Freescale Semiconductor
Data Sheet: Product Preview Document Number: MC33493
Rev. 1.7, 03/2007
© Freescale Semiconductor, Inc., 2007. All rights reserved.
This document contains information on a product under development. Freescale reserves the
right to change or discontinue this product without notice.
MC33493
DATA
GND
XTAL0
REXT CFSK
VCC
RFOUT
GNDRF
VCC
ENABLE
1
2
3
7
4
5
6
8
13
12
11
10
9
14
XTAL1
DATACLK MODE
BAND
PIN CONNECTIONS
Selectable frequency bands:
315—434 MHz and 868—928 MHz
OOK and FSK modulation
Adjustable output power rang e
Fully integrated voltage control oscillator (VCO)
Supply voltage range: 1.9 —3.6 V
Very low standby current: 0.1 nA @ TA=25°C
Low-supply voltage shutdown
Data clock output for microcontroller
Extended temperature ran ge: –40 to 125 °C
Low external component count
Typical appl ication compliant with European
Telecomm uni cations Standards Institute (ETSI)
standard
PLL Tuned UHF Transmitter
for Data Transfer
Applications
Ordering Information
Device Ambient
Temperature
Range Package
MC33493DTB –40°C to 1 25 °C TSSOP14
MC3493DTBE –40°C to 125°C TSSOP14
(ROHS)
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor2
1 Transmitter Functional Description . . . . . . . . . . . . . . . . . . . . . .4
2 Phase Locked Loop and Local Oscillator . . . . . . . . . . . . . . . . .4
3 Radio Frequency (RF) Output Stage . . . . . . . . . . . . . . . . . . . .4
4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
5 Microcontroller Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
6 State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
7 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
8 Data Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
10 RF Output Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
11 Output Power Measurement. . . . . . . . . . . . . . . . . . . . . . . . . .14
12 Complete Application Schematic and
PCB for OOK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
13 Complete Application Schematic and
PCB for FSK Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
14 Recommendations for FSK Modulation . . . . . . . . . . . . . . . . .19
15 Case Outline Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . .21
List of Figures
Figure 1.Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.Crystal Pulling Configurations. . . . . . . . . . . . . . . . . . . . 5
Figure 3.State machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4.Signals Waveform and Timing Definition . . . . . . . . . . . 7
Figure 5.RF Spectrum at 434 MHz Frequency Band
Displayed with a 5 MHz Span. . . . . . . . . . . . . . . . . . . 11
Figure 6.RF Spectrum at 434 MHz Frequency Band
Displayed with a 50 MHz Span. . . . . . . . . . . . . . . . . . 11
Figure 7.RF Spectrum at 434 MHz Frequency Band
Displayed with a 1.5 GHz Span . . . . . . . . . . . . . . . . . 12
Figure 8.RF Spectrum at 434 MHz Band
for a 70 kHz FSK Deviation at 4.8 kbit/s . . . . . . . . . . . 12
Figure 9.Output Power Measurement Configurations . . . . . . . . 13
Figure 10.Output Model and Matching Network
for 434 MHz Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 11.Output Power at 434 MHz Band vs Rext Value . . . . . 14
Figure 12.Application Schematic for OOK Modulation,
434 MHz Frequency Band. . . . . . . . . . . . . . . . . . . . . . 15
Figure 13.Two-Button Keyfob Board Layout. . . . . . . . . . . . . . . . 16
Figure 14.Application Schematic for FSK Modulation,
Serial Configuration, 434 MHz Frequency Band . . . . . 17
Figure 15.Application PCB Layout for FSK Modulation,
Serial Configuration, 434 MHz Frequency Band . . . . . 18
Figure 16.Crystal Load Capacitance Contributors Schematic . . 19
Figure 17.Case Outline Dimensions . . . . . . . . . . . . . . . . . . . . . 20
List of Tables
Table 1. Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . 3
Table 3. Band Selection and Associated Divider Ratios . . . . . . . 4
Table 4. DATACLK Frequency vs Crystal Oscillator Frequency. . 5
Table 5. Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. External Components Description for OOK. . . . . . . . . 15
Table 7. Typical Crystal Characteristics (SMD Package) . . . . . 16
Table 8. External Components Description for FSK . . . . . . . . . 17
Table 9. Crystal Pulling Capacitor Values vs
Carrier Frequency Total Deviation -1- . . . . . . . . . . . . . 18
Table 10.Crystal Pulling Capacitor Values vs
Carrier Frequency Total Deviation -2- . . . . . . . . . . . . . 18
Table 11.Pads and Tracks Parasitic Values . . . . . . . . . . . . . . . . 19
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 3
Figure 1. Simplified Block Diagram
Table 1. Pin Function Description
Pin Name Description
1 DATACLK Clock output to the microcontroller
2 DATA Data input
3 BAND Frequency band selectio n
4 GND Ground
5 XTAL1 Reference oscillator input
6 XTAL0 Reference oscillator output
7 REXT Power amplifier output current setting input
8 CFSK FSK switch output
9 VCC Power supply
10 RFOUT Pow er amplifier output
11 GNDRF Power amplifier ground
12 VCC Power supply
13 ENABLE Enable input
14 MODE Modulation type selection input
Table 2. Absolute Maximum Ratings
Parameter Symbol Value Unit
Supply voltage VCC VGND – 0.3 to 3.7 V
Voltage allowed on each pin VGND – 0.3
to VCC + 0.3 V
ESD HBM voltage capability on each pin 1(note 1)
1Human Body model, AEC-Q100-002 Rev. C.
