C0G (NP0) Dielectric General Specifications C0G (NP0) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern C0G (NP0) formulations contain neodymium, samarium and other rare earth oxides. C0G (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 30ppm/C which is less than 0.3% C from -55C to +125C. Capacitance drift or hysteresis for C0G (NP0) ceramics is negligible at less than 0.05% versus up to 2% for films. Typical capacitance change with life is less than 0.1% for C0G (NP0), one-fifth that shown by most other dielectrics. C0G (NP0) formulations show no aging characteristics. The C0G (NP0) formulation usually has a "Q" in excess of 1000 and shows little capacitance or "Q" changes with frequency. Their dielectric absorption is typically less than 0.6% which is similar to mica and most films. PART NUMBER (see page 3 for complete part number explanation) 0805 5 A 101 J A T 2 A Size (L" x W") Voltage 25V = 3 50V = 5 100V = 1 200V = 2 Dielectric C0G (NP0) = A Capacitance Code Capacitance Tolerance Preferred K = 10% J = 5% Failure Rate A = Not Applicable Terminations T = Plated Ni and Solder Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product PERFORMANCE CHARACTERISTICS Capacitance Range 0.5 pF to .1 F (1.0 0.2 Vrms, 1kHz, for 100 pF use 1 MHz) Capacitance Tolerances Preferred 5%, 10% others available: .25 pF, .5 pF, 1% (25pF), 2%(13pF), 20% For values 10 pF preferred tolerance is .5 pF, also available .25 pF. Operating Temperature Range -55C to +125C Temperature Characteristic 0 30 ppm/C (EIA C0G) Voltage Ratings 25, 50, 100 & 200 VDC (+125C) Dissipation Factor and "Q" For values >30 pF: 0.1% max. (+25C and +125C) For values 30 pF: "Q" = 400 + 20 x C (C in pF) Insulation Resistance (+25C, RVDC) 100,000 megohms min. or 1000 M - F min., whichever is less Insulation Resistance (+125C, RVDC) 10,000 megohms min. or 100 M - F min., whichever is less Dielectric Strength 250% of rated voltage for 5 seconds at 50 mamp max. current Test Voltage 1 0.2 Vrms Test Frequency For values 100 pF: 1 MHz For values >100 pF: 1 KHz 4 C0G (NP0) Dielectric Typical Characteristic Curves** Variation of Impedance with Cap Value Impedance vs. Frequency 0805 - C0G (NP0) 10 pF vs. 100 pF vs. 1000 pF Temperature Coefficient % Capacitance Typical Capacitance Change Envelope: 0 30 ppm/C 100,000 10,000 Impedance, +0.5 0 -0.5 -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 1,000 100 10 pF 10.0 1.0 Temperature C 100 pF 1000 pF 0.1 1 Capacitance vs. Frequency Variation of Impedance with Chip Size Impedance vs. Frequency 1000 pF - C0G (NP0) +1 10 0 1206 0805 1812 1210 -1 Impedance, % Capacitance 1000 Frequency, MHz +2 -2 1KHz 10 KHz 100 KHz 1 MHz 1.0 10 MHz Frequency 0.1 10 100 1000 Frequency, MHz Insulation Resistance vs Temperature 10,000 Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R 0805 1,000 10.00 X7R NPO Impedance, Insulation Resistance (Ohm-Farads) 100 10 100 0 +20 +25 +40 +60 +80 1.00 0.10 +100 Temperature C 0.01 10 100 1000 Frequency, MHz SUMMARY OF CAPACITANCE RANGES VS. CHIP SIZE Style 0402* 0504 0603* 0805* 1206* 1210* 1505 1808 1812* 1825* 2220 2225 25V 0.5pF - 220pF 0.5pF - 330pF 0.5pF - 1nF 0.5pF - 4.7nF 0.5pF - 10nF 560pF - 10nF -- 1nF - 15nF 50V 0.5pF - 120pF 0.5pF - 150pF 0.5pF - 1nF 0.5pF - 2.2nF 0.5pF - 4.7nF 560pF - 10nF 10pF - 1.5nF 1nF - 4.7nF 1nF - 10nF 1nF - 22nF 4.7nF - 47nF 1nF - 100nF 100V -- 0.5pF - 68pF 0.5pF - 330pF 0.5pF - 1nF 0.5pF - 2.2nF 560pF - 3.9nF 10pF - 820pF 1nF - 3.9nF 1nF - 4.7nF 1nF - 12nF 4.7nF - 39nF 1nF - 39nF 200V -- -- -- 0.5pF - 470pF 0.5pF - 1nF 560pF - 1.5nF 10pF - 560pF 1nF - 2.2nF 1nF - 3.3nF 1nF - 6.8nF 3.3nF - 27nF 1nF - 39nF * Standard Sizes ** For additional information on performance changes with operating conditions consult AVX's software SpiCap. 