Semiconductor Components Industries, LLC, 2002
January, 2002 – Rev. 2 1Publication Order Number:
LM833/D
LM833
Low Noise, Audio Dual
Operational Amplifier
The LM833 is a standard low–cost monolithic dual general–purpose
operational amplifier employing Bipolar technology with innovative
high–performance concepts for audio systems applications. With high
frequency PNP transistors, the LM833 offers low voltage noise
(4.5 nV/
Hz
), 15 MHz gain bandwidth product, 7.0 V/µs slew rate,
0.3 mV input offset voltage with 2.0 µV/°C temperature coef ficient of
input offset voltage. The LM833 output stage exhibits no deadband
crossover distortion, large output voltage swing, excellent phase and
gain margins, low open loop high frequency output impedance and
symmetrical source/sink AC frequency response.
For an improved performance dual/quad version, see the MC33079
family.
Low Voltage Noise: 4.5 nV/ Hz
High Gain Bandwidth Product: 15 MHz
High Slew Rate: 7.0 V/µs
Low Input Offset Voltage: 0.3 mV
Low T.C. of Input Offset Voltage: 2.0 µV/°C
Low Distortion: 0.002%
Excellent Frequency Stability
Dual Supply Operation
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) VS+36 V
Input Differential Voltage Range
(Note 1) VIDR 30 V
Input Voltage Range (Note 1) VIR ±15 V
Output Short Circuit Duration (Note 2) tSC Indefinite
Operating Ambient Temperature
Range TA–40 to +85 °C
Operating Junction Temperature TJ+150 °C
Storage Temperature Tstg –60 to +150 °C
Maximum Power Dissipation
(Notes 2 and 3) PD500 mW
1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction
temperature (TJ) is not exceeded (see power dissipation performance
characteristic).
3. Maximum value at TA 85°C.
Device Package Shipping
ORDERING INFORMATION
LM833N PDIP–8 50 Units/Rail
LM833D SO–8
http://onsemi.com
98 Units/Rail
PDIP–8
N SUFFIX
CASE 626
1
8
SO–8
D SUFFIX
CASE 751
1
8
MARKING
DIAGRAMS
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
LM833DR2 SO–8 2500 Tape & Reel
PIN CONNECTIONS
2
(Top View)
1
3
4
8
7
6
5
Output 1
Inputs 1
Output 2
Inputs 2
VEE
VCC
1
2
1
8
LM833N
AWL
YYWW
ALYW
LM833
1
8
LM833
http://onsemi.com
2
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 , VO = 0 V) VIO 0.3 5.0 mV
Average Temperature Coefficient of Input Offset Voltage VIO/T 2.0 µV/°C
RS = 10 , VO = 0 V, TA = Tlow to Thigh
Input Offset Current (VCM = 0 V, VO = 0 V) IIO 10 200 nA
Input Bias Current (VCM = 0 V, VO = 0 V) IIB 300 1000 nA
Common Mode Input Voltage Range VICR
–12 +14
–14 +12
V
Large Signal Voltage Gain (RL = 2.0 k, V O = ±10 V AVOL 90 110 dB
Output Voltage Swing: V
RL = 2.0 k, VID = 1.0 V VO+ 10 13.7
RL = 2.0 k, VID = 1.0 V VO– –14.1 –10
RL = 10 k, VID = 1.0 V VO+ 12 13.9
RL = 10 k, VID = 1.0 V VO– –14.7 –12
Common Mode Rejection (Vin = ±12 V) CMR 80 100 dB
Power Supply Rejection (VS = 15 V to 5.0 V, –15 V to –5.0 V) PSR 80 115 dB
Power Supply Current (VO = 0 V, Both Amplifiers) ID 4.0 8.0 mA
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 k, AV = +1.0) SR5.0 7.0 V/µs
Gain Bandwidth Product (f = 100 kHz) GBW 10 15 MHz
