May 2012 I
© 2012 Microsemi Corporation
ProASIC3L Low Power Flash FPGAs
with Flash*Freeze Technology
Features and Benefits
Low Power
Dramatic Reduction in Dynamic and Static Power Savings
1.2 V to 1.5 V Core and I/O V oltage Support for Low Power
Low Power Consumption in Flash*Freeze Mode Allows for
Instantaneous Entry to / Exit from Low-Power Flash*Freeze
Mode
Supports Single-Voltage System Operation
Low-Impedance Switches
High Capacity
250,0 00 to 3,000,000 Sy s tem Ga t es
Up to 50 4 kb i ts of True Dual- P ort SR AM
Up to 620 User I/Os
Reprogrammable Flash Technology
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Process
Live-at-Power-Up (LAPU) Level 0 Support
Single-Chip Solution
Retains Programmed Design when Powered Off
High Performance
350 MHz (1.5 V systems) and 250 MHz (1.2 V systems) System
Performance
3.3 V, 66 MHz, 66-Bit PCI (1.5 V system s) and 66 MHz, 32-Bit
PCI (1.2 V systems)
In-System Programming (ISP) and Security
ISP Using On-Chip 128-Bit Advanced Encryption Standard
(AES) Decryption via JTAG (IEEE 1532–compliant)
FlashLock® to Secure FPGA Contents
High-Performance Routing Hierarchy
Segmented, Hierarchical Routing and Clock Structure
High-Per f or ma nce , Lo w-Sk ew Gl oba l Net wor k
Architecture Supports Ultra-High Utilization
Advanced and Pro (Professional) I/Os
700 Mbps DDR, LVDS-Capable I/Os
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
Bank-Selectable I/O Voltages—up to 8 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and
LVCMOS 2.5 V / 5.0 V Input
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3
Class I and II (A3PE3000L only)
Wide Range Power Supply Voltage Support per JESD8-B,
Allowing I/Os to Operate from 2.7 V to 3.6 V
Wide Range Power Supply Voltage Support per JESD8-12,
Allowing I/Os to Operate from 1.14 V to 1.575 V
I/O Registers on Input, Output, and Enable Paths
Hot-Swappable and Cold-Sparing I/Os Programmable Output
Slew Rate and Drive Strength
Programmable Input Delay (A3PE3000L only)
Schmitt Trigger Option on Single-Ended Inputs (A3PE3000L)
Weak Pull-Up/- Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the ProASIC®3L Family
(except PQ208)
Clock Conditioning Circuit (CCC) and PLL
Six CCC Blocks, One with Integrate d PLL (ProASIC3L) and All
with Integrated PLL (ProASIC3EL)
Configurable Phase Shift, Multiply/Divide, Delay Capabilities,
and External Feedback
Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V
systems) and 350 MHz (1.5 V systems))
SRAMs and FIFOs
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,
and ×18 organizati on s ava i la b l e)
T rue Dual-Port SRAM (except ×18)
24 SRAM and FIFO Configurations with Synchronous
Operation:
250 MHz: For 1.2 V systems
350 MHz: For 1.5 V systems
ARM® Processor Support in ProASIC3L FPGAs
ARM Cortex™-M1 Soft Processor Available with or without
Debug
Table 1 • ProASIC3 Low-Power Product Family
ProASIC3L Devices A3P250L A3P600L A3P1000L A3PE3000L
ARM Cortex-M1
Devices 1M1A3P600L M1A3P1000L M1A3PE3000L
System Gates 250,000 600,000 1,000,000 3,000,000
VersaTiles (D-flip-flops) 6,144 13,824 24,576 75,264
RAM Kbits (1,024 bits) 36 108 144 504
4,608-Bit Blocks 82432112
FlashROM Kbits 1111
Secure (AES) ISP 2Yes Yes Yes Yes
Integrated PLL in CCCs 31116
VersaNet Globals 18 18 18 18
I/O Banks 4448
Maximum User I/Os 157 235 300 620
Package Pins
VQFP
PQFP
FBGA
VQ100
PQ208
FG144, FG256 PQ208
FG144, FG256, FG484 PQ208
FG144, FG256, FG484 PQ208 3
FG324, FG484, FG896
Notes:
1. Refer to the Cortex-M1 product brief for more information.
2. AES is not available for ARM Cortex-M1 ProASIC3L devices.
3. For the A3PE3000L, the PQ208 package has six CCCs and two PLLs.
Revision 10
ProASIC3L Low Power Flash FPGAs
II Revision 10
I/Os Per Package 1
ProASIC3L
Low-Power
Devices A3P250L 2A3P600L A3P1000L A3PE3000L
ARM
Cortex-M1
Devices M1A3P600L M1A3P1000L M1A3PE3000L 3
Package
I/O Type
Single-
Ended I/O 4Differential
I/O Pairs Single-
Ended I/O 4Differential
I/O Pairs Single-
Ended I/O 4Differential
I/O Pairs Single-
Ended I/O 4Differential
I/O Pairs
VQ1006813 –––––
PQ208 151 34 154 35 154 35 147 65
FG144 972497259725
FG256 157 38 177 43 177 44
FG324 221 110
FG484 235 60 300 74 341 168
FG896 620 310
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to ensure
you are complying with design and board migration requirements.
2. For A3P250L devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15.
3. ARM Cortex-M1 support is TBD on this device.
4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
5. FG256 and FG484 are footprint-compatible packages.
6. "G" indicates RoHS-compliant packages. Refer to "ProASIC3L Ordering Information" on page III for the location of the "G" in the part
number.
7. For A3PE3000L devices, the usage of certain I/O standards is limited as follows:
– SSTL3(I) and (II): up to 40 I/Os per north or south bank
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
8. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user
I/Os available is reduced by one.
Table 2 • ProASIC3L FPGAs Package Sizes Dimensions
Package VQ100 PQ208 FG144 FG256 FG324 FG484 FG896
Length × Width
(mm\mm) 14 × 14 28 × 28 13 × 13 17 × 17 19 × 19 23 × 23 31 × 31
Nominal Area
(mm2)196 784 169 289 361 529 961
Pitch (mm) 0.5 0.5 1.0 1.0 1.0 1.0 1.0
Height (mm) 1.00 3.40 1.45 1.60 1.63 2.23 2.23
ProASIC3L Low Power Flash FPGAs
Revision 10 III
ProASIC3L Ordering Information
Speed Grade
Blank = Standard
1 = 15% Faster than Standard
A3P1000L FG
_
Part Number
ProASIC3L Devices
1
Package Type
VQ =Very Thin Quad Flat Pack (0.5 mm pitch)
144 I
Y
Package Lead Count
G
Lead-Free Packaging
Application (Temperature Range)
Blank = Commercial (0°C to +70°C Ambient Temperature)
I = Industrial (40°C to +85°C Ambient Temperature)
Blank = Standard Packaging
G= RoHS-Compliant (Green) Packaging
250,000 System Gates
A3P250L =
600,000 System Gates
A3P600L =
1,000,000 System Gates
A3P1000L =
3,000,000 System Gates
A3PE3000L=
ProASIC3L Devices with Cortex-M1
600,000 System Gates
M1A3P600L =
1,000,000 System Gates
M1A3P1000L =
3,000,000 System Gates
M1A3PE3000L =
PQ =Plastic Quad Flat Pack (0.5 mm pitch)
FG =Fine Pitch Ball Grid Array (1.0 mm pitch)
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
ProASIC3L Low Power Flash FPGAs
IV Revision 10
Temperature Grade Offerings
Speed Grade and Temperature Grade Matrix
ProASIC3L Device Status
Contact your local Microsemi SoC Products Group representative for devi c e availability:
http://www.microsemi.com/soc/contact/default.aspx.
Package A3P250L A3P600L A3P1000L A3PE3000L
ARM Cortex-M1 Devices M1A3P600L M1A3P1000L M1A3PE3000L
VQ100 C, I
PQ208 C, IC, IC, IC, I
FG144 C, IC, IC, I
FG256 C, IC, IC, I
FG324 C, I
FG484 C, IC, IC, I
FG896 C, I
Notes:
1. C = Commercial temperature range: 0°C to 70°C ambient temperature.
2. I = Industrial temperature range: –40°C to 85°C ambient temperature.
Temperature Grade Std. –1
C 1✓✓
I 2✓✓
Notes:
1. C = Commercial temperature range: 0°C to 70°C ambient temperature.
2. I = Industrial temperature range: –40°C to 85°C ambient temperature.
ProASIC3L Devices Status M1 ProASIC3L Devices Status
A3P250L Production
A3P600L Production M1A3P600L Production
A3P1000L Production M1A3P1000L Production
A3P3000L Production M1A3P3000L Production
ProASIC3L Low Power Flash FPGAs
Revision 10 V
Table of Content s
ProASIC3L Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
ProASIC3L DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-120
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-126
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-131
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-133
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-147
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148
Pin Descriptions and Packaging
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Package Pin Assignments
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
FG324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
FG896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Safety Critical, Life Support, and High -R eliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Revision 10 1-1
1 – ProASIC3L Device Family Overview
General Description
The ProASIC3L family of Microsem i flash FPGAs dramatically re duces dynamic power consumption by
40% and static power by 50% compared to the equivalent ProASIC3 device. These power savings are
coupled with performance, density, true single-chip, 1.2 V to 1.5 V core and I/O operation as low as
1.2 V, reprogrammability, and advanced features.
Using Microsemi's proven Flash*Freeze technology enables users to shut off dynamic power
instantaneously and switch the device to static mode without the need to switch off clocks or power
supplies while retaining internal states of the device. This greatly simplifies power management on a
board done through I/Os and clocks. In addition, optimized software tools using power-driven layout
provide instant push-button power reduction.
Nonvolatile flash technology gives ProASIC3L devices the advantage of being a secure, low-power,
single-chip solution tha t is live at power-up (LAPU). ProASIC3L offers dramatic dynamic power savings
giving the FPGA users flexibility to combine low power with high performance.
These features enable designers to create high-density systems using existing ASIC or FPGA design
flows and tools.
ProASIC3L devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as
clock conditioning circuitry (CCC) based on an in tegrated phase-locked loop (PL L). ProASIC3L devices
support devices from 250 k system gates to 3 million system gates with up to 504 kbits of true dual-port
SRAM and 620 user I/Os.
M1 ProASIC3L devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM
for implementation in FPGAs. ARM Cortex-M1 is a soft processor th at is fully impl emented in the FPGA
fabric. It has a three-stage pipeline that offers a good balance between low-power consumption and
speed when implemented in an M1 ProASIC3L device. The processor runs the ARMv6-M instruction set,
has a configurable nested interrupt controll er, a nd can be implemented with or without the debug block.
ARM Cortex-M1 is available for free from Microsemi for use in M1 ProASIC3L FPGAs.
The ARM-enabled devices have Microsemi SoC Products Group ordering numbers that begin with M1
and do not support AES decryption.
Flash*Freeze Technology
The ProASIC3L devices offer Micros emi's proven Flash*Freeze techn ology, which allows instantaneous
switching from an active state to a static state. ProASIC3 L devices do not need additional components to
turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze
technology is combined with in-system programmability, which enables users to quickly and easily
upgrade and update their designs in the final stages of manufacturing or in the field. The ability of
ProASIC3L devices to support a wide range core voltage (1.2 V to 1.5 V) allows for an even greater
reduction in power consumption, which enables low total system power.
When the ProASIC3L device enters Flash*Freeze mode, the device automatically shuts off the clocks
and inputs to the FPGA core; when the device exits Flash*Freeze mod e, all activity resu me s and da ta is
retained.
The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage
solution, make ProASIC3L devices suitable for low-power data transfer and manipulation in portable
media, secure communications, rad io applications as wel l as high performance portable, industrial, test,
scientific, and medical applications.
ProASIC3L Device Family Overview
1-2 Revision 10
Flash Advantages
Low Power
The ProASIC3L family of Microsemi flash-based FPGAs provide a low-power advantage, and when
coupled with high performance, enables designers to make power-smart choices using a single-chip,
reprogrammable, and live-at-pow er-up device.
ProASIC3L devices offer 40% dynamic power and 5 0% static power savings compared to the equiva lent
ProASIC3 device by reducing the core operating voltage to 1.2 V. In additi on, the Power Driven Layout
(PDL) feature in Libero® Integrated Design Environment (IDE) offers up to 30% additional power
reduction over the standard timing-driven place-and-route (TDPR). With Flash*Freeze technology,
ProASIC3L devices are able to retain device SRAM and logic while dynamic power is reduced to a
minimum, without the need to stop clock or power supplies. Combining these features provides a low-
power, feature-rich and high-performance solution.
Security
Nonvolatile, flash-based ProASIC3L devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. ProASIC3L devices incorporate FlashLock, which provi des
a unique combination of reprogrammability and design security without external overhead, advantages
that only an FPGA with nonvolatile flash programming can offer.
ProASIC3L devices utilize a 128-bit flash-based lock and a sep arate AES key to provide the highest level
of protection in the FPGA industry for programmed intellectual property and configuration data. In
addition, all FlashROM data in ProASIC3L devi ces c an be encrypted prior to loading, using the industry-
leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National
Institute of Standards and Technology (NIST) in 2000 and replaces the 197 7 DES standard. ProASIC3L
devices have a built-in AES decryption engine and a flash-based AES key that make them the most
comprehensive programmable logic device security solution available today. ProASIC3L devices with
AES-based security provide a high level of protection for remote field updates over public networks such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves. The contents of a programmed device cannot be read
back, although secure design verification is possible .
Security, built into the FPGA fabric, is an inherent component of the ProASIC3L family. The flash cells
are located beneath seven metal layers, and many device design and layout techniques have been used
to make invasive attacks extremely difficult. The ProASIC3L family, w ith FlashLock and AES security, is
unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected
with industry-standard security, making remote ISP possible. A ProASIC3L device provides the best
available security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structu re, a nd no exte rnal configuratio n data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3L FPGAs
do not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
Live at Power-Up
Flash-based ProASIC3L devices sup port Level 0 of the L APU classification standard. This featu re helps
in system component initialization, execution of critical tasks before the processor wakes up, setup and
configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of
flash-based ProASIC3L devices greatly simplifies total system design and reduces total system cost,
often eliminating the n eed for CPLDs and clock generation PLL s. In addition, glitche s and brownouts in
system power will not corrupt the ProASIC3L device's flash configuration, and unlike SRAM-based
FPGAs, the device will not have to be reloaded when system power is restored. This enables the
reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout
detection, and clock generator devices from the PCB design. Flash-based ProASIC3L devices simplify
total system design and reduce cost and design risk while increasing system reliability and improving
system initialization time.
ProASIC3L Low Power Flash FPGAs
Revision 10 1-3
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-
based FPGAs, flash-based ProASIC3L devi ces allow all functionality to be live at power-up; no external
boot PROM is required. On-board security mechanisms prevent access to all the programming
information and enable secure remote updates of the FPGA logic. Designers can perform secure remote
in-system reprogramming to support future design iterations and field upgrades with confidence that
valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the
industry-standard AES algorithm. The ProASIC3L family device architecture mitigates the need for ASIC
migration at higher user vol umes. This makes the ProASIC3L family a cost-effective ASIC replacement
solution, manipulation in portable media and secure communications, radio appl ications as well as high
performance portable Industrial, test, scientific and medical applications.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of ProASIC3L flash-based
FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3L FPGAs cannot be
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and
correction (EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The ProASIC3L family offers many benefits, including nonvolatility and reprogrammability, through an
advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
Advanced Architecture
The proprietary ProASIC3L architecture provides granularity comparable to standard-cell ASICs. The
ProASIC3L device consists of five distinct and programmable architectural features (Figure 1-1 on
page 1-4 and Figure 1-2 on page 1-4):
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM/FIFO memory
Extensive CCCs and PLLs
I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the ProASIC3L core tile, as either a three-input lookup table (LUT)
equivalent or a D-flip-flop/latch with enable, allo ws for efficient use of the FPGA fabric.
The VersaTile capability is unique to the ProASIC family of third-generation-architecture flash FPGAs.
VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design.
ProASIC3L Device Family Overview
1-4 Revision 10
Figure 1- 1 • ProASIC3L Device Ar c hitecture Overvie w with Four I/O Banks (A3P250L, A3P600L,
and A3P1000L)
Figure 1- 2 • ProASIC3EL Device Architecture Overview
ISP AES
Decryption* User Nonvolatile
FlashRom Flash*Freeze
Technology Charge
Pumps
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
(A3P600L and A3P1000L)
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
VersaTile
CCC
I/Os
Bank 0
Bank 3Bank 3
Bank 1Bank 1
Bank 2
4,608-Bit Dual-Port SRAM
or FIFO Block
VersaTile
RAM Block
CCC
Pro I/Os
4,608-Bit Dual-Port SRAM
or FIFO Block
RAM Block
ISP AES
Decryption* User Nonvolatile
FlashRom Flash*Freeze
Technology Charge
Pumps
ProASIC3L Low Power Flash FPGAs
Revision 10 1-5
Flash*Freeze Technology
The ProASIC3L devices offer Microsemi's proven Flash*Freeze tech nology, which enables designers to
instantaneously shut off dynamic power consumption while retaining all SRAM and register information.
Flash*Freeze technology enables the u ser to quickly (within 1 µs) enter and exit Fl ash*Freeze mode by
activating the Flash*Freeze (FF) pin while all power suppl ies are kept at their original values. In addition,
I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks
can still be driven or can be toggling without impact on power consumption; and the device retains all
core registers, SRAM information, an d states. I/O states are tristated during Flash*F reeze mode or can
be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is
consumed by the I/O banks, clocks, JTAG pins, or PLL. Flash*Freeze technology allows the user to
switch to active mode on demand, thus simplifying the power management of the device.
The FF pin (active low) can be routed internall y to the core to allow the user's logic to decid e when it is
safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Fre eze mode
usage is not planned, which is advantageous because of the inherent low-power static and dynamic
capabilities of the ProASIC3L device. Refer to Figure 1-3 for an illustration of entering/exiting
Flash*Freeze mode.
VersaTiles
The ProASIC3L core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core
tiles. The ProASIC3L VersaTile supports the following:
All 3-input logic functions—L UT-3 equivalent
Latch with clear or set
D-flip-flop with clear or set
Enable D-flip-flop with clear or set
Refer to Figure 1-4 for VersaTile configurations.
Figure 1- 3 • ProASIC3L Flash*Freeze Mode
Figure 1- 4 • VersaTile Configurations
ProASIC3L
FPGA
Flash*Freeze
Mode Control
Flash*Freeze Pin
X1 Y
X2
X3 LUT-3 Data Y
CLK
Enable
CLR
D-FF
Data Y
CLK
CLR D-FF
LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set
ProASIC3L Device Family Overview
1-6 Revision 10
User Nonvolatile FlashROM
ProASIC3L devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can
be used in diverse system applications:
Internet Protocol addressing (wireless or fixed)
System calibration settings
Device serialization and/or inventory control
Subscription-based business models (for example, set-top boxes)
Secure key storage for secure communications algorithms
Asset management/tracking
Date stamping
Version management
The FlashROM is written using the standard ProASIC3L IEEE 1532 JTAG programming interface.The
core can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks, as in security keys stored i n the FlashROM for a
user design.
The FlashROM can be programmed via the JTAG progr amming interface, and its contents can be read
back either through the JTAG programmin g interface or via direct FPGA core addressing. Note that the
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the
internal logic array.
The FlashROM is programmed as 8 banks of 128 bi ts; however, reading is performed on a byte-by-byte
basis using a synchronous interface. A 7-bit address from the FPGA core defin es which of the 8 banks
and which of the 16 byte s within that bank are being read. T he three most significa nt bits (MSBs) of the
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM
address define the byte.
The ProASIC3L development software solutions, Libero IDE and Designer, have extensive support for
the FlashROM. One such feature is auto-generation of sequential programming files for applications
requiring a unique serial number in each part. Another feature allows the inclusion of static data for
system version control. Data for the FlashROM can be generated quickly and easily using Libero IDE
and Designer software tools. Comprehen si ve pr ogramming file sup port is also in clude d to all ow for easy
programming of large numbers of parts with differing FlashROM contents.
SRAM and FIFO
ProASIC3L devices have embedded SRAM blocks along their north and south sides. Each variable-
aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be
configured with different bit widths on each port. For example, data can be sent through a 4-bit port a nd
read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port
(ROM emulation mode) using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be con figured as a synchro nous FIFO with out using additi onal core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control
unit contains the counters necessary for generation of the read and write address pointers. The
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
ProASIC3L devices provide designers with flexible clock conditioning circuit (CCC) capabilities. Each
member of the ProASIC3L family contains six CCCs. One CCC (center west side) has a PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC
(center west side) has a PLL.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay
operations as well as clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
ProASIC3L Low Power Flash FPGAs
Revision 10 1-7
The CCC block has these key features:
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz
2 programmable delay typ es for clock skew minimization
Clock frequency synthesis
Additional CCC specifications:
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider
configuration.
Output duty cycle = 50% ± 1.5% or better
Low output jitter: worst case < 2.5% × clock per iod peak-to-peak period jitter when single global
network used
Maximum acquisition time is 300 µs
Exceptional tolerance to input perio d jitter— allowable input jitter is up to 1.5 ns
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /
fOUT_CCC
Global Clocking
ProASIC3L devices have extensive support for multiple clocking domains. In addition to the CCC and
PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid
distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The ProASIC3L family of FPGAs features a fl exible I/O structure, supporting a range of voltages (1.2 V,
1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). ProASIC3L FPGAs support different I/O standards,
including single-ended, differential, and voltage-referenced (ProASIC3EL only). The I/Os are organized
into banks, with two, four , or eight (ProASIC3EL only) banks per device. The configuration of these banks
determines the I/O standards supported (Table 1-1). For ProASIC3EL, each I/O bank is subdivided into
VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All
the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank
is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference
voltage.
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
Double-data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).
ProASIC3L banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up
to 20 loads.
Table 1-1 • I/O Standards Supported
I/O Bank Type
Device and
Bank
Location
I/O Standard s Supported
LVTTL/
LVCMOS PCI/
PCI-X LVPECL, LVDS,
B-LVDS, M-LVDS
GTL+ 2.5 V/3.3 V, GTL
2.5 V/3.3 V, HSTL I and II,
SSTL2 I and II, SSTL3 I and II
Pro I/Os A3PE3000L ✓✓
Advanced I/Os A3P250L,
A3P600L,
A3P1000L
✓✓ Not supported
ProASIC3L Device Family Overview
1-8 Revision 10
Hot-swap (also called hot-pl ug, or hot-insertion ) is t he opera tion of h ot-insertion or hot-remova l of a card
in a powered-up system.
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed
when the system is powered up, while the component itself is powered down, or when power supplies
are floating.
Wide Range I/O Support
ProASIC3L devices support JEDEC-define d wide range I/O opera tion. ProASIC3L devices support both
the JESD8-B specification, coverin g 3 V and 3.3 V supplies, for a n effective operati ng range of 2.7 V to
3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.
Wider I/O range means d esigners can eli minate power suppl ies or powe r conditi oning comp onents from
the board or move to less costly components with greater tolerances. Wide range eases I/O bank
management and provides enhanced protection from system voltage spikes, while providing the flexibility
to easily run custom voltage applications.
Specifying I/O States During Programming
You can modify the I/O states during programming in Fl ash Pro . In F lashP ro, thi s fea tu re is sup ported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.
3. Click the Specify I/O States During Programming button to display the Specify I/O States
During Programming dialog box.
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that head er.
Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings:
1 – I/O is set to drive out logic High
0 – I/O is set to drive out logic Low
Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming
Z -Tri-State: I/O is tristated
6. Click OK to return to the FlashPoint – Programming File Generator window.
Note: I/O States during programming are saved to the ADB and resulting programming files after
completing programming file generation.
ProASIC3L Low Power Flash FPGAs
Revision 10 1-9
Figure 1- 5 • I/O States During Programming Window
Revision 10 2-1
2 – ProASIC3L DC and Switching Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any
other conditions beyond those listed under the Recommended Operating Conditions specified in
Table 2-2 on page 2-2 is not implied.
Table 2-1 • Absolute Maximum Ratings
Symbol Parameter Limits Units
VCC DC core supply voltage –0.3 to 1.65 V
VJTAG JTAG DC voltage –0.3 to 3.75 V
VPUMP Programming voltage –0.3 to 3.75 V
VCCPLL Analog power supply (PLL) –0.3 to 1.65 V
VCCI and
VMV 3DC I/O buffer supply voltage –0.3 to 3.75 V
VI I/O input voltage –0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-in se rti o n mo de is di sa b le d )
V
TSTG 2Storage temperature –65 to +150 °C
TJ2Junction temperature +125 °C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.
