
Data Sheet AD8354
Rev. E | Page 13 of 16
THEORY OF OPERATION
The AD8354 is a 2-stage, feedback amplifier employing both
shunt-series and shunt-shunt feedback. The first stage is
degenerated and resistively loaded and provides approximately
10 dB of gain. The second stage is a PNP-NPN Darlington
output stage, which provides another 10 dB of gain. Series-
shunt feedback from the emitter of the output transistor sets the
input impedance to 50 Ω over a broad frequency range. Shunt-
shunt feedback from the amplifier output to the input of the
Darlington stage helps to set the output impedance to 50 Ω. The
amplifier can be operated from a 3 V supply by adding a choke
inductor from the amplifier output to VPOS. Without this
choke inductor, operation from a 5 V supply is also possible.
BASIC CONNECTIONS
The AD8354 RF gain block is a fixed gain amplifier with single-
ended input and output ports whose impedances are nominally
equal to 50 Ω over the frequency range 1 MHz to 2.7 GHz.
Consequently, it can be directly inserted into a 50 Ω system
with no impedance matching circuitry required. The input and
output impedances are sufficiently stable vs. variations in
temperature and supply voltage that no impedance matching
compensation is required. A complete set of scattering
parameters is available at www.analog.com.
The input pin (INPT) is connected directly to the base of the
first amplifier stage, which is internally biased to approximately 1 V;
therefore, a dc blocking capacitor should be connected between the
source that drives the AD8354 and the input pin, INPT.
It is critical to supply very low inductance ground connections
to the ground pins (Pin 1, Pin 4, Pin 5, and Pin 8) as well as to
the backside exposed paddle. This ensures stable operation.
The AD8354 is designed to operate over a wide supply voltage
range, from 2.7 V to 5.5 V. The output of the part, VOUT, is
taken directly from the collector of the output amplifier stage.
This node is internally biased to approximately 3.2 V when the
supply voltage is 5 V. Consequently, a dc blocking capacitor
should be connected between the output pin, VOUT, and the
load that it drives. The value of this capacitor is not critical, but
it should be 100 pF or larger.
When the supply voltage is 3 V, it is recommended that an
external RF choke be connected between the supply voltage
and the output pin, VOUT. This increases the dc voltage applied
to the collector of the output amplifier stage, which improves
performance of the AD8354 to be very similar to the performance
produced when 5 V is used for the supply voltage. The inductance
of the RF choke should be approximately 100 nH, and care
should be taken to ensure that the lowest series self-resonant
frequency of this choke is well above the maximum frequency
of operation for the AD8354.
Bypass the supply voltage input, VPOS, using a large value
capacitance (approximately 0.47 µF or larger) and a smaller,
high frequency bypass capacitor (approximately 100 pF)
physically located close to the VPOS pin.
The recommended connections and components are shown in
Figure 41.