PD - 94300C SMPS MOSFET IRFBA90N20D HEXFET(R) Power MOSFET Applications High frequency DC-DC converters l VDSS 200V RDS(on) max ID 0.023W 98A Benefits Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current l Super-220 Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Recommended Clip Force Max. 98 71 Units A 390 650 4.3 30 6.3 -55 to + 175 W W/C V V/ns 300 (1.6mm from case ) 20 C N Thermal Resistance Parameter RqJC RqCS RqJA Notes Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient through Typ. Max. Units 0.50 0.23 58 C/W are on page 8 www.irf.com 1 1/20/04 http://store.iiic.cc/ IRFBA90N20D Static @ TJ = 25C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage DV(BR)DSS/DTJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 200 3.0 Typ. 0.22 Max. Units Conditions V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 1mA 0.023 W VGS = 10V, ID = 59A 5.0 V VDS = VGS, ID = 250A 25 VDS = 200V, VGS = 0V A 250 VDS = 160V, VGS = 0V, TJ = 150C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 41 Typ. 160 45 75 23 160 39 77 6080 1040 150 7500 410 790 Max. Units Conditions S V DS = 50V, ID = 59A 240 ID = 59A 67 nC V DS = 160V 110 V GS = 10V V DD = 100V I D = 59A ns R G = 1.2W V GS = 10V V GS = 0V V DS = 25V pF = 1.0MHz V GS = 0V, VDS = 1.0V, = 1.0MHz V GS = 0V, VDS = 160V, = 1.0MHz V GS = 0V, VDS = 0V to 160V Avalanche Characteristics Parameter EAS I AR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Diode Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Typ. Max. Units 960 59 65 mJ A mJ Min. Typ. Max. Units Conditions D MOSFET symbol 98 showing the A G integral reverse 390 S p-n junction diode. 1.5 V TJ = 25C, IS = 59A, VGS = 0V 220 340 nS TJ = 25C, IF = 59A 1.9 2.8 C di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com http://store.iiic.cc/ IRFBA90N20D # V P G T T W % G E T W Q 5 Q V P K C T & +& 8)5 6128 8 8 8 8 8 8 $1661/8 8 zU27.5'9+&6* 6Lu% # V P G T T W % G E T W Q 5 Q V P K C T & +& 8)5 6128 8 8 8 8 8 8 $1661/8 8 zU27.5'9+&6* 6Lu% 8&5&TCKPVQ5QWTEG8QNVCIG 8 3.5 6 ,u% 6 ,u% 8&58 zU27.5'9+&6* 2.5 (Normalized) I D = 98A 3.0 RDS(on) , Drain-to-Source On Resistance V P G T T W % G E T W Q 5 Q V KP C T & & + Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics $ 8&5&TCKPVQ5QWTEG8QNVCIG 8 2.0 1.5 1.0 0.5 V GS = 10V 0.0 8)5)CVGVQ5QWTEG8QNVCIG 8 -60 -40 -20 0 20 40 60 80 TJ , Junction Temperature Fig 3. Typical Transfer Characteristics www.irf.com 100 120 140 160 180 ( C) Fig 4. Normalized On-Resistance Vs. Temperature 3 http://store.iiic.cc/ IRFBA90N20D 8)58H/*< %KUU%IU %IF%FU5*146'& %TUU%IF %QUU%FU %IF %KUU (R GE PC VKE CR C% % %QUU %TUU 8 G IC NVQ 8 G ET WQ 5 Q V VGC ) 5 8) 8&5&TCKPVQ5QWTEG8QNVCIG 8 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage # 6 ,u% W % G E T W Q 5 Q V KP C T & + 8)58 12'4#6+10+06*+5#4'# .+/+6'&$;4 &5 QP V P G T T 6 ,u% 8&58 8&58 8&58 3)6QVCN)CVG%JCTIG P% Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage # V P G T T W % P K C T & G U T G X G 4 & 5 + +&# zUGE OUGE 6Eu% 6Lu% 5KPING2WNUG OUGE & 8&5 &TCKPVQ5QWTEG8QNVCIG 8 85&5QWTEGVQ&TCKP8QNVCIG 8 Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com http://store.iiic.cc/ IRFBA90N20D 100 RD V DS LIMITED BY PACKAGE VGS I D , Drain Current (A) 80 D.U.T. RG 60 + -VDD 10V Pulse Width 1 s Duty Factor 0.1 % 40 Fig 10a. Switching Time Test Circuit VDS 20 90% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC) 1 D = 0.50 0.1 Thermal Response 0.20 0.10 0.05 0.01 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 t1 / t 2 J = P DM x Z thJC +TC 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 http://store.iiic.cc/ IRFBA90N20D 2000 15V DRIVER D.U.T RG + V - DD IAS 20V tp 1600 A 0.01: Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) L VDS ID TOP 24A 42A BOTTOM 59A 1200 800 400 0 25 50 75 100 125 150 175 ( C) Starting T , JJunction Temperature Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 10 V 50K 12V QGS .2F .3F QGD D.U.T. VG + V - DS VGS 3mA IG Charge ID Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform 6 Fig 13b. Gate Charge Test Circuit www.irf.com http://store.iiic.cc/ IRFBA90N20D Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + - - + RG * * * * Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET(R) Power MOSFETs www.irf.com 7 http://store.iiic.cc/ IRFBA90N20D Super-220 Package Outline Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.55mH RG = 25W, IAS = 59A. ISD 59A, di/dt 170A/s, VDD V(BR)DSS, Pulse width 300s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 95A. TJ 175C Super-220 not recommended for surface mount application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IRs Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/04 8 www.irf.com http://store.iiic.cc/