This is information on a product in full production.
September 2015 DocID14771 Rev 15 1/121
STM8S105C4/6 STM8S105K4/6
STM8S105S4/6
Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbyte Flash,
integrated EEPROM, 10-bit ADC, timers, UART, SPI, I²C
Datasheet - production data
Features
Core
16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
Extended instruction set
Memories
Program memory: up to 32 Kbyte Flash; data
retention 20 years at 55 °C after 10 kcycle
Data memory: up to 1 Kbyte true data
EEPROM; endurance 300 kcycle
RAM: up to 2 Kbyte
Clock, reset and supply management
2.95 to 5.5 V operating voltage
Flexible clock control, 4 master clock sources
Low power crystal resonator oscillator
External clock input
Internal, user-trimmable 16 MHz RC
Internal low-power 128 kHz RC
Clock security system with clock monitor
Power management:
Low-power modes (wait, active-halt, halt)
Switch-off peripheral clocks individually
Permanently active, low-consumption power-
on and power-down reset
Interrupt management
Nested interrupt controller with 32 interrupts
Up to 37 external interrupts on 6 vectors
Timers
Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-time
insertion and flexible synchronization
2x16-bit general purpose timer, with 2+3
CAPCOM channels (IC, OC or PWM)
8-bit basic timer with 8-bit prescaler
Auto wake-up timer
Window watchdog and independent watchdog
timers
Communication interfaces
UART with clock output for synchronous
operation, SmartCard, IrDA, LIN master mode
SPI interface up to 8 Mbit/s
I2C interface up to 400 kbit/s
Analog to digital converter (ADC)
10-bit, ±1 LSB ADC with up to 10 multiplexed
channels, scan mode and analog watchdog
I/Os
Up to 38 I/Os on a 48-pin package including
16 high sink outputs
Highly robust I/O design, immune against
current injection
Unique ID
96-bit unique key for each device
LQFP48 (7x7 mm) LQFP44 (10x10 mm) LQFP32 (7x7 mm)
UFQFPN32 (5x5 mm)

SDIP32 400ml
www.st.com
Contents STM8S105x4/6
2/121 DocID14771 Rev 15
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 14
4.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.11 TIM2, TIM3 - 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . 18
4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14.1 UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14.2 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.14.3 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.2 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID14771 Rev 15 3/121
STM8S105x4/6 Contents
4
6.2.3 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 42
7 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8 Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1 Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.4 Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.5 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.6 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 66
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 69
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.3.7 Typical output level curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.3.8 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.3.9 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.3.10 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2 LQFP44 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.4 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Contents STM8S105x4/6
4/121 DocID14771 Rev 15
11.5 SDIP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 107
13 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
13.1 STM8S105 FASTROM microcontroller option list . . . . . . . . . . . . . . . . . 109
14 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . .113
14.1.1 STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
14.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
15 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID14771 Rev 15 5/121
STM8S105x4/6 List of tables
6
List of tables
Table 1. STM8S105x4/6 access line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 16
Table 3. TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Legend/abbreviations for pin description tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 5. STM8S105x4/6 pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6. Flash, data EEPROM and RAM boundary address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 10. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 11. Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 12. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 13. Alternate function remapping bits [7:0] of OPT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 14. Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 17. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 19. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 20. Total current consumption with code execution in run mode at VDD = 5 V. . . . . . . . . . . . . 57
Table 21. Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 58
Table 22. Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 23. Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 24. Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 59
Table 25. Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 60
Table 26. Total current consumption in halt mode at VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 27. Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 28. Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 29. Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 30. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 31. HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 32. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 33. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 34. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 35. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 36. Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 37. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 38. Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 39. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 40. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 41. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 42. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 43. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 44. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 45. ADC accuracy with RAIN< 10 k, VDDA = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 46. ADC accuracy with RAIN< 10 k, VDDA = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 47. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
List of tables STM8S105x4/6
6/121 DocID14771 Rev 15
Table 49. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 50. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 52. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 54. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 55. SDIP32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 56. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 57. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID14771 Rev 15 7/121
STM8S105x4/6 List of figures
8
List of figures
Figure 1. STM8S105x4/6 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. LQFP44 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. UFQFPN32/LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 6. SDIP32 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 8. Supply current measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 11. fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 12. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 13. Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 62
Figure 14. Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 16. Typ IDD(WFI) vs. VDD HSE external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 17. Typ IDD(WFI) vs. fCPU HSE external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 18. Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 19. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 20. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 21. Typical HSI accuracy @ VDD = 5 V vs 5 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 22. Typical HSI frequency variation vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 23. Typical LSI frequency variation vs VDD@ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 24. Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 25. Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 26. Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 27. Typ. VOL @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 28. Typ. VOL @ VDD = 5.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 29. Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 30. Typ. VOL @ VDD = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 31. Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 32. Typ. VOL @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 34. Typ. VDD - VOH @ VDD = 5.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 35. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 36. Typ. VDD - VOH @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 37. Typical NRST VIL and VIH vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 38. Typical NRST pull-up resistance RPU vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . 79
Figure 39. Typical NRST pull-up current Ipu vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 40. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 41. SPI timing diagram where slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 42. SPI timing diagram where slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 43. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 44. Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 45. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 46. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 91
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
List of figures STM8S105x4/6
8/121 DocID14771 Rev 15
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 49. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 50. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 94
Figure 51. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 52. LQFP44 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98
Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 55. LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 56. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 57. UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 58. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 59. SDIP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 60. SDIP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 61. STM8S105x4/6 access line ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . . 108
DocID14771 Rev 15 9/121
STM8S105x4/6 Introduction
21
1 Introduction
This datasheet contains the description of the device features, pinout, electrical
characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S microcontroller family reference manual
(RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash programming manual (PM0051).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
Description STM8S105x4/6
10/121 DocID14771 Rev 15
2 Description
The STM8S105x4/6 access line 8-bit microcontrollers offer from 16 to 32 Kbyte Flash
program memory, plus integrated true data EEPROM. The STM8S microcontroller family
reference manual (RM0016) refers to devices in this family as medium-density. All devices
of the STM8S105x4/6 access line provide the following benefits: reduced system cost,
performance and robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
watchdog and brown-out reset.
Device performance is ensured by a 16 MHz CPU clock frequency and enhanced
characteristics which include robust I/O, independent watchdogs (with a separate clock
source), and a clock security system.
Short development cycles are guaranteed due to application scalability across common
family product architecture with compatible pinout, memory map and modular peripherals.
Product longevity is ensured in the STM8S family thanks to their advanced core which is
made in a state-of-the-art technology for applications with 2.95 V to 5.5 V operating supply.
Full documentation is offered as well as a wide choice of development tools.
DocID14771 Rev 15 11/121
STM8S105x4/6 Description
21
Table 1. STM8S105x4/6 access line features
Device STM8S105C6 STM8S105C4 STM8S105S6 STM8S105S4 STM8S105K6 STM8S105K4
Pin count 48 48 44 44 32 32
Maximum
number of
GPIOs
38 38 34 34 25 25
Ext. Interrupt
pins 35 35 31 31 23 23
Timer
CAPCOM
channels
9 9 8 8 8 8
Timer
complementar
y outputs
3 3 3 3 3 3
A/D Converter
channels 10 10 9 9 7 7
High sink I/Os 16 16 15 15 12 12
Medium
density Flash
Program
memory (byte)
32K 16K 32K 16K 32K 16K
Data
EEPROM
(bytes)
1024 1024 1024 1024 1024 1024
RAM (bytes) 2K 2K 2K 2K 2K 2K
Peripheral set Advanced control timer (TIM1), General-purpose timers (TIM2 and TIM3), Basic timer (TIM4) SPI,
I2C, UART, Window WDG, Independent WDG, ADC
Block diagram STM8S105x4/6
12/121 DocID14771 Rev 15
3 Block diagram
Figure 1. STM8S105x4/6 block diagram
06Y9
,&
;7$/0+]
5&LQW0+]
5&LQWN+]
670
FRUH
'HEXJ6:,0
63,
8$57
ELWJHQHUDOSXUSRVH
WLPHU7,07,0
$:8WLPHU
5HVHWEORFN
5HVHW
325 %25
&ORFNFRQWUROOHU
'HWHFWRU
&ORFNWRSHULSKHUDOVDQGFRUH
0ELWV
0DVWHUVODYH
DXWRV\QFKUR
/,1PDVWHU
63,HPXO
$GGUHVVDQGGDWDEXV
8SWR.E\WH
3URJUDP
)ODVK
.E\WH
GDWD((3520
8SWR.E\WH
5$0
$'&
5HVHW
.ELWV
6LQJOHZLUH
GHEXJLQWHUI
ELWDGYDQFHG
FRQWUROWLPHU70
ELWEDVLFWLPHU
7,0
8SWR&$3&20
FKDQQHOV
FRPSOHPHQWDU\
RXWSXWV
%HHSHU
N+]
EHHS
,QGHSHQGHQW:'*
8SWR&$3&20
FKDQQHOV
8SWR
FKDQQHOV
:LQGRZ
:'*
%RRW520
DocID14771 Rev 15 13/121
STM8S105x4/6 Product overview
21
4 Product overview
The following section provides an overview of the basic features of the device functional
modules and peripherals.
For more detailed information please refer to the corresponding family reference manual
(RM0016).
4.1 Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture,
3-stage pipeline,
32-bit wide program memory bus - single cycle fetching for most instructions,
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations,
8-bit accumulator,
24-bit program counter - 16-Mbyte linear memory space,
16-bit stack pointer - access to a 64 K-level stack,
8-bit condition code register - 7 condition flags for the result of the last instruction.
Addressing
20 addressing modes,
Indexed indirect addressing mode for look-up tables located anywhere in the address
space,
Stack pointer relative addressing mode for local variables and parameter passing.
Instruction set
80 instructions with 2-byte average instruction size,
Standard data movement and logic/arithmetic functions,
8-bit by 8-bit multiplication,
16-bit by 8-bit and 16-bit by 16-bit division,
Bit manipulation,
Data transfer between stack and accumulator (push/pop) with direct stack access,
Data transfer using the X and Y registers or direct memory-to-memory transfers.
Product overview STM8S105x4/6
14/121 DocID14771 Rev 15
4.2 Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time in-
circuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory
programming. The interface can be activated in all device operation modes. The maximum
data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-
time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all program-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations
4.3 Interrupt controller
Nested interrupts with three software priority levels,
32 interrupt vectors with hardware priority,
Up to 37 external interrupts on 6 vectors including TLI,
Trap and reset interrupts
4.4 Flash program and data EEPROM memory
Up to 32 Kbyte of Flash program single voltage Flash memory,
Up to 1 Kbyte true data EEPROM,
Read while write: writing in data memory possible while executing code in program
memory,
User option byte area.
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to write to
data EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of
memory known as UBC (user boot code). Refer to the figure below.
DocID14771 Rev 15 15/121
STM8S105x4/6 Product overview
21
The size of the UBC is programmable through the UBC option byte, in increments of 1 page
(512 byte) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: up to 32 Kbyte minus UBC
User-specific boot code (UBC): Configurable up to 32 Kbyte
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program and data
memory. Even if no protection can be considered as totally unbreakable, the feature
provides a very high level of protection for a general purpose microcontroller.
06Y9
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
3URJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
'DWDPHPRU\DUHD.E\WH
'DWD
((3520
PHPRU\
2SWLRQE\WHV
0HGLXPGHQVLW\
)ODVKSURJUDP
PHPRU\
XSWR.E\WH
3URJUDPPDEOHDUHD
IURP.E\WH
ILUVWSDJHVXSWR
.E\WHSDJHVWHS
Product overview STM8S105x4/6
16/121 DocID14771 Rev 15
4.5 Clock controller
The clock controller distributes the system clock (fMASTER) coming from different
oscillators to the core and the peripherals. It also manages clock gating for low power
modes and ensures clock robustness.
Features
Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: four different clock sources can be used to drive the master
clock:
1-16 MHz high-speed external crystal (HSE)
Up to 16 MHz high-speed user-external clock (HSE user-ext)
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
St artup clock: After reset, the microcontroller restarts by default with an internal 2 MHz
clock (HSI/8). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can optionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock
PCKEN17 TIM1 PCKEN13 UART2 PCKEN27 Reserved PCKEN23 ADC
PCKEN16 TIM3 PCKEN12 Reserved PCKEN26 Reserved PCKEN22 AWU
PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved
PCKEN14 TIM4 PCKEN10 I2C PCKEN24 Reserved PCKEN20 Reserved
DocID14771 Rev 15 17/121
STM8S105x4/6 Product overview
21
4.6 Power management
For efficient power management, the application can be put in one of four different low-
power modes. You can configure each mode to obtain the best compromise between lowest
power consumption, fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
Active halt mode wit h regulator on : In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake
up unit (AWU). The main voltage regulator is kept powered on, so current consumption
is higher than in active halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time
is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
4.7 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application software must refresh the counter before time-out and during a limited time
window.
A reset is generated in two situations:
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2. Refresh out of window: The downcounter is refreshed before its value is lower than the
one stored in the window register.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure
Product overview STM8S105x4/6
18/121 DocID14771 Rev 15
The IWDG time base spans from 60 µs to 1 s.
4.8 Auto wakeup counter
Used for auto wakeup from active halt mode,
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock,
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration.
4.9 Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit
AFR7.
4.10 TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output
Synchronization module to control the timer with external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Encoder mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
4.11 TIM2, TIM3 - 16-bit general purpose timers
16-bit auto reload (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
Timers with 3 or 2 individually configurable capture/compare channels
PWM mode
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
DocID14771 Rev 15 19/121
STM8S105x4/6 Product overview
21
4.12 TIM4 - 8-bit basic timer
8-bit auto reload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update
4.13 Analog-to-digital converter (ADC1)
The STM8S105x4/6 products contain a 10-bit successive approximation A/D converter
(ADC1) with up to 10 multiplexed input channels and the following main features:
Input voltage range: 0 to VDD
Conversion time: 14 clock cycles
Single and continuous and buffered continuous conversion modes
Buffer size (n x 10 bits) where n = number of input channels
Scan mode for single and continuous conversion of a sequence of channels
Analog watchdog capability with programmable upper and lower thresholds
Analog watchdog interrupt
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt
Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchd og.
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.
Table 3. TIM timer features
Timer Counter
size (bits) Prescaler Counting
mode CAPCOM
channels Complementary
outputs Ext.
trigger
Timer
synchronization/
chaining
TIM1 16
Any integer
from 1 to
65536
Up/down 4 3 Yes
No
TIM2 16
Any power
of 2 from 1
to 32768
Up 3 0 No
TIM3 16
Any power
of 2 from 1
to 32768
Up 2 0 No
TIM4 8
Any power
of 2 from 1
to 128
Up 0 0 No
Product overview STM8S105x4/6
20/121 DocID14771 Rev 15
4.14 Communication interfaces
The following communication interfaces are implemented:
UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode,
IrDA mode, single wire mode, LIN2.1 master capability
SPI: Full and half-duplex, 8 Mbit/s
I²C: Up to 400 kbit/s
4.14.1 UART2
Main features
1 Mbit/s full duplex SCI
SPI emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
LIN master mode
LIN slave mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable
of following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
Synchronous communication
Full duplex synchronous transfers
SPI master operation
8-bit data communication
Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)
LIN master mode
Emission: Generates 13-bit synch. break frame
Reception: Detects 11-bit break frame
DocID14771 Rev 15 21/121
STM8S105x4/6 Product overview
21
LIN slave mode
Autonomous header handling - one single interrupt per valid message header
Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15%
Synch delimiter checking
11-bit LIN synch break detection - break detection always active
Parity check on the LIN identifier field
LIN error management
Hot plugging support
4.14.2 SPI
Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave/master selection input pin
4.14.3 I2C
I²C master features:
Clock generation
Start and stop generation
I²C slave features:
Programmable I2C address detection
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz)
Fast speed (up to 400 kHz)
Pinout and pin description STM8S105x4/6
22/121 DocID14771 Rev 15
5 Pinout and pin description
Table 4. Legend/abbreviations for pin description tables
Type I= Input, O = Output, S = Power supply
Level Input CM = CMOS
Output HS = High sink
Output speed
O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Port and control
configuration
Input float = floating,
wpu = weak pull-up
Output
T = True open drain,
OD = Open drain,
PP = Push pull
Reset state Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset
phase and after the internal reset release.
DocID14771 Rev 15 23/121
STM8S105x4/6 Pinout and pin description
30
Figure 3. LQFP48 pinout
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
       















