) Acknowledge
(By TAS3103)
I2C Write Transaction
I2C Read Transaction
Figure 2−16. I2C Subaddress Access Protocol
2.3.2.1 I2C Master Mode Operation
The TAS3103 uses the master mode to download an operational configuration. The configuration downloaded must
contain data for all 256 subaddresses, with spacer data supplied for those subaddresses that are GPIO
subaddresses, read-only subaddresses, factory-test subaddresses, or unused (reserved) subaddresses. The spacer
data must always be assigned the value zero. Table 2−3 organizes the 256 subaddresses (and their corresponding
EEPROM addresses) into sequential blocks, with each block containing either valid data or spacer data.
Table 2−3 also illustrates that the subaddresses and their corresponding EEPROM memory addresses do not directly
correlate. This is because many subaddresses are assigned more than one 32-bit word. For example, there is a
unique subaddress for each biquad filter in the TAS3103, but each subaddress is assigned five 32-bit
coefficients—resulting in 20 bytes of memory being assigned to each biquad subaddress.
The TAS3103, in the I2C master mode, can execute a complete download without requiring any wait states. After the
TAS3103 has downloaded all 2367 bytes of coefficient and spacer data, the I2C bus is disabled and cannot be used
to update coefficient values or retrieve status or spectrum/VU meter data. Volume control is available in the master
mode via the four GPIO pins.
In I2C master mode, the watchdog timer must not be enabled.
When programming the EEPROM, make sure that the starting I2C check word (subaddres 0x00) and ending I2C
check word (subaddress 0xFC) are identical.
2−19
Table 2−3. I2C EEPROM Data
DATA TYPE EEPROM BYTE
ADDRESSES SUBADDRESS(es)
Starting I2C check word—must match ending check word 0x000−0x003 0x00
Input mixers—set 1 0x004−0x0CF 0x01−0x33
Effects block biquads 0x0D0−0x2AF 0x34−0x4B
Reverb block mixers 0x2B0−0x2C7 0x4C−0x4E
CH1 biquads 0x2C8−0x3B7 0x4F−0x5A
CH2 biquads 0x3B8−0x4A7 0x5B−0x66
CH3 biquads 0x4A8−0x597 0x67−0x72
Bass and treble inline/bypass mixers 0x590−0x5AF 0x73−0x75
DRC mixers 0x5B0−0x5DF 0x76−0x7E
Dither input mixers 0x5E0−0x5EB 0x7F−0x81
Valid data CH3 (sub-woofer) to CH 1/2 (L/R) mixers 0x5EC−0x5F3 0x82−0x83
Valid data
Spectrum analyzer/VU meter mixers 0x5F4−0x60B 0x84−0x89
Output mixers 0x60C−0x66B 0x8A−0xA1
CH1 loudness parameters 0x66C−0x697 0xA2−0xA6
CH2 loudness parameters 0x698−0x6C3 0xA7−0xAB
CH3 loudness parameters 0x6C4−0x6EF 0xAC−0xB0
CH 1/2 DRC parameters 0x6F0−0x733 0xB1−0xB5
CH3 DRC parameters 0x734−0x777 0xB6−0xBA
Spectrum analyzer parameters 0x778−0x847 0xBB−0xC5
Dither output mixers 0x848−0x84F 0xC6
Dither speed 0x850−0x853 0xC7
Factory Test Data (EEPROM Spacer Data) − Zeros 0x854−0x85F 0xC8−0xC9
Valid data Input mixers—set 2 0x860−0x87F 0xCA−0xD1
Spacer Data 0x880−0x8E3 0xD2−0xEA
Valid data Watchdog timer enable—must be disabled = 00 00 00 01 0x8E4−0x8E7 0xEB
Factory Test Data (EEPROM Spacer Data) − Zeros 0x8E8−0x8EF 0xEC−0xED
GPIO port parameters 0x8F0−0x8F7 0xEE−0xEF
Volume parameters 0x8F8−0x90B 0xF0−0xF4
Bass/treble filter selections 0x90C−0x91R 0xF5−0xF8
Valid data I2S command word 0x91C−0x91F 0xF9
Valid data
Delay/reverb settings 0x920−0x92B 0xFA
I2C M and N 0x92C−0x92F 0xFB
Ending I2C check word—must match starting check word 0x930−0x933 0xFC
Read Only Data (EEPROM Spacer Data) 0x934−0x941 0xFD−0xFF
NOTE: EEPROM organization must be big Endian−MS byte of data word allocated to the lowest address in memory.
The I2C master mode also utilizes the starting and ending I2C check words to verify a proper EEPROM download.
The first 32-bit data word received from the EEPROM, the starting I2C check word at subaddress 0x00, is stored and
compared against the 32-bit data word received for subaddress 0xFC, the ending I2C check word. These two data
words must be equal as stored in the EEPROM. If the two words do not match when compared in the TAS3103, the
TAS3103 conducts another parameter download from the EEPROM. If the comparison check again fails, the
TAS3103 discards all downloaded parameters and set all parameters to the default values listed in the subaddress
table presented in the Appendix. In the I2C slave mode, these default values are used to initialize the TAS3103 at
power turnon or after a reset.
2−20
2.3.2.2 I2C Slave Mode Operation
The I2C slave mode is the mode that must be used if it is required to change configuration parameters (other than
volume via the GPIO pins for the I2C master mode) during operation. The I2C slave mode is also the only I2C mode
that provides access to the spectrum analyzer and VU meter outputs. Configuration downloads from a master device
can be used to replace the I2C master mode EEPROM download.
For I2C read commands, the TAS3103 responds with data, a byte at a time, starting at the subaddress assigned, as
long as the master device continues to respond with acknowledges. If a given subaddress does not use all 32 bits,
the unused bits are read as logic 0. I2C write commands, however, are treated in accordance with the data assignment
for that address space. If a write command is received for a biquad subaddress, the TAS3103 expects to see five
32-bit words. If fewer than five data words have been received when a stop command (or another start command)
is received, the data received is discarded. If a write command is received for a mixer coefficient, the TAS3103
expects to see only one 32-bit word.
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The TAS3103 also
supports sequential I2C addressing. For write transactions, if a subaddress is issued followed by data for that
subaddress and the fifteen subaddresses that follow, a sequential I2C write transaction has taken place, and the data
for all 16 subaddresses is successfully received by the TAS3103. For I2C sequential write transactions, the
subaddress then serves as the start address and the amount of data subsequently transmitted, before a stop or start
is transmitted, determines how many subaddresses are written to. As was true for random addressing, sequential
addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last
subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; just the
incomplete data is discarded.
The GPIO subaddresses and most reserved read-only and factory test subaddresses require the downloading of four
bytes of zero-valued spacer data in order to proceed to the next subaddress. However, there are five exceptions to
this rule and Table 2−4 lists the subaddresses of these fexceptions and the number of zero-valued bytes that must
be written.
Table 2−4. Four Byte Write Exceptions—Reserved and Factory-Test I2C Subaddresses
SUB-ADDRESS NUMBER OF ZERO-VALUED BYTES
THAT MUST BE WRITTEN
0xC9 8
0xED 8
0xFD 10 (0xA)
0xFE 2
0xFF 1
The TAS3103 can always receive sequential I2C addressing write data without issuing wait states. If it is desired to
download data to all subaddresses using one sequential write transaction, spacer data for the reserved, GPIO,
read-only, and factory-test subaddresses must be supplied as per Table 2−3 and Table 2−4.
The TAS3103 also supports sequential read transactions. When an I2C subaddress assignment write transaction is
followed by a read transaction, the TAS3103 outputs the data for that subaddress, and then continue to output data
for the subaddresses that follow as long as the master continues to issue data received acknowledges. Except for
two exceptions, the TAS3103 outputs four bytes of zero-valued data for reserved and factory-test subaddresses. T h e
subaddresses of the exceptions and the number of bytes supplied by the TAS3103 for each exception are given in
Table 2−5. If a GPIO port is assigned as an output port, a logic 0 bit value is supplied by the TAS3103 for this GPIO
port in response to a read transaction at subaddress 0xEE.
CAUTION: Sequential write transactions must be in ascending subaddress order. The
TAS3103 does not wrap around from subaddress 0xFF to 0x00.
Sequential read transactions wrap around from subaddress 0xFF to 0x00.
2−21
Table 2−5. Four Byte Read Exceptions—Reserved and Factory-Test I2C Subaddresses
SUB-ADDRESS NUMBER BYTES SUPPLIED BY TAS3103
0xC9 8
0xED 8
NOTE: Table 2−5 does not include read-only subaddresses and thus does
not include subaddresses 0xFD, 0xFE, and 0xFF. When read, these
read-only subaddresses output 10, 2, and 1 byte respectively.
Thus, for all reserved and factory-test subaddresses, except subaddresses OxC9 and 0xED, the master device must
issue four data received acknowledges for the four bytes of zero-valued data. For subaddresses OxC9 and 0xED,
the master device must issue eight data received acknowledges for the eight bytes of zero-valued data.
Sequential read transactions do not have restrictions on outputting only complete subaddress data sets. If the master
does not issue enough data received acknowledges to receive all the data for a given subaddress, the master device
simply does not receive all the data. If the master device issues more data received acknowledges than required to
receive the data for a given subaddress, the master device simply receives complete or partial sets of data, depending
on how many data received acknowledges are issued from the subaddress(es) that follow.
I2C read transactions, both sequential and random, can impose wait states. For the standard I2C mode
(SCL = 100 kHz), worst-case wait state times for an 8-MHz microprocessor clock is on the order of 2 µs. Nominal
wait state times for the same 8-MHz microprocessor clock is on the order of 1 µs. For the fast I2C mode (SCL =
400 kHz) and the same 8-MHz microprocessor clock, worst-case wait state times can extend up t o 10.5 µs in duration.
Nominal wait state times for this same case lie in a range from 2 µs to 4.6 µs. Increasing the microprocessor clock
frequency lowers the wait state times and for the standard I2C mode, a higher microprocessor clock can totally
eliminate the presence of wait states. For example, increasing the microprocessor clock to 16 MHz results in no wait
states. For the fast I2C mode, higher microprocessor clocks shortens the wait state times encountered, but does not
totally eliminate their presence.
2.4 Digital Audio Processor (DAP) Arithmetic Unit
The digital audio processor (DAP) arithmetic unit is a fixed-point computational engine consisting of an arithmetic unit
and data and coefficient memory blocks. Figure 2−17 is a block diagram of the arithmetic unit.
76-Bit Adder
Regs Regs
Arithmetic
Engine
Dual Port
Data RAM Coefficient
RAM
4K x 16
Delay Line
RAM Program
ROM
DAP
Instruction Decoder/Sequencer
Digital Audio Processor
(DAP)
Arithmetic Unit
Figure 2−17. Digital Audio Processor Arithmetic Unit Block Diagram
The DAP arithmetic unit is used to implement all firmware functions—soft volume, loudness compensation, bass and
treble processing, dynamic range control, channel filtering, 3D effects, input and output mixing, spectrum analyzer,
VU meter, and dither.
Figure 2−18 shows the data word structure of the DAP arithmetic unit. Eight bits of overhead or guard bits are provided
at the upper end of the 48-bit DAP word and 8 bits of computational precision or noise bits are provided at the lower
end of the 48-bit word. The incoming digital audio words are all positioned with the most significant bit abutting the
8-bit overhead/guard boundary. The sign bit in bit 39 indicates that all incoming audio samples are treated as signed
data samples.
2−22
CAUTION: Audio data into the TAS3103 is always treated as signed data.
S
S
S
S
S
S
47
40
39
32
31
24
23
22
21
20
19
16
15
8
7
0
Overhead/Guard Bits
16-Bit
Audio 18-Bit
Audio 20-Bit
Audio 24-Bit
Audio
Precision/Noise Bits
32-Bit
Audio
Figure 2−18. DAP Arithmetic Unit Data Word Structure
The arithmetic engine is a 48-bit (25.23 format) processor consisting of a general-purpose 76-bit arithmetic logic unit
and function-specific arithmetic blocks. Multiply operations (excluding the function-specific arithmetic blocks) always
involve 48-bit DAP words and 28-bit coefficients (usually I2C programmable coef ficients). If a group of products are
to be added together, the 76-bit product of each multiplication is applied to a 76-bit adder, where a DSP-like
multiply-accumulate (MAC) operation takes place. Biquad filter computations use the MAC operation to maintain
precision in the intermediate computational stages.
To maximize the linear range of the 76-bit ALU, saturation logic is not used. Intermediate overflows are then permitted
in multiply-accumulate operations, but it is assumed that subsequent terms in the multiply-accumulate computation
flow corrects the overflow condition. The biquad filter structure used in the TAS3103 is the direct form I structure and
has only one accumulation node. With this type of structure, intermediate overflow is allowed as long as the designer
of the filters has assured that the final output is bounded and does not overflow. Figure 2−19 shows a bounded
computation that experiences intermediate overflow condition. 8-bit arithmetic is used for ease of illustration.
The DAP memory banks include a dual port data RAM for storing intermediate results, a coefficient RAM, a 4K x 16
RAM for implementing the delay stages, and a fixed program ROM. Only the coefficient RAM, assessable via the I2C
bus, is available to the user. 8-Bit ALU Operation
(Without Saturation)
10110111 (−73) −73
+ 11001101 (−51) + −51
10000100 (−124) −124
+ 11010011 (−45) + −4 5
Rollover 01010111 (57) −169
+ 00111011 (59) + 59
10010010 (−110) −110
Figure 2−19. DAP ALU Operation With Intermediate Overflow
2−23
The DAP processing clock is set by pins PLL0 and PLL1, in conjunction with the source clock XTALI or MCLKI. The
DAP operates at speeds up to 136 MHz, which is sufficient to process 96-kHz audio.
2.5 Reset
The reset circuitry in the TAS3103 is shown in Figure 2−20. A reset is initiated by inputting logic 0 on the reset pin
RST.. A reset is also issued at power turnon by the internal 1.8-V regulator subsystem.
MCLKI
XTALI
DPLL
1.8-V Regulator Subsystem
Reset Timer
CLR
Lock
Chip Reset
VDSS
Enable
dpll_clk
PWR GOOD
RST
A_VDSS
Figure 2−20. TAS3103 Reset Circuitry
At power turnon, the internal 1.8-V regulator subsystem issues an internal reset that remains active until regulation
is reached. The duration of this signal assures that all reset activities are conducted at power turnon. This means that
the external reset pin RST does not require an RC time constant derived external reset to assure that a reset is applied
at power turnon. The reset pin RST can then be used exclusively for exception resets, saving the cost and size impact
of additional RC components. However, since RST is an asynchronous clear, it can respond to narrow negative signal
transitions. Some applications, therefore, might require a high-frequency capacitor on the RST pin in order to remove
unwanted noise excursions.
2.6 Power Down
Setting the PWRDN pin to logic 1 enables power down. Power down stops all clocks in the TAS3103, but preserves
the state of the TAS3103. When PWRDN is deactivated (set to logic 0) after a period of activation, the TAS3103
resumes the processing of audio data upon receiving the next LRCLK (indicating a new sample of audio data is
available for processing). The configuration of the TAS3103 and all programmable parameters are retained during
power down.
There is a time lag between setting PWRDN to logic 1 and entering the power down state. PWRDN is sampled every
GPIOFSCOUNT LRCLK periods (see the subaddress 0xEF and the watchdog timer and GPIO ports sections). This
means that a time lag as great as GPIOFSCOUNT(1/LRCLK) could exist between the activation of PWRDN (setting
to logic 1) and the time at which the microprocessor recognizes that the PWRDN pin has been activated. Normally,
upon recognizing that the PWRDN pin has been activated, the TAS3103 enters the power-down state approximately
80 microprocessor clock cycles later. However, if a soft volume update is in progress, the TAS3103 waits until the
soft volume update is complete before entering the power down state. For this case then, the worst case time lag
2−24
between recognizing the activation of pin PWRDN and entering the power down would be 4096 LRCLK periods,
assuming a volume slew rate selection (bit VSC of I2C subaddress 0xF1) of 4096 and the issuance of a volume
update immediately preceding the reading of pin PWRDN. The worst case time lag between setting PWRDN to logic
1 and entering the power down state is then:
power down time lagWorst-Case +4096 )GPIOFSCOUNT
LRCLK )80
Microprocessor-Clock
There is also a time lag between deactivating PWRDN (setting PWRDN to logic 0) and exiting the power down state.
This time lag is set by the time it takes the internal digital PLL to stabilize, and this time, in turn, is set by the master
clock frequency (MCLKI or XTALI) and the PLL output clock frequency. For a 135-MHz PLL output clock and a 24.576
MCLKI, the time lag is approximately 25 µs. For a 11.264-MHz PLL output clock and a 1.024-MHz MCLKI, the time
lag is approximately 360 µs.
Power consumption in the power-down state is approximately 12 mW.
2.7 Watchdog Timer
There is a watchdog timer in the TAS3103 that monitors the microprocessor activity. If the microprocessor ever
ceases to execute its stored program, the watchdog timer fires and resets the TAS3103. This capability was included
in the TAS3103 for factory test purposes and has little use in applications. The program structure used in the
microprocessor assures that the microprocessor always executes its stored program unless a hardware failure
occurs.
The watchdog timer is governed by the parameter GPIOFSCOUNT in subaddress 0xEF and the LSB of the 32-bit
word at subaddress 0xEB. The default value of the LSB of the 32-bit word at subaddress 0xEB is 1 and this value
disables the watchdog timer. The GPIOFSCOUNT is also used in other functions and balancing the needs of these
other functions regarding GPIOFSCOUNT with the requirements of the watchdog timer is an involved process. For
this reason, it is strongly recommended that the LSB of the 32-bit word at subaddress 0xEB remain a 1. If an
application does require use of the watchdog timer, it is requested that the user contact an application engineer in
the Digital Audio Department of Texas Instruments for details in properly using this feature.
2.8 General-Purpose I/O (GPIO) Ports
The TAS3103 has four general-purpose I/O (GPIO) ports. Figure 2−21 is a block diagram of the GPIO circuitry in the
TAS3103.
2−25
GPIO0
GPIO1
GPIO2
GPIO3
DQ
DQ
DQ
DQ
Sample
Logic
0xEF
Down
Counter LD
LRCLK
Decode 0
DATA PATH SWITCH
GPIODIR
3 Determines How Many Consecutive Logic 0 Samples
(Where Each Sample Is Spaced by GPIOFSCOUNT
LRCLKs) are Required to Read a Logic 0 on a
GPIO Input Port
S Slave Addr Sub-AddrAck 00000000Ack Ack 210
0000 Ack GPIOFSCOUNT Ack GPIO_samp_int Ack
31 24 23 20 19 16 15 8 7 0
Microprocessor Microprocessor
Firmware
Microprocessor
Control
0xEE
GPIO_in_out
3
S Slave Addr Sub-AddrAck 00000000Ack Ack 210
Ack
31 24 23 16 0
00000000
15 8
00000000 Ack
74
0000 Ack
3
I2C Slave Mode
and
I2C Master Mode
Write
I2C Master
Mode Read
Figure 2−21. GPIO Port Circuitry
2.8.1 GPIO Functionality—I2C Master Mode
In the I2C master mode, the GPIO ports are strictly input ports and are used to control volume. Table 2−6 lists the
functionality of each GPIO port in the I2C master mode. Bit field GPIOFSCOUNT (15:8) of I2C subaddress 0xEF
governs the rate at which the GPIO pins are sampled for a volume update. The sample rate is:
ƒGPIO_Port +LRCLK
GPIOFSCOUNT
Table 2−6. GPIO Port Functionality—I2C Master Mode
GPIO PORT FUNCTION
GPIO0 (pin 18) Volume up—CH1 and CH2
GPIO1 (pin 19) Volume down—CH1 and CH2
GPIO2 (pin 20) Volume up—CH3
GPIO3 (pin 21) Volume down—CH3
GPIOFSCOUNT also governs the rate at which the power down pin PWRDN is sampled and the rate at which the
watchdog counter is reset. GPIOFSCOUNT then cannot be independently used to tune the volume adjustment. For
this reason, bit field GPIO_samp_int of the same I2C subaddress (0xEF) is included to provide the ability to adjust
the responsiveness (or sluggishness) of the volume switches.
Each GPIO port has a weak pullup to VDDS. A volume control switch then typically switches the signal line to the GPIO
port between ground and an open circuit. The parameter GPIO_samp_int sets how many consecutive GPIO port
2−26
samples must be logic 0 before a logic 0 is read. A read logic 0 on a given GPIO port is interpreted as a command
to increase or decrease volume. If a logic 0 is read, and the signal level into the GPIO port remains at logic 0 for another
GPIO_samp_int consecutive samples, a second logic 0 value is read.
For each logic 0 read, the volume is increased or decreased 0.5 dB. After two consecutive logic 0 readings, each logic
0 reading that follows results in the volume level increasing or decreasing 5 dB instead of 0.5 dB. Figure 2−22 shows
an example of activating a volume switch. For the example in Figure 2−22, GPIOFSCOUNT is set to 3 and
GPIO_samp_int is set to 2. It is also noted in Figure 2−22 that the parameter GPIO_samp_int only comes into play
on logic 0 valued samples. As soon as the GPIO sample goes to logic 1, the audio updating ceases.
2.8.2 GPIO Functionality—I2C Slave Mode
In the I2C slave mode, the GPIO ports can be used as true general-purpose ports. Each port can be individually
programmed, via the I2C bus, to be either an input or an output port. The default assignment for all GPIO ports, in
the I2C slave mode, is an input port.
When a given GPIO port is programmed as an output port, by setting the appropriate bit in the bit field GPIODIR
(19:16) of subaddress 0xEF to logic 1, the logic level output is set by the logic level programmed into the appropriate
bit in bit field GPIO_in_out (3:0) of subaddress 0xEE. The I2C bus then controls the logic output level for those GPIO
ports assigned as output ports.
When a given GPIO port is programmed as an input port by setting the appropriate bit in bit field GPIODIR (19:16)
of subaddress 0xEF to logic 0, the logic input level into the GPIO port is written to the appropriate bit in bit field
GPIO_in_out (3:0) of subaddress 0xEE. The I2C bus can then be used to read bit field GPIO_in_out to determine
the logic levels at the input GPIO ports. Whether a given bit in the bit field GPIO_in_out is a bit to be read via the I2C
bus or a bit to be written to via the I2C bus is strictly determined by the corresponding bit setting in bit field GPIODIR.
In the I2C slave mode, the GPIO input ports are read every GPIOFSCOUNT LRCLKs, as was the case in the I2C
master mode. However, parameter GPIO_samp_int does not have a role in the I2C slave mode. If a GPIO port is
assigned as an output port, a logic 0 bit value is supplied by the TAS3103 for this GPIO port in response to a read
transaction at subaddress 0xEE.
If the GPIO ports are left in their power turnon state default state, they are input ports with a weak pullup on the input
to VDSS.
2−27
GPIOFSCOUNT = 3
GPIO_samp_int = 2
Read = 1 Read = 1 Read = 0Read = 0 Read = 0 Read = 0 Read = 1 Read = 1 Read = 0 Read = 0
GPIO Pin
Input
LRCLK
GPIO Data
Samples
GPIO Reads
Adjust 0.5 dB Adjust 0.5 dB Adjust 5 dB Adjust 5 dB Adjust 0.5 dB Adjust 0.5 dB
Figure 2−22. Volume Adjustment Timing—Master I2C Mode
2−28
3−1
3 Firmware Architecture
3.1 I2C Coefficient Number Formats
The firmware for the TAS3103 is housed in ROM resources within the TAS3103 and cannot be altered. However,
mixer gain, level of fset, and filter tap coefficients, which can be entered via the I2C bus interface, provide a user with
the flexibility to set the TAS3103 to a configuration that achieves the system level goals.
The firmware is executed in a 48-bit signed fixed-point arithmetic machine. The most significant bit of the 48-bit data
path is a sign bit, and the 47 lower bits are data bits. Mixer gain operations are implemented by multiplying a 48-bit
signed data value by a 28-bit signed gain coefficient. The 76-bit signed output product is then truncated to a signed
48-bit number. Level offset operations are implemented by adding a 48-bit signed offset coefficient to a 48-bit signed
data value. In most cases, if the addition results in overflowing the 48-bit signed number format, saturation logic is
used. This means that if the summation results in a positive number that is greater than 0x7FFF_FFFF_FFFF (the
spaces are used to ease the reading of the hexadecimal number), the number is set to 0x7FFF_FFFF_FFFF. If the
summation results in a negative number that is less than 0x8000_0000_0000 0000, the number is set to
0x8000_0000_0000 0000. There are exceptions to the use of saturation logic for summations that overflow—see the
section Digital Audio Processor (DAP) Arithmetic Unit.
3.1.1 28-Bit 5.23 Number Format
All mixer gain coefficients are 28-bit coefficients using a 5.23 number format. Numbers formatted as 5.23 numbers
means that there are 5 bits to the left of the decimal point and 23 bits to the right of the decimal point. This is shown
in the Figure 3−1.