±2000 V
ESD MM voltage capability on each pin2 (note 2)
2 Machine Model, AEC-Q100-003 Rev. E.
±150 V
Storage temperature Ts –65 to +150 °C
Junction temperature Tj +150 °C
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Transmitter Functional Description
Freescale Semiconductor4
1 Transmitter Functional Description
MC33493 is a PLL-tuned low-power UHF transmitter. The different modes of operation are controlled by the microcontroller
through several digital input pins. The power supply voltage ranges from 1.9 V to 3.6 V, allowing operation with a single lithium
cell.
2 Phase Locked Loop and Local Oscillator
The VCO is a completely integrated relaxation oscillator. The phase frequency detector (PFD) and the loop filter are fully
integrated. The exact output frequency is equal to: fRFOUT = fXTAL × [PLL divider ratio]. The frequency band of operation is
selected through the BAND pin.
Table 3 shows details for each frequency band sel ection.
Table 3. Band Selection and Associated Divider Ratios
An out-of-lock function is performed by monitoring the PFD output voltage. When it exceeds defined limits, the RF output stage
is disabled.
3 Radio Frequency (RF) Output Stage
The radio frequentcy (RF) output stage source is a single-ended square-wave switched current. Harmonics are present in the
output current drive. Their radiated absolute level depends on the antenna characteristics and output power . Typical application
demonstrates compliance to ETSI standard.
A resistor , Rext, connected to the REXT pin controls the output power allowing a trade-of f between radiated power and current
consumption.
The output voltage is internally clamped to Vcc ±2V
be (typ. Vcc ±1.5 V @ TA=25 °C).
4 Modulation
To select the On Off Keying (OOK) modulation, a low-logic level must be applied on the MODE pin. This modulation is
performed by switching the RF output stage on or off. The logic level applied on the DATA pin controls the output stage state:
DATA = 0 output stage off,
DATA = 1 output stage on.
Applying a high-logic level on the MODE pin selects Frequency Shift Keying (FSK) modulation. This modulation is achieved
by crystal pulling. An internal switch connected to the CFSK pin enables switching the external crystal load capacitors. Figure 2
shows the possible configurations: serial and paral lel.
The logic level applied on pin DATA contro ls the st ate of this internal switch:
DATA=0 switch off,
DATA=1 switch on.
DATA input is internally re-synchronized by the crystal reference signal. The corresponding jitter on the data duty cycle cannot
exceed ±1 reference period (±75 ns for a 13.56 MHz crystal).
This crystal pulling solution implies that the RF output frequency deviation equals the crystal frequency deviation mult ipl ied
by the PLL Divider ratio (see Table 3).
BAND Input Level Frequency Band
(MHz) PLL Divider Ratio Crystal Oscillator
Frequency (MHz)
High 315 32 9.84
434 13.56
Low 868 64
Microcontroller Interface
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 5
Figure 2. Crystal Pulling Configurations
5 Microcontroller Interface
Four digital input pins (ENABLE, DATA , BAND, and MODE) enable the circuit to be controlled by a microco ntroll e r. The
band frequency and the modulation type should be configured before enabling the circuit.
