AOZ2023
Rev. 1.0 August 2015 www.aosmd.com Page 8 of 11
Application Information
Output Voltage Setting
The output voltage can be set by the output voltage
divider. Typically, the adjustable range of the output
voltage is from 1V to (VIN - Vdrop). The output voltage is
set by the equation below:
Supply Voltage (VCNTL)
Supply voltage is used to provide the power for the
internal circuits. For the device to regulate, the voltage on
this pin must be at least 1.5V greater than the output
voltage, and no less than VCNTL_min. A 0.1μF or more
ceramic capacitor close to the pin is required to filter the
control voltage.
Enable (EN)
The EN pin is used to turn off the regulator by pulling this
pin below 0.8V. When the linear regulator is operated in
the disable mode, the quiescent current can be limited
below several ten micro-amp level.
Input / Output Capacitor
A 10μF or more capacitances for the input side (VIN) is
necessary. This not only decouples the noise from input
side, but also keeps the input impedance as low as
possible. In addition, a 22μF or more capacitances for the
VIN above 4.5V is recommended for much lower input
impedance.
A 10μF output capacitor is typically used with a 0.1μF
ceramic capacitor for the output terminal (VOUT).
Internal type-II compensation network allows lower ESR
capacitors without stability problem.
Power OK (POK)
The POK pin is used to provide a logic signal to notice
that the regulator works well. When the output voltage
through the voltage divider is regulated above 90% of
reference voltage, this pin will be as a high impedance
status due to the open-drain output. An external pull-up
resister is necessary to provide high-level signal. The
sink capability of the POK pin is limited below 5mA.
Typically, a 5.1kΩ resister for the 5V is recommended.
Over Temperature Protection (OTP)
It is recommended that the junction temperature can be
kept below the recommended operation condition 125
degree for maximum reliability. This power dissipation is
conducted through the package into the ambient
environment, and, in the process, the temperature of the
die (TJ) rises above ambient.
VOUT 0.8VR1R2+
R2
----------------------
×=