2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating
limits, refer to Table 2-2 on page 2-2.
3. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter in the ProASIC3L
FPGA Fabric User’s Guide for further information.
ProASIC3L DC and Switching Characteristics
2-2 Revision 10
Table 2-2 • Recommended Operating Cond itions 1
Symbol Parameter Commercial Industrial Units
TAAmbient temperature 0 to +70 –40 to +85 °C
TJJunction Temperature 0 to + 85 –40 to +100 °C
VCC 21.2 V–1.5 V wide range core voltage 1.14 to 1.575 1.14 to 1.575 V
VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V
VPUMP 3Programming voltage Programming Mode 3.15 to 3.45 3.15 to 3.45 V
Operation 30 to 3.6 0 to 3.6 V
VCCPLL 6Analog power supply (PLL) 1.2 V–1.5 V wide range
core voltage 1.14 to 1.575 1.14 to 1.575 V
VCCI and
VMV 51.2 V DC supply voltage4 1.14 to 1.26 1.14 to 1.26 V
1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V
1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V
2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V
3.3 V wide range DC supply voltage7 2.7 to 3.6 2.7 to 3.6 V
3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V
LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V
LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V
Notes:
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
2. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-13 on page 2-10. VCCI should be at the same voltage within a given I/O bank.
3. VPUMP can be left floating during normal operation (not programming mode).
4. For ProASIC®3L devices, VCCI
VCC.
5. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the ProASIC3L
FPGA Fabric User’s Guide for further information.
6. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the ProASIC3L FPGA Fabric User’s
Guide for further information.
7. 3.3 V wide range is compliant to the JDEC8a specification and supports 3.0 V VCCI operation.
Table 2-3 • Flash Programmi ng Limits – Retention, Storage , and Operating Temperature1
Product
Grade
Programmin
g
Cycles Program Retention
(biased/unbiased) Maximum Storage
Temperature TSTG (°C) 2 Maximum Operating
Junction Temperature TJ (°C) 2
Commercial 500 20 years 110 100
Industrial 500 20 years 110 100
Notes:
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating
conditions and absolute limits.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-3
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every ProASIC3 device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principl e is shown in Figure 2-1
on page 2-4 and Figure 2-2 on page 2-5.
There are five regions to consider during power-up.
ProASIC3 I/Os are activated only if ALL of the followi ng three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and
Figure 2-2 on page 2-5).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
During programming, I/Os become tristated and weakly pulled up to VCCI.
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
Table 2-4 • Overshoot and Undershoot Limits 1
VCCI Average VCCI– GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle2Maximum Overshoot/
Undershoot2
2.7 V or less 10% 1.4 V
5% 1.49 V
3 V 10% 1.1 V
5% 1.19 V
3.3 V 10% 0.79 V
5% 0.88 V
3.6 V 10% 0.45 V
5% 0.54 V
Notes:
1. Based on reliability requirements at junction temperature at 85°C.
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of
two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.
3. This table does not provide PCI overshoot/undershoot limits.
ProASIC3L DC and Switching Characteristics
2-4 Revision 10
PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup
behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-
2 on page 2-5 for more details).
When PLL power suppl y voltage and/or VCC levels dr op below th e VCC brownout l evels (0.75 V ± 0.25
V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down
Behavior of Low-Power Flash Devices" chapter of the ProASIC3L FPGA Fabric User’s Guide for
information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
Output buffers, after 200 ns delay from input buffer activation.
Figure 2-1 V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
Region 1: I/O buffers are OFF
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
VCC
VCC = 1.425 V
Region 1: I/O Buffers are OFF
Activation trip point:
V
a
= 0.85 V ± 0.25 V
Deactivation trip point:
V
d
= 0.75 V ± 0.25 V
Activation trip point:
V
a
= 0.9 V ± 0.3 V
Deactivation trip point:
V
d
= 0.8 V ± 0.3 V
VCC = 1.575 V
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCCI
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
VCC = VCCI + VT
ProASIC3L Low Power Flash FPGAs
Revision 10 2-5
Figure 2-2 V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
Region 1: I/O buffers are OFF
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V
VCC
VCC = 1.14 V
Region 1: I/O Buffers are OFF
Activation trip point:
V
a
= 0.85 V ± 0.2 V
Deactivation trip point:
V
d
= 0.75 V ± 0.2 V
Activation trip point:
V
a
= 0.9 V ± 0.15 V
Deactivation trip point:
V
d
= 0.8 V ± 0.15 V
VCC = 1.575 V
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL , VOH / VOL , etc.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCCI
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
VCC = VCCI + VT
ProASIC3L DC and Switching Characteristics
2-6 Revision 10
Thermal Characteristics
Introduction
The temperature variable in the Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction becau se dynamic and static power consumption cause the
chip junction temperature to be higher than the ambient temperature.
EQ 1 can be used to calculate junction temperature.
TJ = Junction Temperature = ΔT + TA
EQ 1
where:
TA = Ambient Temperature
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P
θja = Junction-to-ambient of the package. θja numbers are located in Table 2-5.
P = Power dissipation
Package Thermal Characteristics
The device junction-to-case thermal resistivity is θjc and the juncti on-to-ambient air thermal resistivity is
θja. The thermal characteristics for θja are shown for two air flow rates. The absolute maximum juncti on
temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation
allowed for a 484-pin FBGA package at commercial temperature and in still air.
EQ 2
Maximum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θja(°C/W)
------------------------------------------------------------------------------------------------------------------------------------------ 100°C70°C
20.5°C/W
------------------------------------- 1.463 W===
Table 2-5 • Package Thermal Resistivities
Package Type Device Pin Count θjc
θja
UnitsStill Air 200 ft./min. 500 ft./min.
Very Thin Quad Flat Pack (VQFP) All devices 100 10.0 35.3 29.4 27.1 C/W
Plastic Quad Flat Pack (PQFP) All devices 208 8.0 26.1 22.5 20.8 C/W
PQFP with embedded heatspreader All devices 208 3.8 16.2 13.3 11.9 C/W
Fine Pitch Ball Grid Array (FBGA) A3P250L 144 12.2 43.8 37.7 35.8 C/W
A3P600L 144 8.3 35.8 30.2 28.3 C/W
A3P1000L 144 6.3 31.6 26.2 24.2 C/W
A3P250L 256 12.0 38.6 34.7 33.0 C/W
A3P600L 256 8.5 32.0 27.5 25.8 C/W
A3P1000L 256 6.6 28.1 24.4 22.7 C/W
AGLE3000 324 TBD TBD TBD TBD C/W
A3P600L 484 9.5 27.5 21.9 20.2 C/W
A3P1000L 484 8.0 23.3 19.0 16.7 C/W
A3PE3000L 484 4.7 20.6 15.7 14.0 C/W
A3PE3000L 896 2.4 13.6 10.4 9.4 C/W
ProASIC3L Low Power Flash FPGAs
Revision 10 2-7
Temperature and Voltage Derating Factors
Calculating Power Dissipation
Quiescent Supply Current
Table 2-6 • Temperature and Voltage Derating Factors for Timi ng Delays
(normalized to TJ = 70°C, VCC = 1.14 V)
Array Voltage VCC (V)
Junction Temperature (°C)
–40°C 0°C 25°C 70°C 85°C 110°C
1.14 0.90 0.94 0.96 1.00 1.01 1.03
1.2 0.870.900.920.960.970.99
1.26 0.83 0.86 0.88 0.92 0.93 0.85
1.3 0.810.840.860.900.910.93
1.35 0.78 0.81 0.83 0.87 0.88 0.89
1.4 0.750.780.800.830.840.86
1.425 0.74 0.77 0.78 0.82 0.83 0.85
1.5 0.700.720.740.770.790.80
1.575 0.67 0.70 0.72 0.75 0.76 0.77
Table 2-7 • Quiescent Supply Current (IDD) Characte ristics, ProASIC3L Flash*Freeze Mode*
Core Voltage A3P250L A3P600L A3P1000L A3PE3 000L Units
Typical (25°C) 1.2 V 0.33 0.55 0.88 2.75 mA
1.5 V 0.5 0.83 1.33 4.2 mA
Note: *IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static
contribution (PDC6 and PDC7).
Table 2-8 • Quiescent Supply Current (IDD) Characteristics, ProASIC3L Sleep Mode (VCC = 0 V)*
Core Voltage A3P250L A3P600L A3P1000L A3PE3000L Units
VCCI / VJTAG = 1.2 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 1.7 1.7 1.7 1.7 µA
VCCI / VJTAG = 1.5 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 1.8 1.8 1.8 1.8 µA
VCCI / VJTAG = 1.8 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 1.9 1.9 1.9 1.9 µA
VCCI / VJTAG = 2.5 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 2.2 2.2 2.2 2.2 µA
VCCI / VJTAG = 3.3 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 2.5 2.5 2.5 2.5 µA
Note: *IDD includes VCC , VPUMP, and VCCPLL currents. Values do not include I/O static contribution (PDC6 and
PDC7).
Table 2-9 • Quiescent Supply Current (IDD) Characte ristics, Shutdown Mode (VCC, VCCI = 0 V)*
Core Voltage A3PE3000L Units
Typical (25°C) 1.2 V / 1.5 V 0 µA
Note: *IDD includes VCC , VPUMP, VCCI, VJTAG, and VCCPLL currents. Values do not include I/O static
contribution (PDC6 and PDC7).
ProASIC3L DC and Switching Characteristics
2-8 Revision 10
Table 2-10 • Quiescent Supply Current (IDD), No Flash*Freeze Mode1
Core Voltage A3P250L A3P600L A3P1000L A3PE3000L Units
ICCA Current2
Typical (25°C) 1.2 V 0.33 0.55 0.88 2.75 mA
1.5 V 0.5 0.83 1.33 4.2 mA
ICCI or IJTAG Current3, 4
VCCI / VJTAG = 1.2 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 1.7 1.7 1.7 1.7 µA
VCCI / VJTAG = 1.5 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 1.8 1.8 1.8 1.8 µA
VCCI / VJTAG = 1.8 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 1.9 1.9 1.9 1.9 µA
VCCI / VJTAG = 2.5 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 2.2 2.2 2.2 2.2 µA
VCCI / VJTAG = 3.3 V (per bank)
Typical (25°C) 1.2 V / 1.5 V 2.5 2.5 2.5 2.5 µA
Notes:
1. To calculate total device IDD, multiply the number of banks used by ICCI and add ICCA contribution.
2. Includes VCC , VCCPLL, and VPUMP currents.
3. Per VCCI or VJTAG bank.
4. Values do not include I/O static contribution (PDC6 and PDC7).
ProASIC3L Low Power Flash FPGAs
Revision 10 2-9
Power per I/O Pin
Table 2-11 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Pro I/O Banks
VCCI (V) Static Power
PDC6 (mW)1Dynamic Power
PAC9 (µW/MHz)2
Single-Ended
3.3 V LVTTL/LVCMOS 3.3 16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger 3.3 24.49
2.5 V LVCMOS 2.5 4.71
2.5 V LVCMOS – Schmitt trigger 2.5 6.13
1.8 V LVCMOS 1.8 1.66
1.8 V LVCMOS – Schmitt trigger 1.8 1.78
1.5 V LVCMOS (JESD8-11) 1.5 1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger 1.5 0.97
1.2 V LVCMOS 1.2 0.60
1.2 V LVCMOS – Schmitt tri g ge r 1.2 0.53
3.3 V PCI 3.3 17.76
3.3 V PCI – Schmitt trigger 3.3 19.10
3.3 V PCI-X 3.3 17.76
3.3 V PCI-X – Schmitt trigger 3.3 19.10
Voltage-Referenced
3.3 V GTL 3.3 2.90 7.07
2.5 V GTL 2.5 2.13 3.62
3.3 V GTL+ 3.3 2.81 2.97
2.5 V GTL+ 2.5 2.57 2.55
HSTL (I) 1.5 0.17 0.85
HSTL (II) 1.5 0.17 0.85
SSTL2 (I) 2.5 1.38 3.30
SSTL2 (II) 2.5 1.38 3.30
SSTL3 (I) 3.3 3.21 8.08
SSTL3 (II) 3.3 3.21 8.08
Differential
LVDS 2.5 2.26 0.95
LVPECL 3.3 5.71 1.62
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI.
ProASIC3L DC and Switching Characteristics
2-10 Revision 10
Table 2-12 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Advanced I/O Ban ks
VCCI (V) Static Power
PDC6 (mW)2Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS 3.3 16.22
2.5 V LVCMOS 2.5 4.65
1.8 V LVCMOS 1.8 1.65
1.5 V LVCMOS (JESD8-11) 1.5 0.98
1.2 V LVCMOS 1.2 0.61
3.3 V PCI 3.3 17.64
3.3 V PCI-X 3.3 17.64
Differential
LVDS 2.5 2.26 0.95
LVPECL 3.3 5.72 1.63
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC6 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks
VCCI (V) Static Power
PDC6 (mW)1Dynamic Power
PAC9 (µW/MHz)2
Single-Ended
3.3 V LVTTL /
3.3 V LVCMOS 3.3 – 16.23
2.5 V LVCMOS 2.5 4.66
1.8 V LVCMOS 1.8 1.64
1.5 V LVCMOS (JESD8-11) 1.5 0.99
1.2 V LVCMOS 1.2 0.58
3.3 V PCI 3.3 17.64
3.3 V PCI-X 3.3 17.64
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-11
Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Pro I/Os
CLOAD (pF) VCCI (V) Static Power
PDC7 (mW)2Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL/LVCMOS 5 3.3 148.00
2.5 V LVCMOS 5 2.5 83.23
1.8 V LVCMOS 5 1.8 54.58
1.5 V LVCMOS (JESD8-11) 5 1.5 37.05
1.2 V LVCMOS 5 1.2 17.94
3.3 V PCI 10 3.3 204.61
3.3 V PCI-X 10 3.3 204.61
Voltage-Referenced
3.3 V GTL 10 3.3 24.08
2.5 V GTL 10 2.5 13.52
3.3 V GTL+ 10 3.3 24.10
2.5 V GTL+ 10 2.5 13.54
HSTL (I) 20 1.5 7.08 2 6.22
HSTL (II) 20 1.5 13.88 27.22
SSTL2 (I) 30 2.5 16.69 105.56
SSTL2 (II) 30 2.5 25.91 116.60
SSTL3 (I) 30 3.3 26.02 114.87
SSTL3 (II) 30 3.3 42.21 131.76
Differential
LVDS 2.5 7.70 89.62
LVPECL 3.3 19.42 168.02
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
ProASIC3L DC and Switching Characteristics
2-12 Revision 10
Table 2-15 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Advanced I/O Ban ks
CLOAD (pF) VCCI (V) Static Power
PDC7 (mW)2Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 141.97
2.5 V LVCMOS 5 2.5 79.98
1.8 V LVCMOS 5 1.8 52.26
1.5 V LVCMOS (JESD8-11) 5 1.5 35.62
1.2 V LVCMOS 5 1.2 21.29
3.3 V PCI 10 3.3 201.02
3.3 V PCI-X 10 3.3 201.02
Differential
LVDS 2.5 7.74 89.71
LVPECL 3.3 19.54 167.54
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Standard Plus I/O Banks
CLOAD (pF) VCCI (V) Static Power
PDC7 (mW)2Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 125.97
2.5 V LVCMOS 5 2.5 70.82
1.8 V LVCMOS 5 1.8 36.39
1.5 V LVCMOS (JESD8-11) 5 1.5 25.34
1.2 V LVCMOS 5 1.2 16.24
3.3 V PCI 10 3.3 184.92
3.3 V PCI-X 10 3.3 184.92
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-13
Power Consumption of Various Internal Resources
Table 2-17 • Different Components Contributing to Dynamic Power Consumption in ProASIC3L Devices at
1.2 V VCC
Parameter Definition
Device S pe c ific Dynamic Power (µW/MHz)
A3PE3000L A3P1000L A3P600L A3P250L
PAC1 Clock contribution of a Global Rib 12.61 9.28 8.19 7.07
PAC2 Clock contribution of a Global Spine 2.66 1.59 1.19 1.01
PAC3 Clock contribution of a VersaTile row 0.56 0.52
PAC4 Clock contribution of a VersaTile used as a sequential
module 0.07
PAC5 First contribution of a VersaTile used as a sequential
module 0.05
PAC6 Second contribution of a VersaTile used as a sequential
module 0.19
PAC7 Contribution of a VersaTile used as a combinatorial
Module 0.11
PAC8 Average contribution of a routing net 0.45
PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-11 on page 2-9. th rough
Table 2-13 on page 2-10.
PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-14 on page 2-11 through
Table 2-16 on page 2-12.
PAC11 Average contribution of a RAM block during a read
operation 25.00
PAC12 Average contribution of a RAM block during a write
operation 30.00
PAC13 Dynamic contribution for PLL 1.74
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero IDE.
ProASIC3L DC and Switching Characteristics
2-14 Revision 10
Table 2-18 • Different Components Contributing to Dynamic Power Consumption in ProASIC3L Devices at
1.5 V VCC
Parameter Definition
Device Specific Dynamic Power (µW/MHz)
A3PE3000L A3P1000L A3P600L A3P250L
PAC1 Clock contribution of a Global Rib 19.7 14.50 12.80 11.00
PAC2 Clock contribution of a Global Spine 4.16 2.48 1.85 1.58
PAC3 Clock contribution of a VersaTile row 0.88 0.81
PAC4 Clock contribution of a VersaTile used as a sequential
module 0.12
PAC5 First contribution of a VersaTile used as a sequential
module 0.07
PAC6 Second contribution of a VersaTile used as a sequential
module 0.29
PAC7 Contribution of a VersaTile used as a combinatorial
Module 0.29
PAC8 Average contribution of a routing net 0.70
PAC9 Contribution of an I/O in put pin (standard-dependent) See Table 2-11 on page 2-9. through
Table 2-13 on page 2-10.
PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-14 on page 2-11 through
Table 2-16 on page 2-12.
PAC11 Average contribution of a RAM block during a read
operation 25.00
PAC12 Average contribution of a RAM block during a write
operation 30.00
PAC13 Dynamic contribution for PLL 2.60
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero IDE.
Table 2-19 • Different Components Contributing to the Static Power Consumption in ProASIC3L Devices
Parameter Definition
Device S pe c ific Dynamic Power (µW)
A3PE3000L A3P1000L A3P600L A3P250L
PDC1 Array static power in Active mode See Table 2-10 on page 2-8.
PDC2 Array static power in St atic (Idle) mode See Table 2-8 on page 2-7.
PDC3 Array static power in Flash*Freeze mode See Table 2-7 on page 2-7.
PDC4 Static PLL contribution at 1.2 V co re (ope rati ng mod e
only) 1.42 mW
Static PLL contribution at 1.5 V core (operati ng mod e
only) 2.55 mW
PDC5 Bank quiescent powe r (VCCI-dependent) See Table 2-7 on page 2-7, Table 2-8 on
page 2-7, Table 2-10 on page 2-8.
PDC6 I/O input pin static power (standard-dependent) See Table 2-11 on pa g e 2-9 through
Tabl e 2-13 on page 2-10.
PDC7 I/O output pin static power (standard-dependent) See Table 2-14 on page 2-11 through
Tabl e 2-16 on page 2-12.
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero IDE.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-15
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in Libero IDE software.
The power calculation methodology described below uses the following variables:
The number of PLLs as well as the number and the frequency of each output clock generated
The number of combinatorial an d sequential cells used in the design
The internal clock frequencies
The number and the standard of I/O pins used in the design
The number of RAM blocks used in the design
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-20 on
page 2-17.
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-21 on
page 2-17.
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-21 on page 2-17. The calculation should be repeated for each clock domain defined in the
design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS* PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in
the "Spine Architecture" section of the ProASIC3L FPGA Fabric User’s Guide.
NROW is the number of VersaTile rows us ed in the design—guidelines are provided in the
"Spine Architectu re" section of the ProASIC3L FPGA Fabric User’s Guide.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-20 on
page 2-17.
FCLK is the global clock signal frequency.
ProASIC3L DC and Switching Characteristics
2-16 Revision 10
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-20 on
page 2-17.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-20 on
page 2-17.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-20 on page 2-17 .
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-20 on page 2-17 .
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-21 on page 2-17.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
β2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-21 on
page 2-17.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 * FCLKOUT
FCLKOUT is the output clock frequency.1
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its
corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-17
Guidelines
Toggle Rate Definition
A toggle rate defines the freque ncy of a net or logic elem ent relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are
some examples:
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the
clock frequency.
The average toggle rate of an 8-bit counter is 25%:
Bit 0 (LSB) = 100%
Bit 1 = 50%
Bit 2 = 25%
–…
Bit 7 (MSB) = 0.78125%
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
nontristate output buffers are used, the enable rate should be 100%.
Table 2-20 • Toggle Rate Guidelines Recommended for Power Calculation
Component Definition Guideline
α1Toggle rate of VersaTile outputs 10%
α2I/O buffer toggle rate 10%
Table 2-21 • Enable Rate Guidelines Recommended for Power Calculation
Component Definition Guideline
β1I/O output buffer enable rate 100%
β2RAM enable rate for read operati ons 12.5%
β3RAM enable rate for write operations 12.5%
ProASIC3L DC and Switching Characteristics
2-18 Revision 10
User I/O Characteristics
Timing Model
Figure 2-3 Timing Model
Operating Conditions: –1 Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case
VCC =1.14V
DQ
Y
Y
DQ
DQ DQ
Y
Combinational Cell
Combinational Cell
Combinational Cell
I/O Module
(Registered)
I/O Module
(Non-Registered)
Register Cell Register Cell I/O Module
(Registered)
I/O Module
(Non-Registered)
LVPECL (Applicable to
Advanced I/O Banks Only)L
LVPECL
(Applicable
to Advanced
I/O Banks only)
LVDS,
BLVDS,
M-LVDS
(Applicable for
Advanced I/O
Banks only)
LVTTL 3.3 V Output drive
strength = 12 mA High slew rate
Y
Combinational Cell
Y
Combinational Cell
Y
Combinational Cell
I/O Module
(Non-Registered)
LVTTLOutput drive strength = 8 mA
High slew rate
I/O Module
(Non-Registered)
LVCMOS 1.5 VOutput drive strength = 4 mA
High slew rate
LVTTLOutput drive strength = 12 mA
High slew rate
I/O Module
(Non-Registered)
Input LVTTL
Clock
Input LVTTL
Clock
Input LVTTL
Clock
t
PD
= 0.56 ns t
PD
= 0.49 ns t
DP
= 1.34 ns
t
PD
= 0.87 ns t
DP
= 2.64 ns (Advanced I/O Banks)
t
PD
= 0.47 ns t
DP
= 3.66 ns (Advanced I/O Banks)
t
PD
= 0.47 ns t
DP
= 3.97 ns (Advanced I/O Banks)
t
PD
= 0.47 ns
t
PY
= 0.76 ns
(Advanced I/O Banks)
t
CLKQ
= 0.55 ns t
OCLKQ
= 0.59 ns
t
SUD
= 0.43 ns t
OSUD
= 0.31 ns
t
DP
= 2.64 ns
(Advanced I/O Banks)
t
PY
= 0.76 ns (Advanced I/O Banks)
t
PY
= 1.20 ns
t
CLKQ
= 0.55 ns
t
SUD
= 0.43 ns
t
PY
= 0.76 ns
(Advanced I/O Banks)
t
ICLKQ
= 0.24 ns
t
ISUD
= 0.26 ns
t
PY
= 1.05 ns
ProASIC3L Low Power Flash FPGAs
Revision 10 2-19
Figure 2-4 Input Buffer Timing Model and Delays (example)
tPY
(R)
PAD
Y
Vtrip
GND tPY
(F)
Vtrip
50%
50%
VIH
VCC
VIL
tDIN
(R)
DIN
GND tDIN
(F)
50%50% VCC
PAD Y
tPY
D
CLK
Q
I/O Interface
DIN
tDIN
To Array
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
ProASIC3L DC and Switching Characteristics
2-20 Revision 10
Figure 2-5 Output Buffer Model and Delays (example)
tDP
(R)
PAD VOL
tDP
(F)
Vtrip
Vtrip
VOH
VCC
D50% 50%
VCC
0 V
DOUT 50% 50% 0 V
tDOUT
(R) tDOUT
(F)
From Array
PAD
tDP
Std
Load
D
CLK
Q
I/O Interface
DOUT
D
tDOUT
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
ProASIC3L Low Power Flash FPGAs
Revision 10 2-21
Figure 2-6 Tristate Output Buffer Timing Model and Delays (example )
D
CLK
Q
D
CLK
Q
10% V
CCI
t
ZL
Vtrip
50%
t
HZ
90% VCCI
t
ZH
Vtrip
50% 50% t
LZ
50%
EOUT
PAD
D
E50%
t
EOUT (R)
50%t
EOUT (F)
PAD
DOUT
EOUT
D
I/O Interface
E
t
EOUT
t
ZLS
Vtrip
50%
t
ZHS
Vtrip
50%
EOUT
PAD
D
E50% 50%
t
EOUT (R)
t
EOUT (F)
50%
VCC
VCC
VCC
VCCI
VCC
VCC
VCC
VOH
VOL
VOL
t
ZL
, t
ZH
, t
HZ
, t
LZ
, t
ZLS
, t
ZHS
t
EOUT
= MAX(t
EOUT
(r), t
EOUT
(f))
ProASIC3L DC and Switching Characteristics
2-22 Revision 10
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-22 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Pro I/O Banks
I/O Standard
Drive
Strength
(mA)
Equiv.