One digital output pin, DATACLK, provides the microcontroller with a reference frequency for data clocking. This frequency
is equal to the crystal oscillator frequency divided by 64 (see Table 4).
Table 4. DATACLK Frequency vs Crystal Oscillator Frequency
Crystal Oscillator Frequency (MHz) DATACLK Frequency (kHz)
9.84 154
13.56 212
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
State Machine
Freescale Semiconductor6
6 State Machine
Figure 3 details the state m achine.
Figure 3. State machine
State 1: The circuit is in standby mode and draws only a leakage current from the power supply.
State 2: In this state, the PLL is out of the lock-in range; therefore, the RF output stage is switched off, preventing RF
transmission. Data clock is available on the DATACLK pin. Each time the device is enabled, the state machine passes through
this state.
State 3: In this state, the PLL is within the lock-in range. If t < tPLL_lock_in, the PLL may be in acquisition mode. If ttPLL_lock_in,
then the PLL is locked. Data entered on the DATA pin are output on the RFOUT pin accordin g to the modulatio n selected by
the level applied on the MODE pin.
State 4: When the supply voltage falls below the shutdown voltage threshold (VSDWN,) the entire circuit switches off. After this
shutdown, applying a low level on the EN ABLE pin unl atches the circuit.
Figure 4 shows the waveforms of the main signals for a typical application cycle.
State 2
PLL out of lock-in range
No RF output
State 1
Standby mode
ENABLE=1
PLL in
lock-in range Vbattery < Vshutdown
ENABLE=0
Power ON
AND ENABLE=0
State 3
Transmission mode
ENABLE=0
State 4
Shutdown mode
PLL out of
lock-in range
Power Manag ement
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 7
Figure 4. Signals Waveform and Timing Definition
7 Power Management
When the battery voltage falls below the shutdown voltage threshold (VSDWN) the entire circu it swit ches off. After this
shutdown, the circuit is latc hed unt il a low level is applied on pin ENABLE (see State 4 of the state machine).
8 Data Clock
At start-up, data clock timing is valid after the data clock settling time. Because the clock is switched off asynchronously, the
last period duration cannot be guaranteed.
9 Electrical Characteristics
Unless otherwise specified, voltage range Vcc=[Vshutdown;3.6 V], temperature range T A=[–40 °C;+ 125 °C], Rext=12 kΩ±5%,
RF output frequency fcarrier = 433.92 MHz, referen ce freque ncy freference = 13.560 MHz, output load RL = 50 Ω±1%
(Figure 9). Values refer to the circuit shown in the recommended application schematics: Figure 12 shows OOK modulation
and Figure 14 shows FSK modulation. Typical values reflect average measurement at VCC = 3 V, TA = 25 °C.
ENABLE
DATACLK
DATA
State 1 S tate 2 State 3
tDATACLK_settling > tPLL_lock_in
tPLL_lock_in
MODE=0 (OOK)
MODE=1 (FSK)
State 1
fcarrier
fcarrier
fhigh
flow fhigh
flow
c : PLL locked
fhigh
c
RFOUT
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Electrical Characteristics
Freescale Semiconductor8
Table 5. Electrical Characteristics
Parameter Test Conditions, Comments Limits Unit
Min. Typ. Max.
