General Description
The MAX2031 high-linearity passive upconverter or
downconverter mixer is designed to provide +36dBm
IIP3, 7dB NF, and 7dB conversion loss for a 650MHz to
1000MHz RF frequency range to support GSM/cellular
base-station transmitter or receiver applications. With a
650MHz to 1250MHz LO frequency range, this particu-
lar mixer is ideal for high-side LO injection architec-
tures. For a pin-to-pin-compatible mixer meant for
low-side LO injection, refer to the MAX2029.
In addition to offering excellent linearity and noise per-
formance, the MAX2031 also yields a high level of com-
ponent integration. This device includes a double-
balanced passive mixer core, a dual-input LO selec-
table switch, and an LO buffer. On-chip baluns are also
integrated to allow for a single-ended RF input for
downconversion (or RF output for upconversion), and
single-ended LO inputs. The MAX2031 requires a nomi-
nal LO drive of 0dBm, and supply current is guaranteed
to be below 100mA.
The MAX2031 is pin compatible with the MAX2039/
MAX2041 1700MHz to 2200MHz mixers, making this
family of passive upconverters and downconverters
ideal for applications where a common PC board layout
is used for both frequency bands.
The MAX2031 is available in a compact 20-pin thin
QFN package (5mm x 5mm) with an exposed pad.
Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
Applications
Features
650MHz to 1000MHz RF Frequency Range
650MHz to 1250MHz LO Frequency Range
570MHz to 900MHz LO Frequency Range
(Refer to the MAX2029 Data Sheet)
DC to 250MHz IF Frequency Range
7dB Conversion Loss
+36dBm Input IP3
+27dBm Input 1dB Compression Point
7dB Noise Figure
Integrated LO Buffer
Integrated RF and LO Baluns
Low -3dBm to +3dBm LO Drive
Built-In SPDT LO Switch with 49dB LO1 to LO2
Isolation and 50ns Switching Time
Pin Compatible with the MAX2039/MAX2041
1700MHz to 2200MHz Mixers
External Current-Setting Resistor Provides Option
for Operating Mixer in Reduced-Power/Reduced-
Performance Mode
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
________________________________________________________________
Maxim Integrated Products
1
19-0248; Rev 1; 6/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
EVALUATION KIT
AVAILABLE
cdma2000 is a registered trademark of Telecommunications
Industry Association.
iDEN is a registered trademark of Motorola, Inc.
WiMAX is a trademark of WiMAX Forum.
WCDMA/LTE and
cdma2000®Base
Stations
GSM 850/GSM 900 2G
and 2.5G EDGE Base
Stations
Integrated Digital
Enhanced Network
(iDEN®) Base Stations
WiMAX™ Base Stations
and Customer Premise
Equipment
Predistortion Receivers
Microwave and Fixed
Broadband Wireless
Access
Wireless Local Loop
Digital and Spread-
Spectrum
Communication Systems
Ordering Information
PART TEMP RANGE PIN-PACKAGE
M AX 2031E TP + - 40°C to + 85° C 20 Thi n QFN- E P *
M AX 2031E TP + T- 40°C to + 85° C 20 Thi n QFN- E P *
+
Denotes a lead(Pb)-free/RoHS-compliant package.
T= Tape and reel.
*
EP = Exposed pad.
MAX2031
TOP VIEW
4
5
3
2
12
11
13
LOBIAS
LOSEL
GND
14
VCC
IF+
GND
GND
GND
67
TAP
910
20 19 17 16
GND
GND
VCC
GND
GND
LO1
VCC IF-
8
18
RF
+
115 LO2
VCC
E.P.
Pin Configuration/
Functional Diagram
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCC to GND...........................................................-0.3V to +5.5V
RF (RF is DC shorted to GND through a balun)..................50mA
LO1, LO2 to GND ..................................................-0.3V to +0.3V
IF+, IF- to GND ...........................................-0.3V to (VCC + 0.3V)
TAP to GND ...........................................................-0.3V to +1.4V
LOSEL to GND ...........................................-0.3V to (VCC + 0.3V)
LOBIAS to GND..........................................-0.3V to (VCC + 0.3V)
RF, LO1, LO2 Input Power (Note 1) ...............................+20dBm
Continuous Power Dissipation (Note 2)....................................5W
θjA (Notes 3, 4)...............................................................+38°C/W
θjC (Notes 2, 3) ..............................................................+13°C/W
Operating Temperature Range (Note 5) .....TC = -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = 4.75V to 5.25V, no RF signals applied, TC= -40°C to +85°C. IF+ and IF- are DC grounded through an
IF balun. Typical values are at VCC = 5V, TC= +25°C, unless otherwise noted.)