         


   
+63$
$,13(
3&+67,0B&+8$57B&.
3(63,B166
3*
$,13(
3'+67,0B&+>$'&B(75@
3'+67,0B&+>7,0B&+@
3(+6&/.B&&2
3(7,&B6&/
3(7,&B6'$$
3(7,0B%.,1
3'7/,>7,0B&+@
3'8$57B5;
3'8$57B7;
3'+67,0B&+>%((3@
3'+66:,0
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
966,2B
3&+663,B6&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+
3*
3&+663,B0,62
3&+663,B026,
9'',2B
$,13%
$,13%
>,&B6'$@$,13%
>7,0B(75@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
9''$
966$
966
9&$3
9''
9'',2B
>7,0B&+@7,0B&+3$
+63$
+63$
1567
26&,13$
26&2873$
966,2B
>,&B6&/@$,13%
069
Pinout and pin description STM8S105x4/6
24/121 DocID14771 Rev 15
Figure 4. LQFP44 pinout
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
069
$,13%
>,&B6'$@$,13%
>7,0B(75@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
$,13(
9''$
966$
$,13%
          











          


966
9&$3
9''
9'',2B
+63$
+63$
+63$
1567
26&,13$
26&2873$
966,2B
9'',2B
966,2B
3&+663,B6&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
3*
3*
3&+663,B0,62
3&+663,B026,
3'+67,0B&+>$'&B(75@
3'+67,0B&+>7,0B&+@
3'+66:,0
3(7,&B6&/
3(7,&B6'$
3'7/,>7,0B&+@
3'8$57B5;
3'8$57B7;
3'+67,0B&+>%((3@
3(+6&/.B&&2
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
>,&B6&/@$,13%
DocID14771 Rev 15 25/121
STM8S105x4/6 Pinout and pin description
30
Figure 5. UFQFPN32/LQFP32 pinout
1. (HS) high sink capability.
2. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
069
>7,0B(75@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
>7,0B&+1@$,13%
9''$
966$
       









9&$3
9''
9'',2
$,13)
1567
26&,13$
26&2873$
966
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+8$57B&.
3(63,B166
3&+663,B0,62
3&+663,B026,
3&+663,B6&.
3&+67,0B&+
3'+67,0B&+>$'&B(75@
3'+67,0B&+>7,0B&+@
3'+66:,0
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
3'7/,>7,0B&+@
3'8$57B5;
3'8$57B7;
3'+67,0B&+>%((3@
>,&B6'$@$,13%
>,&B6&/@$,13%
Pinout and pin description STM8S105x4/6
26/121 DocID14771 Rev 15
Figure 6. SDIP32 pinout
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).