Software
Default
Drive
Strength
Option1Slew
Rate
VIL VIH VOL VOH IOL3IOH3
Min.
VMax.
VMin.
VMax.2
VMax.
VMin.
VmAmA
3.3 V LVTTL /
3.3 V
LVCMOS
12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12
3.3 V
LVCMOS
Wide Range4
100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1
2.5 V
LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12
1.8 V
LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12
1.5 V
LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12
1.2 V
LVCMOS 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2
1.2 V
LVCMOS
Wide Range5
100 µA 2 mA High –0.3 0.3 * VCC I 0.7 * VCCI 1.575 0.1 VCCI – 0. 1 0.1 0.1
3.3 V PCI Per PCI Specification
3.3 V PCI-X Per PCI-X Specification
3.3 V GTL 25 mA6 20 m65High –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 25 25
2.5 V GTL 25 mA620 mA6High –0.3 VREF – 0.05 VREF + 0.05 2.7 0.4 25 25
3.3 V GTL+ 35 mA 35 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 51 51
2.5 V GTL+ 33 mA 33 mA High –0.3 VREF – 0.1 VREF + 0.1 2.7 0.6 40 40
HSTL (I) 8 mA 8 mA High –0.3 VREF – 0. 1 VREF + 0.1 1.575 0.4 VCCI – 0.4 8 8
HSTL (II) 15 mA5 15 mA5 High –0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI – 0.4 15 15
SSTL2 (I) 15 mA 15 mA High –0.3 VREF – 0.1 VREF + 0.1 2.7 0.54 VCCI – 0.62 15 15
SSTL2 (II) 18 mA 18 mA High –0.3 VREF – 0.1 VREF + 0.1 2.7 0.35 VCCI – 0.43 18 18
SSTL3 (I) 14 mA 14 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.7 VCCI – 1.1 14 14
SSTL3 (II) 21 mA 21 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.5 VCCI – 0.9 21 21
Notes:
1. Please note that 1.2V LVCMOS and 3.3V LVCMOS wide range is applicable to 100uA drive strength only. The
configuration will NOT operate at the equivalent software.
2. Maximum VIH is 3.6 V for all I/O standards with hot-insertion is enabled.
3. Currents are measured at 85°C junction temperature.
4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
6. Output drive strength is below JEDEC specification.
7. Output slew rate can be extracted using the IBIS models.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-23
Table 2-23 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Ban ks
I/O Standard Drive
Strength
Equiv.
Software
Default
Drive
Strength
Option1Slew
Rate
VIL VIH VOL VOH IOL2IOH2
Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
3.3 V LVTTL /
3.3 V
LVCMOS
12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12
3.3 V
LV CM OS Wi de
Range3
100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1
2.5 V
LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12
1.8 V
LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI 0.45 12 12
1.5 V
LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12
1.2 V
LVCMOS 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2
1.2 V
LVCMOS
Wide Range4,5
100 µA 2 mA High –0.3 0.3 * VCCI 0.7 * VCCI 1.575 0.1 VCCI – 0.1 0.1 0.1
3.3 V PCI Per PCI specifications
3.3 V PCI-X Per PCI-X specifications
Notes:
1. Please note that 1.2V LVCMOS and 3.3V LVCMOS wide range is applicable to 100 µA drive strength only. The
configuration will NOT operate at the equivalent software.
2. Currents are measured at 85°C junction temperature.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
5. Applicable to devices operating at VCCI VCC.
6. Output slew rate can be extracted using the IBIS models.
ProASIC3L DC and Switching Characteristics
2-24 Revision 10
Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks
I/O Standard Drive
Strength
Equiv.
Software
Default
Drive
Strength
Option1Slew
Rate
VIL VIH VOL VOH IOL2IOH2
Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
3.3 V LVTTL /
3.3 V LVCMOS 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12
3.3 V LVCMOS
Wide Range3100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1
2.5 V LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12
1.8 V LVCMOS 8 mA 8 mA High –0.30.35 * VCC I 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8
1.5 V LVCMOS 4 mA 4 mA High –0.30.35 * VCC I 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4
1.2 V
LVCMOS42 mA 2 mA High –0.30.3 5 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2
1.2 V
LVCMOS
Wide Range4,5
100 µA 2 mA High –0.3 0.3 * VCCI 0.7 * VCCI 1.575 0.1 VCCI – 0.1 0.1 0.1
3.3 V PCI Per PCI specifications
3.3 V PCI-X Per PCI-X specifications
Notes:
1. Please note that 1.2V LVCMOS and 3.3V LVCMOS wide range is applicable to 100 µA drive strength only. The
configuration will NOT operate at the equivalent software.
2. Currents are measured at 85°C junction temperature.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
5. Applicable to devices operating at VCCI VCC.
6. Output slew rate can be extracted using the IBIS models.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-25
Table 2-25 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions
DC I/O Standard
Commercial1Industrial2
IIL IIH IIL3IIH4
µA µA µA µA
3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15
3.3 V LVCMOS Wide Range 10 10 15 15
2.5 V LVCMOS 10 10 15 15
1.8 V LVCMOS 10 10 15 15
1.5 V LVCMOS 10 10 15 15
1.2 V LVCMOS5 10 10 15 15
1.2 V LVCMOS Wide Range510 10 15 15
3.3 V PCI 10 10 15 15
3.3 V PCI-X 10 10 15 15
3.3 V GTL 10 10 15 15
2.5 V GTL 10 10 15 15
3.3 V GTL+ 10 10 15 15
2.5 V GTL+ 10 10 15 15
HSTL (I) 10 10 15 15
HSTL (II) 10 10 15 15
SSTL2 (I) 10 10 15 15
SSTL2 (II) 10 10 15 15
SSTL3 (I) 10 10 15 15
SSTL3 (II) 10 10 15 15
Notes:
1. Commercial range (0°C < TA < 70°C)
2. Industrial range (–40°C < TA < 85°C)
3. IIL is the input leakage current per I/O pin over recommended operation conditions where
–0.3V < VIN <VIL.
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
5. Applicable to devices operating at VCCI VCC.
ProASIC3L DC and Switching Characteristics
2-26 Revision 10
Summary of I/O Timing Characteristics – Default I/O Software
Settings
Table 2-26 • Summary of AC Measuring Points
Standard Input Reference V oltage
(VREF_TYP) Board Termination
Volt age (VTT_REF) Measuring T r ip Point
(Vtrip)
3.3 V LVTTL /
3.3 V LVCMOS 1.4 V
3.3 V LVCMOS Wide Range 1.4 V
2.5 V LVCMOS 1.2 V
1.8 V LVCMOS 0.90 V
1.5 V LVCMOS 0.75 V
1.2 V LVCMOS * 0.6 V
1.2 V LVCMOS Wide Range* 0.6 V
3.3 V PCI 0.285 * VCCI (RR)
0.615 * VCCI (FF))
3.3 V PCI-X 0.285 * VCCI (RR)
0.615 * VCCI (FF)
3.3 V GTL 0.8 V 1.2 V VREF
2.5 V GTL 0.8 V 1.2 V VREF
3.3 V GTL+ 1.0 V 1.5 V VREF
2.5 V GTL+ 1.0 V 1.5 V VREF
HSTL (I) 0.75 V 0.75 V VREF
HSTL (II) 0.75 V 0.75 V VREF
SSTL2 (I) 1.25 V 1.25 V VREF
SSTL2 (II) 1.25 V 1.25 V VREF
SSTL3 (I) 1.5 V 1.485 V VREF
SSTL3 (II) 1.5 V 1.485 V VREF
LVDS Cross point
LVPECL Cross point
Note: *Applicable only to devices operating in the 1.2 V core range.
Table 2-27 • I/O AC Parameter Definitions
Parameter Parameter Definition
tDP Data to Pad delay through the Output Buffer
tPY Pad to Data delay through the Input Buffer
tDOUT Data to Output Buffer delay through the I/O interface
tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN Input Buffer to Data delay through the I/O interface
tHZ Enable to Pad delay through the Output Buffer—High to Z
tZH Enable to Pad delay through the Output Buffer—Z to High
tLZ Enable to Pad delay through the Output Buffer—Low to Z
tZL Enable to Pad delay through the Output Buffer—Z to Low
tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High
tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
ProASIC3L Low Power Flash FPGAs
Revision 10 2-27
1.5 V DC Core Voltage
Table 2-28 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425V,
Worst Case VCCI
Pro I/O Banks
Standard
Drive Strength (mA)
Equiv. Software Default
Drive Strength Option1
Slew Rate
Capacitive Load (pF)
External Resistor (Ω)
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tPYS (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS 12 mA 12 mA High 5 0.50 1.89 0.03 1.34 1.85 0.33 1.93 1.42 2.51 2.77 3.64 3.13 ns
3.3 V LVCMOS
Wide Range1,2 100 µA 12 mA High 5 ns
2.5 V L VCMOS 12 mA 12 mA High 5 0.50 1.92 0.03 1.58 1.97 0.33 1.96 1.59 2.58 2.68 3.67 3.30 ns
1.8 V L VCMOS 12 mA 12 mA High 5 0.50 2.14 0.03 1.53 2.17 0.33 2.18 1.76 2.86 3.24 3.89 3.47 ns
1.5 V L VCMOS 12 mA 12 mA High 5 0.50 2.46 0.03 1.69 2.36 0.33 2.51 2.04 3.03 3.35 4.22 3.75 ns
3.3 V PCI Per
PCI
spec.
High 5 2530.50 2.15 0.03 2.10 2.84 0.33 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V PCI-X Per
PCI-X
spec.
High 10 2530.50 2.15 0.03 2.10 2.84 0.33 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V GTL 25 mA 25 mA High 10 25 0.50 1.59 0.03 1.80 0.33 1.56 1.59 3.27 3.30 ns
2.5 V GTL 25 mA 25 mA High 10 25 0.50 1.63 0.03 1.75 0.33 1.66 1.63 3.37 3.34 ns
3.3 V GTL+ 35 mA 35 mA High 10 25 0.50 1.57 0.03 1.80 0.33 1.60 1.57 3.31 3.29 ns
2.5 V GTL+ 33 mA 33 mA High 10 25 0.50 1.69 0.03 1.75 0.33 1.72 1.61 3.43 3.32 ns
HSTL (I) 8 mA 8 mA High 20 25 0.50 2.43 0.03 2.12 0.33 2.48 2.41 4.19 4.12 ns
HSTL (II) 15 mA 15 mA High 20 50 0.50 2.32 0.03 2.12 0.33 2.36 2.08 4.07 3.79 ns
SSTL2 (I) 15 mA 15 mA High 30 25 0.50 1.63 0.03 1.61 0.33 1.66 1.41 1.66 1.41 ns
SSTL2 (II) 18 mA 18 mA High 30 50 0.50 1.66 0.03 1.61 0.33 1.69 1.36 1.69 1.36 ns
SSTL3 (I) 14 mA 14 mA High 30 25 0.50 1.77 0.03 1.54 0.33 1.80 1.41 1.80 1.41 ns
SSTL3 (II) 21 mA 21 mA High 30 50 0.50 1.58 0.03 1.54 0.33 1.61 1.28 1.61 1.28 ns
L VDS 24 mA 24 mA High 0.50 1.40 0.03 1.85 ns
L VPECL 24 mA 24 mA High 0.50 1.40 0.03 1.67 ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-80 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-28 Revision 10
Table 2-29 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V, Wo rst
Case VCCI
Advanced I/O Banks
I/O Standard
Drive Strength (mA)
Equiv. Software Default
Drive Strength Option1
Slew Rate
Capacitive Load (pF)
External Resistor (Ω)
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS 12 mA 12 mA High 5 0.46 1.83 0.03 0.78 0.33 1.87 1.39 2.46 2.74 3.58 3.10 ns
3.3 V LVCMOS
Wide Range1,2 100 µA 12 mA High 5 ns
2.5 V L VCMOS 12 mA 12 mA High 5 0.46 1.85 0.03 1.00 0.33 1.88 1.55 2.53 2.63 3.59 3.26 ns
1.8 V LVCMOS 12 mA 12 mA High 5 0.46 2.04 0.03 0.93 0.33 2.08 1.73 2.83 3.12 3.79 3.45 ns
1.5 V LVCMOS 12 mA 12 mA High 5 0.46 2.33 0.03 1.10 0.33 2.37 2.01 3.02 3.22 4.08 3.72 ns
3.3 V PCI Per
PCI
spec.
High 5 25 30.46 2.05 0.03 0.66 0.33 2.09 1.49 2.46 2.74 3.80 3.21 ns
3.3 V PCI-X Per
PCI-X
spec.
High 10 253 0.46 2.05 0.03 0.64 0.33 2.09 1.49 2.46 2.74 3.80 3.21 ns
LVDS 24 mA High 0.46 1.40 0.03 1.23 N/A N/A N/A N/A N/A N/A N/A ns
LVPECL 24 mA High 0.46 1.38 0.03 1.08 N/A N/A N/A N/A N/A N/A N/A ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-80 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-29
Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V, Wo rst
Case VCCI = 3.0 V
Standard Plus I/O Banks
I/O Standard
Drive Strength (mA)
Equiv. Software Default
Drive Strength Option1
Slew Rate
Capacitive Load (pF)
External Resistor
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS 12 mA 12 mA High 5 0.46 1.56 0.03 0.77 0.33 1.59 1.20 2.14 2.47 3.30 2.91 ns
3.3 V LVCMOS
Wide Range1,2 100 µA 12 mA High 5 ns
2.5 V L VCMOS 12 mA 12 mA High 5 0.46 1.59 0.03 0.99 0.33 1.61 1.32 2.16 2.38 3.33 3.03 ns
1.8 V LVCMOS 8 mA 8 mA High 5 0.46 1.59 0.03 0.99 0.33 1.61 1.32 2.16 2.38 3.33 3.03 ns
1.5 V LVCMOS 4 mA 4 mA High 5 0.46 2.15 0.03 1.09 0.33 2.19 1.82 2.32 2.40 3.90 3.53 ns
3.3 V PCI Per
PCI
spec.
High 10 25
30.46 1.77 0.03 0.65 0.33 1.80 1.31 2.14 2.47 3.51 3.02 ns
3.3 V PCI-X Per
PCI-X
spec.
High 10 25
30.46 1.77 0.03 0.64 0.33 1.80 1.31 2.14 2.47 3.51 3.02 ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-80 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-30 Revision 10
1.2 V DC Core Voltage
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V,
Worst Case VCCI
Pro I/O Banks
Standard
Drive Strength (mA)
Equiv. Software Default
Drive Strength Option1
Slew Rate
Capacitive Load (pF)
External Resistor (Ω)
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tPYS (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LV CMOS 12 mA 12 mA High 5 0.66 1.89 0.04 1.34 1.85 0.43 1.93 1.42 2.51 2.77 3.64 3.13 ns
3.3 V LVCMOS
Wide Range1,2 100 µA12 mAHigh5––––––––––ns
2.5 V L VCMOS 12 mA 12 mA High 5 0.66 1.92 0.04 1.58 1.97 0.43 1.96 1.59 2.58 2.68 3.67 3.30 ns
1.8 V L VCMOS 12 mA 12 mA High 5 0.66 2.14 0.04 1.53 2.17 0.43 2.18 1.76 2.86 3.24 3.89 3.47 ns
1.5 V L VCMOS 12 mA 12 mA High 5 0.66 2.46 0.04 1.69 2.36 0.43 2.51 2.04 3.03 3.35 4.22 3.75 ns
1.2 V LVCMOS 2 mA 2 mA High 5 0.66 4.12 0.04 2.02 2.99 0.43 3.83 3.37 4.06 3.84 5.48 5.02 ns
1.2 V LVCMOS
Wide Range1,3 100 µA2 mAHigh5––––––––––ns
3.3 V PCI Per
PCI
spec.
High 10 2540.66 2.15 0.04 2.10 2.84 0.43 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V PCI-X Per
PCI-X
spec.
High 10 2540.66 2.15 0.04 2.10 2.84 0.43 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V GTL 25 mA High 10 25 0.66 1.59 0.04 1.80 0.43 1.56 1.59 3.27 3.30 ns
2.5 V GTL 25 mA High 10 25 0.66 1.63 0.04 1.75 0.43 1.66 1.63 3.37 3.34 ns
3.3 V GTL+ 35 mA High 10 25 0.66 1.57 0.04 1.80 0.43 1.60 1.57 3.31 3.29 ns
2.5 V GTL+ 33 mA High 10 25 0.66 1.69 0.04 1.75 0.43 1.72 1.61 3.43 3.32 ns
HSTL (I) 8 mA High 20 25 0.66 2.43 0.04 2.12 0.43 2.48 2.41 4.19 4.12 ns
HSTL (II) 15 mA High 20 50 0.66 2.32 0.04 2.12 0.43 2.36 2.08 4.07 3.79 ns
SSTL2 (I) 15 mA High 30 25 0.66 1.63 0.04 1.61 0.43 1.66 1.41 1.66 1.41 ns
SSTL2 (II) 18 mA High 30 50 0.66 1.66 0.04 1.61 0.43 1.69 1.36 1.69 1.36 ns
SSTL3 (I) 14 mA High 30 25 0.66 1.77 0.04 1.54 0.43 1.80 1.41 1.80 1.41 ns
SSTL3 (II) 21 mA High 30 50 0.66 1.58 0.04 1.54 0.43 1.61 1.28 1.61 1.28 ns
LVDS 24 mA High 0.661.430.041.85–––––––– ns
LVPECL 24 mA High 0.661.370.041.67–––––––– ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-80 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-31
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V, Worst Case
VCCI
Advanced I/O Banks
I/O Standard
Drive Strength (mA)
Equiv. Software Default
Drive Strength Option1
Slew Rate
Capacitive Load (pF)
External Resistor (Ω)
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS 12 mA 12 mA High 5 pF 0.60 1.83 0.04 0.78 0.43 1.87 1.39 2.46 2.74 3.58 3.10 ns
3.3 V LVCMOS
Wide Range1,2
100 µA 12 mA High 5 pF ns
2.5 V LVCMOS 12 mA 12 mA High 5 pF 0.60 1.85 0.04 1.00 0.43 1.88 1.55 2.53 2.63 3.59 3.26 ns
1.8 V LVCMOS 12 mA 12 mA High 5 pF 0.60 2.04 0.04 0.93 0.43 2.08 1.73 2.83 3.12 3.79 3.45 ns
1.5 V LVCMOS 12 mA 12 mA High 5 pF 0.60 2.33 0.04 1.10 0.43 2.37 2.01 3.02 3.22 4.08 3.72 ns
1.2 V LVCMOS 2 mA 2 mA High 5pF 0.60 3.17 0.04 1.55 0.43 2.11 1.76 2.38 2.46 3.76 3.41 ns
1.2 V LVCMOS
Wide Range1,3 100 µA 2 mA High 5 pF ns
3.3 V PCI Per
PCI
spec.
High 10
pF 25 40.60 2.05 0.04 0.66 0.43 2.09 1.49 2.46 2.74 3.80 3.21 ns
3.3 V PCI-X Per
PCI-X
spec.
High 10
pF 25 40.60 2.05 0.04 0.64 0.43 2.09 1.49 2.46 2.74 3.80 3.21 ns
LVDS 24 mA High 0.60 1.40 0.04 1.23 N/A N/A N/A N/A N/A N/A N/A ns
LVPECL 24 mA High 0.60 1.38 0.04 1.08 N/A N/A N/A N/A N/A N/A N/A ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-80 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-32 Revision 10
Detailed I/O DC Characteristics
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V, Worst Case
VCCI = 3.0 V
Standard Plus I/O Banks
I/O Standard
Drive Strength (mA)
Equiv. Software Default
Drive Strength Option1
Slew Rate
Capacitive Load (pF)
External Resistor
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS 12 mA 12 mA High 5 pF 0.60 1.56 0.04 0.77 0.43 1.59 1.20 2.14 2.47 3.30 2.91 ns
3.3 V LVCMOS
Wide Range1,2 100 µA 12 mA High 5 pF ns
2.5 V LVCMOS 12 mA 12 mA High 5 pF 0.60 1.59 0.04 0.99 0.43 1.61 1.32 2.16 2.38 3.33 3.03 ns
1.8 V LVCMOS 8 mA 8 mA High 5 pF 0.60 1.59 0.04 0.99 0.43 1.61 1.32 2.16 2.38 3.33 3.03 ns
1.5 V LVCMOS 4 mA 4 mA High 5 pF 0.60 2.15 0.04 1.09 0.43 2.19 1.82 2.32 2.40 3.90 3.53 ns
1.2 V LVCMOS 2 mA 2 mA High 5 pF 0.60 3.54 0.04 1.56 0.43 2.37 2.11 3.60 3.87 4.02 3.76 ns
1.2 V LVCMOS
Wide Range1,3 100 µA 2 mA High 5 pF ns
3.3 V PCI Per
PCI
spec.
High 10 pF 25
40.60 1.77 0.04 0.65 0.43 1.80 1.31 2.14 2.47 3.51 3.02 ns
3.3 V PCI-X Per
PCI-X
spec.
High 10 pF 25
40.60 1.77 0.04 0.64 0.43 1.80 1.31 2.14 2.47 3.51 3.02 ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-80 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-34 • Input Capacitance
Symbol Definition Conditions Min. Max. Units
CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF
CINCLK Input capacitance on th e clo ck pi n VIN = 0, f = 1.0 MHz 8 pF
ProASIC3L Low Power Flash FPGAs
Revision 10 2-33
Table 2-35 • I/O Output Buf f er Max imum Resistance s1
Applicable to Pro I/Os
Standard Drive Strength
RPULL-DOWN
(Ω) 2 RPULL-UP
(Ω)3
3.3 V LVTTL / 3.3 V LVCMOS 4 mA 100 300
8 mA 50 150
12 mA 25 75
16 mA 17 50
24 mA 11 33
3.3 V LVCMOS Wide Range 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2.5 V LVCMOS 4 mA 100 200
8 mA 50 100
12 mA 25 50
16 mA 20 40
24 mA 11 22
1.8 V LVCMOS 2 mA 200 225
4 mA 100 112
6 mA 50 56
8 mA 50 56
12 mA 20 22
16 mA 20 22
1.5 V LVCMOS 2 mA 200 224
4 mA 100 112
6 mA 67 75
8 mA 33 37
12 mA 33 37
1.2 V LVCMOS 2 mA 158 164
1.2 V LVCMOS Wide Range 100 µA Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X Per PCI/PCI-X
specification 25 75
3.3 V GTL 25 mA 11
2.5 V GTL 25 mA 14
3.3 V GTL+ 35 mA 12
2.5 V GTL+ 33 mA 15
HSTL (I) 8 mA 50 50
HSTL (II) 15 mA 25 25
SSTL2 (I) 15 mA 27 31
SSTL2 (II) 18 mA 13 15
SSTL3 (I) 14 mA 44 69
SSTL3 (II) 21 mA 18 32
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
ProASIC3L DC and Switching Characteristics
2-34 Revision 10
Table 2-36 • I/O Output Buf f er Max imum Resistance s1
Applicable to Advanced I/O Ban ks
Standard Drive
Strength RPULL-DOWN
(Ω)2 RPULL-UP
(Ω)3
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300
4 mA 100 300
6 mA 50 150
8 mA 50 150
12 mA 25 75
16 mA 17 50
24 mA 11 33
3.3 V LVCMOS Wide Range 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2.5 V LVCMOS 2 mA 100 300
4 mA 100 300
6 mA 50 150
8 mA 50 150
12 mA 25 75
16 mA 17 50
24 mA 11 33
1.8 V LVCMOS 2 mA 100 200
4 mA 100 200
6 mA 50 100
8 mA 50 100
12 mA 25 50
16 mA 20 40
1.5 V LVCMOS 2 mA 200 224
4 mA 100 112
6 mA 67 75
8 mA 33 37
12 mA 33 37
1.2 V LVCMOS 2 mA 158 164
1.2 V LVCMOS Wide Range 100 µA Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X Per PCI/PCI-X
specification 25 75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
ProASIC3L Low Power Flash FPGAs
Revision 10 2-35
Table 2-37 • I/O Output Buf f er Max imum Resistance s1
Applicable to Standard Plus I/O Banks
Standard Drive
Strength RPULL-DOWN
(Ω)2 RPULL-UP
(Ω)3
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300
4 mA 100 300
6 mA 50 150
8 mA 50 150
12 mA 25 75
16 mA 25 75
3.3 V LVCMOS Wide Range 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2.5 V LVCMOS 2 mA 100 200
4 mA 100 200
6 mA 50 100
8 mA 50 100
12 mA 25 50
1.8 V LVCMOS 2 mA 200 225
4 mA 100 112
6 mA 50 56
8 mA 50 56
1.5 V LVCMOS 2 mA 200 224
4 mA 100 112
1.2 V LVCMOS 2 mA 158 164
1.2 V LVCMOS Wide Range 100 µA Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X Per PCI/PCI-X
specification 25 75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
ProASIC3L DC and Switching Characteristics
2-36 Revision 10
Table 2-38 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
VCCI
R(WEAK PULL-UP)1
(Ω)R(WEAK PULL-DOWN)2
(Ω)
Min. Max. Min. Max.