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 4.75 5.00 5.25 V
Supply Current ICC 85 100 mA
LOSEL Input-Logic Low VIL 0.8 V
LOSEL Input-Logic High VIH 2V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C om p onents tuned for the 700M H z b and
( Tab l e 1) , C 1 = 7p F, C 5 = 3.3p F ( N otes 6, 7) 650 850
RF Frequency fRF C om p onents tuned for the 800M H z/900M H z
cel l ul ar b and ( Tab l e 1) , C 1 = 82p F,
C 5 = 2.0p F ( N ote 6)
800 1000
MHz
LO Frequency fLO (Notes 6, 7) 650 1250 MHz
IF Frequency fIF IF frequency range depends on external IF
transformer selection 0 250 MHz
LO Drive Level PLO (Note 6) -3 +3 dBm
Note 1: Maximum, reliable, continuous input power applied to the RF and IF port of this device is +12dBm from a 50Ωsource.
Note 2: Based on junction temperature TJ= TC+ (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: Junction temperature TJ= TA+ (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 5: TCis the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 3
AC ELECTRICAL CHARACTERISTICS (800MHz/900MHz CELLULAR BAND DOWNCON-
VERTER OPERATION)
(
Typical Application Circuit,
optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not
used, VCC = 4.75V to 5.25V, RF and LO ports driven from 50Ωsources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to
1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF, TC= -40°C to +85°C, unless otherwise noted. Typical values are at
VCC = 5V, PRF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO = 1070MHz, fIF = 160MHz, TC= +25°C, unless otherwise noted.) (Note 8)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss Lc 7.0 dB
Conversion Loss Flatness
Flatness over any one of three frequency
bands (fIF = 160MHz):
fRF = 827MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
±0.18 dB
TC = +25°C to -40°C -0.3
Conversion Loss Variation Over
Temperature TC = +25°C to +85°C 0.2 dB
Input Compression Point P1dB (Note 9) 27 dBm
Input Third-Order Intercept Point IIP3
fRF1 = 910MHz, fRF2 = 911MHz,
PRF = 0dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TC = +25°C (Note 10)
32 36 dBm
TC = +25°C to -40°C 0.3
Input IP3 Variation Over
Temperature IIP3 TC = +25°C to +85°C -0.3 dB
2 x 2 2LO - 2RF 72
Spurious Response at IF 3 x 3 3LO - 3RF 79 dBc
Noise Figure NF Single sideband 7.0 dB
PBLOCKER = +8dBm 15
Noise Figure Under Blocking
(Note 11) PBLOCKER = +12dBm 19 dB
LO2 selected, PLO = +3dBm, TC = +25°C 42 51
LO1-to-LO2 Isolation (Note 10) LO1 selected, PLO = +3dBm, TC = +25°C 42 49 dB
Maximum LO Leakage at RF Port PLO = +3dBm -27 dBm
Maximum LO Leakage at IF Port PLO = +3dBm -35 dBm
LO Switching Time 50% of LOSEL to IF, settled within 2 degrees 50 ns
Minimum RF-to-IF Isolation 45 dB
RF Port Return Loss 17 dB
LO1/LO2 port selected, LO2/LO1, RF, and IF
terminated into 50Ω28
LO Port Return Loss LO1/LO2 port unselected, LO2/LO1, RF, and
IF terminated into 50Ω30
dB
IF Port Return Loss LO driven at 0dBm, RF terminated into 50Ω17 dB
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C1 = 82pF, C5 not used, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50Ωsources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF,
TC= -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V, PIF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO =
1070MHz, fIF = 160MHz, TC= +25°C, unless otherwise noted.) (Note 8)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss Lc 7.4 dB
Conversion Loss Flatness
Flatness over any one of three frequency
bands (fIF = 160MHz):
fRF = 827MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
±0.3 dB
TC = +25°C to -40°C -0.3
Conversion Loss Variation Over
Temperature TC = +25°C to +85°C 0.4 dB
Input Compression Point P1dB (Note 9) 27 dBm
Input Third-Order Intercept Point IIP3
fIF1 = 160MHz, fIF2 = 161MHz,
PIF = 0dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TC = +25°C (Note 10)
32 36 dBm
TC = +25°C to -40°C 1.2
Input IP3 Variation Over
Temperature IIP3 TC = +25°C to +85°C -0.9 dB
LO ± 2IF Spur 64 dBc
LO ± 3IF Spur 83 dBc
Output Noise Floor POUT = 0dBm (Note 11) -167 dBm/Hz
Note 6: Operation outside this range is possible, but with degraded performance of some parameters.