5 C0G (NP0) Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 0603* 0805 1206 1505 All Paper All Embossed All Paper Paper/Embossed Paper/Embossed All Embossed 1.27 .25 (.050 .010) 1.02 .25 (.040 .010) 1.02 (.040) .38 .13 (.015 .005) 1.60 .15 (.063 .006) .81 .15 (.032 .006) .90 (.035) .35 .15 (.014 .006) 2.01 .20 (.079 .008) 1.25 .20 (.049 .008) 1.30 (.051) .50 .25 (.020 .010) 3.20 .20 (.126 .008) 1.60 .20 (.063 .008) 1.50 (.059) .50 .25 (.020 .010) 3.81 .25 (.150 .010) 1.27 .25 (.050 .010) 1.27 (.050) .50 .25 (.020 .010) 1.00 .10 (.040 .004) .50 .10 (.020 .004) .60 (.024) .25 .15 (.010 .006) 25 50 25 50 100 25 50 100 25 50 100 200 25 50 100 200 50 L W 200 T 1.8 2.2 2.7 3.3 3.9 4.7 100 0.5 1.0 1.2 1.5 WVDC Cap (pF) 0504* MM (in.) MM (W) Width (in.) (T) Max. Thickness MM (in.) MM (t) Terminal (in.) (L) Length 0402* SIZE Standard Reel Packaging t 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10000 *Reflow soldering only. NOTES: For higher voltage chips, see pages 20 and 21. 6 = Paper Tape = Embossed Tape C0G (NP0) Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 1210 1808* 1812* 1825* 2220* 2225* Standard Reel Packaging Paper/Embossed All Embossed All Embossed All Embossed All Embossed All Embossed (t) Terminal WVDC 25 200 25 200 50 5.7 .40 (.225 .016) 5.0 .40 (.197 .016) 2.30 (.090) .64 .39 (.025 .015) 100 200 560 680 820 4.50 .30 (.177 .012) 6.40 .40 (.252 .016) 1.70 (.067) .61 .36 (.024 .014) 50 100 200 5.72 .25 (.225 .010) 6.35 .25 (.250 .010) 1.70 (.067) .64 .39 (.025 .015) 50 100 200 Cap (pF) 4.50 .30 (.177 .012) 3.20 .20 (.126 .008) 1.70 (.067) .61 .36 (.024 .014) 50 100 L W (T) Max. Thickness 4.57 .25 (.180 .010) 2.03 .25 (.080 .010) 1.52 (.060) .64 .39 (.025 .015) 50 100 (W) Width 3.20 .20 (.126 .008) 2.50 .20 (.098 .008) 1.70 (.067) .50 .25 (.020 .010) 50 100 200 MM (in.) MM (in.) MM (in.) MM (in.) (L) Length 1000 1200 1500 1800 2200 2700 T t 3300 3900 4700 5600 6800 8200 Cap. (F) .010 .012 .015 .018 .022 .027 .033 .039 .047 .068 .082 .1 *Reflow soldering only. NOTES: For higher voltage chips, see pages 20 and 21. = Paper Tape = Embossed Tape 7 How to Order Part Number Explanation EXAMPLE: 08055A101JAT2A 0805 Size (L" x W") 0402 0504 0603 0805 1005 0907 1206 1210 1505 1805 1808 1812 1825 2225 3640 5 A 101 Dielectric C0G (NP0) = A X7R = C X5R = D Z5U = E Y5V = G Voltage 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 250V = V 500V = 7 600V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K J C D F G J K M Z P A Capacitance Tolerance = .25 pF* = .50 pF* = 1% ( 25 pF) = 2% ( 13 pF) = 5% = 10% = 20% = +80%, -20% = +100%, -0% Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 F = 105 For values below 10 pF, use "R" in place of decimal point, e.g., 9.1 pfd = 9R1. T 2 Terminations Standard: T = Ni and Tin Plated Others: 7 = Plated Ni Gold Plated 1 = Pd/Ag Failure Rate A = Not Applicable A Special** Code A = Standard Product Non-Standard P = Embossed unmarked M = Embossed marked E = Standard packaging marked Low Profile Chips Only Max. Thickness T = .66mm (.026") S = .56mm (.022") R = .46mm (.018") Packaging** Recommended: 2 =7" Reel 4 =13" Reel Others: 7 = Bulk Cassette 9 = Bulk * C&D tolerances for 10 pF values. ** Standard Tape and Reel material depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value. Note: Unmarked product is standard. Marked product is available on special request, please contact AVX. Standard packaging is shown in the individual tables. Non-standard packaging is available on special request, please contact AVX. 3 Surface Mounting Guide MLC Chip Capacitors Component Pad Design Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is: * Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this. * Pad overlap 0.5mm beneath component. * Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering. REFLOW SOLDERING D2 D1 D3 D4 D5 Dimensions in millimeters (inches) Case Size 0402 0603 0805 1206 1210 1808 