Doc. No. 102069A
August 19, 2002
CX11656
CX11656CX11656
CX11656
HomePlug 1.0 PHY
HomePlug 1.0 PHYHomePlug 1.0 PHY
HomePlug 1.0 PHY
Home Networking Physical
Home Networking PhysicalHome Networking Physical
Home Networking Physical
Layer Device with Integrated
Layer Device with IntegratedLayer Device with Integrated
Layer Device with Integrated
Analog Front End Circuitry
Analog Front End CircuitryAnalog Front End Circuitry
Analog Front End Circuitry
Data Sheet (Preliminary)
Data Sheet (Preliminary)Data Sheet (Preliminary)
Data Sheet (Preliminary)
Conexant Proprietary Information
Conexant Confidential Information
Dissemination, disclosure, or use of this information is not permitted
without the written permission of Conexant Systems, Inc.
CX11656 HomePlug 1.0 PHY Data Sheet
ii Conexant Proprietary and Confidential Information 102069A
Revision Notice
Revision Date Comments
A 8/19/2002 Initial release.
© 2002 Conexant Systems, Inc.
All Rights Reserved.
Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are
provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no
responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at
any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to its specifications and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER
DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS
CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY
RESULT FROM THE USE OF THESE MATERIALS.
Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages
resulting from such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in
Communications Technologies”™. Product names or services listed in this publication are for identification purposes only, and may
be trademarks of third parties. Third-party brands and names are the property of their respective owners.
For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com, which is
incorporated by reference.
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and
suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications
engineer.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information iii
Contents
1. Introduction......................................................................................................................................... 1-1
1.1 Overview .....................................................................................................................................................................1-1
1.2 Features ......................................................................................................................................................................1-3
1.3 Applications ................................................................................................................................................................1-3
2. Hardware Interface .............................................................................................................................. 2-1
2.1 CX11656 PHY Hardware Interface Signals...................................................................................................................2-1
2.2 CX11656 PHY Electrical and Environmental Specifications..........................................................................................2-9
3. CX11656 Functional Description.......................................................................................................... 3-1
3.1 MII Data Interface with MDI Control ............................................................................................................................3-2
3.1.1 MII Interface................................................................................................................................................3-3
3.1.1.1 MII Timing Diagram.................................................................................................................3-3
3.1.1.2 MII Signal Descriptions............................................................................................................3-6
3.1.1.3 MII Frame Structure.................................................................................................................3-8
3.1.2 MDI Control Interface ..................................................................................................................................3-9
3.1.2.1 MDI Signal Descriptions ........................................................................................................3-10
3.1.3 MII Management Register Set ...................................................................................................................3-10
3.1.3.1 PRE (Preamble) .....................................................................................................................3-10
3.1.3.2 ST (Start of Frame) ................................................................................................................3-10
3.1.3.3 OP (Operation Code)..............................................................................................................3-11
3.1.3.4 PHYAD (PHY Address)...........................................................................................................3-11
3.1.3.5 REGAD (Register Address).....................................................................................................3-11
3.1.3.6 TA (Turnaround) ....................................................................................................................3-11
3.1.3.7 Data .......................................................................................................................................3-11
3.2 GPSI Interface with SPI Control.................................................................................................................................3-12
3.2.1 GSPI Interface ...........................................................................................................................................3-12
3.2.1.1 GPSI Timing Diagrams...........................................................................................................3-12
3.2.1.2 GPSI DC Characteristics.........................................................................................................3-14
3.2.1.3 GPSI Signal Descriptions.......................................................................................................3-14
3.2.2 SPI Slave Port Interface.............................................................................................................................3-15
3.2.2.1 SPI Slave Port Signal Timing .................................................................................................3-15
3.2.2.2 SPI Slave Port DC Characteristics ..........................................................................................3-16
CX11656 HomePlug 1.0 PHY Data Sheet
iv Conexant Proprietary and Confidential Information 102069A
3.3 Clocks .......................................................................................................................................................................3-16
3.4 AFE Interface.............................................................................................................................................................3-17
3.4.1 ADC/DAC Interface ....................................................................................................................................3-17
3.4.1.1 ADC/DAC Timing Diagrams....................................................................................................3-17
3.4.1.2 DAC DC Characteristics..........................................................................................................3-19
3.4.1.3 ADC DC Characteristics..........................................................................................................3-19
3.4.2 AGC Circuitry.............................................................................................................................................3-20
3.4.2.1 AGC DC Characteristics..........................................................................................................3-20
3.5 SPI Master Interface..................................................................................................................................................3-21
3.5.1 SPI Master Interface Timing ......................................................................................................................3-21
3.5.2 SPI Master Interface DC Characteristics ....................................................................................................3-21
3.6 LED Interface.............................................................................................................................................................3-22
4. Package Dimensions............................................................................................................................ 4-1
5. Application Designs ............................................................................................................................. 5-1
5.1 Ethernet Router Application.........................................................................................................................................5-1
5.2 USB Application ..........................................................................................................................................................5-2
5.3 Embedded Application.................................................................................................................................................5-3
5.4 ADI-Related Components ............................................................................................................................................5-3
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information v
Figures
Figure 1-1. CX11656 HomePlug 1.0 PHY Simplified Hardware Interface..........................................................................1-1
Figure 1-2. CX11656 HomePlug 1.0 PHY Functional Block Diagram................................................................................1-2
Figure 2-1. CX11656 PHY Hardware Interface Signals - 144-Pin LQFP............................................................................2-2
Figure 2-2. CX11656 PHY Pin Signals - 144-Pin LQFP ....................................................................................................2-3
Figure 3-1. CX11656 PHY Block Diagram........................................................................................................................3-1
Figure 3-2. MII Data Interface with MDI Control ..............................................................................................................3-2
Figure 3-3. MII TX Waveform ..........................................................................................................................................3-3
Figure 3-4. MII RX Waveform..........................................................................................................................................3-4
Figure 3-5. MII TX with Collision Based on RX Activity....................................................................................................3-4
Figure 3-6. MII Receive Timing........................................................................................................................................3-5
Figure 3-7. MII Transmit Timing......................................................................................................................................3-5
Figure 3-8. MII Flow Control Overview, Part 1 .................................................................................................................3-7
Figure 3-9. MII Flow Control Overview, Part 2 .................................................................................................................3-7
Figure 3-10. Partition of Serial Bit Stream to Nibble Stream ............................................................................................3-8
Figure 3-11. MDI Receive Timing ....................................................................................................................................3-9
Figure 3-12. MDI Transmit Timing...................................................................................................................................3-9
Figure 3-13. MDI Frame Structure .................................................................................................................................3-10
Figure 3-14. GPSI Data Interface with SPI Control.........................................................................................................3-12
Figure 3-15. GPSI Flow Control .....................................................................................................................................3-13
Figure 3-16. GPSI Transmit Timing ...............................................................................................................................3-13
Figure 3-17. GPSI Receive Timing .................................................................................................................................3-13
Figure 3-18. SPI Slave Port Timing................................................................................................................................3-16
Figure 3-19. AFE TX and RX Activity..............................................................................................................................3-17
Figure 3-20. AFE Clock Waveforms................................................................................................................................3-17
Figure 3-21. AFE Transmit Timing Diagram ...................................................................................................................3-18
Figure 3-22. AFE Receive Timing Diagram.....................................................................................................................3-18
Figure 3-23. SPI Master Interface Signal Timing Diagram .............................................................................................3-21
Figure 4-1. Package Dimensions - 144-Pin LQFP.............................................................................................................4-1
Figure 5-1. Ethernet Router Application Block Diagram ...................................................................................................5-1
Figure 5-2. USB Application Block Diagram.....................................................................................................................5-2
Figure 5-3. Embedded Application Block Diagram ...........................................................................................................5-3
CX11656 HomePlug 1.0 PHY Data Sheet
vi Conexant Proprietary and Confidential Information 102069A
Tables
Table 1-1. CX11656 HomePlug 1.0 PHY and CX82100-41 Ordering Information.............................................................1-2
Table 2-1. CX11656 PHY Pin Signals - 144-Pin LQFP......................................................................................................2-4
Table 2-2. CX11656 PHY Hardware Signal Definitions.....................................................................................................2-5
Table 2-3. CX11656 PHY DC Electrical Characteristics ....................................................................................................2-9
Table 2-4. CX11656 PHY Operating Conditions ...............................................................................................................2-9
Table 2-5. CX11656 PHY Absolute Maximum Ratings.....................................................................................................2-9
Table 2-6. CX11656 PHY Power Consumption ................................................................................................................2-9
Table 3-1. MII DC Characteristics ....................................................................................................................................3-5
Table 3-2. MI DC Characteristics .....................................................................................................................................3-9
Table 3-3. Powerline Control and Status Register (PLCSR) Summary ...........................................................................3-10
Table 3-4. GPSI DC Characteristics................................................................................................................................3-14
Table 3-5. SPI Slave Command Summary .....................................................................................................................3-15
Table 3-6. SPI Slave Port DC Characteristics .................................................................................................................3-16
Table 3-7. DAC DC Characteristics.................................................................................................................................3-19
Table 3-8. ADC DC Characteristics.................................................................................................................................3-19
Table 3-9. RX Gain Control Values.................................................................................................................................3-20
Table 3-10. AGC DC Characteristics...............................................................................................................................3-20
Table 3-11. SPI Master Interface DC Characteristics......................................................................................................3-21
Table 3-12. LED Interface Signal Description.................................................................................................................3-22
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 1-1
1. Introduction
1.1 Overview
The Conexantä CX11656 device is an integrated physical layer transceiver or PHY
(Figure 1-1). It is designed to use existing ac electrical wiring within the home as a
networking physical medium. The PHY’s robust performance in the electrically noisy
power line channel is due to the use of Orthogonal Frequency Division Multiplexing
(OFDM). This multi-carrier modulation scheme allows the PHY to dynamically “learn
the channel”— data can be shifted from one carrier to another as real time noise and
attenuation conditions change. This overcomes the flaw inherent in previous power line
networking technologies—as electrical appliances were turned on and off, changing line
conditions caused signal quality to become degraded to such an extent that data
transmission became impossible. The CX11656’s OFDM technology finds the low noise,
low attenuation portions of the spectrum available to it and continues data transmission.