$'&B(757,0B&++63'
>%((3@7,0B&++63'
8$57B7;3'
8$57B5;3'
>7,0B&+@7/,3'
1567
26&,13$
26&2873$
966
9&$3
9''
$,13)
>,&B6'$@$,13% 3%$,1>,&B6&/@
3%$,1>7,0B(75@
3%$,1>7,0B&+1@
3%$,1>7,0B&+1@
3%$,1>7,0B&+1@
3(63,B166
3&+67,0B&+8$57B&.
3&+67,0B&+
3&+67,0B&+
3&+67,0B&+
3&+663,B6&.
3&+663,B026,
3&+663,B0,62
3'+67,0B&+>7,0B%.,1@>&/.B&&2@
3'+66:,0
3'+67,0B&+>7,0B&+@
9'',2
9''$
966$
069
Table 5. STM8S105x4/6 pin description
Pin number
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after
remap
[option
bit]
LQFP48
LQFP44
LQFP32/UFQFPN32
SDIP32
Floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
1116 NRST I/O-X-- -- Reset -
2227
PA1/ OSC IN I/O XX- -O1XXPort A1
Resonato
r/ crystal
in
3338 PA2/ OSC
OUT I/O XX- -O1XXPort A1
Resonato
r/ crystal
in
44- - VSSIO_1 S ------- I/O ground -
5549 VSS S ------- Digital ground -
66510 VCAP S ------- 1.8 V regulator
capacitor -
DocID14771 Rev 15 27/121
STM8S105x4/6 Pinout and pin description
30
77611 VDD S -------Digital power supply -
88712 VDDIO_1 S ------- I/O power supply -
9---
PA3/ TIM2_CH3
[TIM3_CH1] I/O XX X - O1 X X Port A3 Timer 2 -
channel 3
TIM3_
CH1
[AFR1]
10 9 - - PA4 I/O XX X HS O3 X X Port A4 - -
11 10 - - PA5 I/O XX X HS O3 X X Port A5 - -
12 11 - - PA6 I/O XX X HS O3 X X Port A6 - -
--813PF4/ AIN12
(1) I/O XX- -O1XX Port F4
Analog
input
12(2)
-
1312914 VDDA S -------Analog power supply -
14 13 10 15 VSSA S - - - ---- Analog ground -
15 14 - - PB7/ AIN7 I/O XX X - O1 X X Port B7 Analog
input 7 -
16 15 - - PB6/ AIN6 I/O XX X - O1 X X Port B6 Analog
input 6 -
17 16 11 16 PB5/ AIN5
[I2C_ SDA] I/O XX X - O1 X X Port B5 Analog
input 5
I
2C_SDA
[AFR6]
18 17 12 17 PB4/ AIN4
[I2C_SCL] I/O XX X - O1 X X Port B4 Analog
input 4
I2C_SCL
[AFR6]
19 18 13 18 PB3/ AIN3
[TIM1_ETR] I/O XX X - O1 X X Port B3 Analog
input 3
TIM1_ET
R [AFR5]
20 19 14 19 PB2/ AIN2
[TIM1_CH3N] I/O XX X - O1 X X Port B2 Analog
input 2
TIM1_CH
3N
[AFR5]
21 20 15 20 PB1/ AIN1
[TIM1_CH2N] I/O XX X - O1 X X Port B1 Analog
input 1
TIM1_CH
2N
[AFR5]
22 21 16 21 PB0/ AIN0
[TIM1_CH1N] I/O XX X - O1 X X Port B0 Analog
input 0
TIM1_CH
1N
[AFR5]
23 - - - PE7/ AIN8 I/O XX X - O1 X X Port E7 Analog
input 8 -
Table 5. STM8S105x4/6 pin description (continued)
Pin number
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after
remap
[option
bit]
LQFP48
LQFP44
LQFP32/UFQFPN32
SDIP32
Floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
Pinout and pin description STM8S105x4/6
28/121 DocID14771 Rev 15
24 22 - - PE6/ AIN9 I/O XXX -O1XXPort E6 Analog
input 9(3) -
25 23 17 22 PE5/ SPI_NSS I/O XX X - O1 X X Port E5
SPI
master/
slave
select
-
26 24 18 23
PC1/
TIM1_CH1/
UART2_CK
I/O XX X HS O3 X X Port C1
Timer 1 -
channel
1/ UART2
synchron
ous clock
-
27 25 19 24 PC2/
TIM1_CH2 I/O XX X HS O3 X X Port C2 Timer 1-
channel 2 -
28 26 20 25 PC3/
TIM1_CH3 I/O XX X HS O3 X X Port C3 Timer 1 -
channel 3 -
29 - 21 26 PC4/
TIM1_CH4 I/O XX X HS O3 X X Port C4 Timer 1 -
channel 4 -
30 27 22 27 PC5/ SPI_SCK I/O XX HS O3 X X Port C5 SPI clock -
3128- - VSSIO_2 S ------- I/O ground -
3229- - VDDIO_2 S ------- I/O power supply -
33 30 23 28 PC6/ SPI_MOSI I/O XX X HS O3 X X Port C6
SPI
master
out/slave
in
-
34 31 24 29 PC7/ SPI_
MISO I/O XX X HS O3 X X Port C7
SPI
master in/
slave out
-
35 32 - - PG0 I/O XX - - O1 X X Port G0 - -
36 33 - - PG1 I/O XX- -O1XXPort G1 - -
37 - - - PE3/
TIM1_BKIN I/O XXX -O1XXPort E3
Timer 1 -
break
input
-
38 34 - - PE2/ I 2C_ SDA I/O X-X-O1
T
(4) - Port E2 I 2C data -
39 35 - - PE1/ I2C_ SCL I/O X-X-O1
T
(4) - Port E1 I 2C clock -
Table 5. STM8S105x4/6 pin description (continued)
Pin number
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after
remap
[option
bit]
LQFP48
LQFP44
LQFP32/UFQFPN32
SDIP32
Floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
DocID14771 Rev 15 29/121
STM8S105x4/6 Pinout and pin description
30
40 36 - - PE0/ CLK_CCO I/O XX X HS O3 X X Port E0
Configura
ble clock
output
-
41 37 25 30
PD0/
TIM3_CH2
[TIM1_BKIN]
[CLK_CCO]
I/O XX X HS O3 X X Port D0 Timer 3 -
channel 2
TIM1_BK
IN
[AFR3]/
CLK_CC
O [AFR2]
42 38 26 31 PD1/ SWIM(5) I/O X XX XHSO4X Port D1
SWIM
data
interface
-
43 39 27 32
PD2/
TIM3_CH1
[TIM2_CH3]
I/O XX X HS O3 X X Port D2 Timer 3 -
channel 1
TIM2_CH
3 [AFR1]
44 40 28 1
PD3/
TIM2_CH2
[ADC_ETR]
I/O XX X HS O3 X X Port D3 Timer 2 -
channel 2
ADC_ET
R [AFR0]
45 41 29 2
PD4/
TIM2_CH1
[BEEP]
I/O XX X HS O3 X X Port D4 Timer 2 -
channel 1
BEEP
output
[AFR7]
46 42 30 3 PD5/
UART2_TX I/O XXX -O1XXPort D5
UART2
data
transmit
-
47 43 31 4 PD6/
UART2_RX I/O XXX -O1XX Port D6
UART2
data
receive
-
48 44 32 5 PD7/ TLI
[TIM1_CH4 I/O XXX -O1XX Port D7
Top level
interrupt
TIM1_CH
4 [AFR4]
1. A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.
2. AIN12 is not selectable in ADC scan mode or with analog watchdog.
3. In 44-pin package, AIN9 cannot be used by ADC scan mode.
4. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
5. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
Table 5. STM8S105x4/6 pin description (continued)
Pin number
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after
remap
[option
bit]
LQFP48
LQFP44
LQFP32/UFQFPN32
SDIP32
Floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
Pinout and pin description STM8S105x4/6
30/121 DocID14771 Rev 15
5.1 Alternate function remapping
As shown in the rightmost column of the pin description table, some alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. When the remapping option is active, the default alternate function is no
longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the family reference manual, RM0016).
DocID14771 Rev 15 31/121
STM8S105x4/6 Memory and register map
50
6 Memory and register map
6.1 Memory map
Figure 7. Memory map
The following table lists the boundary addresses for each memory size. The top of the stack
is at the RAM end address in each case.
06Y9
[))))
)ODVKSURJUDPPHPRU\
WR.E\WH
[
5$0
[))
.E\WH
E\WHVWDFN
[
[)) .E\WHGDWD((3520
5HVHUYHG
5HVHUYHG
5HVHUYHG
[
[
[)))
[))
[ LQWHUUXSWYHFWRUV
[)
*3,2DQGSHULSKUHJ
[
[))
[
[)))
[)
[)))
[())
&386:,0GHEXJ,7&
UHJLVWHUV
[)
5HVHUYHG
5HVHUYHG
2SWLRQE\WHV
[
[
.E\WHERRW520
5HVHUYHG
[)))
[
[))
[
Memory and register map STM8S105x4/6
32/121 DocID14771 Rev 15
6.2 Register map
6.2.1 I/O port hardware register map
Table 6. Flash, data EEPROM and RAM boundary address
Memory area Size (byte) Start address End address
Flash program memory
32 K 0x00 8000 0x00 FFFF
16 K 0x00 8000 0x00 BFFF
RAM 2 K 0x00 0000 0x00 07FF
Data EEPROM 1024 0x00 4000 0x00 43FF
Table 7. I/O port hardware register map
Address Block Register label Register name Reset status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xXX(1)
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX(1)
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0xXX(1)
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX(1)
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x02
0x00 5013 PD_CR2 Port D control register 2 0x00
DocID14771 Rev 15 33/121
STM8S105x4/6 Memory and register map
50
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX(1)
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX(1)
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
0x00 501E
Port G
PG_ODR Port G data output latch register 0x00
0x00 501F PG_IDR Port G input pin value register 0xXX(1)
0x00 5020 PG_DDR Port G data direction register 0x00
0x00 5021 PG_CR1 Port G control register 1 0x00
0x00 5022 PG_CR2 Port G control register 2 0x00
0x00 5023
Port H
PH_ODR Port H data output latch register 0x00
0x00 5024 PH_IDR Port H input pin value register 0xXX(1)
0x00 5025 PH_DDR Port H data direction register 0x00
0x00 5026 PH_CR1 Port H control register 1 0x00
0x00 5027 PH_CR2 Port H control register 2 0x00
0x00 5028
Port I
PI_ODR Port I data output latch register 0x00
0x00 5029 PI_IDR Port I input pin value register 0xXX(1)
0x00 502A PI_DDR Port I data direction register 0x00
0x00 502B PI_CR1 Port I control register 1 0x00
0x00 502C PI_CR2 Port I control register 2 0x00
1. Depends on the external circuitry.
Table 7. I/O port hardware register map (continued)
Address Block Register label Register name Reset status
Memory and register map STM8S105x4/6
34/121 DocID14771 Rev 15
6.2.2 General hardware register map
Table 8. General hard ware register map
Address Block Register label Register name Reset status
0x00 5050 to 0x00 5059 Reserved area (10 byte)
0x00 505A
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control
register 2 0xFF
0x00 505D FLASH _FPR Flash protection register 0x00
0x00 505E FLASH _NFPR Flash complementary
protection register 0xFF
0x00 505F FLASH _IAPSR Flash in-application
programming status register 0x00
0x00 5060 to 0x00 5061 Reserved area (2 byte)
0x00 5062 Flash FLASH _PUKR Flash program memory
unprotection register 0x00
0x00 5063 Reserved area (1 byte)
0x00 5064 Flash FLASH _DUKR Data EEPROM unprotection
register 0x00
0x00 5065 to 0x00 509F Reserved area (59 byte)
0x00 50A0
ITC
EXTI_CR1 External interrupt control
register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control
register 2 0x00
0x00 50A2 to 0x00 50B2 Reserved area (17 byte)
0x00 50B3 RST RST_SR Reset status register 0xXX(1)
0x00 50B4 to 0x00 50BF Reserved area (12 byte)
0x00 50C0
CLK
CLK_ICKR Internal clock control register 0x01
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
DocID14771 Rev 15 35/121
STM8S105x4/6 Memory and register map
50
0x00 50C3
CLK
CLK_CMSR Clock master status register 0xE1
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
0x00 50C7 CLK_PCKENR1 Peripheral clock gating
register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control
register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating
register 2 0xFF
0x00 50CC CLK_HSITRIMR HSI clock calibration trimming
register 0x00
0x00 50CD CLK_SWIMCCR SWIM clock control register 0bXXXX XXX0
0x00 50CE to 0x00 50D0 Reserved area (3 byte)
0x00 50D1
WWDG
WWDG_CR WWDG control register 0x7F
0x00 50D2 WWDG_WR WWDR window register 0x7F
0x00 50D3 to 00 50DF Reserved area (13 byte)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX(2)
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to 0x00 50EF Reserved area (13 byte)
0x00 50F0
AWU
AWU_CSR1 AWU control/status register 1 0x00
0x00 50F1 AWU_APR AWU asynchronous prescaler
buffer register 0x3F
0x00 50F2 AWU_TBR AWU timebase selection
register 0x00
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4 to 0x00 50FF Reserved area (12 byte)
0x00 5200
SPI
SPI_CR1 SPI control register 1 0x00
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0xFF
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0xFF
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
Memory and register map STM8S105x4/6
36/121 DocID14771 Rev 15
0x00 5208 to 0x00 520F Reserved area (8 byte)
0x00 5210
I2C
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C Own address register low 0x00
0x00 5214 I2C_OARH I2C Own address register
high 0x00
0x00 5215 Reserved
0x00 5216 I2C_DR I2C data register 0x00
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x0X
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C Clock control register low 0x00
0x00 521C I2C_CCRH I2C Clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
0x00 521E I2C_PECR I2C packet error checking
register 0x00
0x00 521F to 0x00 522F Reserved area (17 byte)
0x00 5230 to 0x00 523F Reserved area (6 byte)
0x00 5240
UART2
UART2_SR UART2 status register 0xC0
0x00 5241 UART2_DR UART2 data register 0xXX
0x00 5242 UART2_BRR1 UART2 baud rate register 1 0x00
0x00 5243 UART2_BRR2 UART2 baud rate register 2 0x00
0x00 5244 UART2_CR1 UART2 control register 1 0x00
0x00 5245 UART2_CR2 UART2 control register 2 0x00
0x00 5246 UART2_CR3 UART2 control register 3 0x00
0x00 5247 UART2_CR4 UART2 control register 4 0x00
0x00 5248 UART2_CR5 UART2 control register 5 0x00
0x00 5249 UART2_CR6 UART2 control register 6 0x00
0x00 524A UART2_GTR UART2 guard time register 0x00
0x00 524B UART2_PSCR UART2 prescaler register 0x00
0x00 524C to 0x00 524F Reserved area (4 byte)
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
DocID14771 Rev 15 37/121
STM8S105x4/6 Memory and register map
50
0x00 5250
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control
register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 interrupt enable register 0x00
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation
register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode
register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode
register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode
register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode
register 4 0x00
0x00 525C TIM1_CCER1 TIM1 capture/compare enable
register 1 0x00
0x00 525D TIM1_CCER2 TIM1 capture/compare enable
register 2 0x00
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter
register 0x00
0x00 5265 TIM1_CCR1H TIM1 capture/compare
register 1 high 0x00
0x00 5266 TIM1_CCR1L TIM1 capture/compare
register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare
register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare
register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare
register 3 high 0x00
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
Memory and register map STM8S105x4/6
38/121 DocID14771 Rev 15
0x00 526A
TIM1
TIM1_CCR3L TIM1 capture/compare
register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare
register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/compare
register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x00
0x00 5270 to 0x00 52FF Reserved area (147 byte)
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
DocID14771 Rev 15 39/121
STM8S105x4/6 Memory and register map
50
0x00 5300
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5301 TIM2_IER TIM2 Interrupt enable register 0x00
0x00 5302 TIM2_SR1 TIM2 status register 1 0x00
0x00 5303 TIM2_SR2 TIM2 status register 2 0x00
0x00 5304 TIM2_EGR TIM2 event generation
register 0x00
0x00 5305 TIM2_CCMR1 TIM2 capture/compare mode
register 1 0x00
0x00 5306 TIM2_CCMR2 TIM2 capture/compare mode
register 2 0x00
0x00 5307 TIM2_CCMR3 TIM2 capture/compare mode
register 3 0x00
0x00 5308 TIM2_CCER1 TIM2 capture/compare enable
register 1 0x00
0x00 5309 TIM2_CCER2 TIM2 capture/compare enable
register 2 0x00
0x00 530A TIM2_CNTRH TIM2 counter high 0x00
0x00 530B TIM2_CNTRL TIM2 counter low 0x00
0x00 530C TIM2_PSCR IM2 prescaler register 0x00
0x00 530D TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 530E TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 530F TIM2_CCR1H TIM2 capture/compare
register 1 high 0x00
0x00 5310 TIM2_CCR1L TIM2 capture/compare
register 1 low 0x00
0x00 5311 TIM2_CCR2H TIM2 capture/compare reg. 2
high 0x00
0x00 5312 TIM2_CCR2L TIM2 capture/compare
register 2 low 0x00
0x00 5313 TIM2_CCR3H TIM2 capture/compare
register 3 high 0x00
0x00 5314 TIM2_CCR3L TIM2 capture/compare
register 3 low 0x00
0x00 5315 to 0x00 531F Reserved area (11 byte)
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
Memory and register map STM8S105x4/6
40/121 DocID14771 Rev 15
0x00 5320
TIM3
TIM3_CR1 TIM3 control register 1 0x00
0x00 5321 TIM3_IER TIM3 Interrupt enable register 0x00
0x00 5322 TIM3_SR1 TIM3 status register 1 0x00
0x00 5323 TIM3_SR2 TIM3 status register 2 0x00
0x00 5324 TIM3_EGR TIM3 event generation
register 0x00
0x00 5325 TIM3_CCMR1 TIM3 capture/compare mode
register 1 0x00
0x00 5326 TIM3_CCMR2 TIM3 capture/compare mode
register 2 0x00
0x00 5327 TIM3_CCER1 TIM3 capture/compare enable
register 1 0x00
0x00 5328 TIM3_CNTRH TIM3 counter high 0x00
0x00 5329 TIM3_CNTRL TIM3 counter low 0x00
0x00 532A TIM3_PSCR TIM3 prescaler register 0x00
0x00 532B TIM3_ARRH TIM3 auto-reload register high 0xFF
0x00 532C TIM3_ARRL TIM3 auto-reload register low 0xFF
0x00 532D TIM3_CCR1H TIM3 capture/compare
register 1 high 0x00
0x00 532E TIM3_CCR1L TIM3 capture/compare
register 1 low 0x00
0x00 532F TIM3_CCR2H TIM3 capture/compare reg. 2
high 0x00
0x00 5330 TIM3_CCR2L TIM3 capture/compare
register 2 low 0x00
0x00 5331 to 0x00 533F Reserved area (15 byte)
0x00 5340
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 5341 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5342 TIM4_SR TIM4 status register 0x00
0x00 5343 TIM4_EGR TIM4 event generation
register 0x00
0x00 5344 TIM4_CNTR TIM4 counter 0x00
0x00 5345 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5346 TIM4_ARR TIM4 auto-reload register 0xFF
0x00 5347 to 0x00 53DF Reserved area (153 byte)
0x00 53E0 to 0x00 53F3 ADC1 ADC_DBxR ADC data buffer registers 0x00
0x00 53F4 to 0x00 53FF Reserved area (12 byte)
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
DocID14771 Rev 15 41/121
STM8S105x4/6 Memory and register map
50
0x00 5400
ADC1
cont’d
ADC_CSR ADC control/status register 0x00
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable
register high 0x00
0x00 5407 ADC_TDRL ADC Schmitt trigger disable
register low 0x00
0x00 5408 ADC_HTRH ADC high threshold register
high 0x03
0x00 5409 ADC_HTRL ADC high threshold register
low 0xFF
0x00 540A ADC_LTRH ADC low threshold register
high 0x00
0x00 540B ADC_LTRL ADC low threshold register
low 0x00
0x00 540C ADC_AWSRH ADC analog watchdog status
register high 0x00
0x00 540D ADC_AWSRL ADC analog watchdog status
register low 0x00
0x00 540E ADC _AWCRH ADC analog watchdog control
register high 0x00
0x00 540F ADC_AWCRL ADC analog watchdog control
register low 0x00
0x00 5410 to 0x00 57FF Reserved area (1008 byte)
1. Depends on the previous reset source.
2. Write-only register.
Table 8. General hardware regis ter map (continued)
Address Block Register label Register name Reset status
Memory and register map STM8S105x4/6
42/121 DocID14771 Rev 15
6.2.3 CPU/SWIM/debug module/interrupt controller registers
Table 9. CPU/SWIM/debug module/interrupt controller registers
Address Block Register la bel Register name Reset
status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x03
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to 0x00 7F5F Reserved area (85 byte)
0x00 7F60 CPU CFG_GCR Global configuration
register 0x00
0x00 7F70
ITC
ITC_SPR1 Interrupt software priority
register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority
register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority
register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt software priority
register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt software priority
register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority
register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt software priority
register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt software priority
register 8 0xFF
0x00 7F78 to 0x00 7F79 Reserved area (2 byte)
0x00 7F80 SWIM SWIM_CSR SWIM control status
register 0x00
0x00 7F81 to 0x00 7F8F Reserved area (15 byte)
DocID14771 Rev 15 43/121
STM8S105x4/6 Memory and register map
50
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register
extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register
high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register
low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register
extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register
high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register
low byte 0xFF
0x00 7F96 DM_CR1 DM debug module control
register 1 0x00
0x00 7F97 DM_CR2 DM debug module control
register 2 0x00
0x00 7F98 DM_CSR1 DM debug module
control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module
control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to 0x00 7F9F Reserved area (5 byte)
1. Accessible by debug module only.
Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register la bel Register name Reset
status
Interrupt vector mapping STM8S105x4/6
44/121 DocID14771 Rev 15
7 Interrupt vector mapping
Table 10. Interrupt mapping
IRQ no. Sourc e bloc k Description W akeup from
halt mode Wakeup from
active-hal t mode Vector addr ess
- RESET Reset Yes Yes 0x00 8000
- TRAP Software interrupt - - 0x00 8004
0TLI
External top level
interrupt - - 0x00 8008
1AWU
Auto wake up from
halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTI0 Port A external
interrupts Yes(1) Yes(1) 0x00 8014
4 EXTI1 Port B external
interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external
interrupts Yes Yes 0x00 801C
6 EXTI3 Port D external
interrupts Yes Yes 0x00 8020
7 EXTI4 Port E external
interrupts Yes Yes 0x00 8024
8 Reserved - - - 0x00 8028
9 Reserved - - - 0x00 802C
10 SPI End of transfer Yes Yes 0x00 8030
11 TIM1
TIM1 update/
overflow/
underflow/ trigger/
break
- - 0x00 8034
12 TIM1 TIM1 capture/
compare - - 0x00 8038
13 TIM2 TIM2 update/
overflow - - 0x00 803C
14 TIM2 TIM2 capture/
compare - - 0x00 8040
15 TIM3 TIM3 update/
overflow - - 0x00 8044
16 TIM3 TIM3 capture/
compare - - 0x00 8048
17 Reserved - - - 0x00 804C
18 Reserved - - - 0x00 8050
19 I2C I2C interrupt Yes Yes 0x00 8054
DocID14771 Rev 15 45/121
STM8S105x4/6 Interrupt vector mapping
50
20 UART2 Tx complete - - 0x00 8058
21 UART2 Receive register
DATA FULL - - 0x00 805C
22 ADC1
ADC1 end of
conversion/ analog
watchdog interrupt
- - 0x00 8060
23 TIM4 TIM4 update/
overflow - - 0x00 8064
24 Flash EOP/WR_PG_DIS - - 0x00 8068
Reserved 0x00 806C to
0x00 807C
1. Except PA1.
Table 10. Interrupt mapping (continued)
IRQ no. Sourc e bloc k Description W akeup from
halt mode Wakeup from
active-hal t mode Vector addr ess
Option byte STM8S105x4/6
46/121 DocID14771 Rev 15
8 Option byte
Option byte contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option byte can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in the table below.
Option byte can also be modified ‘on the fly’ by the application in IAP mode, except the ROP
option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM
communication protocol and debug module user manual (UM0470) for information on SWIM
programming procedures.
Table 11. Option byte
Addr. Option
name
Option
byte
no.
Option bits Factory
default
setting
7654 3 2 1 0
0x4800
Read-out
protection
(ROP)
OPT0 ROP [7:0] 0x00
0x4801 User boot
code (UBC)
OPT1 UBC [7:0] 0x00
0x4802 NOPT1 NUBC [7:0] 0xFF
0x4803 Alternate
function
remapping
(AFR)
OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00
0x4804 NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 0xFF
0x4805h
Misc. option
OPT3 Reserved HSI
TRIM LSI _ EN IWDG
_HW
WWDG
_HW
WWDG
_HALT 0x00
0x4806 NOPT3 Reserved NHSI
TRIM
NLSI
_ EN
NIWDG
_HW
NWWDG
_HW
NWWG
_HALT 0xFF
0x4807
Clock option
OPT4 Reserved EXT CLK CKAWU
SEL PRS C1 PRS C0 0x00
0x4808 NOPT4 Reserved NEXT
CLK
NCKA
WUSEL NPRSC1 NPR SC0 0xFF
0x4809 HSE clock
startup
OPT5 HSECNT [7:0] 0x00
0x480A NOPT5 NHSECNT [7:0] 0xFF
0x480B
Reserved
OPT6 Reserved 0x00
0x480C NOPT6 Reserved 0xFF
0x480D
Reserved
OPT7 Reserved 0x00
0x480E NOPT7 Reserved 0xFF
0x480F
Reserved
- Reserved -
0x48FD - Reserved -
DocID14771 Rev 15 47/121
STM8S105x4/6 Option byte
50
0x487E
Bootloader
OPTBL BL[7:0] 0x00
0x487F NOPTBL NBL[7:0] 0xFF
Table 11. Option byte (continued)
Addr. Option
name
Option
byte
no.
Option bits Factory
default
setting
7654 3 2 1 0
Table 12 . Op ti on by te description
Option byte no. Description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Page 0 to 1 defined as UBC, memory write-protected
0x02: Page 0 to 3 defined as UBC, memory write-protected
0x03: Page 0 to 4 defined as UBC, memory write-protected
...
0x3E: Pages 0 to 63 defined as UBC, memory write-protected
Other values: Reserved
Note: Refer to the family reference manual (RM0016) section on Flash write
protection for more details.
OPT2
AFR[7:0]
Refer to the following table for the description of the alternate function
remapping description of bits [7:2].
OPT3
HSITRIM: High speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
Option byte STM8S105x4/6
48/121 DocID14771 Rev 15
OPT4
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL: Auto wake-up unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
OPT6 Reserved
OPT7 Reserved
OPTBL
BL[7:0]: Bootloader option byte
For STM8S products, this option is checked by the boot ROM code after
reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000
(reset vector), the CPU jumps to the bootloader or to the reset vector. Refer
to the UM0560 (STM8L/S bootloader manual) for more details.
For STM8L products, the bootloader option bytes are on addresses 0xXXXX
and 0xXXXX+1 (2 byte). These option bytes control whether the bootloader is
active or not. For more details, refer to the UM0560 (STM8L/S bootloader
manual) for more details.
Table 12. Option byte description (continued)
Option byte no. Description
DocID14771 Rev 15 49/121
STM8S105x4/6 Option byte
50
8.1 Alternate function remapping bits
Table 13. Alternate function remapping bits [7:0] of OPT2
Option byte no. Description(1)
1. Do not use more than one remapping option in the same port.
OPT2
AFR7 Alternate function remapping option 7
0: AFR7 remapping option inactive: Default alternate functions.(2)
1: Port D4 alternate function = BEEP.
AFR6 Alternate function remapping option 6
0: AFR6 remapping option inactive: Default alternate function.(2)
1: Port B5 alternate function = I2C_SDA; port B4 alternate function =
I2C_SCL.
AFR5 Alternate function remapping option 5
0: AFR5 remapping option inactive: Default alternate function.(2)
1: Port B3 alternate function = TIM1_ETR; port B2 alternate function =
TIM1_NCC3; port B1 alternate function = TIM1_CH2N; port B0 alternate
function = TIM1_CH1N.
AFR4 Alternate function remapping option 4
0: AFR4 remapping option inactive: Default alternate functions.(2)
1: Port D7 alternate function = TIM1_CH4.
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: Default alternate function.(2)
1: Port D0 alternate function = TIM1_BKIN.
AFR2 Alternate function remapping option 2
0: AFR2 remapping option inactive: Default alternate functions.(2)
1: Port D0 alternate function = CLK_CCO. Note: AFR2 option has priority
over AFR3 if both are activated.
AFR1 Alternate function remapping option 1
0: AFR1 remapping option inactive: Default alternate functions.(2)
1: Port A3 alternate function = TIM3_CH1; port D2 alternate function
TIM2_CH3
AFR0 Alternate function remapping option 0
0: AFR0 remapping option inactive: Default alternate functions.(2)
1: Port D3 alternate function = ADC_ETR.
2. Refer to STM8S105x4/6 pin descriptions.
Unique ID STM8S105x4/6
50/121 DocID14771 Rev 15
9 Unique ID
The devices feature a 96-bit unique device identifier which provides a reference number that
is unique for any device and in any context. The 96 bits of the identifier can never be altered
by the user.
The unique device identifier can be read in single byte and may then be concatenated using
a custom algorithm.
The unique device identifier is ideally suited:
For use as serial numbers
For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.
To activate secure boot processes
Table 14. Unique ID registers (96 bits)
Address Content
description Unique ID bits
76543210
0x48CD X co-ordinate on
the wafer
U_ID[7:0]
0x48CE U_ID[15:8]
0x48CF Y co-ordinate on
the wafer
U_ID[23:16]
0x48D0 U_ID[31:24]
0x48D1 Wafer number U_ID[39:32]
0x48D2
Lot number
U_ID[47:40]
0x48D3 U_ID[55:48]
0x48D4 U_ID[63:56]
0x48D5 U_ID[71:64]
0x48D6 U_ID[79:72]
0x48D7 U_ID[87:80]
0x48D8 U_ID[95:88]
DocID14771 Rev 15 51/121
STM8S105x4/6 Electrical characteristics
90
10 Electrical characteristics
10.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
10.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C, and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ± 3 Σ).
10.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5.0 V. They are
given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 Σ).
10.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
10.1.4 Typical current consumption
For typical current consumption measurements, VDD, VDDIO and VDDA are connected
together in the configuration shown in the following figure.
Figure 8. Supply current measurement conditions
06Y9
$
9RU9
9''
9''$
9'',2
966
966$
966,2
Electrical characteristics STM8S105x4/6
52/121 DocID14771 Rev 15
10.1.5 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
Figure 9. Pin loading conditions
10.1.6 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 10. Pin input voltage
67063,1
S)
06Y9
67063,1
06Y9
9,1
DocID14771 Rev 15 53/121
STM8S105x4/6 Electrical characteristics
90
10.2 Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 15. Voltage characteristics
Symbol Ratings Min Max Unit
VDDx - VSS Supply voltage (including VDDA and VDDIO)(1)
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply
-0.3 6.5 V
VIN
Input voltage on true open drain pins (PE1, PE2)(2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
VSS - 0.3 6.5
V
Input voltage on any other pin(2) VSS - 0.3 VDD + 0.3
|VDDx - VDD| Variations between different power pins - 50
mV
|VSSx - VSS| Variations between all the different ground pins - 50
VESD Electrostatic discharge voltage
see Absolute maximum ratings
(electrical sensitivity) on
page 8 9
Table 16 . C u rre n t ch ara cteristics
Symbol Ratings Max.(1)
1. Data based on characterization results, not tested in production.
Unit
IVDD Total current into VDD power lines (source)(2)
2. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the external
supply.
100 mA
IVSS Total current out of VSS ground lines (sink)(1) 80
IIO
Output current sunk by any I/O and control pin 20
Output current source by any I/Os and control pin -20
ΣIIO
Total output current sourced (sum of all I/O and control pins)
for devices with two VDDIO pins(3) 200
Total output current sourced (sum of all I/O and control pins)
for devices with one VDDIO pin(3) 100
Total output current sunk (sum of all I/O and control pins) for
devices with two VSSIO pins(3) 160
Total output current sunk (sum of all I/O and control pins) for
devices with one VSSIO pin(3) 80
IINJ(PIN) (4) (5)
Injected current on NRST pin ±4
Injected current on OSCIN pin ±4
Injected current on any other pin(6) ±4
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(6) ±20
Electrical characteristics STM8S105x4/6
54/121 DocID14771 Rev 15
10.3 Operating conditions
The device must be used in operating conditions that respect the parameters described in
the table below. In addition, full account must be taken of all physical capacitor
characteristics and tolerances.
3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package
between the VDDIO/VSSIO pins.
4. IINJ(PIN) must never be exceeded. This condition is implicitly insured if VIN maximum is respected. If VIN
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A
positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-
drain pads, there is no positive injection current allowed and the corresponding VIN maximum must always
be respected.
5. Negative injection disturbs the analog performance of the device. See note in Section: TIM2, TIM3 - 16-bit
general purpose timers.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on characterization
with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.
Table 17. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range 65 to 150
°C
TJMaximum junction temperature 150
Table 18. General operating conditions
Symbol Parameter Conditions Min Max Unit
fCPU Internal CPU clock frequency - 0 16 MHz
VDD/VDDIO Standard operating voltage - 2.95 5.5 V
VCAP(1)
CEXT
: capacitance of external
capacitor - 470 3300 nF
ESR of external capacitor
at 1 MHz(2) -0.3
Ω
ESL of external capacitor - 15 nH
PD(3)
Power dissipation at TA = 85 °C
for suffix 6 or TA= 125° C for
suffix 3
44- and 48-pin
devices, with output
on eight standard
ports, two high sink
ports and two open
drain ports
simultaneously(4)
- 443
mW
32-pin package, with
output on eight
standard ports and
two high sink ports
simultaneously(4)
- 360
DocID14771 Rev 15 55/121
STM8S105x4/6 Electrical characteristics
90
Figure 11. fCPUmax versus VDD
TA
Ambient temperature for suffix
6 version
Maximum power
dissipation -40 85
°C
TA
Ambient temperature for suffix
3 version
Maximum power
dissipation -40 125
TJJunction temperature range
Suffix 6 version -40 105
Suffix 3 version -40 130
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
3. To calculate PDmax(TA), use the formula PDmax=(TJmax- TA)/JA (see Section 12: Thermal characteristics)
with the value for TJmax given in the previous table and the value for JA given in Section 12: Thermal
characteristics.
4. See Section 12: Thermal characteristics.
Table 19. Operating conditions at power-up/power-down
Symbol Parameter Conditions Min Typ Max Unit
tVDD
VDD rise time rate - 2(1) -
µs/V
VDD fall time rate - 2(1) -
tTEMP Reset release delay VDD rising - - 1.7(1) ms
Table 18. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
06Y9
ϭϲ
ϭϮ
ϴ
ϰ
Ϭ
   