2−23 Bit
S_xxxx.xxxx_xxxx_xxxx_xxxx_xxx
2−4 Bit
2−1 Bit
20 Bit
Sign Bit
23 Bit
Figure 3−1. 5.23 Format
The decimal value of a 5.23 format number can be found by following the weighting shown in Figure 3−2. If the most
significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If the
most significant bit is a logic 1, then the number is a negative number. In this case every bit must be inverted, a 1 added
to the result, and then the weighting shown in Figure 3−2 applied to obtain the magnitude of the negative number.
(1 or 0) x 23 + (1 or 0) x 22 + + (1 or 0) x 20 + (1 or 0) x 2−1 + + (1 or 0) x 2−4 + + (1 or 0) x 2−23
23 Bit 22 Bit 20 Bit 2−1 Bit 2−4 Bit 2−23 Bit
Figure 3−2. Conversion Weighting Factors—5.23 Format to Floating Point
3−2
Gain coefficients, entered via the I2C bus, must be entered as 32-bit binary numbers. The format of the 32-bit number
(4-byte or 8-digit hexadecimal number) is shown in Figure 3−3.
u
Coefficient
Digit 8
u u u S x x x
Coefficient
Digit 7
x. x x x
Coefficient
Digit 6
x x x x
Coefficient
Digit 5
x x x x
Coefficient
Digit 4
x x x x
Coefficient
Digit 3
x x x x
Coefficient
Digit 2
x x x x
Coefficient
Digit 1
Fraction
Digit 5
Sign
Bit
0
Fraction
Digit 6
Fraction
Digit 4
Fraction
Digit 3
Fraction
Digit 2
Fraction
Digit 1
Integer
Digit 1
u = unused or don’t care bits
Digit = hexadecimal digit
Figure 3−3. Alignment of 5.23 Coefficient in 32-Bit I2C Word
As Figure 3−3 shows, the hex value of the integer part of the gain coefficient cannot be concatenated with the hex
value of the fractional part of the gain coefficient to form the 32-bit I2C coefficient. The reason is that the 28-bit
coefficient contains 5 bits of integer, and thus the integer part of the coefficient occupies all of one hex digit and the
most significant bit of the second hex digit. In the same way, the fractional part occupies the lower 3 bits of the second
hex digit, and then occupies the other five hex digits (with the eighth digit being the zero-valued most significant hex
digit).
3.1.2 48-Bit 25.23 Number Format
All level adjustment and threshold coefficients are 48-bit coefficients using a 25.23 number format. Numbers
formatted as 25.23 numbers means that there are 25 bits to the left of the decimal point and 23 bits to the right of the
decimal point. This is shown in Figure 3−4.
2−23 Bit
S_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx
20 Bit
216 Bit
222 Bit
Sign Bit
223 Bit
2−1 Bit
2−10 Bit
Figure 3−4. 25.23 Format
3−3
Figure 3−5 shows the derivation of the decimal value of a 48-bit 25.23 format number.
(1 or 0) x 223 + (1 or 0) x 222 + + (1 or 0) x 20 + (1 or 0) x 2−1 + + (1 or 0) x 2−23
223 Bit 222 Bit 20 Bit 2−1 Bit 2−23 Bit
Figure 3−5. Alignment of 5.23 Coefficient in 32-Bit I2C Word
Two 32-bit words must be sent over the I2C bus to download a level or threshold coefficient into the TAS3103. The
alignment of the 48-bit, 25.23 formatted coefficient in the 8-byte (two 32-bit words) I2C word is shown in Figure 3−6.
u
Coefficient
Digit 16
u u u u u u u
Coefficient
Digit 15
u u u u
Coefficient
Digit 14
u u u u
Coefficient
Digit 13
S x x x
Coefficient
Digit 12
x x x x
Coefficient
Digit 11
x x x x
Coefficient
Digit 10
x x x x
Coefficient
Digit 9
Word 1
(Most
Significant
Word)
Integer
Digit 3
Integer
Digit 4
(Bits 23 − 21)
Integer
Digit 2
Integer
Digit 1
Sign
Bit
x
Coefficient
Digit 8
xx x x x x x
Coefficient
Digit 7
x. x x x
Coefficient
Digit 6
xx x x
Coefficient
Digit 5
xx x x
Coefficient
Digit 4
xx x x
Coefficient
Digit 3
xxxx
Coefficient
Digit 2
xxxx
Coefficient
Digit 1
Word 2
(Least
Significant
Word)
Fraction
Digit 5
Integer
Digit 4
(Bit 20)
0
Fraction
Digit 6
Fraction
Digit 4
Fraction
Digit 3
Fraction
Digit 2
Fraction
Digit 1
Integer
Digit 6
Integer
Digit 5
u = unused or don’t care bits
Digit = hexadecimal digit
Figure 3−6. Alignment of 25.23 Coefficient in Two 32-Bit I2C Words
3−4
3.2 Input Crossbar Mixers
The TAS3103 has four serial input ports—SDIN1, SDIN2, SDIN3 and SDIN4. SDIN1, SDIN2, and SDIN3 provide the
input resources to process 5.1 channel audio in two TAS3103 chips. SDIN4 provides the capability to multiplex
between a full 5.1 channel system and a stereo source or an information/warning audio message as might be found
in an automotive application.
Each serial input port is assigned two internal processing nodes. The mixers following these internal processing
nodes serve to distribute the input audio data to various processing nodes within the TAS3103. Figure 3−7 shows
the assignment of the internal processing nodes to the serial input ports. Two cases are shown in Figure 3−7—
discrete mode and TDM mode.
The input crossbar mixer topology for internal processing nodes A, B, C, D, E and F is shown in Figure 3−8. Each
of the six nodes is assigned six mixers. These six mixers provide the ability to route the incoming serial port data on
SDIN1, SDIN2, and SDIN3 to:
Processing node d—bypassing effects block and directly feeding monaural CH1
Processing node e—bypassing effects block and directly feeding monaural CH2
Processing node f—directly feeding the section of the effects block assigned to monaural CH3
Processing nodes a and b—directly feeding paths that contain the reverb delay elements assigned to CH1
and CH2
Processing node c—directly feeding an effects block path assigned to CH1 and CH2 that bypasses all
reverb delay elements.
The ability to route all input nodes to the same set of processing nodes fully decouples the input order (what audio
components are wired to which serial input ports) from the processing flow. As is seen in the discussion of the output
crossbar mixers, the output serial ports are fully decoupled from the three monaural channels (any monaural channel
output can be routed to either the left or the right side of any output port). The TAS3103 thus provides full flexibility
in the routing of audio data into and out of the chip.
The mixer topology for internal processing nodes g and h is shown in Figure 3−9. Nodes g and h are each assigned
three mixers. The mixers provide the ability to route the incoming data on serial port SDIN4 to:
Output processing nodes to facilitate input to output pass through
CH1/CH2 effects block input nodes that bypass reverb delay
CH3 effects block input node
3−5
L
R
L
R
L
R
LR
SDIN4
L
R
A
B
time
C
D
E
F
G
H
SDIN1
A
B
C
D
E
F
G
H
LRCLK
LR
SDIN3
time
LRCLK
LR
SDIN2
time
LRCLK
LR
SDIN1
time
LRCLK
(b) TDM Mode
Internal
Processing
Nodes
(a) Discrete Mode − For I2S Format, Polarity
of LRCLK Opposite That Shown
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Figure 3−7. Serial Input Port to Processing Node Topology
3−6
Input Crossbar
Mixers
4Reverb
Delay
d
e
a
g
c
h
b
Monaural
CH 1
Monaural
CH 2
Monaural
CH 3
aa
f
3-D Effects Block
Processing
Node A
Processing
Node B
Processing
Node C
Processing
Node D
Processing
Node E
Processing
Node F
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
Reverb
Delay
Reverb
Delay
Figure 3−8. Input Mixer and Effects Block Topology—Internal Processing Nodes A, B, C, D, E, and F
3−7
Processing
Node G
Processing
Node H
g
h
f
Effects Block
(See Figure 3−10)
Output Crossbar
Mixer
(See Figure 3−33)
U
V
W
X
Y
Z
Monaural
CH 1
Monaural
CH 2
Monaural
CH 3
Monaural channels consist of 12 biquad filters, followed by bass and treble processing, followed by
bolume and loudness processing, followed by dynamic range control, followed by fither processing.
See the TAS3103 Firmware Block Diagram in the Appendix.
Figure 3−9. Input Mixer Topology—Internal Processing Nodes G and H
3−8
All input crossbar mixers use signed 5.23 format mixer gain coefficients and all are programmable via the I2C bus.
The 5.23 format provides a range of gain adjustment from 2−23 (−138 dB) to 24 – 1 (23.5 dB).
3.3 3D Effects Block
The 3D effects block, shown in Figure 3−10, performs the first suite of processing tasks conducted on the incoming
serial audio data streams. The TAS3103 has three monaural channels—CH1, CH2, and CH3. CH1 and CH2 share
the same effects block, as well as the same dynamic range compression block. CH 3 has its own effects block and
its own dynamic range compression block. In typical two TAS3103 chip configurations for processing 5.1 audio,
monaural channels CH1 and CH2 are used to process left/right front and left/right surround audio components, and
CH3 is used to process the subwoofer and center audio components. To support such a processing structure, the
effects block for CH1/CH2 offers more option for inserting audio effects into the audio data stream than does the
effects block for CH3.
3.3.1 CH1/CH2 Effects Block
This block consists of five signal flow paths, starting at processing nodes a, b, c, g, and h. All five paths contain four
programmable biquad filters, and paths a and b contain reverb delay lines as well. Nodes a, b and c can be sourced
by any of the input nodes A, B, C, D, E, and F (SDIN1, SDIN2, SDIN3). Nodes g and h can be sourced by input nodes
G and H respectively (SDIN4) and/or by weighted replicas of the data on nodes A and B respectively. Nodes g and
h can also be sourced by the same weighted replica of the data on node f. Node c can also be sourced by weighted
replicas of the data on both node a and node b.
3D effects processing typically consist of installing sound direction effects. Sound direction effects are typically
created by the use of three major components.
Time differentiation
Loudness differentiation
Spectral differentiation
Time differentiation is achieved by using the paths containing the reverb delay elements. Loudness differentiation
is achieved both by the mixers feeding the five paths and the two mixers located at the output of each of the five paths.
Spectral differentiation is achieved using the four biquad filters located in each path.
3.3.2 CH3 Effects Block
This block, starting at node f, typically processes center and sub-woofer audio components. Time and spectral
differentiation with respect of CH1 and CH2 can be realized via the reverb delay line and the four biquad filters.
Loudness di fferentiation can be achieved by adjusting the volume level of CH3. Weighted replicas of the ef fects block
output for CH1 and CH2 can also be summed into the output of the CH3 ef fects block. This capability is typically used
when processing the center channel audio component.
3−9
Processing Nodes
A, B, C, D, E, F
Input Crossbar
Mixers
d
e
a
g
c
h
b
4
BiQuad
Filters
Monaural
CH 1
Monaural
CH 2
aa
f
3−D Effects Block
Processing
Node G
Processing
Node H
g1
g0 Reverb
Delay
g1
Delay
Line
g0
g1
g0
0x27
0x25
0x26
0x28
0x33
0x34 − 0x37
0x3C − 0x3F
0x44 − 0x47
0x40 − 0x43
0x38 − 0x3B
g0/g1 = 0x4C
g0/g1 = 0x4D
g0/g1 = 0x4E
0x2D
0x2E
0x31
0x32
0x2F
0x30
0xFA
0x29
0x2A
0x2B
0x2C
0xD0
0xD1
0x48 − 0x4B
Reverb
Delay
Delay
Line
0xFA
Delay
Line
0xFA
Reverb
Delay
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Mixer Gain Coefficient Sub-Address Format
BiQuad Filter Coefficients Sub-Address Format
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
a1
a2
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack b0
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack b1
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack b2
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Reverb Mixer Coefficients Sub-Address Format
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
g0
g1
S Slave Addr Ack Sub-Addr Ack xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Reverb and Delay Assignments Sub-Address Format
xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
D1 & R1
D2 & R2
xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack D3 & R3
0xFA xxxxxxl
s
b
xxxxxxl
s
b
xxxxxxl
s
b
m
s
bxxx0000
m
s
bxxx0000
m
s
bxxx0000
Delay Reverb
Monaural
CH 3
Figure 3−10. TAS3103 3D Effects Processing Block
3−10
3.4 Biquad Filters
There are a total of 73 biquad filters in the TAS3103. The breakout of the biquad filters per functional element is given
in Table 3−1.
Table 3−1. Biquad Filter Breakout
FUNCTION BIQUAD FILTERS SUBADDRESS
3D effects block 24 0x34−0x4B
Monaural channel CH1 12 0x4F−0x5A
Monaural channel CH2 12 0x5B−0x66
Monaural channel CH3 12 0x67−0x72
0xA6−CH1
Loudness processing 30xAB−CH2
Loudness processing
3
0xB0−CH3
Spectrum analyzer/VU meter 10 0xBC−0xC5
All 73 biquad filters are second order direct form I structures. A block diagram of the structure of the biquad filter is
shown in Figure 3−11.
b0
b1
b2
a1
a2
28
28
28
28
28
48 76 76
48
48
76
76
76 48
48
76
Magnitude
Truncation
48
z−1 z−1
z−1
z−1
Σ
NOTE: All gain coefficients 5.23 numbers.
Biquad Filter Coefficient Subaddress Format
Biquad Filter Structure
m
s
b
SSlave Addr Ack Sub-Addr Ack xxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck a1
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck a2
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b0
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b2
m
s
bxxx0000 Ack xxxxxxxx Ack xxxxxxxx Ack xxxxxx l
s
bAck b1
NOTE: Each Biquad filter has one subaddress which contains the mixer gain coefficients a1, a2, b0, b1, b2
Figure 3−11. Biquad Filter Structure and Coefficient Subaddress Format
The transfer function for the biquad filter is given by:
VOUT(z)
VIN(z) +b0)b1z*1)b2z*2
1*a1z*1*a2z*2
3−11
The direct form I structure provides a separate delay element and mixer (gain coefficient) for each node in the biquad
filter. Each mixer output is a signed 76-bit product of a signed 48-bit data sample (25.23 format number) and a signed
28-bit coef ficient (5.23 format number). A 76-bit ALU in the TAS3103 allows the 76-bit resolution to be retained when
summing the mixer outputs (filter products). This is an important factor as it removes the need to carefully tailor the
order of addition for each filter implementation to minimize the effects of finite-precision arithmetic. Intermediate
overflows are allowed while summing the biquad terms to further minimize the effects of finite-precision arithmetic
(see the Digital Audio Processor – DAP – Arithmetic Unit section for more discussion on intermediate overflow).
3.5 Bass and Treble Processing
The TAS3103 has three fully independent bass and treble adjustment blocks—one for each of the three monaural
channels. Adjustments in bass and treble are accomplished by selecting a bass filter set and a treble filter set, and
then selecting a shelf filter within each filter set. The filter set selected, of which there are five sets for treble and five
sets for bass to select from, determines the frequency at which the bass and treble adjustments take ef fect. The shelf
filters determine the gain to be applied to the bass and treble components of the incoming audio. All selections are
independent of one another—any bass filter set can be combined with any treble filter set and any shelf filter can be
selected in a given filter set.
Figure 3−12 shows the bass and treble selections available, their I2C subaddresses, and the data fields in each
subaddress used to make the selections. Each bass filter set has 150 low pass shelving filters to choose from, with
the shelves ranging from a cut (attenuation) of 18 dB to a boost (gain) of 18 dB. A shelf selection of 0 dB effectively
removes bass processing. All 150 filters in a given filter set have the same 3-dB frequency, as measured from the
shelf. The only difference in the 150 filters in a given bass filter set is the gain of the shelf.
Each treble filter set has 150 high-pass shelving filters to choose from, with the shelves again ranging from a cut
(attenuation) of 18 dB to a boost (gain) of 18 dB. A shelf selection of 0 dB effectively removes treble processing. All
150 filters in a given filter set have the same 3-dB frequency, as measured from the shelf. The only difference in the
150 filters in a given treble filter set is the gain of the shelf.
Commands to adjust the bass and treble levels within a given filter set (by commanding the selection of different
shelving filters) results in a soft adjustment to the newly commanded levels. The filters are labeled 1 through 150,
with filter #1 implementing the maximum cut (18 dB) and filter #150 implementing the maximum boost (18 dB). If a
command is received to change a shelf setting, the transition is made by stepping through each filter, one at a time,
until the shelf filter commanded is reached. A soft transition is achieved by residing at each step (or shelf filter) for
a period determined by the programmable parameter TBLC (bit field 7:0 of subaddress 0xF1). The time period set
by TBLC is TBLC/FS (where FS is the audio sample rate). For an audio sample rate of 48 kHz and a TBLC setting
of 64, the dwell time on each shelf filter is approximately 1.33 ms. The transition time then depends on the number
of shelves separating the current and commanded shelf values. For 48-kHz audio and a TBLC setting of 64, a
maximum transition time of approximately 198 ms is required to transition from shelf #1 to shelf #150 and a minimum
time of approximately 1.33 ms is required to transition from shelf x to shelf x + 1.
3−12
S Slave Addr Ack Sub-Addr Ack Ack Ack00000xxx00000000
0xF5
CH3
Ack00000xxx
CH2
Ack00000xxx
CH1
S Slave Addr Ack Sub-Addr Ack Ack Ack00000xxx00000000
0xF7
CH3
Ack00000xxx
CH2
Ack00000xxx
CH1
S Slave Addr Ack Sub-Addr Ack Ack Ackxxxxxxxx00000000
0xF6 Ackxxxxxxxx Ackxxxxxxxx
S Slave Addr Ack Sub-Addr Ack Ack Ackxxxxxxxx00000000
0xF8 Ackxxxxxxxx Ackxxxxxxxx
CH1
Treble Shelf Selection (Filter Index) CH2
CH3
CH1CH2CH3
Bass Shelf Selection (Filter Index)
Treble Filter Set Selection
Bass Filter Set Selection
BASS
FILTER 5
BASS
FILTER 4
BASS
FILTER 3
BASS
FILTER 2
BASS
FILTER 1 TREBLE
FILTER 5 TREBLE
FILTER 3 TREBLE
FILTER 1
TREBLE
FILTER 4 TREBLE
FILTER 2
MID-BAND
MAX BOOST
SHELF
MAX CUT
SHELF
Treble & Bass Filter Set Commands
0 => No Change
1 − 5 => Filter Sets 1 − 5
6 − 7 => Illegal (Behavior Indeterminate)
Treble & Bass Filter Shelf Commands
0 => Illegal (Behavior Indeterminate)
1 − 150 => Filter Shelves 1 − 150
1 => +18-dB Boost
150 => −18-dB Cut
151 − 255 => Illegal (Behavior Indeterminate)
FREQUENCY
S Slave Addr Ack Sub-Addr Ack Ack Ack0000000000000000
0xF1 Ack0000000 Ackxxxxxxxx
Treble/Bass Slew Rate = TBLC
(Slew Rate = TBLC/FS,
Where FS = Audio Sample Rate)
Treble/Bass Slew Rate Selection
V
C
S
07
FS
3-dB CORNERS (kHz)
FS
(LRCLK)
FILTER SET 5 FILTER SET 4 FILTER SET 3 FILTER SET 2 FILTER SET 1
(LRCLK)
BASS TREBLE BASS TREBLE BASS TREBLE BASS TREBLE BASS TREBLE
96 kHz 0.25 6 0.5 12 0.75 18 1 24 1.5 36
88.4 kHz 0.23 5.525 0.46 11.05 0.691 16.575 0.921 22.1 1.381 33.15
64 kHz 0.167 4 0.333 8 0.5 12 0.667 16 1 24
48 kHz 0.125 3 0.25 6 0.375 9 0.5 12 0.75 18
44.1 kHz 0.115 2.756 0.23 5.513 0.345 8.269 0.459 11.025 0.689 16.538
38 kHz 0.099 2.375 0.198 4.75 0.297 7.125 0.396 9.5 0.594 14.25
32 kHz 0.083 2 0.167 4 0.25 6 0.333 8 0.5 12
24 kHz 0.063 1.5 0.125 3 0.188 4.5 0.25 6 0.375 9
22.05 kHz 0.057 1.378 0.115 2.756 0.172 4.134 0.23 5.513 0.345 8.269
16 kHz 0.042 1 0.083 2 0.125 3 0.167 4 0.25 6
12 kHz 0.031 0.75 0.063 1.5 0.094 2.25 0.125 3 0.188 4.5
11.025 kHz 0.029 0.689 0.057 1.378 0.086 2.067 0.115 2.756 0.172 4.134
Figure 3−12. Bass and Treble Filter Selections
3−13
CAUTION: There is no soft transition implemented when changing bass and treble filter
sets; soft transitions only apply when adjusting gains (shelves) within a given filter set.
The variable TBLC should be set so that the dwell time at each shelf is never less than
32 audio sample periods; otherwise audio artifacts could be introduced into the audio
data stream.
Figure 3−12 summarizes the bass and treble adjustments available within each monaural channel. As noted in
Figure 3−12, the 3-dB frequency for the bass filter sets decreases in value as the filter set number is increased,
whereas the 3-dB frequency for the treble filter set increases in value as the filter set number is increased. The valid
selection for bass and treble sets ranges from 1 to 5.
Table 3−2 and Table 3−3 list, respectively, the bass and treble filter shelf selections for all 1/2 dB settings between
18-dB cut and 18-dB boost. The treble and bass selections are not the same, and the delta in the selection values
between 1/2 dB points are not constant across the 36-dB range. Table 3−2 and Table 3−3 do not list all 150 filter shelf
selections, but all 150 selection values for both bass and treble are valid, allowing the use of linear potentiometer or
GUI-based sliders. Table 3−2 and Table 3−3 are provided for those applications requiring the adjustment of bass and
treble in 1/2 dB steps.
CAUTION: Filter set selections 6 and 7 are illegal. Filter shelf selections 0 and 151
through 255 are illegal. Programming an illegal value could result in erratic and
erroneous behavior.
As an example, consider the case of a 44.1-kHz audio sample rate. For this audio rate it is desired to have, for all
three monaural channels
A 3-dB bass shelf corner frequency of 100 Hz
A bass shelf volume boost of 9 dB
A 3-dB treble shelf corner frequency of 8.1 kHz
A treble shelf volume cut of 4 dB
Bass and treble filter set selections can be made by referring to Figure 3−12. For a 44.1-kHz audio sample rate, filter
set 5 provides a 3-dB bass corner frequency at 115 Hz, and filter set 3 provides a 3-dB treble corner frequency at
8.269 kHz. These corner frequencies are the closest realizable corner frequencies to the specified 100-Hz bass and
8.1-kHz treble corner frequencies.
Table 3−2 provides the indices for achieving specified bass volume levels. An index of 0x55 yields a bass shelf gain
of 9 dB, which matches the specified shelf volume boost of 9 dB. Table 3−3 provides the indices for achieving specified
treble volume levels. An index of 0x7A yields a treble shelf cut of 4 dB (−4-dB gain), which matches the specified shelf
volume cut of 4 dB.
Figure 3−13 presents the resulting subaddress entries required to implement the parameters specified in the bass
and treble example.
3−14
S Slave Addr Ack Sub-Addr Ack Ack Ack0000010100000000
0xF5
CH3
Ack00000101
CH2
Ack00000101
CH1
Bass Filter Set Selection
Filter Set 5 Selected
S Slave Addr Ack Sub-Addr Ack Ack Ack0000001100000000
0xF7
CH3
Ack00000011
CH2
Ack00000011
CH1
Treble Filter Set Selection
Filter Set 3 Selected
S Slave Addr Ack Sub-Addr Ack Ack Ack0101010100000000
0xF6 Ack01010101 Ack01010101
Bass Shelf Selection (Filter Index)
Filter Shelf 0x55 Selected
S Slave Addr Ack Sub-Addr Ack Ack Ack0111101000000000
0xF8
CH3
Ack01111010
CH2
Ack
01111010
CH1
Treble Shelf Selection (Filter Index)
Filter Shelf 0x7A Selected
CH3 CH2 CH1
Figure 3−13. Bass and Treble Application Example—Subaddress Parameters
Table 3−2. Bass Shelf Filter Indices for 1/2-dB Adjustments
ADJUSTMENT
(DB) INDEX(1) ADJUSTMENT
(DB) INDEX(1) ADJUSTMENT
(DB) INDEX(1)
18 0x01 5.5 0x63 −7 0x80
17.5 0x08 5 0x64 −7.5 0x81
17 0x10 4.5 0x66 −8 0x82
16.5 0x16 4 0x67 −8.5 0x83
16 0x1D 3.5 0x69 −9 0x84
15.5 0x23 3 0x6A −9.5 0x85
15 0x28 2.5 0x6B −10 0x86
14.5 0x2D 2 0x6D −10.5 0x87
14 0x32 1.5 0x6E −11 0x88
13.5 0x37 1 0x6F −11.5 0x89
13 0x3B 0.5 0x71 −12 0x8A
12.5 0x3F 0 0x72 −12.5 0x8B
12 0x42 −0.5 0x73 −13 0x8C
11.5 0x46 −1 0x74 −13.5 0x8D
11 0x49 −1.5 0x75 −14 0x8E
10.5 0x4C −2 0x76 −14.5 0x8F
10 0x4F −2.5 0x77 −15 0x90
9.5 0x52 −3 0x78 −15.5 0x91
9 0x55 −3.5 0x79 −16 0x92
8.5 0x58 −4 0x7A −16.5 0x93
8 0x5A −4.5 0x7B −17 0x94
7.5 0x5C −5 0x7C −17.5 0x95
7 0x5E −5.5 0x7D −18 0x96
6.5 0x60 −6 0x7E
6 0x62 −6.5 0x7F
(1) CH1 Index is Subaddress 0xF6, Bit Field 7:0. CH2 Index is Subaddress 0xF6, Bit Field 15:8. CH3
Index is Subaddress 0xF6, Bit Field 23:16.