Unity Gain Frequency (Open Loop) fU 9.0 MHz
Unity Gain Phase Margin (Open Loop) θm 60 Deg
Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) en 4.5 nVHz
Equivalent Input Noise Current (f = 1.0 kHz) in 0.5 pAHz
Power Bandwidth (VO = 27 Vpp, RL = 2.0 k, THD 1.0%) BWP 120 kHz
Distortion (RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 Vrms,
AV = +1.0) THD 0.002 %
Channel Separation (f = 20 Hz to 20 kHz) CS –120 dB
Figure 1. Maximum Power Dissipation
versus Temperature Figure 2. Input Bias Current versus Temperature
TA, AMBIENT TEMPERATURE (°C)
P , MAXIMUM POWER DISSIPATION (mW)
D
I , INPUT BIAS CURRENT (nA)
IB
800
600
400
200
0
-50 0 50 100 150
1000
800
600
400
200
0
-55 -25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = -15 V
VCM = 0 V
LM833
http://onsemi.com
3
TA, AMBIENT TEMPERATURE (°C)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
20
15
10
5.0
0
-25 0 25 50 75 100 12
5
-55
VCC = +15 V
VEE = -15 V
f = 100 kHz
Figure 3. Input Bias Current versus
Supply Voltage Figure 4. Supply Current versus
Supply Voltage
Figure 5. DC Voltage Gain
versus Temperature Figure 6. DC Voltage Gain versus
Supply Voltage
Figure 7. Open Loop Voltage Gain and
Phase versus Frequency Figure 8. Gain Bandwidth Product
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC, |VEE|, SUPPLY VOLTAGE (V)
I , SUPPLY CURRENT (mA)
S
A , OPEN LOOP VOLTAGE GAIN (dB)
VOL A , DC VOLTAGE GAIN (dB)
VOL
800
600
400
200
05.0 10 15 20
10
8.0
6.0
4.0
2.0
0
110
105
100
95
90
-55 -25 0 25 50 75 100 125
110
100
90
80
0 5.0 10 15 20
120
100
80
60
40
20
01.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
0
45
90
135
180
5.0 10 15 20
, EXCESS PHASE (DEGREES)
RL =
TA = 25°C
VCC
VO
VEE
IS
VCC = +15 V
VEE = -15 V
RL = 2.0 k
VCC = +15 V
VEE = -15 V
RL = 2.0 k
TA = 25°C
Phase
Gain
, INPUT BIAS CURRENT (nA)IIB
A , DC VOLTAGE GAIN (dB)
VOL
+
RL = 2.0 k
TA = 25°C
TA = 25°C
LM833
http://onsemi.com
4
VO, OUTPUT VOLTAGE (V )
pp
VO, OUTPUT VOLTAGE (V )
pp
Figure 9. Gain Bandwidth Product versus
Supply Voltage Figure 10. Slew Rate versus Temperature
Figure 11. Slew Rate versus Supply Voltage Figure 12. Output Voltage versus Frequency
Figure 13. Maximum Output Voltage
versus Supply Voltage Figure 14. Output Saturation Voltage
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC, |VEE|, SUPPLY VOLTAGE (V)
TA, AMBIENT TEMPERATURE (°C)
SR, SLEW RATE (V/ s)µ
SR, SLEW RATE (V/ s)µ
V , OUTPUT SATURATION VOLTAGE |V|
sat
30
20
10
0
5.0 10 15 20
10
8.0
6.0
4.0
2.0
-55 -25 0 25 50 75 100 125
10
8.0
6.0
4.0
2.0
0
35
30
25
20
15
10
5.0
010 100 1.0 k 10 k 1.0 M 10 M 100 k
20
15
10
5.0
0
-5.0
-10
-15
-20
15
14
13
5.0 10 15 20
5.0 10 15 20 -55 -25 0 25 50 75 100 125
f = 100 kHz
TA = 25°C
RL = 2.0k
AV = +1.0
TA = 25°C
Vin
VO
RL
VO -
VO +
RL = 10 k
TA = 25°C+Vsat
-Vsat
VCC = +15 V
VEE = -15 V
RL = 10 k
+
-
VCC = +15 V
VEE = -15 V
RL = 2.0 k
AV = +1.0
Vin VO
RL
-
+
Falling
Rising
VCC = +15 V
VEE = -15 V
RL = 2.0 k
THD 1.0%
TA = 25°C
Falling
Rising
LM833
http://onsemi.com
5
e , INPUT NOISE VOLTAGE (nV/ )
f, FREQUENCY (Hz)