1General Parameter s
1.1 Supply current in
standby mode TA25 °C 0.1 5 nA
1.2 TA=6C 7 30 nA
1.3 TA= 85 °C 40 100 nA
1.4 TA= 125 °C 800 1700 nA
1.5 Supply current in
transmission mode 315 and 434 bands,
OOK and FSK modulation,
continuous wave, TA=2C
11.6 13.5 mA
1.6 315 and 434 ban ds,
DATA=0, –40 °C TA125 °C —4.46.0 mA
1.7 868 MHz band,
DATA=0, –40 °C TA125 °C —4.66.2 mA
1.8 315 and 434 ban ds,
OOK and FSK modulation,
continuous wave, –40 °C TA125 °C
11.6 14.9 mA
1.9 868 MHz band,
OOK and FSK modulation,
continuous wave, –40 °C TA125 °C
11.8 15.1 mA
1.10 Supply voltage 3 3.6 V
1.11 Shutdown voltage threshold TA= –40 °C 2.04 2.11 V
1.12 TA= –20 °C 1.99 2.06 V
1.13 TA= 25 °C 1.86 1.95 V
1.14 TA= 60 °C 1.76 1.84 V
1.15 TA= 85 °C 1.68 1.78 V
1.16 TA= 125 °C 1.56 1.67 V
2RF Parameters
2.1 Rext value 12 21 kΩ
2.2 Output power 315 and 434 MHz bands,
with 50 Ω matching network —5—dBm
2.3 868 MHz band,
with 50 Ω matching network —1—dBm
2.4 315 and 434 MHz bands,
–40 °C TA125 °C –3 0 3 dBm
2.8 868 MHz band,
–40 °C TA125 °C –7 –3 0 dBm
2.12 Current and output power
va riation vs. Rext valu e 315 and 434 MHz bands,
with 50 Ω matching network –0.35
–0.25 —dB/kΩ
mA/kΩ
Electrical Characteristics
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 9
2.13 Harmonic 2 level 315 and 434 MHz bands,
with 50 Ω matching network –34 dBc
2.14 868 MHz band,
with 50 Ω matching network –49 dBc
2.15 315 and 434 MHz bands –23 -17 dBc
2.16 868 MHz band –38 -27 dBc
2.17 Harmonic 3 level 315 and 434 MHz bands,
with 50 Ω matching network –32 dBc
2.18 868 MHz band,
with 50 Ω matching network –57 dBc
2.19 315 and 434 MHz bands –21 –15 dBc
2.20 868 MHz band –48 –39 dBc
2.21 Spurious level
@ fcarrier ±fDATACLK
315 and 434 MHz bands –36 –24 dBc
2.22 868 MHz band –29 –17 dBc
2.23 Spurious level
@ fcarrier ±freference
315 MHz band –37 –30 dBc
2.24 434 MHz band –44 –34 dBc
2.25 868 MHz band –37 –27 dBc
2.41 Spurious level
@ fcarrier/2 315 MHz band –62 –53 dBc
2.26 434 MHz band –80 –60 dBc
2.27 868 MHz band –45 –39 dBc
2.30 Phase noise 315 and 434 MHz bands,
±175 kHz from fcarrier
–75 –68 dBc/Hz
2.31 868 MHz band,
±175 kHz from fcarrier
–73 –66 dBc/Hz
2.32 PLL lock-in time,
tPLL_lock_in
fcarrier within 30 kHz from the final value,
crystal series resistor = 150 Ω
400 1600 µs
2.33 XTAL1 input capacitance 1 pF
2.34 Crystal resistance OOK modulation 20 200 W
2.44 FSK modulation 20 50
2.35 OOK modulat i on de pt h 75 90 dB c
2.36 FSK modulation
carrier frequency
total deviation
315 and 434 MHz bands, see note Note: 100 kHz
2.37 868 MHz band, see note Note: 200 kHz
2.38 CFSK output resistance MODE = 0, DATA = x
MODE=1, DATA=0 50 70 kΩ
2.39 MODE=1, DATA=1 90 300 W
2.43 CFSK output capacitance 1 pF
2.40 Data rate Manchester coding 10 kbit/s
Table 5. Electrical Characteristics (continued)
Parameter Test Conditions, Comments Limits Unit
Min. Typ. Max.
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
RF Output Spectrum
Freescale Semiconductor10
10 RF Output Spectrum
The following figures represent spectrums of the transmitter carrier, measured in conduction mode. Three different spans have
been used. The 5 MHz span spectrum (Figure 5) shows phase noise response close to the RF carrier and the noise suppression
within the PLL-loop bandwidth. The 50 MHz span spectrum (Figure 6) shows phase noise and reference spurious. Finally, the
1.5 GHz span spectrum (Figure 7) shows the second and third harm onics of carrier. All spectrums are measured in OOK
modulation at DATA=1.
Figure 8 shows the spectrum in case of FSK modulation with 45 kHz deviation at 4 kbit/s data rate.
2.41 Data to RF delay difference between
falling and rising edges,
tdelay_difference
MODE = 0, see note 3.5 5.25 7.5 µs
2.42 MODE = 1, see note –200 200 ns
Note: This parameter is depending on crystal characteristics, load capacitor values (see Table 4) and PCB tr ack capacitance.