The CX11656 is compliant with the HomePlug Powerline Alliance Industry Specification
V1.0. This ensures interoperability with other HomePlug PHYs. Quality-of-service (QoS)
is built into the PHY to ensure low-latency, high reliability channels for streaming audio,
streaming video, voice, and gaming, and video.
The PHY utilizes the IEEE 802.3u standard Media Independent Interface (MII). This
standard interface can also be configured as a seven-wire General Purpose Serial
Interface (GPSI). These standard interfaces allow the CX11656 to be paired almost any
embedded media access controller (MAC) for use in a variety of information appliances.
The CX11656 operates on both +1.8 V and +3.3 V supplies and is packaged in a 144-pin
Low Quad Flat Pack (LQFP).
The CX11656 ordering information is listed in Table 1-1.
A functional block diagram of the CX11656 is shown in Figure 1-2.
Please contact Conexant marketing for information concerning the AFE.
Figure 1-1. CX11656 HomePlug 1.0 PHY Simplified Hardware Interface
802.3 EMAC
(e.g., Conexant
CX82100)
Conexant
CX11656
HomePlug 1.0 PHY
144-Pin LQFP
Analog
Front End*
102069_001
Ethernet
Interface
Powerline
MII/GPSI
Interface
Parallel
Interface
Coupler
* See Section 5.4.
CX11656 HomePlug 1.0 PHY Data Sheet
1-2 Conexant Proprietary and Confidential Information 102069A
Table 1-1. CX11656 HomePlug 1.0 PHY and CX82100-41 Ordering Information
Marketing Order No. HomePlug 1.0 PHY
[144-Pin LQFP]
Part No.
Home Network Processor (HNP)
[196-Pin FPBGA]
Part No.
DSHP-L100-001 CX11656-11 CX82100-41
Figure 1-2. CX11656 HomePlug 1.0 PHY Functional Block Diagram
102069_002
MII/GPSI
Interface
RISC
uProcessor
Core
Buffer
RAM
Arbiter
Configuration
Registers
Gain
Control
MDIO Control
MDCLK/MDIO
- or -
SPI Control
SDI, SDO, SCLK, CS
PHY
Core
AFE
Interface
EEPROM
Control
DMA
&
Link
Sequencer
ROM ROM
Interface Block MAC
PHY
ADC
DAC
Interface
MII
RX[3:0], RXCLK, RXDV, RX_ER,
TX[3:0], TXCLK, TXEN, TX_ER,
COL, CRS
- or -
GPSI
RXD, RXCLK, RXEN,
TXD, TXCLK, TXEN,
COL, TXBSY
Configuration
EEPROM
Control
CX11656
RESET
LED
Control
MII/GPSI
Select
CLK IN
LEDS
Power
&
GND
MDIO
Address
Slect
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 1-3
1.2 Features
Single-chip powerline networking controller with IEEE802.3u MII interface
Implements the HomePlug Powerline Alliance Industry Specification V1.0
General purpose 7-wire serial PHY data interface
Selectable MDI/SPI PHY management interface
Up to 14 Mbps data rate on the powerline
Orthogonal Frequency Division Multiplexing (OFDM) with patented signal
processing techniques for high data reliability in noisy media conditions
Intelligent channel adaptation maximizes throughput under harsh channel conditions
Integrated quality-of-service (QoS) features such as prioritized random access,
contention-free access, and segment bursting
56-bit DES Link Encryption with key management for secure powerline
communications
EEPROM interface for fast access to configuration parameters allows system designs
to leverage standard Ethernet drivers
3.3 V signaling, 5 V tolerant interface
Support for three status LEDs
144-pin LQFP package
1.3 Applications
Residential gateways and home routers
Network home or small office PCs
Enable no wire installation networking for information appliances
LAN gaming
Share DSL or cable modem access
MDU/MTU applications
Embedded applications
CX11656 HomePlug 1.0 PHY Data Sheet
1-4 Conexant Proprietary and Confidential Information 102069A
This page is intentionally blank
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 2-1
2. Hardware Interface
2.1 CX11656 PHY Hardware Interface Signals
The CX11656 PHY hardware interface signals are shown in Figure 2-1.
CX11656 PHY pin signals are shown in Figure 2-2 and are listed in Table 2-1.
CX11656 PHY hardware interface signals are defined in Table 2-2.
CX11656 HomePlug 1.0 PHY Data Sheet
2-2 Conexant Proprietary and Confidential Information 102069A
Figure 2-1. CX11656 PHY Hardware Interface Signals - 144-Pin LQFP
CLKIN
CLKOUT
RESET_N
TEST1
TEST2
NC
MII_RX3
MII_RX2
MII_RX1
MII_RX0
MII_RXCLK/GPSI_RXCLK
MII_RXDV/GPSI_TXBSY
MII_RX_ER/GPSI_RXD
MII_TX3
MII_TX2
MII_TX1
MII_TX0/GPSI_TXD
MII_TXCLK/GPSI_TXCLK
MII_TXEN/GPSI_TXEN
MII_TX_ER
MII_CRS/GPSI_RXEN
MII_COL/GPSI_COL
MII_MDIO/SPIS_SDO
MII_MDCLK/SPIS_SCLK
MII_GPSI_N
MDI_ADRSEL[1]/SPIS_SDI
MDI_ADRSEL[0]/SPIS_CS_N
MDI_SPIS_N
SPI_DO
SPI_DI
SPI_CLK
SPI_CS
TCK
TDI
TMS
TDO
TRST_N
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_Q
VDD_Q
VDD_Q
49
48
44
111
112
131
27
29
31
33
22
25
18
4
6
8
11
14
12
16
42
40
135
133
141
137
139
126
59
57
54
52
114
120
124
116
129
1
2
7
13
17
23
24
28
32
37
38
43
50
53
60
68
73
78
99
104
109
115
121
122
123
125
132
140
3
39
64
79
95
110
136
15
51
91
Shared
MMII/GSPI/SPI
Interface
ADC_CLK
DAC_CLK
TX_EN
RX_EN
ADC_CAL
AGCENC_N
ADIO9
ADIO8
ADIO7
ADIO6
ADIO5
ADIO4
ADIO3
ADIO2
ADIO1
ADIO0
AGC7
AGC6
AGC5
AGC4
AGC3
AGC2
AGC1
AGC0
LED0_N
LED1_N
LED2_N
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_Q
VSS_Q
VSS_Q
71
74
76
77
67
69
94
93
92
90
87
86
84
82
81
80
106
105
103
102
100
98
97
96
61
63
65
5
10
19
20
26
30
34
36
41
46
47
55
56
58
62
66
72
75
85
88
101
108
113
117
118
119
127
128
134
138
143
144
9
35
45
70
83
107
142
21
89
130
LED Interface
102069_003
CX11656
HomePlug 1.0
PHY
144-PIN LQFP
AFE
Interface
AGC IC Interface
JTAG Test
Interface
(Reserved)
SPI Master Port
Interface
+1.8 V
Core Power
+3.3 V
I/O and Quiet
Power
Reset Control
100 MHz Clock Input
100 MHz Clock Output
NC
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 2-3
Figure 2-2. CX11656 PHY Pin Signals - 144-Pin LQFP
102069_004
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD_C
VDD_C
VDD_IO
MII_TX3
VSS_C
MII_TX2
VDD_C
MII_TX1
VSS_IO
VSS_C
MII_TX0/GPSI_TXD
MII_TXEN/GPSI_TXEN
VDD_C
MII_TXCLK/GPSI_TXCLK
VDD_Q
MII_TX_ER
VDD_C
MII_RX_ER/GPSI_RXD
VSS_C
VSS_C
VSS_Q
MII_RXCLK/GPSI_RXCLK
VDD_C
VDD_C
MII_RXDV/GPSI_TXBSY
VSS_C
MII_RX3
VDD_C
MII_RX2
VSS_C
MII_RX1
VDD_C
MII_RX0
VSS_C
VSS_IO
VSS_C
VSS_C
VSS_IO
AGC7
AGC6
VDD_C
AGC5
AGC4
VSS_C
AGC3
VDD_C
AGC2
AGC1
AGC0
VDD_IO
ADIO9
ADIO8
ADIO7
VDD_Q
ADIO6
VSS_Q
VSS_C
ADIO5
ADIO4
VSS_C
ADIO3
VSS_IO
ADIO2
ADIO1
ADIO0
VDD_IO
VDD_C
RX_EN
TX_EN
VSS_C
DAC_CLK
VDD_C
VSS_C
VSS_C
VSS_IO
MII_GPSI_N
VDD_C
MDI_ADRSEL[0]/SPIS_CS_N
VSS_C
MDI_ADRSEL[1]/SPIS_SDI
VDD_IO
MII_MDIO/SPIS_SDO
VSS_C
MII_MDCLK/SPIS_SCLK
VDD_C
NC
VSS_Q
TRST_N
VSS_C
VSS_C
MDI_SPIS_N
VDD_C
TMS
VDD_C
VDD_C
VDD_C
TDI
VSS_C
VSS_C
VSS_C
TDO
VDD_C
TCK
VSS_C
TEST2
TEST1
VDD_IO
VDD_C
VDD_C
VDD_C
VDD_IO
MII_COL/GPSI_COL
VSS_C
MII_CRS/GPSI_RXEN
VDD_C
RESET_N
VSS_IO
VSS_C
VSS_C
CLKOUT
CLKIN
VDD_C
VDD_Q
SPI_CS
VDD_C
SPI_CLK
VSS_C
VSS_C
SPI_DI
VSS_C
SPI_DO
VDD_C
LED0_N
VSS_C
LED1_N
VDD_IO
LED2_N
VSS_C
ADC_CAL
VDD_C
AGCENC_N
VSS_IO
ADC_CLK
VSS_C
CX11656
CX11656 HomePlug 1.0 PHY Data Sheet
2-4 Conexant Proprietary and Confidential Information 102069A
Table 2-1. CX11656 PHY Pin Signals - 144-Pin LQFP
Pin
No.