3.3 V 10 k 45 k 10 k 45 k
3.3 V (wide range I/Os) 10 k 45 k 10 k 45 k
2.5 V 11 k 55 k 12 k 74 k
1.8 V 18 k 70 k 17 k 110 k
1.5 V 19 k 90 k 19 k 140 k
1.2 V LVCMOS 25 k 110 k 25 k 150 k
1.2 V (wide range I/Os) 19 k 110 k 19 k 150 k
Notes:
1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)
ProASIC3L Low Power Flash FPGAs
Revision 10 2-37
Table 2-39 • I/O Short Currents IOSH/IOSL
Applicable to Pro I/Os
Standard Drive Strength IOSL (mA)* IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS 4 mA 25 27
8 mA 51 54
12 mA 103 109
16 mA 132 127
24 mA 268 181
3.3 V LVCMOS Wide Range 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2.5 V LVCMOS 4 mA 16 18
8 mA 32 37
12 mA 65 74
16 mA 83 87
24 mA 169 124
1.8 V LVCMOS 2 mA 9 11
4 mA 17 22
6 mA 35 44
8 mA 45 51
12 mA 91 74
16 mA 91 74
1.5 V LVCMOS 2 mA 13 16
4 mA 25 33
6 mA 32 39
8 mA 66 55
12 mA 66 55
1.2 V LVCMOS 2 mA 20 26
1.2 V LVCMOS Wide Range 100 µA 20 26
3.3 V PCI/PCIX Per PCI/PCI-X
Specification Per PCI Curves
3.3 V GTL 25 mA 268 181
2.5 V GTL 25 mA 169 124
3.3 V GTL+ 35 mA 268 181
2.5 V GTL+ 33 mA 169 124
HSTL (I) 8 mA 32 39
HSTL (II) 15 mA 66 55
SSTL2 (I) 15 mA 83 87
SSTL2 (II) 18 mA 169 124
SSTL3 (I) 14 mA 51 54
Note: *TJ = 100°C
ProASIC3L DC and Switching Characteristics
2-38 Revision 10
Table 2-40 • I/O Short Currents IOSH/IOSL
Applicable to Advanced I/O Ban ks
Standard Drive Strength IOSL (mA)* IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27
4 mA 25 27
6 mA 51 54
8 mA 51 54
12 mA 103 109
16 mA 132 127
24 mA 268 181
3.3 V LVCMOS Wide Range 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2.5 V LVCMOS 2 mA 16 18
4 mA 16 18
6 mA 32 37
8 mA 32 37
12 mA 65 74
16 mA 83 87
24 mA 169 124
1.8 V LVCMOS 2 mA 9 11
4 mA 17 22
6 mA 35 44
8 mA 45 51
12 mA 91 74
16 mA 91 74
1.5 V LVCMOS 2 mA 13 16
4 mA 25 33
6 mA 32 39
8 mA 66 55
12 mA 66 55
1.2 V LVCMOS 2 mA 20 26
1.2 V LVCMOS Wide Range 100 µA 20 26
3.3 V PCI/PCI-X Per PCI/PCI-X
specification 103 109
Note: *TJ = 100°C
ProASIC3L Low Power Flash FPGAs
Revision 10 2-39
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 100°C, the short current condition would have to be sustained for more than six months
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such
protection would only be needed in extremely prolonged stress conditions.
Table 2-41 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks
Drive Strength IOSL (mA)* IOSH (mA)*
3.3 V LVTTL / 3.3 V
LVCMOS 2 mA 25 27
4 mA 25 27
6 mA 51 54
8 mA 51 54
12 mA 103 109
16 mA 103 109
3.3 V LVCMOS Wide Range 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2.5 V LVCMOS 2 mA 16 18
4 mA 16 18
6 mA 32 37
8 mA 32 37
12 mA 65 74
1.8 V LVCMOS 2 mA 9 11
4 mA 17 22
6 mA 35 44
8 mA 35 44
1.5 V LVCMOS 2 mA 13 16
4 mA 25 33
1.2 V LVCMOS 2 mA 20 26
1.2 V LVCMOS Wide Range 100 µA 20 26
3.3 V PCI/PCI-X Per PCI/PCI-X
specification 103 109
Note: TJ = 100°C
Table 2-42 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (Typ) for Schmitt Mode Input Buffers
Input Buffer Configura ti on Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 240 mV
2.5 V LVCMOS (Schmitt trigger mode) 140 mV
1.8 V LVCMOS (Schmitt trigger mode) 80 mV
1.5 V LVCMOS (Schmitt trigger mode) 60 mV
1.2 V LVCMOS (Schmitt trigger mode) 40 mV
ProASIC3L DC and Switching Characteristics
2-40 Revision 10
Table 2-43 • Duration of Short Circuit Event before Failure
Temperature Time before Failure
–40°C > 20 years
0°C > 20 years
25°C > 20 years
70°C 5 years
85°C 2 years
100°C 6 months
Table 2-44 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Buffer In put Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reli ability
LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C)
LVDS/B-LVDS/
M-LVDS/LVPECL No requirement 10 ns * 10 years (100°C)
Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low,
then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal
integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input
signals.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-41
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low voltage transistor–transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. This standard uses an LVTTL input buffer and push-pull output buffer. Furthermore, all
LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range, as specified in the JESD8-A
specification.
Table 2-45 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmAMax.
mA1Max.
mA1µA2µA2
4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10
6 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10
8 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10
12 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 10 10
16 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 10 10
24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 27 25 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-46 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Ban ks
3.3 V LVTTL /
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10
4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10
6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10
8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10
12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10
16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 10 10
24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-42 Revision 10
Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmAMax.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10
4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10
6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10
8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10
12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10
16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 103 109 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-7 AC Loading
Table 2-48 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Poin t* (V) CLOAD (pF)
03.31.45
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-43
Timing Characteristics
1.5 V DC Core Voltage
Table 2-49 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.59 5.48 0.04 1.58 2.17 0.38 5.58 4.40 2.42 2.20 7.60 6.42 ns
–1 0.50 4.66 0.03 1.34 1.85 0.33 4.75 3.75 2.06 1.87 6.46 5.46 ns
8 mA Std. 0.59 4.48 0.04 1.58 2.17 0.38 4.56 3.76 2.73 2.76 6.57 5.78 ns
–1 0.50 3.81 0.03 1.34 1.85 0.33 3.88 3.20 2.33 2.35 5.59 4.91 ns
12 mA Std. 0.59 3.77 0.04 1.58 2.17 0.38 3.84 3.28 2.95 3.12 5.85 5.29 ns
–1 0.50 3.21 0.03 1.34 1.85 0.33 3.27 2.79 2.51 2.65 4.98 4.50 ns
16 mA Std. 0.59 3.57 0.04 1.58 2.17 0.38 3.63 3.18 2.99 3.22 5.64 5.19 ns
–1 0.50 3.03 0.03 1.34 1.85 0.33 3.09 2.70 2.54 2.74 4.80 4.41 ns
24 mA Std. 0.59 3.46 0.04 1.58 2.17 0.38 3.52 3.19 3.05 3.57 5.54 5.20 ns
–1 0.50 2.94 0.03 1.34 1.85 0.33 3.00 2.71 2.59 3.03 4.71 4.42 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.59 3.08 0.04 1.58 2.17 0.38 3.14 2.36 2.42 2.33 5.15 4.38 ns
–1 0.50 2.62 0.03 1.34 1.85 0.33 2.67 2.01 2.06 1.98 4.38 3.72 ns
8 mA Std. 0.59 2.53 0.04 1.58 2.17 0.38 2.58 1.89 2.74 2.89 4.59 3.90 ns
–1 0.50 2.16 0.03 1.34 1.85 0.33 2.20 1.61 2.33 2.46 3.91 3.32 ns
12 mA Std. 0.59 2.22 0.04 1.58 2.17 0.38 2.27 1.67 2.95 3.25 4.28 3.68 ns
–1 0.50 1.89 0.03 1.34 1.85 0.33 1.93 1.42 2.51 2.77 3.64 3.13 ns
16 mA Std. 0.59 2.17 0.04 1.58 2.17 0.38 2.21 1.63 3.00 3.35 4.23 3.64 ns
–1 0.50 1.85 0.03 1.34 1.85 0.33 1.88 1.38 2.55 2.85 3.59 3.09 ns
24 mA Std. 0.59 2.19 0.04 1.58 2.17 0.38 2.24 1.57 3.05 3.71 4.25 3.58 ns
–1 0.50 1.87 0.03 1.34 1.85 0.33 1.90 1.33 2.59 3.16 3.61 3.05 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-44 Revision 10
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 5.11 0.04 0.91 0.38 5.21 4.33 2.38 2.21 7.22 6.34 ns
–1 0.46 4.35 0.03 0.78 0.33 4.43 3.68 2.02 1.88 6.14 5.40 ns
6 mA Std. 0.54 4.30 0.04 0.91 0. 38 4.38 3.75 2.68 2.74 6.39 5.76 ns
–1 0.46 3.66 0.03 0.78 0.33 3.73 3.19 2.28 2.33 5.44 4.90 ns
8 mA Std. 0.54 4.30 0.04 0.91 0. 38 4.38 3.75 2.68 2.74 6.39 5.76 ns
–1 0.46 3.66 0.03 0.78 0.33 3.73 3.19 2.28 2.33 5.44 4.90 ns
12 mA Std. 0.54 3.68 0.04 0.91 0.38 3.75 3.32 2.89 3.07 5.76 5.33 ns
–1 0.46 3.13 0.03 0.78 0.33 3.19 2.82 2.45 2.62 4.90 4.53 ns
16 mA Std. 0.54 3.50 0.04 0.91 0.38 3.56 3.21 2.93 3.16 5.57 5.23 ns
–1 0.46 2.97 0.03 0.78 0.33 3.03 2.73 2.49 2.69 4.74 4.45 ns
24 mA Std. 0.54 3.39 0.04 0.91 0.38 3.45 3.25 2.99 3.50 5.47 5.26 ns
–1 0.46 2.88 0.03 0.78 0.33 2.94 2.76 2.54 2.97 4.65 4.48 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 2.90 0.04 0.91 0. 38 2.96 2.28 2.38 2.35 4.97 4.29 ns
–1 0.46 2.47 0.03 0.78 0.33 2.52 1.94 2.03 2.00 4.23 3.65 ns
6 mA Std. 0.54 2.41 0.04 0.91 0. 38 2.46 1.84 2.69 2.88 4.47 3.85 ns
–1 0.46 2.05 0.03 0.78 0.33 2.09 1.57 2.29 2.45 3.80 3.28 ns
8 mA Std. 0.54 2.41 0.04 0.91 0. 38 2.46 1.84 2.69 2.88 4.47 3.85 ns
–1 0.46 2.05 0.03 0.78 0.33 2.09 1.57 2.29 2.45 3.80 3.28 ns
12 mA Std. 0.54 2.16 0.04 0.91 0.38 2.20 1.63 2.89 3.22 4.21 3.64 ns
–-1 0.46 1.83 0.03 0.78 0.33 1.87 1.39 2.46 2.74 3.58 3.10 ns
16 mA Std. 0.54 2.11 0.04 0.91 0.38 2.15 1.59 2.94 3.31 4.17 3.61 ns
–-1 0.46 1.80 0.03 0.78 0.33 1.83 1.36 2.50 2.82 3.54 3.07 ns
24 mA Std. 0.54 2.14 0.04 0.91 0.38 2.17 1.55 2.99 3.65 4.19 3.56 ns
–1 0.46 1.82 0.03 0.78 0.33 1.85 1.32 2.54 3.11 3.56 3.03 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-45
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 4.61 0.04 0.90 0. 38 4.70 3.91 2.05 1.99 6.71 5.92 ns
–1 0.46 3.92 0.03 0.77 0.33 4.00 3.32 1.74 1.69 5.71 5.04 ns
6 mA Std. 0.54 3.80 0.04 0.90 0. 38 3.87 3.40 2.32 2.47 5.88 5.41 ns
–1 0.46 3.23 0.03 0.77 0.33 3.29 2.89 1.98 2.10 5.00 4.60 ns
8 mA Std. 0.54 3.80 0.04 0.90 0. 38 3.87 3.40 2.32 2.47 5.88 5.41 ns
–1 0.46 3.23 0.03 0.77 0.33 3.29 2.89 1.98 2.10 5.00 4.60 ns
12 mA Std. 0.54 3.22 0.04 0.90 0.38 3.28 3.00 2.51 2.77 5.30 5.01 ns
–1 0.46 2.74 0.03 0.77 0.33 2.79 2.55 2.14 2.36 4.51 4.27 ns
16 mA Std. 0.54 3.22 0.04 0.90 0.38 3.28 3.00 2.51 2.77 5.30 5.01 ns
–1 0.46 2.74 0.03 0.77 0.33 2.79 2.55 2.14 2.36 4.51 4.27 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 2.51 0.04 0.90 0. 38 2.56 2.01 2.05 2.10 4.57 4.02 ns
–1 0.46 2.14 0.03 0.77 0.33 2.18 1.71 1.74 1.79 3.89 3.42 ns
6 mA Std. 0.54 2.05 0.04 0.90 0. 38 2.09 1.61 2.32 2.59 4.10 3.62 ns
–1 0.46 1.74 0.03 0.77 0.33 1.78 1.37 1.97 2.20 3.49 3.08 ns
8 mA Std. 0.54 2.05 0.04 0.90 0. 38 2.09 1.61 2.32 2.59 4.10 3.62 ns
–1 0.46 1.74 0.03 0.77 0.33 1.78 1.37 1.97 2.20 3.49 3.08 ns
12 mA Std. 0.54 1.83 0.04 0.90 0.38 1.86 1.41 2.51 2.90 3.88 3.42 ns
–1 0.46 1.56 0.03 0.77 0.33 1.59 1.20 2.14 2.47 3.30 2.91 ns
16 mA Std. 0.54 1.83 0.04 0.90 0.38 1.86 1.41 2.51 2.90 3.88 3.42 ns
–1 0.46 1.56 0.03 0.77 0.33 1.59 1.20 2.14 2.47 3.30 2.91 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-46 Revision 10
1.2 V DC Core Voltage
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.77 5.48 0.05 1.58 2.17 0.50 5.58 4.40 2.42 2.20 7.60 6.42 ns
–1 0.66 4.66 0.04 1.34 1.85 0.43 4.75 3.75 2.06 1.87 6.46 5.46 ns
8 mA Std. 0.77 4.48 0.05 1.58 2.17 0.50 4.56 3.76 2.73 2.76 6.57 5.78 ns
–1 0.66 3.81 0.04 1.34 1.85 0.43 3.88 3.20 2.33 2.35 5.59 4.91 ns
12 mA Std. 0.77 3.77 0.05 1.58 2.17 0. 50 3.84 3.28 2.95 3.12 5.85 5.29 ns
–1 0.66 3.21 0.04 1.34 1.85 0.43 3.27 2.79 2.51 2.65 4.98 4.50 ns
16 mA Std. 0.77 3.57 0.05 1.58 2.17 0. 50 3.63 3.18 2.99 3.22 5.64 5.19 ns
–1 0.66 3.03 0.04 1.34 1.85 0.43 3.09 2.70 2.54 2.74 4.80 4.41 ns
24 mA Std. 0.77 3.46 0.05 1.58 2.17 0. 50 3.52 3.19 3.05 3.57 5.54 5.20 ns
–1 0.66 2.94 0.04 1.34 1.85 0.43 3.00 2.71 2.59 3.03 4.71 4.42 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.77 3.08 0.05 1.58 2.17 0.50 3.14 2.36 2.42 2.33 5.15 4.38 ns
–1 0.66 2.62 0.04 1.34 1.85 0.43 2.67 2.01 2.06 1.98 4.38 3.72 ns
8 mA Std. 0.77 2.53 0.05 1.58 2.17 0.50 2.58 1.89 2.74 2.89 4.59 3.90 ns
–1 0.66 2.16 0.04 1.34 1.85 0.43 2.20 1.61 2.33 2.46 3.91 3.32 ns
12 mA Std. 0.77 2.22 0.05 1.58 2.17 0.50 2.27 1.67 2.95 3.25 4.28 3.68 ns
–1 0.66 1.89 0.04 1.34 1.85 0.43 1.93 1.42 2.51 2.77 3.64 3.13 ns
16 mA Std. 0.77 2.17 0.05 1.58 2.17 0. 50 2.21 1.63 3.00 3.35 4.23 3.64 ns
–1 0.66 1.85 0.04 1.34 1.85 0.43 1.88 1.38 2.55 2.85 3.59 3.09 ns
24 mA Std. 0.77 2.19 0.05 1.58 2.17 0. 50 2.24 1.57 3.05 3.71 4.25 3.58 ns
–1 0.66 1.87 0.04 1.34 1.85 0.43 1.90 1.33 2.59 3.16 3.61 3.05 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-47
Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 5.11 0.05 0.91 0.50 5.21 4.33 2.38 2.21 7.22 6.34 ns
–1 0.60 4.35 0.04 0.78 0.43 4.43 3.68 2.02 1.88 6.14 5.40 ns
6 mA Std. 0.70 4.30 0.05 0.91 0.50 4.38 3.75 2.68 2.74 6.39 5.76 ns
–1 0.60 3.66 0.04 0.78 0.43 3.73 3.19 2.28 2.33 5.44 4.90 ns
8 mA Std. 0.70 4.30 0.05 0.91 0.50 4.38 3.75 2.68 2.74 6.39 5.76 ns
–1 0.60 3.66 0.04 0.78 0.43 3.73 3.19 2.28 2.33 5.44 4.90 ns
12 mA Std. 0.70 3.68 0.05 0.91 0.50 3.75 3.32 2.89 3.07 5.76 5.33 ns
–1 0.60 3.13 0.04 0.78 0.43 3.19 2.82 2.45 2.62 4.90 4.53 ns
16 mA Std. 0.70 3.50 0.05 0.91 0.50 3.56 3.21 2.93 3.16 5.57 5.23 ns
–1 0.60 2.97 0.04 0.78 0.43 3.03 2.73 2.49 2.69 4.74 4.45 ns
24 mA Std. 0.70 3.39 0.05 0.91 0.50 3.45 3.25 2.99 3.50 5.47 5.26 ns
–1 0.60 2.88 0.04 0.78 0.43 2.94 2.76 2.54 2.97 4.65 4.48 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 2.90 0.05 0.91 0.50 2.96 2.28 2.38 2.35 4.97 4.29 ns
–1 0.60 2.47 0.04 0.78 0.43 2.52 1.94 2.03 2.00 4.23 3.65 ns
6 mA Std. 0.70 2.41 0.05 0.91 0.50 2.46 1.84 2.69 2.88 4.47 3.85 ns
–1 0.60 2.05 0.04 0.78 0.43 2.09 1.57 2.29 2.45 3.80 3.28 ns
8 mA Std. 0.70 2.41 0.05 0.91 0.50 2.46 1.84 2.69 2.88 4.47 3.85 ns
–1 0.60 2.05 0.04 0.78 0.43 2.09 1.57 2.29 2.45 3.80 3.28 ns
12 mA Std. 0.70 2.16 0.05 0.91 0.50 2.20 1.63 2.89 3.22 4.21 3.64 ns
–-1 0.60 1.83 0.04 0.78 0.43 1.87 1.39 2.46 2.74 3.58 3.10 ns
16 mA Std. 0.70 2.11 0.05 0.91 0.50 2.15 1.59 2.94 3.31 4.17 3.61 ns
–-1 0.60 1.80 0.04 0.78 0.43 1.83 1.36 2.50 2.82 3.54 3.07 ns
24 mA Std. 0.70 2.14 0.05 0.91 0.50 2.17 1.55 2.99 3.65 4.19 3.56 ns
–1 0.60 1.82 0.04 0.78 0.43 1.85 1.32 2.54 3.11 3.56 3.03 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-48 Revision 10
Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 4.61 0.05 0.90 0.50 4.70 3.91 2.05 1.99 6.71 5.92 ns
–1 0.60 3.92 0.04 0.77 0.43 4.00 3.32 1.74 1.69 5.71 5.04 ns
6 mA Std. 0.70 3.80 0.05 0.90 0.50 3.87 3.40 2.32 2.47 5.88 5.41 ns
–1 0.60 3.23 0.04 0.77 0.43 3.29 2.89 1.98 2.10 5.00 4.60 ns
8 mA Std. 0.70 3.80 0.05 0.90 0.50 3.87 3.40 2.32 2.47 5.88 5.41 ns
–1 0.60 3.23 0.04 0.77 0.43 3.29 2.89 1.98 2.10 5.00 4.60 ns
12 mA Std. 0.70 3.22 0.05 0.90 0.50 3.28 3.00 2.51 2.77 5.30 5.01 ns
–1 0.60 2.74 0.04 0.77 0.43 2.79 2.55 2.14 2.36 4.51 4.27 ns
16 mA Std. 0.70 3.22 0.05 0.90 0.50 3.28 3.00 2.51 2.77 5.30 5.01 ns
–1 0.60 2.74 0.04 0.77 0.43 2.79 2.55 2.14 2.36 4.51 4.27 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 2.51 0.05 0.90 0.50 2.56 2.01 2.05 2.10 4.57 4.02 ns
–1 0.60 2.14 0.04 0.77 0.43 2.18 1.71 1.74 1.79 3.89 3.42 ns
6 mA Std. 0.70 2.05 0.05 0.90 0.50 2.09 1.61 2.32 2.59 4.10 3.62 ns
–1 0.60 1.74 0.04 0.77 0.43 1.78 1.37 1.97 2.20 3.49 3.08 ns
8 mA Std. 0.70 2.05 0.05 0.90 0.50 2.09 1.61 2.32 2.59 4.10 3.62 ns
–1 0.60 1.74 0.04 0.77 0.43 1.78 1.37 1.97 2.20 3.49 3.08 ns
12 mA Std. 0.70 1.83 0.05 0.90 0.50 1.86 1.41 2.51 2.90 3.88 3.42 ns
–1 0.60 1.56 0.04 0.77 0.43 1.59 1.20 2.14 2.47 3.30 2.91 ns
16 mA Std. 0.70 1.83 0.05 0.90 0.50 1.86 1.41 2.51 2.90 3.88 3.42 ns
–1 0.60 1.56 0.04 0.77 0.43 1.59 1.20 2.14 2.47 3.30 2.91 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-49
3.3 V LVCMOS Wide Range
Table 2-61 • Minimum and Maximum D C Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Pro I/O Banks
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
AµA
Max.
mA2Max.
mA2µA µA
100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10
100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10
100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10
100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 132 127 10 10
100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 268 181 10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-B specification
4. Software default selection highlighted in gray.
Table 2-62 • Minimum and Maximum D C Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Advanced I/O Ban ks
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
AµA
Max.
mA2Max.
mA2µA µA
100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10
100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10
100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10
100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 132 127 10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-B specification
4. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-50 Revision 10
Table 2-63 • Minimum and Maximum D C Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Standard Plus I/O Banks
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
AµA
Max.
mA2Max.
mA2µA µA
100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10
100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10
100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10
100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10
100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-B specification
4. Software default selection highlighted in gray.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-51
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 2.5 V applications.