1812 1825 2220 2225 D1 D2 D3 D4 D5 1.70 (0.07) 2.30 (0.09) 3.00 (0.12) 4.00 (0.16) 4.00 (0.16) 5.60 (0.22) 5.60 (0.22) 5.60 (0.22) 6.60 (0.26) 6.60 (0.26) 0.60 (0.02) 0.80 (0.03) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04)) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 0.50 (0.02) 0.70 (0.03) 1.00 (0.04) 2.00 (0.09) 2.00 (0.09) 3.60 (0.14) 3.60 (0.14) 3.60 (0.14) 4.60 (0.18) 4.60 (0.18) 0.60 (0.02) 0.80 (0.03) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 0.50 (0.02) 0.75 (0.03) 1.25 (0.05) 1.60 (0.06) 2.50 (0.10) 2.00 (0.08) 3.00 (0.12) 6.35 (0.25) 5.00 (0.20) 6.35 (0.25) 41 Surface Mounting Guide MLC Chip Capacitors WAVE SOLDERING Case Size 0603 0805 1206 1210 D2 D1 D3 D4 D1 D2 D3 D4 D5 3.10 (0.12) 4.00 (0.15) 5.00 (0.19) 5.00 (0.19) 1.20 (0.05) 1.50 (0.06) 1.50 (0.06) 1.50 (0.06) 0.70 (0.03) 1.00 (0.04) 2.00 (0.09) 2.00 (0.09) 1.20 (0.05) 1.50 (0.06) 1.50 (0.06) 1.50 (0.06) 0.75 (0.03) 1.25 (0.05) 1.60 (0.06) 2.50 (0.10) D5 Dimensions in millimeters (inches) Component Spacing Preheat & Soldering For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required. The rate of preheat should not exceed 4C/second to prevent thermal shock. A better maximum figure is about 2C/second. For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150C. In all other cases this differential should not exceed 100C. For further specific application or process advice, please consult AVX. 1.5mm (0.06) 1mm (0.04) 1mm (0.04) 42 Cleaning Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor. Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse. Surface Mounting Guide MLC Chip Capacitors APPLICATION NOTES General Good solderability is maintained for at least twelve months, provided the components are stored in their "as received" packaging at less than 40C and 70% RH. Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods. Solderability Handling Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 5C for 21 seconds. Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors. Storage Leaching Terminations will resist leaching for at least the immersion times and conditions shown below. Termination Type Nickel Barrier Solder Solder Tin/Lead/Silver Temp. C 60/40/0 2605 Immersion Time Seconds 301 Preheat Recommended Soldering Profiles Reflow 300 Natural Cooling Preheat Solder Temp. 250 200 220C to 250C 150 Soldering 100 50 0 1min 10 sec. max 1min (Minimize soldering time) Wave Preheat Natural Cooling 250 Solder Temp. Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. Cooling 300 200 It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4C/second and a target figure 2C/second is recommended. Although an 80C to 120C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases. T 230C to 250C 150 100 50 0 1 to 2 min 3 sec. max (Preheat chips before soldering) T/maximum 150C Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above. Cleaning Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors. 43 Packaging of Chip Components Automatic Insertion Packaging TAPE & REEL QUANTITIES All tape and reel specifications are in compliance with RS481. 8mm Paper or Embossed Carrier (1) 12mm 0805, 1005, 1206, 1210 Embossed Only 0504, 0907 Paper Only 0402, 0603 1505, 1805, 1808 1812, 1825 2220, 2225 Qty. per Reel/7" Reel 2,000 or 4,000 (1) 3,000 1,000 Qty. per Reel/13" Reel 10,000 10,000 4,000 Dependent on chip thickness. Low profile chips shown on page 27 are 5,000 per reel for 7" reel. 0402 size chips are 10,000 per 7" reels and are not available on 13" reels. For 3640 size chip contact factory for quantity per reel. REEL DIMENSIONS Tape Size(1) A Max. B* Min. C D* Min. N Min. 8mm 330 (12.992) 1.5 (.059) 13.00.20 (.512.008) 20.2 (.795) W2 Max. W3 8.4 +1.0 -0.0 (.331 +.060 -0.0 ) 14.4 (.567) 7.9 Min. (.311) 10.9 Max. (.429) 12.4 +2.0 -0.0 +.076 ) (.488 -0.0 18.4 (.724) 11.9 Min. (.469) 15.4 Max. (.607) 50 (1.969) 12mm Metric dimensions will govern. English measurements rounded and for reference only. (1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision. 