Note: Delay difference definition
3Microcontroller Interfaces
3.1 Input low voltage Pins: BAND, MODE, ENABLE, and DATA 0 0.3 x
VCC
V
3.2 Input high voltage 0.7 x
VCC
—V
CC V
3.3 Input hysteresis voltage 120 mV
3.4 Input current Pins: BAND, MODE,DATA = 1 100 nA
3.5 ENABLE pulldown resistor 180 kΩ
3.6 DATACLK output low voltage Cload = 2 pF 0 0.25 x
VCC
V
3.7 DATACLK output high voltage 0.75 x
VCC
—V
CC V
3.8 DATACLK rising time Cload = 2 pF, measured from 20% to 80% of the
voltage swing 250 500 ns
3.9 DATACLK falling time 150 400 ns
3.10 DATACLK settling time,
tDATACLK_settling
45% < duty cycle fDATACLK < 55% 800 2000 µs
Table 5. Electrical Characteristics (continued)
Parameter Test Conditions, Comments Limits Unit
Min. Typ. Max.
Input data
Demodula te d da ta
tdelay_rise tdelay_fall
From 50% of data edge to corresponding
tdelay_difference =t
delay_fall –t
delay_rise
demodulated signal envelope edge:
RF Output Spectrum
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 11
Figure 5. RF Spectrum at 434 MHz Frequency Band Displayed with a 5 MHz Span
Figure 6. RF Spectrum at 434 MHz Frequency Band Displayed with a 50 MHz Span
Resolution
bandwidth:
100kHz
Resolution
bandwidth:
30kHz
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
RF Output Spectrum
Freescale Semiconductor12
Figure 7. RF Spectrum at 434 MHz Frequency Band Displayed with a 1.5 GHz Span
Figure 8. RF Spectrum at 434 MHz Band for a 70 kHz FSK Deviation at 4.8 kbit/s
Output Power Measurement
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 13
11 Output Power Measurement
The RF output levels given in Section 9, “Electrical Characteristics,” are measured with a 50 Ω load directly connected to the
RFOUT pin, as shown below in Figure 9. This wideband coupling method gives results independent of the application.
Figure 9. Output Power Measurement Configurations
The configuration shown in Figure 10(a) provides better efficiency in terms of output power and harmonics rejection. The
schematic on Figure 10(b) gives the equivalent circuit of the RFOUT pin and the DC bias impeder as well as matching network
components for 434 MHz frequency band.
Figure 10. Output Model and Matching Network for 434 MHz Band
RFOUT
RF output
R
L
=50W
100 pF
Impeder: TDK MMZ1608Y102CTA00
VCC
RFOUT
RF output
R
L
=50
Ω
Impeder: TDK MMZ1608Y102CTA00
VCC
Matching
Network
C
0
R
0
R
L
L
1
1.5 pF 250
Ω
3k
Ω
50
Ω
Matching
330pF
C
3
39 nH
RFOUT pin Load
Impeder
(a)
(b)
Network
R
i
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Complete Application Schematic and PCB for OOK Modulation
Freescale Semiconductor14
Figure 11 sh ows the out put power versus the Rext resistor value with 50
Ω
load and with matching network.
Figure 11. Output Power at 434 MHz Band vs Rext Value
The 50 Ω matching network used for the 868 MHz band is similar to the 434 MHz, excepting components values: L1 is changed
to 8.2 nH and C3 to 470 pF in Figure 11. The typical gain of this 868 MHz matching network is 4 dB compared to unmatched
configuration.
12 Complete Application Schematic and PCB for OOK
Modulation
Figure 12 shows a complete application schematic using a MC68HC908RK2 microcontroller. OOK mo dulation is selected,
fcarrier = 433.92 MHz. The C2 to C5 capacito rs can be removed if switch debounce is done by software.
Output power measurement in typical conditions (434MHz - Vcc=3V - 25°C)
Output power when matched (dBm)
-0.35dB/kΩ
ΩΩ
Ω # -0.35mA/kΩ
ΩΩ
Ω
Output power on 50Ω
ΩΩ
Ω load (dBm)
-6
-4
-2
0
2
4
6
8
6 9 12 15 18 21 24
Rext (kΩ
ΩΩ
Ω)
RFOUT
Level (dBm)
REXT SPECIFIED RANGE
Complete Applicat ion Schematic and PCB for OOK Modulation
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 15
Figure 12. Application Schematic for OOK Modulation, 434 MHz Frequency Band
For 868 MHz band applicatio n, the inpu t pin BAND must be wired to ground. See component description on Table 6 and
Table 7.Table 6. External Components Description for OOK
Examples of crystal reference are given below (see characteristics in Table 7) for different application bands:
at 315 MHz band (freference = 9.84375 MHz, –40 °C < TA < 85 °C): NDK LN-G102-950,
at 434/868 MHz bands (freference = 13.56 MH z, –40 °C < TA< 125 °C): NDK NX804 5GB/CSJ S1-40125-8050-12
and NDK NX1255GA.