Signal Pin
No.
Signal Pin
No.
Signal Pin
No.
Signal
1 VDD_C 37 VDD_C 73 VDD_C 109 VDD_C
2 VDD_C 38 VDD_C 74 DAC_CLK 110 VDD_IO
3 VDD_IO 39 VDD_IO 75 VSS_C 111 TEST1
4 MII_TX3 40 MII_COL/GPSI_COL 76 TX_EN 112 TEST2
5 VSS_C 41 VSS_C 77 RX_EN 113 VSS_C
6 MII_TX2 42 MII_CRS/GPSI_RXEN 78 VDD_C 114 TCK
7 VDD_C 43 VDD_C 79 VDD_IO 115 VDD_C
8 MII_TX1 44 RESET_N 80 ADIO0 116 TDO
9 VSS_IO 45 VSS_IO 81 ADIO1 117 VSS_C
10 VSS_C 46 VSS_C 82 ADIO2 118 VSS_C
11 MII_TX0/GPSI_TXD 47 VSS_C 83 VSS_IO 119 VSS_C
12 MII_TXEN/GPSI_TXEN 48 CLKOUT 84 ADIO3 120 TDI
13 VDD_C 49 CLKIN 85 VSS_C 121 VDD_C
14 MII_TXCLK/GPSI_TXCLK 50 VDD_C 86 ADIO4 122 VDD_C
15 VDD_Q 51 VDD_Q 87 ADIO5 123 VDD_C
16 MII_TX_ER 52 SPI_CS 88 VSS_C 124 TMS
17 VDD_C 53 VDD_C 89 VSS_Q 125 VDD_C
18 MII_RX_ER/GPSI_RXD 54 SPI_CLK 90 ADIO6 126 MDI_SPIS_N
19 VSS_C 55 VSS_C 91 VDD_Q 127 VSS_C
20 VSS_C 56 VSS_C 92 ADIO7 128 VSS_C
21 VSS_Q 57 SPI_DI 93 ADIO8 129 TRST_N
22 MII_RXCLK/GPSI_RXCLK 58 VSS_C 94 ADIO9 130 VSS_Q
23 VDD_C 59 SPI_DO 95 VDD_IO 131 NC
24 VDD_C 60 VDD_C 96 AGC0 132 VDD_C
25 MII_RXDV/GPSI_TXBSY 61 LED0_N 97 AGC1 133 MII_MDCLK/SPIS_SCLK
26 VSS_C 62 VSS_C 98 AGC2 134 VSS_C
27 MII_RX3 63 LED1_N 99 VDD_C 135 MII_MDIO/SPIS_SDO
28 VDD_C 64 VDD_IO 100 AGC3 136 VDD_IO
29 MII_RX2 65 LED2_N 101 VSS_C 137 MDI_ADRSEL[1]/
SPIS_SDI
30 VSS_C 66 VSS_C 102 AGC4 138 VSS_C
31 MII_RX1 67 ADC_CAL 103 AGC5 139 MDI_ADRSEL[0]/
SPIS_CS_N
32 VDD_C 68 VDD_C 104 VDD_C 140 VDD_C
33 MII_RX0 69 AGCENC_N 105 AGC6 141 MII_GPSI_N
34 VSS_C 70 VSS_IO 106 AGC7 142 VSS_IO
35 VSS_IO 71 ADC_CLK 107 VSS_IO 143 VSS_C
36 VSS_C 72 VSS_C 108 VSS_C 144 VSS_C
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 2-5
Table 2-2. CX11656 PHY Hardware Signal Definitions
Signal Name Pin I/O I/O Type Signal Name/Description
Media Independent Interface (MII)
These pins are multiplexed with the GPSI pins and are selected when MII_GSPI_N signal is at VDD.
MII_RX[3:0] 27, 29, 31,
33
OOt1 MII Receive Data. Data is transferred from the CX11656 to the
external MAC across these four lines, MII_RX[3:0], one nibble at a
time.
MII_RXCLK/
GPSI_RXCLK
22 O Ot1 MII Receive Clock. MII_RXCLK outputs a continuous 25 MHz clock to
the external MAC.
MII_RXDV/
GPSI_TXBSY
25 O Ot1 MII Receive Data Valid. When asserted high, MII_RXDV indicates
that the incoming data on the MII_RX[3:0] pins are valid.
MII_RX_ER/
GPSI_RXD
18 O Ot1 MII Receive Error. When asserted high, MII_RX_ER indicates to the
external MAC that an error has occurred during the frame reception.
MII_TX[3:1]
MII_TX0/GPSI_TXD
4, 6, 8
11
IIt MII Transmit Data. Data is transferred to the CX11656 from the
external MAC across these four lines (MII_TX[3:0]) one nibble at a
time.
MII_TXCLK/
GPSI_TXCLK
14 O Ot1 MII Transmit Clock. MII_TXCLK outputs a continuous 25MHz clock to
the external MAC.
MII_TXEN/
GPSI_TXEN
12 I It MII Transmit Enable. This signal indicates to the CX11656 that valid
data is present on the MII_TX[3:0] pins.
MII_TX_ER 16 I It MII Transmit Error. MII_TX_ER is activated by the external host
controller when an error condition is detected during packet
transmission. The CX11656 will ignore any MII transmission within
which MII_TX_ER is asserted. MII_TX_ER is ignored if MII_TXEN is
not asserted.
MII_CRS/
GPSI_RXEN
42 O Ot1 MII Carrier Sense. When asserted high, MII_CRS indicates to the
external host that traffic is present on the powerline and the host
should wait until the signal goes invalid before sending additional data.
This signal is an asynchronous output signal.
MII_COL/
GPSI_COL
40 O Ot1 MII Collision Detect. This signal indicates to the external host that a
collision has occurred on the MII interface. This signal is an
asynchronous output signal.
MII Management Data Interface (MDI)
These pins are multiplexed with the SPIS_SDO and SPIS_SCLK signals and are selected when MDI_SPIS_N is at VDD.
MII_MDIO/
SPIS_SDO
135 I/O It/Ot1 MII Management Data Output. MII_MDIO is the bidirectional signal
that carries the data for the Management Data Interface.
MII_MDCLK/
SPIS_SCLK
133 I It MII Management Data Clock. MII_MDCLK is the clock reference for
the MII_MDIO signal.
CX11656 HomePlug 1.0 PHY Data Sheet
2-6 Conexant Proprietary and Confidential Information 102069A
Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued)
Signal Name Pin I/O I/O Type Signal Name/Description
General Purpose Serial Interface (GPSI)
These pins are multiplexed with the MII pins and are selected when MII_GSPI_N signal is at VSS.
MII_RX_ER/
GPSI_RXD
18 O Ot1 GPSI Receive Data. GPSI_RXD carries data received from the
powerline and delivers to the external host. Data is driven on the
falling edge of the GPSI_RXCLK.
MII_RXCLK/
GPSI_RXCLK
22 O Ot1 GPSI Receive Clock. GPSI_RXCLK is the timing reference for the
serial data transfer from the CX11656 to the external host. This clock
operates at 10 MHz.
MII_TX0/GPSI_TXD
GPSI_TXD
11 I It GPSI Transmit Data. GPSI_TXD carries data transmitted from the
external host to the CX11656 for transmission over the powerline.
Data is latched on the falling edge of the GPSI_TXCLK.
MII_TXCLK/
GPSI_TXCLK
14 O Ot1 GPSI Transmit Clock. This signal is the timing reference for the serial
data transfer from the external host to the CX11656. This clock
operates at 10 MHz.
MII_CRS/
GPSI_RXEN
42 O Ot1 GPSI Receive Enable. When asserted high, GPSI_RXEN indicates
valid data is on the GPSI_RXD line.
MII_TXEN/
GPSI_TXEN
12 I It GPSI Transmit Enable. When asserted high, GPSI_TXEN indicates
when the external host is providing valid data on GPSI_TXD.