)XQFWLRQDOLW\JXDUDQWHHG
#7$WR&
6XSSO\YROWDJH
)XQFWLRQDOLW\
QRW
JXDUDQWHHGLQ
WKLVDUHD
I&380+]
Electrical characteristics STM8S105x4/6
56/121 DocID14771 Rev 15
VIT+
Power-on reset
threshold - 2.65 2.8 2.95
V
VIT-
Brown-out reset
threshold - 2.58 2.65 2.88
VHYS(BOR)
Brown-out reset
hysteresis --70-mV
1. Guaranteed by design, not tested in production.
Table 19. Operating conditions at power-up/power-down (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID14771 Rev 15 57/121
STM8S105x4/6 Electrical characteristics
90
10.3.1 VCAP external capacitor
The stabilization for the main regulator is achieved by connecting an external capacitor
CEXT to the VCAP pin. CEXT is specified in Table 18. Care should be taken to limit the series
inductance to less than 15 nH.
Figure 12. External capacitor CEXT
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.
10.3.2 Supply current characteristics
The current consumption is measured as illustrated in Figure 10: Pin input voltage.
Total current consumption in run mode
06Y9
(65
5/HDN
(6/
&
Table 20. Total current consumption with code execution in run mode at VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(RUN)
Supply
current in
Run mode,
code
executed
from RAM
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 3.2 -
mA
HSE user ext. clock
(16 MHz) 2.6 3.2
HSI RC osc. (16 MHz) 2.5 3.2
fCPU = fMASTER /128 = 125 kHz
HSE user ext. clock
(16 MHz) 1.6 2.2
HSI RC osc. (16 MHz) 1.3 2.0
fCPU = fMASTER /128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.75 -
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.55 -
IDD(RUN)
Supply
current in
Run mode,
code
executed
from Flash
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 7.7 -
mA
HSE user ext. clock
(16 MHz) 7.0 8.0
HSI RC osc. (16 MHz) 7.0 8.0
fCPU = fMASTER = 2 MHz HSI RC osc. (16 MHz/8)(2) 1.5 -
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz) 1.35 2.0
fCPU = fMASTER /128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.75 -
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.6 -
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Electrical characteristics STM8S105x4/6
58/121 DocID14771 Rev 15
Total current consumption in wait mode
Table 21. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(RUN)
Supply
current in
Run mode,
code
executed
from RAM
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 2.8 -
mA
HSE user ext. clock
(16 MHz) 2.6 3.2
HSI RC osc. (16 MHz) 2.5 3.2
fCPU = fMASTER /128 = 125 kHz
HSE user ext. clock
(16 MHz) 1.6 2.2
HSI RC osc. (16 MHz) 1.3 2.0
fCPU = fMASTER /128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.75 -
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.55 -
IDD(RUN)
Supply
current in
Run mode,
code
executed
from Flash
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 7.3 -
mA
HSE user ext. clock
(16 MHz) 7.0 8.0
HSI RC osc. (16 MHz) 7.0 8.0
fCPU = fMASTER = 2 MHz HSI RC osc. (16 MHz/8)(2) 1.5 -
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz) 1.35 2.0
fCPU = fMASTER /128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.75 -
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.6 -
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 22 . Total current consumption in wait mode at VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 2.15 -
mA
HSE user ext. clock
(16 MHz) 1.55 2.0
HSI RC osc. (16 MHz) 1.5 1.9
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz) 1.3 -
fCPU = fMASTER /s128 =
15.625 kHz HSI RC osc. (16 MHz/8)(2) 0.7 -
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.5 -
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID14771 Rev 15 59/121
STM8S105x4/6 Electrical characteristics
90
Total current consumption in active halt mode
Table 23. Tot al current consumption in wait mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 1.75 -
mA
HSE user ext. clock
(16 MHz) 1.55 2.0
HSI RC osc. (16 MHz) 1.5 1.9
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz) 1.3 -
fCPU = fMASTER /s128 =
15.625 kHz HSI RC osc. (16 MHz/8)(2) 0.7 -
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.5 -
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 24. Total current consumption in active halt mode at VDD = 5 V
Symbol Parameter
Conditions
Typ Max at
85 °C(1) Max at
85 °C(1) Unit
Main
voltage
regulator
(MVR)(2)
Flash mode(3) Clock sourc e
IDD(AH)
Supply
current in
active halt
mode
On
Operating mode HSE crystal osc.
(16 MHz) 1080 - -
µA
Operating mode LSI RC osc. (128 kHz) 200 320 400
Power down
mode
HSE crystal osc.
(16 MHz) 1030 - -
Power down
mode LSI RC osc. (128 kHz) 140 270 350
Off
Operating mode LSI RC osc. (128 kHz) 68 120 220
Power down
mode LSI RC osc. (128 kHz) 12 60 150
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Electrical characteristics STM8S105x4/6
60/121 DocID14771 Rev 15
Total current consumption in halt mode
Table 25. Total current consumption in active halt mode at VDD = 3.3 V
Symbol Parameter
Conditions
Typ Max at
85 °C(1) Max at
85 °C(1) Unit
Main
voltage
regulator
(MVR)(2)
Flash mode(3) Clock sourc e
IDD(AH)
Supply
current in
active halt
mode
On
Operating mode HSE crystal osc.
(16 MHz) 680 - -
µA
Operating mode LSI RC osc. (128 kHz) 200 320 400
Power down
mode
HSE crystal osc.
(16 MHz) 630 - -
Power down
mode LSI RC osc. (128 kHz) 140 270 350
Off
Operating mode LSI RC osc. (128 kHz) 66 120 220
Power down
mode LSI RC osc. (128 kHz) 10 60 150
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Table 26. Total current consumption in ha lt mode at VDD = 5 V
Symbol Parameter Conditions Typ Max at
85 °C(1)
1. Data based on characterization results, not tested in production.
Max at
85 °C(1) Unit
IDD(H)
Supply current in halt
mode
Flash in operating mode, HSI
clock after wakeup 62 90 150
µA
Flash in power-down mode,
HSI clock after wakeup 6.5 25 80
Tabl e 27 . Total current consumption in halt mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max at
85 °C(1)
1. Data based on characterization results, not tested in production.
Max at
85 °C(1) Unit
IDD(H)
Supply current in halt
mode
Flash in operating mode, HSI
clock after wakeup 60 90 150
µA
Flash in power-down mode,
HSI clock after wakeup 4.5 20 80
DocID14771 Rev 15 61/121
STM8S105x4/6 Electrical characteristics
90
Low power mode wakeup times
Total current consumption and timing in forced reset state
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
Table 28. Wakeup times
Symbol Parameter Conditions Typ Max(1) Unit
tWU(WFI)
Wakeup time from wait
mode to run mode(2) 0 to 16 MHz - See note(3)
µs
tWU(WFI)
Wakeup time from run
mode(2) fCPU= fMASTER= 16 MHz 0.56 -
tWU(AH)
Wakeup time active halt
mode to run mode(2)
MVR voltage
regulator on(4)
Flash in
operating
mode(5)
HSI (after
wakeup) 1(6) 2(6)
tWU(AH)
Wakeup time active halt
mode to run mode(2)
MVR voltage
regulator off(4)
Flash in
operating
mode(5)
HSI (after
wakeup) 3(6) -
tWU(AH)
Wakeup time active halt
mode to run mode(2)
MVR voltage
regulator off(4)
Flash in
operating
mode(5)
HSI (after
wakeup) 48(6) -
tWU(AH)
Wakeup time active halt
mode to run mode(2)
MVR voltage
regulator off(4)
Flash in
power-down
mode(5)
HSI (after
wakeup) 50(6) -
tWU(H)
Wakeup time from halt
mode to run mode(2) Flash in operating mode(5) 52 -
tWU(H)
Wakeup time from halt
mode to run mode(2) Flash in power-down mode(5) 54 -
1. Data based on characterization results, not tested in production.
2. Measured from interrupt event to interrupt vector fetch
3. tWU(WFI) = 2 x 1/fmaster + 67 x 1/fCPU
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
Table 29. Total curr ent consumption and timing in forced reset state
Symbol Parameter Conditions Typ Max(1)
1. Data guaranteed by design, not tested in production.
Unit
IDD(R)
Supply current in reset
state(2)
2. Characterized with all I/Os tied to VSS.
VDD = 5 V 500 -
µA
VDD = 3.3 V 400 -
tRESETBL
Reset pin release to
vector fetch --150µs
Electrical characteristics STM8S105x4/6
62/121 DocID14771 Rev 15
HSI internal RC/fCPU= fMASTER = 16 MHz, VDD = 5 V
Current consumption curves
The following figures show typical current consumption measured with code executing in
RAM.
Figure 13. Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz
Table 30. Peripheral current co nsumption
Symbol Parameter Typ Unit
IDD(TIM1) TIM1 supply current(1)
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
230
µA
IDD(TIM2) TIM2 supply current(1) 115
IDD(TIM3) TIM3 supply current(1) 90
IDD(TIM4) TIM4 supply current(1) 30
IDD(UART2) UART2 supply current (2)
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not
tested in production.
110
IDD(SPI) SPI supply current (2) 45
IDD(I2C) I2C supply current(2) 65
IDD(ADC1) ADC1 supply current when converting(3)
3. Data based on a differential IDD measurement between reset configuration and continuous A/D
conversions. Not tested in production.
955
DocID14771 Rev 15 63/121
STM8S105x4/6 Electrical characteristics
90
Figure 14. Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V
Figure 15. Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz
Electrical characteristics STM8S105x4/6
64/121 DocID14771 Rev 15
Figure 16. Typ IDD(WFI) vs. VDD HSE external clock, fCPU = 16 MHz
Figure 17. Typ IDD(WFI) vs. fCPU HSE external clock, VDD = 5 V
DocID14771 Rev 15 65/121
STM8S105x4/6 Electrical characteristics
90
Figure 18. Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz
Electrical characteristics STM8S105x4/6
66/121 DocID14771 Rev 15
10.3.3 External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Figure 19. HSE external clock source
Table 31. HSE user external clock characteristics
Symbol Parameter Conditions Min Max Unit
fHSE_ext
User external clock
source frequency -016MHz
VHSEH(1)
1. Data based on characterization results, not tested in production.
OSCIN input pin high
level voltage - 0.7 x VDD VDD + 0.3 V
V
VHSEL(1) OSCIN input pin low
level voltage -V
SS 0.3 x VDD
ILEAK_HSE
OSCIN input leakage
current VSS < VIN < VDD -1 +1 µA
+6(+
+6(/
([WHUQDOFORFN
VRXUFH 26&,1
I+6(
670
069
DocID14771 Rev 15 67/121
STM8S105x4/6 Electrical characteristics
90
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 32. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE
External high speed
oscillator frequency -1-16MHz
RFFeedback resistor - - 220 - k
C(1) Recommended load
capacitance(2) ---20pF
IDD(HSE)
HSE oscillator power
consumption
C = 20 pF
fOSC = 16 MHz --
6 (start up)
1.6 (stabilized)(3)
mA
C = 10 pF
fOSC = 16 MHz --
6 (start up)
1.2 (stabilized)(3)
gm
Oscillator
transconductance -5--mA/V
tSU(HSE)(4) Startup time VDD is stabilized - 1 - ms
1. C is approximately equivalent to 2 x crystal Cload.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data based on characterization results, not tested in production.
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Electrical characteristics STM8S105x4/6
68/121 DocID14771 Rev 15
Figure 20. HSE oscillator circuit diagram
HSE oscillator critical gm equation
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1 = CL2 = C: Grounded external capacitance
gmcrit 2 fHSE