3−15
Table 3−3. Treble Shelf Filter Indices for 1/2-dB Adjustments
ADJUSTMENT
(DB) INDEX(1) ADJUSTMENT
(DB) INDEX(1) ADJUSTMENT
(DB) INDEX(1)
18 0x01 5.5 0x63 −7 0x80
17.5 0x09 5 0x65 −7.5 0x81
17 0x10 4.5 0x66 −8 0x82
16.5 0x16 40 0x68 −8.5 0x83
16 0x1C 3.5 0x69 −9 0x84
15.5 0x22 3 0x6B −9.5 0x85
15 0x28 2.5 0x6C −10 0x86
14.5 0x2D 2 0x6D −10.5 0x87
14 0x31 1.5 0x6F −11 0x88
13.5 0x35 1 0x70 −11.5 0x89
13 0x3A 0.5 0x71 −12 0x8A
12.5 0x3E 0 0x72 −12.5 0x8B
12 0x42 −0.5 0x73 −13 0x8C
11.5 0x45 −1 0x74 −13.5 0x8D
11 0x49 −1.5 0x75 −14 0x8E
10.5 0x4C −2 0x76 −14.5 0x8F
10 0x4F −2.5 0x77 −15 0x90
9.5 0x52 −3 0x78 −15.5 0x91
9 0x55 −3.5 0x79 −16 0x92
8.5 0x57 −4 0x7A −16.5 0x93
8 0x5A −4.5 0x7B −17 0x94
7.5 0x5C −5 0x7C −17.5 0x95
7 0x5E −5.5 0x7D −18 0x96
6.5 0x60 −6 0x7E
6 0x62 −6.5 0x7F
(1) CH1 Index is Subaddress 0xF8, Bit Field 7:0. CH2 Index is Subaddress 0xF8, Bit Field 15:8. CH3
Index is Subaddress 0xF8, Bit Field 23:16.
3.5.1 Treble and Bass Processing and Concurrent I2C Read Transactions
I2C read transactions at subaddresses 0x01 through 0xD1 are not allowed during: (1) transitions between filter
shelves within a given bass or treble filter set or (2) transitions between filter sets. This means that after issuing an
I2C command to change treble or bass filter shelves or filter sets, time must be allowed to complete the bass/treble
activity before proceeding to read subaddresses 0x01 through 0xD1. There is no subaddress available to directly
monitor bass/treble activity. However, there is a means of probing the state of bass/treble activity via the factory test
subaddresses 0xEC and 0xED.
If it is required to read subaddress data that falls in the subaddress range of 0x01 through 0xD1 after issuing an I2C
command to change treble or bass filter shelves or filter sets, the procedure presented in Figure 3−14 can be used
to monitor bass/treble activity. As Figure 3−14 shows, six readings must be taken to verify that none of the three
monaural channels have on-going bass or treble activity. If all six readings show the value zero in the 8th or least
significant byte of the 8-byte data word output at subaddress 0xED, then all commanded bass/treble activity has
completed and it is safe to resume I2C read transactions at subaddresses 0x01 through 0xD1.
3−16
Start
Write 0x00, 0x06, 0x00, 0xCD
Read 8 byte output from
8th Byte = 0 Y
Write 0x00, 0x06, 0x00, 0xD1
Read 8 byte output from
8thByte = 0 Y
Write 0x00, 0x06, 0x00, 0xCE
Read 8 byte output from
8thByte = 0 Y
Write 0x00, 0x06, 0x00, 0xD2
Read 8 byte output from
8thByte = 0 Y
8thByte = 0 Y
Write 0x00, 0x06, 0x00, 0xD5
Read 8 byte output from
CH 1 Treble
CH 1 Bass
CH 2 Treble
CH 2 Bass
CH 3 Treble
CH 3 Bass
Write 0x00, 0x06, 0x00, 0xD3
Read 8 byte output from
N
N
N
N
N
8thByte = 0 YN
Bass / Treble Processing Active Bass / Treble Processing Inactive
Figure 3−14. I
2
C Bass/Treble Activity Monitor Procedure
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
3−17
3.6 Soft Volume/Loudness Processing
Each of the three monaural channels in the TAS3103 has dedicated soft volume control and loudness compensation.
Volume level changes are issued by I2C bus commands in the I2C slave mode and by setting the appropriate GPIO
pin to logic 0 in the I2C master mode. Commanded changes in volume are implemented softly, using a smooth S-curve
trajectory to transition the volume to the newly commanded level.
Volume commands are formatted as signed 5.23 numbers. The maximum volume boost then is 24 dB
(4 bits x 6 dB/bit); the maximum volume cut is with a volume command of zero. The maximum finite volume cut
is 138 dB (23 bits x 6 dB/bit). The resolution of the volume adjustment is not fixed over all gain settings. For large gains
the resolution of the volume adjustment is very fine, and the resolution of the volume adjustment decreases as the
volume gain decreases. As an example, at maximum gain, the volume level can be adjusted to a resolution of
0.000001 dB [(138 + 24) dB adjustment range/227 adjustment steps]. At the other end of the gain scale, if the volume
setting is a t the maximum finite cut (volume command = 0x0000001) and is increased by one count (volume command
= 0x0000002), a 6-dB adjustment is realized.
Each monaural channel volume control is also assigned a separate mute command, which has the same effect as
issuing a zero-valued volume command. If loudness is enabled, disabling it by setting the parameter G to zero is
necessary to obtain a total cut (− dB). This requirement is further discussed in the paragraphs that follow.
Loudness compensation tracks the volume control setting to allow spectral compensation. An example of loudness
compensation would be a boost in bass frequencies to compensate for weak perceived bass at low volume levels.
Both linear and log control laws can be implemented for volume gain tracking, and a dedicated biquad filter can be
used to achieve spectral discernment.
3.6.1 Soft Volume
Figure 3−15 is a simplified block diagram of the implementation of soft volume and loudness compensation. A volume
level change (either via an I2C bus issued command in the I2C slave mode, or a GPIO-issued command in the I2C
master mode) initiates a transition process that assures a smooth transition to the newly commanded volume level
without producing artifacts such as pops, clicks, and zipper noise. The transition time, or volume slew rate, can be
selected to occupy a time window of either 2048 or 4096 audio sample periods. For 48-kHz audio, for example, this
equates to a transition time of 42.67 ms or 85.34 ms. It is anticipated that 42.67 ms is the transition time of choice
for most applications, and the 4096 sample transition option is primarily included to yield the same 42.67-ms transition
time for 96-kHz audio. The slope of the S-curve (and its implementation) is proprietary and cannot be altered.
If additional volume commands for a given monaural channel are received, while a previously commanded volume
change is still active, the last command received over-writes previous commands and is used. When the previously
commanded transition completes, the volume command last received while the transition was taking place is acted
upon and a new transition to this volume level initiated. For example, assume three volume commands are
sequentially issued, via the I2C bus, to adjust the volume levels of the three monaural channels in the TAS3103. The
first command received immediately triggers the start of a soft volume transition to the newly commanded level. The
other two volume commands are received and queued to await the completion of the currently active soft volume
transaction. When the first soft volume transition completes, and assuming no further volume commands have been
received to replace the other two volume commands received, the next two volume commands are activated, and
soft volume transitions on both monaural channels takes place. The total time then, for a 48-kHz audio sample rate
and a transition selection of 2048 FS cycles is 2 x 42.67 ms or 85.34 ms. If, during the first soft volume transition, a
second volume command is received for this same monaural channel, the second soft volume transition period would
have soft volume transitions taking place on all three monaural channels. It is also noted that the soft volume transition
time is independent of the magnitude of the adjustment. All volume commands take 2048 or 4096 FS cycles,
regardless of the magnitude of the change.
In the I2C slave mode, the status of a commanded soft volume transition can be found by reading bit 0 of the 32-bit
data word retrieved at subaddress 0xFF. If this bit is set to logic 1, one or more monaural channels are actively
transitioning their volume setting. If a volume transition is taking place on one of the monaural channels in the
TAS3103, volume commands received for the other two monaural channels are not acted upon until the active volume
transition completes. When the active volume transition does complete, the latest volume commands received for
the three monaural channels during the previous soft volume transition time are serviced.
3−18
Microprocessor
2048 Sample
Transition 4096 Sample
Transition
Soft Volume
Gain Control
Soft Volume
volume_setting
VSCSubaddress 0xF1 = 1
VSCSubaddress 0xF1 = 0
I2C Slave Mode
I2C Master Mode
I2C
Volume
Commands
GPIO
Volume
Commands
f (Volume)
Programmable
Biquad Filter
Channel-Processed
Audio
Loudness Compensation
Volume-Adjusted
Audio
Figure 3−15. Soft Volume and Loudness Compensation Block Diagram
Figure 3−15 is a more detailed block diagram of soft volume and loudness compensation, and includes the I2C
subaddress commands that control volume and loudness compensation. Volume control is accomplished using three
I2C subaddresses—volume control, mute/unmute control, and volume slew rate control.
Volume control in the TAS3103 applies a linear gain. The volume commands issued via I2C subaddresses 0xF2,
0xF3, and 0xF4 (monaural channels 1, 2, and 3 respectively) are signed 5.23 format numbers. These commands are
applied to mixers, whose other input port is the audio data stream. The mixer output is the product of the audio data
stream and the volume command. Examples of volume command settings are given below.
Volume Command = 0x3580B07 = 0011_0.101_1000_0000_1011_0000_0111 = 6.6878365
Volume Command = 0x01F0000 = 0000_0.001_1111_0000_0000_0000_0000_0000 = 0.2421875
Volume Command = 0xCD6EFFE = 1100_1.101_0110_1110_1111_1111_1110 = −6.3208010
The volume control range is 0 = − to 2 −23 = −138.47 dB to 24 − 2−23 = 24.08 dB. V olume control is achieved by means
of a 5.23 format gain coefficient that is applied to a linear mixer. The volume gain setting realized, for a given volume
gain coefficient is:
Gain = 20log (Volume_Gain_Coefficient)
3−19
There are several techniques of volume management for a linear volume control process.
Precise calculations involving logarithms can be employed.
A high-resolution gain table, with entries for every 0.5-dB step, can be employed.
A more coarse gain table (entries in 3 to 6-dB steps with linear interpolation between entries) can be
employed.
Or approximations involving very simple calculations can be employed.
As an example of using approximations, equations for increasing a linear 5.23 gain setting X by 0.5 dB that involve
only simple binary shift and add operations and the accuracy of these equations are given below.
20log10X + 0.5 dB X + 2−4X gives 0.52657877-dB steps
20log10X + 0.5 dB X + 2−4X − 2−8X gives 0.49458651-dB steps
20log10X + 0.5 dB X + 2−4X − 2−8X + 2−11X gives 0.49859199-dB steps
20log10X + 0.5 dB X[1 + 2−4 − 2−8 + 2−11 + 2−12 − 2−13 + 2−14 − 2−16 + 2−18] gives
0.4999997332 dB−steps
Approximations can also be found for decreasing a linear 5.23 gain setting X by 0.5 dB that involve using only simple
binary shift and add operations, but the equations dif fer slightly from those used to increase the gain in 0.5-dB steps.
The approximations to decrease the volume by 0.5 dB and the accuracy of these approximations are given below.
20log10X − 0.5 dB X − 2−4X gives −0.56057447 dB-steps
20log10X − 0.5 dB X − 2−4X + 2−7X gives −0.48849199-dB steps
20log10X − 0.5 dB X − 2−4X + 2−7X − 2−10X gives −0.49746965-dB steps
20log10X − 0.5 dB X[1 − 2−4 + 2−7 − 2−10 − 2−12 − 2−15 − 2−21] gives −0.5000006792 dB-steps
Repeated use of a set of the above approximations results in an accumulation of the errors in the approximations.
For example, if an application started at 0-dB volume, and repeatedly used the approximations to increase and
decrease the volume, the exact reference point of 0 dB would be lost. If an application does require the maintenance
of accurate reference points, it is necessary for the application to establish a set of exact gain reference settings and
command these exact settings in place of a computed gain setting whenever the current gain setting and the next
computed gain setting straddle an exact gain setting.
Table 3−4 lists the I2C coefficient settings to adjust volume from 24 dB to −136 dB in 0.5-dB steps. For each volume
setting, the gain in dB is presented in one column, the same gain in a floating point number ǒfloat +10
GaindB
20 Ǔ is
presented in the adjacent column, and the same gain formatted in the 32-bit hexadecimal gain coefficient format
required to enter the value into the TAS3103 via the I2C bus is presented in a third column.
3−20
Table 3−4. Volume Adjustment Gain Coefficients
GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT) GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT)
24 15.84893192 07ECA9CD 2 1.25892541 00A12477
23.5 14.96235656 077B2E7F 1.5 1.18850223 009820D7
23 14.12537545 07100C4D 1 1.12201845 008F9E4C
22.5 13.33521432 06AAE84D 0.5 1.05925373 008795A0
22 12.58925412 064B6CAD 0 1 00800000
21.5 11.88502227 05F14868 −0.5 0.94406088 0078D6FC
21 11.22018454 059C2F01 −1 0.89125094 00721482
20.5 10.59253725 054BD842 −1.5 0.84139514 006BB2D6
20 10 05000000 −2 0.79432823 0065AC8C
19.5 9.44060876 04B865DE −2.5 0.74989421 005FFC88
19 8.91250938 0474CD1B −3 0.70794578 005A9DF7
18.5 8.41395142 0434FC5C −3.5 0.66834392 00558C4B
18 7.94328235 03F8BD79 −4 0.63095734 0050C335
17.5 7.49894209 03BFDD55 −4.5 0.59566214 004C3EA8
17 7.07945784 038A2BAC −5 0.56234133 0047FACC
16.5 6.68343918 03577AEF −5.5 0.53088444 0043F405
16 6.30957344 0327A01A −6 0.50118723 004026E7
15.5 5.95662144 02FA7292 −6.5 0.47315126 003C9038
15 5.62341325 02CFCC01 −7 0.44668359 00392CED
14.5 5.30884444 02A78836 −7.5 0.42169650 0035FA26
14 5.01187234 02818508 −8 0.39810717 0032F52C
13.5 4.73151259 025DA234 −8.5 0.37583740 00301B70
13 4.46683592 023BC147 −9 0.35481339 002D6A86
12.5 4.21696503 021BC582 −9.5 0.33496544 002AE025
12 3.98107171 01FD93C1 −10 0.31622777 00287A26
11.5 3.75837404 01E11266 −10.5 0.29853826 00263680
11 3.54813389 01C62940 −11 0.28183829 00241346
10.5 3.34965439 01ACC179 −11.5 0.26607251 00220EA9
10 3.16227766 0194C583 −12 0.25118864 002026F3
9.5 2.98538262 017E2104 −12.5 0.23713737 001E5A84
9 2.81838293 0168C0C5 −13 0.22387211 001CA7D7
8.5 2.66072506 015492A3 −13.5 0.21134890 001B0D7B
8 2.51188643 0141857E −14 0.19952623 00198A13
7.5 2.37137371 012F892C −14.5 0.18836491 00181C57
7 2.23872114 011E8E6A −15 0.17782794 0016C310
6.5 2.11348904 010E86CF −15.5 0.16788040 00157D1A
6 1.99526231 00FF64C1 −16 0.15848932 00144960
5.5 1.88364909 00F11B69 −16.5 0.14962357 001326DD
5 1.77827941 00E39EA8 −17 0.14125375 0012149A
4.5 1.67880402 00D6E30C −17.5 0.13335214 001111AE
4 1.58489319 00CADDC7 −18 0.12589254 00101D3F
3.5 1.49623566 00BF84A6 −18.5 0.11885022 000F367B
3 1.41253754 00B4CE07 −19 0.11220185 000E5CA1
2.5 1.33352143 00AAB0D4 −19.5 0.10592537 000D8EF6
3−21
Table 3−4. Volume Adjust Gain Coefficient (Continued)
GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT) GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT)
−20 0.1 000CCCCC −42 0.00794328 00010449
−20.5 0.09440609 000C157F −42.5 0.00749894 0000F5B9
−21 0.08912509 000B6873 −43 0.00707946 0000E7FA
−21.5 0.08413951 000AC515 −43.5 0.00668344 0000DB00
−22 0.07943282 000A2ADA −44 0.00630957 0000CEC0
−22.5 0.07498942 00099940 −44.5 0.00595662 0000C32F
−23 0.07079458 00090FCB −45 0.00562341 0000B844
−23.5 0.06683439 00088E07 −45.5 0.00530884 0000ADF5
−24 0.06309573 00081385 −46 0.00501187 0000A43A
−24.5 0.05956621 00079FDD −46.5 0.00473151 00009B0A
−25 0.05623413 000732AE −47 0.00446684 0000925E
−25.5 0.05308844 0006CB9A −47.5 0.00421697 00008A2E
−26 0.05011872 00066A4A −48 0.00398107 00008273
−26.5 0.04731513 00060E6C −48.5 0.00375837 00007B27
−27 0.04466836 0005B7B1 −49 0.00354813 00007443
−27.5 0.04216965 000565D0 −49.5 0.00334965 00006DC2
−28 0.03981072 00051884 −50 0.00316228 0000679F
−28.5 0.03758374 0004CF8B −50.5 0.00298538 000061D3
−29 0.03548134 00048AA7 −51 0.00281838 00005C5A
−29.5 0.03349654 0004499D −51.5 0.00266073 0000572F
−30 0.03162278 00040C37 −52 0.00251189 0000524F
−30.5 0.02985383 0003D240 −52.5 0.00237137 00004DB4
−31 0.02818383 00039B87 −53 0.00223872 0000495B
−31.5 0.02660725 000367DD −53.5 0.00211349 00004541
−32 0.02511886 00033718 −54 0.00199526 00004161
−32.5 0.02371374 0003090D −54.5 0.00188365 00003DB9
−33 0.02238721 0002DD95 −55 0.00177828 00003A45
−33.5 0.02113489 0002B48C −55.5 0.00167880 00003702
−34 0.01995262 00028DCE −56 0.00158489 000033EF
−34.5 0.01883649 0002693B −56.5 0.00149624 00003107
−35 0.01778279 000246B4 −57 0.00141254 00002E49
−35.5 0.01678804 0002261C −57.5 0.00133352 00002BB2
−36 0.01584893 00020756 −58 0.00125893 00002940
−36.5 0.01496236 0001EA49 −58.5 0.00118850 000026F1
−37 0.01412538 0001CEDC −59 0.00112202 000024C4
−37.5 0.01333521 0001B4F7 −59.5 0.00105925 000022B5
−38 0.01258925 00019C86 −60 0.001 000020C4
−38.5 0.01188502 00018572 −60.5 0.00094406 00001EEF
−39 0.01122018 00016FA9 −61 0.00089125 00001D34
−39.5 0.01059254 00015B18 −61.5 0.00084140 00001B92
−40 0.01 000147AE −62 0.00079433 00001A07
−40.5 0.00944061 00013559 −62.5 0.00074989 00001892
−41 0.00891251 0001240B −63 0.00070795 00001732
−41.5 0.00841395 000113B5 −63.5 0.00066834 000015E6
3−22
Table 3−4. Volume Adjust Gain Coefficient (Continued)
GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT) GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT)
−64 0.00063096 000014AC −86 5.01188E−05 000001A4
−64.5 0.00059566 00001384 −86.5 4.73152E−05 0000018C
−65 0.00056234 0000126D −87 4.46684E−05 00000176
−65.5 0.00053088 00001165 −87.5 4.21696E−05 00000161
−66 0.00050119 0000106C −88 3.98108E−05 0000014D
−66.5 0.00047315 00000F81 −88.5 3.75838E−05 0000013B
−67 0.00044668 00000EA3 −89 3.54814E−05 00000129
−67.5 0.00042170 00000DD1 −89.5 3.34966E−05 00000118
−68 0.00039811 00000D0B −90 3.16228E−05 00000109
−68.5 0.00037584 00000C50 −90.5 2.98538E−05 000000FA
−69 0.00035481 00000BA0 −91 2.81838E−05 000000EC
−69.5 0.00033497 00000AF9 −91.5 2.66072E−05 000000DF
−70 0.00031623 00000A5C −101 8.91250E−06 0000004A
−70.5 0.00029854 000009C8 −101.5 8.41396E−06 00000046
−71 0.00028184 0000093C −102 7.94328E−06 00000042
−71.5 0.00026607 000008B7 −102.5 7.49894E−06 0000003E
−72 0.00025119 0000083B −103 7.07946E−06 0000003B
−72.5 0.00023714 000007C5 −103.5 6.68344E−06 00000038
−73 0.00022387 00000755 −104 6.30958E−06 00000034
−73.5 0.00021135 000006EC −104.5 5.95662E−06 00000031
−74 0.00019953 00000689 −105 5.62342E−06 0000002F
−74.5 0.00018837 0000062C −105.5 5.30884E−06 0000002C
−75 0.00017783 000005D3 −106 5.01188E−06 0000002A
−75.5 0.00016788 00000580 −106.5 4.73152E−06 00000027
−76 0.00015849 00000531 −107 4.46684E−06 00000025
−76.5 0.00014962 000004E7 −107.5 4.21696E−06 00000023
−77 0.00014125 000004A0 −108 3.98108E−06 00000021
−77.5 0.00013335 0000045E −108.5 3.75838E−06 0000001F
−78 0.00012589 00000420 −109 3.54814E−06 0000001D
−78.5 0.00011885 000003E4 −109.5 3.34966E−06 0000001C
−79 0.00011220 000003AD −110 3.16228E−06 0000001A
−79.5 0.00010593 00000378 −110.5 2.98538E−06 00000019
−80 0.0001 00000346 −111 2.81838E−06 00000017
−80.5 9.44060E−05 00000317 −111.5 2.66072E−06 00000016
−81 8.91250E−05 000002EB −112 2.51188E−06 00000015
−81.5 8.41396E−05 000002C1 −112.5 2.37138E−06 00000013
−82 7.94328E−05 0000029A −113 2.23872E−06 00000012
−82.5 7.49894E−05 00000275 −113.5 2.11348E−06 00000011
−83 7.07946E−05 00000251 −92 2.51188E−05 000000D2
−83.5 6.68344E−05 00000230 −92.5 2.37138E−05 000000C6
−84 6.30958E−05 00000211 −93 2.23872E−05 000000BB
−84.5 5.95662E−05 000001F3 −93.5 2.11348E−05 000000B1
−85 5.62342E−05 000001D7 −94 1.99526E−05 000000A7
−85.5 5.30884E−05 000001BD −94.5 1.88365E−05 0000009E
3−23
Table 3−4. Volume Adjust Gain Coefficient (Continued)
GAIN (dB) GAIN (FLOAT) GAIN (COEFFICIENT) GAIN (dB) GAIN (GLOAT) GAIN (COEFFICIENT)
−95 1.77828E−05 00000095 −122.5 7.49894E−07 00000006
−95.5 1.67880E−05 0000008C −123 7.07946E−07 00000005
−96 1.58489E−05 00000084 −123.5 6.68344E−07 00000005
−96.5 1.49624E−06 0000007D −124 6.30958E−07 00000005
−97 1.41254E−05 00000076 −124.5 5.95662E−07 00000004
−97.5 1.33352E−05 0000006F −125 5.62342E−07 00000004
−98 1.25893E−05 00000069 −125.5 5.30884E−07 00000004
−98.5 1.18850E−05 00000063 −126 5.01188E−07 00000004
−99 1.12202E−05 0000005E −126.5 4.73152E−07 00000003
−99.5 1.05925E−05 00000058 −127 4.46684E−07 00000003
−100 0.00001 00000053 −127.5 4.21696E−07 00000003
−100.5 9.44060E−06 0000004F −128 3.98108E−07 00000003
−114 1.99526E−06 00000010 −128.5 3.75838E−07 00000003
−114.5 1.88365E−06 0000000F −129 3.54814E−07 00000002
−115 1.77828E−06 0000000E −129.5 3.34966E−07 00000002
−115.5 1.67880E−06 0000000E −130 3.16228E−07 00000002
−116 1.58489E−06 0000000D −130.5 2.98538E−07 00000002
−116.5 1.49624E−06 0000000C −131 2.81838E−07 00000002
−117 1.41254E−06 0000000B −131.5 2.66072E−07 00000002
−117.5 1.33352E−06 0000000B −132 2.51188E−07 00000002
−118 1.25893E−06 0000000A −132.5 2.37138E−07 00000001
−118.5 1.18850E−06 00000009 −133 2.23872E−07 00000001
−119 1.12202E−06 00000009 −133.5 2.11348E−07 00000001
−119.5 1.05925E−06 00000008 −134 1.99526E−07 00000001
−120 0.000001 00000008 −134.5 1.88365E−07 00000001
−120.5 9.44080E−07 00000007 −135 1.77828E−07 00000001
−121 8.91250E−07 00000007 −135.5 1.67880E−07 00000001
−121.5 8.41396E−07 00000007 −136 1.58489E−07 00000001
−122 7.94328E−07 00000006
3.6.1.1 Soft Volume Adjustment Range Limitations
When the 2048 sample transition time is selected for the S-curve volume transition, the full − to 24-dB adjustment
range is available. All possible values but one in the signed 28-bit (5.23 format) volume level command range are
valid volume level selections. The one exception is the maximum negative volume level command 0x08000000. This
value is illegal and if used, could result in erratic behavior that requires a reset to the part to correct.