Table 2-64 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os
2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10
8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10
12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10
16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 10 10
24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-65 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Ban ks
2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmAMax.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10
4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10
6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10
8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10
12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10
16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 10 10
24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-52 Revision 10
Table 2-66 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
2.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10
4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10
6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10
8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10
12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-8 AC Loading
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Poin t* (V) CLOAD (pF)
02.51.25
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-53
Timing Characteristics
1.5 V DC Core Voltage
Table 2-68 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.59 6.24 0.04 1.86 2.31 0.38 6.36 5.30 2.45 1.98 8.37 7.31 ns
–1 0.50 5.31 0.03 1.58 1.97 0.33 5.41 4.51 2.08 1.68 7.12 6.22 ns
8 mA Std. 0.59 5.10 0.04 1.86 2.31 0.38 5.20 4.49 2.79 2.64 7.21 6.50 ns
–1 0.50 4.34 0.03 1.58 1.97 0.33 4.42 3.82 2.37 2.24 6.13 5.53 ns
12 mA Std. 0.59 4.29 0.04 1.86 2.31 0. 38 4.37 3.91 3.03 3.05 6.39 5.92 ns
–1 0.50 3.65 0.03 1.58 1.97 0.33 3.72 3.32 2.58 2.60 5.43 5.04 ns
16 mA Std. 0.59 4.05 0.04 1.86 2.31 0. 38 4.12 3.78 3.08 3.17 6.13 5.79 ns
–1 0.50 3.44 0.03 1.58 1.97 0.33 3.51 3.22 2.62 2.70 5.22 4.93 ns
24 mA Std. 0.59 3.94 0.04 1.86 2.31 0. 38 4.01 3.80 3.15 3.60 6.03 5.81 ns
–1 0.50 3.35 0.03 1.58 1.97 0.33 3.41 3.23 2.68 3.06 5.13 4.94 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-69 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C ase VCCI = 2.3 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.59 3.18 0.04 1.86 2.31 0.38 3.24 2.84 2.45 2.06 5.25 4.85 ns
–1 0.50 2.71 0.03 1.58 1.97 0.33 2.76 2.42 2.08 1.75 4.47 4.13 ns
8 mA Std. 0.59 2.61 0.04 1.86 2.31 0.38 2.65 2.19 2.79 2.73 4.67 4.20 ns
–1 0.50 2.22 0.03 1.58 1.97 0.33 2.26 1.86 2.37 2.32 3.97 3.57 ns
12 mA Std. 0.59 2.26 0.04 1.86 2.31 0.38 2.30 1.86 3.03 3.15 4.32 3.88 ns
–1 0.50 1.92 0.03 1.58 1.97 0.33 1.96 1.59 2.58 2.68 3.67 3.30 ns
16 mA Std. 0.59 2.20 0.04 1.86 2.31 0.38 2.24 1.80 3.08 3.26 4.26 3.82 ns
–1 0.50 1.87 0.03 1.58 1.97 0.33 1.91 1.54 2.62 2.77 3.62 3.25 ns
24 mA Std. 0.59 2.21 0.04 1.86 2.31 0.38 2.25 1.73 3.15 3.70 4.27 3.74 ns
–1 0.50 1.88 0.03 1.58 1.97 0.33 1.92 1.47 2.68 3.14 3.63 3.18 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-54 Revision 10
Table 2-70 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 5.79 0.04 1.18 0. 38 5.90 5.18 2.41 1.98 7.91 7.19 ns
–1 0.46 4.92 0.03 1.00 0.33 5.01 4.40 2.05 1.69 6.73 6.11 ns
6 mA Std. 0.54 4.84 0.04 1.18 0. 38 4.93 4.43 2.74 2.60 6.94 6.44 ns
–1 0.46 4.11 0.03 1.00 0.33 4.19 3.77 2.33 2.21 5.90 5.48 ns
8 mA Std. 0.54 4.84 0.04 1.18 0. 38 4.93 4.43 2.74 2.60 6.94 6.44 ns
–1 0.46 4.11 0.03 1.00 0.33 4.19 3.77 2.33 2.21 5.90 5.48 ns
12 mA Std. 0.54 4.13 0.04 1.18 0.38 4.21 3.92 2.97 2.99 6.22 5.93 ns
–1 0.46 3.52 0.03 1.00 0.33 3.58 3.33 2.53 2.54 5.29 5.04 ns
16 mA Std. 0.54 3.91 0.04 1.18 0.38 3.98 3.80 3.02 3.09 5.99 5.81 ns
–1 0.46 3.32 0.03 1.00 0.33 3.39 3.23 2.57 2.63 5.10 4.94 ns
24 mA Std. 0.54 3.85 0.04 1.18 0.38 3.87 3.85 3.09 3.48 5.88 5.87 ns
–1 0.46 3.28 0.03 1.00 0.33 3.29 3.28 2.63 2.96 5.01 4.99 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-71 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 2.97 0.04 1.18 0. 38 3.03 2.74 2.41 2.07 5.04 4.75 ns
–1 0.46 2.53 0.03 1.00 0.33 2.58 2.33 2.05 1.76 4.29 4.04 ns
6 mA Std. 0.54 2.44 0.04 1.18 0. 38 2.49 2.12 2.74 2.70 4.50 4.13 ns
–1 0.46 2.08 0.03 1.00 0.33 2.12 1.80 2.33 2.30 3.83 3.51 ns
8 mA Std. 0.54 2.44 0.04 1.18 0. 38 2.49 2.12 2.74 2.70 4.50 4.13 ns
–1 0.46 2.08 0.03 1.00 0.33 2.12 1.80 2.33 2.30 3.83 3.51 ns
12 mA Std. 0.54 2.17 0.04 1.18 0.38 2.21 1.82 2.97 3.09 4.22 3.83 ns
–1 0.46 1.85 0.03 1.00 0.33 1.88 1.55 2.53 2.63 3.59 3.26 ns
16 mA Std. 0.54 2.12 0.04 1.18 0.38 2.16 1.76 3.03 3.19 4.17 3.78 ns
–1 0.46 1.81 0.03 1.00 0.33 1.84 1.50 2.57 2.72 3.55 3.21 ns
24 mA Std. 0.54 2.13 0.04 1.18 0.38 2.17 1.71 3.09 3.60 4.19 3.72 ns
–1 0.46 1.81 0.03 1.00 0.33 1.85 1.45 2.63 3.06 3.56 3.16 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-55
Table 2-72 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 5.27 0.04 1.17 0. 38 5.37 4.68 2.03 1.79 7.38 6.69 ns
–1 0.46 4.49 0.03 0.99 0.33 4.57 3.98 1.73 1.52 6.28 5.69 ns
6 mA Std. 0.54 4.32 0.04 1.17 0. 38 4.40 4.03 2.33 2.35 6.42 6.04 ns
–1 0.46 3.68 0.03 0.99 0.33 3.75 3.43 1.98 2.00 5.46 5.14 ns
8 mA Std. 0.54 4.32 0.04 1.17 0. 38 4.40 4.03 2.33 2.35 6.42 6.04 ns
–1 0.46 3.68 0.03 0.99 0.33 3.75 3.43 1.98 2.00 5.46 5.14 ns
12 mA Std. 0.54 3.66 0.04 1.17 0.38 3.73 3.56 2.54 2.71 5.74 5.57 ns
–1 0.46 3.12 0.03 0.99 0.33 3.17 3.03 2.16 2.30 4.89 4.74 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-73 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.54 2.60 0.04 1.17 0. 38 2.65 2.39 2.03 1.87 4.66 4.40 ns
–1 0.46 2.21 0.03 0.99 0.33 2.25 2.03 1.72 1.59 3.96 3.74 ns
6 mA Std. 0.54 2.10 0.04 1.17 0. 38 2.14 1.83 2.33 2.44 4.16 3.84 ns
–1 0.46 1.79 0.03 0.99 0.33 1.82 1.56 1.98 2.07 3.54 3.27 ns
8 mA Std. 0.54 2.10 0.04 1.17 0. 38 2.14 1.83 2.33 2.44 4.16 3.84 ns
–1 0.46 1.79 0.03 0.99 0.33 1.82 1.56 1.98 2.07 3.54 3.27 ns
12 mA Std. 0.54 1.86 0.04 1.17 0.38 1.90 1.55 2.54 2.80 3.91 3.57 ns
–1 0.46 1.59 0.03 0.99 0.33 1.61 1.32 2.16 2.38 3.33 3.03 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-56 Revision 10
1.2 V DC Core Voltage
Table 2-74 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.77 6.24 0.05 1.86 2.31 0.50 6.36 5.30 2.45 1.98 8.37 7.31 ns
–1 0.66 5.31 0.04 1.58 1.97 0.43 5.41 4.51 2.08 1.68 7.12 6.22 ns
8 mA Std. 0.77 5.10 0.05 1.86 2.31 0.50 5.20 4.49 2.79 2.64 7.21 6.50 ns
–1 0.66 4.34 0.04 1.58 1.97 0.43 4.42 3.82 2.37 2.24 6.13 5.53 ns
12 mA Std. 0.77 4.29 0.05 1.86 2.31 0. 50 4.37 3.91 3.03 3.05 6.39 5.92 ns
–1 0.66 3.65 0.04 1.58 1.97 0.43 3.72 3.32 2.58 2.60 5.43 5.04 ns
16 mA Std. 0.77 4.05 0.05 1.86 2.31 0. 50 4.12 3.78 3.08 3.17 6.13 5.79 ns
–1 0.66 3.44 0.04 1.58 1.97 0.43 3.51 3.22 2.62 2.70 5.22 4.93 ns
24 mA Std. 0.77 3.94 0.05 1.86 2.31 0. 50 4.01 3.80 3.15 3.60 6.03 5.81 ns
–1 0.66 3.35 0.04 1.58 1.97 0.43 3.41 3.23 2.68 3.06 5.13 4.94 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-75 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.77 3.18 0.05 1.86 2.31 0.50 3.24 2.84 2.45 2.06 5.25 4.85 ns
–1 0.66 2.71 0.04 1.58 1.97 0.43 2.76 2.42 2.08 1.75 4.47 4.13 ns
8 mA Std. 0.77 2.61 0.05 1.86 2.31 0.50 2.65 2.19 2.79 2.73 4.67 4.20 ns
–1 0.66 2.22 0.04 1.58 1.97 0.43 2.26 1.86 2.37 2.32 3.97 3.57 ns
12 mA Std. 0.77 2.26 0.05 1.86 2.31 0.50 2.30 1.86 3.03 3.15 4.32 3.88 ns
–1 0.66 1.92 0.04 1.58 1.97 0.43 1.96 1.59 2.58 2.68 3.67 3.30 ns
16 mA Std. 0.77 2.20 0.05 1.86 2.31 0. 50 2.24 1.80 3.08 3.26 4.26 3.82 ns
–1 0.66 1.87 0.04 1.58 1.97 0.43 1.91 1.54 2.62 2.77 3.62 3.25 ns
24 mA Std. 0.77 2.21 0.05 1.86 2.31 0. 50 2.25 1.73 3.15 3.70 4.27 3.74 ns
–1 0.66 1.88 0.04 1.58 1.97 0.43 1.92 1.47 2.68 3.14 3.63 3.18 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-57
Table 2-76 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 5.79 0.05 1.18 0.50 5.90 5.18 2.41 1.98 7.91 7.19 ns
–1 0.60 4.92 0.04 1.00 0.43 5.01 4.40 2.05 1.69 6.73 6.11 ns
6 mA Std. 0.70 4.84 0.05 1.18 0.50 4.93 4.43 2.74 2.60 6.94 6.44 ns
–1 0.60 4.11 0.04 1.00 0.43 4.19 3.77 2.33 2.21 5.90 5.48 ns
8 mA Std. 0.70 4.84 0.05 1.18 0.50 4.93 4.43 2.74 2.60 6.94 6.44 ns
–1 0.60 4.11 0.04 1.00 0.43 4.19 3.77 2.33 2.21 5.90 5.48 ns
12 mA Std. 0.70 4.13 0.05 1.18 0.50 4.21 3.92 2.97 2.99 6.22 5.93 ns
–1 0.60 3.52 0.04 1.00 0.43 3.58 3.33 2.53 2.54 5.29 5.04 ns
16 mA Std. 0.70 3.91 0.05 1.18 0.50 3.98 3.80 3.02 3.09 5.99 5.81 ns
–1 0.60 3.32 0.04 1.00 0.43 3.39 3.23 2.57 2.63 5.10 4.94 ns
24 mA Std. 0.70 3.85 0.05 1.18 0.50 3.87 3.85 3.09 3.48 5.88 5.87 ns
–1 0.60 3.28 0.04 1.00 0.43 3.29 3.28 2.63 2.96 5.01 4.99 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-77 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 2.97 0.05 1.18 0.50 3.03 2.74 2.41 2.07 5.04 4.75 ns
–1 0.60 2.53 0.04 1.00 0.43 2.58 2.33 2.05 1.76 4.29 4.04 ns
6 mA Std. 0.70 2.44 0.05 1.18 0.50 2.49 2.12 2.74 2.70 4.50 4.13 ns
–1 0.60 2.08 0.04 1.00 0.43 2.12 1.80 2.33 2.30 3.83 3.51 ns
8 mA Std. 0.70 2.44 0.05 1.18 0.50 2.49 2.12 2.74 2.70 4.50 4.13 ns
–1 0.60 2.08 0.04 1.00 0.43 2.12 1.80 2.33 2.30 3.83 3.51 ns
12 mA Std. 0.70 2.17 0.05 1.18 0.50 2.21 1.82 2.97 3.09 4.22 3.83 ns
–1 0.60 1.85 0.04 1.00 0.43 1.88 1.55 2.53 2.63 3.59 3.26 ns
16 mA Std. 0.70 2.12 0.05 1.18 0.50 2.16 1.76 3.03 3.19 4.17 3.78 ns
–1 0.60 1.81 0.04 1.00 0.43 1.84 1.50 2.57 2.72 3.55 3.21 ns
24 mA Std. 0.70 2.13 0.05 1.18 0.50 2.17 1.71 3.09 3.60 4.19 3.72 ns
–1 0.60 1.81 0.04 1.00 0.43 1.85 1.45 2.63 3.06 3.56 3.16 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-58 Revision 10
Table 2-78 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/Os
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 5.27 0.05 1.17 0.50 5.37 4.68 2.03 1.79 7.38 6.69 ns
–1 0.60 4.49 0.04 0.99 0.43 4.57 3.98 1.73 1.52 6.28 5.69 ns
6 mA Std. 0.70 4.32 0.05 1.17 0.50 4.40 4.03 2.33 2.35 6.42 6.04 ns
–1 0.60 3.68 0.04 0.99 0.43 3.75 3.43 1.98 2.00 5.46 5.14 ns
8 mA Std. 0.70 4.32 0.05 1.17 0.50 4.40 4.03 2.33 2.35 6.42 6.04 ns
–1 0.60 3.68 0.04 0.99 0.43 3.75 3.43 1.98 2.00 5.46 5.14 ns
12 mA Std. 0.70 3.66 0.05 1.17 0.50 3.73 3.56 2.54 2.71 5.74 5.57 ns
–1 0.60 3.12 0.04 0.99 0.43 3.17 3.03 2.16 2.30 4.89 4.74 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-79 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/Os
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.70 2.60 0.05 1.17 0.50 2.65 2.39 2.03 1.87 4.66 4.40 ns
–1 0.60 2.21 0.04 0.99 0.43 2.25 2.03 1.72 1.59 3.96 3.74 ns
6 mA Std. 0.70 2.10 0.05 1.17 0.50 2.14 1.83 2.33 2.44 4.16 3.84 ns
–1 0.60 1.79 0.04 0.99 0.43 1.82 1.56 1.98 2.07 3.54 3.27 ns
8 mA Std. 0.70 2.10 0.05 1.17 0.50 2.14 1.83 2.33 2.44 4.16 3.84 ns
–1 0.60 1.79 0.04 0.99 0.43 1.82 1.56 1.98 2.07 3.54 3.27 ns
12 mA Std. 0.70 1.86 0.05 1.17 0.50 1.90 1.55 2.54 2.80 3.91 3.57 ns
–1 0.60 1.59 0.04 0.99 0.43 1.61 1.32 2.16 2.38 3.33 3.03 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-59
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applica ti ons. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-80 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os
1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin. V
Max.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 10 10
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 45 51 10 10
12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 91 74 10 10
16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 91 74 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-81 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Ban ks
1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI 0.45 2 2 9 11 10 10
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.4 5 VCCI 0.45 4 4 17 22 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.4 5 VCCI 0.45 6 6 35 44 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.4 5 VCCI 0.45 8 8 45 51 10 10
12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 91 74 10 10
16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI 0.45 16 16 91 74 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-60 Revision 10
Table 2-82 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks
1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 10 10
4 mA –0.3 0.3 5 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.4 5 VCCI – 0. 45 8 8 35 44 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-9 AC Loading
Table 2-83 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Poin t* (V) CLOAD (pF)
01.80.95
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-61
Timing Characteristics
1.5 V DC Core Voltage
Table 2-84 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.59 8.32 0.04 1.80 2.55 0.38 8.48 6.99 2.50 1.42 10.49 9.00 ns
–1 0.50 7.08 0.03 1.53 2.17 0.33 7.21 5.95 2.13 1.21 8.92 7.66 ns
4 mA Std. 0.59 6.85 0.04 1.80 2.55 0.38 6.98 5.89 2.93 2.50 8.99 7.90 ns
–1 0.50 5.83 0.03 1.53 2.17 0.33 5.94 5.01 2.49 2.12 7.65 6.72 ns
6 mA Std. 0.59 5.81 0.04 1.80 2.55 0.38 5.92 5.13 3.21 3.02 7.93 7.15 ns
–1 0.50 4.94 0.03 1.53 2.17 0.33 5.03 4.37 2.73 2.57 6.75 6.08 ns
8 mA Std. 0.59 5.46 0.04 1.80 2.55 0.38 5.56 4.99 3.28 3.17 7.57 7.00 ns
–1 0.50 4.64 0.03 1.53 2.17 0.33 4.73 4.24 2.79 2.70 6.44 5.95 ns
12 mA Std. 0.59 5.36 0.04 1.80 2.55 0.38 5.46 4.99 3.37 3.70 7.47 7.01 ns
–1 0.50 4.56 0.03 1.53 2.17 0.33 4.64 4.25 2.86 3.14 6.35 5.96 ns
16 mA Std. 0.59 5.36 0.04 1.80 2.55 0.38 5.46 4.99 3.37 3.70 7.47 7.01 ns
–1 0.50 4.56 0.03 1.53 2.17 0.33 4.64 4.25 2.86 3.14 6.35 5.96 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-85 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCC I = 1. 7 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.59 3.76 0.04 1.80 2.55 0.38 3.83 3.68 2.50 1.47 5.84 5.70 ns
–1 0.50 3.20 0.03 1.53 2.17 0.33 3.26 3.13 2.13 1.25 4.97 4.85 ns
4 mA Std. 0.59 3.05 0.04 1.80 2.55 0.38 3.11 2.73 2.92 2.58 5.12 4.75 ns
–1 0.50 2.59 0.03 1.53 2.17 0.33 2.64 2.33 2.49 2.19 4.35 4.04 ns
6 mA Std. 0.59 2.61 0.04 1.80 2.55 0.38 2.66 2.27 3.21 3.12 4.67 4.28 ns
–1 0.50 2.22 0.03 1.53 2.17 0.33 2.26 1.93 2.73 2.65 3.98 3.64 ns
8 mA Std. 0.59 2.53 0.04 1.80 2.55 0.38 2.58 2.18 3.27 3.26 4.59 4.19 ns
–1 0.50 2.15 0.03 1.53 2.17 0.33 2.19 1.85 2.78 2.77 3.90 3.57 ns
12 mA Std. 0.59 2.52 0.04 1.80 2.55 0.38 2.56 2.07 3.36 3.81 4.58 4.08 ns
–1 0.50 2.14 0.03 1.53 2.17 0.33 2.18 1.76 2.86 3.24 3.89 3.47 ns
16 mA Std. 0.59 2.52 0.04 1.80 2.55 0.38 2.56 2.07 3.36 3.81 4.58 4.08 ns
–1 0.50 2.14 0.03 1.53 2.17 0.33 2.18 1.76 2.86 3.24 3.89 3.47 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-62 Revision 10
Table 2-86 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.7 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 7.77 0.04 1.18 0. 38 7.92 6.80 2.50 1.44 9.93 8.81 ns
–1 0.46 6.61 0.03 1.00 0.33 6.73 5.78 2.13 1.22 8.45 7.49 ns
4 mA Std. 0.54 6.38 0.04 1.18 0. 38 6.50 5.78 2.91 2.46 8.51 7.79 ns
–1 0.46 5.43 0.03 1.00 0.33 5.53 4.91 2.47 2.09 7.24 6.63 ns
6 mA Std. 0.54 5.48 0.04 1.18 0. 38 5.58 5.11 3.18 2.94 7.59 7.12 ns
–1 0.46 4.66 0.03 1.00 0.33 4.75 4.35 2.71 2.51 6.46 6.06 ns
8 mA Std. 0.54 5.17 0.04 1.18 0. 38 5.26 4.97 3.24 3.07 7.27 6.98 ns
–1 0.46 4.40 0.03 1.00 0.33 4.48 4.23 2.76 2.61 6.19 5.94 ns
12 mA Std. 0.54 5.06 0.04 1.18 0.38 5.15 5.03 3.34 3.55 7.17 7.04 ns
–1 0.46 4.30 0.03 1.00 0.33 4.38 4.28 2.84 3.02 6.10 5.99 ns
16 mA Std. 0.54 5.06 0.04 1.18 0.38 5.15 5.03 3.34 3.55 7.17 7.04 ns
–1 0.46 4.30 0.03 1.00 0.33 4.38 4.28 2.84 3.02 6.10 5.99 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-87 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.7 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 3.60 0.04 1.10 0. 38 3.66 3.52 2.49 1.49 5.68 5.53 ns
–1 0.46 3.06 0.03 0.93 0.33 3.12 3.00 2.12 1.27 4.83 4.71 ns
4 mA Std. 0.54 2.81 0.04 1.10 0. 38 2.87 2.64 2.90 2.55 4.88 4.65 ns
–1 0.46 2.39 0.03 0.93 0.33 2.44 2.25 2.47 2.17 4.15 3.96 ns
6 mA Std. 0.54 2.47 0.04 1.10 0. 38 2.51 2.21 3.18 3.04 4.53 4.22 ns
–1 0.46 2.10 0.03 0.93 0.33 2.14 1.88 2.70 2.59 3.85 3.59 ns
8 mA Std. 0.54 2.40 0.04 1.10 0.38 2.45 2.13 3.24 3.17 4.46 4.14 ns