2Rm
2Co C+
2
=
gmgmcrit
»
DocID14771 Rev 15 69/121
STM8S105x4/6 Electrical characteristics
90
10.3.4 Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Figure 21. Typical HSI accuracy @ VDD = 5 V vs 5 temperatures
Table 33. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHS
Accuracy of HSI oscillator
User-trimmed with
CLK_HSITRIMR register for
given VDD and TA
conditions(1)
1. Refer to application note.
--1
(2)
2. Guaranteed by design, not tested in production.
%
HSI oscillator accuracy
(factory calibrated)
VDD V,
TA 25 °C(3)
3. Data based on characterization results, not tested in production.
-1.0 - 1.0
VDD= 5 V,
-25°C TA 85 °C -2.0 - 2.0
2.95 V VDD 5.5 V,
-40°C TA 125 °C -3.0(3) -3.0
(3)
tsu(HSI)
HSI oscillator wakeup
time including calibration ---1.0
(2) µs
IDD(HSI)
HSI oscillator power
consumption - - 170 250(3) µA
Electrical characteristics STM8S105x4/6
70/121 DocID14771 Rev 15
Figure 22. Ty pical HSI frequency variation vs VDD @ 4 te mpe rat u re s
DocID14771 Rev 15 71/121
STM8S105x4/6 Electrical characteristics
90
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Figure 23. Typical LSI frequency variation vs VDD@ 4 temp era tur es
Table 34. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI Frequency - 110 128 150 kHz
tsu(LSI) LSI oscillator wakeup time - - - 7(1)
1. Guaranteed by design, not tested in production.
µs
IDD(LSI) LSI oscillator power consumption - - 5 - µA
Electrical characteristics STM8S105x4/6
72/121 DocID14771 Rev 15
10.3.5 Memory characteristics
RAM and hardware registers
Flash program memory/data EEPROM memory
Table 35. RAM and hardware registers
Symbol Parameter Conditions Min Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design, not tested in production.
Halt mode (or reset) VIT-max(2)
2. Refer to Section 10.3: Operating conditions for the value of VIT-max.
V
Table 36. Flash program memory/data EEPROM memory
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Typ Max Unit
VDD
Operating voltage
(all modes, execution/write/erase) fCPU 16 MHz 2.95 - 5.5 V
tprog
Standard programming time (including
erase) for byte/word/block
(1 byte/4 byte/128 byte)
--66.6
ms
Fast programming time for 1 block
(128 byte) --33.33
terase Erase time for 1 block (128 byte) - - 3 3.33
NRW
Erase/write cycles
(program memory)(2)
2. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a
write/erase operation addresses a single byte.
TA = +85 °C 10k - -
cycle
Erase/write cycles (data memory)(2) TA = +125 °C 300k 1M -
tRET
Data retention (program and data
memory) after 10k erase/write cycles
at TA= +55 °C
TRET = 55 °C 20 - -
year
Data retention (data memory) after
300k erase/write cycles at
TA= +125°C
TRET = 85 °C 1 - -
IDD
Supply current (Flash programming or
erasing for 1 to 128 byte) --2-mA
DocID14771 Rev 15 73/121
STM8S105x4/6 Electrical characteristics
90
10.3.6 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 37. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage
VDD = 5 V
-0.3 V - 0.3 x VDD V
VIH Input high level voltage 0.7 x VDD -V
DD + 0.3 V
Vhys Hysteresis(1) -700-mV
Rpu Pull-up resistor VDD = 5 V, VIN = VSS 30 55 80 k
tR, tF
Rise and fall time
(10% - 90%)
Fast I/Os
Load = 50 pF --35
(2)
ns
Standard and high sink I/Os
Load = 50 pF --125
(2)
tR, tF
Rise and fall time
(10% - 90%)
Fast I/Os
Load = 20 pF --20
(2)
ns
Standard and high sink I/Os
Load = 20 pF --50
(2)
Ilkg
Digital input leakage
current VSS VIN VDD --±1
(3) µA
Ilkg ana
Analog input leakage
current VSS VIN VDD --±250
(3) nA
Ilkg(inj)
Leakage current in
adjacent I/O Injection current ±4 mA - - ±1(3) µA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
2. Data guaranteed by design.
3. Data based on characterization results, not tested in production
Electrical characteristics STM8S105x4/6
74/121 DocID14771 Rev 15
Figure 26. Typical pull-up resistance vs VDD @ 4 temperatures
Figure 24. Typical VIL and VIH vs VDD @ 4
temperatures Figure 25. Typical pull-up current vs VDD @ 4
temperatures
Table 38. Output driving current (standard ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8
pins sunk
IIO= 10 mA,
VDD = 5 V -2.0
V
Output low level with 4
pins sunk
IIO= 4 mA,
VDD = 3.3 V -1.0
(1)
1. Data based on characterization results, not tested in production
VOH
Output high level with 8
pins sourced
IIO= 10 mA,
VDD = 5 V 2.4 -
Output high level with 4
pins sourced
IIO= 4 mA,
VDD = 3.3 V 2.0(1) -







