MITSUBISHI IGBT MODULES CM150DU-24H HIGH POWER SWITCHING USE INSULATED TYPE CM150DU-24H No t fo R r N ec ew om De me sig nd n IC ................................................................... 150A VCES ....................................................... 1200V Insulated Type 2-elements in a pack UL Recognized Yellow Card No. E80276 File No. E80271 APPLICATION UPS, NC machine, AC-Drive control, Servo, Welders OUTLINE DRAWING & CIRCUIT DIAGRAM TC measured point 108 (7.5) 93 0.25 14 14 E2 25 17.5 6 62 48 0.25 15 25 CIRCUIT DIAGRAM (7) 8.85 C1 E2 C1 6 E2 G2 G1 E1 CM C2E1 21.5 2.5 3-M6 NUTS 25.7 4-6. 5 MOUNTING HOLES 4 18 7 0.5 18 2.8 0.5 0.5 4 22 29 LABEL 0.5 8.5 7 7.5 18 +1.0 -0.5 (18) (8.25) C2E1 E2 G2 14 G1 E1 (7.5) Dimensions in mm Feb. 2009 1 MITSUBISHI IGBT MODULES CM150DU-24H HIGH POWER SWITCHING USE INSULATED TYPE MAXIMUM RATINGS (Tj = 25C, unless otherwise specified) Symbol Item Collector-emitter voltage Gate-emitter voltage Conditions VGE = 0V VCE = 0V TC = 25C Pulse TC = 25C Pulse TC = 25C Ratings Unit 1200 20 150 300 150 300 890 -40 ~ +150 -40 ~ +125 2500 3.5 ~ 4.5 3.5 ~ 4.5 400 V V A A A A W C C Vrms N*m N*m g No t fo R r N ec ew om De me sig nd n VCES VGES IC ICM IE (Note 2) IEM (Note 2) PC (Note 3) Tj Tstg Viso Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage -- Mounting torque -- Weight (Note 1) (Note 1) -- -- Charged part to base plate, f = 60Hz, AC 1 minute Main terminals M6 screw Mounting M6 screw Typical value ELECTRICAL CHARACTERISTICS (Tj = 25C, unless otherwise specified) Symbol Collector cutoff current Gate-emitter VGE(th) threshold voltage Gate-leakage current IGES Collector-emitter VCE(sat) saturation voltage Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres QG Total gate charge td (on) Turn-on delay time tr Turn-on rise time td (off) Turn-off delay time tf Turn-off fall time V EC(Note 2) Emitter-collector voltage t rr (Note 2) Reverse recovery time Q rr (Note 2) Reverse recovery charge Rth(j-c)Q Thermal resistance (Note 5) Rth(j-c)R ICES Rth(c-f) Note 1. 2. 3. 4. 5. 6. VCE = VCES, VGE = 0V Min -- Limits Typ -- Max 1 IC = 15mA, VCE = 10V 4.5 6 7.5 V -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2.9 2.85 -- -- -- 560 -- -- -- -- -- -- 0.82 -- -- 0.5 3.7 -- 22 7.4 4.4 -- 200 250 300 350 3.2 300 -- 0.14 0.24 A nF nF nF nC ns ns ns ns V ns C K/W K/W -- 0.04 -- K/W Item Contact thermal resistance Test Conditions VGE = VGES, VCE = 0V IC = 150A, VGE = 15V (Note 4) Tj = 25C Tj = 125C VCE = 10V VGE = 0V VCC = 600V, IC = 150A, VGE = 15V VCC = 600V, IC = 150A VGE = 15V RG = 2.1 Resistive load IE = 150A, VGE = 0V IE = 150A, die / dt = -300A / s Junction to case, IGBT part (Per 1/2 module) Junction to case, FWDi part (Per 1/2 module) Case to heat sink, conductive grease applied (Per 1/2 module) (Note 6) Unit mA V Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating. IE, IEM, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter-collector free-wheel diode. Junction temperature (Tj) should not increase beyond 150C. Pulse width and repetition rate should be such as to cause negligible temperature rise. Case temperature (TC) measured point is shown in page OUTLINE DRAWING. Typical value is measured by using thermally conductive grease of = 0.9[W/(m * K)]. Feb. 2009 2 MITSUBISHI IGBT MODULES CM150DU-24H HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 300 15 VCE = 10V 12 COLLECTOR CURRENT IC (A) VGE = 20 (V) No t fo R r N ec ew om De me sig nd n COLLECTOR CURRENT IC (A) 300 250 Tj = 25C 150 10 100 9 50 8 0 0 2 4 6 8 150 100 50 Tj = 25C Tj = 125C 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 5 VGE = 15V Tj = 25C Tj = 125C 4 3 2 1 0 0 50 100 150 200 250 8 6 IC = 300A 4 IC = 150A IC = 60A 2 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 102 Tj = 25C 3 2 102 7 5 3 2 101 1.0 Tj = 25C COLLECTOR CURRENT IC (A) CAPACITANCE Cies, Coes, Cres (nF) 7 5 10 0 300 103 EMITTER CURRENT IE (A) 200 0 10 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) 11 200 250 7 5 VGE = 0V 3 2 101 Cies 7 5 3 2 Coes 100 7 5 Cres 3 2 3.5 10-1 -1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 EMITTER-COLLECTOR VOLTAGE VEC (V) COLLECTOR-EMITTER VOLTAGE VCE (V) 1.5 2.0 2.5 3.0 Feb. 2009 3 MITSUBISHI IGBT MODULES CM150DU-24H HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) tf 3 2 td(off) td(on) 102 7 5 tr 3 2 101 7 5 Tj = 125C VCC = 600V VGE = 15V RG = 2.1 3 2 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j - c) 100 1 10 2 3 5 7 102 2 3 2 5 3 3 2 2 trr 102 102 7 5 7 5 3 3 2 2 Irr 2 3 5 7 102 101 2 3 5 7 103 COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi part) 10-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7 100 2 3 5 7 101 101 7 Single Pulse 5 3 TC = 25C Per unit base = Rth(j - c) = 0.14K/W 100 5 101 1 10 5 7 103 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j - c) SWITCHING TIMES (ns) No t fo R r N ec ew om De me sig nd n 7 5 REVERSE RECOVERY TIME trr (ns) 103 REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 103 - di /dt = 300A /s 7 7 Tj = 25C 7 5 3 2 3 2 10-1 10-1 10-2 10-2 10-3 10-3 10-5 2 3 5 710-4 2 3 5 7 10-3 7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2 TIME (s) REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE INSULATED TYPE 10-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7 100 2 3 5 7 101 101 7 Single Pulse 5 3 TC = 25C 2 100 Per unit base = Rth(j - c) = 0.24K/W 7 5 3 2 3 2 10-1 10-1 10-2 10-2 10-3 10-3 10-5 2 3 5 710-4 2 3 5 7 10-3 7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2 TIME (s) GATE CHARGE CHARACTERISTICS (TYPICAL) GATE-EMITTER VOLTAGE VGE (V) 20 IC = 150A VCC = 400V 15 VCC = 600V 10 5 0 0 200 400 600 800 GATE CHARGE QG (nC) Feb. 2009 4