Component Function Value Unit
Y1 Crystal,
see Table 7 315 MHz band: 9.84 MHz
434 MHz band: 13.56 MHz
868 MHz band: 13.56 MHz
R2 RF output level setting
resistor (Rext)12 kΩ
C6 Cr ystal load capacitor 8.21
1C6 value equals recommended crystal load capacitance reduced by the PCB stray capacitances.
pF
C7 Power supply decoupling
capacitors 22 nF
C8 100 pF
Vbat
Vbat
Vbat
Vbat
SW1 SW2 SW2a
SW1a
C6 8.2pF
C3
2.2nF
C2
2.2nF
C5
2.2nF
C4
2.2nF
C7 22nF
R1
750
Y1
13.56MHz
LED1
C9
2.2pF
C8
100pF
R2
12K
B1
1 2
U2
MC68HC908RK2
PTA0
1
PTB0/MCLK
2
PTB1
3
PTB2/TCH0
4
PTB4/TCH1
5
PTB5
6
PTB3/TCLK
7
OSC1
8
OSC2
9
VSS
10 VDD 11
IRQ1 12
RST 13
PTA7 14
PTA6/KBD6 15
PTA5/KBD5 16
PTA4/KBD4 17
PTA3/KBD3 18
PTA2/KBD2 19
PTA1/KBD1 20
C10
100nF
U1
MC33493
DATACLK
1
DATA
2
BAND
3
GND
4
XTAL1
5
XTAL0
6
REXT
7CFSK 8
VCC 9
RFOUT 10
GNDRF 11
VCC 12
ENABLE 13
MODE 14
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Complete Application Schematic and PCB for FSK Modulation
Freescale Semiconductor16
)
Figure 13 shows a two-button key fob board. Size is 30 × 45 millimeters.
Figure 13. Two-Button Keyfob Board Layout
13 Complete Application Schematic and PCB for FSK
Modulation
Figure 14 shows a complete appl ication schematic using a MC68HC908RK2 microcontrol ler. FSK modulation is selected,
fcarrier= 433.92 MHz. C1 capacitor can be remov ed if switch debounce is done by software.
Table 7. Typical Crystal Characteristics (SMD Package)
Parameter NDK LN-G102-950
(for 315 MHz)
NDK NX8045GB/CSJ
S1-40125-8050-12
(for 434 MHz and 868 MHz)
NDK NX1255GA
(for 434 MHz and 868 MHz) Unit
Load capacitance 12 12 12 pF
Motional capacitance 3.33 4.4 10.5 fF
Static capacitance 1.05 1.5 2.46 pF
Loss resistance 28 18.5 10 Ω
Complete Application Schematic and PCB for FSK Modulation
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 17
Figure 14. Application Schematic for FSK Modulation, Serial Configuration, 434 MHz Frequency Band
For 868 MHz band applicatio n, the inpu t pin BAND must be wired to ground. See component description in Table 8.
Figure 15 shows the corresponding PCB layout.
Table 8. External Components Descrip tion for FSK
Component Function Value Unit
Y1 Cr ystal 315 MHz band: 9.84,
See Table 7 MHz
434 MHz band: 13.56,
see Table 7 MHz
868 MHz band: 13.56,
see Table 7 MHz
R1 RF output level setting
resistor (Rext)12 kΩ
C3 Cr ystal load capacitor See Table 9 pF
C4 pF
C2 P o w er supply decoupling capacitor 22 nF
C6 100 pF
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Recommendations for FSK Modulation
Freescale Semiconductor18
Figure 15. Application PCB Layout for FSK Modulat ion, Serial Configuration, 434 MHz Frequency Band
Table 9 gives the measured FSK deviations respective to C3 and C4 capacitor values for three deviations. Crystal reference is
NDK NX8045GB/CSJ S1-40125-8050-12.
Another crystal reference, NDK NX1255GA (see Table 7), is enabled to reach higher deviation as mentioned on Table 10.
These results are due to the higher crystal motional capacitor.