2.0
1.0
0.7
0.5
0.4
0.3
0.2
10 100 1.0 k 10 k 100 k
Figure 15. Power Supply Rejection
versus Frequency Figure 16. Common Mode Rejection
versus Frequency
, INPUT NOISE CURRENT (pA/
Figure 17. Total Harmonic Distortion
versus Frequency Figure 18. Input Referred Noise Voltage
versus Frequency
Figure 19. Input Referred Noise Current
versus Frequency
f, FREQUENCY (Hz) f, FREQUENCY (Hz)
f, FREQUENCY (Hz)f, FREQUENCY (Hz)
RS, SOURCE RESISTANCE ()
PSR, POWER SUPPLY REJECTION (dB)
CMR, COMMON MODE REJECTION (dB)
THD, TOTAL HARMONIC DISTORTION (%)
n
140
120
100
80
60
40
20
0
100 1.0 k 10 k 100 k 1.0 M 10 M
1.0
0.1
0.01
0.001
10
5.0
2.0
1.0
100
10
1.0
10 100 1.0 k 10 k 100 k
1.0 10 100 1.0 k 10 k 100 k 1.0 M
140
120
100
80
60
40
20
160
100 1.0 k 10 k 100 k 1.0 M 10 M
10 100 1.0 k 10 k 100 k
VCC = +15 V
VEE = -15 V
TA = 25°C
-PSR
VCM
V0× ADM
ADM
+
-
VCM
VO
CMR = 20 Log
VO
RL
+
-
n
+PSR = 20 Log
-PSR = 20 Log VEE
VO/ADM
()
VCC
VO/ADM
()
+PSR
VCC
ADM
+
-
VEE
VO
i)
e , INPUT NOISE VOLTAGE (nV/ )
n
Figure 20. Input Referred Noise Voltage
versus Source Resistance
VCC = +15 V
VEE = -15 V
Vn(total) = (inRS)2 +en2 +
TA = 25°C4KTRS
Hz
VCC = +15 V
VEE = -15 V
VCM = 0 V
VCM = ±1.5 V
TA = 25°C
VCC = +15 V
VEE = -15 V
RS = 100
TA = 25°C
VCC = +15 V
VEE = -15 V
RL = 2.0 k
TA = 25°C
VCC = +15 V
VEE = -15 V
TA = 25°C
VO = 1.0 Vrms
VO = 3.0 Vrms
Hz
Hz
LM833
http://onsemi.com
6
Figure 21. Inverting Amplifier Figure 22. Noninverting Amplifier Slew Rate
Figure 23. Noninverting Amplifier Overshoot
t, TIME (2.0 µs/DIV) t, TIME (2.0 µs/DIV)
t, TIME (200 ns/DIV)
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
V , OUTPUT VOLTAGE (10 mV/DIV)
O
VCC = +15 V
VEE = -15 V
RL = 2.0 k
CL = 0 pF
AV = -1.0
TA = 25°C
VCC = +15 V
VEE = -15 V
RL = 2.0 k
CL = 0 pF
AV = +1.0
TA = 25°C
VCC = +15 V
VEE = -15 V
RL = 2.0 k
CL = 0 pF
AV = +1.0
TA = 25°C
LM833
http://onsemi.com
7
PACKAGE DIMENSIONS
PDIP–8
N SUFFIX
CASE 626–05
ISSUE L
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
14
58
F
NOTE 2 –A–
–B–
–T–
SEATING
PLANE
H
J
GDK
N
C
L
M
M
A
M
0.13 (0.005) B M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.40 10.16 0.370 0.400
B6.10 6.60 0.240 0.260
C3.94 4.45 0.155 0.175
D0.38 0.51 0.015 0.020
F1.02 1.78 0.040 0.070
G2.54 BSC 0.100 BSC
H0.76 1.27 0.030 0.050
J0.20 0.30 0.008 0.012
K2.92 3.43 0.115 0.135
L7.62 BSC 0.300 BSC
M--- 10 --- 10
N0.76 1.01 0.030 0.040

SO–8
D SUFFIX
CASE 751–07
ISSUE W
SEATING
PLANE
1
4
58
N
J
X 45
K
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
A
BS
D
H
C
0.10 (0.004)
DIM
A
MIN MAX MIN MAX
INCHES
4.80 5.00 0.189 0.197
MILLIMETERS
B3.80 4.00 0.150 0.157
C1.35 1.75 0.053 0.069
D0.33 0.51 0.013 0.020
G1.27 BSC 0.050 BSC
H0.10 0.25 0.004 0.010
J0.19 0.25 0.007 0.010
K0.40 1.27 0.016 0.050
M0 8 0 8
N0.25 0.50 0.010 0.020
S5.80 6.20 0.228 0.244
–X–
–Y–
G
M
Y
M
0.25 (0.010)
–Z–
Y
M
0.25 (0.010) Z SXS
M

LM833
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
LM833/D
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver , Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada