DATA SH EET
Product specification
File under Integrated Circuits, IC04 January 1995
INTEGRATED CIRCUITS
HEF4015B
MSI
Dual 4-bit static shift register
For a complete data sheet, please also download:
The IC04 LOCMOS HE4000B Logic
Family Specifications HEF, HEC
The IC04 LOCMOS HE4000B Logic
Package Outlines/Information HEF, HEC
January 1995 2
Philips Semiconductors Product specification
Dual 4-bit static shift register HEF4015B
MSI
DESCRIPTION
The HEF4015B is a dual edge-triggered 4-bit static shift
register (serial-to-parallel converter). Each shift register
has a serial data input (D), a clock input (CP), four fully
buffered parallel outputs (O0to O3) and an overriding
asynchronous master reset input (MR). Information
present on D is shifted to the first register position, and all
the data in the register is shifted one position to the right
on the LOW-to-HIGH transition of CP. A HIGH on MR
clears the register and forces O0to O3to LOW,
independent of CP and D. Schmitt-trigger action in the
clock input makes the circuit highly tolerant to slower clock
rise and fall times.
Fig.1 Functional diagram.
HEF4015BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4015BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4015BT(D): 16-lead SO; plastic
(SOT109-1)
( ): Package Designator North America
Fig.2 Pinning diagram.
PINNING
APPLICATION INFORMATION
Some examples of applications for the HEF4015B are:
Serial-to-parallel converter
Buffer stores
General purpose register
DA, DBserial data input
MRA, MRBmaster reset input (active HIGH)
CPA, CPBclock input (LOW-to-HIGH
edge-triggered)
O0A, O1A, O2A, O3A parallel outputs
O0B, O1B, O2B, O3B parallel outputs
FAMILY DATA, IDD LIMITS category MSI
See Family Specifications
January 1995 3
Philips Semiconductors Product specification
Dual 4-bit static shift register HEF4015B
MSI
LOGIC DIAGRAM (one register)
Fig.3 Logic diagram.
FUNCTION TABLE
INPUTS OUTPUTS
n CP D MR O0O1O2O3
1D
1
LD
1XXX
2D
2
LD
2D
1XX
3D
3
LD
3D
2D
1X
4D
4
LD
4D
3D
2D
1
X L no change
XXH L L LL
Note
1. H = HIGH state (the more positive voltage)
2. L = LOW state (the less positive voltage)
3. X = state is immaterial
4. = positive-going transition
5. = negative-going transition
6. Dn= either HIGH or LOW
7. n = number of clock pulse transitions
January 1995 4
Philips Semiconductors Product specification
Dual 4-bit static shift register HEF4015B
MSI
AC CHARACTERISTICS
VSS = 0 V; Tamb =25°C; CL= 50 pF; input transition times 20 ns
VDD
VSYMBOL MIN. TYP. MAX. TYPICAL EXTRAPOLATION
FORMULA
Propagation delays
CP On5 130 260 ns 103 ns +(0,55 ns/pF) CL
HIGH to LOW 10 tPHL 55 110 ns 44 ns +(0,23 ns/pF) CL
15 40 80 ns 32 ns +(0,16 ns/pF) CL
5 120 240 ns 93 ns +(0,55 ns/pF) CL
LOW to HIGH 10 tPLH 55 110 ns 44 ns +(0,23 ns/pF) CL
15 40 80 ns 32 ns +(0,16 ns/pF) CL
MR On5 105 210 ns 78 ns +(0,55 ns/pF) CL
HIGH to LOW 10 tPHL 45 90 ns 34 ns +(0,23 ns/pF) CL
15 35 70 ns 27 ns +(0,16 ns/pF) CL
Output transition times 5 60 120 ns 10 ns +(1,0 ns/pF) CL
HIGH to LOW 10 tTHL 30 60 ns 9 ns +(0,42 ns/pF) CL
15 20 40 ns 6 ns +(0,28 ns/pF) CL
5 60 120 ns 10 ns +(1,0 ns/pF) CL
LOW to HIGH 10 tTLH 30 60 ns 9 ns +(0,42 ns/pF) CL
15 20 40 ns 6 ns +(0,28 ns/pF) CL
Set-up time 5 25 15 ns
see waveforms Figs 4 and 5
DCP 10 tsu 25 10 ns
15 20 5ns
Hold time 5 40 20 ns
DCP 10 thold 20 10 ns
15 15 8 ns
Minimum clock 5 60 30 ns
pulse width; LOW 10 tWCPL 30 15 ns
15 20 10 ns
Minimum MR 5 80 40 ns
pulse width; HIGH 10 tWMRH 30 15 ns
15 24 12 ns
Recovery time 5 50 20 ns
for MR 10 tRMR 30 10 ns
15 20 5 ns
Maximum clock 5 7 15 MHz
pulse frequency 10 fmax 15 30 MHz
15 22 44 MHz
January 1995 5
Philips Semiconductors Product specification
Dual 4-bit static shift register HEF4015B
MSI
VDD
VTYPICAL FORMULA FOR P (µW)
Dynamic power 5 1 500 fi+∑(foCL)×VDD2where
dissipation per 10 6 300 fi+∑(foCL)×VDD2fi= input freq. (MHz)
package (P) 15 17 000 fi+∑(foCL)×VDD2fo= output freq. (MHz)
CL= load capacitance (pF)
(foCL) = sum of outputs
VDD = supply voltage (V)
Fig.4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are
shown as positive values but may be specified as negative values.
Fig.5 Waveforms showing recovery time for MR and minimum MR pulse width.