MII_RXDV/
GPSI_TXBSY
25 O Ot1 GPSI Transmit Busy. GPSI_TXBSY is asserted within 120 GPSI
clocks after GPSI_TXEN indicates a TX frame is being sent by the
local host. GPSI_TXBSY stays true until the entire TX frame is loaded
into an internal buffer AND a new buffer is allocated to the GPSI TX
interface. This signal should be monitored by the GPSI TX host. A new
GPSI TX frame should not be sent until GPSI_TXBSY returns to false
to prevent TX buffer overflows. GPSI_TXBSY is an asynchronous
output signal.
MII_COL/
GPSI_COL
40 O Ot1 GPSI Collision Detect. GPSI_COL is driven false in GPSI mode.
SPI Slave Port
Selected when MDI_SPIS_N signal is at VSS.
MII_MDIO/
SPIS_SDO
135 O Ot1 SPI Slave Data Out. SPIS_SDO is the SPI data from the CX11656 to
the external host.
MDI_ADRSEL[1]/
SPIS_SDI
137 I It SPI Slave Data In. SPIS_SDI is the SPI data from the external host
to the CX11656. This pin is shared with the MDI_ADRSEL[1].
MII_MDCLK/
SPIS_SCLK
133 I It SPI Slave Clock. SPIS_SCLK is the timing reference signal for
SPI_SDI and SPI_SDO.
MDI_ADRSEL[0]/
SPIS_CS_N
139 I It SPI Slave Chip Select. When asserted low, SPIS_CS_N enables SPI
data transfers on the CX11656. This pin is shared with the
MDI_ADRSEL[0].
SPI Master Port (Configuration PROM Interface)
SPI_DO 59 O Ot1 SPI Master Data Out. SPI_DO is the CX11656 configuration data
from the CX11656 to the external E 2 PROM.
SPI_DI 57 I It SPI Master Data In. SPI_DI is the CX11656 configuration data from
the external E 2 PROM to the CX11656.
SPI_CLK 54 O Ot1 SPI Master Clock. SPI_CLK is the timing reference signal for SPI_DI
and SPI_DO.
SPI_CS 52 O Ot1 SPI Master Chip Select. When asserted high, SPI_CS enables data
transfers on the SPI Master Interface.
LED Control
LED0_N 61 O Ot1 Collision Detection. LED0_N is asserted low for 9–10 ms upon
detection of a collision.
LED1_N 63 O Ot1 LED1Activity Detection. LED1_N is asserted low for 9–10 ms upon
the receipt of a properly addressed unicast or broadcast frame or the
transmission of a frame.
LED2_N 65 O Ot1 Link Detection. LED2_N is asserted low when initialization is
complete successfully and “network” is established.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 2-7
Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued)
Signal Name Pin I/O I/O Type Signal Name/Description
Analog Front End Interface
ADC_CLK 71 O Ot1 ADC Clock. ADC clock output to the Analog Conversion IC.
DAC_CLK 74 O Ot1 DAC Clock. DAC clock output to the Analog Conversion IC.
TX_EN 76 O Ot1 Analog Front End Transmit Enable. Transmit Enable signal
RX_EN 77 O Ot1 Analog Front End Receive Enable. Receive Enable signal
ADIO[9:0] 94, 93, 92,
90, 87, 86,
84, 82, 81,
80
I/O It/Ot12 Analog/Digital I/O. ADC and DAC Data. Multiplexed parallel interface
to Analog Conversion IC.
AGC[7:0] 106, 105,
103, 102,
100, 98, 97,
96
OOt1 AGC Gain Select. Gain control driven by the CX11656 to set the AGC
level.
ADC_CAL 67 O Ot1 ADC Calibrate. This pin must remain low during normal operation of
the ADC. It is pulsed high to request a calibration cycle. The
ADC_CAL minimum pulse width is 4 clock cycles. While this signal is
high the ADC calibration registers are cleared and the calibration
control circuitry is reset. The ADC_CAL pulse will go high 217 clock
cycles (2.6 ms) after power on reset drops, and will remain high for the
required 4 clock cycles.
AGCENC_N 69 I It AGC Encode. An inactive signal (logic 1) applied to this input selects
unitary AGC format. An active signal (logic 0) applied to this input
selects encoded AGC format.
Test Access Port (Reserved)
TCK 114 I It Test Clock. Test Clock for the IEEE 1149.1 JTAG Port.
TDI 120 I It Test Data In. Data In for the IEEE 1149.1 JTAG Port.
TMS 124 I It Test Mode Select. Test Mode Select for the IEEE 1149.1 JTAG Port.
TDO 116 O Ot1 Test Data Out. Data Out for the IEEE 1149.1 JTAG Port.
TRST_N 129 I It Test Reset. This pin will be used to reset the TAP controller. It should
be connected to ground when the JTAG port is not in use.
System Control
RESET_N 44 I It Reset. Resets logic circuitry, but not clock circuitry. Reset is active low
and should be held low for a minimum of 100 ns.
CLKIN 49 I Ix Clock Input. 100 MHz clock input driven by an external oscillator or
AFE. Note: CLKIN connects directly to the +1.8 V core of the IC and
does not connect to the +3.3 V I/O ring. Therefore, this pin is not +3.3
or 5 V tolerant.
CLKOUT 48 O Ox Clock Output. 100 MHz clock output. This pin should be left as NO
CONNECT.
MDI_ADRSEL[1]/
SPIS_SDI,
MDI_ADRSEL[0]/
SPIS_CS_N
137,
139
IIt MDI PHY Address Selection. MDI_ADRSEL[1:0] is the address
select used to compare against the upper two bits of the MDI Address.
These pins share function with SPIS_SDI and SPIS_CS_N and should
be pulled-up or down with external resistors to set the appropriate
value which is read by the CX11656 during power up.
MDI_SPIS_N 126 I It Management Data Interface/Serial Peripheral Interface Slave
Select. When asserted low, MDI_SPIS_N selects which PHY
management signals are active.
MII_GPSI_N 141 I It Media Independent Interface/General Purpose Serial Interface
Select. When asserted low, MII_GPSI_N selects which PHY data
interface signals are active.
TEST1 111 I It Factory Test Pin 1. Tie to I/O Ground.
TEST2 112 I It Factory Test Pin 2. Tie to I/O Ground.
NC 131 No Connect.
CX11656 HomePlug 1.0 PHY Data Sheet
2-8 Conexant Proprietary and Confidential Information 102069A
Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued)
Signal Name Pin I/O I/O Type Signal Name/Description
Power Supplies
VDD_C 1, 2, 7, 13,
17, 23, 24,
28, 32, 37,
38, 43, 50,
53, 60, 68,
73, 78, 99,
104, 109,
115, 121,
122, 123,
125, 132,
140
PPWR +1.8 V Digital Power
VSS_C 5, 10, 19,
20, 26, 30,
34, 36, 41,
46, 47, 55,
56, 58, 62,
66, 72, 75,
85, 88, 101,
108, 113,
117, 118,
119, 127,
128, 134,
138, 143,
144
GGND Digital Ground
VDD_IO 3, 39, 64,
79, 95, 110,
136
PPWR +3.3 VI/O Power
VSS_IO 9, 35, 45,
70, 83, 107,
142
GGND I/O Ground
VDD_Q 15, 51, 91 P PWR +3.3 V Quiet Power. Connect to +3.3 V I/O Power
VSS_Q 21, 89, 130 G GND Quiet Ground. Connect to I/O Ground
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 2-9
2.2 CX11656 PHY Electrical and Environmental Specifications
DC electrical characteristics are listed Table 2-3.
Operating conditions are specified in Table 2-4.
Absolute maximum ratings are stated in Table 2-5.
Power consumption is listed in Table 2-6.
Table 2-3. CX11656 PHY DC Electrical Characteristics
Parameter Symbol Min. Typ. Max. Units Test Conditions
Input Voltage High VIH 2.0 VDC
Input Voltage Low VIL ––0.8VDC
Output Voltage High VOH 2.4 VDC IOH = -1 mA
Output Voltage Low VOL ––0.4VDCI
OH = 1 mA
Input Current II-15 15 µA
Supply Current IDD 370 mA
Supply Current ICC –25 mA
Note: Any signal applied to the CX11656 clock pin (CLKIN) should not exceed +1.8 V.
Table 2-4. CX11656 PHY Operating Conditions
Parameter Symbol Min Typ Max Units
Core Supply Voltage VDD_C 1.7 1.8 1.9 VDC
I/O Supply Voltage VDD_IO 3.0 3.3 3.6 VDC
Operating Temperature TA0+70
°C
Table 2-5. CX11656 PHY Absolute Maximum Ratings
Parameter Symbol Limits Units
Core Supply Voltage VDD_C -0.35 to +1.95 VDC
I/O Supply Voltage VDD_IO -0.35 to +3.65 VDC
Input Voltage VIN -0.35 to (VDD +0.35) VDC
Storage Temperature Range TSTG -55 to +125 °C
Analog Inputs VIN -0.35 to (VDDA + 0.35) VDC
Voltage Applied to Outputs in High Impedance
(Off) State
VHZ -0.35 to (VDDA +0.35) VDC
Table 2-6. CX11656 PHY Power Consumption
Mode
Typ.
Current
(mA)
Max.
Current
(mA)
Typ.
Power
(mW)
Max.
Power
(mW)
VDD_C TBD TBD TBD TBD
VDD_IO TBD TBD TBD TBD
Test conditions: VDD_C = +1.8 VDC for typical values; +1.9 VDC for maximum values.
VDD_IO = +3.3 VDC for typical values; +3.465 VDC for maximum values.