When the 4096 sample transition time is selected, the upper two bits of the 28-bit volume command cannot be used.
This means that the valid volume level command range is reduced to a maximum positive value of 0x1FFFFFF
(12 dB) and a maximum negative value of 0x0E000000 (also 12 dB, but with a 180° phase inversion of the audio
signal). Values above these maximum levels could result in erratic behavior that requires a reset to the part to correct.
Although the volume boost for the 4096 sample transition time is limited to 12 dB, volume boost can be realized
elsewhere in the processing signal flow, such as in the input crossbar mixers, the biquad filters in the three monaural
channels, or the biquad filters in the effects block.
3.6.1.2 Soft Volume Transitions and Concurrent I2C Read Transactions
I2C read transactions at subaddresses 0x01 through 0xD1 are not allowed during volume level transitions, as read
activity during volume level transitions could result in erroneous data being output. If it is required to read subaddress
3−24
data that falls in the subaddress range 0x01 through 0xD1 after issuing an I2C command to change the volume level
on one of the three monaural channels, the busy bit at subaddress 0xFF must be monitored to determine when the
volume activity has ceased and it is safe to resume I2C read activity at subaddresses 0x01 through 0xD1. A value
of 0 in the least significant bit of the byte output upon reading subaddress 0xFF signifies that all volume transition
activity has completed.
3.6.2 Loudness Compensation
Loudness compensation employs a single, coefficient-programmable, biquad filter and a function block
f(volume_setting), whose output is only a function of the volume control setting. The biquad filter input is the channel
processed audio data stream that also feeds the volume gain-control mixer. The biquad output feeds a gain control
mixer whose other input is the volume control setting after processing by the function block f(volume setting).
Loudness compensation then allows a given spectral segment of the audio data stream (as determined by the biquad
filter coefficients) to be given a delta adjustment in volume as determined by the programmable function block
f(volume_setting).
The output of the function block f(volume_setting) can be expressed in terms of the programmable I2C coefficients
as:
f(volume_setting) = [(volume_setting)LG x2LO xG] +O
where: LG = logarithmic gain = 5.23 format number
LO = logarithmic offset = 25.23 format number
G = gain = 5.23 format number
O = offset = 25.23 format number
If LG = 0.5, LO = 0.0, G = 1.0, and O = 0.0, f(volume setting) becomes:
f(volume_setting) = volume_setting
The output of the soft volume/loudness compensation block for the above case would be:
audioOut = [audioIn × volume_setting] + [audioIn × F(s)Biquad × volume_setting ]
If a given monaural channel is set up as in the above example, a true mute is not obtained when a mute command
is issued for the monaural channel. A mute command results in a volume control setting of 0.0. LG and LO operate
in logarithmic space and the logarithm of 0.0 is − . Therefore (volume_setting) and 2 should both be of value
0. However, the function block f(volume_setting) approximates logarithmic arithmetic and a consequence of the
mathematical approximations used is that the function block can output a non-zero value for an input volume setting
of 0.0. For f(volume_setting) = volume_setting, a volume_setting value of 0.0 results in the function block outputting
a gain coefficient that cuts the output of the biquad filter by approximately 90 dB. If true muting is required, it can be
achieved by setting G = 0.0 after the volume control setting has softly transitioned to 0.0.
3−25
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxx l
s
ba1
b0
b1
b2
a1
a2
28
28
28
28
28
z−1 z−1
z−1
z−1
All biquad gain coefficients 5.23 numbers.
48 Loudness Compensation
4848
AUDIO OUTAUDIO IN
28
48
a2
b0
b1
b2
O
G
CH 1 = 0xA3
CH 2 = 0xA8
CH 3 = 0xAD
LO Is A 25.23 Format Number
CH 1 = 0xA4
CH 2 = 0xA9
CH 3 = 0xAE
G Is A 5.23 Format Number
CH 1 = 0xA5
CH 2 = 0xAA
CH 3 = 0xAF
O Is A 25.23 Format Number
SSlave Addr Ack Sub-Addr Ack 00000000 Ack 00000000 Ack Ack xxxxxxxx Ack LO MSBs
xxxxxxx
m
s
b
xxxxxxxx xxxxxxxx xxxxxxxl
s
bAck LO LSBs
xxxxxxxx
2LO
CH 1 = 0xA2
CH 2 = 0xA7
CH 3 = 0xAC
LG Is A 5.23 Format Number
LOUDNESS
BiQuad Coefficients
CH 1 = 0xA6
CH 2 = 0xAB
CH 3 = 0xB0
LG
( ) LG
Commanded 5.23
Volume Command
S Slave Addr Sub-Addr xxxxxxxx xxxxxxxx xxxxxxxx VCS
xxxxxxx v
c
s
0xF1
Original
Volume Commanded
Volume
VCS = 0 ttransition = 2048/FS
VCS = 1 ttransition = 4096/FS
SOFT VOLUME
ttransition
I2C Master Mode
I2C Slave Mode
V olume Commands − GPIO Terminals
GPIO0 − Volume Up − CH1 / CH2
GPIO1 − Volume Down − CH1 / CH2
GPIO2 − Volume Up − CH3
GPIO3 − Volume Down − CH1 / CH2
SSlave Addr Ack Sub-Addr xxxxxxxx xxxxxxxx xxxxxxxx xxxxx CCC
HHH
321
Mute / Unmute Command
0xF0
CH 1 = 0xF2
CH 2 = 0xF3
CH 3 = 0xF4
Mute Command = 1 => 0x0000000 Volume Control
Volume
Command
Volume Command
(5.23 Precision)
Note: Negative Volume Commands Result In Audio Polarity Inversion
= x16 BoostMAX
= 1/223 CutMAX (LSB)
= Zero Output For 0x0000000 Volume Control
Volume
Commands
I2C Bus
Ack Ack Ack
SSlave Addr Ack Sub-Addr Ack Ack Ack Ack Ack G
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
m
s
bxxx0000
m
s
bxxx0000
SSlave Addr Ack Sub-Addr Ack 00000000 Ack 00000000 Ack Ack xxxxxxxx Ack 0 MSBs
xxxxxxx
m
s
b
xxxxxxxx xxxxxxxx xxxxxxxl
s
bAck 0 LSBs
xxxxxxxxAck Ack Ack
Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxx l
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Ack AckAck Ack Ack Ack
Ack Ack Ack Ack Ack
SSlave Addr Ack Sub-Addr Ack Ack Ack Ack Ack
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
m
s
bxxx0000 Σ
Σ
Σ
Figure 3−16. Detailed Block Diagram—Soft Volume and Loudness Compensation
3−26
If G is set to 0.0 and O is set to 0.0, loudness compensation is disabled. If G is set to 0.0 and O is set to 1.0, the
biquad-filtered audio is directly added to the volume level adjusted audio. Typically, LG and LO are used to derive
the desired loudness compensation function, G is used to turn loudness compensation on and off, and O is used to
enable and disable the biquad filter output when automatic volume tracking is turned off.
3.6.3 Time Alignment and Reverb Delay Processing
The TAS3103 provides delay line facilities at two locations in the TAS3103—in the 3D effects block (reverb delay),
and at the output mix block (delay). There are three reverb delay blocks, one for each monaural channel, and these
delay elements are typically used in implementing sound spatiality, a single mix reverberation, and other sound
effects. There are also three delay blocks, again one for each monaural channel, and these delay elements are
typically used for temporal channel alignment. The delay line facilities are implemented using a single 4K (4096) x
16-bit RAM resource. Each delay element implemented provides a one-sample delay (1/FS). The size of each delay
line can be programmed via the I2C bus, or set by the EEPROM download in the I2C master mode. The only restriction
is that the total delay line resources programmed cannot exceed the capacity of the 4K x 16-bit memory bank.
Figure 3−17 illustrates how delay line structures are established within the 4K RAM memory. As seen in Figure 3−17,
each delay line immediately begins where the previously implemented delay line leaves off. The actual placement
of the pointers is computed by the resident microprocessor; the user need only enter the delay value required.
However, the following four points must be kept in mind in programming the lengths of the delay lines.
1. Each delay line of length L requires L+1 memory sample spaces
2. Reverb delay lines require three memory words (48 bits) to implement a single delay element as the reverb
delay line operates in the 48-bit word structure of the digital audio processor (DAP).
3. Delay lines require two memory words (32 bits) to implement a single delay element as the delay lines
operate on the mixer outputs after 32-bit truncation has been applied,
4. There are five words of reserved memory space that must be preserved.
In Figure 3−17, the terms PCHx refer to delay line size assignments for the delay lines. The terms PRx see the delay
line size assignments for the reverb delay lines. For the example shown in Figure 3−17, the delay for channel 3 is
set to 0 and the reverberation delay for channel 2 is set to 0. From these zero-valued settings, it is seen that a delay
of 0 requires the use of one delay element. For the case of a delay of 0, the write transaction into the single delay
element takes place before the read from the single delay element, thereby achieving a net delay of 0.
In making the delay line length assignments, the only restriction is that the 4K memory resource not be exceeded.
Figure 3−18 illustrates the computations required to determine the maximum delay line length obtainable for five
cases:
1. One reverb delay line
2. One delay line
3. Three equal length reverb delay lines but no delay lines
4. Three equal length delay lines but no reverb delay lines
5. Three equal length delay lines and three equal length reverb delay lines.
3−27
Delay
Channel 1
Delay
Channel 2
Delay Channel 3 (PCH3 = 0)
Reserved
Reverb
Channel 1
Reserved
Reverb
Channel 2 (PR2 = 0)
Reverb
Channel 3
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
2(PCH1 + PCH2 + 4) + 3(PR1 + PR3 + 3)
Start
2(PCH1 + PCH2 + 4) + 3(PR1 + PR3 + 4) − 1
Stop
0
Start
2(PCH1 + 1) − 1
Stop
Delay Memory Allocation − CH1
(CH 1 Delay Assignment = PCH1)
2(PCH1 + 1)
Start
2(PCH1 + PCH2 + 2) − 1
Stop
Delay Memory Allocation − CH2
(CH 2 Delay Assignment = PCH2)
2(PCH1 + PCH2 + 2)
Start
2(PCH1 + PCH2 + 2) + 1
Stop
Delay Memory Allocation − CH3
(CH 3 Delay Assignment = PCH3 = 0)
2(PCH1 + PCH2 + 3)
Start
2(PCH1 + PCH2 + 3) + 1
Stop
Delay Memory Allocation − Reserved
(Reserved Delay Assignment = 0)
2(PCH1 + PCH2 + 4)
Start
Stop
Reverb Delay Memory Allocation − CH1
(CH 1 Reverb Delay Assignment = PR1)
Start
Stop
2(PCH1 + PCH2 + 4) + 3(PR1 + 1) − 1
2(PCH1 + PCH2 + 4) + 3(PR1 + 1)
2(PCH1 + PCH2 + 4) + 3(PR1 + 1) + 2
Reverb Delay Memory Allocation − CH2
(CH 2 Reverb Delay Assignment = PR2 = 0)
Reverb Delay Memory Allocation − Reserved
(Reserved Reverb Delay Assignment = 0)
Start
Stop
Reverb Delay Memory Allocation − CH3
(CH 3 Reverb Delay Assignment = PR3)
2(PCH1 + PCH2 + 4) + 3(PR1 + PR3 + 3) − 1
2(PCH1 + PCH2 + 4) + 3(PR1 + 2)
Figure 3−17. Delay Line Memory Implementation
3−28
PReverb_max_CH2 +[(4096 *5*2*2*2*3*3) B3] *1+1358 2
3³1358
CASE 1: Maximum Length − One Reverb Delay Line
CH3CH2CH1 CH3CH1
PDelay_max_CH3 +[(4096 *5*2*2*3*3*3) B2] *1+2038
CASE 2: Maximum Length − One Delay Line
PReverb_max_CH1, CH2, CH3 +|{[(4096 *5*2*2*2) B3] +1361 2
3³1361} B3| +453 2
3*1+452 2
3³452
CASE 3: Maximum Length − Three Equal Length Reverb Delay Lines
PDelay_max_CH1, CH2, CH3 +|{[(4096 *5*3*3*3) B2] +2041} B3| *1+679 1
3³679
CASE 4: Maximum Length − Three Equal Length Delay Lines
PDelayńReverb_max_CH1, CH2, CH3 +(4096 *5) +4091 +3[2(D )1)] )3[3(R )1)] Where D and R +No. delay and reverb elementsńChannel
CASE 5: Maximum Length − Three Equal Length Delay Lines and Three Equal Length Reverb Delay Lines
Reserved
CH3
Reverb
CH2CH1CH2CH1
Delay L length
requires L + 1
delay elements
Reserved ReverbDelay L length
requires L + 1
delay elements
Reserved
CH3
Delay
CH2CH1
L length
requires L + 1
delay elements
Reserved
CH3
Reverb
CH2CH1
L length
requires L + 1
delay elements
Reserved No. 16-bit words
per delay element
3 Channels L length
requires L + 1
delay elements
R takes 3
2the memory D does, so there should be three D elements for every two R elements.
Therefore, D +3
2R
4091 +3[2(3
2R)1)] )3[3(R )1)] ³R+226 4
9³226
D+3
2R³D+339
Figure 3−18. Maximum Delay Line Lengths
3−29
Commands to reconfigure the reverb delay and delay lines should not be issued as standalone commands. When
new delay assignments are issued, the content of the 4K memory resource used to implement the delay lines is not
flushed. It takes a finite time for the memory to refill with samples in correspondence with its new assignments, and
until this time has elapsed, audio samples can be output on the wrong channel. For this reason, it is recommended
that all delay line assignment commands be preceded by a mute command, and followed by an unmute command.
CAUTION: There are no error flags issued if the delay line assignments exceed the
capacity of the 4K memory resource, but undefined and erratic behavior results if the
delay line capacity is exceeded.
3.7 Dynamic Range Control (DRC)
The DRC provides both compression and expansion capabilities over three separate and definable regions of audio
signal levels. Programmable threshold levels set the boundaries of the three regions. Within each of the three regions
a distinct compression or expansion transfer function can be established and the slope of each transfer function is
determined by programmable parameters. The offset (boost or cut) at the two boundaries defining the three regions
can also be set by programmable offset coefficients. The DRC implements the composite transfer function by
computing a 5.23 format gain coef ficient from each sample output from the rms estimator. This gain coefficient is then
applied to a mixer element, whose other input is the audio data stream. The mixer output is the DRC-adjusted audio
data.
There ar e two distinct DRC blocks in the TAS3103. One DRC services two monaural channels—CH1 and CH2. This
DRC computes rms estimates of the audio data streams on both CH1 and CH2. The two estimates are then compared
on a sample-by-sample basis, and the larger of the two is used to compute the compression/expansion gain
coefficient. The gain coef ficient is then applied to both CH1 and CH2 audio. The other DRC services only monaural
channel CH3. This DRC also computes an rms estimate of the signal level on CH3, and this estimate is used to
compute the compression/expansion gain coefficient applied to CH3 audio.
Figure 3−19 shows the positioning of the DRC block in the TAS3103 processing flow. As seen, the DRC input can
come from either before or after soft volume control and loudness processing, or can be a weighted combination of
both. The mixers feeding the DRC control the selection of which audio data stream or combination thereof, is input
into the DRC. The mixers also provide a means of gaining or attenuating the signal level into the DRC. If the DRC
setup is referenced to the 0-dB level at the TAS3103 input, the coefficient values for these mixers must be taken into
account. Discussions and examples that follow further explore the role the mixers play in setting up the transfer
function of the DRC.
Channel
BiQuad
Filter Bank
DRC-Derived
Gain Coefficient
From
Effects
Block
Base
and
Treble
Base and Treble
Bypass
Σ
Soft
Volume
Loudness
Σ Σ
DRC Bypass
DRC
DRC
Input Mixer
DRC
Input Mixer
Σ
CH 1/2 DRC Only
Figure 3−19. DRC Positioning in TAS3103 Processing Flow
3−30
Figure 3−20 illustrates a typical DRC transfer function.
k2
T2
k1
k0
T1
O1
O2
DRC Input Level
DRC − Compensated Output
1:1 Transfer Function
Implemented Transfer Fucntion
Region
0Region
1Region
2
Figure 3−20. Dynamic Range Compression (DRC) Transfer Function Structure
The three regions shown in Figure 3−20 are defined by three sets of programmable coefficients:
Thresholds T1 and T2—define region boundaries.
Offsets O1 and O2—define the DRC gain coefficient settings at thresholds T1 and T2 respectively.
Slopes k0, k1, and k2—define whether compression or expansion is to be performed within a given region.
The magnitudes of the slopes define the degree of compression or expansion to be performed.
The three sets of parameters are all defined in logarithmic space and adhere to the following rules:
The maximum input sample into the DRC is referenced at 0 dB. All values below this maximum value then
have negative values in logarithmic (dB) space.
The samples input into the DRC are 32-bit words and consist of the upper 32 bits of the 48-bit word format
used by the digital audio processor (DAP). The 48-bit DAP word is derived from the 32-bit serial data
received at the serial audio receive port by adding 8 bits of headroom above the 32-bit word and 8 bits of
computational precision below the 32-bit word. If the audio processing steps between the SAP input and
the DRC input result in no accumulative boost or cut, the DRC would operate on the 8 bits of headroom and
the 24 MSBs of the audio sample. Under these conditions, a 0-dB (maximum value) audio sample
(0x7FFFFFFF) is seen at the DRC input as a –48-dB sample (8 bits x −6.02 dB/bit = −48 dB).
Thresholds T1 and T2 define, in dB, the boundaries of the three regions of the DRC, as referenced to the
rms value of the data into the DRC. Zero valued threshold settings reference the maximum valued rms input
into the DRC and negative valued thresholds reference all other rms input levels. Positive valued thresholds
have no physical meaning and are not allowed. In addition, zero valued threshold settings are not allowed.
Although the DRC input is limited to 32-bit words, the DRC itself operates using the 48-bit word format of the DAP.
The 32-bit samples input into the DRC are placed in the upper 32 bits of this 48-bit word space. This means that the
threshold settings must be programmed as 48-bit (25.23 format) numbers.
CAUTION: Zero valued and positive valued threshold settings are not
allowed and cause unpredictable behavior if used.
Offsets O1 and O2 define, in dB, the attenuation (cut) or gain (boost) applied by the DRC-derived gain
coefficient a t the threshold points T1 and T2 respectively. Positive offsets are defined as cuts, and thus boost
or gain selections are negative numbers. Offsets must be programmed as 48-bit (25.23 format) numbers.
Slopes k0, k1, and k2 define whether compression or expansion is to be performed within a given region,
and the degree of compression or expansion to be applied. Slopes are programmed as 28-bit (5.23 format)
numbers.
3−31
3.7.1 DRC Implementation
Figure 3−21 shows the three elements comprising the DRC: (1) an rms estimator, (2) a compression/expansion
coefficient computation engine, and (3) an attack/decay controller.
RMS estimator—This DRC element derives an estimate of the rms value of the audio data stream into the
DRC. For the DRC block shared by CH1 and CH2, two estimates are computed—an estimate of the CH1
audio data stream into the DRC, and an estimate of the CH2 audio data stream into the DRC. The outputs
of the two estimators are then compared, sample-by-sample, and the larger valued sample is forwarded
to the compression/expansion coefficient computation engine.
Two programmable parameters, ae and (1 – ae), set the effective time window over which the rms estimate
is made. For the DRC block shared by CH1 and CH2, the programmable parameters apply to both rms
estimators. The time window over which the rms estimation is computed can be determined by:
twindow +*1
FSȏn(1 *ae)
Compression/expansion coefficient computation—This DRC element converts the output of the rms
estimator to a logarithmic number, determines the region that the input resides, and then computes and
outputs the appropriate coef ficient to the attack/decay element. Seven programmable parameters—T1, T2,
O1, O2, k0, k1, and k2—define the three compression/expansion regions implemented by this element.
Attack/decay control—This DRC element controls the transition time of changes in the coef ficient computed
in the compression/expansion coefficient computation element. Four programmable parameters define the
operation of this element. Parameters ad and 1 − ad set the decay or release time constant to be used for
volume boost (expansion). Parameters aa and 1 − aa set the attack time constant to be used for volume
cuts. The transition time constants can be determined by:
ta+*1
FSȏn(1 *aa) td+*1
FSȏn(1 *ad)
3−32
SSlave Addr Ack Sub-Addr 00000000 O1-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack Ack 00000000 Ack Ack Ack
xxxxxxxx O1-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
00000000 O2-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack 00000000 Ack Ack Ack
xxxxxxxx O2-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
CH1/CH2 = 0xB4
CH3 = 0xB9
SSlave Addr Ack Sub-Addr 00000000 T1-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack Ack 00000000 Ack Ack Ack
xxxxxxxx T1-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
00000000 T2-MSBits
xxxxxxx
m
s
bxxxxxxxx
Ack 00000000 Ack Ack Ack
xxxxxxxx T2-LSBits
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
CH1/CH2 = 0xB2
CH3 = 0xB7
SSlave Addr Ack Sub-Addr K0
Ack Ack Ack Ack Ack
K1
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
K2
Ack Ack Ack Ack
CH1/CH2 = 0xB3
CH3 = 0xB8
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
xxxxxxxx
m
s
bxxx0000
m
s
bxxx0000
m
s
bxxx0000
SSlave Addr Ack Sub-Addr aa
Ack Ack Ack Ack Ack
1−aa
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
ad
Ack Ack Ack Ack
CH1/CH2 = 0xB5
CH3 = 0xBA
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
xxxxxxxx
m
s
bxxx0000
m
s
bxxx0000
m
s
bxxx0000
1−ad
Ack Ack Ack Ack
xxxxxxxx xxxxxxxl
s
b
xxxxxxxx
m
s
bxxx0000
SSlave Addr Ack Sub-Addr 00000000 ae
xxxxxxx
m
s
bxxxxxxxx
Ack Ack 00000000 Ack Ack Ack
xxxxxxxx 1−ae
xxxxxxxx xxxxxxxl
s
b
Ack xxxxxxxx Ack Ack Ack
CH1/CH2 = 0xB1
CH3 = 0xB6
Cut
Attack / Decay Control
Volume
ta −1/[FS x ln(1−aa)]
td −1/[FS x ln(1−ad)]
ta
td
DRC-Derive
d
Gain Coeffic
ien
28
5.23 Format
5.23 Format
5.23 Format
25.23
Format
25.23
Format
K2
T2
K1
K0
T1
{
O1
{
O2
Compression / Expansion
Coefficient Computation
NOTE: Compression / Expansion / Compression Displayed
t
Window
−1/[F
S
x ln(1−ae)] Where F
S
= Audio Sample Frequency
ae and (1−ae) Set Time Window Over Which RMS Value is Computed
Applies to DRC Servicing CH1/CH2 Only
Comparator
RMS
Voltage
Estimator
RMS
Voltage
Estimator
5.23 Format
32
32
Audio Input
CH1 or CH3
Audio Input
CH2
Figure 3−21. DRC Block Diagram
3−33
3.7.2 Compression/Expansion Coefficient Computation Engine Parameters
There are seven programmable parameters assigned to each DRC block: two threshold parameters - T1 and T2, two
offset parameters - O1 and O2, and three slope parameters - k0, k1, and k2. The threshold parameters establish the
three regions of the DRC transfer curve, the offsets anchor the transfer curve by establishing known gain settings
at the threshold levels, and the slope parameters define whether a given region is a compression or an expansion
region.
The audio input stream into the DRC must pass through DRC-dedicated programmable input mixers. These mixers
are provided to scale the 32-bit input into the DRC to account for the positioning of the audio data in the 48-bit DAP
word and the net gain or attenuation in signal level between the SAP input and the DRC. The selection of threshold
values must take the gain (attenuation) of these mixers into account. The DRC implementation examples that follow
illustrate the effect these mixers have on establishing the threshold settings.