–1 0.46 2.04 0.03 0.93 0.33 2.08 1.81 2.76 2.70 3.79 3.52 ns
12 mA Std. 0.54 2.39 0.04 1.10 0.38 2.44 2.04 3.33 3.67 4.45 4.05 ns
–1 0.46 2.04 0.03 0.93 0.33 2.08 1.73 2.83 3.12 3.79 3.45 ns
16 mA Std. 0.54 2.39 0.04 1.10 0.38 2.44 2.04 3.33 3.67 4.45 4.05 ns
–1 0.46 2.04 0.03 0.93 0.33 2.08 1.73 2.83 3.12 3.79 3.45 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-63
Table 2-88 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 7.21 0.04 1.17 0. 38 7.35 6.14 2.03 1.32 9.36 8.16 ns
–1 0.46 6.13 0.03 0.99 0.33 6.25 5.23 1.72 1.12 7.96 6.94 ns
4 mA Std. 0.54 5.81 0.04 1.17 0. 38 5.92 5.26 2.39 2.25 7.93 7.27 ns
–1 0.46 4.94 0.03 0.99 0.33 5.03 4.47 2.03 1.91 6.74 6.19 ns
6 mA Std. 0.54 4.96 0.04 1.17 0. 38 5.05 4.65 2.64 2.69 7.06 6.66 ns
–1 0.46 4.22 0.03 0.99 0.33 4.30 3.96 2.25 2.29 6.01 5.67 ns
8 mA Std. 0.54 4.96 0.04 1.17 0. 38 5.05 4.65 2.64 2.69 7.06 6.66 ns
–1 0.46 4.22 0.03 0.99 0.33 4.30 3.96 2.25 2.29 6.01 5.67 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-89 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 3.22 0.04 1.08 0. 38 3.28 3.04 2.02 1.37 5.30 5.06 ns
–1 0.46 2.74 0.03 0.92 0.33 2.79 2.59 1.72 1.17 4.50 4.30 ns
4 mA Std. 0.54 2.48 0.04 1.08 0. 38 2.53 2.25 2.38 2.34 4.54 4.26 ns
–1 0.46 2.11 0.03 0.92 0.33 2.15 1.92 2.03 1.99 3.86 3.63 ns
6 mA Std. 0.54 2.17 0.04 1.08 0. 38 2.21 1.86 2.64 2.79 4.22 3.87 ns
–1 0.46 1.85 0.03 0.92 0.33 1.88 1.58 2.24 2.37 3.59 3.29 ns
8 mA Std. 0.54 2.17 0.04 1.08 0.38 2.21 1.86 2.64 2.79 4.22 3.87 ns
–1 0.46 1.85 0.03 0.92 0.33 1.88 1.58 2.24 2.37 3.59 3.29 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-64 Revision 10
1.2 V DC Core Voltage
Table 2-90 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.77 8.32 0.05 1.80 2.55 0.50 8.48 6.99 2.50 1.42 10.49 9.00 ns
–1 0.66 7.08 0.04 1.53 2.17 0.43 7.21 5.95 2.13 1.21 8.92 7.66 ns
4 mA Std. 0.77 6.85 0.05 1.80 2.55 0.50 6.98 5.89 2.93 2.50 8.99 7.90 ns
–1 0.66 5.83 0.04 1.53 2.17 0.43 5.94 5.01 2.49 2.12 7.65 6.72 ns
6 mA Std. 0.77 5.81 0.05 1.80 2.55 0.50 5.92 5.13 3.21 3.02 7.93 7.15 ns
–1 0.66 4.94 0.04 1.53 2.17 0.43 5.03 4.37 2.73 2.57 6.75 6.08 ns
8 mA Std. 0.77 5.46 0.05 1.80 2.55 0.50 5.56 4.99 3.28 3.17 7.57 7.00 ns
–1 0.66 4.64 0.04 1.53 2.17 0.43 4.73 4.24 2.79 2.70 6.44 5.95 ns
12 mA Std. 0.77 5.36 0.05 1.80 2.55 0.50 5.46 4.99 3.37 3.70 7.47 7.01 ns
–1 0.66 4.56 0.04 1.53 2.17 0.43 4.64 4.25 2.86 3.14 6.35 5.96 ns
16 mA Std. 0.77 5.36 0.05 1.80 2.55 0.50 5.46 4.99 3.37 3.70 7.47 7.01 ns
–1 0.66 4.56 0.04 1.53 2.17 0.43 4.64 4.25 2.86 3.14 6.35 5.96 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-91 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.77 3.76 0.05 1.80 2.55 0.50 3.83 3.68 2.50 1.47 5.84 5.70 ns
–1 0.66 3.20 0.04 1.53 2.17 0.43 3.26 3.13 2.13 1.25 4.97 4.85 ns
4 mA Std. 0.77 3.05 0.05 1.80 2.55 0.50 3.11 2.73 2.92 2.58 5.12 4.75 ns
–1 0.66 2.59 0.04 1.53 2.17 0.43 2.64 2.33 2.49 2.19 4.35 4.04 ns
6 mA Std. 0.77 2.61 0.05 1.80 2.55 0.50 2.66 2.27 3.21 3.12 4.67 4.28 ns
–1 0.66 2.22 0.04 1.53 2.17 0.43 2.26 1.93 2.73 2.65 3.98 3.64 ns
8 mA Std. 0.77 2.53 0.05 1.80 2.55 0.50 2.58 2.18 3.27 3.26 4.59 4.19 ns
–1 0.66 2.15 0.04 1.53 2.17 0.43 2.19 1.85 2.78 2.77 3.90 3.57 ns
12 mA Std. 0.77 2.52 0.05 1.80 2.55 0.50 2.56 2.07 3.36 3.81 4.58 4.08 ns
–1 0.66 2.14 0.04 1.53 2.17 0.43 2.18 1.76 2.86 3.24 3.89 3.47 ns
16 mA Std. 0.77 2.52 0.05 1.80 2.55 0.50 2.56 2.07 3.36 3.81 4.58 4.08 ns
–1 0.66 2.14 0.04 1.53 2.17 0.43 2.18 1.76 2.86 3.24 3.89 3.47 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-65
Table 2-92 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 7.77 0.05 1.18 0.50 7.92 6.80 2.50 1.44 9.93 8.81 ns
–1 0.60 6.61 0.04 1.00 0.43 6.73 5.78 2.13 1.22 8.45 7.49 ns
4 mA Std. 0.70 6.38 0.05 1.18 0.50 6.50 5.78 2.91 2.46 8.51 7.79 ns
–1 0.60 5.43 0.04 1.00 0.43 5.53 4.91 2.47 2.09 7.24 6.63 ns
6 mA Std. 0.70 5.48 0.05 1.18 0.50 5.58 5.11 3.18 2.94 7.59 7.12 ns
–1 0.60 4.66 0.04 1.00 0.43 4.75 4.35 2.71 2.51 6.46 6.06 ns
8 mA Std. 0.70 5.17 0.05 1.18 0.50 5.26 4.97 3.24 3.07 7.27 6.98 ns
–1 0.60 4.40 0.04 1.00 0.43 4.48 4.23 2.76 2.61 6.19 5.94 ns
12 mA Std. 0.70 5.06 0.05 1.18 0.50 5.15 5.03 3.34 3.55 7.17 7.04 ns
–1 0.60 4.30 0.04 1.00 0.43 4.38 4.28 2.84 3.02 6.10 5.99 ns
16 mA Std. 0.70 5.06 0.05 1.18 0.50 5.15 5.03 3.34 3.55 7.17 7.04 ns
–1 0.60 4.30 0.04 1.00 0.43 4.38 4.28 2.84 3.02 6.10 5.99 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-93 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 3.60 0.05 1.10 0.50 3.66 3.52 2.49 1.49 5.68 5.53 ns
–1 0.60 3.06 0.04 0.93 0.43 3.12 3.00 2.12 1.27 4.83 4.71 ns
4 mA Std. 0.70 2.81 0.05 1.10 0.50 2.87 2.64 2.90 2.55 4.88 4.65 ns
–1 0.60 2.39 0.04 0.93 0.43 2.44 2.25 2.47 2.17 4.15 3.96 ns
6 mA Std. 0.70 2.47 0.05 1.10 0.50 2.51 2.21 3.18 3.04 4.53 4.22 ns
–1 0.60 2.10 0.04 0.93 0.43 2.14 1.88 2.70 2.59 3.85 3.59 ns
8 mA Std. 0.70 2.40 0.05 1.10 0.50 2.45 2.13 3.24 3.17 4.46 4.14 ns
–1 0.60 2.04 0.04 0.93 0.43 2.08 1.81 2.76 2.70 3.79 3.52 ns
12 mA Std. 0.70 2.39 0.05 1.10 0.50 2.44 2.04 3.33 3.67 4.45 4.05 ns
–1 0.60 2.04 0.04 0.93 0.43 2.08 1.73 2.83 3.12 3.79 3.45 ns
16 mA Std. 0.70 2.39 0.05 1.10 0.50 2.44 2.04 3.33 3.67 4.45 4.05 ns
–1 0.60 2.04 0.04 0.93 0.43 2.08 1.73 2.83 3.12 3.79 3.45 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-66 Revision 10
Table 2-94 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 7.21 0.05 1.17 0.50 7.35 6.14 2.03 1.32 9.36 8.16 ns
–1 0.60 6.13 0.04 0.99 0.43 6.25 5.23 1.72 1.12 7.96 6.94 ns
4 mA Std. 0.70 5.81 0.05 1.17 0.50 5.92 5.26 2.39 2.25 7.93 7.27 ns
–1 0.60 4.94 0.04 0.99 0.43 5.03 4.47 2.03 1.91 6.74 6.19 ns
6 mA Std. 0.70 4.96 0.05 1.17 0.50 5.05 4.65 2.64 2.69 7.06 6.66 ns
–1 0.60 4.22 0.04 0.99 0.43 4.30 3.96 2.25 2.29 6.01 5.67 ns
8 mA Std. 0.70 4.96 0.05 1.17 0.50 5.05 4.65 2.64 2.69 7.06 6.66 ns
–1 0.60 4.22 0.04 0.99 0.43 4.30 3.96 2.25 2.29 6.01 5.67 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-95 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 3.22 0.05 1.08 0.50 3.28 3.04 2.02 1.37 5.30 5.06 ns
–1 0.60 2.74 0.04 0.92 0.43 2.79 2.59 1.72 1.17 4.50 4.30 ns
4 mA Std. 0.70 2.48 0.05 1.08 0.50 2.53 2.25 2.38 2.34 4.54 4.26 ns
–1 0.60 2.11 0.04 0.92 0.43 2.15 1.92 2.03 1.99 3.86 3.63 ns
6 mA Std. 0.70 2.17 0.05 1.08 0.50 2.21 1.86 2.64 2.79 4.22 3.87 ns
–1 0.60 1.85 0.04 0.92 0.43 1.88 1.58 2.24 2.37 3.59 3.29 ns
8 mA Std. 0.70 2.17 0.05 1.08 0.50 2.21 1.86 2.64 2.79 4.22 3.87 ns
–1 0.60 1.85 0.04 0.92 0.43 1.88 1.58 2.24 2.37 3.59 3.29 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-67
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applica ti ons. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-96 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os
1.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 32 39 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 66 55 10 10
12 mA –0.3 0.35 * VCCI 0.6 5 * VC CI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 66 55 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-97 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Ban ks
1.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 32 39 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 66 55 10 10
12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 66 55 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-68 Revision 10
Table 2-98 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10
4 mA –0.3 0.35 * VC CI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-10 • AC Loading
Table 2-99 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Poin t* (V) CLOAD (pF)
01.50.755
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-69
Timing Characteristics
1.5 V DC Core Voltage
Table 2-100 • 1.5 V LVCMOS Low Slew – Ap plies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.59 8.65 0.04 1.99 2.77 0.38 8.81 7.17 3.06 2.41 10.83 9.18 ns
–1 0.50 7.36 0.03 1.69 2.36 0.33 7.50 6.10 2.61 2.05 9.21 7.81 ns
4 mA Std. 0.59 7.40 0.04 1.99 2.77 0.38 7.53 6.26 3.39 3.02 9.55 8.27 ns
–1 0.50 6.29 0.03 1.69 2.36 0.33 6.41 5.33 2.89 2.57 8.12 7.04 ns
6 mA Std. 0.59 6.94 0.04 1.99 2.77 0.38 7.07 6.09 3.46 3.19 9.08 8.11 ns
–1 0.50 5.91 0.03 1.69 2.36 0.33 6.01 5.18 2.94 2.72 7.73 6.90 ns
8 mA Std. 0.59 6.85 0.04 1.99 2.77 0.38 6.98 6.10 3.57 3.80 8.99 8.11 ns
–1 0.50 5.83 0.03 1.69 2.36 0.33 5.94 5.19 3.04 3.23 7.65 6.90 ns
12 mA Std. 0.59 6.85 0.04 1.99 2.77 0.38 6.98 6.10 3.57 3.80 8.99 8.11 ns
–1 0.50 5.83 0.03 1.69 2.36 0.33 5.94 5.19 3.04 3.23 7.65 6.90 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-101 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.59 3.55 0.04 1.99 2.77 0.38 3.62 3.22 3.05 2.51 5.63 5.23 ns
–1 0.50 3.02 0.03 1.69 2.36 0.33 3.08 2.74 2.60 2.14 4.79 4.45 ns
4 mA Std. 0.59 3.03 0.04 1.99 2.77 0.38 3.08 2.64 3.38 3.13 5.10 4.65 ns
–1 0.50 2.58 0.03 1.69 2.36 0.33 2.62 2.25 2.87 2.66 4.34 3.96 ns
6 mA Std. 0.59 2.93 0.04 1.99 2.77 0.38 2.98 2.53 3.45 3.30 4.99 4.54 ns
–1 0.50 2.49 0.03 1.69 2.36 0.33 2.54 2.15 2.93 2.81 4.25 3.86 ns
8 mA Std. 0.59 2.90 0.04 1.99 2.77 0.38 2.95 2.39 3.57 3.94 4.96 4.41 ns
–1 0.50 2.46 0.03 1.69 2.36 0.33 2.51 2.04 3.03 3.35 4.22 3.75 ns
12 mA Std. 0.59 2.90 0.04 1.99 2.77 0.38 2.95 2.39 3.57 3.94 4.96 4.41 ns
–1 0.50 2.46 0.03 1.69 2.36 0.33 2.51 2.04 3.03 3.35 4.22 3.75 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-70 Revision 10
Table 2-102 • 1.5 V LVCMOS Low Slew – Ap plies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.4 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 8.00 0.04 1.18 0.38 8.15 7.01 3.06 2.38 10.16 9.02 ns
–1 0.46 6.80 0.03 1.00 0.33 6.93 5.96 2.60 2.02 8.64 7.68 ns
4 mA Std. 0.54 6.91 0.04 1.18 0. 38 7.04 6.21 3.37 2.94 9.05 8.22 ns
–1 0.46 5.88 0.03 1.00 0.33 5.99 5.28 2.87 2.50 7.70 7.00 ns
6 mA Std. 0.54 6.51 0.04 1.18 0. 38 6.63 6.05 3.45 3.09 8.64 8.06 ns
–1 0.46 5.54 0.03 1.00 0.33 5.64 5.15 2.93 2.63 7.35 6.86 ns
8 mA Std. 0.54 6.41 0.04 1.18 0. 38 6.53 6.11 3.56 3.64 8.54 8.12 ns
–1 0.46 5.45 0.03 1.00 0.33 5.56 5.20 3.03 3.10 7.27 6.91 ns
12 mA Std. 0.54 6.41 0.04 1.18 0.38 6.53 6.11 3.56 3.64 8.54 8.12 ns
–1 0.46 5.45 0.03 1.00 0.33 5.56 5.20 3.03 3.10 7.27 6.91 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-103 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.4 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 3.60 0.04 1.10 0. 38 3.66 3.52 2.49 1.49 5.68 5.53 ns
–1 0.46 3.06 0.03 0.93 0.33 3.12 3.00 2.12 1.27 4.83 4.71 ns
4 mA Std. 0.54 2.81 0.04 1.10 0. 38 2.87 2.64 2.90 2.55 4.88 4.65 ns
–1 0.46 2.39 0.03 0.93 0.33 2.44 2.25 2.47 2.17 4.15 3.96 ns
6 mA Std. 0.54 2.47 0.04 1.10 0. 38 2.51 2.21 3.18 3.04 4.53 4.22 ns
–1 0.46 2.10 0.03 0.93 0.33 2.14 1.88 2.70 2.59 3.85 3.59 ns
8 mA Std. 0.54 2.40 0.04 1.10 0.38 2.45 2.13 3.24 3.17 4.46 4.14 ns
–1 0.46 2.04 0.03 0.93 0.33 2.08 1.81 2.76 2.70 3.79 3.52 ns
12 mA Std. 0.54 2.39 0.04 1.10 0.38 2.44 2.04 3.33 3.67 4.45 4.05 ns
–1 0.46 2.04 0.03 0.93 0.33 2.08 1.73 2.83 3.12 3.79 3.45 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-71
Table 2-104 • 1.5 V LVCMOS Low Slew – Ap plies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 7.32 0.04 1.17 0. 38 7.45 6.38 2.44 2.18 9.46 8.40 ns
–1 0.46 6.22 0.03 0.99 0.33 6.34 5.43 2.08 1.86 8.05 7.14 ns
4 mA Std. 0.54 6.29 0.04 1.17 0. 38 6.40 5.65 2.73 2.70 8.42 7.67 ns
–1 0.46 5.35 0.03 0.99 0.33 5.45 4.81 2.33 2.29 7.16 6.52 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-105 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.54 2.90 0.04 1.28 0. 38 2.95 2.63 2.44 2.29 4.97 4.64 ns
–1 0.46 2.47 0.03 1.09 0.33 2.51 2.24 2.07 1.95 4.23 3.95 ns
4 mA Std. 0.54 2.52 0.04 1.28 0.38 2.57 2.14 2.73 2.82 4.58 4.15 ns
–1 0.46 2.15 0.03 1.09 0.33 2.19 1.82 2.32 2.40 3.90 3.53 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-72 Revision 10
1.2 V DC Core Voltage
Table 2-106 • 1.5 V LVCMOS Low Slew – Ap plies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.77 8.65 0.05 1.99 2.77 0.50 8.81 7.17 3.06 2.41 10.83 9.18 ns
–1 0.66 7.36 0.04 1.69 2.36 0.43 7.50 6.10 2.61 2.05 9.21 7.81 ns
4 mA Std. 0.77 7.40 0.05 1.99 2.77 0.50 7.53 6.26 3.39 3.02 9.55 8.27 ns
–1 0.66 6.29 0.04 1.69 2.36 0.43 6.41 5.33 2.89 2.57 8.12 7.04 ns
6 mA Std. 0.77 6.94 0.05 1.99 2.77 0.50 7.07 6.09 3.46 3.19 9.08 8.11 ns
–1 0.66 5.91 0.04 1.69 2.36 0.43 6.01 5.18 2.94 2.72 7.73 6.90 ns
8 mA Std. 0.77 6.85 0.05 1.99 2.77 0.50 6.98 6.10 3.57 3.80 8.99 8.11 ns
–1 0.66 5.83 0.04 1.69 2.36 0.43 5.94 5.19 3.04 3.23 7.65 6.90 ns
12 mA Std. 0.77 6.85 0.05 1.99 2.77 0.50 6.98 6.10 3.57 3.80 8.99 8.11 ns
–1 0.66 5.83 0.04 1.69 2.36 0.43 5.94 5.19 3.04 3.23 7.65 6.90 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-107 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.77 3.55 0.05 1.99 2.77 0.50 3.62 3.22 3.05 2.51 5.63 5.23 ns
–1 0.66 3.02 0.04 1.69 2.36 0.43 3.08 2.74 2.60 2.14 4.79 4.45 ns
4 mA Std. 0.77 3.03 0.05 1.99 2.77 0.50 3.08 2.64 3.38 3.13 5.10 4.65 ns
–1 0.66 2.58 0.04 1.69 2.36 0.43 2.62 2.25 2.87 2.66 4.34 3.96 ns
6 mA Std. 0.77 2.93 0.05 1.99 2.77 0.50 2.98 2.53 3.45 3.30 4.99 4.54 ns
–1 0.66 2.49 0.04 1.69 2.36 0.43 2.54 2.15 2.93 2.81 4.25 3.86 ns
8 mA Std. 0.77 2.90 0.05 1.99 2.77 0.50 2.95 2.39 3.57 3.94 4.96 4.41 ns
–1 0.66 2.46 0.04 1.69 2.36 0.43 2.51 2.04 3.03 3.35 4.22 3.75 ns
12 mA Std. 0.77 2.90 0.05 1.99 2.77 0.50 2.95 2.39 3.57 3.94 4.96 4.41 ns
–1 0.66 2.46 0.04 1.69 2.36 0.43 2.51 2.04 3.03 3.35 4.22 3.75 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-73
Table 2-108 • 1.5 V LVCMOS Low Slew – Ap plies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 8.00 0.05 1.18 0.50 8.15 7.01 3.06 2.38 10.16 9.02 ns
–1 0.60 6.80 0.04 1.00 0.43 6.93 5.96 2.60 2.02 8.64 7.68 ns
4 mA Std. 0.70 6.91 0.05 1.18 0.50 7.04 6.21 3.37 2.94 9.05 8.22 ns
–1 0.60 5.88 0.04 1.00 0.43 5.99 5.28 2.87 2.50 7.70 7.00 ns
6 mA Std. 0.70 6.51 0.05 1.18 0.50 6.63 6.05 3.45 3.09 8.64 8.06 ns
–1 0.60 5.54 0.04 1.00 0.43 5.64 5.15 2.93 2.63 7.35 6.86 ns
8 mA Std. 0.70 6.41 0.05 1.18 0.50 6.53 6.11 3.56 3.64 8.54 8.12 ns
–1 0.60 5.45 0.04 1.00 0.43 5.56 5.20 3.03 3.10 7.27 6.91 ns
12 mA Std. 0.70 6.41 0.05 1.18 0.50 6.53 6.11 3.56 3.64 8.54 8.12 ns
–1 0.60 5.45 0.04 1.00 0.43 5.56 5.20 3.03 3.10 7.27 6.91 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-109 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Ban ks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 3.26 0.05 1.30 0.50 3.32 3.11 3.05 2.49 5.33 5.12 ns
–1 0.60 2.77 0.04 1.10 0.43 2.82 2.64 2.59 2.12 4.53 4.36 ns
4 mA Std. 0.70 2.84 0.05 1.30 0.50 2.89 2.57 3.37 3.06 4.90 4.59 ns
–1 0.60 2.41 0.04 1.10 0.43 2.46 2.19 2.86 2.60 4.17 3.90 ns
6 mA Std. 0.70 2.76 0.05 1.30 0.50 2.81 2.47 3.44 3.21 4.82 4.48 ns
–1 0.60 2.35 0.04 1.10 0.43 2.39 2.10 2.92 2.73 4.10 3.81 ns
8 mA Std. 0.70 2.74 0.05 1.30 0.50 2.79 2.36 3.55 3.78 4.80 4.37 ns
–1 0.60 2.33 0.04 1.10 0.43 2.37 2.01 3.02 3.22 4.08 3.72 ns
12 mA Std. 0.70 2.74 0.05 1.30 0.50 2.79 2.36 3.55 3.78 4.80 4.37 ns
–1 0.60 2.33 0.04 1.10 0.43 2.37 2.01 3.02 3.22 4.08 3.72 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-74 Revision 10
Table 2-110 • 1.5 V LVCMOS Low Slew – Ap plies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 7.32 0.05 1.17 0.50 7.45 6.38 2.44 2.18 9.46 8.40 ns
–1 0.60 6.22 0.04 0.99 0.43 6.34 5.43 2.08 1.86 8.05 7.14 ns
4 mA Std. 0.70 6.29 0.05 1.17 0.50 6.40 5.65 2.73 2.70 8.42 7.67 ns
–1 0.60 5.35 0.04 0.99 0.43 5.45 4.81 2.33 2.29 7.16 6.52 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-111 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 2.90 0.05 1.28 0.50 2.95 2.63 2.44 2.29 4.97 4.64 ns
–1 0.60 2.47 0.04 1.09 0.43 2.51 2.24 2.07 1.95 4.23 3.95 ns
4 mA Std. 0.70 2.52 0.05 1.28 0.50 2.57 2.14 2.73 2.82 4.58 4.15 ns
–1 0.60 2.15 0.04 1.09 0.43 2.19 1.82 2.32 2.40 3.90 3.53 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-75
1.2 V LVCMOS (JESD8-12A)
Low-V olt age CMOS for 1.2 V complies with the L VCMOS standard JESD8-12A for general purpose 1.2 V
applications. It uses a 1.2 V input buffer and a push-pull output buffer.