CX11656 HomePlug 1.0 PHY Data Sheet
2-10 Conexant Proprietary and Confidential Information 102069A
This page is intentionally blank.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-1
3. CX11656 Functional Description
The interfaces that provide data, status, and control to and from the CX11656 include:
External host interface provided via the Media Independent Interface (MII) format
(described by IEEE 802.3u, Clause 22) or a General Purpose Serial Interface (GPSI)
Management control provided via the Management Data Interface (MDI) or the
Serial Peripheral Interface (SPI)
Analog Front End interface
LEDs indicating network status
Optional EEPROM interface providing a path to initialize the CX11656
The JTAG port implements the IEEE 1149.1 Standard Test Access Port and
Boundary Scan Architecture.
A block diagram of the CX11656 PHY is shown in Figure 3-1.
Figure 3-1. CX11656 PHY Block Diagram
102069_005
MII/GPSI
Interface
RISC
uProcessor Core
Interface
DMA
Buffer
RAM
Link
Sequencer
Arbiter
Configuration
Registers ADIO[9:0]
MDI
or SPI
JTAG
PHY
Seq
PHY
Core
AFE
Logic
FIFOs
SPI
Master
PHY
DMA
ROM ROM
LEDs
Interface Block MAC PHY
AGC [7:0]
MDII
or GPSI
TEST
EEPROM
CX11656
CX11656 HomePlug 1.0 PHY Data Sheet
3-2 Conexant Proprietary and Confidential Information 102069A
3.1 MII Data Interface with MDI Control
Data communication between the CX11656 and the external host controller is provided
via the Media Independent Interface (MII) or a reduced General Purpose Serial Interface
(GPSI). The MII_GPSI_N select pin is included on the chip interface to configure the
CX11656 in either MII mode or GPSI mode. Access to the CX11656’s internal MII
status and control registers is via the Management Data Interface or a SPI interface. The
MDI_SPIS_N select pin is included on the chip interface to configure the CX11656 in
either MDI mode or SPI mode. The information that follows describes the MII
communication interface along with the MDI management interface as a typical example.
The MII data interface with MDI control is illustrated in Figure 3-2.
Figure 3-2. MII Data Interface with MDI Control
102069_006
External
Host Controller Interface
Block
PowerPacket
MAC
PowerPacket
PHY
MII_RXDV
MII_CRS
MII_COL
MII_TX(3:0)
MII_TXCLK
MII_MDCLK
MII_MDIO
CX11656
MII_RX(3:0)
MII_RXCLK
MII_RX_ER
MII_TX_ER
MII_TXEN
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-3
3.1.1 MII Interface
MII is an industry standard, multi-vendor, interoperable interface between separate MAC
and PHY devices. It provides a simple interconnection between the CX11656 and
IEEE802.3 Ethernet MAC controllers (commonly referred to as external host controllers
in this document) available from a variety of IC suppliers. The MII consists of separate 4-
bit data paths for transmit and receive data along with carrier sense and collision
detection. Data is transferred between the MAC and PHY over each 4-bit data path
synchronous with a clock signal supplied to the host by the CX11656. The MII interface
also provides a 2-wire bidirectional serial management data interface (MDI). This
interface provides access to the status and control registers in the CX11656.
3.1.1.1 MII Timing Diagram
The transmission behavior of the MII interface is illustrated in Figure 3-3.
The receive behavior of the MII interface is illustrated in Figure 3-4.
An unsuccessful attempt to transmit a packet, resulting in a collision, is illustrated in
Figure 3-5.
The MII receive timing is illustrated in Figure 3-6.
The MII transmit timing is illustrated in Figure 3-7.
The MII DC characteristics are listed in Table 3-1.
Note: MII_CRS is asynchronous to MII_TXCLK.
Figure 3-3. MII TX Waveform
DATA
MII_TXCLK
MII_CRS
MII_TXEN
MII_TXD[3:1], MII_TX0
MII_COL
102069_007
DATA DATA DATA
CX11656 HomePlug 1.0 PHY Data Sheet
3-4 Conexant Proprietary and Confidential Information 102069A
Figure 3-4. MII RX Waveform
DATA
MII_RXCLK
MII_CRS
MII_RXDV
MII_RX[3:0] DATA DATA DATA
Figure 3-5. MII TX with Collision Based on RX Activity
MII_TXEN
MII_RXDV
MII_COL
102069_009
MII_CRS
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-5
Figure 3-6. MII Receive Timing
MII_RXCLK
MII_RXD[3:0], MII_RXVD,
MII_RX_ER, MII_COL, MII_CRS
102069_010
DATA
tMII_RVAL
Figure 3-7. MII Transmit Timing
MII_TXCLK
MII_TXD[3:1], MII_TX0,
MII_TXEN, MII_TX_ER
102069_011
DATA
tMII_TSU
tMII_TH
Table 3-1. MII DC Characteristics
Parameter
Symbol
Parameter Name Test Condition Min. Max. Unit
Receive Timing
tMII_RVAL MII_RX[3:0], MII_RXDV valid
from MII_RXCLK
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
025ns
Transmit Timing
tMII_TSU MII_TXEN, MII_TX0, MII_TX[3:1]
setup to MII_TXCLK
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
8ns
tMII_TH MII_TXEN, MII_TX0, MII_TX[3:1]
hold to MII_TXCLK
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
0ns
CX11656 HomePlug 1.0 PHY Data Sheet
3-6 Conexant Proprietary and Confidential Information 102069A
3.1.1.2 MII Signal Descriptions
The following description references Clause 22, Media Independent Interface
specification, used in the 100 Mbps half-duplex mode. The MII is used as a data channel
that transfers data back and forth with flow controlled by the carrier sense signal
(MII_CRS).
MII_TXCLK and MII_RXCLK. The CX11656 generates a stable, continuous 25 MHz
square wave that is supplied on MII_TXCLK and MII_RXCLK. These clocks provide
the timing reference for the transfer of the MII_TXEN and MII_TX signals, as well as
MII_RX, MII_RX_ER, and MII_RXDV.
MII_RX_ER. MII_RX_ER is activated when the CX11656 detects an error in the
receive stream as a result of decoding.
MII_TX_ER. MII_TX_ER is activated by the external host controller when an error
condition is detected during packet transmission. The CX11656 will ignore any MII
transmission within which MII_TX_ER is asserted. MII_TX_ER is ignored if
MII_TXEN is not asserted.
MII_TXEN. MII_TXEN from the external host provides the framing for the Ethernet
packet. An active MII_TXEN indicates to the CX11656 that data on MII_TX[3:0] should
be sampled using MII_TXCLK.
MII_TX[3:0]. MII_TX[3:0] contains the data to be transmitted and transitions
synchronously with respect to MII_TXCLK. MII_TX[0] is the least significant bit. It is
generally assumed that the data will contain a properly formatted Ethernet frame. That is,
the first bits on MII_TX[3:0] correspond to the preamble, followed by SFD and the rest
of the Ethernet frame (DA, SA, length/type, data, CRC).
MII_RXDV. MII_RXDV is asserted by the CX11656 to indicate that the CX11656 has
decoded receive data to present to the external host.
MII_RX[3:0]. MII_RX[3:0] contains the data recovered from the medium by the
CX11656 and transitions synchronously with respect to MII_RXCLK. MII_RX[0] is the
least-significant bit. The CX11656 formats the frame such that the external MAC will be
presented with expected preamble plus SFD.
MII_CRS. MII_CRS is used to tell the external host when the CX11656 is available for
sending a packet. MII_CRS is asynchronous to MII_TXCLK. When a packet is being
transmitted, CRS is held high. CRS will go low whenever the CX11656 is ready to accept
another packet.
On transmit, the CX11656 asserts MII_CRS some time after MII_TXEN becomes active,
and drops MII_CRS after MII_TXEN goes inactive AND when the CX11656 is ready to
receive another packet from the external host for transmission. When MII_CRS has been
negated for at least 900ns, the external MAC may assert MII_TXEN again if there is
another packet to send. This differs from nominal behavior of MII_CRS in that MII_CRS
can extend past the end of the packet by an arbitrary amount of time, while the CX11656
is gaining access to the channel and transmitting the packet. MII_CRS does not affect the
receive side of the channel. Once packets start arriving from the powerline medium and
begin transmission to the external host controller over the MII interface, the external host
must be ready to receive or the packet can be lost. Note that external MACs programmed
to run in 100 Mbps mode do not use a jabber timeout, so there is no timing restriction on
how long MII_CRS can be asserted.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-7
Figure 3-8. MII Flow Control Overview, Part 1
MII_CRS
MII_TXEN
MII_TXD[3:1], MII_TX0
Internal TX buffer available pulse
102069_012
MII_RX[3:0]
External RX buffer available pulse
MII_COL
P P
P
MII_RXDV
Case 1
TX only
Case 2
RX only
Case 3
RX while TX, delayed TX buf avail
Case 4
RX while no TX buf avail
P P
32 ns
(32 bit times)
32 ns
(32 bit times)
32 ns
(32 bit times) 32 ns
(32 bit times)
Case 4
TX buf avail
Figure 3-9. MII Flow Control Overview, Part 2
MII_CRS
MII_TXEN
MII_TXD[3:1], MII_TX0
1102069_013
MII_RX[3:0]
MII_COL
P P
P
MII_RXDV
Case 1
TX only
Case 7
TX overrun, frame dropped
P
Case 8
Collision
CX11656 HomePlug 1.0 PHY Data Sheet
3-8 Conexant Proprietary and Confidential Information 102069A
3.1.1.3 MII Frame Structure
The frame structure transmitted on the MII or GPSI interface is the following sequence of
fields:
Interframe Gap Preamble Start Frame Delimiter Data
Interframe Gap
A period on the MII interface during which no data activity occurs on the MII.