T2 establishes the boundary between the high-volume region and the mid-volume region. T1 establishes the
boundary between the mid-volume region and the low-volume region. Both thresholds are set in logarithmic space,
and which region is active for any given rms estimator output sample is determined by the logarithmic value of the
sample.
Threshold T2 serves as the fulcrum or pivot point in the DRC transfer function. O2 defines the boost (> 0 dB) or cut
(< 0 dB) implemented by the DRC-derived gain coefficient for an rms input level of T2. If O2 = 0 dB, the value of the
derived gain coefficient is 1.0 (0x00, 80, 00, 00 in 5.23 format). k2 is the slope of the DRC transfer function for rms
input levels above T2 and k1 is the slope of the DRC transfer function for rms input levels below T2 (and above T1).
The labeling of T2 as the fulcrum stems from the fact that there cannot be a discontinuity in the transfer function at
T2. The user can, however, set the DRC parameters to realize a discontinuity in the transfer function at the boundary
defined by T1. If no discontinuity is desired at T1, the value for the offset term O1 must obey the following equation.
O1No Discontinuity +|T1 *T2| k1 )O2 For ( |T1|w|T2|)
T1 and T2 are the threshold settings in dB, k1 is the slope for region 1, and O2 is the offset in dB at T2. If the user
chooses to select a value of O1 that does not obey the above equation, a discontinuity at T1 is realized.
Going down in volume from T2, the slope k1 remains in ef fect until the input level T1 is reached. If, at this input level,
the offset of the transfer function curve from the 1:1 transfer curve does not equal O1, there is a discontinuity at this
input level as the transfer function is snapped to the offset called for by O1. If no discontinuity is wanted, O1 and/or
k1 must be adjusted so that the value of the transfer curve at the input level T1 is offset from the 1:1 transfer curve
by the value O1. The examples that follow illustrate both continuous and discontinuous transfer curves at T1.
Going down in volume from T1, starting at the of fset level O1, the slope k0 defines the compression/expansion activity
in the lower region of the DRC transfer curve.
3.7.2.1 Threshold Parameter Computation
For thresholds,
TdB = −6.0206TINPUT = −6.0206TSUB_ADDRESS_ENTRY
If, for example, it is desired to set T1 = -64 dB, then the subaddressaddress entry required to set T1 to -64 dB is:
T1SUB_ADDRESS_ENTRY +*64
*6.0206 +10.63
From Figure 3−21, it can be seen that T1 is entered as a 48-bit number in 25.23 format. Therefore:
T1 = 10.63 = 0_1010.1010_0001_0100_0111_1010_111
= 0x00000550A3D7 in 25.23 format
3−34
3.7.2.2 Offset Parameter Computation
The offsets set the boost or cut applied by the DRC-derived gain coefficient at the threshold point. An equivalent
statement is that offsets represent the departure of the actual transfer function from a 1:1 transfer at the threshold
point. Offsets are 25.23 formatted 48-bit logarithmic numbers. They are computed by the following equation.
OINPUT +ODESIRED )24.0824 dB
6.0206
Gains or boosts are represented as negative numbers; cuts or attenuation are represented as positive numbers. For
example, to achieve a boost of 21 dB at threshold T1, the I2C coefficient value entered for O1 must be:
O1INPUT +–21 dB )24.0824 dB
6.0206 +0.51197555
+0.1000_0011_0001_1101_0100
+0x00000041886A in 25.23 format
More examples of offset computations are included in the following examples.
3.7.2.3 Slope Parameter Computation
In developing the equations used to determine the subaddress input value required to realize a given compression
or expansion within a given region of the DRC, the following convention is adopted.
DRC Transfer = Input Increase : Output Increase
If the DRC realizes an output increase of n dB for every dB increase in the rms value of the audio into the DRC, a
1:n expansion is being performed. If the DRC realizes a 1 dB increase in output level for every n dB increase in the
rms value of the audio into the DRC, a n:1 compression is being performed.
For 1:n expansion, the slope k can be found by:
k = n − 1
For n:1 compression, the slope k can be found by: k +1
n–1
In both expansion (1:n) and compression (n:1), n is implied to be greater than 1. Thus, for expansion:
k = n −1 means k > 0 for n > 1. Likewise, for compression, k +1
n–1 means −1 < k < 0 for n > 1. Thus, it appears that
k must always lie in the range k > −1.
The DRC imposes no such restriction and k can be programmed to values as negative as −15.999. To determine what
results when such values of k are entered, it is first helpful to note that the compression and expansion equations
for k are actually the same equation. For example, a 1:2 expansion is also a 0.5:1 compression.
0.5 Compression åk+1
0.5–1 +1
1 : 2 Expansion åk+2–1 +1
As can be seen, the same value for k is obtained either way. The ability to choose values of k less than −1 allows the
DRC to implement negative slope transfer curves within a given region. Negative slope transfer curves are usually
not associated with compression and expansion operations, but the definition of these operations can be expanded
to include negative slope transfer functions. For example, if k = −4
Compression Equation : k +*4+1
n*1ån+1
3å*0.3333 : 1 compression
Expansion Equation : k +*4+n–1 ån+–3 å1:*3 expansion
With k = −4, the output decreases 3 dB for every 1 dB increase in the rms value of the audio into the DRC. As the
input increases in volume, the output decreases in volume.
3−35
3.7.3 DRC Compression/Expansion Implementation Examples
The following four examples illustrate the steps that must be taken to calculate the DRC compression/expansion
coefficients for a specified DRC transfer function. The first example is an expansion/compression/expansion
implementation without discontinuities in the transfer function and represents a typical application. This first example
also illustrates one of the three modes of DRC saturation—32-bit dynamic range limitation saturation. The second
example is a compression/expansion/compression implementation. There is no discontinuity at T1 and 32-bit
dynamic range saturation occurs at low volume levels into the DRC. Example 2 also illustrates another form of DRC
saturation—maximum gain saturation. Example 3 illustrates the concept of infinite compression. Also, in Example 3,
32-bit dynamic range saturation occurs at low volume levels and the third form of DRC saturation is
illustrated—minimum gain saturation. Example 4 illustrates the ability of the DRC to realize a negative slope transfer
function. This example also illustrates two of the three forms of saturation—32-bit dynamic range saturation at low
volume levels and minimum gain saturation.
CAUTION:
The examples presented all exhibit some form of DRC saturation. This is not intended
to imply that all (or most) DRC transfer implementation exhibit some form of saturation.
Most practical implementations do not exhibit saturation. The examples are chosen to
explain by example the three types of saturation that can be encountered. But the
phenomenon of saturation can also be used to advantage in that it effectively provides
a means to implement more than three zones or regions of operation. If saturation is
intended, th e regions exhibiting the transfer characteristic set by k0, k1, and k2 provide
three regions and the regions exhibiting saturation provide the additional regions of
operation.
3.7.3.1 Example 1—Expansion/Compression/Expansion Transfer Function With 32-Bit
Dynamic Range Saturation
For this example, the following transfer characteristics are chosen.
Threshold point 2: T2 = −26 dB, O2 = 30 dB
Threshold point 1: T1 = −101 dB, O1 = −7.5 dB
Region 0 slope: k0 = 0.05 1:1.05 Expansion
Region 1 slope: k1 = −0.5 2:1 Compression
Region 2 slope: k2 = 0.1 1:1.1 Expansion
The thresholds T1 and T2 are typically referenced, by the user, to the 0-dB signal level into the TAS3103. But to
determine the equivalent threshold point at the DRC input, it is necessary to take into account the processing gain
(or loss) between the TAS3103 SAP input and the DRC. Assume, as an example, the processing gain structure shown
in Figure 3−22. Inputting the data below the 8-bit headroom in the 48-bit DAP word and then routing only the upper
32 bits of the 48-bit word into the DRC, results in a 48-dB (8 bits x 6 dB/bit = 48 dB) attenuation of the signal level
into the DRC. Channel processing gain and use of the dedicated mixer into the DRC can revise this apparent 48-dB
attenuation in signal level into the DRC. In Figure 3−22, the 24 mixer gain into the DRC, coupled with a net channel
gain of 0 dB, changes the net 48-dB attenuation of the signal level into the DRC to a net attenuation of 24 dB.
For slopes:
Region 0 = 1:1.05 Expansion k0 = 1.05 − 1 = 0.05
= 00000.0000_1100_1100_1100_1100_110
= 0x0066666 in 5.23 format
Region 1 = 2:1 Compression k1 = 1/2 − 1 = -0.5
= 11111.1000_0000_0000_0000_0000_000
= 0xFC00000 in 5.23 format
Region 2 = 1:1.1 Expansion k2 = 1.1 − 1 = 0.1
= 00000.0001_1001_1001_1001_1001_100
= 0x00CCCCC in 5.23 format
3−36
SAP
Input
Port
Resolution
1
6
B
i
t
1
8
B
i
t
2
0
B
i
t
2
4
B
i
t
3
2
B
i
t
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
48-Bit
DAP
Word
40
39
0
8
7
Headroom
1
6
B
i
t
1
8
B
i
t
2
0
B
i
t
2
4
B
i
t
3
2
B
i
t
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
48-Bit
DAP
Word
47
44
43
0
8
7
16
DRC
Channel 1
Processing
Resolution
Headroom
24
Channel 2
Processing
0-dB Gain
0-dB Gain
24
47
Figure 3−22. DRC Input Word Structure for 0-dB Channel Processing Gain
The resulting DRC transfer function for the above parameters is shown in Figure 3−23. The threshold T2 is set at the
DRC rms input level of −50 dB, which corresponds to a −26-dB rms signal level at the SAP input. The
DRC-compensated output at T2 is cut 30 dB with respect to the 1:1 transfer function (O2 = 30 dB). The threshold T1
is set at the DRC rms input level of −125 dB, which corresponds to a −101-dB rms signal level at the SAP input. The
DRC-compensated output at T1 is boosted by 7.5 dB with respect to the 1:1 transfer function (O1 = −7.5 dB).
For thresholds, TdB = -6.0206TINPUT = -6.0206TSUB_ADDRESS_ENTRY.
Therefore,
T2 = −26 dB −24 dB = −50 dB T2INPUT = −50/−6.0206 = 8.30482
= 01000.0100_1110_0000_1000_1010_111
= 0x000004270457 in 25.23 format
T1 = −101 dB −24 dB = −125 dB T1INPUT = −125/−6.0206 = 20.76205
= 010100.1100_0011_0001_0101_1011_010
= 0x00000A618ADA in 25/23 format
For offsets, OINPUT +1
6.0206ƪOdB )24.0824ƫ.
Therefore, O2INPUT +1
6.0206[30 )24.0824]+8.982892
+01000.1111_1011_1001_1110_1100_111
+0x0000047DCF67 in 25.23 format
3−37
O1INPUT +
1
6.0206[*7.5 )24.0824]+2.754277
+010.1100_0001_0001_1000_0100_110
+0x000001608C26 in 25.23 format
For input levels above the T2 threshold, the transfer function exhibits a 1:1.1 expansion. For input levels below T2,
the transfer function exhibits a 2:1 compression. Also, by definition, it is seen that there is no discontinuity in the
transfer function at T2. When the 2:1 compression curve in region 1 intersects the T1 threshold level, the output level
is 7.5 dB above the 1:1 transfer, an offset value identical to O1. Thus, there is no discontinuity at T1. For input levels
below T1, the transfer function exhibits a 1:1.05 expansion.
DRC rms input levels below −192 dB fall below the 32-bit precision of the DRC input (32 bits x −6 dB/bit = −192 dB).
This means that for levels below −192 dB, the DRC sees a constant input level of 0, and thus the computed DRC gain
coefficient remains fixed at the value computed when the input was at −192 dB. The transfer function then has a 1:1
slope below the –192-dB input level and is of fset from the 1:1 transfer curve by the of fset present at the –192-dB input
level.
The change from a 1:1.05 expansion to a 1:1 transfer below −192 dB is the result of 32-bit dynamic range saturation
at the DRC input. This type of saturation always occurs at a DRC input level of −192 dB. However, the input level at
which this type of saturation occurs depends on the channel gain. For this example, the saturation occurs at an input
level of −168 dB (−192-dB DRC input + 48 dB 8-bit headroom –24-dB mixer gain into DRC).
3.7.3.2 Example 2—Compression/Expansion/Compression Transfer Function With Maximum Gain
Saturation and 32-Bit Dynamic Range Saturation
The transfer function parameters for this example are given in Table 3−5. In setting the threshold levels it is assumed
that the n e t p r o c e s s i n g g a i n between the SAP input and the DRC is 0 dB. This is the same as Example 1 except that
the gain of the mixer into the DRC is set to 1 instead of 24. Because of the 8-bit headroom in the 48-bit DAP word,
the upper eight bits of the 32-bit DRC input word are zero, resulting in 0-dB signal levels at the SAP input being seen
as –48-dB signal levels at the DRC.
Figure 3−23 shows the DRC transfer function resulting from the parameters given in Table 3−5. At threshold level
T2 (−70 dB), O2 specifies a boost of 30 dB. But the signed 5.23 formatted gain coefficient only provides a 24-dB boost
capability (5 integer bits = Sxxxx 24×6 dB/octave = 24 dB). Internally, the DRC operates in 48-bit space and thus
computes a 30-dB boost. But the 5.23 formatted gain coefficient saturates or clips at 24 dB. The transfer curve thus
resides 24 dB above the 1:1 transfer curve at T2.
3−38
−220
−220
−210
−200
−190
−180
−170
−160
−150
−140
−130
−120
−110
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
+10
+20
+30
T1 T2
O2 = 30 dB
k2 = 1 : 1.1
O1 = −7.5 dB
k1 = 2 : 1
k0 = 1 : 1.05
DRC INPUT (dB)
DRC − Compensated Output (dB)
k = 1:1
(32-Bit Dynamic Range Saturation)
1:1 Transfer Function
Implemented Transfer Function
Slope change points
−210 −170−180−190−200 −140 −130 −120 −110 −100 −90−160 −150 −80 −70 −60 −50 −40 −30 −20 −10 0
Figure 3−23. DRC Transfer Curve—Example 1
3−39
The transfer curve remains a constant 24 dB above the 1:1 transfer curve for input levels above and below T2 until
the computed DRC gain coefficient falls within the dynamic range of a 5.23 format number. For input levels above
T2, k2 implements a 5:1 compression, At an input level 7.5 dB above T2 (−62.5 dB), the DRC transfer curve has risen
7.5/5 = 1.5 dB. The boost at this point is 30 dB - (7.5 dB - 1.5 dB) = 24 dB. The DRC has come out of gain saturation.
For input levels above −62.5 dB, the transfer curve exhibits 5:1compression.
Table 3−5. DRC Example 2 Parameters
DRC
PARAMETER REQUIRED (SPECIFIED) VALUE
(NET GAINSAP Input-DRC = 0 dB) I2C COEFFICIENT VALUE
T2 −22 dBInput −70 dBDRC −70/−6.0206= 11.626748
= 0x000005D0394825.23 Format
T1 −102 dBInput −150 dBDRC −150/−6.0206= 24.91446
= 0x00000C750D0925.23 Format
O2 −30 dB (−30 + 24.0824)/6.0206 = −0.982892
= 0xFFFFFF82309825.23 Format
O1 50 dB (50 + 24.0824)/6.0206 = 12.304820
= 0x00000627045825.23 Format
k2 5:1 Compression (1/5) − 1 = −0.8 = 0xF99999A5.23 Format
k1 1:2 Expansion 2 − 1 = 1 = 0x08000005.23 Format
k0 2:1 Compression (1/2) − 1 = −0.5 = 0xFC000005.23 Format
For input levels below T2, k1 implements a 1:2 expansion. With a 1:2 expansion in effect, the transfer curve has
dropped 12 dB at an input level 6 dB below T2. The boost at this level is 30 dB − (12 dB − 6 dB) = 24 dB. The DRC
gain coefficient has again come out of saturation. For input levels below −76 dB and above −150 dB, the transfer curve
exhibits a 1:2 expansion.
At T1 (-150 dB), the transfer curve is 50 dB below the 1:1 transfer curve. Since O1 = 50 dB, there is no discontinuity
in the transfer function. For inputs below −150 dB, k0 implements a 2:1 compression. The change from a 2:1
compression to a 1:1 transfer at −192 dB is due to 32-bit dynamic range saturation at the DRC input.
3.7.3.3 Example 3—1:1 Transfer/Infinite Compression With Minimum Gain Saturation, 32-Bit
Dynamic Range Saturation, and Equal Threshold Settings (T1=T2)
The DRC transfer function parameters for this example are given in Table 3−6. In addition to illustrating minimum gain
saturation, this example also illustrates the operation of the DRC when T1 and T2 are set equal.
3−40
O2 = − 30 dB
− 40
− 50
− 60
−70
− 80
− 90
− 100
− 110
− 120
− 130
− 140
− 150
− 160
− 170
− 180
− 190
− 200
− 210
− 220
O1 = 50 dB
k2 = 5:1
k1 = 1 : 2
− 230
− 240
− 250
− 260
− 270
− 280
− 290
k0 = 2 : 1
k = 1:1
(Gain Saturation)
k = 1:1
(32-Bit Dynamic
Range Saturation)
− 192 dB − 62.5 dB
− 76 dB
−290
T1
DRC INPUT (dB)
DRC − Compensated Output (dB)
Ideal Transfer Function (Unlimited Resolution)
Implemented Transfer Function
Slope change points
1:1 Transfer Function
−280 −270 −260 −250 −240 −230 −220 −210 −140−150−160−170−180−190−200 −130 −120 −110 −100 −90 −80 −70 −60 −50
T2
−24 dB
−24 dB
Figure 3−24. DRC Transfer Curve—Example 2
3−41
When T1 and T2 are set equal, the following questions arise:
If O1 O2, what roles do O1 and O2 have?
Which slope parameter, k0 or k1, has control of the transfer function for input levels below the common
threshold point?
Does k2 control the transfer function for inputs above the common threshold point?
This example addresses and answers those questions.
Table 3−6. DRC Example 3 Parameters
DRC
PARAMETER REQUIRED (SPECIFIED) VALUE
(NET GAINSAP Input-DRC = 0 dB) I2C COEFFICIENT VALUE
T1 and T2 −148.7 dBInput −172.7 dBDRC −172.7/−6.0206= 28.684849
= 0x00000E57A91F25.23 Format
O2 −20 dB (−20 + 24.0824)/6.0206 = 0.678072
= 0x00000056CB0F25.23 Format
O1 10 dB (10 + 24.0824)/6.0206 = 5.660964
= 0x000002D49A7825.23 Format
k2 :1 Compression (1/) − 1 = −1 = 0xF8000005.23 Format
k1 1:1 Transfer (1/1) − 1 = 0 = 0x00000005.23 Format
k0 2:1 Compression (1/2) − 1 = −0.5 = 0xFC000005.23 Format
For this example it is assumed that a net processing gain of 24 (24 dB) is realized from the SAP input and the DRC
(which is identical to the net processing gain assumed for Example 1). The 24 gain results in reducing the 8-bit
headroom in the 48-bit DAP word to a headroom of four bits. The 32-bit data into the DRC then resides in bits 27:0,
which means that the data level into the DRC is down 24 dB with respect to the input level at the SAP. Data input into
the TAS3103 (SAP) at a level of −148.7 dB is seen as a −148.7 dB − 24 dB = −172.7-dB signal at the DRC. T1 and
T2 must be set to −172.7 dB to realize a common threshold point at an incoming signal level of −148.7 dB.
Figure 3−25 shows the transfer function resulting from entering the I2C coefficient values given in Table 3−6. At the
T1/T2 threshold, a discontinuity of 30 dB is observed. For inputs above the threshold, the transfer curve is horizontal
(infinite compression), and the horizontal line starts 20 dB above the 1:1 transfer curve at the threshold point. Thus,
for cases when T1 = T2, O2 governs the offset with regard to the starting point of the transfer curve above the common
threshold point and k2 determines the slope of the transfer curve. For inputs below the common threshold point, the
transfer curve exhibits a 2:1 compression and starts 10 dB below the 1:1 transfer curve. Thus, O1 sets the offset at
the threshold point for the transfer curve at and below the common threshold point and k0 determines the slope of
this curve. Slope parameter k1 plays no role when T1 = T2. The value of 0 (1:1 transfer) used in this example for k1
could be changed to any value and the resulting transfer function would not be altered. The change from a 2:1
compression to a 1:1 transfer at −192 dB is due to 32-bit dynamic range saturation at the DRC input.
3−42
−220
−220
−210
−200
−190
−180
−170
−160
−150
−140
−130
−120
−110
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
T1/T2
DRC INPUT (dB)
DRC − Compensated Output (dB)
1:1 Transfer Function
Implemented Transfer Function
Slope change points
−210 −170−180−190−200 −140 −130 −120 −110 −100 −90−160 −150 −80 −70 −60 −50 −40 −30 −20 −10 0
k0 = 2:1
30 dB
−14.7 dB
O1 = 10 dB
O2 = −20 dB
−192 dB
k2 = :1
k = 1:1
(32-Bit Dynamic
Range Saturation)
k = 1:1
(Minimum Gain Saturation)
Figure 3−25. DRC Transfer Curve—Example 3
3−43
The horizontal slope of the transfer curve above the common threshold point does not remain horizontal indefinitely.
At a point 158 dB above the common threshold point (−14.7-dB DRC input level), the transfer function has gone from
a boost of 20 dB to a cut of 138 dB. A cut of 138 dB is the maximum cut possible for a 5.23 format gain coefficient
(2−23 23 octaves × 6 dB/octave = 138 dB). Thus, at a DRC input level of −14.7 dB, minimum gain saturation has
been reached. For inputs above this saturation point, the DRC-derived gain coefficient remains constant at the
minimum gain value (2−23), and the transfer function exhibits a 1:1 transfer slope.
3.7.3.4 Example 4—Expansion/Cut/Expansion With Gain Saturation and 32-Bit Dynamic Range
Saturation
The three previous examples restricted the slope factor k to lie in the range k −1. This example illustrates the transfer
characteristic obtained using a value of k less than −1. For this example it is assumed that the net processing gain
into the DRC is 0 dB. This means that the 8-bit headroom in the 48-bit DAP processing word structure does not contain
data. Since the DRC receives the upper 32 bits of this 48-bit word, data at the DRC is down 48 dB (8 bits x 6 dB/ bit
= 48 dB) with respect to the signal level at the SAP input (TAS3103 input). The transfer function parameters for this
example are given in Table 3−7. Figure 3−26 shows the transfer function resulting from entering the I2C coefficient
values given in Table 3−7.
At the threshold point T2 (−70 dB), the transfer function is 100 dB below the 1:1 transfer slope (O2 = 100 dB). For
input levels above T2, the transfer function exhibits a 1:1.4 expansion. For input levels below T2, the transfer function
exhibits a negative slope; for every dB the input decreases, the output increases by 1 dB. At an input level 62 dB below
T2 (−132 dB), the transfer curve has risen 62 dB, for a net boost of 124 dB. The transfer curve at this input level is
24 dB above the 1:1 transfer curve. This boost value puts the DRC-derived gain coefficient into gain saturation. For
input levels below −132 dB, the gain coef ficient remains constant at maximum gain and the transfer function exhibits
a 1:1 transfer slope, parallel to the 1:1 transfer curve but 24 dB above it.
At T1 (-150 dB), the transfer curve snaps back to the 1:1 transfer curve since O1 = 0 dB. The DRC gain coefficient
is no longer in gain saturation and for inputs below −150 dB, the transfer function exhibits a 1:1.5 expansion. The
change from a 1:1.5 expansion to a 1:1 transfer below −192 dB is the result of 32-bit dynamic range saturation.
3−44
−220
−220
−210
−200
−190
−180
−170
−160
−150
−140
−130
−120
−110
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
+10
+20
+30
T1 T2
DRC INPUT (dB)
DRC − Compensated Output (dB)
1:1 Transfer Function
Implemented Transfer Function
Slope change points
−210 −170−180−190−200 −140 −130 −120 −110 −100 −90−160 −150 −80 −70 −60 −50 −40 −30 −20 −10 0
k2 = 1:1.4
k = 1:1
(32-Bit Dynamic
Range Saturation)
k0 = 1:1.5
k = 1:1
Gain Saturation)
k1 = 1:−1
−132 dB
−192 dB
O2 = 100 dB
O1 = 0 dB
Figure 3−26. DRC Transfer Curve—Example 4
3−45
Table 3−7. DRC Example 4 Parameters
DRC
PARAMETER REQUIRED (SPECIFIED) VALUE
(NET GAINSAP Input-DRC = 0 dB) I2C COEFFICIENT VALUE
T2 −22 dBInput −70 dBDRC −70/−6.0206= 11.626748
= 0x000005D0394825.23 Format
T1 −102 dBInput −150 dBDRC −150/−6.0206= 24.91446
= 0x00000C750D0925.23 Format
O2 100 dB (100 + 24.0824)/6.0206 = 20.609640
= 0x00000A4E08B025.23 Format
O1 0 dB (0 + 24.0824)/6.0206 = 4.000000
= 0x00000200000025.23 Format
k2 1:1.4 Expansion 1.4 − 1 = 0.4 = 0X03333335.23 Format
k1 1:−1 T ransfer (1/−1) − 1 = −1 −1 = −2 = 0XF0000005.23 Format
k0 1:1.5 Expansion 1.5 − 1 = 0.5 = 0x04000005.23 Format
3.8 Spectrum Analyzer/VU Meter
The TAS3103 contains an I2C bus programmable function block that can serve as either a spectrum analyzer or a
volume unit (VU) meter. Figure 3−26 shows the structure of this function block and lists the I2C subaddress of the
parameters that control it.