14 Recommendations for FSK Modulation
FSK deviation is function of total load capacitance presented to the crystal. This load capacitance is constituted by various
contributors:
the crystal characteristic, especially its static capacitance
the external load capacitors (C3, C4 as defined in Figure 14 and Table 9)
the device internal capacitance of pins XTAL0, XTAL1 , CFSK
the PCB track capacitance
The schematic given in Figure 16 shows a typical FSK application using serial capacitor configuration, where device pads and
PCB track capacitances are mentioned.
Table 9. Crystal Pulling Capacitor Values vs Carrier Frequency Total Deviation -1-
Carrier frequency
(MHz) Carrier frequency total
deviation (kHz) C3 capacitor (pF) C4 capacitor (pF) Recommended
R_off value (kΩ)
434 45 4.7 6.8 10
70 2.2 10
100 1 15 22
868 90 4.7 6.8 10
140 2.2 10
200 1 15 22
Table 10. Crystal Pulling Capacitor Values vs Carrier Frequency Total Deviation -2-
Carrier frequency
(MHz) Carrier frequency total
deviation (kHz) C3 capacitor value
(pF) C4 capacitor value
(pF) Recommended
R_off value (kΩ)
434 150 1 27
868 300 1 27
Recommendations for FSK Modulation
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 19
Device pad capacitance is defined by the package capacitance and by the internal circuitry . Typical capacitance values for these
pads are given in Table 11.
Some realistic assumptions and measurements have been made concerning track parasitic capacitances for a 0.8 mm FR4
double side application PCB. They are gi ven in Table 11 and the correspon ding PCB layout is shown in figure Figure 17.
To achieve large deviations, this total load capacitance must be lowered. For a given crystal, the PCB must be carefully laid out
to reduce the capacitance of the tracks wired to XTA L0 , XTAL1, and CFSK pins.
Recommendation: a R_off resistor can be added in parallel with the FSK switch to optimize the transient response of
demodulated signal. Table 11 gives the optimized R_o ff values for two deviations. There is no footprint for R_off resistor on
the layout in Figure 16. When used, this component can be soldered on top of C3.
Figure 16. Crystal Load Capacitance Contributors Schematic
Table 11. Pads and Tracks Parasitic Values
Capacitance Value Unit
C_pad_XTAL0 1 pF
C_pad_XTAL1 1 pF
C_pad_CFSK 1 pF
C_track_XTAL0 1.5 pF
C_track_XTAL1 1.5 pF
C_track_CFSK 1.5 pF
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Case Outline Dimensions
Freescale Semiconductor20
15 Case Outline Dimensions
Figure 17. Case Outline Dimensions
CASE 948G-01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C--- 1.20 --- 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.50 0.60 0.020 0.024
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABL E DAMBAR
PROTRUSION SHA LL BE 0.08 (0.003) TOTAL
IN EXCESS OF THE K DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. TER MINAL NUMBERS ARE SH OWN FOR
REFERENCE ONLY.
7. D IMENSION A A ND B ARE TO BE
°°°°
S
U0.15 (0.006)T
2X L/2
S
U
M
0.10 (0.004) V S
T
L-U-
SEATING
PLANE
0.10 (0.004)
-T-
SECTION N-N
DETAIL E
JJ1
K
K1
DETAIL E
F
M
-W-
0.25 (0.010)
8
14
7
1
PIN 1
IDENT.
H
G
A
D
C
B
S
U0.15 (0.006)T
-V-
14X REFK
N
N
PLL Tuned UHF Transmitter for Data Transfer Applications, Rev. 1.7
Freescale Semiconductor 21
THIS PAGE INTENTIONALLY BLANK
Document Number : MC33493
Rev. 1.7
03/2007
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Se miconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
F reescale Semiconductor assume any liability arising out of the application or use of an y
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freesca le Semiconductor data sheets and/or sp ecifications can and do v ary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey an y license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, int ended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or f or any oth er application in which the failure of the F reesca le Semiconductor prod uct
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized appli cation, Buyer shall indemnif y and hold Freescale Semi conductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs , damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative .
F or information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the F reescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective ow ners.
The P owe r Architecture and P ow er .org word marks and the P ow er and P ower.org logos
and related marks are trademar ks and ser vice mar ks licensed by Power.org
© Freescale Semiconductor, Inc. 2007. All rights reserved.