Û&
Û
&
Û&
Û
&
3XOOXSUHVLVWDQFH > :@
   
9''>9@ 069
DocID14771 Rev 15 75/121
STM8S105x4/6 Electrical characteristics
90
10.3.7 Typical output level curves
The following figures show the typical output level curves measured with the output on a
single pin.
Table 39. Output driving current (true open drain ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 2
pins sunk
IIO= 10 mA,
VDD = 5 V -1.0
V
Output low level with 2
pins sunk
IIO= 10 mA,
VDD = 3.3 V -1.5
(1)
1. Data based on characterization results, not tested in production
VOH
Output high level with 2
pins sourced
IIO= 10 mA,
VDD = 5 V -2.0
(1)
Table 40. Output driving current (high sink ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8
pins sunk
IIO= 10 mA,
VDD = 5 V -0.9
V
Output low level with 4
pins sunk
IIO= 10 mA,
VDD = 3.3 V -1.1
(1)
1. Data based on characterization results, not tested in production.
IIO= 20 mA,
VDD = 5 V -1.6
(1)
VOH
Output high level with 8
pins sourced
IIO= 10 mA,
VDD = 5 V 3.8 -
Output high level with 4
pins sourced
IIO= 10 mA,
VDD = 3.3 V 1.9(1) -
IIO= 20 mA,
VDD = 5 V 2.9(1) -
Figure 27. Typ. VOL @ VDD = 3.3 V (standard
ports)
Figure 28. Typ. VOL @ VDD = 5.0 V (standard
ports)
Electrical characteristics STM8S105x4/6
76/121 DocID14771 Rev 15
Figure 29. Typ. VOL @ VDD = 3.3 V (true open
drain ports)
Figure 30. Typ. VOL @ VDD = 5.0 V (true open
drain ports)
Figure 31. Typ. VOL @ VDD = 3.3 V (high sink
ports)
Figure 32. Typ. VOL @ VDD = 5.0 V (high sink
ports)
DocID14771 Rev 15 77/121
STM8S105x4/6 Electrical characteristics
90
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V
(standard ports)
Figure 34. Typ. VDD - VOH @ VDD = 5.0 V
(standard ports)
Figure 35. Typ. VDD - VOH @ VDD = 3.3 V (high
sink ports)
Figure 36. Typ. VDD - VOH @ VDD = 5.0 V (high
sink ports)
Electrical characteristics STM8S105x4/6
78/121 DocID14771 Rev 15
10.3.8 Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 37. Typical NRST VIL and VIH vs VDD @ 4 temperatures
Table 41. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage(1)
1. Data based on characterization results, not tested in production.
--0.3-
0.3 x VDD
V
VIH(NRST) NRST input high level voltage(1) IOL= 2 mA 0.7 x VDD -VDD+ 0.3
VOL(NRST) NRST output low level voltage(1) IOL= 3 mA - - 0.5
RPU(NRST) NRST pull-up resistor(2)
2. The RPU pull-up equivalent resistor is based on a resistive transistor.
-305580k
tIFP(NRST) NRST input filtered pulse(3) ---75
ns
tINFP(NRST) NRST Input not filtered pulse(3)
3. Data guaranteed by design, not tested in production.
-500--
tOP(NRST) NRST output pulse(3) -20--µs
DocID14771 Rev 15 79/121
STM8S105x4/6 Electrical characteristics
90
Figure 38. Typical NRST pull-up resistance RPU vs VDD @ 4 temperatures
Figure 39. Typical NRST pull-up current Ipu vs VDD @ 4 temperatures
The reset network shown in Figure 40 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 41:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is
100 nF.
Electrical characteristics STM8S105x4/6
80/121 DocID14771 Rev 15
Figure 40. Recommended reset pin protection
10.3.9 SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 42 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
06Y9
([WHUQDO
UHVHW
FLUFXLW
ȝ)
1567 )LOWHU
670
2SWLRQDO
9''
538
Table 42. SPI characteristics
Symbol Parameter Conditions(1) Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 0 8
MHz
Slave mode 0 6
DocID14771 Rev 15 81/121
STM8S105x4/6 Electrical characteristics
90
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load:
C = 30 pF -25
ns
tsu(NSS)(2) NSS setup time Slave mode 4 * tMASTER -
th(NSS)(2) NSS hold time Slave mode 70 -
tw(SCKH)(2)
tw(SCKL)(2) SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15
tsu(MI)(2)
tsu(SI)(2) Data input setup time
Master mode 5 -
Slave mode 5 -
th(MI)(2)
th(SI)(2) Data input hold time
Master mode 7 -
Slave mode 10 -
ta(SO)(2)(3) Data output access time Slave mode - 3* tMASTER
tdis(SO)(2)(4) Data output disable time Slave mode 25 -
tv(SO)(2) Data output valid time Slave mode
(after enable edge) -73
tv(MO)(2) Data output valid time Master mode (after
enable edge) -36
th(SO)(2)
Data output hold time
Slave mode (after
enable edge) 28 -
th(MO)(2) Master mode (after
enable edge) 12 -
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z.
Table 42 . SPI ch ara ct e ri st ic s (c on tinued)
Symbol Parameter Conditions(1) Min Max Unit
Electrical characteristics STM8S105x4/6
82/121 DocID14771 Rev 15
Figure 41. SPI timing diagram where slave mode and CPHA = 0
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 42. SPI timing diagram where slave mode and CPHA = 1
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
DLF
6&.,QSXW
166LQSXW
W68166 WF6&. WK166
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
W962 WK62 WU6&.
WI6&. WGLV62
WD62
0,62
287387
026,
,1387
06%287 %,7287 /6%287
WVX6,
WK6,
06%,1 %,7,1 /6%,1
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DocID14771 Rev 15 83/121
STM8S105x4/6 Electrical characteristics
90
Figure 43. SPI timing diagram - master mode
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM8S105x4/6
84/121 DocID14771 Rev 15
10.3.10 I2C interface characteristics
Figure 44. Typical application with I2C bus and timing diagram
Table 43. I2C characteristics
Symbol Parameter Standard mode I2CFast mode I
2C(1)
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production
Max(2) Min(2) Max(2)
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
-0(4)
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
(VDD = 3 to 5.5 V) - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time
(VDD = 3 to 5.5 V) - 300 - 300
th(STA) START condition hold time 4.0 - 0.6 -
µs
tsu(STA) Repeated START condition setup time 4.7 - 0.6 -
tsu(STO) STOP condition setup time 4.0 - 0.6 -
tw(STO:STA)
STOP to START condition time
(bus free) 4.7 - 1.3 -
CbCapacitive load for each bus line - 400 - 400 pF
06Y9
6&/
67$57
67$57
6723
670
5HSHDWHG
VWDUW