The block consists of 10 biquad filters, each followed by an rms estimator and a logarithmic converter. Two nodes
provide input to the block, with each node servicing five of the 10 biquad filters. Audio from input node s can either
come exclusively from channel 1, channel 2, channel 3, or from a gain-weighted combination of these channels. Audio
from input node t can also come exclusively from either channel 1, channel 2, or channel 3, or from a gain-weighted
combination of these channels. The spectrum analyzer then can be used to divide the audio frequency band into ten
frequency bins to examine the spectrum of the audio data stream on channel 1, channel 2, channel 3, or any
combination of these channels. The spectrum analyzer can also be used to divide the audio frequency band into five
frequency bins to examine the spectral content of two of the channels independently.
The VU meter is a special case of the spectrum analyzer that uses only the outputs from biquad 5 and biquad 6.
Typically, for the VU meter, one channel would be routed to biquad 5 (node s) and a different channel would be routed
to biquad 6 (node t). Each biquad filter would be assigned a band pass transfer function that encompasses most of
the audio band, or the filter could be configured as a pass-through device to see the full spectral band. The two outputs
then would be a measure of the energy on the two channels. Other options for the VU meter are also available. For
example, by properly setting the coefficients on biquad 5 and biquad 6, the concurrent measurement of bass and
treble volume levels on a single channel could be made.
Mixer and summation elements preceding the two input nodes s and t provide a means of adjusting the spectrum
analyzer and VU meter outputs relative to the incoming audio data stream. The spectrum analyzer and VU meter
outputs are unsigned 5.3 format base 2 logarithmic numbers. The integer part of the number designates the most
significant bit (in the 48-bit digital audio processor − DAP − word) occupied by the magnitude of the rms estimate of
the biquad filter output. A value of 31 means the magnitude of the rms estimate occupies bit 47 of the 48-bit DAP word
(bit 48 is the sign bit, and using the absolute value of the biquad filter output in determining the rms estimate makes
this bit always 0 in value). A value of 30 means the magnitude of the rms estimate occupies bit 46 and this pattern
continues with a value of 1 signifying the magnitude of the rms estimate occupies bit 17. A value of 0 signifies that
the magnitude of the rms estimate is below bit 17. The fractional digits in the 5.3 formatted number are simply the
three bits below the most significant data bit. If the rms estimate lies below bit 16 of the 48-bit DAP word, the spectrum
analyzer/VU meter output is 0.0. Figure 3−27 gives examples of logarithmic outputs for different 48-bit rms estimate
values.
3−46
BiQuad 1
BiQuad 2
BiQuad 3
BiQuad 4
BiQuad 5
BiQuad 6
BiQuad 7
BiQuad 9
BiQuad 10
Node
t
RMS Voltage
Estimator
Sub-Address Decoder
Spectrum Analyzer / VU Meter
BiQuad 8
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
RMS Voltage
Estimator
I2C Bus
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Mixer Gain Coefficient
Sub-Address Format
BiQuad Filter Coefficients Sub-Address Format
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
a1
a2
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack b0
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack b1
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack b2
Sub-Addresses 0xBC (BiQuad 1) − 0xC5 (BiQuad 10)
G
Mix:
o
to
r
Sub-Address 0x84
GMix: o to s Sub-Address 0x85
GMix: p to r Sub-Address 0x86
GMix: p to t Sub-Address 0x87
GMix: q to r Sub-Address 0x88
GMix: r to s & t Sub-Address 0x89
s
Node
t
Σ
Σ
Σ
GMix: o to s
GMix: r to s & t
GMix: o to r
Node o
Channel 1
Node r
GMix: p to t
GMix: p to r
Node p
Channel 2
GMix: q to r
Node q
Channel 3
S Slave Addr Ack Sub-Addr Ack xxxxx.xxx Ack
Spectrum Analyzer Outputs Sub-Address Format
BiQuad 1
Sub-Address 0xFD
xxxxx.xxx Ack BiQuad 2
xxxxx.xxx Ack BiQuad 3
xxxxx.xxx Ack BiQuad 4
xxxxx.xxx Ack BiQuad 5
xxxxx.xxx Ack BiQuad 6
xxxxx.xxx Ack BiQuad 7
xxxxx.xxx Ack BiQuad 8
xxxxx.xxx Ack BiQuad 9
xxxxx.xxx Ack BiQuad 10
S Slave Addr Ack Sub-Addr Ack xxxxx.xxx Ack
VU Meter Outputs
Sub-Address Format
VU Meter
Output 1
(BiQuad 5)
Sub-Address 0xFE
xxxxx.xxx Ack VU Meter
Output 1
(BiQuad 6)
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
RMS Voltage Estimator Coefficients
Sub-Address Format
xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
asa
1−asa
Sub-Address 0xBB
tWindow −1/[FS x ln(1−asa)] Where FS = Audio Sample Frequency
asa and (1−asa) Set Time Window Over Which RMS Value Is Computed
Figure 3−27. Spectrum Analyzer/VU Meter Block Diagram
3−47
0 1 1 0 0 1 0
48
31
1 1 1 1 1 . 1 0 0
48-Bit RMS Estimate Spectrum Analyzer
and
VU Meter Output
0 0 0 0 1 1 0 1 0 1
48
28
1 1 1 0 0 . 1 0 1
0 0 0
48
1
0 0 0 0 1 . 0 1 0
0 1 0 1 0 1 1 0
0 0 0
48
0
0 0 0 0 0 . 1 1 0
0 0 1 1 1 0 1 0
0 0 0
48 0 0 0 0 0 . 0 0 00 0 0 1 1 0 1 0 1
18
18
18
0
0
0
0
0
Figure 3−28. Logarithmic Number Conversions—Spectrum Analyzer/VU Meter
The time window over which the rms estimate is conducted is programmable via the I2C bus (subaddress 0xBB). The
time window for a given set of coefficients is approximately:
tWindow [* 1
FSȏn(1 *asa)
Where FS is the audio sample rate and asa is a 5.23 format number. The variable asa (and 1 – asa) must be kept
within the range of greater than zero and less than one. The time constant programmed applies to all 10 rms estimate
blocks.
CAUTION: The spectrum analyzer and VU meter functions are only accessible in the I2C
slave mode.
3.9 Dither
The TAS3103 provides a dither block for adding triangular or quadratic (sum of two uncorrelated triangular
distributions) distributed noise to the processed audio data stream prior to routing to the output serial audio port
(SAP). Each of the three monaural channels in the TAS3103 has its own dedicated dither data stream that is
statistically independent from the dither data streams used by the other two monaural channels. The statistical
distribution of the dither data stream, triangular or quadratic, is selectable, but the selection made applies to the dither
data streams for all three monaural channels. Each monaural channel is also assigned a mixer for adjusting the level
at which the dither data stream is inserted into the audio data stream.
Figure 3−29 is a detailed block diagram of the dither block. Five subaddresses are used to fully configure the dither
blocks and the associated channel mixers. In the I2C master mode, these dither parameters are set by the EEPROM
content and cannot be subsequently changed.
3−48
3.9.1 Dither Seeds
The dither circuit consists of two linear feedback shift registers—LFSR1 and LFSR2. The dither seed subaddress
(0xC7) consists of a byte-wide seed for LFSR1 (bits 7:0) and a byte-wide seed for LFSR2 (bits 15:8). The seeds serve
to define the starting point of each LFSR sequence, but not the feedback structure itself. Each linear feedback shift
register (LFSR) is a 26-bit structure that runs off the digital audio processor (DAP) clock. For a maximum DAP clock
frequency of 135.168 MHz [12.288 MHz (MCLKI) x 11 (PLL multiplier)], the 26-bit LFSR has a cycle time of 496.5 ms
(226/135.168 MHz). LFSR1 and LFSR2 use the same feedback structure but di fferent taps for outputting. As long as
the seeds for the two LFSRs are not ±13 counts apart (in which case the two different sets of output taps would
correlate), any set of seed values for LFSR1 and LFSR2 is suitable.
When two or more TAS3103s are powered by the same supply, a concern as to whether or not there is correlation
between the dither data streams on different chips arises. At power turn on, a TAS3103 does not begin the dither
process until reset is deactivated. If the TAS3103s are reset by the internal power good signals from the internal
regulators, the chip-to-chip variance of the logic voltage threshold point at which the power good signal is deactivated
assures, with a high probability, that the dither data streams between chips are uncorrelated. However, when an
external logic-driven reset is applied to the TAS3103s, the probability of correlation between the dither data streams
on different chips after the rest is removed significantly increases. For this reason, the dither seeds have been made
programmable via the I2C bus.
3−49
Dither Block
S Slave Addr Ack Sub-Addr Distribution 1 MixAck Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
Distribution 2 Mix
Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
LFSR1 Mix and LFSR2 Mix Are 5.23 Format Coefficients
S Slave Addr Ack Sub-Addr Dither SeedAck Ack Ack Ack Ackxxxxxx l
s
b
0000000000000000 m
s
bxxxxxx l
s
b
m
s
b
0xC6
0xC7
Condensed
LFSR2
Seed
Condensed
LFSR1
Seed
Linear Feedback Shift Register Block
Dither 1
Dither 2
Dither 3
LFSR1
LFSR2
Seed Build Logic
L
− W 0 +W
0.25
0.5
p
Output
Sampler
St1
St2
St3
St4
St5
St6
NOTE: W = 16.0 => 0x000008000000 in 25.23 Format
O
G
I
C
Σ
Σ
Σ
S Slave Addr Ack Sub-Addr Ack Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
0x81
S Slave Addr Ack Sub-Addr Ack Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
0x80
S Slave Addr Ack Sub-Addr Ack Ack Ack Ack Ackxxxxxxxx xxxxxxx l
s
b
xxxxxxxx
m
s
bxxx0000
0x7F
Figure 3−29. Dither Data Block Diagram
3−50
When updating multiple TAS3103s with dither seeds, timing should be taken into account. The recommended seed
update process is to load all TAS3103s with their seed values in less time then the minimum LFSR cycle time of
496.5 ms, and use the same set of seeds for all TAS3103s. Each TAS3103 immediately begins running, starting at
the state set by the new seed, upon receiving the new seed. The sequential delivery, in time, of the seeds to the
multiple TAS3103s assures the TAS3103s do not all start with their new seeds at the same time, and the completion
of the process in less than 496.5 ms assures that previously programmed TAS3103s are not repeating the cycle at
the same time another TAS3103 is being programmed with the same seed set—causing correlation between the
dither data streams of the two TAS3103s.
CAUTION: The state of the digital audio processor may prevent the loading of a new I2C
—commanded dither seed value. Anytime a new seed is loaded into the TAS3103 via an
I2C write transaction to address 0xC7, it must be followed by an I2C read transaction to
address 0xC7 to verify that the new seed value was accepted. If the new seed was not
accepted, the write-read sequence must be repeated.
3.9.2 Dither Mix Options
In Figure 3−29 it is seen that the two LFSRs are logically combined to produce a triangular probability distribution.
This distribution is then sampled at six dif ferent points in time, by the DAP processing clock, to create six statistically
independent data streams. Sampling the LSFR outputs at different points in time within an audio sample period
(1/LRCLK) assures the six dither data streams are uncorrelated. The six uncorrelated dither data streams are then
routed through mixers. Each pair of mixer outputs is then applied to a summation block. It is noted in Figure 3−29
that each of the three mixers pairs has the same set of coefficients (set by I2C subaddress 0xC6). If the coefficients
for both mixers are set to 1.0, a quadratic distribution is obtained. If either coefficient is set to 0.0, a triangular
distribution is obtained. If both coefficients are set to 0.0, dither is disabled.
3.9.3 Dither Gain Mixers
Figure 3−29 shows the peak magnitude of the triangular distribution to be ±16 in the 48-bit DAP word (25.23 format).
The peak magnitude of the quadratic dither data is twice this, or ±32. Figure 3−30 shows the position of this peak
magnitude value in reference to the DAP 48-bit data word. Table 3−8 lists the mixer gains required to position the
dither data stream at the LSB of the output data word for different data sample word sizes.
Table 3−8. Mixer Gain Setting for LSB Dither Data Insertion
DISTRIBUTION
MIXER GAIN COEFFICIENT
DISTRIBUTION
32-BIT SAMPLE 24-BIT SAMPLE 20-BIT SAMPLE 18-BIT SAMPLE 16-BIT SAMPLE
Triangular 2−19 2−11 2−7 2−5 2−3
Quadratic 2−20 2−12 2−8 2−6 2−4
3−51
0.0625
0.25
0.375
−2W
Output
0.25
0.5
Output
−W
Triangular Distribution
Quadratic Distribution
16
Bit
Sample
32
Bit
Sample
24
Bit
Sample
20
Bit
Sample
18
Bit
Sample
8-Bit
Headroom
47
40
39
28
27
24
22
20
16
8
0
8-Bit
Resolution
Band
16-Bit
Output SAP
Word Size
32-Bit
Output SAP
Word Size
48-Bit DAP
Data Word
0W
−W 0 W 2W
ρ
ρ
Figure 3−30. Dither Data Magnitude (Gain = 1.0)
3.9.4 Dither Statistics
Figure 3−31 presents plots of the autocorrelation and channel-to-channel correlation properties of the dither data
stream when configured as triangular distributed noise. Figure 3−31(a) is the circular autocorrelation of 16K samples
of dither data collected from the TAS3103. The audio signal level was set to zero, and the dither data stream was
inserted at the LSB of the output word. The autocorrelation contains a single line of value 8000, at the point of
correlation, and random noise terms of approximately ±150 counts in value. The value 8000 agrees with the selection
of the triangular distribution—50% of the 16K dither output samples are of value ±1. Figure 3−31(b) is the circular
correlation of 16K samples of dither data from CH1 and 16K samples of dither data from CH2. There are no points
of correlation in this plot, verifying that the two data streams are uncorrelated. The random noise terms are again
approximately ±150 counts in value
3−52
(a) Auto-Correlation Plot − CH1
(b) Correlation Plot − CH2 and CH3
Figure 3−31. Triangular Dither Statistics
Figure 3−32 presents plots of the autocorrelation and channel-to-channel correlation properties of the dither data
stream when configured as quadratic distributed noise. Figure 3−32(a) is the circular autocorrelation of 16K samples
of dither data collected from the TAS3103. The audio signal level was set to zero and the dither data stream was
inserted at the LSB+1 level of the output word. The autocorrelation contains a single line of value 16,000 at the point
of correlation and random noise terms of approximately ±300 counts in value. The value 16,000 agrees with the
3−53
selection o f the quadratic distribution—50% of the 16K dither output samples are of value ±1 (0.5 x 12 x 16,000 = 8000)
and 12.5% of the 16K dither output samples are ±2 (0.125 x 22 x 16,000= 8000). Figure 3−32(b) is the circular
correlation of 16K samples of dither data from CH2 and 16K samples of dither data from CH3. There are no points
of correlation is this plot, verifying that the two data streams are uncorrelated. The random noise terms are
approximately ±300 counts in value, as the dither data pattern was inserted at the LSB+1 bit of the output word instead
of the LSB bit, as was the case for triangular dither.
(a) Auto-Correlation Plot − CH1
(b) Correlation Plot − CH2 and CH3
Figure 3−32. Triangular Dither Statistics
3−54
3.10 Output Crossbar Mixers
The TAS3103 has three serial output ports—SDOUT1, SDOUT2 and SDOUT3. Each serial output port is assigned
two processing nodes within the TAS3103. One of the two nodes sources the left stereo data sample and the other
node sources the right stereo data sample. Figure 3−33 shows the assignment of these internal nodes to the serial
output ports. Two cases are shown in Figure 3−33—discrete mode and TDM mode. The discrete mode connections
are straightforward, but the TDM connections are considerably more involved in order to support the different
one-chip and two-chip TDM modes (see the Input and Output Serial Port (SAP) section for more discussion on the
TDM modes).
The purpose of the output crossbar is to give each of the three monaural channels in the TAS3103 access to any of
the six internal processing nodes (U, V, W, X , Y, and Z) that supply data to the three serial output ports. This flexibility
in the routing of the monaural channel outputs to the serial output ports, coupled with the flexibility in the routing of
the serial input ports to the monaural channels, fully decouples the input data from the output data. A given process
flow and output data topology can be obtained from any ordering of data into the TAS3103.
Figure 3−34 shows the output crossbar mixer topology. Each monaural channel feeds six mixers. The six mixers, in
turn, feed the six output nodes U, V, W, X, Y, and Z. A given monaural channel can thus be connected to either the
left or right side of SDOUT1, SDOUT2 and SDOUT3.
The mixers, although capable of performing boost (gain) and cut (attenuation) on the outgoing audio, are typically
used to facilitate on / off switching (a 5.23 format coef ficient value of 0x0800000 turns the mixer on and a coefficient
value of 0x0000000 turns the mixer off). The audio data streams at the input to these mixers include dither, and any
boost or cut in the audio at this point affects the dither levels as well.
Node r in Figure 3−34 provides a means of outputting a post-processed sum of the audio on channel 1 and channel
2. This capability could be used to generate a center audio component from L and R components being processed
on channels 1 and 2. This would allow channel 3 to be a sub-woofer channel. Node r could also be used to create
a subwoofer channel, assuming an active subwoofer with filtering capability is receiving the subwoofer output. This
option would then free channel 3 for center channel processing.
3−55
Internal
Processing
Nodes
L
R
U
V
LR
Time
LRCLK
SDOUT1
L
R
W
X
LR
Time
LRCLK
SDOUT2
L
R
Y
Z
LR
Time
LRCLK
SDOUT3
SDOUT1
U
V
W
X
Y
Z
Node U
Nodes U & V
Nodes V & W
Nodes V, W & X
Nodes V, W, X & Y
Nodes V, W, Y & Z
Nodes W, X, Y & Z
Node X
(a) Discrete Mode − For I2S Format, Polarity of
LRCLK Opposite That Shown (b) TDM Mode
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Figure 3−33. Processing Node to Serial Output Port Topology
3−56
Monaural CH 1
Monaural CH 2
Monaural CH 3
U
V
W
X
Y
Z
z to U => 0x8F
z to V => 0x8E
z to W => 0x8D
z to X => 0x8C
z to Y => 0x8B
z to Z => 0x8A
y to U => 0x95
y to V => 0x94
y to W => 0x93
y to X => 0x92
y to Y => 0x91
y to Z => 0x90
x to U => 0x9B
x to V => 0x9A
x to W => 0x99
x to X => 0x98
x to Y => 0x97
x to Z => 0x96
0x84
0x86
Delay z
Delay
r to U => 0xA1
r to V => 0xA0
r to W => 0x9F
r to X => 0x9E
r to Y => 0x9D
r to Z => 0x9C
o
y
p
x
Delay
q
Dither
Dither
Dither
0x82 0x83
r
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Mixer Gain Coefficient
Sub-Address Format
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Mixer Gain Coefficient
Sub-Address Format
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Mixer Gain Coefficient
Sub-Address Format
S Slave Addr Ack Sub-Addr Ack xxxxxxxx xxxxxxxx xxxxxxl
s
b
m
s
bxxx0000 Ack Ack Ack Ack
Mixer Gain Coefficient
Sub-Address Format
Figure 3−34. Output Crossbar Mixer Topology
4−1
4 Electrical Specifications
4.1 Absolute Maximum Ratings Over Operating Temperature Ranges (unless
otherwise noted)
Supply voltage range: VDDS −0.5 to 3.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A_VDDS −0.5 to 3.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI: 3.3-V LVCMOS −0.5 V to VDDS + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8-V LVCMOS −0.5 V to AVDD(1) + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage range, VO:3.3-V LVCMOS −0.5 V to VDDS + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8-V LVCMOS −0.5 V to DVDD(2) + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8-V LVCMOS −0.5 V to AVDD(3) + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0 or VI > DVDD) ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0 or VO > DVDD) ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature (Commercial) 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature (Industrial) −40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. A VDD i s a 1.8-V supply derived from a regulator in the TAS3103 chip. Pin XTALI is the only TAS3103 input that is referenced to this
1.8 V logic supply. The absolute maximum rating listed is for reference; only a crystal should be connected to XTALI.
2. DVDD is a 1.8-V supply derived from regulators internal to the TAS3103 chip. DVDD is routed to pin 29 (DVDD_BYPASS_CAP)
to provide access to external filter capacitors, but should not be used to source power to external devices.
3. Pin XTALO is the only TAS3103 output that is derived from the internal 1.8-V logic supply AVDD. The absolute maximum rating listed
is for reference; only a crystal should be connected to XTALO. A VDD is also routed to pin 6 (AVDD_BYPASS_CAP) to provide access
to external filter capacitors, but should not be used to source power to external devices.
DISSIPATION RATING TABLE (High-k Board, 105°C Junction)
PACKAGE TA 25°C
POWER RATING OPERATING FACTOR
ABOVE TA = 25°CTA = 85°C
POWER RATING
DBT 1.094 W 13.68 mW/°C0.478 mW
IDBT 1.094 W 13.68 mW/°C0.478 mW
4.2 Recommended Operating Conditions
MIN NOM MAX UNITS
Digital supply voltage, VDDS 3 3.3 3.6 V
Analog supply voltage, A_VDDS 3 3.3 3.6 V
High-level input voltage, VIH
3.3-V LVCMOS 0.7 VDDS VDDS
V
High-level input voltage, VIH 1.8-V LVCMOS (XTALI) 0.7 AVDD AVDD V
Low-level input voltage, VIL
3.3-V LVCMOS 00.3 VDDS
V
Low-level input voltage, VIL 1.8-V LVCMOS (XTALI) 00.3 AVDD V
Input voltage, VI
3.3-V LVCMOS 0 VDDS
V
Input voltage, VI1.8-V LVCMOS (XTALI) 0 AVDD V
Output voltage, VO
3.3-V LVCMOS 0.8 VDDS VDDS
V
Output voltage, VO1.8-V LVCMOS (XTALO) 0.8 AVDD AVDD V
Operating ambient air temperature range, TA
Commercial 0 70 °C
Operating ambient air temperature range, TAIndustrial −40 85 °C
Operating junction temperature range, TJ
Commercial 0 105 °C
Operating junction temperature range, TJIndustrial −40 105 °C
4−2
4.3 Electrical Characteristics Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
VOH
High-level output
3.3-V LVCMOS IOH = −4 mA 0.8 VDDS
V
VOH
High-level output
voltage 1.8-V LVCMOS (XTALO) IOH = −0.55 mA 0.8 AVDD V
VOL
Low-level output voltage
3.3-V LVCMOS IOL = 4 mA 0.22
VDDS
V
VOL
Low-level output voltage
1.8-V LVCMOS (XTALO) IOL = 0.75 mA 0.22 AVDD
V
IOZ High-impedance output
current 3.3-V LVCMOS ±20 µA
IIL
Low-level input
(4)
3.3-V LVCMOS VI = VIL ±20
A
IIL
Low-level input
current(4) 1.8-V LVCMOS (XTALI) VI = VIL ±20 µA
IIH
High-level input
(5)
3.3-V LVCMOS VI = VIH ±20
A
IIH
High-level input
current(5) 1.8-V LVCMOS (XTALI) VI = VIH ±20 µA
DSP clock = 135 MHz,
LRCLK = 96 kHz 75
MCLKI / XTALI = 12.228 MHz DSP clock = 67.5 MHz,
LRCLK = 48 kHz 44 mA
DSP clock = 33.75 MHz,
LRCLK = 24 kHz 25
IDVDD Digital supply current LRCLK = 48 kHz,
MCLKI/XTALI = 12.288
MHz 3.5
Power down enabled No LRCLK, SCLK.
MCLKI/XTALI =
12.288 MHz 2.2 mA
No LRCLK, SCLK, or
MCLKI/XTALI 2
DSP clock = 135 MHz,
LRCLK = 96 kHz 2.9
MCLKI / XTALI = 12.228 MHz DSP clock = 67.5 MHz,
LRCLK = 48 kHz 2.7 mA
IA_DVDD Analog supply current DSP clock = 33.75 MHz,
LRCLK = 24 kHz 2.4
A_DVDD
Power down enabled
LRCLK = 48 kHz,
MCLKI/XTALI = 12.288
MHz 1.5 mA
Power down enabled
No LRCLK, SCLK, or
MCLKI/XTALI 1.5
mA
NOTES: 4. Value given is for those input pins that connect to an internal pullup resistor as well as an input buffer. For inputs that have a pulldown
resistor or no resistor, IIL is ±1 µA.