Note 7: Not production tested.
Note 8: All limits include external component losses. Output measurements are taken at IF or RF port of the
Typical Application Circuit
.
Note 9: Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +12dBm.
Note 10: Guaranteed by design.
Note 11: Measured with external LO source noise filtered, so its noise floor is -174dBm/Hz. This specification reflects the effects of all
SNR degradations in the mixer, including the LO noise as defined in Application Note 2021:
Specifications and Measurements
of Local Oscilator Noise in Integrated Circuit Base Station Mixers.
AC ELECTRICAL CHARACTERISTICS (700MHz BAND DOWNCONVERTER OPERATION)
(
Typical Application Circuit
, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
4.75V to 5.25V, RF and LO ports driven from 50Ωsources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 650MHz to 850MHz, fLO =
790MHz to 990MHz, fIF = 140MHz, fLO > fRF, TC= +25°C, unless otherwise noted. Typical values are at VCC = 5V, PRF = 0dBm,
PLO = 0dBm, fRF = 750MHz, fLO = 890MHz, fIF = 140MHz, TC= +25°C, unless otherwise noted.) (Notes 8, 10)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LC6.1 6.9 8.1 dB
Input 1dB Compression Point P1dB fRF = 750MHz, PRF = 0dBm, PLO = 0dBm 27.7 dBm
Input Third-Order Intercept Point IIP3
fRF1 = 749MHz, fRF2 = 750MHz,
fLO = 890MHz, PRF = 0dBm/tone,
PLO = 0dBm
32 37 dBm
LO Leakage at IF Port PLO = +3dBm -33 -21 dBm
LO Leakage at RF Port PLO = +3dBm -20 -13 dBm
RF-to-IF Isolation 36 49 dB
2LO-2RF Spurious Response 2 x 2 40 72 dBc
3LO-3RF Spurious Response 3 x 3 65 82 dBc
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
5
26
30
28
34
32
38
36
40
INPUT IP3 vs. RF FREQUENCY
MAX2031 toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
800 850 900 950 1000
TC = -25°C
TC = +85°C, +25°C
TC = -40°C
PRF = 0dBm/TONE
26
30
28
34
32
38
36
40
INPUT IP3 vs. RF FREQUENCY
MAX2031 toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
800 850 900 950 1000
PLO = -3dBm
PLO = +3dBm PLO = 0dBm
PRF = 0dBm/TONE
26
30
28
34
32
38
36
40
INPUT IP3 vs. RF FREQUENCY
MAX2031 toc06
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
800 850 900 950 1000
VCC = 4.75V VCC = 5.0V
VCC = 5.25V
PRF = 0dBm/TONE
5
6
8
7
9
10
NOISE FIGURE vs. RF FREQUENCY
MAX2031 toc07
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
800 900850 950 1000
TC = -40°C
TC = +85°C
TC = +25°C
TC = -25°C
5
6
8
7
9
10
NOISE FIGURE vs. RF FREQUENCY
MAX2031 toc08
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
800 900850 950 1000
PLO = -3dBm, 0dBm, +3dBm
5
6
8
7
9
10
NOISE FIGURE vs. RF FREQUENCY
MAX2031 toc09
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
800 900850 950 1000
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
5
6
8
7
9
10
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc01
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800 900850 950 1000
TC = -40°C
TC = +25°C
TC = -25°C
TC = +85°C
5
6
8
7
9
10
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc02
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800 900850 950 1000
PLO = -3dBm, 0dBm, +3dBm
5
6
8
7
9
10
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc03
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800 900850 950 1000
VCC = 4.75V, 5.0V, 5.25V
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
6 _______________________________________________________________________________________
100
90
80
70
60
800 900850 950 1000
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc13
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
PRF = 0dBm
TC = +85°C
TC = +25°C
TC = -40°C, -25°C
100
90
80
70
60
800 900850 950 1000
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc14
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
PRF = 0dBm
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
100
90
80
70
60
800 900850 950 1000
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc15
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
PRF = 0dBm
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
32
30
28
26
24
800 900850 950 1000
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc16
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
TC = -25°C, +85°C
TC = +25°C
TC = -40°C
32
30
28
26
24
800 900850 950 1000
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc17
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
PLO = -3dBm
PLO = 0dBm, +3dBm
32
30
28
26
24
800 900850 950 1000
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc18
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
Downconverter Curves
45
55
75
65
85
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc10
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
800 900850 950 1000
TC = -40°C
TC = +85°C
TC = +25°C
TC = -25°C
PRF = 0dBm
45
55
75
65
85
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc11
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
800 900850 950 1000
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
PRF = 0dBm
45
55
75
65
85
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc12
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
800 900850 950 1000
PRF = 0dBm VCC = 4.75V, 5.0V
VCC = 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC= +25°C, unless otherwise noted.)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
7