Preamble
Begins a frame transmission that consists of 7 octets with the following bit values:
10101010 10101010 10101010 10101010 10101010 10101010 10101010
The preamble is stripped by the CX11656 when transmitting (the preamble is not
transmitted on the PLC medium) and pre-pended by the CX11656 when receiving.
Start Frame Delimiter
Indicates the start of a frame and follows the preamble. The SFD bit sequence is
10101011.
The start frame delimiter is stripped by the CX11656 when transmitting (the SFD is not
transmitted on the PLC medium) and pre-pended by the CX11656 when receiving
Data
Data sent over the MII interface consists of N bytes of data transmitted as 2N nibbles.
The de-assertion of the MII_TXEN signals the End Of Frame (EOF) for data transmitted
on the MII_TX[3:0] pins. Likewise, the de-assertion of the MII_RXDV signals the EOF
for data transmitted on MII_RX[3:0].
Figure 3-10. Partition of Serial Bit Stream to Nibble Stream
MACs Serial Bit Stream
First nibble Second nibble
MII
Nibble
Stream
LSb
MSb
D0 D1 D2 D3 D4 D5 D6 D7
D0
D1
D2
D3
LSb MSb
101409_014
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-9
3.1.2 MDI Control Interface
The Management Data Interface connects the external host to the CX11656 for purposes
of controlling the CX11656 and gathering status. A specific frame format and protocol
definition exists for exchanging management frames over this interface. A register
definition exists as well that specifies a basic register set with an extension mechanism.
The CX11656 implements the basic register set only.
The MDI receive timing is illustrated in Figure 3-11.
The MDI transmit timing is illustrated in Figure 3-12.
The MDI DC characteristics are listed in Table 3-2.
Figure 3-11. MDI Receive Timing
MII_MDCLK
MII_MDIO
102069_015
DATA
tMII_RVAL
Figure 3-12. MDI Transmit Timing
MII_MDCLK
MII_MDIO
102069_016
DATA
tMII_TSU
tMII_TH
Table 3-2. MI DC Characteristics
Parameter
Symbol
Parameter Name Test Condition Min. Max. Unit
Receive Timing
tMI_RVAL MII_MDIO valid from
MII_MDCLK
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
0 300 ns
Transmit Timing
tMI_TSU MII_MDIO setup to
MII_MDCLK
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
10 ns
tMI_TH MII_MDIO hold to
MII_MDCLK
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
10 ns
CX11656 HomePlug 1.0 PHY Data Sheet
3-10 Conexant Proprietary and Confidential Information 102069A
3.1.2.1 MDI Signal Descriptions
Management Data Input/Output
MII_MDIO is a bi-directional signal that is used to transfer status and control information
between the CX11656 and the external host. Control information is driven by the external
host synchronously with respect to MII_MDCLK and is sampled synchronously by the
CX11656. Status information is transferred from the CX11656 to the external host in the
same manner.
Management Data Clock
MII_MDCLK is sourced by the external host as the timing reference for transfer of
information on the MII_MDIO signal.
3.1.3 MII Management Register Set
The IEEE 802.3u mandated management data registers for control and status are
accessible via the Management Data Interface (MDI). These registers are also accessible
via the industry supported serial peripheral interface. The MDI Port will only respond to
addresses 0xbXX000 when the XX field (MSbits of the MDI address) match the state of
the MDI_ADRSEL[1:0] input signals. These registers can also be accessed from the SPI
Slave port when the MDI_SPIS_N select line has been tied low to select the SPI Slave
port.
Table 3-3 summarizes the Power Line Control and Status Register.
The MDI Frame Structure is shown in Figure 3-13.
Table 3-3. Powerline Control and Status Register (PLCSR) Summary
PLCSR Register Name MII Mandated
0 Control Register X
1 Status Register X
Figure 3-13. MDI Frame Structure
PRE ST OP PHYAD RAGAD TA Data Idle
READ 1...1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD Z
WRITE 1...1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD Z
3.1.3.1 PRE (Preamble)
At the beginning of each MDI transaction, the external host shall send a sequence of 32
contiguous logic “1” bits on the MDIO signal so the CX11656 can establish
synchronization. The CX11656 needs to observe this 32 bit sequence on the MII_MDIO
signal before it responds to any transaction.
3.1.3.2 ST (Start of Frame)
Indicated by a “01” pattern.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-11
3.1.3.3 OP (Operation Code)
READ is indicated by “10”. WRITE is indicated by “01”.
3.1.3.4 PHYAD (PHY Address)
The PHY Address is 5 bits, allowing up the 32 unique PHY addresses. The CX11656 will
respond to PHY addresses indicated by 0bXX000. The “XX” bits of the PHY address are
controlled by the CX11656 interface pins MDI_ADRSEL(0:1). This allows the designer
to assign the CX11656 to one of 4 unique PHY addresses.
3.1.3.5 REGAD (Register Address)
The Register Address is 5 bits and is used to index the maximum of 32 individual
registers in the MDI address space. The CX11656 only implements the two mandated
MII registers. 0b00000 will index the MII Control Register and 0b00001 will index the
MII Status Register.
3.1.3.6 TA (Turnaround)
The turnaround time is a 2-bit time spacing between the Register Address field and the
Data field to avoid contention during a read transaction.
For reads, both the external host and the CX11656 remain three-stated for the first bit
time. The CX11656 will drive a “0” during the second bit time.
For writes, the external host drives a “1” for the first bit time and a “0” bit for the second
bit time.
3.1.3.7 Data
The data field is 16 bits. The first data bit transmitted and received is bit 15 of the register
being addressed.
CX11656 HomePlug 1.0 PHY Data Sheet
3-12 Conexant Proprietary and Confidential Information 102069A
3.2 GPSI Interface with SPI Control
The General Purpose Serial Interface (GPSI) is a flexible, bi-directional serial interface
that can be utilized in place of the MII. It provides a straightforward interface to a
communications controller through a synchronous serial data stream for transmit and
receive data. When using the GPSI interface, the management interface can either be
MDI or SPI, selected by the MDI_SPIS_N pin. The information that follows describes
the GPSI communication interface along with the SPI management interface as a typical
example.
The GPSI interface signals are shown in Figure 3-14.
Figure 3-14. GPSI Data Interface with SPI Control
102069_018
External
Host
Controller
Interface
Block
PowerPacket
MAC
PowerPacket
PHY
GPSI_RXD
GPSI_RXCLK
GPSI_RXEN
GPSI_COL
GPSI_TXBSY
GPSI_TXD
GPSI_TXCLK
GPSI_TXEN
CX11656
SPIS_SDO
SPIS_SDI
SPIS_SCLK
SPIS_CS_N
3.2.1 GSPI Interface
GPSI is an interoperable interface providing a simple interconnection between the
CX11656 and embedded microcontrollers. Data is transferred between the host controller
and the CX11656 over separate 1-bit transmit and receive data paths synchronous with
clock signals supplied to the host by the CX11656.
3.2.1.1 GPSI Timing Diagrams
The figures below show the transmission and reception of packets and the corresponding
behavior of the GPSI interface. A packet is transferred from the host when GPSI_TXEN
goes high. An unsuccessful attempt is made to transmit a packet in Case 5. The received
packet is passed to the host when GPSI_RXEN is high.
The GSPI flow control is illustrated in Figure 3-15.
The GSPI transmit and receive timing are illustrated in Figure 3-16 and Figure 3-17,
respectively.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-13
Figure 3-15. GPSI Flow Control
GPSI_TXEN
GPSI_TXD
Internal TX buffer available pulse
102069_019
GPSI_RXEN
Internal RX buffer available pulse
GPSI_COL
P P
PGPSI_RXD
Case 1
TX only
Case 2
RX only
GPSI_TXBSY
P
Case 3
RX & TX
P P
Case 4
TX, buf avail
Case 5
TX, no buf avail,
frame dropped
Figure 3-16. GPSI Transmit Timing
GPSI_TXCLK
GPSI_TXD
102069_020
GPSI_TXBSY
GPSI_COL
GPSI_TXEN
tGPSI_TPER
tGPSI_THIGH
tGPSI_TDELAY tGPSI_TDELAY
tGPSI_TTXBSYH
Figure 3-17. GPSI Receive Timing
GPSI_TXCLK
GPSI_RXD
102069_021
GPSI_COL
GPSI_RXEN
tGPSI_RPER tGPSI_RHIGH
tGPSI_RRXENH
tGPSI_RLOW
tGPSI_RDH
tGPSI_RSU
CX11656 HomePlug 1.0 PHY Data Sheet
3-14 Conexant Proprietary and Confidential Information 102069A
3.2.1.2 GPSI DC Characteristics
The GSPI DC characteristics are listed in Table 3-4.