Table 2-112 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Ban ks
1.2 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSH1IOSL1IIL2IIH2
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA Max.
mA µA µA
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 TBD TBD 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-113 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.2 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSH1IOSL1IIL2IIH2
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA Max.
mA µA µA
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 TBD TBD 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-114 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
1.2 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSH1IOSL1IIL2IIH2
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA Max.
mA µA µA
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 TBD TBD 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-76 Revision 10
Figure 2-11 • AC Loading
Table 2-115 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Poin t* (V) CLOAD (pF)
01.20.65
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
Test Point Test Point
Enable Path
Datapath 5 pF
R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
ProASIC3L Low Power Flash FPGAs
Revision 10 2-77
Timing Characteristics
1.2 V DC Core Voltage
Table 2-116 • 1.2 V LVCMOS Low Slew
Commercial-Case Conditions: TJ= 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS
Unit
s
2 mA Std. 0.77 11.8 0 0.05 2.38 3.52 0.50 10.97 8.61 4.79 4.38 12.91 10.55 ns
–1 0.66 10.04 0.04 2.02 2.99 0.43 9.33 7.32 4.08 3.72 10.98 8.97 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-117 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ= 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS
Unit
s
2 mA Std. 0.77 4.84 0.05 2.38 3.52 0.50 4.50 3.96 4.78 4.51 6.44 5.90 ns
–1 0.66 4.12 0.04 2.02 2.99 0.43 3.83 3.37 4.06 3.84 5.48 5.02 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-118 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ= 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Advanced I/O Ban ks
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 8.77 0.05 1.82 0.50 6.17 5.45 2.80 2.77 8.11 7.39 ns
–1 0.60 7.46 0.04 1.55 0.43 5.25 4.63 2.39 2.35 6.90 6.28 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-119 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ= 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Advanced I/O Ban ks
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 3.73 0.05 1.82 0.50 2.48 2.06 2.80 2.89 4.42 4.00 ns
–1 0.60 3.17 0.04 1.55 0.43 2.11 1.76 2.38 2.46 3.76 3.41 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-120 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ= 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Plus I/O Banks
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 9.67 0.05 1.83 0.50 6.78 5.99 4.08 4.57 8.72 7.93 ns
–1 0.60 8.23 0.04 1.56 0.43 5.77 5.09 3.47 3.88 7.42 6.74 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-78 Revision 10
Table 2-121 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ= 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Plus I/O Banks
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.70 4.17 0.05 1.83 0.50 2.79 2.48 4.23 4.55 4.73 4.42 ns
–1 0.60 3.54 0.04 1.56 0.43 2.37 2.11 3.60 3.87 4.02 3.76 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-79
1.2 V LVCMOS Wide Range
Table 2-122 • Minimum and Maximum DC Inpu t and Output Levels fo r LVCMOS 1.2 V Wide Range
Applicable to Pro I/O Banks
1.2 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
AµA
Max.
mA2Max.
mA2µA µA
100 µA 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 100 100 2 0 26 10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 1.2 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-12 specification
4. Software default selection highlighted in gray.
Table 2-123 • Minimum and Maximum DC Inpu t and Output Levels for LVCMOS 1.2 Wide Range
Applicable to Advanced I/O Ban ks
1.2 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
AµA
Max.
mA2Max.
mA2µA µA
100 µA 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 100 100 2 0 26 10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 1.2 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-12 specification
4. Software default selection highlighted in gray.
Table 2-124 • Minimum and Maximum DC Inpu t and Output Levels fo r LVCMOS 1.2 V Wide Range
Applicable to Standard Plus I/O Banks
1.2 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
AµA
Max.
mA2Max.
mA2µA µA
100 µA 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 10 0 100 20 26 10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 1.2 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-12 specification
4. Software default selection highlighted in gray.
ProASIC3L DC and Switching Characteristics
2-80 Revision 10
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus
applications.
AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for
enable path characterization are described in Figure 2-12.
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is
described in Table 2-126.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-125 • Minimum and Maximum DC Input and Output Levels
3.3 V PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmAMax.
mA1Max.
mA1µA2µA2
Per PCI specification Per PCI curves 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-12 • AC Loading
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
10 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
R to GND for tHZ / tZH / tZHS
R = 1 k
Test Point
Datapath
R = 25 R to VCCI for tDP (F)
R to GND for tDP (R)
Table 2-126 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF)
0 3.3 0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
10
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
Table 2-127 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 2.52 0.04 2.47 3.33 0.38 2.57 1.80 2.95 3.25 4.58 3.81 ns
–1 0.50 2.15 0.03 2.10 2.84 0.33 2.19 1.53 2.51 2.77 3.90 3.24 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-81
1.2 V DC Core Voltage
Table 2-128 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.54 2.41 0.04 0.78 0.38 2.46 1.76 2.89 3.22 4.47 3.77 ns 0.54
–1 0.46 2.05 0.03 0.66 0.33 2.09 1.49 2.46 2.74 3.80 3.21 ns 0.46
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-129 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.54 2.08 0.04 0.77 0.38 2.12 1.53 2.51 2.90 4.13 3.55 ns 0.54
–1 0.46 1.77 0.03 0.65 0.33 1.80 1.31 2.14 2.47 3.51 3.02 ns 0.46
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-130 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 2.52 0.05 2.47 3.33 0.50 2.57 1.80 2.95 3.25 4.58 3.81 ns
–1 0.66 2.15 0.04 2.10 2.84 0.43 2.19 1.53 2.51 2.77 3.90 3.24 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-131 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.70 2.41 0.05 0.78 0.50 2.46 1.76 2.89 3.22 4.47 3.77 0.73 ns
–1 0.60 2.05 0.04 0.66 0.43 2.09 1.49 2.46 2.74 3.80 3.21 0.62 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-132 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.70 2.08 0.05 0.77 0.50 2.12 1.53 2.51 2.90 4.13 3.55 0.73 ns
–1 0.60 1.77 0.04 0.65 0.43 1.80 1.31 2.14 2.47 3.51 3.02 0.62 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-82 Revision 10
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Table 2-133 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
25 mA3 –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 25 25 268 181 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
Figure 2-13 • AC Loading
Table 2-134 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point 10 pF
25
GTL
VTT
ProASIC3L Low Power Flash FPGAs
Revision 10 2-83
Timing Characteristics
Table 2-135 • 3.3 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.87 0.04 2.12 0.38 1.83 1.87 3.85 3.88 ns
–1 0.50 1.59 0.03 1.80 0.33 1.56 1.59 3.27 3.30 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-136 • 3.3 V GTL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/Os
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.87 0.05 2.12 0.50 1.83 1.87 3.85 3.88 ns
–1 0.66 1.59 0.04 1.80 0.43 1.56 1.59 3.27 3.30 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-84 Revision 10
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V
Table 2-137 • Minimum and Maximum DC Input and Output Levels
2.5 GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmAMax.
mA1Max.
mA1µA2µA2
25 mA3–0.3 VREF 0.05 VREF + 0.05 2.7 0.4 25 25 169 124 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
Figure 2-14 • AC Loading
Table 2-138 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point 10 pF
25
GTL
VTT
ProASIC3L Low Power Flash FPGAs
Revision 10 2-85
Timing Characteristics
Table 2-139 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.92 0.04 2.05 0.38 1.95 1.92 3.96 3.93 ns
–1 0.50 1.63 0.03 1.75 0.33 1.66 1.63 3.37 3.34 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-140 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.92 0.05 2.05 0.50 1.95 1.92 3.96 3.93 ns
–1 0.66 1.63 0.04 1.75 0.43 1.66 1.63 3.37 3.34 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-86 Revision 10
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V
Timing Characteristics
Table 2-141 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL+ VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
35 mA –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 35 35 268 181 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-15 • AC Loading
Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.1 1.0 1.0 1.5 10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point 10 pF
25
GTL+
VTT
Table 2-143 • 3.3 V GTL+ – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.85 0.04 2.12 0.38 1.88 1.85 3.90 3.86 ns
–1 0.50 1.57 0.03 1.80 0.33 1.60 1.57 3.31 3.29 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-144 • 3.3 V GTL+ – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 3.0 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.85 0.05 2.12 0.50 1.88 1.85 3.90 3.86 ns
–1 0.66 1.57 0.04 1.80 0.43 1.60 1.57 3.31 3.29 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-87
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.
Table 2-145 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL+ VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
33 mA –0.3 VREF – 0.1 VREF + 0.1 2.7 0.6 33 33 169 124 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-16 • AC Loading
Table 2-146 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.1 1.0 1.0 1.5 10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point 10 pF
25
GTL+
VTT
ProASIC3L DC and Switching Characteristics
2-88 Revision 10
Timing Characteristics
Table 2-147 • 2.5 V GTL+ – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.99 0.04 2.05 0.38 2.02 1.89 4.03 3.90 ns
–1 0.50 1.69 0.03 1.75 0.33 1.72 1.61 3.43 3.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-15 on page 2-12 for derating
values.
Table 2-148 • 2.5 V GTL+ – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 2.3 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.99 0.05 2.05 0.50 2.02 1.89 4.03 3.90 ns
–1 0.66 1.69 0.04 1.75 0.43 1.72 1.61 3.43 3.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-15 on page 2-12 for derating
values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-89
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-149 • Minimum and Maximum DC Input and Output Levels
HSTL
Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
8 mA –0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI 0.4 8 8 32 39 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-17 • AC Loading
Table 2-150 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point*
(V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.1 0.75 0.75 0.75 20
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point 20 pF
50
HSTL
Class I
V
TT
ProASIC3L DC and Switching Characteristics
2-90 Revision 10
Timing Characteristics
Table 2-151 • HSTL Cla ss I – Applies to 1.5 V DC Core Voltag e
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 2.86 0.04 2.50 0.38 2.91 2.83 4.93 4.84 ns
–1 0.50 2.43 0.03 2.12 0.33 2.48 2.41 4.19 4.12 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-152 • HSTL Cla ss I – Applies to 1.2 V DC Core Voltag e
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 2.86 0.05 2.50 0.50 2.91 2.83 4.93 4.84 ns
–1 0.66 2.43 0.04 2.12 0.43 2.48 2.41 4.19 4.12 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-91
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-153 • Minimum and Maximum DC Input and Output Levels
HSTL Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
15 mA3 –0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI – 0.4 15 15 66 55 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
Figure 2-18 • AC Loading
Table 2-154 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.1 0.75 0.75 0 .75 20
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point 20 pF
25
HSTL
Class II
VTT
ProASIC3L DC and Switching Characteristics
2-92 Revision 10
Timing Characteristics
Table 2-155 • HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 2.72 0.04 2.50 0.38 2.77 2.44 4.78 4.45 ns
–1 0.50 2.32 0.03 2.12 0.33 2.36 2.08 4.07 3.79 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-156 • HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 2.72 0.05 2.50 0.50 2.77 2.44 4.78 4.45 ns
–1 0.66 2.32 0.04 2.12 0.43 2.36 2.08 4.07 3.79 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-93
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-157 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class
I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
15 mA –0.3 VREF – 0.2 VREF + 0.2 2.7 0.54 VCCI – 0.62 15 15 83 87 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-19 • AC Loading
Table 2-158 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.2 1.25 1.25 1 .25 30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point
30 pF
50
25
SSTL2
Class I
V
TT
ProASIC3L DC and Switching Characteristics
2-94 Revision 10
Timing Characteristics
Table 2-159 • SSTL2 Cla ss I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/Os
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.91 0.04 1.89 0.38 1.95 1.66 1.95 1.66 ns
–1 0.50 1.63 0.03 1.61 0.33 1.66 1.41 1.66 1.41 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-160 • SSTL2 Cla ss I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.91 0.05 1.89 0.50 1.95 1.66 1.95 1.66 ns
–1 0.66 1.63 0.04 1.61 0.43 1.66 1.41 1.66 1.41 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-95
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-161 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
18 mA –0.3 VREF – 0.2 VREF + 0.2 2.7 0.35 VCCI – 0.43 18 18 169 124 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-20 • AC Loading
Table 2-162 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.2 1.25 1.25 1 .25 30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point
30 pF
25
25
SSTL2
Class II
V
TT
Table 2-163 • SSTL2 Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.95 0.04 1.89 0.38 1.99 1.59 1.99 1.59 ns
–1 0.50 1.66 0.03 1.61 0.33 1.69 1.36 1.69 1.36 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-164 • SSTL2 Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.95 0.05 1.89 0.50 1.99 1.59 1.99 1.59 ns
–1 0.66 1.66 0.04 1.61 0.43 1.69 1.36 1.69 1.36 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-96 Revision 10
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-165 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
14 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.7 VCCI – 1.1 14 14 51 54 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-21 • AC Loading
Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.2 1.5 1.5 1.485 30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point
30 pF
50
25
SSTL3
Class I
V
TT
Table 2-167 • SSTL3 Cla ss I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 2.08 0.04 1.81 0.38 2.11 1.65 2.11 1.65 ns
–1 0.50 1.77 0.03 1.54 0.33 1.80 1.41 1.80 1.41 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-168 • SSTL3 Cla ss I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 2.08 0.05 1.81 0.50 2.11 1.65 2.11 1.65 ns
–1 0.66 1.77 0.04 1.54 0.43 1.80 1.41 1.80 1.41 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-97
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-169 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min.
VMax.
VMin.
VMax.
VMax.
VMin.
VmAmA
Max.
mA1Max.
mA1µA2µA2
21 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21 10 3 109 10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
Figure 2-22 • AC Loading
Table 2-170 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input Hig h (V) Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.2 1.5 1.5 1.485 30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-12 for a complete table of trip points.
Test Point
30 pF
25
25
SSTL3
Class II
V
TT
Table 2-171 • SSTL3 Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.59 1.86 0.04 1.81 0.38 1.89 1.50 1.89 1.50 ns
–1 0.50 1.58 0.03 1.54 0.33 1.61 1.28 1.61 1.28 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-172 • SSTL3 Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.77 1.86 0.05 1.81 0.50 1.89 1.50 1.89 1.50 ns
–1 0.66 1.58 0.04 1.54 0.43 1.61 1.28 1.61 1.28 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-98 Revision 10
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Designer software when the user
instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-23. The
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.
Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
Figure 2-23 • LVDS Circuit Diagram and Board-Lev el Imple mentation
140 Ω100 Ω
Z0 = 50 Ω
Z0 = 50 Ω
165 Ω
165 Ω
+
P
N
P
N
INBUF_LVDS
OUTBUF_LVDS
FPGA FPGA
Bourns Part Number: CAT16-LV4F12
ProASIC3L Low Power Flash FPGAs
Revision 10 2-99
Table 2-173 • Minim um and Maximum DC Input and Output Levels
DC Parameter Description Min. Typ. Max. Units
VCCI Supply Voltage 2.375 2.5 2.625 V
VOL Output Low Voltage 0.9 1.075 1.25 V
VOH Output High V oltage 1. 25 1.425 1.6 V
IOL 1Output Lower Current 0.65 0.91 1.16 mA
IOH 1Output High Current 0.65 0.91 1.16 mA
VIInput Voltage 0 2.925 V
IIH 2Input High Leakage Current 10 µA
IIL 2Input Low Leakage Current 10 µA
VODIFF Differential Output Voltage 250 350 450 mV
VOCM Output Common Mode Voltage 1.125 1.25 1.375 V
VICM Input Common Mode Voltage 0.05 1.25 2.35 V
VIDIFF Input Differential Voltage 100 350 mV
Notes:
1. Currents are measured at 85°C junction temperature.
2. IOL/IOH is defined by VODIFF/(Resistor Network).
Table 2-174 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V)
1.075 1.325 Cross point
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
ProASIC3L DC and Switching Characteristics
2-100 Revision 10
Timing Characteristics
1.5 V DC Core Voltage
1.2 V DC Core Voltage
Table 2-175 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Pro I/O Banks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.59 1.65 0.04 2.18 ns
–1 0.50 1.40 0.03 1.85 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-176 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 2.3 V
Applicable to Advanced I/O Ban ks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.54 1.65 0.04 1.44 ns
–1 0.46 1.40 0.03 1.23 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-177 • LVDS – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.77 1.68 0.05 2.18 ns
–1 0.66 1.43 0.04 1.85 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-178 • LVDS – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Ban ks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.70 1.65 0.05 1.44 ns
–1 0.60 1.40 0.04 1.23 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-101
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus since the driver can be located anywhere on the bus. These configurations can be
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-24. The input and output buffer delays are available in
the LVDS section in Table 2-173 on page 2-99.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS=60Ω and
RT=70Ω, given Z0=50Ω (2") and Zstub =50Ω (~1.5").
Figure 2-24 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
...
RTRT
BIBUF_LVDS
R
+
-T
+
-R
+
-T
+
-
D
+
-
EN EN EN EN EN
Receiver Transceiver Receiver TransceiverDriver
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
ProASIC3L DC and Switching Characteristics
2-102 Revision 10
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-25. The
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVDS implementation because the output standard
specifications are different.
Figure 2-25 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-179 • Minimum and Maximum DC Input and Output Levels
DC Parameter Description Min. Max. Min. Max. Min. Max. Units
VCCI Supply Voltage 3.0 3.3 3.6 V
VOL Output Low Voltage 0.96 1.2 7 1.06 1.43 1.30 1.57 V
VOH Output High Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V
VIL, VIH Input Low, Input High Voltages 0 3.3 0 3.6 0 3.9 V
VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.6 25 0.97 V
VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V
VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V
VIDIFF Input Differential Voltage 300 300 300 mV
Table 2-180 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V)
1.64 1.94 Cross point
Note: *Measuring point = Vtrip. See Table 2-26 on page 2-26 for a complete table of trip points.
187 W 100 Ω
Z
0
= 50 Ω
Z
0
= 50 Ω
100 Ω
100 Ω
+
P
N
P
N
INBUF_LVPECL
OUTBUF_LVPECL
FPGA FPGA
Bourns Part Number: CAT16-PC4F12
ProASIC3L Low Power Flash FPGAs
Revision 10 2-103
Timing Characteristics
1.5 V DC Core Voltage
1.2 V DC Core Voltage
Table 2-181 • LVPECL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.59 1.64 0.04 1.97 ns
–1 0.50 1.40 0.03 1.67 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-182 • LVPECL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 42 5 V, Wor s t-C as e VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.54 1.62 0.04 1.26 ns
–1 0.46 1.38 0.03 1.08 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-183 • LVPECL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.77 1.62 0.05 1.97 ns
–1 0.66 1.37 0.04 1.67 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-184 • LVPECL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Ban ks
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.70 1.62 0.05 1.26 ns
–1 0.60 1.38 0.04 1.08 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-104 Revision 10
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Preset
Figure 2-26 • Timing Model of Registere d I/O Buffers with Synchronous Enable and Asynchronous Preset
INBUF
INBUF INBUF
TRIBUF
CLKBUF
INBUF
INBUF
CLKBUF
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Pad Out
CLK
Enable
Preset
Data_out
Data
EOUT
DOUT
Enable
CLK
DQ
DFN1E1P1
PRE
DQ
DFN1E1P1
PRE
DQ
DFN1E1P1
PRE
D_Enable
A
B
C
D
EE
E
EF
G
H
I
J
L
K
YCore
Array
ProASIC3L Low Power Flash FPGAs
Revision 10 2-105
Table 2-185 • Parameter Definition and Measuring Nodes
Parameter Name Parameter Definition Measuring Nodes
(from, to)*
tOCLKQ Clock-to-Q of the Output Data Register H, DOUT
tOSUD Data Setup Time for the Output Data Register F, H
tOHD Data Hold Time for the Output Data Register F, H
tOSUE Enable Setup Time for the Output Data Register G, H
tOHE Enable Hold Time for the Output Data Register G, H
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register L, DOUT
tOREMPRE Asynchronous Preset Removal Time for the Outpu t Da ta Register L, H
tORECPRE Asynchronou s Preset Reco very Time for the Output Data Register L, H
tOECLKQ Clock-to-Q of the Output Enable Register H, EOUT
tOESUD Data Setup Time for the Output Enable Register J, H
tOEHD Data Hold Time for the Output Enable Register J, H
tOESUE Enable Setup Time for the Output Enable Register K, H
tOEHE Enable Hold Time for the Output Enable Register K, H
tOEPRE2Q Asynchronous Preset-to-Q of th e Output Enable Register I, EOUT
tOEREMPRE Asynchronous Preset Removal Time for the Output Ena ble Register I, H
tOERECPRE Asyn chronous Preset Recovery Time for the Output Enable Register I, H
tICLKQ Clock-to-Q of the Input Data Register A, E
tISUD Data Setup Time for the Input Data Register C, A
tIHD Data Hold Time for the Input Data Register C, A
tISUE Enable Setup Time for the Input Data Register B, A
tIHE Enable Hold Time for the Input Data Register B, A
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A
Note: *See Figure 2-26 on page 2-104 for more information.
ProASIC3L DC and Switching Characteristics
2-106 Revision 10
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Clear
Figure 2-27 • Timing Mode l of the Registered I/O Buffers with Synchron ous Enable and Asynchronous Clear
Enable
CLK
Pad Out
CLK
Enable
CLR
Data_out
Data Y
AA
EOUT
DOUT
Core
Array
DQ
DFN1E1C1
E
CLR
DQ
DFN1E1C1
E
CLR
DQ
DFN1E1C1
E
CLR
D_Enable
BB
CC
DD
EE
FF
GG
LL
HH
JJ
KK
CLKBUF
INBUF
INBUF
TRIBUF
INBUF INBUF CLKBUF
INBUF
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
ProASIC3L Low Power Flash FPGAs
Revision 10 2-107
Table 2-186 • Parameter Definition and Measuring Nodes
Parameter Name Parameter Definition Measuring Nodes
(from, to)*
tOCLKQ Clock-to-Q of the Output Data Register HH, DOUT
tOSUD Data Setup Time for the Output Data Register FF, HH
tOHD Data Hold Time for the Output Data Register FF, HH
tOSUE Enable Setup Time for the Output Data Register GG, HH
tOHE Enable Hold Time for the Output Data Register GG, HH
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register LL, DOUT
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH
tOECLKQ Clock-to-Q of the Output Enable Register HH, EOUT
tOESUD Data Setup Time for the Output Enable Register JJ, HH
tOEHD Data Hold Time for the Output Enable Register JJ, HH
tOESUE Enable Setup Time for the Output Enable Register KK, HH
tOEHE Enable Hold Time for the Outpu t Enable Register KK, HH
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH
tICLKQ Clock-to-Q of the Input Data Register AA, EE
tISUD Data Setup Time for the Input Data Register CC, AA
tIHD Data Hold Time for the Input Data Register CC, AA
tISUE Enable Setup Time for the Input Data Register BB, AA
tIHE Enable Hold Time for the Input Data Register BB, AA
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE
tIREMCLR Asynchronous Clear Remo val Time for the Input Data Register DD, AA
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA
Note: *See Figure 2-27 on page 2-106 for more information.