60
55
50
45
40
850 1050950 1150 1250
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX2031 toc19
LO FREQUENCY (MHz)
LO SWITCH ISOLATION (dB)
TC = -40°C, -25°C
TC = +85°C
TC = +25°C
60
55
50
45
40
850 1050950 1150 1250
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX2031 toc20
LO FREQUENCY (MHz)
LO SWITCH ISOLATION (dB)
PLO = -3dBm, 0dBm, +3dBm
60
55
50
45
40
850 1050950 1150 1250
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX2031 toc21
LO FREQUENCY (MHz)
LO SWITCH ISOLATION (dB)
VCC = 4.75V, 5.0V, 5.25V
-20
-30
-40
-50
-60
960 10601010 1110 1160
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2031 toc22
LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
TC = -40°C, -25°C
TC = +25°C
TC = +85°C
TC = -40°C, -25°C
TC = +25°C
TC = +85°C
-20
-30
-40
-50
-60
960 10601010 1110 1160
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2031 toc23
LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
PLO = -3dBm, 0dBm, +3dBm
-20
-30
-40
-50
-60
960 10601010 1110 1160
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2031 toc24
LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
-45
-35
-40
-25
-30
-20
-15
850 1050950 1150 1250
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc25
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
TC = -40°C, -25°C
TC = +85°C
TC = +25°C
-45
-35
-40
-25
-30
-20
-15
850 1050950 1150 1250
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc26
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
PLO = -3dBm, 0dBm, +3dBm
-45
-35
-40
-25
-30
-20
-15
850 1050950 1150 1250
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc27
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
Downconverter Curves
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC= +25°C, unless otherwise noted.)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
8 _______________________________________________________________________________________
30
20
25
10
15
5
0
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2031 toc31
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
750 850 900800 950 1000 1050
PLO = -3dBm, 0dBm, +3dBm
50
35
40
45
30
25
20
15
10
5
0
0 200100 300 400 500
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2031 toc32
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
VCC = 4.75V, 5.0V, 5.25V
INCLUDES IF TRANSFORMER
50
35
40
45
30
25
20
15
10
5
0
0 200100 300 400 500
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2031 toc33
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
INCLUDES IF TRANSFORMER
PLO = -3dBm, 0dBm, +3dBm
40
35
30
25
20
15
10
5
0
800 900 1000 1100 1200 1300
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
MAX2031 toc34
LO FREQUENCY (MHz)
LO SELECTED RETURN LOSS (dB)
PLO = -3dBm
PLO = +3dBm PLO = 0dBm
60
40
50
20
30
10
0
800 1300
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
MAX2031 toc35
LO FREQUENCY (MHz)
LO UNSELECTED RETURN LOSS (dB)
1000900 1100 1200
PLO = -3dBm, 0dBm, +3dBm
100
90
80
70
60
-40 10-15 35 60 85
SUPPLY CURRENT
vs.TEMPERATURE (TC)
MAX2031 toc36
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
Downconverter Curves
30
40
35
50
45
55
60
800 900850 950 1000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc28
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
TC = -40°C, -25°C
TC = +85°CTC = +25°C
30
40
35
50
45
55
60
800 900850 950 1000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc29
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
30
40
35
50
45
55
60
800 900850 950 1000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc30
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC= +25°C, unless otherwise noted.)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
9
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc37
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800750700
6
7
8
9
5
650 850
TC = -40°C TC = +25°C
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc38
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800750700
6
7
8
9
5
650 850
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc39
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800750700
6
7
8
9
5
650 850
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2031 toc40
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
800750700
32
34
36
38
40
30
650 850
PRF = 0dBm/TONE
TC = +85°C
TC = -40°C
TC = +25°C TC = +25°C
INPUT IP3 vs. RF FREQUENCY
MAX2031 toc41
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
800750700
32
34
36
38
40
30
650 850
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX2031 toc42
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
800750700
32
34
36
38
40
30
650 850
VCC = 5.25V
VCC = 5.0V
PRF = 0dBm/TONE
VCC = 4.75V
2LO-2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc43
RF FREQUENCY (MHz)
2LO-2RF RESPONSE (dBc)
800750700
55
65
75
85
45
650 850
PRF = 0dBm
TC = +25°C
TC = +85°C
TC = -40°C
2LO-2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc44
RF FREQUENCY (MHz)
2LO-2RF RESPONSE (dBc)
800750700
55
65
75
85
45
650 850
PRF = 0dBm
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
2LO-2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc45
RF FREQUENCY (MHz)
2LO-2RF RESPONSE (dBc)
800750700
55
65
75
85
45
650 850
PRF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC= +25°C, unless otherwise noted.)