 6'$
6&/
N
N
9'' 9''
,&EXV
6'$
WI6'$ WU6'$ WVX6'$ WK6'$
WVX67$ WZ67267$
WVX672
WI6&/
WU6&/
WZ6&//
WZ6&/+
WK67$
DocID14771 Rev 15 85/121
STM8S105x4/6 Electrical characteristics
90
10.3.11 10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise
specified.
Table 44. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
fADC ADC clock frequency
VDD= 2.95 to 5.5 V 1 - 4
MHz
VDD= 4.5 to 5.5 V 1 - 6
VDDA Analog supply - 3.0 - 5.5
V
VREF+ Positive reference voltage - 2.75(1)
1. Data guaranteed by design, not tested in production.
-V
DDA
VREF- Negative reference voltage - VSSA -0.5(1)
VAIN Conversion voltage range(2)
2. During the sample time, the sampling capacitance, CAIN (3 pF max), can be charged/discharged by the
external source. The internal resistance of the analog source must allow the capacitance to reach its final
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no
effect on the conversion result. Values for the sample clock tS depend on programming.
-VSSA -VDDA
V
Devices with
external
VREF+/VREF-
VREF- -VREF+
CADC
Internal sample and hold
capacitor --3-pF
tS(2) Minimum sampling time
fADC = 4 MHz - 0.75 -
µs
fADC = 6 MHz - 0.5 -
tSTAB Wakeup time from standby - - 7.0 - µs
tCONV
Minimum total conversion time
(including sampling time, 10-
bit resolution)
fADC = 4 MHz 3.5 µs
fADC = 6 MHz 2.33 µs
-141/f
ADC
Electrical characteristics STM8S105x4/6
86/121 DocID14771 Rev 15
Table 45. ADC accuracy with RAIN< 10 k, VDDA = 5 V
Symbol Parameter Conditions Typ Max(1)
1. Data based on characterization results, not tested in production.
Unit
|ET| Total unadjusted error(2)
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
fADC = 2 MHz 1.0 2.5
LSB
fADC = 4 MHz 1.4 3.0
fADC = 6 MHz 1.6 3.5
|EO| Offset error(2)
fADC = 2 MHz 0.6 2.0
fADC = 4 MHz 1.1 2.5
fADC = 6 MHz 1.2 2.5
|EG| Gain error(2)
fADC = 2 MHz 0.2 2.0
fADC = 4 MHz 0.6 2.5
fADC = 6 MHz 0.8 2.5
|ED| Differential linearity error(2)
fADC = 2 MHz 0.7 1.5
fADC = 4 MHz 0.7 1.5
fADC = 6 MHz 0.8 1.5
|EL| Integral linearity error(2)
fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.6 1.5
fADC = 6 MHz 0.6 1.5
Table 46. ADC accuracy with RAIN< 10 k, VDDA = 3.3 V
Symbol Parameter Conditions Typ Max(1)
1. Data based on characterization results, not tested in production.
Unit
|ET| Total unadjusted error(2) fADC = 2 MHz 1.1 2.0
LSB
fADC = 4 MHz 1.6 2.5
|EO| Offset error(2) fADC = 2 MHz 0.7 1.5
fADC = 4 MHz 1.3 2.0
|EG| Gain error(2) fADC = 2 MHz 0.2 1.5
fADC = 4 MHz 0.5 2.0
|ED| Differential linearity error(2) fADC = 2 MHz 0.7 1.0
fADC = 4 MHz 0.7 1.0
|EL| Integral linearity error(2) fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.6 1.5
DocID14771 Rev 15 87/121
STM8S105x4/6 Electrical characteristics
90
Figure 45. ADC accur acy characteristics
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 46. Typical application with ADC
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
EO
EG
1LSB
IDEAL
1LSBIDEAL
VDDA VSSA
1024
-----------------------------------------=
1023
1022
1021
5
4
3
2
1
0
7
6
1234567 1021102210231024
(1)
(2)
ET
ED
EL
(3)
V
DDA
VSSA
06Y9
^dDϴ
5$,1
&$,1
9$,1 /Edž
s
97
9
97
9 цϭђ
ELW$'
FRQYHUVLRQ
&$'&
,/
Electrical characteristics STM8S105x4/6
88/121 DocID14771 Rev 15
10.3.12 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709 (EMC
design guide for STM microcontrollers).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring. See application note AN1015 (Software
techniques for improving microcontroller EMC performance).
Table 47. EMS data
Symbol Parameter Conditions Level/class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD 5 V, TA25 °C,
fMASTER 16 MHz (HSI clock),
Conforms to IEC 1000-4-2
2/B(1)
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD 5 V, TA25 °C,
fMASTER 16 MHz (HSI clock),
Conforms to IEC 1000-4-4
4/A(1)
DocID14771 Rev 15 89/121
STM8S105x4/6 Electrical characteristics
90
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC 61967-2 which specifies the board and the loading of each pin.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD, DLU and LU) using specific measurement methods, the
product is stressed to determine its performance in terms of electrical sensitivity. For more
details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model
can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A
standard. For more details, refer to the application note AN1181.
1. Data obtained with HSI clock configuration, after applying the hardware recommendations described in
AN2860 (EMC guidelines for STM8S microcontrollers).
Table 48. EMI data
Symbol Parameter
Conditions
Unit
General conditions Monitored
frequency band
Max fHSE/fCPU(1)
1. Data based on characterization results, not tested in production.
8 MHz/
8 MHz 8 MHz/
16 MHz
SEMI
Peak level
VDD 5 V,
TA 25 °C,
LQFP48 package.
Conforming to
IEC 61967-2
0.1 MHz to 30 MHz 13 14
dBµV30 MHz to 130 MHz 23 19
130 MHz to 1 GHz -4.0 -4.0
EMI level EMI level 2.0 1.5 -
Table 49. ESD abso l ut e maximu m ra tin gs
Symbol Ratings Conditions Class Maximum
value(1)
1. Data based on characterization results, not tested in production
Unit
VESD(HBM)
Electrostatic discharge voltage
(Human body model)
TA 25°C, conforming to
JESD22-A114 A 2000
V
VESD(CDM)
Electrostatic discharge voltage
(Charge device model)
TA 25°C, conforming to
SD22-C101 IV 1000
Electrical characteristics STM8S105x4/6
90/121 DocID14771 Rev 15
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance.
A supply overvoltage (applied to each power supply pin), and
A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 50. Electrical sensitivities
Symbol Parameter Conditions Class(1)
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
LU Static latch-up class
TA 25 °C
ATA 85 °C
TA 125 °C
DocID14771 Rev 15 91/121
STM8S105x4/6 Package information
107
11 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
11.1 LQFP48 package information
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
Package information STM8S105x4/6
92/121 DocID14771 Rev 15
Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DocID14771 Rev 15 93/121
STM8S105x4/6 Package information
107
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 49. LQFP48 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
  













AID

069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.4
$5
Package information STM8S105x4/6
94/121 DocID14771 Rev 15
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
11.2 LQFP44 package information
Figure 50. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
3%!4).'
0,!.%
%
%
%
$
$
$
0).
)$%.4)&)#!4)/.
CCC #
B
!
!
!
E
!
,
,
'!5'%0,!.%
MM
+


 



#
:@.&
DocID14771 Rev 15 95/121
STM8S105x4/6 Package information
107
Table 52. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package
mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3858 0.3937 0.4016
D3 - 8.000 - - 0.3150 -
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3858 0.3937 0.4016
E3 - 8.000 - - 0.3150 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
Package information STM8S105x4/6
96/121 DocID14771 Rev 15
Figure 51. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.















<B)3
DocID14771 Rev 15 97/121
STM8S105x4/6 Package information
107
Figure 52. LQFP44 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069

3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.4
45$
3URGXFW
LGHQWLILFDWLRQ
Package information STM8S105x4/6
98/121 DocID14771 Rev 15
11.3 LQFP32 package information
Figure 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
$
$
$
%
%
%





!
,
,
+
!
!
!
C
B
'!5'%0,!.%
MM
3%!4).'
0,!.%
#
0).
)$%.4)&)#!4)/.
CCC #
7@.&@7
E
DocID14771 Rev 15 99/121
STM8S105x4/6 Package information
107
Table 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
Package information STM8S105x4/6
100/121 DocID14771 Rev 15
Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 55. LQFP32 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
6?&0?6
















069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.4
,5$
DocID14771 Rev 15 101/121
STM8S105x4/6 Package information
107
11.4 UFQFPN32 package information
Figure 56. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this backside pad to PCB ground.
4. Dimensions are in millimeters.
!"?-%?6

3,1,GHQWLILHU
6($7,1*
3/$1(
&
&
GGG
$
$
$
H
E
'
E
(
/
H
( (
' /
'
Package information STM8S105x4/6
102/121 DocID14771 Rev 15
Figure 57. UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 54. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
A3 - 0.152 - - 0.0060 -
b 0.180 0.230 0.280 0.0071 0.0091 0.0110
D 4.900 5.000 5.100 0.1929 0.1969 0.2008
D1 3.400 3.500 3.600 0.1339 0.1378 0.1417
D2 3.400 3.500 3.600 0.1339 0.1378 0.1417
E 4.900 5.000 5.100 0.1929 0.1969 0.2008
E1 3.400 3.500 3.600 0.1339 0.1378 0.1417
E2 3.400 3.500 3.600 0.1339 0.1378 0.1417
e - 0.500 - - 0.0197 -
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd - - 0.080 - - 0.0031
$%B)3B9
















DocID14771 Rev 15 103/121
STM8S105x4/6 Package information
107
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 58. UFQFPN32 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU
5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
4,
Package information STM8S105x4/6
104/121 DocID14771 Rev 15
11.5 SDIP32 package information
Figure 59. SDIP32 package outline
Table 55. SDIP32 package mechanical data
Dim. mm inches(1)
Min Typ Max Min Typ Max
A 3.556 3.759 5.080 0.1400 0.1480 0.2000
A1 0.508 - - 0.0200 - -
A2 3.048 3.556 4.572 0.1200 0.1400 0.1800
B 0.356 0.457 0.584 0.0140 0.0180 0.0230
B1 0.762 1.016 1.397 0.0300 0.0400 0.0550
C 0.203 0.254 0.356 0.0079 0.0100 0.0140
D 27.430 27.940 28.450 1.0799 1.1000 1.1201
E 9.906 10.410 11.050 0.3900 0.4098 0.4350
E1 7.620 8.890 9.398 0.3000 0.3500 0.3700
e - 1.778 - - 0.0700 -
eA - 10.160 - - 0.4000 -
?-%
!
!
!
,
" " E
E!
$$



%
%
#
E"
DocID14771 Rev 15 105/121
STM8S105x4/6 Package information
107
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 60. SDIP32 marking example (p ackage top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
eB - - 12.700 - - 0.5000
L 2.540 3.048 3.810 0.1000 0.1200 0.1500
1. Values in inches are converted from mm and rounded to 4 decimal digits
Table 55. SDIP32 package mechanical data (continued)
Dim. mm inches(1)
Min Typ Max Min Typ Max
069
3URGXFW
LGHQWLILFDWLRQ 
3LQLGHQWLILHU
5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.4,#
Thermal characteristics STM8S105x4/6
106/121 DocID14771 Rev 15
12 Thermal characteristics
The maximum junction temperature (TJmax) of the device must never exceed the values
specified in Table 18: General operating conditions, otherwise the functionality of the device
cannot be guaranteed.
The maximum junction temperature TJmax, in degrees Celsius, may be calculated using the
following equation:
TJmax = TAmax + (PDmax x JA)
Where:
TAmax is the maximum ambient temperature in C