5. Value given is for those input pins that connect to an internal pulldown resistor as well as an input buf fer . For inputs that have a pullup
resistor or no resistor, IIH is ±1 µA.
4−3
4.4 TAS3100 Timing Characteristics
4.4.1 Master Clock Signals Over Recommended Operating Conditions (Unless Otherwise
Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
f(XTALI) Frequency, XTALI (1/tc(1)) 2.8 20 MHz
f(MCLKI) Frequency, MCLKI (1/tc(2)) 2.8 25 MHz
tw(MCLKI) Pulse duration, MCLKI high See Note 6 HMCLKI − 25 HMCLKI HMCLKI + 25 ns
MCLKI jitter ±5 ns
f(MCLKO) Frequency, MCLKO (1/tc(3)) 2.8 25 MHz
tr(MCLKO) Rise time, MCLKO CL = 30 pF 9.5 ns
tf(MCLKO) Fall time, MCLKO CL = 30 pF 9.5 ns
tw(MCLKO) Pulse duration, MCLKO high See Note 9 HMCLKO ns
MCLKI jitter
XTALI master clock source 80 ps
MCLKI jitter MTALI master clock source See Note 10
td(MI−MO)
Delay time, MCLKI
rising edge to
MCKLO = MCLKI See Note 7 17 ns
td(MI−MO)
rising edge to
MCLKO rising edge MCLKO < MCLKI See Note 7 and Note 8 17 ns
NOTES: 6. HMCLKI = 1 / 2MCLKI
7. Only applies when MCLKI is selected as master source clock.
8. Also applies to MCLKO falling edge when MCLKO = MCLKI/2 or MCLKI/4
9. HMCLKO = 1 / 2MCLKO. MCLKO has the same duty cycle as MCLKI when MCLKO = MCLKI. When MCLKO = 0.5 MCLKI or 0.25
MCLKI, the duty cycle of MCLKO is typically 50%.
10. When MCLKO is derived from MCLKI, MCLKO jitter = MCLKI jitter
XTALI
MCLKO
MCLKI
tw(MCLKI)
tf(MCLKO)
tc(1)
tc(2)
tc(3)
tw(MCLKO) tr(MCLKO)
td(MI-MO)
Figure 4−1. Master Clock Signals Timing Waveforms
4−4
4.4.2 Control Signals Over Recommended Operating Conditions (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
tw1(L) Pulse duration, RST low 10 ns
tpd1 Propagation delay, PWRDN high to power down state asserted See Note 11 µs
tpd2 Propagation delay, PWRDN low to power down state deasserted See Note 12 µs
NOTES: 11. The maximum worst case value for tpd1 is given by
tpd1_worst_case +4096 )GPIOFSCOUNT
LRCLK )80
Microprocessor_Clock
12. tpd2 is determined by the time it takes the internal digital PLL to reach a locked condition, which, in turn, is governed by the MCLKI/
XTALI frequency and the PLL output frequency . For a 135-MHz PLL output and an MCLKI value of 24.576 MHz, tpd2 is typically 25 µs.
For an 11.264-MHz PLL output clock and a 1.024-MHz MCLKI/XTALI master clock, tpd2 is typically 360 µs.
PWRDN
tw1(L)
tpd1
tpd2
RST
Figure 4−2. Control Signals Timing Waveforms
4−5
4.4.3 Serial Audio Port Slave Mode Signals Over Recommended Operating Conditions (unless
otherwise noted)
PARAMETER TEST
CONDITIONS MIN TYP MAX UNITS
fLRCLK Frequency, LRCLK (FS) 8 96 kHz
tw(SCLKIN) Pulse duration, SCLKIN high See Note 14 0.25 HSCLKIN HSCLKIN 0.75 HSCLKIN ns
fSCLKIN Frequency, SCLKIN See Note 13 32FS25 MHz
tcyc Cycle time, SCLKIN See Note 13 40 1/32FSns
tpd1 Propagation delay, SCLKIN falling edge to
SDOUT 15.1 ns
tsu1 Setup time, LRCLK to SCLKIN rising edge 6.6 ns
th1 Hold time, LRCLK from SCLKIN rising edge 0 ns
tsu2 Setup time, SDIN to SCLKIN rising edge 1.15 ns
th2 Hold time, SDIN from SCLKIN rising edge 2.3 ns
tpd2
Propagation delay,
SCLKIN falling edge
SCLKOUT2 = SCLKIN 12.4 ns
tpd2
SCLKIN falling edge
to SCLKOUT2 falling
edge SCLKOUT2 < SCLKIN 12.5 ns
NOTES: 13. Typical duty cycle is 50/50.
14. HSCLKIN = 1/2fSCLKIN
SCLKIN
LRCLK
(Input)
SDOUT1
SDOUT2
SDOUT3
SDIN1
SDIN2
SDIN3
SCLKOUT2
th1 tsu1
tpd1
tpd2
tsu2
th2
tcyc
tw(SCLKIN)
SDIN4
Figure 4−3. Serial Audio Port Slave Mode Timing Waveforms
4−6
4.4.4 Serial Audio Port Master Mode Signals Over Recommended Operating Conditions
(unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
f(LRCLK) Frequency LRCLK 8 96 kHz
tr(LRCLK) Rise time, LRCLK CL = 30 pF 11.4 ns
tf(LRCLK) Fall time, LRCLK CL = 30 pF 11.2 ns
f(SCLKOUT) Frequency (1/tcyc), SCLKOUT1/SCLKOUT2 See Note 13 32FS25 MHz
tr(SCLKOUT) Rise time, SCLKOUT1/SCLKOUT2 CL = 30 pF 9.5 ns
tf(SCLKOUT) Fall time, SCLKOUT1/SCLKOUT2 CL = 30 pF 9.8 ns
tpd1(SCLKOUT1) Propagation delay, SCLKOUT1 falling edge to LRCLK edge 4.1 ns
tpd1(SCLKOUT2) Propagation delay, SCLKOUT2 falling edge to LRCLK edge 4.3 ns
tpd2 Propagation delay, SCLKOUT2 falling edge to SDOUT 3.4 ns
tsu Setup time, SDIN to SCLKOUT1 rising edge 18.4 ns
thHold time, SDIN from SCLKOUT1 rising edge 23 ns
tsk Skew time, SCLKOUT1 to SCLKOUT2 0.8 3 ns
NOTE 13: Typical duty cycle is 50/50.
LRCLK
(Output)
SDOUT1
SDOUT2
SDIN1
SDIN2
SDIN3
SCLKOUT1
SCLKOUT2
tr(SCLKOUT) tf(SCLKOUT)
tf(SCLKOUT) tsk
tr(SCLKOUT)
tpd1(SCLKOUT2)
tpd1(SCLKOUT1)
tf(LRCLK), tr(LRCLK)
tpd2
tsu
th
SDOUT3
SDIN4
Figure 4−4. TAS3100 Serial Audio Port Master Mode Timing Waveforms
4−7
4.4.5 I2C Slave Mode Interface Signals Over Recommended Operating Conditions (unless
otherwise noted)
PARAMETER
TEST
STANDARD MODE FAST MODE
UNITS
PARAMETER
TEST
CONDITIONS MIN TYP MAX MIN TYP MAX
UNITS
fSCL Frequency, SCL 0 100 0 400 kHz
tW(H)Minimum pulse duration,
SCL high See Note 15 0.43 0.12 µs
tW(L) Minimum pulse duration,
SCL low See Note 15 1.3 0.9 µs
trRise time, SDAOutput CL = 330 pF 48.3 48.3 ns
tfFall time, SDAOutput CL = 330 pF 35.9 35.9 ns
tsu1 Setup time, SDAInput to SCL See Note 15 0 0 ns
th1
Hold
SCL to SDAInput See Note 15 0 0 ns
th1
Hold
time SCL to SDAOutput See Note 16 Toversamp 2Toversamp Toversamp 2Toversamp µs
tbuf Minimum bus free time
between STOP and START
condition See Note 15 0.82 0.38 µs
tsu2 Minimum setup time, SCL to
START condition See Note 15 0.7 0.4 µs
th2 Minimum hold time, START
condition to SCL See Note 15 1.5 0.05 µs
tsu3 Minimum setup time, SCL to
STOP condition See Note 15 0.9 0.4 µs
NOTES: 15. The maximum and/or minimum values for the TAS3103 I2C port parameters meets those characteristics of the SDA and SCL bus
lines listed below, as specified in the I2C bus devices bus specification.
16. Toversamp is the period of the oversample clock provided to the I2C master salve controller. This clock is dependent on the
microprocessor clock setting and the value set for the variable N in subaddress 0xFB. See Figure 2−14.
SPECIFIED I2C BUS CHARACTERISTICS
PARAMETER STANDARD MODE FAST MODE
Pulse duration high, tw(H) 4 µs MIN 0.6 µs MIN
SCL Pulse duration low, tw(L) 4.7 µs MIN 1.3 µs MIN
SCL
Frequency fSCL 100 kHz 400 kHz
SDAInput
Setup time tsu1, SDAInput to SCL 250 ns MIN 100 ns MIN
SDAInput Hold Time th1, SCL to SDAInput 0 ns MIN 0 ns MIN
Bus free time between STOP and START condition tbuf 4.7 µs MIN 1.3 µs MIN
START/STOP conditions
Setup time tsu2, SCL to START condition 4.7 µs MIN 0.6 µs MIN
START/STOP conditions
Hold time th2, START condition to SCL 4 µs MIN 0.6 µs MIN
Setup time tsu3, SCL to STOP condition 4 µs MIN 0.6 µs MIN
4−8
SCL
SDA
tw(H) tw(L) trtf
tsu1 th1
Figure 4−5. I2C SCL and SDA Timing Waveforms
SCL
SDA
tsu2 th2
tsu3 t(buf)
Figure 4−6. I2C Start and Stop Conditions Timing Waveforms
A−1
Appendix A
A.1 I2C Subaddress Table
SUBADDRESS
(0xSS) REGISTER NAME NUMBER OF
4-BYTE WORDS CONTENTS
(u Indicates Unused Bits) INITIALIZATION VALUE
0x00 Starting I2C check word 1SCW(31:24), SCW(23:16), SCW(15:8), SCW(7:0) 0x81, 0x42, 0x24, 0x18
0x01 Mix A to a 1u(31:28)A_a(27:24), A_a(23:16), A_a(15:8), A_a(7:0) 0x00, 0x80, 0x00, 0x00
0x02 Mix A to b 1u(31:28)A_b(27:24), A_b(23:16), A_b(15:8), A_b(7:0) 0x00, 0x00, 0x00, 0x00
0x03 Mix A to c 1u(31:28)A_c(27:24), A_c(23:16), A_c(15:8), A_c(7:0) 0x00, 0x00, 0x00, 0x00
0x04 Mix A to d 1u(31:28)A_d(27:24), A_d(23:16), A_d(15:8), A_d(7:0) 0x00, 0x00, 0x00, 0x00
0x05 Mix A to e 1u(31:28)A_e(27:24), A_e(23:16), A_e(15:8), A_e(7:0) 0x00, 0x00, 0x00, 0x00
0x06 Mix A to f 1u(31:28)A_f(27:24), A_f(23:16), A_f(15:8), A_f(7:0) 0x00, 0x00, 0x00, 0x00
0x07 Mix B to a 1u(31:28)B_a(27:24), B_a(23:16), B_a(15:8), B_a(7:0) 0x00, 0x00, 0x00, 0x00
0x08 Mix B to b 1u(31:28)B_b(27:24), B_b(23:16), B_b(15:8), B_b(7:0) 0x00, 0x80, 0x00, 0x00
0x09 Mix B to c 1u(31:28)B_c(27:24), B_c(23:16), B_c(15:8), B_c(7:0) 0x00, 0x00, 0x00, 0x00
0x0A Mix B to d 1u(31:28)B_d(27:24), B_d(23:16), B_d(15:8), B_d(7:0) 0x00, 0x00, 0x00, 0x00
0x0B Mix B to e 1u(31:28)B_e(27:24), B_e(23:16), B_e(15:8), B_e(7:0) 0x00, 0x00, 0x00, 0x00
0x0C Mix B to f 1u(31:28)B_f(27:24), B_f(23:16), B_f(15:8), B_f(7:0) 0x00, 0x00, 0x00, 0x00
0x0D Mix C to a 1u(31:28)C_a(27:24), C_a(23:16), C_a(15:8), C_a(7:0) 0x00, 0x00, 0x00, 0x00
0x0E Mix C to b 1u(31:28)C_b(27:24), C_b(23:16), C_b(15:8), C_b(7:0) 0x00, 0x00, 0x00, 0x00
0x0F Mix C to c 1u(31:28)C_c(27:24), C_c(23:16), C_c(15:8), C_c(7:0) 0x00, 0x00, 0x00, 0x00
0x10 Mix C to d 1u(31:28)C_d(27:24), C_d(23:16), C_d(15:8), C_d(7:0) 0x00, 0x00, 0x00, 0x00
0x11 Mix C to e 1u(31:28)C_e(27:24), C_e(23:16), C_e(15:8), C_e(7:0) 0x00, 0x00, 0x00, 0x00
0x12 Mix C to f 1u(31:28)C_f(27:24), C_f(23:16), C_f(15:8), C_f(7:0) 0x00, 0x40, 0x00, 0x00
0x13 Mix D to a 1u(31:28)D_a(27:24), D_a(23:16), D_a(15:8), D_a(7:0) 0x00, 0x00, 0x00, 0x00
0x14 Mix D to b 1u(31:28)D_b(27:24), D_b(23:16), D_b(15:8), D_b(7:0) 0x00, 0x00, 0x00, 0x00
0x15 Mix D to c 1u(31:28)D_c(27:24), D_c(23:16), D_c(15:8), D_c(7:0) 0x00, 0x00, 0x00, 0x00
0x16 Mix D to d 1u(31:28)D_d(27:24), D_d(23:16), D_d(15:8), D_d(7:0) 0x00, 0x00, 0x00, 0x00
0x17 Mix D to e 1u(31:28)D_e(27:24), D_e(23:16), D_e(15:8), D_e(7:0) 0x00, 0x00, 0x00, 0x00
0x18 Mix D to f 1u(31:28)D_f(27:24), D_f(23:16), D_f(15:8), D_f(7:0) 0x00, 0x40, 0x00, 0x00
0x19 Mix E to a 1u(31:28)E_a(27:24), E_a(23:16), E_a(15:8), E_a(7:0) 0x00, 0x00, 0x00, 0x00
0x1A Mix E to b 1u(31:28)E_b(27:24), E_b(23:16), E_b(15:8), E_b(7:0) 0x00, 0x00, 0x00, 0x00
0x1B Mix E to c 1u(31:28)E_c(27:24), E_c(23:16), E_c(15:8), E_c(7:0) 0x00, 0x00, 0x00, 0x00
0x1C Mix E to d 1u(31:28)E_d(27:24), E_d(23:16), E_d(15:8), E_d(7:0) 0x00, 0x00, 0x00, 0x00
0x1D Mix E to e 1u(31:28)E_e(27:24), E_e(23:16), E_e(15:8), E_e(7:0) 0x00, 0x00, 0x00, 0x00
0x1E Mix E to f 1u(31:28)E_f(27:24), E_f(23:16), E_f(15:8), E_f(7:0) 0x00, 0x00, 0x00, 0x00
0x1F Mix F to a 1u(31:28)F_a(27:24), F_a(23:16), F_a(15:8), F_a(7:0) 0x00, 0x00, 0x00, 0x00
A−2
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x20 Mix F to b 1u(31:28)F_b(27:24), F_b(23:16), F_b(15:8), F_b(7:0) 0x00, 0x00, 0x00, 0x00
0x21 Mix F to c 1u(31:28)F_c(27:24), F_c(23:16), F_c(15:8), F_c(7:0) 0x00, 0x00, 0x00, 0x00
0x22 Mix F to d 1u(31:28)F_d(27:24), F_d(23:16), F_d(15:8), F_d(7:0) 0x00, 0x00, 0x00, 0x00
0x23 Mix F to e 1u(31:28)F_e(27:24), F_e(23:16), F_e(15:8), F_e(7:0) 0x00, 0x00, 0x00, 0x00
0x24 Mix F to f 1u(31:28)F_f(27:24), F_f(23:16), F_f(15:8), F_f(7:0) 0x00, 0x00, 0x00, 0x00
0x25 Mix a to c 1u(31:28)a_c(27:24), a_c(23:16), a_c(15:8), a_c(7:0) 0x00, 0x00, 0x00, 0x00
0x26 Mix b to c 1u(31:28)b_c(27:24), b_c(23:16), b_c(15:8), b_c(7:0) 0x00, 0x00, 0x00, 0x00
0x27 Mix a to g 1u(31:28)a_g(27:24), a_g(23:16), a_g(15:8), a_g(7:0) 0x00, 0x00, 0x00, 0x00
0x28 Mix b to h 1u(31:28)b_h(27:24), b_h(23:16), b_h(15:8), b_h(7:0) 0x00, 0x00, 0x00, 0x00
0x29 Mix a to d via BQ and Rev/D 1u(31:28)a_d(27:24), a_d(23:16), a_d(15:8), a_d(7:0) 0x00, 0x80, 0x00, 0x00
0x2A Mix a to e via BQ and Rev/D 1u(31:28)a_e(27:24), a_e(23:16), a_e(15:8), a_e(7:0) 0x00, 0x00, 0x00, 0x00
0x2B Mix b to d via BQ and Rev/D 1u(31:28)b_d(27:24), b_d(23:16), b_d(15:8), b_d(7:0) 0x00, 0x00, 0x00, 0x00
0x2C Mix b to e via BQ and Rev/D 1u(31:28)b_e(27:24), b_e(23:16), b_e(15:8), b_e(7:0) 0x00, 0x80, 0x00, 0x00
0x2D Mix g to d via BQ 1u(31:28)g_d(27:24), g_d(23:16), g_d(15:8), g_d(7:0) 0x00, 0x00, 0x00, 0x00
0x2E Mix g to e via BQ 1u(31:28)g_e(27:24), g_e(23:16), g_e(15:8), g_e(7:0) 0x00, 0x00, 0x00, 0x00
0x2F Mix h to d via BQ 1u(31:28)h_d(27:24), h_d(23:16), h_d(15:8), h_d(7:0) 0x00, 0x00, 0x00, 0x00
0x30 Mix h to e via BQ 1u(31:28)h_e(27:24), h_e(23:16), h_e(15:8), h_e(7:0) 0x00, 0x00, 0x00, 0x00
0x31 Mix c to d via BQ 1u(31:28)c_d(27:24), c_d(23:16), c_d(15:8), c_d(7:0) 0x00, 0x00, 0x00, 0x00
0x32 Mix c to e via BQ 1u(31:28)c_e(27:24), c_e(23:16), c_e(15:8), c_e(7:0) 0x00, 0x00, 0x00, 0x00
0x33 Mix f to g and h 1u(31:28)f_gh(27:24), f_gh(23:16), f_gh(15:8), f_gh(7:0) 0x00, 0x00, 0x00, 0x00
0x34 a_de path, biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x35 a_de path, biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x36 a_de path, biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−3
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x37 a_de path, biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x38 b_de path, biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x39 b_de path, biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x3A b_de path, biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x3B b_de path, biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x3C g_de path, biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x3D g_de path, biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−4
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x3E g_de path, biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x3F g_de path, biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x40 h_de path, biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x41 h_de path, biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x42 h_de path, biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x43 h_de path, biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x44 c_de path, biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−5
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x45 c_de path, biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x46 c_de path, biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x47 c_de path, biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x48 f_CH3 path, biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x49 f_CH3 path, biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x4A f_CH3 path, biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x4B f_CH3 path, biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−6
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x4C a_de path, Reverb Gain Rg0 2u(31:28)Rg0(27:24), Rg0(23:16), Rg0(15:8), Rg0(7:0) 0x00, 0x80, 0x00, 0x00
a_de path, Reverb Gain Rg1 u(31:28)Rg1(27:24), Rg1(23:16), Rg1(15:8), Rg1(7:0) 0x00, 0x00, 0x00, 0x00
0x4D b_de path, Reverb Gain Rg0 2u(31:28)Rg0(27:24), Rg0(23:16), Rg0(15:8), Rg0(7:0) 0x00, 0x80, 0x00, 0x00
b_de path, Reverb Gain Rg1 u(31:28)Rg1(27:24), Rg1(23:16), Rg1(15:8), Rg1(7:0) 0x00, 0x00, 0x00, 0x00
0x4E f_CH3 path, Reverb Gain Rg0 2u(31:28)Rg0(27:24), Rg0(23:16), Rg0(15:8), Rg0(7:0) 0x00, 0x80, 0x00, 0x00
f_CH3 path, Reverb Gain Rg1 u(31:28)Rg1(27:24), Rg1(23:16), Rg1(15:8), Rg1(7:0) 0x00, 0x00, 0x00, 0x00
0x4F CH1 biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x50 CH1 biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x51 CH1 biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x52 CH1 biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x53 CH1 biquad 5 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x54 CH1 biquad 6 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−7
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x55 CH1 biquad 7 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x56 CH1 biquad 8 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x57 CH1 biquad 9 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x58 CH1 biquad 10 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x59 CH1 biquad 11 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x5A CH1 biquad 12 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x5B CH2 biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−8
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x5C CH2 biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x5D CH2 biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x5E CH2 biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x5F CH2 biquad 5 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x60 CH2 biquad 6 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x61 CH2 biquad 7 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x62 CH2 biquad 8 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−9
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x63 CH2 biquad 9 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x64 CH2 biquad 10 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x65 CH2 biquad 11 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x66 CH2 biquad 12 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x67 CH3 biquad 1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x68 CH3 biquad 2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x69 CH3 biquad 3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−10
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x6A CH3 biquad 4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x6B CH3 biquad 5 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x6C CH3 biquad 6 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x6D CH3 biquad 7 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x6E CH3 biquad 8 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x6F CH3 biquad 9 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x70 CH3 biquad 10 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−11
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x71 CH3 biquad 11 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x72 CH3 biquad 12 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0x73 Bass and treble bypass 1 2u(31:28)BTby1(27:24), BTby1(23:16), BTby1(15:8), BTby1(7:0) 0x00, 0x80, 0x00, 0x00
Bass and treble inline 1 u(31:28)BT1(27:24), BT1(23:16), BT1(15:8), BT1(7:0) 0x00, 0x00, 0x00, 0x00
0x74 Bass and treble bypass 2 2u(31:28)BTby2(27:24), BTby2(23:16), BTby2(15:8), BTby2(7:0) 0x00, 0x80, 0x00, 0x00
Bass and treble inline 2 u(31:28)BT2(27:24), BT2(23:16), BT2(15:8), BT2(7:0) 0x00, 0x00, 0x00, 0x00
0x75 Bass and treble bypass 3 2u(31:28)BTby3(27:24), BTby3(23:16), BTby3(15:8), BTby3(7:0) 0x00, 0x80, 0x00, 0x00
Bass and treble inline 3 u(31:28)BT3(27:24), BT3(23:16), BT3(15:8), BT3(7:0) 0x00, 0x00, 0x00, 0x00
0x76 Mix u to i 1u(31:28)u_i(27:24), u_i(23:16), u_i(15:8), u_i(7:0) 0x00, 0x00, 0x00, 0x00