3LO-3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc46
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)
800750700
70
80
90
60
650
850
PRF = 0dBmTC = +25°C
TC = -40°C
TC = +85°C
3LO-3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc47
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)
800750700
70
80
90
60
650
850
PLO = -3dBm, 0dBm, +3dBm
PRF = 0dBm
3LO-3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc48
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)
800750700
70
80
90
60
650
850
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V PRF = 0dBm
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc49
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
800750700
26
27
28
29
30
25
650 850
TC = -40°C
TC = +25°C
TC = +85°C
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc50
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
800750700
26
27
28
29
30
25
650 850
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc51
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
800750700
26
27
28
29
30
25
650 850
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2031 toc52
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
940890840
-35
-25
-15
-45
790
990
TC = -40°C
TC = +85°C
TC = +25°C
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2031 toc53
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
940890840
-35
-25
-15
-45
790
990
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2031 toc54
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
940890840
-35
-25
-15
-45
790
990
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
Downconverter Curves
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
11
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc55
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
940890840
-25
-20
-15
-10
-30
790 990
TC = -40°C
TC = +25°C
TC = +85°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc56
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
940890840
-25
-20
-15
-10
-30
790 990
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc57
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
940890840
-25
-20
-15
-10
-30
790 990
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc58
LO FREQENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
940890840
-35
-30
-25
-20
-40
790 990
TC = +85°C
TC = +25°C
TC = -40°C
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc59
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
940890840
-35
-30
-25
-20
-40
790 990
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc60
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
940890840
-35
-30
-25
-20
-40
790 990
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2031 toc61
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
800750700
40
50
60
30
650 850
TC = +25°C
TC = +85°C
TC = -40°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2031 toc62
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
800750700
40
50
60
30
650
850
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2031 toc63
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
800750700
40
50
60
30
650 850
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2031 toc64
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
900800700600
20
15
10
5
0
25
500 1000
PLO = -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2031 toc65
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
300250200150100
20
15
10
5
0
25
50 350
VCC = 4.75V, 5.0V, 5.25V
fLO = 890MHz
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
MAX2031 toc66
LO FREQUENCY (MHz)
LO SELECTED RETURN LOSS (dB)
1050900750
30
20
10
0
40
600 1200
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
MAX2031 toc67
LO FREQENCY (MHz)
LO UNSELECTED RETURN LOSS (dB)
1050900750
30
20
10
0
40
600 1200
PLO = -3dBm, 0dBm, +3dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2031 toc68
TEMPERATURE (NC)
SUPPLY CURRENT (mA)
603510-15
70
80
90
100
60
-40 85
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
Downconverter Curves
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
13
4
5
7
6
8
9
750 850800 900 950 1000 1050
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc69
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
TC = -40°C
TC = +25°C
TC = +85°C
TC = -25°C
3
5
4
7
6
8
9
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc70
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
750 850 900800 950 1000 1050
PLO = -3dBm, 0dBm, +3dBm
3
5
4
7
6
8
9
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc71
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
750 850 900800 950 1000 1050
VCC = 4.75V, 5.0V, 5.25V
25
29
27
33
31
37
35
39
750 850 900800 950 1000 1050
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc72
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
TC = +85°C
TC = -40°C
TC = -25°C
TC = +25°C
PIF = 0dBm/TONE
25
29
27
33
31
37
35
39
750 850 900800 950 1000 1050
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc73
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PLO = -3dBm, 0dBm, +3dBm
PIF = 0dBm/TONE
25
29
27
33
31
37
35
39
750 850 900800 950 1000 1050
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc74
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
VCC = 4.75V VCC = 5.0V
VCC = 5.25V
PIF = 0dBm/TONE
50
60
55
70
65
75
80
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc75
LO FREQUENCY (MHz)
LO + 2IF REJECTION (dBc)
910 1010 1060960 1110 1160 1210
PIF = 0dBm TC = +25°C
TC = -40°C, -25°C
TC = +85°C
50
60
55
70
65
75
80
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc76
LO FREQUENCY (MHz)
LO + 2IF REJECTION (dBc)
910 1010 1060960 1110 1160 1210
PLO = 0dBm
PLO = -3dBm
PLO = +3dBm
PIF = 0dBm
50
60
55
70
65
75
80
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc77
LO FREQUENCY (MHz)
LO + 2IF REJECTION (dBc)
910 1010 1060960 1110 1160 1210
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
PIF = 0dBm
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC= +25°C, unless otherwise noted.)
Upconverter Curves
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
14 ______________________________________________________________________________________
50
60
55
70
65
75
80
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc78
LO FREQUENCY (MHz)
LO - 2IF REJECTION (dBc)
910 1010 1060960 1110 1160 1210
PIF = 0dBm TC = -40°C, -25°C
TC = +25°C
TC = +85°C
60
55
50
70
65
75
80
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc79
LO FREQUENCY (MHz)
LO - 2IF REJECTION (dBc)
910 1010 1060960 1110 1160 1210
PIF = 0dBm
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
50
60
55
70
65
75
80
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc80
LO FREQUENCY (MHz)
LO - 2IF REJECTION (dBc)
910 1010 1060960 1110 1160 1210
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
PIF = 0dBm
90
80
70
60
50
910 1060960 1010 1110 1160 1210
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc81
LO FREQUENCY (MHz)
LO + 3IF REJECTION (dBc)
PIF = 0dBm
TC = -40°C, -25°C, +25°C, +85°C
90
80
70
60
50
910 1060960 1010 1110 1160 1210
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc82
LO FREQUENCY (MHz)
LO + 3IF REJECTION (dBc)
PLO = -3dBm, 0dBm, +3dBm
PIF = 0dBm 90
80
70
60
50
910 1060960 1010 1110 1160 1210
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc83
LO FREQUENCY (MHz)
LO + 3IF REJECTION (dBc)
PIF = 0dBm
VCC = 4.75V, 5.0V
VCC = 5.25V
90
80
70
60
50
910 1060960 1010 1110 1160 1210
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc84
LO FREQUENCY (MHz)
LO - 3IF REJECTION (dBc)
PIF = 0dBm TC = -40°C, -25°C, +25°C
TC = +85°C
90
80
70
60
50
910 1060960 1010 1110 1160 1210
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc85
LO FREQUENCY (MHz)
LO - 3IF REJECTION (dBc)
PLO = -3dBm, 0dBm, +3dBm
PIF = 0dBm 90
80
70
60
50
910 1060960 1010 1110 1160 1210
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc86
LO FREQUENCY (MHz)
LO - 3IF REJECTION (dBc)
PIF = 0dBm
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
Upconverter Curves
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC= +25°C, unless otherwise noted.)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
15
-15
-20
-25
-30
-35
910 1060960 1010 1110 1160 1210
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc87
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
TC = +85°CTC = +25°C
TC = -40°C, -25°C
-15
-20
-25
-30
-35
910 1060960 1010 1110 1160 1210
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc88
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
PLO = -3dBm, 0dBm, +3dBm
-15
-20
-25
-30
-35
910 1060960 1010 1110 1160 1210
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc89
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
VCC = 4.75V VCC = 5.0V
VCC = 5.25V
-100
-90
-70
-80
-60
-50
910 1010960 1060 1110 1160 1210
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc90
LO FREQUENCY (MHz)
IF LEAKAGE (dBm)
TC = +85°C
TC = -40°C, -25°C
TC = +25°C
-100
-90
-70
-80
-60
-50
910 1010960 1060 1110 1160 1210
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc91
LO FREQUENCY (MHz)
IF LEAKAGE (dBm)
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
-100
-90
-70
-80
-60
-50
910 1010960 1060 1110 1160 1210
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc92
LO FREQUENCY (MHz)
IF LEAKAGE (dBm)
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
35
25
30
15
20
5
10
0
750 850 900800 950 1000 1050
MAX2031 toc93
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
RF PORT RETURN LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
THE OPTIONAL L-C BPF
ENHANCES PERFORMANCE
IN THE UPCONVERTER
MODE BUT LIMITS
RF BANDWIDTH
L1 AND C4 BPF
INSTALLED
L1 AND C4 BPF
REMOVED
Upconverter Curves
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC= +25°C, unless otherwise noted.)
MAX2031
Detailed Description
The MAX2031 can operate either as a downconverter or
an upconverter mixer that provides approximately 7dB of
conversion loss with a typical 7dB noise figure. IIP3 is
+36dBm for both upconversion and downconversion
modes. The integrated baluns and matching circuitry
allow for 50Ωsingle-ended interfaces to the RF port and
the two LO ports. The RF port can be used as an input
for downconversion or an output for upconversion. A sin-
gle-pole, double-throw (SPDT) switch provides 50ns
switching time between the two LO inputs with 49dB of
LO-to-LO isolation. Furthermore, the integrated LO buffer
provides a high drive level to the mixer core, reducing
the LO drive required at the MAX2031’s inputs to a
-3dBm to +3dBm range. The IF port incorporates a dif-
ferential output for downconversion, which is ideal for
providing enhanced IIP2 performance. For upconver-
sion, the IF port is a differential input.