JA is the package junction-to-ambient thermal resistance in C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = (VOL*IOL) + ((VDD-VOH)*IOH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
12.1 Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
Table 56. Thermal characterist ics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
JA
Thermal resistance junction-ambient
LQFP48 - 7x7 mm
°C/W
Thermal resistance junction-ambient
LQFP44 - 10x10 mm
Thermal resistance junction-ambient
LQFP32 - 7x7 mm
Thermal resistance junction-ambient
UFQFPN32 - 5x5 mm
Thermal resistance junction-ambient
SDIP32 - 400 ml
DocID14771 Rev 15 107/121
STM8S105x4/6 Thermal cha r acteristics
107
12.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Section 13: Ordering information).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax= 82°C (measured according to JESD51-2),
IDDmax = 15 mA, VDD = 5.5 V
Maximum 8 standard I/Os used at the same time in output at low level with
IOL = 10 mA, VOL= 2 V
Maximum 4 high sink I/Os used at the same time in output at low level with
IOL = 20 mA, VOL= 1.5 V
Maximum 2 true open drain I/Os used at the same time in output at low level with
IOL = 20 mA, VOL= 2 V
PINTmax = 15 mA x 5.5 V= 82.5 mW
PIOmax = (10 mA x 2 V x 8) + (20 mA x 2 V x 2) + (20 mA x 1.5 V x 4) = 360 mW
This gives: PINTmax = 82.5 mW and PIOmax = 360 mW:
PDmax = 82.5 mW + 360 mW
Thus: PDmax = 443 mW.
Using the values obtained in Table 56: Thermal characteristics TJmax is calculated as
follows:
For LQFP32 60°C/W
TJmax = 82°C + (60°C/W x 443 mW) = 82°C + 27°C = 109 °C
This is within the range of the suffix 6 version parts (-40 < TJ < 131°C).
Parts must be ordered at least with the temperature range suffix 3.
Ordering information STM8S105x4/6
108/121 DocID14771 Rev 15
13 Ordering information
Figure 61. STM8S105x4/6 acce ss line ordering information scheme(1)
1. A dedicated ordering information scheme will be released if, in the future, memory programming service
(FastROM) is required The letter “P” will be added after STM8S. Three unique letters identifying the
customer application code will also be visible in the codification. Example: STM8SP103K3MACTR.
For a list of available options (for example memory size, package) and orderable part
numbers or for further information on any aspect of this device, please go to www.st.com or
contact the nearest ST Sales Office.
STM8 S 105 K 4 T 6 TR
Product class
STM8 microcontroller
Program memory size
4 = 16 Kbyte
6 = 32 Kbyte
Package type
B = SDIP
T = LQFP
U = UFQFPN
Example:
Sub-family type
10x = Access line
105 sub-family
Family type
S = Standard
Temperature range
3 = -40 to 125 °C
6 = -40 to 85 °C
Packing
No character = Tray or tube
TR = Tape and reel
Pin count
K = 32 pins
S = 44 pins
C = 48 pins
Package pitch/thickness
Blank = 0.5 mm
C = 0.8 mm
A = 0.55 mm thickness for UFQFPN32
DocID14771 Rev 15 109/121
STM8S105x4/6 Ordering information
115
13.1 STM8S105 FASTROM microcontroller option list
(last update: September 2010)
The preferable format for programing code is .Hex (.s19 is accepted)
If data EEPROM programing is required, a separate file must be sent with the requested
data.
Note: See the option byte section in the datasheet for authorized option byte combinations and a
detailed explana tion.
Device type/memory size/package (check only one option)
Conditioning (check only one option)
[ ] Tape and reel or [ ] Tray
Special marking (check only one option)
[ ] No [ ] Yes
Authorized characters are letters, digits, '.', '-', '/' and spaces only. Maximum character
counts are:
LQFP32: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”
LQFP44: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”
LQFP48: 2 lines of 8 characters max: “_ _ _ _ _ _ _ _” and “_ _ _ _ _ _ _ _”
Temperature range
[ ] -40°C to +85°C or [ ] -40°C to +125°C
Customer ...............................................................................
Address ...............................................................................
Contact ...............................................................................
Phone number ...............................................................................
FASTROM code reference(1)
1. The FASTROM code name is assigned by STMicroelectronics.
...............................................................................
FASTROM device 16 Kbyte 32 Kbyte
LQFP32 [ ] STM8S105K4 [ ] STM8S105K6
LQFP44 [ ] STM8S105S4 [ ] STM8S105S6
LQFP48 [ ] STM8S105C4 [ ] STM8S105C6
Ordering information STM8S105x4/6
110/121 DocID14771 Rev 15
Padding value for unused program memory (check only one option)
OTP0 memory readout protection (check only one option)
[ ] Disable or [ ] Enable
OTP1 user boot code area (UBC)
0x(_ _) fill in the hexadecimal value, referring to the datasheet and the binary format below:
OTP2 alternate function remapping
[ ] 0xFF Fixed value
[ ] 0x83 TRAP instruction code
[ ] 0x75 Illegal opcode (causes a reset when executed)
UBC, bit0 [ ] 0: Reset
[ ] 1: Set
UBC, bit1 [ ] 0: Reset
[ ] 1: Set
UBC, bit2 [ ] 0: Reset
[ ] 1: Set
UBC, bit3 [ ] 0: Reset
[ ] 1: Set
UBC, bit4 [ ] 0: Reset
[ ] 1: Set
UBC, bit5 [ ] 0: Reset
[ ] 1: Set
AFR0
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D3 alternate function = ADC_ETR
AFR1
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port A3 alternate function = TIM3_CH1, port D2 alternate
function = TIM2_CH3
AFR2
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D0 alternate function = CLK_CCO
Note: if both AFR2 and AFR3 are activated, AFR2 option has
priority over AFR3.
AFR3
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D0 alternate function = TIM1_BKIN
DocID14771 Rev 15 111/121
STM8S105x4/6 Ordering information
115
OPT3 watchdog
OPT4 watchdog
AFR4
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D7 alternate function = TIM1_CH4
AFR5
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port B3 alternate function = TIM1_ETR, port B2 alternate
function = TIM1_NCC3, port B1 alternate function =
TIM1_CH2N, port B0 alternate function = TIM1_CH1N.
AFR6
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port B5 alternate function = I2C_SDA, port B4 alternate
function = I2C_SCL
AFR6
(check only one option)
[ ] 0: Remapping option inactive. Default alternate functions
used. Refer to pinout description
[ ] 1: Port D4 alternate function = BEEP.
WWDG_HALT
(check only one option)
[ ] 0: No reset generated on halt if WWDG active[
[ ] 1: Reset generated on halt if WWDG active
WWDG_HW
(check only one option)
[ ] 0: WWDG activated by software
[ ] 1: WWDG activated by hardware
IWDG_HW
(check only one option)
[ ] 0: IWDG activated by software
[ ] 1: IWDG activated by hardware
LSI_EN
(check only one option)
[ ] 0: LSI clock is not available as CPU clock source
[ ] 1: LSI clock is available as CPU clock source
HSITRIM
(check only one option)
[ ] 0: 3-bit trimming supported in CLK_HSITRIMR register
[ ] 1: 4-bit trimming supported in CLK_HSITRIMR register
PRSC
(check only one option)
[ ] for 16 MHz to 128 kHz prescaler
[ ] for 8 MHz to 128 kHz prescaler
[ ] for 4 MHz to 128 kHz prescaler
CKAWUSEL
(check only one option)
[ ] LSI clock source selected for AWU
[ ] HSE clock with prescaler selected as clock source for AWU
EXTCLK
(check only one option)
[ ] External crystal connected to OSCIN/OSCOUT
[ ] External signal on OSCIN
Ordering information STM8S105x4/6
112/121 DocID14771 Rev 15
OPT5 crystal oscillator stabilization HSECNT (check only one option)
[ ] 2048 HSE cycles
[ ] 128 HSE cycles
[ ] 8 HSE cycles
[ ] 0.5 HSE cycles
OTP6 is reserved
OTP7 is reserved
OTPBL bootloader option byte (check only one option)
Refer to the UM0560 (STM8L/S bootloader manual) for more details.
[ ] Disable (00h)
[ ] Enable (55h)
Comments: .........................................................................................
Supply operating range in the application: .........................................................................................
Notes: .........................................................................................
Date: .........................................................................................
Signature: .........................................................................................
DocID14771 Rev 15 113/121
STM8S105x4/6 STM8 development tools
115
14 STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
14.1 Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in application execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to
order exactly what you need to meet your development requirements and to adapt your
emulation system to support existing and future ST microcontrollers.
14.1.1 STice key features
Occurrence and time profiling and code coverage (new features),
Advanced breakpoints with up to 4 levels of conditions,
Data breakpoints,
Program and data trace recording up to 128 KB records,
Read/write on the fly of memory during emulation,
In-circuit debugging/programming via SWIM protocol,
8-bit probe analyzer,
1 input and 2 output triggers,
Power supply follower managing application voltages between 1.62 to 5.5 V,
Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements.
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
STM8 development tools STM8S105x4/6
114/121 DocID14771 Rev 15
14.2 Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8, which are available in a free version that outputs up
to 16 Kbytes of code.
14.2.1 STM8 toolset
The STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8
Flash program memory, data EEPROM and option bytes. STVP also offers project mode for
the saving of programming configurations and the automation of programming sequences.
14.2.2 C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of user
applications directly from an easy-to-use graphical interface.
Available toolchains include:
C compiler for STM8
Available in a free version that outputs up to 16 Kbytes of code. For more information, see
www.cosmic-software.com.
STM8 assembler linker
Free assembly toolchain included in the STVD toolset, used to assemble and link the user
application source code.
DocID14771 Rev 15 115/121
STM8S105x4/6 STM8 development tools
115
14.3 Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on the application board via the SWIM protocol. Additional tools include a
low-cost in-circuit programmer as well as ST socket boards, which provide dedicated
programming platforms with sockets for the STM8 programming.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
Revision history STM8S105x4/6
116/121 DocID14771 Rev 15
15 Revision history
Table 57. Document revision history
Date Revision Changes
05-Jun-2018 1 Initial release.
23-Jun-2018 2
Corrected the number of high sink outputs to 9 in I/Os in
Features.
Updated part numbers in STM8S105xx access line
features.
12-Aug-2008 3
Updated the part numbers in STM8S105xx access line
features.
USART renamed UART1, LINUART renamed UART2.
Added Table: Pin-to -pin comparison of pin 7 to 12 in 32-
pin access line devices.
17-Sep-2008 4
Removed STM8S102xx and STM8S104xx root part
numbers corresponding to devices without data
EEPROM.
Updated STM8S103 pinout section
Added low and medium density Flash memory
categories.
Added Note 1 in Section: Curre nt characteristics.
Updated Section: Option bytes.
05-Feb-2009 5
Updated STM8S103 pinout.
Updated number of High Sink I/Os in the pinout section.
TSSOP20 pinout modified (PD4 moved to pin 1 etc.)
Added WFQFN20 package
Updated Section: Option bytes.
Added Section: Memory and register map.
27-Feb-2009 6
Removed STM8S103x products (separate STM8S103
datasheet created).
Updated Section: Electrical characteristics.
DocID14771 Rev 15 117/121
STM8S105x4/6 Revision history
120
12-May-2009 7
Added SDIP32 silhouette and package to Features and
Section: SDIP32 package mechanical data; updated
Section: Pinout and pin description.
Updated VDD range (2.95 V to 5.5 V) on Features.
Amended name of package VQFPN32.
Added Table 5 on page 22.
Updated Section: Auto wakeup counter.
Updated pins 25, 30, and 31 in Section: Pinout and pin
description.
Removed Table 7: Pin-to-pin comparison of pin 7 to 12
in 32-pin access line devices.
Added Table: Description of alterna te function
remapping bits [7:0] of OPT2.
Section: Electrical characteristics: Updated VCAP
specifications; updated Table 15, Table 18, Table 20,
Table 21, Table 22, Table 23, Table 24, Table 25, Table
26, Table 27, Table 29, Table 35, and Table 42; added
current consumption curves; removed Figure 20: typical
HSE frequency vs fcpu @ 4 temperatures; updated
Figure 13, Figure 14, Figure 15, Figure 16 and Figure
17; modified HSI accuracy in Table 33 ; added Figure
44; modified fSCK, tV(SO) and tV(MO) in Table 42; updated
figures and tables of High speed internal RC oscillator
(HSI); replaced Figure 23, Figure 24, Figure 26, and
Figure 39.
Section Package information: updated Section: Thermal
characteristics and removed Table 57: Junction
temperature range. Updated Section: STM8S105xx
access line ordering information scheme.
10-Jun-2009 8
Document status changed from “preliminary data” to
“datasheet”.
Standardized the name of the VFQFPN package.
Removed ‘wpu’ from I2C pins Section: Pinout and pin
description
Table 57. Document revision history (continued)
Date Revision Changes
Revision history STM8S105x4/6
118/121 DocID14771 Rev 15
21-Apr-2010 9
Added UFQFPN32 package silhouette to the title page.
In Features: added unique ID.
Section: Clock controller: updated bit positions for TIM2
and TIM3.
Section: Beeper: added information about availability of
the beeper output port through option bit AFR7.
Section: Analog-to-digital converte r (ADC1): added a
note concerning additional AIN12 analog input.
Section: STM8S105 pinouts and pin description: added
UFQFPN32 package details; updated default alternate
function of PB2/AIN2[TIM1_CH3N] pin in the "Pin
description for STM8S105 microcontrollers" table.
Section: Option bytes: added description of STM8L
bootloader option bytes to the option byte description
table.
Added Section: Unique ID
Section: Operating conditions: added introductory text;
removed low power dissipation condition for TA,
replaced "CEXT" by "VCAP", and added ESR and ESL
data in table "general operating conditions".
Section: Total current consumption in halt mode:
replaced max value of IDD(H) at 85 °C from 20 µA to 25
µA for the condition "Flash in powerdown mode, HSI
clock after wakeup in the table "total current
consumption in halt mode at VDD = 5 V.
Section: Low power mode wakeup times: added first
condition (0 to 16 MHz) for the tWU(WFI) parameter in the
table "wakeup times".
Section: Internal clock sources and timing
characteristics: In the t able: HSI oscillator
characteristics, replaced min and max values of
ACCHSI factory calibrated parameter and removed
footnote 4 concerning further characterization of results.
Section: Functional EMS (electromagnetic
susceptibility): IEC 1000 replaced with IEC 61000.
Section: Designing hardened software to avoid noise
problems: IEC 1000 replaced with IEC 61000.
Section: Electromagnetic interference (EMI): SAE J
1752/3 replaced with IEC61967-2.
Section: Thermal characteristics: Replaced the thermal
resistance junction ambient temperature of LQFP32 7X7
mm from 59 °C to 60 °C in the thermal characteristics
table.
Added Section: 32-lead UFQFPN package mechanical
data.
Added Section STM8S105 FASTROM microcontroller
option list.
Table 57. Document revision history (continued)
Date Revision Changes
DocID14771 Rev 15 119/121
STM8S105x4/6 Revision history
120
21-Sep-2010 10
Table: Legend/Abbreviations for pinout tables: updated
"reset state"; removed "HS", (T), and "[ ]".
Section: Pin description for STM8S105 microcontrollers:
added footnotes to the PF4 and PD1 pins.
Table: I/O port hardware register map: changed reset
status of Px_IDR from 0x00 to 0xXX.
Table: General hardware register map: Standardized all
address and reset state values; updated the reset state
values of the RST_SR, CLK_SWCR, CLK_HSITRIMR,
CLK_SWIMCCR, IWDG_KR, UART2_DR, and
ADC_DRx registers; replaced reserved address "0x00
5248" with the UART2_CR5.
Section: Recommended reset pin protection: replaced
0.01 µF with 0.1 µF
Updated Figure: Typical application with I2C bus and
timing diagram.
Updated Table: ADC accuracy with RAIN < 10 kohm ,
VDDA = 5 V footnote 1 in and Table: ADC accuracy with
RAIN < 10 kohm RAIN, VDDA = 3.3 V.
Section: STM8S105 FASTROM microcontroller option
list: removed bits 6 and 7 from OPT1 user boot code
area (UBC); added "disable" to 00h and "enable" to 55h
of OPTBL bootloader option byte.
Section: VFQFPN Package Mechanical data: replaced
note 1 and added note 2.
04-Apr-2012 11
Removed VFQFPN32 package.
Modified Section: Description.
Remove weak pull-up input for PE1 and PE2 in Table:
Pin description for STM8S105 microcontrollers
Updated Table: Interrupt mapping for TIM2 and TIM4.
Updated notes related to VCAP in xm-replace_text
General operating conditions.
Added values of tR/tF for 50 pF load capacitance, and
updated note in Section: I/O static characteristics.
Updated typical and maximum values of RPU in Table:
I/O static characteristics and Table: RST pin
characteristics.
Changed SCK input to SCK output in Table: SPI serial
peripheral interface.
Added JA for UFQFPN32 and SDIP32 in Table:
Thermal cha racteristi cs, and updated Section: Selecting
the product temperature range
28-Jun-2012 12 Added UFQFPN package thickness in Figure:
STM8S105xx access line ordering information scheme
Table 57. Document revision history (continued)
Date Revision Changes
Revision history STM8S105x4/6
120/121 DocID14771 Rev 15
07-Feb-2014 13
UART2_CK mapped to correct pin (pin 24) in Figure:
LQFP 44-pin pin out.
Reserved area updated in Table : Op tion bytes.
Package Information updated in Table: 32-lead ultra thin
fine pitch quad flat no-lead package mechanical data.
01-Jul-2015 14
Added:
Figure 49: LQFP48 marking example (package top
view),
Figure 52: LQFP44 marking example (package top
view),
Figure 55: LQFP32 marking example (package top
view),
Figure 58: UFQFPN32 marking example (package top
view),
Figure 60: SDIP32 marking example (package top
view).
Updated:
Figure 41: SPI timing diagram where slave mode and
CPHA = 0,
the standard for EMI data in Table 48: EMI data.
23-Sep-2015 15
Added the footnotes related to Figure 56: UFQFPN32 -
32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad
flat package outline.
Table 57. Document revision history (continued)
Date Revision Changes
DocID14771 Rev 15 121/121
STM8S105x4/6
121
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved