
550D
www.vishay.com Vishay Sprague
Revision: 11-Mar-13 7Document Number: 40017
For technical questions, contact: tantalum@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PERFORMANCE CHARACTERISTICS (Continued)
13. Moisture Resistance:
13.1 Capacitors shall be subjected to temperature
cycling at 90 % to 98 % relative humidity, in a test
chamber constructed of non-reactive materials
(non-resiniferous and containing no formaldehyde or
phenol). Steam or distilled, demineralized or
deionized water having a pH value between 6.0 and
7.2 at + 23 °C shall be used to obtain the required
humidity. No rust, corrosive contaminants or
dripping condensate shall be imposed on test
specimens.
13.1.1 Capacitors shall be mounted by their normal
mounting means in a normal mounting position and
placed in a test chamber so that uniform and
thorough exposure is obtained.
13.1.2 No conditioning or initial measurements will be
performed prior to temperature cycling. Polarization
and load voltages are not applicable.
13.1.3 Capacitors shall be subjected to temperature cycling
from + 25 °C to + 65 °C to + 25 °C (+ 10 °C, - 2 °C)
over a period of 8 h, at 90 % to 98 % relative
humidity, for 20 cycles.
13.1.4 Temperature cycling shall be stopped after an even
number of cycles 5 times during the first 18 cycles,
and the capacitor shall be alloweed to stabilize at
high humidity for 1 h to 4 h.
13.1.5 After stabilization, capacitors shall be removed from
the humidity chamber and shall be conditioned for
3 h at - 10 °C ± 2 °C.
13.1.6 After cold conditioning, capacitors shall be subjected
to vibration cycling consisting of a simple harmonic
vibration having an amplitude of 0.03" [0.76] and a
maximum total excursion of 0.06" [1.52] varied
uniformly from 10 Hz to 55 Hz to 10 Hz over a period
of 1 min, for 15 cycles.
13.1.7 Capacitors shall then be returned to temperature/
humidity cycling.
13.2 After completion of temperature cycling, capacitors
shall be removed from the test chamber and
stabilized at room temperature for 2 h to 6 h.
13.3 Capacitors shall show no evidence of harmful or
extensive corrosion, obliteration or marking or other
visible damage.
13.4 Following the moisture resistance test, capacitors
shall meet the original limits for capacitance,
dissipation factor and leakage current.
14. Insulating Sleeves:
14.1 Capacitors with insulating sleeves shall withstand a
2000 VDC potential applied for 1 min between the
case and a metal “V” block in intimate contact with
the insulating sleeve.
14.2 Capacitors with insulating sleeves shall have the
insulation resistance measured between the case
and a metal “V” block in intimate contact with the
insulating sleeve. The insulation resistance shall be
at least 1000 M.
15. Thermal Shock And Immersion Cycling:
15.1 Capacitors shall be conditioned prior to temperature
cycling for 15 min at + 25 °C, at less than 50 %
relative humidity and a barometric pressure at 28" to
31".
15.2 Capacitors shall be subjected to thermal shock in a
cycle of exposure to ambient air at
- 65 °C (+ 0 °C, - 5 °C) for 30 min, then,
+ 25 °C (+ 10 °C, - 5 °C) for 5 min, then
+ 125 °C (+ 3 °C, - 0 °C) for 30 min, then
+ 25 °C (+ 10 °C, - 5 °C) for 5 min, for 5 cycles.
15.3 Between 4 h and 24 h after temperature cycling,
capacitors shall be subjected to immersion in a bath
of fresh tap water with the non-corrosive dye
Rhodamine B added, at + 65 °C (+ 5 °C, - 0 °C) for
15 min, then, within 3 s, immersed in a saturated
solution of sodium chloride and water with
Rhodamine B added, at a temperature of + 25 °C
(+ 10 °C, - 5 °C) for 15 min, for 2 cycles.
15.3.1 Capacitors shall be thoroughly rinsed and wiped or
air-blasted dry immediately upon removal from
immersion cycling.
15.4 Capacitors shall show no evidence of harmful or
extensive corrosion, obliteration of marking or other
visible damage.
15.5 Following the thermal shock immersion cycling test,
capacitors shall meet the original requirements for
leakage current and dissipation factor; capacitance
change shall not exceed ± 5 % of the original
measured value.
15.6 Capacitors shall be opened and examined. There
shall be no evidence of dye penetration.
16. Reduced Pressure Test:
16.1 Capacitors shall be stabilized at a reduced pressure
of 0.315" [8.0] of mercury, equivalent to an altitude of
100 000 feet [30.480 m], for a period of 5 min.
16.2 Rated DC voltage shall be applied for 1 min.
16.3 Capacitors shall not flash over nor shall end seals be
damaged.
16.4 Following the reduced pressure test, the
capacitance, equivalent series resistance and
leakage current shall meet the original requirements.
17. Lead Pull Test: Leads shall withstand a tensile
stress of 3 pounds (1.4 kg) applied in any direction for
30 s.
18. Marking: Capacitors shall be marked with Sprague
or (2); the type number 550D; rated capacitance and
tolerance, rated DC working voltage and the
standard EIA date code.
18.1 Capacitors shall be marked on one end with a plus
sign (+) to identify the positive terminal.
18.2 Vishay Sprague reserves the right to furnish
capacitors of higher working voltages than those
ordered, where the physical size of the higher voltage
units is identical to that of the units ordered.