Specifications are guaranteed over broad frequency
ranges to allow for use in cellular band WCDMA,
cdmaOne™, cdma2000, and GSM 850/GSM 900 2.5G
EDGE base stations. The MAX2031 is specified to oper-
ate over a 650MHz to 1000MHz RF frequency range, a
650MHz to 1250MHz LO frequency range, and a DC to
250MHz IF frequency range. Operation beyond these
ranges is possible; see the
Typical Operating
Characteristics
for additional details.
The MAX2031 is optimized for high-side LO injection
architectures. However, the device can operate in low-
side LO injection applications with an extended LO
range, but performance degrades as fLO decreases. See
the
Typical Operating Characteristics
for measurements
taken with fLO below 960MHz. For a pin-compatible
device that has been optimized for LO frequencies below
960MHz, refer to the MAX2029.
RF Port and Balun
For using the MAX2031 as a downconverter, the RF
input is internally matched to 50Ω, requiring no external
matching components. A DC-blocking capacitor is
required because the input is internally DC shorted to
ground through the on-chip balun. For upconverter
operation, the RF port is a single-ended output similarly
matched to 50Ω.
LO Inputs, Buffer, and Balun
The MAX2031 is optimized for high-side LO injection
architectures with a 650MHz to 1250MHz LO frequency
range. For a device with a 570MHz to 900MHz LO fre-
quency range, refer to the MAX2029. As an added fea-
ture, the MAX2031 includes an internal LO SPDT switch
that can be used for frequency-hopping applications.
The switch selects one of the two single-ended LO
ports, allowing the external oscillator to settle on a par-
ticular frequency before it is switched in. LO switching
time is typically less than 50ns, which is more than ade-
quate for nearly all GSM applications. If frequency hop-
ping is not employed, set the switch to either of the LO
inputs. The switch is controlled by a digital input
(LOSEL): logic-high selects LO2, logic-low selects LO1.
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
16 ______________________________________________________________________________________
Pin Description
PIN NAME FUNCTION
1, 6, 8, 14 VCC Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical
Application Circuit.
2RFS i ng l e- E nd ed 50Ω RF Inp ut/O utp ut. Thi s p or t i s i nter nal l y m atched and D C shor ted to G N D thr oug h a b al un.
3 TAP Center Tap of the Internal RF Balun. Connect to ground.
4, 5, 10, 12,
13, 16, 17, 20 GND Ground
7 LOBIAS Bias Resistor for Internal LO Buffer. Connect a 523Ω ±1% resistor from LOBIAS to the power supply.
9 LOSEL Local Oscillator Select. Logic-control input for selecting LO1 or LO2.
11 LO1 Local Oscillator Input 1. Drive LOSEL low to select LO1.
15 LO2 Local Oscillator Input 2. Drive LOSEL high to select LO2.
18, 19 IF-, IF+ Differential IF Input/Outputs
—EP
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground
vias are also required to achieve the noted RF performance.
cdmaOne is a trademark of CDMA Development Group.
To avoid damage to the part, voltage MUST be applied
to VCC before digital logic is applied to LOSEL (see the
Absolute Maximum Ratings
). LO1 and LO2 inputs are
internally matched to 50Ω, requiring an 82pF DC-block-
ing capacitor at each input.
A two-stage internal LO buffer allows a wide input-
power range for the LO drive. All guaranteed specifica-
tions are for a -3dBm to +3dBm LO signal power. The
on-chip low-loss balun, along with an LO buffer, drives
the double-balanced mixer. All interfacing and match-
ing components from the LO inputs to the IF outputs
are integrated on-chip.
High-Linearity Mixer
The core of the MAX2031 is a double-balanced, high-
performance passive mixer. Exceptional linearity is pro-
vided by the large LO swing from the on-chip LO buffer.