32 W1 Embossed Carrier Configuration 8 & 12mm Tape Only 8 & 12mm Embossed Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size 8mm and 12mm D0 +0.10 -0.0 +.004 -0.0 8.4 (.059 E ) P0 P2 1.75 0.10 4.0 0.10 2.0 0.05 (.069 .004) (.157 .004) (.079 .002) T Max. T1 G1 G2 0.600 (.024) 0.10 (.004) Max. 0.75 (.030) Min. See Note 3 0.75 (.030) Min. See Note 4 R Min. See Note 2 T2 W A0 B0 K0 VARIABLE DIMENSIONS Tape Size B1 D1 Max. Min. See Note 6 See Note 5 F P1 8mm 4.55 (.179) 1.0 (.039) 3.5 0.05 4.0 0.10 (.138 .002) (.157 .004) 25 (.984) 2.5 Max (.098) 8.0 +0.3 -0.1 (.315 +.012 -.004 ) See Note 1 12mm 8.2 (.323) 1.5 (.059) 5.5 0.05 4.0 0.10 (.217 .002) (.157 .004) 30 (1.181) 6.5 Max. (.256) 12.0 .30 (.472 .012) See Note 1 8mm 1/2 Pitch 4.55 (.179) 1.0 (.039) 3.5 0.05 2.0 0.10 (.138 .002) 0.79 .004 25 (.984) 2.5 Max. (.098) 8.0 +0.3 -0.1 (.315 +.012 -.004 ) See Note 1 12mm Double Pitch 8.2 (.323) 1.5 (.059) 5.5 0.05 8.0 0.10 (.217 .002) (.315 .004) 30 (1.181) 6.5 Max. (.256) 12.0 .30 (.472 .012) See Note 1 NOTES: 1. A0, B0, and K0 are determined by the max. dimensions to the ends of the terminals extending from the component body and/or the body dimensions of the component. The clearance between the end of the terminals or body of the component to the sides and depth of the cavity (A0, B0, and K0) must be within 0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see sketches C & D). 2. Tape with components shall pass around radius "R" without damage. The minimum trailer length (Note 2 Fig. 3) may require additional length to provide R min. for 12 mm embossed tape for reels with hub diameters approaching N min. (Table 4). 3. G1 dimension is the flat area from the edge of the sprocket hole to either the outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less. 4. G2 dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less. 5. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other. 6. B1 dimension is a reference dimension for tape feeder clearance only. 33 Paper Carrier Configuration 8 & 12mm Tape Only 8 & 12mm Paper Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size 8mm and 12mm D0 1.5 (.059 +0.1 -0.0 +.004 -.000 E ) 1.75 0.10 (.069 .004) P0 P2 4.0 0.10 2.0 0.05 (.157 .004) (.079 .002) T1 G1 G2 R MIN. 0.10 (.004) Max. 0.75 (.030) Min. 0.75 (.030) Min. 25 (.984) See Note 2 VARIABLE DIMENSIONS Tape Size P1 F W A0 B0 T 8mm 4.0 0.10 (.157 .004) 3.5 0.05 (.138 .002) 8.0 +0.3 -0.1 (.315 +.012 -.004 ) See Note 1 See Note 3 12mm 4.0 .010 (.157 .004) 5.5 0.05 (.217 .002) 12.0 0.3 (.472 .012) 8mm 1/2 Pitch 2.0 0.10 (.079 .004) 3.5 0.05 (.138 .002) 8.0 +0.3 -0.1 (.315 +.012 -.004 ) 12mm Double Pitch 8.0 0.10 (.315 .004) 5.5 0.05 (.217 .002) 12.0 0.3 (.472 .012) NOTES: 1. A0, B0, and T are determined by the max. dimensions to the ends of the terminals extending from the component body and/or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A0, B0, and T) must be within 0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see sketches A & B). 2. Tape with components shall pass around radius "R" without damage. 3. 1.1 mm (.043) Base Tape and 1.6 mm (.063) Max. for Non-Paper Base Compositions. Bar Code Labeling Standard AVX bar code labeling is available and follows latest version of EIA-556-A. 34 Bulk Case Packaging BENEFITS BULK FEEDER * Easier handling * Smaller packaging volume (1/20 of T/R packaging) * Easier inventory control Case * Flexibility * Recyclable Cassette Gate Shooter CASE DIMENSIONS Shutter Slider 12mm 36mm Mounter Head Expanded Drawing 110mm Chips Attachment Base CASE QUANTITIES Part Size 0402 0603 0805 Qty. (pcs / cassette) 80,000 15,000 10,000 (T=0.6mm) 5,000 (T0.6mm) 35