3.3 General Purpose Input/Output (GPIO)
EFR32BG21 has up to 20 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or
input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO
pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to
several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripher-
als. The GPIO subsystem supports asynchronous external pin interrupts.
All of the pins on ports A and port B are EM2 capable. These pins may be used by Low-Energy peripherals in EM2/3 and may also be
used as EM2/3 pin wake-ups. Pins on ports C and D are latched/retained in their current state when entering EM2 until EM2 exit upon
which internal peripherals could once again drive those pads.
A few GPIOs also have EM4 wake functionality. These pins are listed in 6.2 Alternate Function Table.
3.4 Clocking
3.4.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFR32BG21. Individual enabling and disabling of clocks to all periph-
eral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and
oscillators.
3.4.2 Internal and External Oscillators
The EFR32BG21 supports two crystal oscillators and fully integrates five RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing refer-
ence for the MCU and RF synthesizer. The HFXO provides excellent RF clocking performance using a 38.4 MHz crystal. The HFXO
can also support an external clock source such as a TCXO for applications that require an extremely accurate clock frequency over
temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast start-up at minimal energy consumption combined with a wide frequency range, from 1 MHz to 80 MHz.
• An integrated high frequency RC oscillator (HFRCOEM2) runs down to EM2 and is available for timing the general-purpose ADC
and the Serial Wire Viewer port with a wide frequency range.
• An integrated fast start-up RC oscillator (FSRCO) that runs at a fixed 20 MHz
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation where high accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-
sumption in low energy modes.
3.5 Counters/Timers and PWM
3.5.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
Peripheral Reflex System (PRS). The core of each TIMER is a 16-bit or 32-bit counter with up to 3 compare/capture channels. Each
channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In
compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER
supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the
compare registers. In addition some timers offer dead-time insertion.
See 3.12 Configuration Summary for information on the feature set of each timer.
3.5.2 Low Energy Timer (LETIMER)
The unique LETIMER is a 24-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-
forms with minimal software intervention. The LETIMER is connected to the Peripheral Reflex System (PRS), and can be configured to
start counting on compare matches from other peripherals such as the RTC.
EFR32BG21 Blue Gecko Wireless SoC Family Data Sheet
System Overview
silabs.com | Building a more connected world. Rev. 1.0 | 8