Differential IF
The MAX2031 mixer has a DC to 250MHz IF frequency
range. Note that these differential ports are ideal for pro-
viding enhanced IIP2 performance. Single-ended IF
applications require a 1:1 balun to transform the 50Ωdif-
ferential IF impedance to 50Ωsingle-ended. Including
the balun, the IF return loss is better than 15dB. The dif-
ferential IF is used as an input port for upconverter oper-
ation. The user can use a differential IF amplifier following
the mixer, but a DC block is required on both IF pins.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No
matching components are required. As a downconvert-
er, the return loss at the RF port is typically better than
15dB over the entire input range (650MHz to 1000MHz),
and return loss at the LO ports are typically 15dB
(960MHz to 1180MHz). RF and LO inputs require only
DC-blocking capacitors for interfacing (see Table 1).
An optional L-C bandpass filter (BPF) can be installed at
the RF port to improve upconverter performance. See
the
Typical Application Circuit
and
Typical Operating
Characteristics
for upconverter operation with an L-C
BPF tuned for 810MHz RF frequency. Performance can
be optimized at other frequencies by choosing different
values for L1 and C4. Removing L1 and C4 altogether
results in a broader match, but performance degrades.
Contact factory for details.
The IF output impedance is 50Ω(differential). For eval-
uation, an external low-loss 1:1 (impedance ratio) balun
transforms this impedance to a 50Ωsingle-ended out-
put (see the
Typical Application Circuit).
Bias Resistor
Bias current for the LO buffer is optimized by fine tun-
ing resistor R1. If reduced current is required at the
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 17
DESIGNATION QTY DESCRIPTION SUPPLIER
82pF microwave capacitor (0603).
Use for 800MHz/900MHz cellular band applications.
C1 1
7pF microwave capacitor (0603).
Use for 700MHz band applications
Murata Electronics North America, Inc.
C2, C7, C8, C10,
C11, C12 6 82pF microwave capacitors (0603) Murata Electronics North America, Inc.
C3, C6, C9 3 0.01µF microwave capacitors (0603) Murata Electronics North America, Inc.
C4* 1 6pF microwave capacitor (0603)
2pF microwave capacitor (0603).
Use for 800MHz/900MHz cellular band applications.
C5** 1
3.3pF microwave capacitor (0603).
Use for 700MHz band applications
Murata Electronics North America, Inc.
L1* 1 4.7nH inductor (0603)
R1 1 523Ω ±1% resistor (0603) Digi-Key Corp.
T1 1 MABAES0029 1:1 transformer (50:50) M/A-Com, Inc.
U1 1 MAX2031 IC (20 TQFN) Maxim Integrated Products, Inc.
Table 1. Typical Application Circuit Component List
*
C4 and L1 installed only when mixer is used as an upconverter.
**
C5 installed only when mixer is used as a downconverter.
MAX2031
expense of performance, contact the factory for details.
If the ±1% bias resistor values are not readily available,
substitute standard ±5% values.
Layout Considerations
A properly designed PC board is an essential part of
any RF/microwave circuit. Keep RF signal lines as short
as possible to reduce losses, radiation, and induc-
tance. For the best performance, route the ground-pin
traces directly to the exposed pad under the package.
The PC board exposed pad MUST be connected to the
ground plane of the PC board. It is suggested that mul-
tiple vias be used to connect this pad to the lower-level
ground planes. This method provides a good RF/ther-
mal conduction path for the device. Solder the exposed
pad on the bottom of the device package to the PC
board. The MAX2031 evaluation kit can be used as a
reference for board layout. Gerber files are available
upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for high-
frequency circuit stability. Bypass each VCC pin with
the capacitors shown in the
Typical Application Circuit
.
See Table 1.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2031’s 20-pin thin
QFN-EP package provides a low-thermal-resistance
path to the die. It is important that the PC board on
which the MAX2031 is mounted be designed to con-
duct heat from the EP. In addition, provide the EP with
a low-inductance path to electrical ground. The EP
MUST be soldered to a ground plane on the PC board,
either directly or through an array of plated via holes.
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
18 ______________________________________________________________________________________
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 19
MAX2031
4
5
3
2
12
11
13
LOBIAS
LOSEL
GND
14
VCC
IF+
GND
GND
GND
67
TAP
910
20
+19 17 16
GND
GND
NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION.
C5 USED ONLY FOR DOWNCONVERTER OPERATION.
VCC
GND
GND
LO1
VCC IF-
8
18
RF
115 LO2
VCC
VCC
C3 C2
L1
C4
RF
C1 LO2
C12
LO1
C10
VCC
C11
LOSEL
VCC
C8
C9
VCC
C7
C6
T1
1
3
4
5
IF
C5
R1
E.P.
Typical Application Circuit
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 Thin QFN-EP T2055+3 21-0140
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
0 7/05 Initial release
1 6/09 Added new Electrical Characteristics tables and Typical Operating Characteristics 1–16