ProASIC3L DC and Switching Characteristics
2-108 Revision 10
Input Register
Figure 2-28 • Input Register Timing Diagram
50%
Preset
Clear
Out_1
CLK
Data
Enable
t
ISUE
50%
50%
t
ISUD
t
IHD
50% 50%
t
ICLKQ
10
t
IHE
t
IRECPRE
t
IREMPRE
t
IRECCLR
t
IREMCLR
t
IWCLR
t
IWPRE
t
IPRE2Q
t
ICLR2Q
t
ICKMPWH
t
ICKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
ProASIC3L Low Power Flash FPGAs
Revision 10 2-109
Timing Characteristics
1.5 V DC Core Voltage
1.2 V DC Core Voltage
Table 2-187 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tICLKQ Clock-to-Q of the Input Data Register 0.24 0.29 ns
tISUD Data Setup Time for the Input Data Register 0.27 0.3 1 ns
tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns
tISUE Enable Setup Time for the Input Data Register 0.38 0.45 ns
tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.46 0.54 ns
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.46 0.54 ns
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.23 0.2 7 ns
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.23 0.27 ns
tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 0.22 ns
tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Registe r 0.19 0.22 ns
tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.31 0 .3 6 ns
tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-188 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tICLKQ Clock-to-Q of the Input Data Register 0.32 0.37 ns
tISUD Data Setup Time for the Input Data Register 0.35 0.4 1 ns
tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns
tISUE Enable Setup Time for the Input Data Register 0.50 0.58 ns
tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.60 0.71 ns
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.60 0.71 ns
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.30 0.3 5 ns
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.30 0.35 ns
tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 0.22 ns
tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Registe r 0.19 0.22 ns
tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.31 0 .3 6 ns
tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-110 Revision 10
Output Register
Figure 2-29 • Output Register Timing Diagram
Preset
Clear
DOUT
CLK
Data_out
Enable
t
OSUE
50%
50%
t
OSUD
t
OHD
50% 50%
t
OCLKQ
10
t
OHE
t
ORECPRE
t
OREMPRE
t
ORECCLR
t
OREMCLR
t
OWCLR
t
OWPRE
t
OPRE2Q
t
OCLR2Q
t
OCKMPWH
t
OCKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
50%
ProASIC3L Low Power Flash FPGAs
Revision 10 2-111
Timing Characteristics
1.5 V DC Core Voltage
1.2 V DC Core Voltage
Table 2-189 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tOCLKQ Clock-to-Q of the Output Data Registe r 0.60 0.71 ns
tOSUD Data Setu p Time for the Output Data Register 0.32 0.37 ns
tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns
tOSUE Enable Setup Time for the Output Data Register 0.45 0.53 ns
tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.82 0.96 ns
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.82 0.96 ns
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns
tORECCLR Asynchronous Clear Reco very Time for the Output Data Register 0.23 0.27 ns
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns
tORECPRE Asynchronous Preset Recove ry Time for the Output Data Register 0.23 0.27 ns
tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.31 0.36 ns
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-190 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tOCLKQ Clock-to-Q of the Output Data Registe r 0.78 0.92 ns
tOSUD Data Setu p Time for the Output Data Register 0.42 0.49 ns
tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns
tOSUE Enable Setup Time for the Output Data Register 0.58 0.69 ns
tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 1.07 1.26 ns
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 1.07 1.26 ns
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns
tORECCLR Asynchronous Clear Reco very Time for the Output Data Register 0.30 0.35 ns
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns
tORECPRE Asynchronous Preset Recove ry Time for the Output Data Register 0.30 0.35 ns
tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.31 0.36 ns
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-112 Revision 10
Output Enable Register
Figure 2-30 • Output Enable Register Timing Diagram
50%
Preset
Clear
EOUT
CLK
D_Enable
Enable
t
OESUE
50%
50%
t
OESUD
t
OEHD
50% 50%
t
OECLKQ
10
t
OEHE
t
OERECPRE
t
OEREMPRE
t
OERECCLR
t
OEREMCLR
t
OEWCLR
t
OEWPRE
t
OEPRE2Q
t
OECLR2Q
t
OECKMPWH
t
OECKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
ProASIC3L Low Power Flash FPGAs
Revision 10 2-113
Timing Characteristics
1.5 V DC Core Voltage
1.2 V DC Core Voltage
Table 2-191 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tOECLKQ Clock-to-Q of the Output Enable Register 0.45 0.53 ns
tOESUD Data Setup Time for the Output Enable Register 0.32 0.37 ns
tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns
tOESUE Enable Setup Time for the Output Enable Register 0.44 0.52 ns
tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.68 0.80 ns
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.68 0.80 ns
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.23 0.27 ns
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECPRE Asyn chronous Preset Recovery Time for the Output Enable Register 0.23 0.27 ns
tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOEWPRE Asynchrono us Preset Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.31 0.36 n s
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-192 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tOECLKQ Clock-to-Q of the Output Enable Register 0.59 0.70 ns
tOESUD Data Setup Time for the Output Enable Register 0.42 0.49 ns
tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns
tOESUE Enable Setup Time for the Output Enable Register 0.58 0.68 ns
tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.89 1.04 ns
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.89 1.04 ns
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.30 0.35 ns
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECPRE Asyn chronous Preset Recovery Time for the Output Enable Register 0.30 0.35 ns
tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOEWPRE Asynchrono us Preset Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.31 0.36 n s
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-114 Revision 10
DDR Module Specifications
Input DDR Module
Figure 2- 31 Input DDR Timing Model
Table 2-193 • Parameter Definitions
Parameter Name Parameter Definition Measuring Nodes (from, to)
tDDRICLKQ1 Clock-to-Out Out_QR B, D
tDDRICLKQ2 Clock-to-Out Out_QF B, E
tDDRISUD Data Setup Time of DDR input A, B
tDDRIHD Data Hold Time of DDR input A, B
tDDRICLR2Q1 Clear-to-Out Out_QR C, D
tDDRICLR2Q2 Clear-to-Out Out_QF C, E
tDDRIREMCLR Clear Removal C, B
tDDRIRECCLR Clear Recovery C, B
Input DDR
Data
CLK
CLKBUF
INBUF Out_QF
(to core)
FF2
FF1
INBUF
CLR
DDR_IN
E
A
B
C
D
Out_QR
(to core)
ProASIC3L Low Power Flash FPGAs
Revision 10 2-115
Timing Characteristics
1.5 V DC Core Voltage
Figure 2-32 • Input DDR Timing Diagram
t
DDRICLR2Q2
t
DDRIREMCLR
t
DDRIRECCLR
t
DDRICLR2Q1
12 3 4 5 6 7 8 9
CLK
Data
CLR
Out_QR
Out_QF
t
DDRICLKQ1
246
357
t
DDRIHD
t
DDRISUD
t
DDRICLKQ2
Table 2-194 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDDRICLKQ1 Clock -to-Out Out_QR for Input DDR 0.28 0.33 ns
tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.40 0.47 ns
tDDRISUD1 Data Setup for Input DDR (fall) 0.29 0.34 ns
tDDRISUD2 Data Setup for Input DDR (rise) 0.25 0.29 ns
tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns
tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns
tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.47 0.55 ns
tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.58 0.68 ns
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.23 0.27 ns
tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.18 0.22 ns
tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.31 0.36 ns
tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.28 0.32 ns
FDDRIMAX Maximum Frequency for Input DDR 250.00 250.00 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-116 Revision 10
1.2 V DC Core Voltage
Table 2-195 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tDDRICLKQ1 Clock -to-Out Out_QR for Input DDR 0.43 0.37 ns
tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.61 0.52 ns
tDDRISUD1 Data Setup for Input DDR (fall) 0.44 0.38 ns
tDDRISUD2 Data Setup for Input DDR (rise) 0.39 0.33 ns
tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns
tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns
tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.73 0.62 ns
tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.89 0.76 ns
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.35 0.30 ns
tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.22 0.19 ns
tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.36 0.31 ns
tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.32 0.28 ns
FDDRIMAX Maximum Frequency for Input DDR 160.00 160.00 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-117
Output DDR Module
Figure 2- 33 Output DDR Timing Model
Table 2-196 • Parameter Definitions
Parameter Name Parameter Definition Measuring Nodes (from, to)
tDDROCLKQ Clock-to-Out B, E
tDDROCLR2Q Asynchronous Clear-to-Out C, E
tDDROREMCLR Clear Removal C, B
tDDRORECCLR Clear Recovery C, B
tDDROSUD1 Data Setup Data_F A, B
tDDROSUD2 Data Setup Data_R D, B
tDDROHD1 Data Hold Data_F A, B
tDDROHD2 Data Hold Data_R D, B
Data_F
(from core)
CLK CLKBUF
Out
FF2
INBUF
CLR
DDR_OUT
Output DDR
FF1
0
1
X
X
X
X
X
X
X
A
B
D
E
C
C
B
OUTBUF
Data_R
(from core)
ProASIC3L DC and Switching Characteristics
2-118 Revision 10
Timing Characteristics
1.5 V DC Core Voltage
Figure 2-34 • Output DDR Timing Diagram
116
1
7
2
8
3
910
45
28 3 9
tDDROREMCLR
tDDROHD1
tDDROREMCLR
tDDROHD2
tDDROSUD2
tDDROCLKQ
tDDRORECCLR
CLK
Data_R
Data_F
CLR
Out
tDDROCLR2Q
7104
Table 2-197 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.72 0.84 ns
tDDRISUD1 Data_F Data Setup for Output DDR 0.39 0.45 ns
tDDROSUD2 Data_R Data Setup for Output DDR 0.39 0.45 ns
tDDROHD1 Dat a_F Data Hold for Output DDR 0.00 0.00 ns
tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns
tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.82 0.96 ns
tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns
tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.23 0.27 ns
tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.1 9 0.22 ns
tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.31 0.36 ns
tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.28 0.32 ns
FDDOMAX Maximum Frequency for the Output DDR 250.00 250.00 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-119
1.2 V DC Core Voltage
Table 2-198 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tDDROCLKQ Clock-to-Out of DDR for Output DDR 1.10 0.94 ns
tDDRISUD1 Data_F Data Setup for Output DDR 0.59 0.5 0 ns
tDDROSUD2 Data_R Data Setup for Output DDR 0.59 0.50 ns
tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns
tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns
tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 1.26 1.07 ns
tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns
tDDRORECCLR Asynchronou s Clear Recovery Time for Output DDR 0.35 0 .3 0 ns
tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.19 ns
tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.31 ns
tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.28 ns
FDDOMAX Maximum Frequency for the Output DDR 160.00 160.00 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-120 Revision 10
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a samp le of the library. For more details, refer to the IGLOO,® Fusion,
and ProASIC3 Macro Library Guide.
Figure 2- 35 Sample of Combinatorial Cells
MAJ3
A
C
BY
MUX2
B
0
1
A
S
Y
AY
B
B
AXOR2 Y
NOR2
B
AY
B
AYOR2
INV
AY
AND2
B
AY
NAND3
B
A
C
XOR3 Y
B
A
C
NAND2
ProASIC3L Low Power Flash FPGAs
Revision 10 2-121
Figure 2- 36 Timing Model and Waveforms
tPD
A
B
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR))
where edges are applicable for the particular
combinatorial cell
Y
NAND2 or
Any Combinatorial
Logic
tPD
tPD
50%
VCC
VCC
VCC
50%
GND
A, B, C 50% 50%
50%
(RR)
(RF) GND
OUT
OUT
GND
50%
(FF)
(FR)
tPD
tPD
ProASIC3L DC and Switching Characteristics
2-122 Revision 10
Timing Characteristics
1.5 V DC Core Voltage
1.2 V DC Core Voltage
Table 2-199 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Combinatorial Cell Equation Parameter –1 Std. Units
INV Y =!A t PD 0.41 0.48 ns
AND2 Y = A · B tPD 0.48 0.57 ns
NAND2 Y =!(A · B) tPD 0.48 0.57 ns
OR2 Y = A + B tPD 0.50 0.58 ns
NOR2 Y =!(A + B) tPD 0.50 0.58 ns
XOR2 Y = A Bt
PD 0.75 0.88 ns
MAJ3 Y = MAJ(A, B, C) tPD 0.71 0.84 ns
XOR3 Y = A B Ct
PD 0.89 1.05 ns
MUX2 Y = A !S + B S tPD 0.52 0.61 ns
AND3 Y = A · B · C tPD 0.57 0.67 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
Table 2-200 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Combinatorial Cell Equation Parameter –1 Std. Units
INV Y = !A tPD 0.54 0.63 ns
AND2 Y = A · B tPD 0.63 0.74 ns
NAND2 Y = !(A · B) tPD 0.63 0.74 ns
OR2 Y = A + B tPD 0.65 0.76 ns
NOR2 Y = !(A + B) tPD 0.65 0.76 ns
XOR2 Y = A Bt
PD 0.98 1.16 ns
MAJ3 Y = MAJ(A , B, C) tPD 0.93 1.09 ns
XOR3 Y = A B Ct
PD 1.17 1.37 ns
MUX2 Y = A !S + B S tPD 0.68 0.79 ns
AND3 Y = A · B · C tPD 0.75 0.88 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-123
VersaTile Specifications as a Sequential Module
The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section , timing characte risti cs are p resented for a
representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3
Macro Library Guide.
Figure 2-37 • Sample of Sequential Cells
Figure 2-38 • Timing Model and Waveforms
DQ
DFN1
Data
CLK
Out
DQ
DFN1C1
Data
CLK
Out
CLR
DQ
DFI1E1P1
Data
CLK
Out
En
PRE
DQ
DFN1E1
Data
CLK
Out
En
PRE
CLR
Out
CLK
Data
EN
tSUE
50%
50%
tSUD tHD
50% 50%
tCLKQ
0
tHE
tRECPRE tREMPRE
tRECCLR tREMCLRtWCLR
tWPRE
tPRE2Q tCLR2Q
tCKMPWH tCKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
50%
ProASIC3L DC and Switching Characteristics
2-124 Revision 10
Timing Characteristics
1.5 V DC Core Voltage
Table 2-201 • Regist er Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tCLKQ Clock-to-Q of the Core Register 0.56 0.66 ns
tSUD Data Setup Time for the Core Register 0.44 0.51 ns
tHD Data Hold Time for the Core Register 0.00 0 .0 0 ns
tSUE Enable Setup Time for the Core Register 0.46 0.55 ns
tHE Enable Hold Time for the Core Register 0.00 0.00 ns
tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.41 0.48 ns
tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.41 0.48 ns
tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns
tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.23 0.2 7 ns
tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns
tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.23 0.27 ns
tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 0.34 ns
tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 0.34 ns
tCKMPWH Clock Minimum Pulse Width High for the Core Register 0.56 0.64 ns
tCKMPWL Clock Minimum Pulse Width Low for the Core Register 0.56 0.64 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-125
1.2 V DC Core Voltage
Table 2-202 • Regist er Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tCLKQ Clock-to-Q of the Core Register 0.73 0.86 ns
tSUD Data Setup Time for the Core Register 0.57 0.67 ns
tHD Data Hold Time for the Core Register 0.00 0 .0 0 ns
tSUE Enable Setup Time for the Core Register 0.61 0.71 ns
tHE Enable Hold Time for the Core Register 0.00 0.00 ns
tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.53 0.63 ns
tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.53 0.63 ns
tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns
tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.30 0.3 5 ns
tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns
tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.30 0.35 ns
tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 0.34 ns
tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 0.34 ns
tCKMPWH Clock Minimum Pulse Width High for the Core Register 0.56 0.64 ns
tCKMPWL Clock Minimum Pulse Width Low for the Core Register 0.56 0.64 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-126 Revision 10
Global Resource Characteristics
A3P250L Clock Tree Topology
Clock delays are device-specific. Figure 2-39 is an example of a global tree used for clock ro uting. The
global tree presented in Figure 2-39 is driven by a CCC located on the west side of the A3P250L device.
It is used to drive all D-flip-flops in the device.
Figure 2-39 • Example of Global Tree Use in an A3P250L Device for Clock Routing
Central
Global Rib
VersaTile
Rows
Global Spine
CCC
ProASIC3L Low Power Flash FPGAs
Revision 10 2-127
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as th ese are I/O standard–depe nde nt, and th e cl ock may be d riven
and conditioned i nternally by the CCC mo dule. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-131. Table 2-203 to Table 2-209 on page 2-130
present minimum and maximum global clock delays within each de vice. Minimum and maximum delays
are measured with minimum and maximum loading.
Timing Characteristics
Table 2-203 • A3P250L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.82 1.06 0.96 1.25 ns
tRCKH Input High Delay for Global Clock 0.80 1.09 0.94 1.28 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.75 0.88 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 1.00 ns
tRCKSW Maximum Skew for Global Clock 0.29 0.34 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-204 • A3P250L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.40 1.68 1.64 1.97 ns
tRCKH Input High Delay for Global Clock 1.38 1.71 1.62 2.01 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 1.05 1.24 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 1.23 1.44 ns
tRCKSW Maximum Skew for Global Clock 0.33 0.39 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
ProASIC3L DC and Switching Characteristics
2-128 Revision 10
Table 2-205 • A3P600L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.90 1.14 1.06 1.34 ns
tRCKH Input High Delay for Global Clock 0.89 1.17 1.04 1.38 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.75 0.88 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 1.00 ns
tRCKSW Maximum Skew for Global Clock 0.28 0.33 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-206 • A3P600L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.48 1.76 1.74 2.07 ns
tRCKH Input High Delay for Global Clock 1.47 1.80 1.72 2.11 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 1.05 1.24 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 1.23 1.44 ns
tRCKSW Maximum Skew for Global Clock 0.33 0.39 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-129
Table 2-207 • A3P1000L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.02 1.26 1.20 1.48 ns
tRCKH Input High Delay for Global Clock 1.01 1.29 1.18 1.52 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.75 0.88 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 1.00 ns
tRCKSW Maximum Skew for Global Clock 0.28 0.33 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-208 • A3P1000L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.61 1.89 1.89 2.22 ns
tRCKH Input High Delay for Global Clock 1.60 1.92 1.88 2.26 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 1.05 1.24 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 1.23 1.44 ns
tRCKSW Maximum Skew for Global Clock 0.33 0.39 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
ProASIC3L DC and Switching Characteristics
2-130 Revision 10
Table 2-209 • A3PE3000L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.53 1.75 1.79 2.06 ns
tRCKH Input High Delay for Global Clock 1.51 1.77 1.78 2.08 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.75 0.88 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 1.00 ns
tRCKSW Maximum Skew for Global Clock 0.26 0.30 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-210 • A3PE3000L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.52 1.94 1.78 2.28 ns
tRCKH Input High Delay for Global Clock 1.49 1.96 1.76 2.30 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 1.05 1.24 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 1.23 1.44 ns
tRCKSW Maximum Skew for Global Clock 0.47 0.55 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
ProASIC3L Low Power Flash FPGAs
Revision 10 2-131
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-211 • ProASIC3L CCC/PLL Specification
CCC/PLL Operating at 1.2 V
Parameter Min. Typ. Max. Units
Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 250 MHz
Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 250 MHz
Delay Increments in Programmable Delay Blocks 1, 2 2703 ps
Number of Programmable Values in Each Programmable Delay Block 32
Serial Clock (SCLK) for Dynamic PLL4100 MHz
Input Cycle-to-Cycle Jitter (peak magnitu de ) 1 ns
CCC Output Peak-to-Peak Period Jitter FCCC_OUT Max Peak-to-Peak Period Jitter
1 Global
Network
Used
External
FB Used 3 Global
Networks
Used
0.75 MHz to 24 MHz 0.50% 0.75% 0.70%
24 MHz to 100 MHz 1.00% 1.50% 1.20%
100 MHz to 250 MHz 2.50% 3.75% 2.75%
Acquisition Time
LockControl = 0 300 µs
LockControl = 1 6.0 ms
Tracking Jitter5
LockControl = 0 2 ns
LockControl = 1 1 ns
Output Duty Cycle 48.5 51.5 %
Delay Range in Block: Programmable Delay 1 1, 2 1.2 15.65 ns
Delay Range in Block: Programmable Delay 2 1, 2 0.025 15.65 ns
Delay Range in Block: Fixed Delay 1, 2 3.1 ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 for deratings.
2. TJ = 25°C, VCC = 1.2 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to SmartGen online help for more information.
4. Maximum value obtained for a –1 speed grade device in worst-case commercial conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
ProASIC3L DC and Switching Characteristics
2-132 Revision 10
Table 2-212 • ProASIC3L CCC/PLL Specification
CCC/PLL Operating at 1.5 V
Parameter Min. Typ. Max. Units
Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 350 MHz
Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 350 MHz
Delay Increments in Programmable Delay Blocks 1, 2 1603 ps
Serial Clock (SCLK) for Dynamic PLL 4110
Number of Programmable Values in Each Programmable Delay Block 32
Input Period Jitter 1.5 ns
CCC Output Peak-to-Peak Period Jitter FCCC_OUT Max Peak-to-Peak Period Jitter
1 Global
Network
Used
3 Global
Networks
Used
0.75 MHz to 24 MHz 0.50% 0.70%
24 MHz to 100 MHz 1.00% 1.20%
100 MHz to 250 MHz 1.75% 2.00
250 MHz to 350 MHz 2.50% 5.60%
Acquisition Time
LockControl = 0 300 µs
LockControl = 1 6.0 ms
Tracking Jitter5
LockControl = 0 1.6 ns
LockControl = 1 0.8 ns
Output Duty Cycle 48.5 51.5 %
Delay Range in Block: Programmable Delay 1 1, 2 0.6 5.56 ns
Delay Range in Block: Programmable Delay 2 1, 2 0.025 5.56 ns
Delay Range in Block: Fixed Delay 1, 2 2.2 ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to SmartGen online help for more information.
4. Maximum value obtained for a –1 speed grade device in worst-case commercial conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-40 • Peak-to-Peak Jitter Definition
T
period_max
T
period_min
Output Signal
ProASIC3L Low Power Flash FPGAs
Revision 10 2-133
Embedded SRAM and FIFO Characteristics
SRAM
Figure 2- 41 RAM Models
ADDRA11 DOUTA8
DOUTA7
DOUTA0
DOUTB8
DOUTB7
DOUTB0
ADDRA10
ADDRA0
DINA8
DINA7
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
ADDRB11
ADDRB10
ADDRB0
DINB8
DINB7
DINB0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
RAM4K9
RADDR8 RD17
RADDR7 RD16
RADDR0 RD0
WD17
WD16
WD0
WW1
WW0
RW1
RW0
PIPE
REN
RCLK
RAM512X18
WADDR8
WADDR7
WADDR0
WEN
WCLK
RESET
RESET
ProASIC3L DC and Switching Characteristics
2-134 Revision 10
Timing Waveforms
Figure 2- 42 RAM Read for Pass-Through Ou tput. Applicable to Both RAM4K9 an d RAM512x18.
Figure 2- 43 RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.
CLK
[R|W]ADD
BLK
WEN
DOUT|RD
A0A1A2
D0D1D2
tCYC
tCKH tCKL
tAS tAH
tBKS
tENS tENH
tDOH1
tBKH
Dn
tCKQ1
CLK
[R|W]ADD
BLK
WEN
DOUT|RD
A0A1A2
D0D1
tCYC
tCKH tCKL
tAS tAH
tBKS
tENS tENH
tDOH2
tCKQ2
tBKH
Dn
ProASIC3L Low Power Flash FPGAs
Revision 10 2-135
Figure 2- 44 RAM Write, Output Retain ed. Applicable to both RAM4K9 and RAM512x18.
Figure 2- 45 RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.
tCYC
tCKH tCKL
A0A1A2
DI0DI1
tAS tAH
tBKS
tENS tENH
tDS tDH
CLK
BLK
WEN
[R|W]ADD
DIN|WD
Dn
DOUT|RD
tBKH
D2
tCYC
tCKH tCKL
A0A1A2
DI0DI1
tAS tAH
tBKS
tENS
tDS tDH
CLK
BLK
WEN
ADDR
DIN
tBKH
DOUT
(pass-through) DI1
DnDI0
DOUT
(pipelined) DI0DI1
Dn
DI2
ProASIC3L DC and Switching Characteristics
2-136 Revision 10
Figure 2- 46 RAM Reset. Applicable to Both RAM4K9 and RAM512x18.
CLK
RESET
DOUT|RD Dn
tCYC
tCKH tCKL
tRSTBQ
Dm
ProASIC3L Low Power Flash FPGAs
Revision 10 2-137
Timing Characteristics
Table 2-213 • RAM4K9 – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address setup time 0.25 0.30 ns
tAH Address hold time 0.00 0.00 ns
tENS REN, WEN setup time 0.15 0.17 ns
tENH REN, WEN hold time 0.10 0.12 ns
tBKS BLK setup time 0.24 0.2 8 ns
tBKH BLK hold time 0.02 0.02 ns
tDS Input data (DIN) setup time 0.19 0.22 ns
tDH Input data (DIN) hold time 0.00 0.0 0 ns
tCKQ1 Clock High to new data valid on DOUT (output retained, WMODE = 0) 1.82 2.14 ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1) 2.40 2.83 ns
tCKQ2 Clock High to new data valid on DOUT (pipelined) 0.91 1.07 ns
tC2CWWL1Address collision clk-to-clk delay for reliable write after write on same address –
applicable to closing edge 0.24 0.29 ns
tC2CRWH1Address collision clk-to-clk delay for reliable read access after write on same
address – applicable to opening edge 0.20 0.24 ns
tC2CWRH1Address collision clk-to-clk delay for reliable write access after read on same
address – applicable to opening edge 0.25 0.30 ns
tRSTBQ RESET Low to data out Low on DOUT (flow-through) 0.94 1.11 ns
RESET Low to data out Low on DOUT (pipelined) 0.94 1.11 ns
tREMRSTB RESET removal 0.29 0.34 ns
tRECRSTB RESET recovery 1.53 1.80 ns
tMPWRSTB RESET minimum pulse width 0.55 0.64 ns
tCYC Clock cycle time 5.10 5.87 ns
FMAX Maximum frequency 196 170 MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
ProASIC3L DC and Switching Characteristics
2-138 Revision 10
Table 2-214 • RAM4K9 – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1. 14 V
Parameter Description –1 Std. Units
tAS Address setup time 0.33 0.39 ns
tAH Address hold time 0.00 0.00 ns
tENS REN, WEN setup time 0.19 0.22 ns
tENH REN, WEN hold time 0.13 0.15 ns
tBKS BLK setup time 0.31 0.3 6 ns
tBKH BLK hold time 0.02 0.03 ns
tDS Input data (DIN) setup time 0.24 0.29 ns
tDH Input data (DIN) hold time 0.00 0.0 0 ns
tCKQ1 Clock High to new data valid on DOUT (output retained, WMODE = 0) 2.38 2.80 ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1) 3.14 3.69 ns
tCKQ2 Clock High to new data valid on DOUT (pipelined) 1.19 1.40 ns
tC2CWWL1Address collision clk-to-clk delay for reliable write after write on same address –
applicable to closing edge 0.25 0.30 ns
tC2CRWH1Address collision clk-to-clk delay for reliable read access after write on same
address – applicable to opening edge 0.27 0.32 ns
tC2CWRH1Address collision clk-to-clk delay for reliable write access after read on same
address – applicable to opening edge 0.37 0.44 ns
tRSTBQ RESET Low to data out Low on DOUT (flow-through) 1.23 1.45 ns
RESET Low to data out Low on DOUT (pipelined) 1.23 1.45 ns
tREMRSTB RESET removal 0.38 0.45 ns
tRECRSTB RESET recovery 2.00 2.35 ns
tMPWRSTB RESET minimum pulse width 0.63 0.72 ns
tCYC Clock cycle time 5.75 6.61 ns
FMAX Maximum frequency 174 151 MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.