Table 3-4. GPSI DC Characteristics
Parameter
Symbol
Parameter Name Test
Condition
Min Max Unit
Receive Timing
tGPSI_RPER GPSI RXCLK Period @ 1.5 V 99.99 100.01 ns
tGPSI_RHIGH GPSI RXCLK High Time @ 1.5 V 40 60 ns
tGPSI_RLOW GPSI RXCLK Low Time @ 1.5 V 40 60 ns
tGPSI_RSU GPSI_RXD and GPSI_RXEN Setup to GPSI_RXCLK @ 1.5 V 15 ns
tGPSI_RDH GPSI_RXD Hold after GPSI_RXCLK @ 1.5 V 15 ns
tGPSI_RRXENH GPSI_RXEN Hold after GPSI_RXCLK @ 1.5 V 0 ns
Transmit Timing
tGPSI_TPER GPSI TXCLK Period @ 1.5 V 99.99 100.01 ns
tGPSI_THIGH GPSI TXCLK High Time @ 1.5 V 40 60 ns
tGPSI_TDELAY GPSI_TXD and GPSI_TXEN Delay from GPSI_TXCLK @ 1.5 V 0 70 ns
tGPSI_TRXENH GPSI_RXEN Hold after GPSI_TXEN @ 1.5 V 0 ns
3.2.1.3 GPSI Signal Descriptions
GPSI_TXCLK and GPSI_RXCLK: The CX11656 generates a stable, continuous 10
MHz square wave that is supplied on GPSI_TXCLK and GPSI_RXCLK. These clocks
provide the timing reference for the transfer of the GPSI_TXEN and GPSI_TXD signal,
as well as GPSI_RXEN and GPSI_RXD.
GPSI_RXD: GPSI_RXD contains the data recovered from the medium by the CX11656
and transitions synchronously with respect to GPSI_RXCLK. The CX11656 properly
formats the frame such that the external host controller will be presented with the
expected preamble plus SFD.
GPSI_RXEN: GPSI_RXEN is asserted by the CX11656 to indicate that the CX11656
has decoded receive data to present to the external host controller.
GPSI_TXBSY: GPSI_TXBSY is an optionally used signal to tell the external host
controller when the CX11656 is available for sending packets. When a packet is being
transmitted, GPSI_TXBSY is held high. GPSI_TXBSY will go low whenever the
CX11656 is ready to send another packet. If this signal is not used, the transmitting logic
must pace the packet transmissions to ensure that no packets are lost due to buffer
overflow.
On transmit, the CX11656 asserts GPSI_TXBSY sometime after GPSI_TXEN becomes
active, and drops GPSI_TXBSY after GPSI_TXEN goes inactive AND when the
CX11656 is ready to accept another packet for transmission. When GPSI_TXBSY falls,
the external host controller may assert GPSI_TXEN again if there is another packet to
send.
GPSI_TXBSY does not affect nor reflect the receive side of the channel. Once packets
start arriving off of the powerline medium and begin transmission to the external host
controller over the GPSI interface, the external host controller MUST be ready to receive
or the packet can be lost.
GPSI_TXEN: GPSI_TXEN from the external host provides the framing for the Ethernet
packet. An active GPSI_TXEN indicates to the CX11656 that data on GPSI_TXD should
be sampled using GPSI_TXCLK.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-15
GPSI_TXD: GPSI_TXD contains the data to be transmitted and transitions
synchronously with respect to GPSI_TXCLK. It is generally assumed that the data will
contain a properly formatted Ethernet frame (see MII Frame Structure above). That is, the
first bits on GPSI_TXD correspond to the preamble, followed by Start Frame Delimiter
(SFD) and the rest of the Ethernet frame (DA, SA, length/type, data, CRC).
3.2.2 SPI Slave Port Interface
The CX11656 implements a SPI Slave port that when connected to an external host
controller containing a SPI Master, can be used to control access to the two configuration
registers. The SPI Slave port uses a 16- bit control field (MSb first) consisting of a 6-bit
command field, a 5-bit reserved field, and a 5-bit address field to control access to the
two configuration registers detailed above (Table 3-5). Following the control field, the
16-bit register contents are written or read based on the command field.
Table 3-5. SPI Slave Command Summary
Register function Control Field
15 14 13 12 11 10 987 6543210
Command Field Reserved Field Address Field
5432104321043210
Write PLCSR0
(Control Register)
LLLLHLHLLLLLLLLL
Read PLCSR0
(Control Register)
LLLLHHHLLLLLLLLL
Write PLCSR1 (Status
Register)
LLLLHLHLLLLLLLLH
Read PLCSR1 (Status
Register)
LLLLHHHLLLLLLLLH
CX11656 SPECIFICATION
3.2.2.1 SPI Slave Port Signal Timing
SPI Slave Port timing is illustrated in Figure 3-18.
CX11656 HomePlug 1.0 PHY Data Sheet
3-16 Conexant Proprietary and Confidential Information 102069A
Figure 3-18. SPI Slave Port Timing
SPIS_CLK
SPIS_DI
SPIS_CS_N
SPIS_DO
MSB IN BITS 6-1 LSB IN
MSB OUT BITS 6-1 LSB OUT
tSPIS_HIGH
tSPIS_LOW
tSPIS_CSLAG
tSPIS_CSLEAD
tSPIS_SU
tSPIS_H
tSPIS_SDOSV
102069_022
3.2.2.2 SPI Slave Port DC Characteristics
The SPI Slave Port DC characteristics are listed in Table 3-6.
Table 3-6. SPI Slave Port DC Characteristics
Parameter
Symbol
Parameter Name Test Condition Min Max Unit
tSPIS_F SPIS_SCLK Frequency 2.1 MHz
tSPIS_HIGH SPIS_SCLK High Time @ 1.5 V 400 ns
tSPIS_LOW SPIS_SCLK Low Time @ 1.5 V 400 ns
tSPIS_SDOVD SPIS_SDO Valid Output Delay from SPIS_SCLK @ 1.5 V 0 500 ns
tSPIS_CSLEAD SPIS_CS Lead to SPIS_SCLK @ 1.5 V 500 ns
tSPIS_CSLAG SPIS_CS Lag from SPIS_SCLK @ 1.5 V 1500 ns
tSPIS_SU SPIS_SDI Setup Time to SPIS_SCLK @ 1.5 V 200 ns
tSPIS_H SPIS_SDI Hold Time to SPIS_SCLK @ 1.5 V 200 ns
3.3 Clocks
The CX11656 runs from a single 100 MHz oscillator input and generates a 50 MHz clock
to feed the ADC, a 50 MHz clock to feed the DAC, the 25 MHz MII clock, and the 10
MHz GPSI clock. The 100 MHz clock input directly feeds the clock distribution network
that clocks up to 60% of the digital logic.
Note: Both CLKIN and CLKOUT connect directly to the +1.8 V core of the IC and do
not connect to the +3.3 V I/O ring. Therefore these pins are not +3.3 V or +5 V
tolerant.
The oscillator must have ± 25 PPM RMS maximum tolerance including initial accuracy,
temperature/voltage range and 5 years of aging. This oscillator must have a symmetry no
worse than 40/60, jitter of 75 ps and 4 ns rise and fall time. The oscillator must be rated
over the desired temperature range and ± 10% voltage range. The CX11656 uses a crystal
input cell to receive the clock input.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-17
3.4 AFE Interface
The CX11656 provides a simple parallel interface to the analog front end (AFE). The
analog data is clocked into or out of the CX11656 on a 10-bit bi-directional parallel data
bus under control of transmit or receive enable signals and sample clock references
provided to the AFE from the CX11656. The CX11656 also provides a parallel byte-wide
automatic gain control interface.
3.4.1 ADC/DAC Interface
The CX11656 outputs a sequential stream of digital time samples of the OFDM
waveforms for transmission. The digital transmit signal is passed on to the A/D
Converter. The ADC digitizes the analog OFDM receive signal for input to the CX11656.
The DAC converts digital samples into analog waveforms.
3.4.1.1 ADC/DAC Timing Diagrams
AFE TX and RX activity is illustrated in Figure 3-19.
AFE clock waveforms are illustrated in Figure 3-20.
AFE transmit and receive timing is illustrated in Figure 3-21 and Figure 3-22,
respectively.
Figure 3-19. AFE TX and RX Activity
DAC_CLK
TX_EN
ADIO[9:0]
ADC_CLK
RX_EN
TX DATA TX DATA TX DATA RX DATA RX DATA RX DATA
102069_023
Figure 3-20. AFE Clock Waveforms
DAC_CLK,
ADC_CLK
102069_024
tAFE_H
tAFE_L
tAFE_PW
0.8 V
1.5 V
2.0 V
tAFE_R tAFE_FT
CX11656 HomePlug 1.0 PHY Data Sheet
3-18 Conexant Proprietary and Confidential Information 102069A
Figure 3-21. AFE Transmit Timing Diagram
DAC_CLK
ADIO[9:0], RX_EN, TX_EN
102069_025
DATA
tMII_RVAL
Figure 3-22. AFE Receive Timing Diagram
ADC_CLK
ADIO[9:0]
102069026
DATA
tMII_TSU
tMII_TH
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-19
3.4.1.2 DAC DC Characteristics
The DAC DC characteristics are listed in Table 3-7.
Table 3-7. DAC DC Characteristics
Symbol Parameter Test Conditions Min Typ Max Unit
Number of Bits 10 bits
Data Format Straight Binary
Sample Rate 50 MSPS
DAC Data Output
VOH High level output voltage 1, 2 2.4 V
VOL Low level output voltage 1, 3 0.4 V
tAFE_RVAL Propagation Delay Time 1 5.0 8.2 15.0 ns
DAC Clock Output
tAFE_PW DAC Clock Pulse Width 1 10 15 ns
tAFE_R DAC Clock Rise Time 1 2 ns
tAFE_FT DAC Clock Fall Time 1 2 ns
tJDAC Clock Jitter 1 75 ps rms
Conditions:
1. VDD = 3.3 V, CL = 15 pF, RL = 1K
2. IOH = -1 mA
3. IOL = 1mA
1647 SPECIFICATION
3.4.1.3 ADC DC Characteristics
The ADC DC characteristics are listed in Table 3-8.
Table 3-8. ADC DC Characteristics
Symbol Parameter Test Conditions Min Typ Max Unit
Number of Bits 10 bits
Data Format Straight Binary
Sample Rate 50 MSPS
ADC Data Input
VIH High level input voltage 1 2.0 V
VIL Low level input voltage 1 0.8 V
tAAperture Delay Time 1 2.7 ns
tAFE_TSU Data Setup Time 1 3 ns
tAFE_TH Data Hold Time 1 3 ns
ADC Clock Output
VOH High level output voltage 1 2.1 V
VOL Low level output voltage 1 0.9 V
tAFE_H ADC/DAC Clock Pulse Width High 1 10 15 ns
tAFE_L ADC/DAC Clock Pulse Width Low 1 10 15 ns
tAFE_R ADC/DAC Clock Rise Time 1 2 ns
tAFE_FT ADC/DAC Clock Fall Time 1 2 ns
tJ ADC/DAC Clock Jitter 1 75 ps rms
Conditions:
VDD = 3.3 V, CL = 15 pF, RL = 1K
CX11656 SPECIFICATION
CX11656 HomePlug 1.0 PHY Data Sheet
3-20 Conexant Proprietary and Confidential Information 102069A
3.4.2 AGC Circuitry
The CX11656 receives 10-bit digitized samples from the D/A Converter and uses them to
adjust the Switched Gain Amplifier (SGA) gain to maintain optimum signal level at the
input of the ADC. The AGC[7:0] control bus is used to pass a Gain Control Value (GCV)
to the SGA. If the AGCENC_N input pin is low, the GCV is encoded on pins [3:0] of the
AGC[7:0] control bus. If the AGCENC_N input pin is high, the GCV is decoded on pins
[7:0] of the AGC[7:0] control bus with pins [7:4] selecting the gain switch setting for the
first stage amplifier and pins [3:0] selecting the gain switch setting for the second stage
amplifier.
RX gain control values are listed in Table 3-9.
Table 3-9. RX Gain Control Values
GCV (AGCENC_N = 0) GCV (AGCENC_N = 1) Front End Gain (dB) Notes
AGC[3:0] AGC[7:4] AGC[3:0]
0 0 0 0 0 0 0 0 0 0 OFF Mute RX during TX mode
0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 8
0 0 1 1 0 0 1 0 1 0 0 0 16
0 1 0 0 0 0 0 1 1 0 0 0 24
0 1 0 1 0 0 0 1 0 1 0 0 32
0 1 1 0 0 0 0 1 0 0 1 0 40
0 1 1 1 0 0 0 1 0 0 0 1 48
3.4.2.1 AGC DC Characteristics
AGC DC characteristics are listed in Table 3-10.
Table 3-10. AGC DC Characteristics
Symbol Parameter Test Conditions Min Typ Max Unit
VOH High level output voltage 1 2.1 V
VOL Low level output voltage 1 0.9 V
tR Rise time 1 5 ns
tF Fall time 1 5 ns
Conditions:
VDD = 3.3 V, CL = 15 pF, RL = 1K
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 3-21
3.5 SPI Master Interface
The SPI Master interface gives the system designer the option of providing the CX11656
with the necessary configuration information from a simple, SPI-controlled EEPROM as
opposed to supplying this information via MAC management frames (transmitted over
the MII interface). The information stored in the EEPROM is intended to initialize the
CX11656 with specific information that will not be changed throughout its normal course
of operation. For specific features that require real-time control, this information must be
provided via the MAC management frames and not from the EEPROM.
The EEPROM must be an Atmel AT93C46, or equivalent, programmed in 8-bit mode.
3.5.1 SPI Master Interface Timing
The SPI Master interface signal timing is illustrated in Figure 3-23.
Figure 3-23. SPI Master Interface Signal Timing Diagram
SPIS_CLK
SPIS_DI
SPIS_CS_N
SPIS_DO
DATA
DATA
tSPI_HIGH
tSPI_LOW
tSPI_CSDV
tSPI_CSL
102069_027
tSPI_DIVD
tSPI_H
tSPI_SU
3.5.2 SPI Master Interface DC Characteristics
The SPI Master interface DC characteristics are listed in Table 3-11.
Table 3-11. SPI Master Interface DC Characteristics
Parameter
Symbol
Parameter Name Test Condition Min Max Unit
tSPI_F SPI_SCLK Frequency 6.125 MHz
tSPI_HIGH SPI_SCLK High Time @ 1.5 V 70 90 ns
tSPI_LOW SPI_SCLK Low Time @ 1.5 V 70 90 ns
tSPI_DIVD SPI_DI Valid Output Delay from SPI_SCLK @ 1.5 V 0 15 ns
tSPI_CSVD SPI_CS Valid Output Delay from SPI_SCLK @ 1.5 V 0 15 ns
tSPI_CSL SPI_CS Low Time @ 1.5 V 1000 ns
tSPI_SU SPI_DO Setup Time to SPI_SCLK @ 1.5 V 50 ns
tSPI_H SPI_DO Hold Time to SPI_SCLK @ 1.5 V 0 ns
CX11656 HomePlug 1.0 PHY Data Sheet
3-22 Conexant Proprietary and Confidential Information 102069A
3.6 LED Interface
LED interface signals are described in Table 3-12.
Table 3-12. LED Interface Signal Description
Signal Status Description
LED0_N Collision LED0_N: Collision Detection. Activates for a duration of 9–10 ms upon detection of
a collision.
LED1_N Activity LED1_N: Activity Detection. Activates for a duration of 9–10 ms upon the receipt of
a properly addressed unicast or broadcast frame or the transmission of a frame.
LED2_N Link LED2_N: Link Detection. Turns on when initialization is completed successfully and
“network” is established.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 4-1
4. Package Dimensions
Package dimensions for the 144-pin LQFP are shown in Figure 4-1.
Figure 4-1. Package Dimensions - 144-Pin LQFP
eb
D
DETAIL A
DETAIL A
A1
L1
c
L
A
D2
D1 D1
A2
Millimeters
0.05
21.75
0.5
0.17
0.11
1.6 MAX
0.15
1.4 REF
22.25
20.0 REF
17.5 REF
0.75
1.0 REF
0.50 BSC
0.27
0.17
0.08 MAX
0.0020
0.8563
0.0197
0.0067
0.0043
A
A1
A2
D
D1
D2
L
L1
e
b
c
Coplanarity
Min. Max. Min. Max.
Inches*
Dim.
Ref: 144-PIN LQFP (GP00-D252)
* Metric values (millimeters) should be used for
PCB layout. English values (inches) are
converted from metric values and may include
round-off errors.
0.0630 MAX
0.0059
0.0551 REF
0.8760
0.7874 REF
0.6890 REF
0.0295
0.0394 REF
0.0197 BSC
0.0106
0.0067
0.0031 MAX
PD_LQFP_144
D1
D
D2
D1
PIN 1
REF
CX11656 HomePlug 1.0 PHY Data Sheet
4-2 Conexant Proprietary and Confidential Information 102069A
This page is intentionally blank.
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 5-1
5. Application Designs
5.1 Ethernet Router Application
An Ethernet Router application design is illustrated in Figure 5-1.
Refer to CX82100 Home Network Processor (HNP) Data Sheet (Doc. No. 101306) for
CX82100-41 information.
Figure 5-1. Ethernet Router Application Block Diagram
102069_030
CX11656
HomePlug 1.0 PHY
Transceiver
MII
CX82100-41
Home
Network
Processor
(HNP)
Etherent
LEDsLEDs
Analog
Front End Coupler
Powerline
CX11656 HomePlug 1.0 PHY Data Sheet
5-2 Conexant Proprietary and Confidential Information 102069A
5.2 USB Application
A USB application design is illustrated in Figure 5-2.
Figure 5-2. USB Application Block Diagram
102069_031
CX11656
HomePlug 1.0 PHY
Transceiver
MII
802.3 MAC
Controller for
USB
USB
LEDs
Analog
Front End Coupler
Powerline
CX11656 HomePlug 1.0 PHY Data Sheet
102069A Conexant Proprietary and Confidential Information 5-3
5.3 Embedded Application
An embedded application design is illustrated in Figure 5-3.
Figure 5-3. Embedded Application Block Diagram
102069_032
CX11656
HomePlug 1.0 PHY
Transceiver
Embedded
IC with
Integrated
802.3 MAC
Controller
MIIUSB
LEDs
Analog
Front End Coupler
Powerline
5.4 ADI-Related Components
For further information regarding the ADI components used in the Analog Front End,
please refer to the following ADI data sheets:
AD8007/AD8008 - Low Distortion High Speed Amp
AD6417 - LC2MOS Precision Mini-DIP Analog Switch
AD8016 – Low Power, High Output Current xDSL Line Driver
AD9975 – Broadband Modem Mixed-Signal Front End
CX11656 HomePlug 1.0 PHY Data Sheet
5-4 Conexant Proprietary and Confidential Information 102069A
This page is intentionally blank.
NOTES
www.conexant.com
General Information:
U.S. and Canada: (800) 854-8099
International: (949) 483-6996
Headquarters – Newport Beach
4311 Jamboree Rd.
Newport Beach, CA 92660-3007