0x77 Mix v to k 1u(31:28)v_k(27:24), v_k(23:16), v_k(15:8), v_k(7:0) 0x00, 0x00, 0x00, 0x00
0x78 Mix w to m 1u(31:28)w_m(27:24), w_m(23:16), w_m(15:8), w_m(7:0) 0x00, 0x00, 0x00, 0x00
0x79 Mix j to i 1u(31:28)j_i(27:24), j_i(23:16), j_i(15:8), j_i(7:0) 0x00, 0x00, 0x00, 0x00
0x7A Mix l to k 1u(31:28)l_k(27:24), l_k(23:16), l_k(15:8), l_k(7:0) 0x00, 0x00, 0x00, 0x00
0x7B Mix n to m 1u(31:28)n_m(27:24), n_m(23:16), n_m(15:8), n_m(7:0) 0x00, 0x00, 0x00, 0x00
0x7C Mix j to o via DRC mult 2u(31:28)j_o(27:24), j_o(23:16), j_o(15:8), j_o(7:0) 0x00, 0x00, 0x00, 0x00
DRC bypass 1 u(31:28)DRCby1(27:24), DRCby1(23:16), DRCby1(15:8), DRCby1(7:0) 0x00, 0x80, 0x00, 0x00
0x7D Mix l to p via DRC mult 2u(31:28)l_p(27:24), l_p(23:16), l_p(15:8), l_p(7:0) 0x00, 0x00, 0x00, 0x00
DRC bypass 2 u(31:28)DRCby2(27:24), DRCby2(23:16), DRCby2(15:8), DRCby2(7:0) 0x00, 0x80, 0x00, 0x00
0x7E Mix n to q via DRC mult 2u(31:28)n_q(27:24), n_q(23:16), n_q(15:8), n_q(7:0) 0x00, 0x00, 0x00, 0x00
DRC bypass 3 u(31:28)DRCby3(27:24), DRCby3(23:16), DRCby3(15:8), DRCby3(7:0) 0x00, 0x80, 0x00, 0x00
0x7F Mix dither1 to o 1u(31:28)Dth1_o(27:24), Dth1_o(23:16), Dth1_o(15:8), Dth1_o(7:0) 0x00, 0x00, 0x00, 0x00
0x80 Mix dither2 to p 1u(31:28)Dth2_p(27:24), Dth2_p(23:16), Dth2_p(15:8), Dth2_p(7:0) 0x00, 0x00, 0x00, 0x00
0x81 Mix dither3 to q 1u(31:28)Dth3_q(27:24), Dth3_q(23:16), Dth3_q(15:8), Dth3_q(7:0) 0x00, 0x00, 0x00, 0x00
0x82 Mix delay3 to o 1u(31:28)Dth3_o(27:24), Dth3_o(23:16), Dth3_o(15:8), Dth3_o(7:0) 0x00, 0x00, 0x00, 0x00
0x83 Mix delay3 to p 1u(31:28)Dth3_p(27:24), Dth3_p(23:16), Dth3_p(15:8), Dth3_p(7:0) 0x00, 0x00, 0x00, 0x00
0x84 Mix o to r 1u(31:28)o_r(27:24), o_r(23:16), o_r(15:8), o_r(7:0) 0x00, 0x40, 0x00, 0x00
0x85 Mix o to s 1u(31:28)o_s(27:24), o_s(23:16), o_s(15:8), o_s(7:0) 0x00, 0x00, 0x00, 0x00
0x86 Mix p to r 1u(31:28)p_r(27:24), p_r(23:16), p_r(15:8), p_r(7:0) 0x00, 0x40, 0x00, 0x00
A−12
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x87 Mix p to t 1u(31:28)p_t(27:24), p_t(23:16), p_t(15:8), p_t(7:0) 0x00, 0x00, 0x00, 0x00
0x88 Mix q to r 1u(31:28)q_r(27:24), q_r(23:16), q_r(15:8), q_r(7:0) 0x00, 0x00, 0x00, 0x00
0x89 Mix r to s and t 1u(31:28)r_st(27:24), r_st(23:16), r_st(15:8), r_st(7:0) 0x00, 0x80, 0x00, 0x00
0x8A Mix z to Z 1u(31:28)z_Z(27:24), z_Z(23:16), z_Z(15:8), z_Z(7:0) 0x00, 0x00, 0x00, 0x00
0x8B Mix z to Y 1u(31:28)z_Y(27:24), z_Y(23:16), z_Y(15:8), z_Y(7:0) 0x00, 0x00, 0x00, 0x00
0x8C Mix z to X 1u(31:28)z_X(27:24), z_X(23:16), z_X(15:8), z_X(7:0) 0x00, 0x00, 0x00, 0x00
0x8D Mix z to W 1u(31:28)z_W(27:24), z_W(23:16), z_W(15:8), z_W(7:0) 0x00, 0x00, 0x00, 0x00
0x8E Mix z to V 1u(31:28)z_V(27:24), z_V(23:16), z_V(15:8), z_V(7:0) 0x00, 0x00, 0x00, 0x00
0x8F Mix z to U 1u(31:28)z_U(27:24), z_U(23:16), z_U(15:8), z_U(7:0) 0x00, 0x80, 0x00, 0x00
0x90 Mix y to Z 1u(31:28)y_Z(27:24), y_Z(23:16), y_Z(15:8), y_Z(7:0) 0x00, 0x00, 0x00, 0x00
0x91 Mix y to Y 1u(31:28)y_Y(27:24), y_Y(23:16), y_Y(15:8), y_Y(7:0) 0x00, 0x00, 0x00, 0x00
0x92 Mix y to X 1u(31:28)y_X(27:24), y_X(23:16), y_X(15:8), y_X(7:0) 0x00, 0x00, 0x00, 0x00
0x93 Mix y to W 1u(31:28)y_W(27:24),y_W(23:16), y_W(15:8), y_W(7:0) 0x00, 0x00, 0x00, 0x00
0x94 Mix y to V 1u(31:28)y_V(27:24), y_V(23:16), y_V(15:8), y_V(7:0) 0x00, 0x80, 0x00, 0x00
0x95 Mix y to U 1u(31:28)y_U(27:24), y_U(23:16), y_U(15:8), y_U(7:0) 0x00, 0x00, 0x00, 0x00
0x96 Mix x to Z 1u(31:28)x_Z(27:24), x_Z(23:16), x_Z(15:8), x_Z(7:0) 0x00, 0x00, 0x00, 0x00
0x97 Mix x to Y 1u(31:28)x_Y(27:24), x_Y(23:16), x_Y(15:8), x_Y(7:0) 0x00, 0x00, 0x00, 0x00
0x98 Mix x to X 1u(31:28)x_X(27:24), x_X(23:16), x_X(15:8), x_X(7:0) 0x00, 0x00, 0x00, 0x00
0x99 Mix x to W 1u(31:28)x_W(27:24), x_W(23:16), x_W(15:8), x_W(7:0) 0x00, 0x80, 0x00, 0x00
0x9A Mix x to V 1u(31:28)x_V(27:24), x_V(23:16), x_V(15:8), x_V(7:0) 0x00, 0x00, 0x00, 0x00
0x9B Mix x to U 1u(31:28)x_U(27:24), x_U(23:16), x_U(15:8), x_U(7:0) 0x00, 0x00, 0x00, 0x00
0x9C Mix r to Z 1u(31:28)r_Z(27:24), r_Z(23:16), r_Z(15:8), r_Z(7:0) 0x00, 0x00, 0x00, 0x00
0x9D Mix r to Y 1u(31:28)r_Y(27:24), r_Y(23:16), r_Y(15:8), r_Y(7:0) 0x00, 0x00, 0x00, 0x00
0x9E Mix r to X 1u(31:28)r_X(27:24), r_X(23:16), r_X(15:8), r_X(7:0) 0x00, 0x80, 0x00, 0x00
0x9F Mix r to W 1u(31:28)r_W(27:24), r_W(23:16), r_W(15:8), r_W(7:0) 0x00, 0x00, 0x00, 0x00
0xA0 Mix r to V 1u(31:28)r_V(27:24), r_V(23:16), r_V(15:8), r_V(7:0) 0x00, 0x00, 0x00, 0x00
0xA1 Mix r to U 1u(31:28)r_U(27:24), r_U(23:16), r_U(15:8), r_U(7:0) 0x00, 0x00, 0x00, 0x00
0xA2 CH1 loudness log2 G 1 u(31:28)LG(27:24), LG(23:16), LG(15:8), LG(7:0) 0x00, 0x40, 0x00, 0x00
0xA3 CH1 loudness log2 O 2 u(31:24), u(23:16), LO47:40(15:8), LO39:32(7:0) 0x00, 0x00, 0x00, 0x00
LO31:24(31:24), LO23:16(23:16), LO15:8(15:8), LO7:0(7:0) 0x00, 0x00, 0x00, 0x00
0xA4 CH1 loudness G 1u(31:28)G(27:24), G(23:16), G(15:8), G(7:0) 0x00, 0x00, 0x00, 0x00
0xA5 CH1 loudness O 2u(31:24), u(23:16), O47:40(15:8), O39:32(7:0) 0x00, 0x00, 0x00, 0x00
O31:24(31:24), O23:16(23:16), O15:8(15:8), O7:0(7:0) 0x00, 0x00, 0x00, 0x00
A−13
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xA6 CH1 loudness biquad 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xA7 CH2 loudness log2 G 1 u(31:28)LG(27:24), LG(23:16), LG(15:8), LG(7:0) 0x00, 0x40, 0x00, 0x00
0xA8 CH2 loudness log2 O 2 u(31:24), u(23:16), LO47:40(15:8), LO39:32(7:0) 0x00, 0x00, 0x00, 0x00
LO31:24(31:24), LO23:16(23:16), LO15:8(15:8), LO7:0(7:0) 0x00, 0x00, 0x00, 0x00
0xA9 CH2 loudness G 1u(31:28)G(27:24), G(23:16), G(15:8), G(7:0) 0x00, 0x00, 0x00, 0x00
0xAA CH2 loudness O 2u(31:24), u(23:16), O47:40(15:8), O39:32(7:0) 0x00, 0x00, 0x00, 0x00
O31:24(31:24), O23:16(23:16), O15:8(15:8), O7:0(7:0) 0x00, 0x00, 0x00, 0x00
0xAB CH2 loudness biquad 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xAC CH3 loudness log2 G 1 u(31:28)LG(27:24), LG(23:16), LG(15:8), LG(7:0) 0x00, 0x40, 0x00, 0x00
0xAD CH3 loudness log2 O 2 u(31:24), u(23:16), LO47:40(15:8), LO39:32(7:0) 0x00, 0x00, 0x00, 0x00
LO31:24(31:24), LO23:16(23:16), LO15:8(15:8), LO7:0(7:0) 0x00, 0x00, 0x00, 0x00
0xAE CH3 loudness G 1u(31:28)G(27:24), G(23:16), G(15:8), G(7:0) 0x00, 0x00, 0x00, 0x00
0xAF CH3 loudness O 2u(31:24), u(23:16), O47:40(15:8), O39:32(7:0) 0x00, 0x00, 0x00, 0x00
O31:24(31:24), O23:16(23:16), O15:8(15:8), O7:0(7:0) 0x00, 0x00, 0x00, 0x00
0xB0 CH3 loudness biquad 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xB1 CH1/2 DRCE ae 2u(31:28)ae(27:24), ae(23:16), ae(15:8), ae(7:0) 0x00, 0x80, 0x00, 0x00
CH1/2 DRCE 1-ae u(31:28)1-ae(27:24), 1-ae(23:16), 1-ae(15:8), 1-ae(7:0) 0x00, 0x00, 0x00, 0x00
0xB2 CH1/2 DRCE T1 4u(31:24), u(23:16), T147:40(15:8), T139:32(7:0) 0x00, 0x00, 0x00, 0x00
T131:24(31:24), T123:16(23:16), T115:8(15:8), T17:0(7:0) 0x00, 0x00, 0x00, 0x01
CH1/2 DRCE T2 u(31:24), u(23:16), T247:40(15:8), T239:32(7:0) 0x00, 0x00, 0x00, 0x00
T231:24(31:24), T223:16(23:16), T215:8(15:8), T27:0(7:0) 0x00, 0x00, 0x00, 0x01
0xB3 CH1/2 k0’ 3u(31:28)k0’(27:24), k0’(23:16), k0’(15:8), k0’(7:0) 0x00, 0x00, 0x00, 0x00
CH1/2 k1’ u(31:28)k1’(27:24), k1’(23:16), k1’(15:8), k1’(7:0) 0x00, 0x00, 0x00, 0x00
CH1/2 k2’ u(31:28)k2’(27:24), k2’(23:16), k2’(15:8), k2’(7:0) 0x00, 0x00, 0x00, 0x00
A−14
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xB4 CH1/2 DRCE O1 4u(31:24), u(23:16), O147:40(15:8), O139:32(7:0) 0x00, 0x00, 0x00, 0x00
O131:24(31:24), O123:16(23:16), O115:8(15:8), O17:0(7:0) 0x01, 0xFF, 0xFF, 0xFF
CH1/2 DRCE O2 u(31:24), u(23:16), O247:40(15:8), O239:32(7:0) 0x00, 0x00, 0x00, 0x00
O231:24(31:24), O223:16(23:16), O215:8(15:8), O27:0(7:0) 0x01, 0xFF, 0xFF, 0xFF
0xB5 CH1/2 DRCE aa 4u(31:28)aa(27:24), aa(23:16), aa(15:8), aa(7:0) 0x00, 0x80, 0x00, 0x00
CH1/2 DRCE 1-aa u(31:28)1-aa(27:24), 1-aa(23:16), 1-aa(15:8), 1-aa(7:0) 0x00, 0x00, 0x00, 0x00
CH1/2 DRCE ad u(31:28)ad(27:24), ad(23:16), ad(15:8), ad(7:0) 0x00, 0x80, 0x00, 0x00
CH1/2 DRCE 1-ad u(31:28)1-ad(27:24), 1-ad(23:16), 1-ad(15:8), 1-ad(7:0) 0x00, 0x00, 0x00, 0x00
0xB6 CH3 DRCE ae 2u(31:28)ae(27:24), ae(23:16), ae(15:8), ae(7:0) 0x00, 0x80, 0x00, 0x00
CH3 DRCE 1-ae u(31:28)1-ae(27:24), 1-ae(23:16), 1-ae(15:8), 1-ae(7:0) 0x00, 0x00, 0x00, 0x00
0xB7 CH3 DRCE T1 4u(31:24), u(23:16), T147:40(15:8), T139:32(7:0) 0x00, 0x00, 0x00, 0x00
T131:24(31:24), T123:16(23:16), T115:8(15:8), T17:0(7:0) 0x00, 0x00, 0x00, 0x01
CH3 DRCE T2 u(31:24), u(23:16), T247:40(15:8), T239:32(7:0) 0x00, 0x00, 0x00, 0x00
T231:24(31:24), T223:16(23:16), T215:8(15:8), T27:0(7:0) 0x00, 0x00, 0x00, 0x01
0xB8 CH3 k0’ 3u(31:28)k0’(27:24), k0’(23:16), k0’(15:8), k0’(7:0) 0x00, 0x00, 0x00, 0x00
CH3 k1’ u(31:28)k1’(27:24), k1’(23:16), k1’(15:8), k1’(7:0) 0x00, 0x00, 0x00, 0x00
CH3 k2’ u(31:28)k2’(27:24), k2’(23:16), k2’(15:8), k2’(7:0) 0x00, 0x00, 0x00, 0x00
0xB9 CH3 DRCE O1 4u(31:24), u(23:16), O147:40(15:8), O139:32(7:0) 0x00, 0x00, 0x00, 0x00
O131:24(31:24), O123:16(23:16), O115:8(15:8), O17:0(7:0) 0x01, 0xFF, 0xFF, 0xFF
CH3 DRCE O2 u(31:24), u(23:16), O247:40(15:8), O239:32(7:0) 0x00, 0x00, 0x00, 0x00
O231:24(31:24), O223:16(23:16), O215:8(15:8), O27:0(7:0) 0x01, 0xFF, 0xFF, 0xFF
0xBA CH3 DRCE aa 4u(31:28)aa(27:24), aa(23:16), aa(15:8), aa(7:0) 0x00, 0x80, 0x00, 0x00
CH3 DRCE 1-aa u(31:28)1-aa(27:24), 1-aa(23:16), 1-aa(15:8), 1-aa(7:0) 0x00, 0x00, 0x00, 0x00
CH3 DRCE ad u(31:28)ad(27:24), ad(23:16), ad(15:8), ad(7:0) 0x00, 0x80, 0x00, 0x00
CH3 DRCE 1-ad u(31:28)1-ad(27:24), 1-ad(23:16), 1-ad(15:8), 1-ad(7:0) 0x00, 0x00, 0x00, 0x00
0xBB Spectrum analyzer asa 2u(31:28)asa(27:24), asa(23:16), asa(15:8), asa(7:0) 0x00, 0x80, 0x00, 0x00
Spectrum analyzer 1-asa u(31:28)1-asa(27:24), 1-asa(23:16), 1-asa(15:8), 1-asa(7:0) 0x00, 0x00, 0x00, 0x00
0xBC Spectrum analyzer BQ1 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−15
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xBD Spectrum analyzer BQ2 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xBE Spectrum analyzer BQ3 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xBF Spectrum analyzer BQ4 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xC0 Spectrum analyzer BQ5 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xC1 Spectrum analyzer BQ6 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xC2 Spectrum analyzer BQ7 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xC3 Spectrum analyzer BQ8 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
A−16
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xC4 Spectrum analyzer BQ9 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xC5 Spectrum analyzer BQ10 5u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0) 0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0) 0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0) 0x00, 0x00, 0x00, 0x00
0xC6 Dither LFSR1 mix 2u(31:28)LFSR1(27:24), LFSR1(23:16), LFSR1(15:8), LFSR1(7:0) 0x00, 0x80, 0x00, 0x00
Dither LFSR2 mix u(31:28)LFSR2(27:24), LFSR2(23:16), LFSR2(15:8), LFSR2(7:0) 0x00, 0x80, 0x00, 0x00
0xC7 Dither seed 1u(31:24), u(23:16), LFSR2_SEED(15:8), LFSR1_SEED(7:0) 0x00, 0x00, 0x22, 0x49
0xC8 Factory test 1u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xC9 Factory test 2u(31:24), u(23:16), u(15:8), u(7:0) N/A
u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xCA Mix G to g 1u(31:28)G_g(27:24), G_g(23:16), G_g(15:8), G_g(7:0) 0x00, 0x00, 0x00, 0x00
0xCB Mix G to f 1u(31:28)G_f(27:24), G_f(23:16), G_f(15:8), G_f(7:0) 0x00, 0x00, 0x00, 0x00
0xCC Mix G to Y 1u(31:28)G_Y(27:24), G_Y(23:16), G_Y(15:8), G_Y(7:0) 0x00, 0x00, 0x00, 0x00
0xCD Mix H to h 1u(31:28)H_h(27:24), H_h(23:16), H_h(15:8), H_h(7:0) 0x00, 0x00, 0x00, 0x00
0xCE Mix H to f 1u(31:28)H_f(27:24), H_f(23:16), H_f(15:8), H_f(7:0) 0x00, 0x00, 0x00, 0x00
0xCF Mix H to Z 1u(31:28)H_Z(27:24), H_Z(23:16), H_Z(15:8), H_Z(7:0) 0x00, 0x00, 0x00, 0x00
0xD0 Mix d to aa 1u(31:28)d_aa(27:24), d_aa(23:16), d_aa(15:8), d_aa(7:0) 0x00, 0x00, 0x00, 0x00
0xD1 Mix e to aa 1u(31:28)e_aa(27:24), e_aa(23:16), e_aa(15:8), e_aa(7:0) 0x00, 0x00, 0x00, 0x00
0xD2 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD3 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD4 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD5 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD6 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD7 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD8 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xD9 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xDA Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xDB Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xDC Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xDD Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
A−17
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xDE Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xDF Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE0 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE1 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE2 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE3 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE4 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE5 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE6 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE7 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE8 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xE9 Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xEA Reserved 1 u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xEB Watchdog timer enable 1u(31:24), u(23:16), u(15:8), u(7:1)R1(0) 0x00, 0x00, 0x00, 0x01
0xEC Factory test 1u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xED Factory test 2u(31:24), u(23:16), u(15:8), u(7:0) N/A
u(31:24), u(23:16), u(15:8), u(7:0) N/A
0xEE GPIO port I/O value 1u(31:24), u(23:16), u(15:8), u(7:4)GPIO_in_out(3:0) 0x00, 0x00, 0x00, 0x0X(1)
0xEF GPIO parameters 1u(31:24), u(23:20)GPIODIR(19:16), GPIOFSCOUNT(15:8),
GPIO_samp_int(7:0) 0x00, 0x0F, 0x6E, 0x6D
0xF0 Master mute/unmute 1(31:24), u(23:16), u(15:8), u(7:3)CH3M_U(2)CH2M_U(1)CH1M_U(0) 0x00, 0x00, 0x00, 0x00
0xF1 Vol, T and B slew rates 1u(31:24), u(23:16), u(15:9)VSC(8), TBLC(7:0) 0x00, 0x00, 0x00, 0x40
0xF2 CH1 volume (5.23 precision) 1u(31:28)Vol1(27:24), Vol1(23:16), Vol1(15:8), Vol1(7:0) 0x00, 0x00, 0x00, 0x00
0xF3 CH2 volume (5.23 precision) 1u(31:28)Vol2(27:24), Vol2(23:16), Vol2(15:8), Vol2(7:0) 0x00, 0x00, 0x00, 0x00
0xF4 CH3 volume (5.23 precision) 1u(31:28)Vol3(27:24), Vol3(23:16), Vol3(15:8), Vol3(7:0) 0x00, 0x00, 0x00, 0x00
0xF5 Bass filter set (1-5) 1u(31:24), u(23:19)CH3Bs(18:16), u(15:11) CH2Bs(10:8),
u(7:3)CH1Bs(2:0), 0x00, 0x03, 0x03, 0x03
0xF6 Bass filter index 1u(31:24), CH3Bf(23:16), CH2Bf(15:8), CH1Bf(7:0) 0x00, 0x72, 0x72, 0x72
0xF7 Treble filter set (1-5) 1u(31:24), u(23:19)CH3Ts(18:16), u(15:11) CH2Ts(10:8), u(7:3)CH1Ts(2:0), 0x00, 0x03, 0x03, 0x03
0xF8 Treble filter index 1u(31:24), CH3Tf(23:16), CH2Tf(15:8), CH1Tf(7:0) 0x00, 0x72, 0x72, 0x72
0xF9 I2S command word 1MLRCLK(31:24), SCLK(23:16), DWFMT(15:8), IOM(7:0) 0x01, 0x01, 0x09, 0x11
0xFA Delay/reverb times−CH1 3u(31:28)D1(27:24), D1(23:16), u(15:12)R1(11:8), R1(7:0) 0x00, 0x00, 0x00, 0x00
Delay/reverb times−CH2 u(31:28)D2(27:24), D2(23:16), u(15:12)R2(11:8), R2(7:0) 0x00, 0x00, 0x00, 0x00
Delay/reverb times−CH3 u(31:28)D3(27:24), D3(23:16), u(15:12)R3(11:8), R3(7:0) 0x00, 0x00, 0x00, 0x00
0xFB I2C M and N 1u(31:24), u(23:16), u(15:8), u(7)M(6:3)N(2:0) 0x00, 0x00, 0x00, 0x41
0xFC Ending I2C check word 1ECW(31:24), ECW(23:16), ECW(15:8), ECW(7:0) 0x81, 0x42, 0x24, 0x18
A−18
SUBADDRESS
(0xSS) INITIALIZATION VALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xFD Spectrum analyzer output 1 2.5 SA1(7:0) (Always data dependent)
Spectrum analyzer output 2 SA2(7:0) (Always data dependent)
Spectrum analyzer output 3 SA3(7:0) (Always data dependent)
Spectrum analyzer output 4 SA4(7:0) (Always data dependent)
Spectrum analyzer output 5 SA5(7:0) (Always data dependent)
Spectrum analyzer output 6 SA6(7:0) (Always data dependent)
Spectrum analyzer output 7 SA7(7:0) (Always data dependent)
Spectrum analyzer output 8 SA8(7:0) (Always data dependent)
Spectrum analyzer output 9 SA9(7:0) (Always data dependent)
Spectrum analyzer output 10 SA10(7:0) (Always data dependent)
0xFE VU meter output 1 (SA5) 0.5 SA5(7:0) (Always data dependent)
VU meter output 2 (SA6) SA6(7:0) (Always data dependent)
0xFF Flag register 0.25 u(7:1)VolBusy(0) N/A
NOTE 1: GPIO ports are initialized to be read ports. The initial input values read then are dependent on what is connected to the GPIO pins. If a given GPIO pin is left unconnected,
the internal pullup results in a logic 1 being read.
A−19
A.2 TAS3103 Firmware Block Diagram
A
B
C
D
E
F
a
b
c
d
e
f
g
h
Ch1
Ch2
Ch3
X
VV
UU
ZZ
YY
Dither 3
Dither 1
Dither 2
p
q
rs
i
j
k
l
m
o
t
r
x
y
z
n
u
v
w
BTby1
BT1
BTby2
BT2
BTby3
BT3
DRCby1
DRCby2
DRCby3
WW
G
H
aa
Delay1
Delay2
Delay3
32-Bit
Clip 32−48
xpndr
Sp Analyzer
+ VU Meter
32-Bit
Clip 32−48
xpndr
Bass &
Treble
Soft
Vol Loud−
ness
Dynamic
Range
Control
12
Bq
Loud−
ness
Soft
Vol
Bass &
Treble
12
Bq
Dynamic
Range
Control
32−48
xpndr
32-Bit
Clip
Soft
Vol
Loud−
ness
Bass &
Treble
12
Bq
Rev
Del
4
BQ
Rev
Del
4
BQ
4
BQ
4
BQ
4
BQ
Rev
Del
4
BQ
PACKAGE OPTION ADDENDUM
www.ti.com 2-Apr-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TAS3103DBT NRND TSSOP DBT 38 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TAS3103DBTG4 NRND TSSOP DBT 38 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TAS3103DBTR NRND TSSOP DBT 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TAS3103DBTRG4 NRND TSSOP DBT 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TAS3103IDBT OBSOLETE TSSOP DBT 38 TBD Call TI Call TI
TAS3103IDCP OBSOLETE HTSSOP DCP 38 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 2-Apr-2012
Addendum-Page 2
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TAS3103DBTR TSSOP DBT 38 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TAS3103DBTR TSSOP DBT 38 2000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated