LTC4008
1
Rev C
For more information www.analog.com
TYPICAL APPLICATION
DESCRIPTION
4A, High Efficiency,
Multi-Chemistry Battery Charger
12.3V, 4A Li-Ion Charger
FEATURES
APPLICATIONS
n General Purpose Charger Controller
n High Conversion Efficiency: Up to 96%
n Output Currents Exceeding 4A
n ±0.8% Voltage Accuracy
n AC Adapter Current Limiting Maximizes
Charge Rate*
n Thermistor Input for Temperature Qualified Charging
n Wide Input Voltage Range: 6V to 28V
n Wide Output Voltage: 3V to 28V
n 0.5V Dropout Voltage; Maximum Duty Cycle: 98%
n Programmable Charge Current: ±4% Accuracy
n Indicator Outputs for Charging, C/10 Current
Detection, AC Adapter Present, Input Current
Limiting and Faults
n Charging Current Monitor Output
n Available in a 20-Pin Narrow SSOP Package
n Notebook Computers
n Portable Instruments
n Battery Backup Systems
The LTC®4008 is a constant-current/constant-voltage
charger controller. The PWM controller uses a synchro-
nous, quasi-constant frequency, constant off-time archi-
tecture that will not generate audible noise even when
using ceramic capacitors. Charging current is program-
mable with a sense resistor and programming resistor to
±4% typical accuracy. Charging current can be monitored
as a voltage across the programming resistor. An external
resistor divider and precision internal reference set the
final float voltage.
The LTC4008 includes a thermistor sensor input that will
suspend charging if an unsafe temperature condition is
detected and will automatically resume charging when
battery temperature returns to within safe limits; a FAULT
pin indicates this condition. A FLAG pin indicates when
charging current has decreased below 10% of the pro-
grammed current. An external sense resistor programs
AC adapter current limiting. The I
CL
pin indicates when the
charging current is being reduced by input current limiting
so that the charging algorithm can adapt.
BATMON
VFB
ICL
ACP/SHDN
FAULT
FLAG
NTC
RT
ITH
GND
ICL
ACP
FAULT
FLAG
DCIN
INFET
CLP
CLN
TGATE
BGATE
PGND
CSP
BAT
PROG
LTC4008
32.4k
0.47µF
THERMISTOR
10k
NTC
0.12µF
100k100k
140k*
15k*
6.04k
150k
VLOGIC
DCIN
0V TO 28V 0.1µF
INPUT SWITCH
0.1µF
Q1
Q2
20µF
10µH
4.99k
3.01k
3.01k
0.025Ω
0.02Ω
20µF
SYSTEM
LOAD
Li-Ion
BATTERY
CHARGING
CURRENT
MONITOR
26.7k Q1: Si4431BDY
Q2: FDC645N
0.0047µF
4008 TA01
NOTE: * 0.25% TOLERANCE
ALL OTHER RESISTORS ARE 1% TOLERANCE
All registered trademarks and trademarks are the property of their respective owners. Protected
by U.S. Patents including 5723970.
Document Feedback
LTC4008
2
Rev C
For more information www.analog.com
Voltage from DCIN, CLP, CLN to GND ......... +32V/–0.3 V
PGND with Respect to GND ...................................±0.3V
CSP, BAT to GND .......................................... +28V/–0.3V
VFB, RT to GND ............................................... +7V/–0.3V
NTC ...............................................................+10V/0.3V
ACP/SHDN, FLAG, FA U LT, ICL ...................... +32V/–0.3V
(Note 1)
ABSOLUTE MAXIMUM RATINGS
CLP to CLN ..........................................................+0.5V
Operating Ambient Temperature Range
(Note 4) ...............................................40°C to 85°C
Operating Junction Temperature ............ 40°C to 125°C
Storage Temperature Range .................. 65°C to 150°C
Lead Temperature (Soldering, 10 sec) ................... 300°C
LTC4008 LTC4008-1*
GN PACKAGE
20-LEAD NARROW PLASTIC SSOP
TJMAX = 125°C, θJA = 90°C/W
1
2
3
4
5
6
7
8
9
10
TOP VIEW
20
19
18
17
16
15
14
13
12
11
INFET
BGATE
PGND
TGATE
CLP
CLN
FLAG
BATMON
BAT
CSP
DCIN
ICL
ACP/SHDN
RT
FAULT
GND
VFB
NTC
ITH
PROG
GN PACKAGE
20-LEAD NARROW PLASTIC SSOP
TJMAX = 125°C, θJA = 90°C/W
1
2
3
4
5
6
7
8
9
10
TOP VIEW
20
19
18
17
16
15
14
13
12
11
NC
BGATE
PGND
TGATE
CLP
CLN
FLAG
BATMON
BAT
CSP
DCIN
ICL
SHDN
RT
FAULT
GND
VFB
NTC
ITH
PROG
*The LTC4008EGN-1 does not have the Input FET function
PIN CONFIGURATION
ORDER INFORMATION
LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE
LTC4008EGN#PBF LTC4008EGN#TRPBF LTC4008EGN 20-Lead Narrow Plastic SSOP –40°C to 125°C
LTC4008EGN-1#PBF LTC4008EGN-1#TRPBF LTC4008EGN-1 20-Lead Narrow Plastic SSOP –40°C to 125°C
Consult ADI Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through
designated sales channels with #TRMPBF suffix.
http://www.linear.com/product/LTC4008#orderinfo
LTC4008
3
Rev C
For more information www.analog.com
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. VDCIN = 20V, VBAT = 12V unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
DCIN Operating Range 6 28 V
IQOperating Current Charging Sum of Current from CLP, CLN, DCIN 3 5 mA
VTOL Voltage Accuracy (Notes 2, 5)
l
–0.8
–1.0
0.8
1.0
%
%
BATMON Error (Note 5) Measured from BAT to BATMON,
RLOAD = 100k
0 35 80 mV
ITOL Charge Current Accuracy (Note 3) VCSP – VBAT Target = 100mV
l
–4
–5
4
5
%
%
Shutdown
Battery Leakage Current DCIN = 0V (LTC4008 Only)
ACP/SHDN = 0V
l
l
–10
20 35
10
µA
µA
UVLO Undervoltage Lockout Threshold DCIN Rising, VBAT = 0V l4.2 4.7 5.5 V
Shutdown Threshold at ACP/SHDN l1 1.6 2.5 V
Operating Current in Shutdown VSHDN = 0V, Sum of Current from CLP,
CLN, DCIN
2 3 mA
Current Sense Amplifier, CA1
Input Bias Current Into BAT Pin 11.66 µA
CMSL CA1/I1 Input Common Mode Low l0 V
CMSH CA1/I1 Input Common Mode High VDCIN ≤ 28V lVCLN – 0.2 V
VOS Input Voltage Offset –3.5 3.5 mV
Current Comparators ICMP and IREV
ITMAX Maximum Current Sense Threshold (VCSP – VBAT) VITH = 2.5V l140 165 200 mV
ITREV Reverse Current Threshold (VCSP – VBAT) –30 mV
Current Sense Amplifier, CA2
Transconductance 1 mmho
Source Current Measured at ITH, VITH = 1.4V –40 µA
Sink Current Measured at ITH, VITH = 1.4V 40 µA
Current Limit Amplifier
Transconductance 1.4 mmho
VCLP Current Limit Threshold l93 100 107 mV
ICLN CLN Input Bias Current 100 nA
Voltage Error Amplifier, EA
Transconductance 1 mmho
VREF Reference Voltage Used to Calculate VFLOAT 1.19 V
IBEA Input Bias Current ±4 ±25 nA
Sink Current Measured at ITH, VITH = 1.4V 36 µA
OVSD Overvoltage Shutdown Threshold as a Percent of
Programmed Charger Voltage
l102 107 110 %
LTC4008
4
Rev C
For more information www.analog.com
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. VDCIN = 20V, VBAT = 12V unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
Input P-Channel FET Driver (INFET) (LTC4008 Only)
DCIN Detection Threshold (VDCIN – VCLP) DCIN Voltage Ramping Up
from VCLP – 0.1V
l0 0.17 0.25 V
Forward Regulation Voltage (VDCIN – VCLP)l25 50 mV
Reverse Voltage Turn-Off Voltage (VDCIN – VCLP) DCIN Voltage Ramping Down l–60 –25 mV
INFET “On” Clamping Voltage (VCLP – VINFET) IINFET = 1µA l5 5.8 6.5 V
INFET “Off” Clamping Voltage (VCLP – VINFET) IINFET = –25µA 0.25 V
Thermistor
NTCVR Reference Voltage During Sample Time 4.5 V
High Threshold VNTC Rising lNTCVR
• 0.48
NTCVR
• 0.5
NTCVR
• 0.52
V
Low Threshold VNTC Falling lNTCVR
• 0.115
NTCVR
• 0.125
NTCVR
• 0.135
V
Thermistor Disable Current VNTC ≤ 10V 10 µA
Indicator Outputs (ACP/SHDN, FLAG, ICL, FAULT
C10TOL FLAG (C/10) Accuracy Voltage Falling at PROG l0.375 0.397 0.420 V
ICL Threshold Accuracy VCLP – VCLN 83 93 105 mV
VOL Low Logic Level of ACP/SHDN, FLAG, ICL, FAULT IOL = 100µA 0.5 V
VOH High Logic Level of ACP/SHDN, ICL IOH = –1µA l2.7 V
IOFF Off State Leakage Current of FLAG, FAULT VOH = 3V –1 1 µA
IPO Pull-Up Current on ACP/SHDN, ICL V = 0V –10 µA
Oscillator
fOSC Regulator Switching Frequency 255 300 345 kHz
fMIN Regulator Switching Frequency in Drop Out Duty Cycle ≥ 98% 20 25 kHz
DCMAX Regulator Maximum Duty Cycle VCSP = VBAT 98 99 %
Gate Drivers (TGATE, BGATE)
VTGATE High (VCLP – VTGATE) ITGATE = –1mA 50 mV
VBGATE High CLOAD = 3000pF 5.6 10 V
VTGATE Low (VCLP – VTGATE) CLOAD = 3000pF 5.6 10 V
VBGATE Low IBGATE = 1mA 50 mV
TGTR
TGTF
TGATE T
ransition Time
TGATE Rise Time
TGATE Fall Time
CLOAD = 3000pF, 10% to 90%
CLOAD = 3000pF, 10% to 90%
50
50
110
100
ns
ns
BGTR
BGTF
BGATE T
ransition Time
BGATE Rise Time
BGATE Fall Time
CLOAD = 3000pF, 10% to 90%
CLOAD = 3000pF, 10% to 90%
40
40
90
80
ns
ns
VTGATE at Shutdown (VCLP – VTGATE) ITGATE = –1µA, DCIN = 0V, CLP = 12V 100 mV
VBGATE at Shutdown IBGATE = 1µA, DCIN = 0V, CLP = 12V 100 mV
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: See “Test Circuit”.
Note 3: Does not include tolerance of current sense resistor or current
programming resistor.
Note 4: The LTC4008E is guaranteed to meet performance specifications
from 0°C to 70°C. Specifications over the –40°C to 85°C operating
temperature range are assured by design, characterization and correlation
with statistical process controls.
Note 5: Voltage accuracy includes BATMON error and voltage reference
error. Does not include error of external resistor divider.
LTC4008
5
Rev C
For more information www.analog.com
TYPICAL PERFORMANCE CHARACTERISTICS
INFET Response Time to
Reverse Current VFB vs DCIN
BATMON Offset
(TA = 25°C unless otherwise noted)
TEST PERFORMED ON DEMOBOARD
VIN = 15VDC
CHARGER = ON
ICHARGE = <10mA
Vs OF PFET (5V/DIV)
Id (REVERSE) OF
PFET (5A/DIV)
Vgs OF PFET (2V/DIV)
4008 G01
VCHARGE = 12.6V
INFET = 1/2 Si4925DY
Vgs = 0
Vs = 0V
Id = 0A
1.25µs/DIV
DCIN (V)
6 11 16 21 26
V
FB
(%)
4008 G02
0.05
0
–0.05
–0.10
–0.15
–0.20
BATTERY VOLTAGE (V)
3 8 13 18 23
V
BATTERY
- V
BATMON
(V)
4008 G03
0.02
0
–0.02
–0.04
–0.06
–0.08
–0.10
DCIN = 15V
DCIN = 20V
DCIN = 24V
BATMON LOAD = 100kΩ
VOUT vs IOUT
PWM Frequency vs Duty Cycle
Disconnect/Reconnect Battery
(Load Dump)
OUTPUT CURRENT (A)
0 0.5 1.0 2.0 3.0 4.01.5 2.5 3.5 4.5
OUTPUT VOLTAGE ERROR (%)
4008 G04
DCIN = 20V
VBAT = 12.6V
0
–0.5
–1.0
–1.5
–2.0
–2.5
–3.0
–3.5
–4.0
–4.5
–5.0
DUTY CYCLE (VOUT/VIN)
0 0.1 0.2 0.4 0.6 0.90.80.3 0.5 0.7 1.0
PWM FREQUENCY (kHz)
4008 G05
PROGRAMMED CURRENT = 10%
DCIN = 15V
DCIN = 20V
DCIN = 24V
350
300
250
200
150
100
50
0
4008 G06
LOAD CURRENT = 1A, 2A, 3A
DCIN = 20V
VFLOAT = 12.6V
VFLOAT
1V/(DIV)
LOAD
STATE DISCONNECT RECONNECT
1A STEP
3A STEP
3A STEP
1A STEP
LTC4008
6
Rev C
For more information www.analog.com
TYPICAL PERFORMANCE CHARACTERISTICS
Battery Leakage Current vs
Battery Voltage Efficiency at 19VDC VIN
Efficiency at 12.6V with 15VDC
VIN
Charging Voltage Error
TEMP = 27°C, ILOAD = 0.120A
(TA = 25°C unless otherwise noted)
BATTERY VOLTAGE (V)
0 5 10 15 20 25 30
BATTERY LEAKAGE CURRENT (µA)
4008 G07
40
35
30
25
20
15
10
5
0
VDCIN = 0V
CHARGE CURRENT (A)
1.000.50 1.50 2.00 2.50 3.00
EFFICIENCY (%)
4008 G09
16.8V
12.6V
100
95
90
85
80
75
CHARGE CURRENT (A)
1.000.50 1.50 2.00 2.50 3.00
EFFICIENCY (%)
4008 G10
100
95
90
85
80
75
CHARGING VOLTAGE (V)
0
OUTPUT VOLTAGE ERROR (V)
0.150
0.100
0.125
0.075
0.050
0
0.025
–0.025
–0.050
–0.075
–0.100
–0.125
–0.150 16
4008 G11
42 6 10 14 18
812 2220
DCIN = 15V
DCIN = 20V
LTC4008
7
Rev C
For more information www.analog.com
PIN FUNCTIONS
DCIN (Pin 1): External DC Power Source Input. Bypass this
pin with at least 0.01µF. See “Applications Information
section.
ICL (Pin 2): Input Current Limit Indicator. Active low dig-
ital output. Internal 10µA pull-up to 3.5V. Pulled low if
the charger current is being reduced by the input current
limiting function. The pin is capable of sinking at least
100µA. If VLOGIC > 3.3V, add an external pull-up.
ACP/SHDN (Pin 3): Open-drain output used to indicate if
the AC adapter voltage is adequate for charging. Active high
digital output. Internal 10µA pull-up to 3.5V. The charger
can also be shutdown by pulling this pin below 1V. The pin
is capable of sinking at least 100µA. If VLOGIC > 3.3V, add
an external pull-up. (LTC4008-1: ACP function disabled.)
RT (Pin 4): Thermistor Clocking Resistor. Use a 150k resis-
tor as a nominal value. This resistor is always required.
If this resistor is not present, the charger will not start.
FAULT (Pin 5): Active low open-drain output that indi-
cates that charger operation has suspended due to the
thermistor exceeding allowed values. A pull-up resistor
is required if this function is used. The pin is capable of
sinking at least 100µA.
GND (Pin 6): Ground for Low Power Circuitry.
V
FB
(Pin 7): Input of Voltage Feedback Error Amplifier,
EA, in the “Block Diagram”.
NTC (Pin 8): A thermistor network is connected from NTC
to GND. This pin determines if the battery temperature is
safe for charging. The charger and timer are suspended
and the FAULT pin is driven low if the thermistor indicates
a temperature that is unsafe for charging. The thermistor
function may be disabled with a 300k to 500k resistor
from DCIN to NTC.
ITH (Pin 9): Control Signal of the Inner Loop of the Current
Mode PWM. Higher I
TH
voltage corresponds to higher
charging current in normal operation. A 6k resistor in
series with a capacitor of at least 0.1µF to GND provides
loop compensation. Typical full-scale output current is
40µA. Nominal voltage range for this pin is 0V to 3V.
PROG (Pin 10): Current Programming/Monitoring Input/
Output. An external resistor to GND programs the peak
charging current in conjunction with the current sensing
resistor. The voltage at this pin provides a linear indica-
tion of charging current. Peak current is equivalent to
1.19V. Zero current is approximately 0.309V. A capaci-
tor from PROG to ground is required to filter higher fre-
quency components. The maximum program resistance
to ground is 100k. Values higher than 100k can cause the
charger to shut down.
CSP (Pin 11): Current Amplifier CA1 Input. The CSP and
BAT pins measure the voltage across the sense resis-
tor, R
SENSE
, to provide the instantaneous current signals
required for both peak and average current mode operation.
BAT (Pin 12): Battery Sense Input and the Negative
Reference for the Current Sense Resistor.
BATMON (Pin 13): Output Voltage Representing Battery
Voltage. Switched off to reduce standby current drain
when AC is not present. An external voltage divider
from BATMON to VFB sets the charger float voltage.
Recommended minimum load resistance is 100k.
FLAG (Pin 14): Active low open-drain output that indi-
cates when charging current has declined to 10% of max
programmed current. A pull-up resistor is required if this
function is used. The pin is capable of sinking at least
100µA. This function is latching. To clear it, user must
cycle the ACP/SHDN pin.
CLN (Pin 15): Negative Input to the Input Current Limiting
Amplifier CL1. The threshold is set at 100mV below the
voltage at the CLP pin. When used to limit input current,
a filter is needed to filter out the switching noise. If no
current limit function is desired, connect this pin to CLP.
CLP (Pin 16): This pin serves as a positive reference for
the input current limit amplifier, CL1. It also serves as the
power supply for the IC.
TGATE (Pin 17): Drives the top external PMOSFET of the
battery charger buck converter.
PGND (Pin 18): High Current Ground Return for BGATE
Driver.
BGATE (Pin 19): Drives the bottom external N-MOSFET
of the battery charger buck converter.
INFET (Pin 20): Drives the gate of the external input
P-MOSFET. (LTC4008-1: No Connection)
LTC4008
8
Rev C
For more information www.analog.com
BLOCK DIAGRAM
+
6
9k
1.19V
11.67µA
35mV
C/10
TBAD
EA
gm = 1m
gm = 1m
1.19V
FLAG
GND
7
13
2
17
ICL
TGATE
BGATE
Q1
Q2
16
CLP
100mV
0.1µF
20µF
RCL 5k
15
CLN
19
PGND
L1
397mV
RT
NTC
0.47µF 10k
NTC
150k
+
+
CL1
gm = 1.4m
CONTROL
BLOCK
THERMISTOR
OSCILLATOR 4
8
BAT 3k
RSENSE
CSP
ITH
9
32.4k
WATCHDOG
DETECT tOFF
CLP
DCIN
OV
OSCILLATOR
1.28V
PWM
LOGIC
S
R
Q
CHARGE
+
ICMP
+
÷5
BUFFERED ITH
18
0.1µF
PROG
4008 BD
RPROG
26.7k
4.7nF
10
14
FAULT 5
ACP/SHDN 3
INFET*
Q3
DCIN
VIN
20
1
+
CLP
+
5.8V *NOT USED IN THE LTC4008-1
3k
20µF
6K
0.12µF
12
11
+
CA1
CA2
+
Ω
Ω
Ω
VFB
BATMON
IREV
+
+
* *
17mV
LTC4008
9
Rev C
For more information www.analog.com
OPERATION
TEST CIRCUIT
+
+
+
EA
LT1055
LTC4008
VREF
BAT
7
13 12
CSP
11 ITH
0.6V
4008 TC
9
BATMON
90.325k
9.675k
VFB
OVERVIEW
The LTC4008 is a synchronous current mode PWM step
down (buck) switcher battery charger controller. The
charge current is programmed by the combination of a
program resistor (RPROG) from the PROG pin to ground
and a sense resistor (RSENSE) between the CSP and BAT
pins. The final float voltage is programmed with an exter-
nal resistor divider and the internal 1.19V reference volt-
age. Charging begins when the potential at the DCIN pin
rises above the voltage at BAT (and the UVLO voltage)
and the ACP/SHDN pin is high. An external thermistor
network is sampled at regular intervals. If the thermistor
value exceeds design limits, charging is suspended and
the FAULT pin is set low. If the thermistor value returns
to an acceptable value, charging resumes and the FAULT
pin is set high. An external resistor on the RT pin sets the
sampling interval for the thermistor.
As the battery approaches the final float voltage, the
charge current will begin to decrease. When the current
drops to 10% of the full-scale charge current, an internal
C/10 comparator will indicate this condition by latching
the FLAG pin low. If this condition is caused by an input
current limit condition, described below, then the FLAG
indicator will be inhibited. When the input voltage is not
present, the charger goes into a sleep mode, dropping
battery current drain to 15µA. This greatly reduces the
current drain on the battery and increases the standby
time. The charger can be inhibited at any time by forcing
the ACP/SHDN pin to a low voltage. Forcing ACP/SHDN
low, or removing the voltage from DCIN, will also clear
the FLAG pin if it is low.
Table1. Truth Table For Indicator States
MODE DCIN ACP/SHDN FLAG** FAULT** ICL
Shutdown by low adapter voltage (Disabled on LTC4008-1) <BAT LOW HIGH HIGH LOW
Normal charging >BAT HIGH HIGH HIGH* HIGH*
Input current limited charging >BAT HIGH HIGH* HIGH* LOW
Charger shut down due to thermistor out of range >BAT HIGH X LOW HIGH
Shut down by ACP/SHDN pin (USER) X Forced LOW HIGH HIGH LOW
Shut down by undervoltage lockout >BAT + <UVL HIGH HIGH HIGH* LOW
*Most probable condition, **Open-drain output, HIGH = Open with pull-up, X = Don’t care
LTC4008
10
Rev C
For more information www.analog.com
OPERATION
Input FET (LTC4008)
The input FET circuit performs two functions. It enables
the charger if the input voltage is higher than the CLP
pin and provides the logic indicator of AC present on the
ACP/SHDN pin. It controls the gate of the input FET to
keep a low forward voltage drop when charging and also
prevents reverse current flow through the input FET.
If the input voltage is less than VCLP
, it must go at least
170mV higher than VCLN to activate the charger. When this
occurs the ACP/SHDN pin is released and pulled up with
an external load to indicate that the adapter is present.
The gate of the input FET is driven to a voltage sufficient
to keep a low forward voltage drop from drain to source.
If the voltage between DCIN and CLP drops to less than
25mV, the input FET is turned off slowly. If the voltage
between DCIN and CLP is ever less than 25mV, then
the input FET is turned off in less than 10µs to prevent
significant reverse current from flowing in the input FET.
In this condition, the ACP/SHDN pin is driven low and the
charger is disabled.
Input FET (LTC4008-1)
The input FET circuit is disabled for the LTC4008-1. There
is no low current shutdown mode when DCIN falls below
the CLP pin. The ACP/SHDN pin functions only to shut
down the charger.
Battery Charger Controller
The LTC4008 charger controller uses a constant off-time,
current mode step-down architecture. During normal
operation, the top MOSFET is turned on each cycle when
the oscillator sets the SR latch and turned off when the
main current comparator ICMP resets the SR latch. While
the top MOSFET is off, the bottom MOSFET is turned on
until either the inductor current trips the current compar-
ator IREV or the beginning of the next cycle. The oscillator
uses the equation:
tOFF =
V
DCIN
V
BAT
V
DCIN
f
OSC
to set the bottom MOSFET on time. This activity is dia-
grammed in Figure1.
The peak inductor current, at which ICMP resets the SR
latch, is controlled by the voltage on ITH. ITH is in turn
controlled by several loops, depending upon the situation
at hand. The average current control loop converts the
voltage between CSP and BAT to a representative cur-
rent. Error amp CA2 compares this current against the
desired current programmed by RPROG at the PROG pin
and adjusts ITH until:
VREF
R
=VCSP VBAT +11.67μA 3.01kΩ
3.01kΩ
therefore,
ICHARGE(MAX) =VREF
R
PROG
11.67μA
3.01kΩ
R
SENSE
The voltage at BATMON is divided down by an external
resistor divider and is used by error amp EA to decrease
I
TH
if the divider voltage is above the 1.19V reference.
When the charging current begins to decrease, the voltage
at PROG will decrease in direct proportion. The voltage at
PROG is then given by:
VPROG =ICHARGE RSENSE +11.67μA 3.01kΩ
( )
RPROG
3.01kΩ
The accuracy of VPROG will range from 0% to ITOL.
VPROG is plotted in Figure2.
The amplifier CL1 monitors and limits the input current,
normally from the AC adapter to a preset level (100mV/
R
CL
). At input current limit, CL1 will decrease the I
TH
volt-
age, thereby reducing charging current. The ICL indicator
output will go low when this condition is detected and
the FLAG indicator will be inhibited if it is not already low.
TGATE
OFF
ON
BGATE
INDUCTOR
CURRENT
tOFF
TRIP POINT SET BY ITH VOLTAGE
ON
OFF
4008 F01
Figure1.
LTC4008
11
Rev C
For more information www.analog.com
OPERATION
If the charging current decreases below 10% to 15% of
programmed current, while engaged in input current limit-
ing, BGATE will be forced low to prevent the charger from
discharging the battery. Audible noise can occur in this
mode of operation.
An overvoltage comparator guards against voltage tran-
sient overshoots (>7% of programmed value). In this
case, both MOSFETs are turned off until the overvoltage
condition is cleared. This feature is useful for batteries
which “load dump” themselves by opening their protec-
tion switch to perform functions such as calibration or
pulse mode charging.
PWM Watchdog Timer
There is a watchdog timer that observes the activity on
the BGATE and TGATE pins. If TGATE stops switching for
more than 40µs, the watchdog activates and turns off the
top MOSFET for about 400ns. The watchdog engages to
prevent very low frequency operation in dropout which
is a potential source of audible noise when using ceramic
input and output capacitors.
Charger Startup
When the charger is enabled, it will not begin switching
until the ITH voltage exceeds a threshold that assures ini-
tial current will be positive. This threshold is 5% to 15%
of the maximum programmed current (100mV/RSENSE).
After the charger begins switching, the various loops will
control the current at a level that is higher or lower than
the initial current. The duration of this transient condition
depends upon the loop compensation but is typically less
than 100µs.
Thermistor Detection
The thermistor detection circuit is shown in Figure3. It
requires an external resistor and capacitor in order to
function properly.
ICHARGE (% OF MAXIMUM CURRENT)
0
0
V
PROG
(V)
0.2
0.4
0.6
0.8
4008 F02
1.0
1.2
20 40 60 80 100
1.19V
0.309V
Figure2. VPROG vs ICHARGE
8NTC
LTC4008
S1
R10
32.4k
C7
0.47µF
RTH
10k
NTC
+
+
+
60k
~4.5V
CLK
45k
15k
TBAD
4008 F03
D
C
Q
Figure3.
LTC4008
12
Rev C
For more information www.analog.com
OPERATION
The thermistor detector performs a sample-and-hold
function. An internal clock, whose frequency is deter-
mined by the timing resistor connected to RT
, keeps
switch S1 closed to sample the thermistor:
tSAMPLE = 127.5 • 20 • RRT • 17.5pF = 6.7ms,
for RRT = 150k
The external RC network is driven to approximately 4.5V
and settles to a final value across the thermistor of:
VRTH(FINAL) =
4.5V R
TH
R
TH
+R10
This voltage is stored by C7. Then the switch is opened
for a short period of time to read the voltage across the
thermistor.
tHOLD = 10 • RRT • 17.5pF = 26µs,
for RRT = 150k
When the tHOLD interval ends the result of the thermistor
testing is stored in the D flip-flop (DFF). If the voltage at
NTC is within the limits provided by the resistor divider
feeding the comparators, then the NOR gate output will
be low and the DFF will set TBAD to zero and charging will
continue. If the voltage at NTC is outside of the resistor
divider limits, then the DFF will set TBAD to one, the charger
will be shut down, FAULT pin is set low and the timer will
be suspended until TBAD returns to zero (Figure4).
CLK
(NOT TO
SCALE)
VNTC
tSAMPLE
VOLTAGE ACROSS THERMISTOR
tHOLD
4008 F04
COMPARATOR HIGH LIMIT
COMPARATOR LOW LIMIT
Figure4.
LTC4008
13
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
Charger Current Programming
The basic formula for charging current is:
ICHARGE(MAX) =
V
REF
3.01k
Ω
/ R
PROG
0.035V
R
SENSE
VREF = 1.19V. This leaves two degrees of freedom: RSENSE
and RPROG. The 3.01k input resistors must not be altered
since internal currents and voltages are trimmed for this
value. Pick R
SENSE
by setting the average voltage between
CSP and BAT to be close to 100mV during maximum
charger current. Then RPROG can be determined by solv-
ing the above equation for RPROG.
RPROG =VREF 3.01kΩ
RSENSE ICHARGE(MAX) +0.035V
Table2. Recommended RSNS and RPROG Resistor Values
IMAX (A) RSENSE (Ω) 1% RSENSE (W) RPROG (kΩ) 1%
1.0 0.100 0.25 26.7
2.0 0.050 0.25 26.7
3.0 0.033 0.5 26.7
4.0 0.025 0.5 26.7
Charging current can be programmed by pulse width mod-
ulating RPROG with a switch Q1 to RPROG at a frequency
higher than a few kHz (Figure5). CPROG must be increased
to reduce the ripple caused by the RPROG switching. The
compensation capacitor at ITH will probably need to be
increased also to improve stability and prevent large
overshoot currents during start-up conditions. Charging
current will be proportional to the duty cycle of the switch
with full current at 100% duty cycle and zero current when
Q1 is off.
Maintaining C/10 Accuracy
The C/10 comparator threshold that drives the FLAG pin
has a fixed threshold of approximately VPROG = 400mV.
This threshold works well when RPROG is 26.7k, but will
not yield a 10% charging current indication if RPROG
is a different value. There are situations where a stan-
dard value of RSENSE will not allow the desired value of
charging current when using the preferred RPROG value.
In these cases, where the full-scale voltage across RSENSE
is within ±20mV of the 100mV full-scale target, the input
resistors connected to CSP and BAT can be adjusted to
provide the desired maximum programming current as
well as the correct FLAG trip point.
For example, the desired max charging current is 2.5A but
the best RSENSE value is 0.033Ω. In this case, the volt-
age across RSENSE at maximum charging current is only
82.5mV, normally RPROG would be 30.1k but the nominal
FLAG trip point is only 5% of maximum charging current.
If the input resistors are reduced by the same amount as
the full-scale voltage is reduced then, R4 = R5 = 2.49k and
RPROG = 26.7k, the maximum charging current is still 2.5A
but the FLAG trip point is maintained at 10% of full scale.
There are other effects to consider. The voltage across the
current comparator is scaled to obtain the same values
as the 100mV sense voltage target, but the input referred
sense voltage is reduced, causing some careful consid-
eration of the ripple current. Input referred maximum
comparator threshold is 117mV, which is the same ratio
of 1.4x the DC target. Input referred IREV threshold is
scaled back to –24mV. The current at which the switcher
starts will be reduced as well so there is some risk of
boost activity. These concerns can be addressed by using
a slightly larger inductor to compensate for the reduction
of tolerance to ripple current.
RZ
102k
CPROG
4008 F05
LTC4008
PROG
Q1
2N7002
RPROG
0V
5V
10
Figure5. PWM Current Programming
LTC4008
14
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
Battery Conditioning
Some batteries require a small charging current to condi-
tion them when they are severely depleted. The charging
current is switched to a high rate after the battery volt-
age has reached a “safe” voltage to do so. Figure6 illus-
trates how to do this 2-level charging. When Q1 is on, the
charger current is set to maximum. When Q1 is off, the
charging current is set to 10% of the maximum.
R2
53.6k
CPROG
0.0047µF
4008 F06
LTC4008
Q1
2N7002
R1
26.7k
PROG
10
Figure6. 2-Level Current Programming
Charger Voltage Programming
A resistor divider, R8 and R9 (see Figure10), programs
the final float voltage of the charger. The equation for float
voltage is (the input bias current of EA is typically –4nA
and can be ignored):
VFLOAT = VREF (1 + R8/R9)
It is recommended that the sum of R8 and R9 not be less
than 100k. Accuracy of the LTC4008 voltage reference is
±0.8% at 25°C, and ±1% over the full temperature range.
This leads to the possibility that very accurate (0.1%)
resistors might be needed for R8 and R9. Actually, the
temperature of the LTC4008 will rarely exceed 50°C near
the float voltage because charging currents have tapered
to a low level, so 0.25% resistors will normally provide the
required level of overall accuracy. Table3 contains recom-
mended values for R8 and R9 for popular float voltages.
Table3.
FLOAT VOLTAGE (V) R9 (kΩ) 0.25% R8 (kΩ) 0.25%
8.2 24.9 147
8.4 26.1 158
12.3 15 140
12.6 16.9 162
16.4 11.5 147
16.8 13.3 174
Soft-Start
The LTC4008 is soft started by the 0.12µF capacitor on the
ITH pin. On start-up, ITH pin voltage will rise quickly to 0.5V,
then ramp up at a rate set by the internal 40µA pull-up cur-
rent and the external capacitor. Battery charging current
starts ramping up when ITH voltage reaches 0.8V and full
current is achieved with I
TH
at 2V. With a 0.12µF capacitor,
time to reach full charge current is about 2ms and it is
assumed that input voltage to the charger will reach full
value in less than 2ms. The capacitor can be increased up
to 1µF if longer input start-up times are needed.
Input and Output Capacitors
The input capacitor (C2) is assumed to absorb all input
switching ripple current in the converter, so it must have
adequate ripple current rating. Worst-case RMS ripple
current will be equal to one-half of output charging cur-
rent. Actual capacitance value is not critical. Solid tanta-
lum low ESR capacitors have high ripple current rating
in a relatively small surface mount package, but caution
must be used when tantalum capacitors are used for input
or output bypass. High input surge currents can be cre-
ated when the adapter is hot-plugged to the charger or
when a battery is connected to the charger. Solid tantalum
capacitors have a known failure mechanism when sub-
jected to very high turn-on surge currents. Kemet T495
series of “Surge Robust” low ESR tantalums are rated for
high surge conditions such as battery to ground.
LTC4008
15
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
The relatively high ESR of an aluminum electrolytic for
C1, located at the AC adapter input terminal, is helpful
in reducing ringing during the hot-plug event. Refer to
Application Note 88 for more information.
Highest possible voltage rating on the capacitor will mini-
mize problems. Consult with the manufacturer before use.
Alternatives include high capacity ceramic (at least 20µF)
from Tokin, United Chemi-Con/Marcon, et al. Other alter-
native capacitors include OS-CON capacitors from Sanyo.
The output capacitor (C3) is also assumed to absorb
output switching current ripple. The general formula for
capacitor current is:
IRMS =
0.29 VBAT
( )
1 VBAT
VDCIN
L1
( )
f
( )
For example:
VDCIN = 19V, VBAT = 12.6V, L1 = 10µH, and
f = 300kHz, IRMS = 0.41A.
EMI considerations usually make it desirable to min-
imize ripple current in the battery leads, and beads or
inductors may be added to increase battery impedance
at the 300kHz switching frequency. Switching ripple cur-
rent splits between the battery and the output capacitor
depending on the ESR of the output capacitor and the bat-
tery impedance. If the ESR of C3 is 0.2Ω and the battery
impedance is raised to 4Ω with a bead or inductor, only
5% of the current ripple will flow in the battery.
Inductor Selection
Higher operating frequencies allow the use of smaller
inductor and capacitor values. A higher frequency gener-
ally results in lower efficiency because of MOSFET gate
charge losses. In addition, the effect of inductor value
on ripple current and low current operation must also
be considered. The inductor ripple current IL decreases
with higher frequency and increases with higher VIN.
IL=1
f
( )
L
( )
VOUT 1– VOUT
V
IN
Accepting larger values of I
L
allows the use of low induc-
tances, but results in higher output voltage ripple and
greater core losses. A reasonable starting point for setting
ripple current is IL = 0.4(IMAX). In no case should IL
exceed 0.6(IMAX) due to limits imposed by IREV and CA1.
Remember the maximum IL occurs at the maximum
input voltage. In practice 10µH is the lowest value rec-
ommended for use.
Lower charger currents generally call for larger inductor
values. Use Table4 as a guide for selecting the correct
inductor value for your application.
Table4.
MAXIMUM AVERAGE
CURRENT (A)
INPUT
VOLTAGE (V)
MINIMUM INDUCTOR
VALUE (µH)
1 ≤20 40 ±20%
1 >20 56 ±20%
2 ≤20 20 ±20%
2 >20 30 ±20%
3 ≤20 15 ±20%
3 >20 20 ±20%
4 ≤20 10 ±20%
4 >20 15 ±20%
Charger Switching Power MOSFET
and Diode Selection
Two external power MOSFETs must be selected for use
with the charger: a P-channel MOSFET for the top (main)
switch and an N-channel MOSFET for the bottom (syn-
chronous) switch.
The peak-to-peak gate drive levels are set internally. This
voltage is typically 6V. Consequently, logic-level threshold
MOSFETs must be used. Pay close attention to the BVDSS
specification for the MOSFETs as well; many of the logic
level MOSFETs are limited to 30V or less.
LTC4008
16
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
Selection criteria for the power MOSFETs include the ON
resistance RDS(ON), total gate capacitance QG, reverse
transfer capacitance CRSS, input voltage and maximum
output current. The charger is operating in continuous
mode so the duty cycles for the top and bottom MOSFETs
are given by:
Main Switch Duty Cycle = VOUT/VIN
Synchronous Switch Duty Cycle = (VIN – VOUT)/VIN.
The MOSFET power dissipations at maximum output cur-
rent are given by:
PMAIN = VOUT/VIN(IMAX)2(1 + δ∆T)RDS(ON)
+ k(VIN)2(IMAX)(CRSS)(fOSC)
PSYNC = (VIN – VOUT)/VIN(IMAX)2(1 + δ∆T)RDS(ON)
Where δ∆T is the temperature dependency of R
DS(ON)
and k is a constant inversely related to the gate drive
current. Both MOSFETs have I2R losses while the PMAIN
equation includes an additional term for transition losses,
which are highest at high input voltages. For VIN < 20V
the high current efficiency generally improves with larger
MOSFETs, while for VIN > 20V the transition losses rap-
idly increase to the point that the use of a higher RDS(ON)
device with lower CRSS actually provides higher effi-
ciency. The synchronous MOSFET losses are greatest at
high input voltage or during a short circuit when the duty
cycle in this switch in nearly 100%. The term (1 + δ∆T) is
generally given for a MOSFET in the form of a normalized
RDS(ON) vs temperature curve, but δ = 0.005/°C can be
used as an approximation for low voltage MOSFETs. CRSS
= QGD/VDS is usually specified in the MOSFET charac-
teristics. The constant k = 2 can be used to estimate the
contributions of the two terms in the main switch dissi-
pation equation.
If the charger is to operate in low dropout mode or with
a high duty cycle greater than 85%, then the topside
P-channel efficiency generally improves with a larger
MOSFET. Using asymmetrical MOSFETs may achieve cost
savings or efficiency gains.
The Schottky diode D1, shown in the Typical Application
on the back page, conducts during the dead-time between
the conduction of the two power MOSFETs. This prevents
the body diode of the bottom MOSFET from turning on
and storing charge during the dead-time, which could cost
as much as 1% in efficiency. A 1A Schottky is generally
a good size for 4A regulators due to the relatively small
average current. Larger diodes can result in additional
transition losses due to their larger junction capacitance.
The diode may be omitted if the efficiency loss can be
tolerated.
Calculating IC Power Dissipation
The power dissipation of the LTC4008 is dependent upon
the gate charge of the top and bottom MOSFETs (QG1 &
QG2 respectively) The gate charge is determined from the
manufacturers data sheet and is dependent upon both
the gate voltage swing and the drain voltage swing of the
MOSFET. Use 6V for the gate voltage swing and VDCIN for
the drain voltage swing.
PD = VDCIN • (fOSC (QG1 + QG2) + IQ)
Example:
VDCIN = 19V, fOSC = 345kHz, QG1 = QG2 = 15nC,
IQ = 5mA
PD = 292mW
Adapter Limiting
An important feature of the LTC4008 is the ability to
automatically adjust charging current to a level which
avoids overloading the wall adapter. This allows the prod-
uct to operate at the same time that batteries are being
charged without complex load management algorithms.
Additionally, batteries will automatically be charged at the
maximum possible rate of which the adapter is capable.
This feature is created by sensing total adapter output cur-
rent and adjusting charging current downward if a preset
adapter current limit is exceeded. True analog control is
LTC4008
17
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
used, with closed-loop feedback ensuring that adapter load
current remains within limits. Amplifier CL1 in Figure7
senses the voltage across R
CL
, connected between the
CLP and CLN pins. When this voltage exceeds 100mV,
the amplifier will override programmed charging current
to limit adapter current to 100mV/RCL. A lowpass filter
formed by 5kΩ and 15nF is required to eliminate switch-
ing noise. If the current limit is not used, CLN should be
connected to CLP.
Note that the ICL pin will be asserted when the voltage
across RCL is 93mV, before the adapter limit regulation
threshold.
+
CLP
15nF 5k
RCL*
VIN
LTC4008
16
CLN
100mV
15
4008 F07
CIN
TO
SYSTEM
LOAD
CL1
*RCL = 100mV
ADAPTER CURRENT LIMIT
+
Figure7. Adapter Current Limiting
Setting Input Current Limit
To set the input current limit, you need to know the min-
imum wall adapter current rating. Subtract 7% for the
input current limit tolerance and use that current to deter
-
mine the resistor value.
RCL = 100mV/ILIM
ILIM = Adapter Min Current –
(Adapter Min Current • 7%)
Table5. Common RCL Resistor Values
ADAPTER
RATING (A)
RCL VALUE*
(Ω) 1%
RCL POWER
DISSIPATION (W)
RCL POWER
RATING (W)
1.5 0.06 0.135 0.25
1.8 0.05 0.162 0.25
2 0.045 0.18 0.25
2.3 0.039 0.206 0.25
2.5 0.036 0.225 0.5
2.7 0.033 0.241 0.5
3 0.03 0.27 0.5
*Values shown above are rounded to nearest standard value.
As is often the case, the wall adapter will usually have at
least a +10% current limit margin and many times one
can simply set the adapter current limit value to the actual
adapter rating (see Table5).
Designing the Thermistor Network
There are several networks that will yield the desired func-
tion of voltage vs temperature needed for proper opera-
tion of the thermistor. The simplest of these is the voltage
divider shown in Figure8. Unfortunately, since the HIGH/
LOW comparator thresholds are fixed internally, there is
only one thermistor type that can be used in this network;
the thermistor must have a HIGH/LOW resistance ratio of
1:7. If this happy circumstance is true for you, then simply
set R9 = RTH(LOW)
LTC4008
NTC
R9
C7 RTH
4008 F08
8
Figure8. Voltage Divider Thermistor Network
LTC4008
18
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
If you are using a thermistor that doesnt have a 1:7 HIGH/
LOW ratio, or you wish to set the HIGH/LOW limits to
different temperatures, then the more generic network in
Figure9 should work.
Once the thermistor, RTH
, has been selected and the
thermistor value is known at the temperature limits, then
resistors R9 and R9A are given by:
For NTC thermistors:
R9 = 6 RTH(LOW) • RTH(HIGH)/(RTH(LOW) – RTH(HIGH))
R9A = 6 RTH(LOW) RTH(HIGH)/(RTH(LOW) 7
RTH(HIGH))
Where RTH(LOW) > 7 • RTH(HIGH)
For PTC thermistors:
R9 = 6 RTH(LOW) • RTH(HIGH)/(RTH(HIGH) – RTH(LOW))
R9A = 6 RTH(LOW) RTH(HIGH)/(RTH(HIGH) 7
RTH(LOW))
Where RTH(HIGH) > 7 • RTH(LOW)
Example #1: 10kΩ NTC with custom limits
TLOW = 0°C, THIGH = 50°C
RTH = 10k at 25°C,
RTH(LOW) = 32.582k at 0°C
RTH(HIGH) = 3.635k at 50°C
R9 = 24.55k 24.3k (nearest 1% value)
R9A = 99.6k 100k (nearest 1% value)
Figure9. General Thermistor Network
LTC4008
NTC
R9
C7 R9A RTH
4008 F09
8
Example #2: 100kΩ NTC
TLOW = 5°C, THIGH = 50°C
RTH = 100k at 25°C,
RTH(LOW) = 272.05k at 5°C
RTH(HIGH) = 33.195k at 50°C
R9 = 226.9k 226k (nearest 1% value)
R9A = 1.365M 1.37M (nearest 1% value)
Example #3: 22kΩ PTC
TLOW = 0°C, THIGH = 50°C
RTH = 22k at 25°C,
RTH(LOW) = 6.53k at 0°C
RTH(HIGH) = 61.4k at 50°C
R9 = 43.9k 44.2k (nearest 1% value)
R9A = 154k
Sizing the Thermistor Hold Capacitor
During the hold interval, C7 must hold the voltage across
the thermistor relatively constant to avoid false readings.
A reasonable amount of ripple on NTC during the hold
interval is about 10mV to 15mV. Therefore, the value of
C7 is given by:
C7 = tHOLD/(R9/7 • – ln(1 8 15mV/4.5V))
= 10 RRT17.5pF/(R9/7 • – ln(1 8 15mV/4.5V)
Example:
R9 = 24.3k
RRT = 150k
C7 = 0.28µF 0.27µF (nearest value)
LTC4008
19
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
Disabling the Thermistor Function
If the thermistor is not needed, connecting a resistor
between DCIN and NTC will disable it. The resistor should
be sized to provide at least 10µA with the minimum volt-
age applied to DCIN and 10V at NTC. Do not exceed 30µA.
Generally, a 301k resistor will work for DCIN less than
15V. A 499k resistor is recommended for DCIN between
15V and 24V.
Using the LTC4008-1 (Refer to Figure10)
The LTC4008-1 is intended for applications where the
battery power is fully isolated from the charger and wall
adapter connections. An example application is a sys-
tem with multiple batteries such that the charger’s out-
put power passes through a downstream power path or
selector system. Typically these systems also provide iso-
lation and control the wall adapter power. To reduce cost
in such systems, the LTC4008-1 removes the requirement
for the wall adapter INFET function or blocking diode.
Wall adapter or ACP detection is also removed along with
micropower shutdown mode. Asserting of the SHDN pin
only puts the charger into standby mode. Failure to isolate
the battery power from ANY of the LTC4008-1 pins when
wall adapter power is removed or lost will only drain the
battery at the IC quiescent current rate. More specifically,
high current is drawn from the DCIN, CLP and CLN pins.
Suggested devices to isolate power from the charger
include simple diodes, electrical or mechanical switches
or power path control devices such as the LTC4412 low
loss PowerPath™ controller.
Because the switcher operation is continuous under nearly
all conditions, precautions must be taken to prevent the
charger from boosting the input voltage above maximum
voltage values on the input capacitors or adapter. Z1 and
Q3 will shut down the charger if the input voltage exceeds
a safe value.
LTC4008
20
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
BATMON
VFB
ICL
SHDN
FAULT
FLAG
NTC
RT
ITH
GND
ICL
FAULT
FLAG
DCIN
CLP
CLN
TGATE
BGATE
PGND
CSP
BAT
PROG
LTC4008-1
R10 32.4k 1%
R8
140k
0.25%
C6
0.12µF
THERMISTOR
10k
NTC
Q3
2N7002
C7
0.47µF
R12
100k
R11
100k
VLOGIC
DCIN
0V TO 28V
R7
6.04k
1%
R9
15k
0.25%
R13
1.5k
Z1
RT
150k
C1
0.1µF
C4
15nF
Q1
Q2 D1
C2
20µF
SYSTEM
LOAD
L1
10µH
R1
4.99k
1%
R4 3.01k 1%
R5 3.01k 1%
RSENSE
0.025Ω
1%
RCL
0.02Ω
1%
C3
20µF
Q4
D2
C5
0.0047µF
4008 F10
Q5
2N7002
R6
28.7k
1%
CHARGE
R26
150k
Li-Ion
BATTERY
D1: MBRS130T3
D2: SBM540
Q1: Si4431BDY
Q2: FDC645N
Q4: Si7423DN
Z1 VALUE SIZED FOR ABSOLUTE MAXIMUM ADAPTER VOLTAGE
Figure10. Typical LTC4008-1 Application (12.3V/4A)
LTC4008
21
Rev C
For more information www.analog.com
APPLICATIONS INFORMATION
PCB Layout Considerations
For maximum efficiency, the switch node rise and fall
times should be minimized. To prevent magnetic and
electrical field radiation and high frequency resonant
problems, proper layout of the components connected
to the IC is essential. (See Figure11.) Here is a PCB layout
priority list for proper layout. Layout the PCB using this
specific order.
1. Input capacitors need to be placed as close as pos-
sible to switching FET’s supply and ground connec-
tions. Shortest copper trace connections possible.
These parts must be on the same layer of copper. Vias
must not be used to make this connection.
2. The control IC needs to be close to the switching
FET s gate terminals. Keep the gate drive signals short
for a clean FET drive. This includes IC supply pins that
connect to the switching FET source pins. The IC can
be placed on the opposite side of the PCB relative to
above.
3. Place inductor input as close as possible to switching
FETs output connection. Minimize the surface area of
this trace. Make the trace width the minimum amount
needed to support current—no copper fills or pours.
Avoid running the connection using multiple layers in
parallel. Minimize capacitance from this node to any
other trace or plane.
4. Place the output current sense resistor right next to
the inductor output but oriented such that the ICs cur-
rent sense feedback traces going to resistor are not
long. The feedback traces need to be routed together
as a single pair on the same layer at any given time
with smallest trace spacing possible. Locate any filter
component on these traces next to the IC and not at
the sense resistor location.
5. Place output capacitors next to the sense resistor
output and ground.
6. Output capacitor ground connections need to feed
into same copper that connects to the input capacitor
ground before tying back into system ground.
7. Connection of switching ground to system ground or
internal ground plane should be single point. If the
system has an internal system ground plane, a good
way to do this is to cluster vias into a single star point
to make the connection.
8. Route analog ground as a trace tied back to IC ground
(analog ground pin if present) before connecting to
any other ground. Avoid using the system ground
plane. CAD trick: make analog ground a separate
ground net and use a resistor to tie analog ground
to system ground.
9. A good rule of thumb for via count for a given high
current path is to use 0.5A per via. Be consistent.
10. If possible, place all the parts listed above on the same
PCB layer.
11. Copper fills or pours are good for all power connec-
tions except as noted above in Rule 3. You can also
use copper planes on multiple layers in parallel too
this helps with thermal management and lower trace
inductance improving EMI performance further.
12. For best current programming accuracy provide a
Kelvin connection from RSENSE to CSP and BAT. See
Figure12 as an example.
It is important to keep the parasitic capacitance on the R
T
,
CSP and BAT pins to a minimum. The traces connecting
these pins to their respective resistors should be as short
as possible.
LTC4008
22
Rev C
For more information www.analog.com
PACKAGE DESCRIPTION
GN Package
20-Lead Plastic SSOP (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1641)
.337 – .344*
(8.560 – 8.738)
GN20 (SSOP) 0204
1 2 345678 9 10
.229 – .244
(5.817 – 6.198)
.150 – .157**
(3.810 – 3.988)
1617181920 15 14 13 12 11
.016 – .050
(0.406 – 1.270)
.015 ± .004
(0.38 ± 0.10) × 45°
0° – 8° TYP
.0075 – .0098
(0.19 – 0.25)
.0532 – .0688
(1.35 – 1.75)
.008 – .012
(0.203 – 0.305)
TYP
.004 – .0098
(0.102 – 0.249)
.0250
(0.635)
BSC
.058
(1.473)
REF
.254 MIN
RECOMMENDED SOLDER PAD LAYOUT
.150 – .165
.0250 BSC.0165 ±.0015
.045 ±.005
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
INCHES
(MILLIMETERS)
NOTE:
1. CONTROLLING DIMENSION: INCHES
2. DIMENSIONS ARE IN
3. DRAWING NOT TO SCALE
APPLICATIONS INFORMATION
4008 F11
VBAT
L1
VIN
HIGH
FREQUENCY
CIRCULATING
PATH
BAT
SWITCH NODE
C2 C3
D1
Figure11. High Speed Switching Path
CSP
4008 F12
DIRECTION OF CHARGING CURRENT
RSENSE
BAT
Figure12. Kelvin Sensing of Charging Current
LTC4008
23
Rev C
For more information www.analog.com
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
REVISION HISTORY
REV DATE DESCRIPTION PAGE NUMBER
B 7/10 Updated Figure5 and Figure6. 13, 14
C 4/18 Changed LTC4008 pin configuration and lowered TJMAX and θJA values 2
(Revision history begins at Rev B)
LTC4008
24
Rev C
For more information www.analog.com
ANALOG DEVICES, INC. 2003-2018
D16841-0-4/18(C)
www.analog.com
RELATED PARTS
TYPICAL APPLICATION
NiMH/4A Battery Charger
BATMON
VFB
ICL
ACP/SHDN
FAULT
FLAG
NTC
RT
ITH
GND
ICL
ACP
FAULT
FLAG
DCIN
INFET
CLP
CLN
TGATE
BGATE
PGND
CSP
BAT
PROG
LTC4008
R7
6.04k
1%
R9
13.3k
0.25%
RT
150k
C6
0.12µF
THERMISTOR
10k
NTC
C7
0.47µF
R12
100k
R8
147k
0.25%
R10 32.4k 1%
R11
100k
VLOGIC
DCIN
0V TO 20V C1
0.1µF
Q3
INPUT SWITCH
C4
0.1µF
Q1
Q2 D1
C2
20µF L1
10µH
R1 4.99k 1%
R4 3.01k 1%
R5 3.01k 1%
RSENSE
0.025Ω
1%
RCL
0.02Ω
1%
C3
20µF
NiMH
BATTERY
PACK
CHARGING
CURRENT
MONITOR
SYSTEM
LOAD
R6
26.7k
1%
C5
0.0047µF D1: MBRS130T3
Q1: Si4431BDY
Q2: FDC645N
4008 TA02
PART NUMBER DESCRIPTION COMMENTS
LT®1511 3A Constant-Current/Constant-Voltage Battery Charger High Efficiency, Minimum External Components to Fast Charge Lithium,
NIMH and NiCd Batteries
LT1513 Sepic Constant- or Programmable-Current/Constant-
Voltage Battery Charger
Charger Input Voltage May be Higher, Equal to or Lower Than Battery Voltage,
500kHz Switching Frequency
LT1571 1.5A Switching Charger 1- or 2-Cell Li-Ion, 500kHz or 200kHz Switching Frequency, Termination Flag
LTC1628-PG 2-Phase, Dual Synchronous Step-Down Controller Minimizes CIN and COUT
, Power Good Output, 3.5V ≤ VIN ≤ 36V
LTC1709 Family 2-Phase, Dual Synchronous Step-Down Controller
with VID
Up to 42A Output, Minimum CIN and COUT
, Uses Smallest Components for
Intel and AMD Processors
LTC1729 Li-Ion Battery Charger Termination Controller Trickle Charge Preconditioning, Temperature Charge Qualification, Time or
Charge Current Termination, Automatic Charger and Battery Detection, and
Status Output
LT1769 2A Switching Battery Charger Constant-Current/Constant-Voltage Switching Regulator, Input Current
Limiting Maximizes Charge Current
LTC1778 Wide Operating Range, No RSENSE™ Synchronous
Step-Down Controller
2% to 90% Duty Cycle at 200kHz, Stable with Ceramic COUT
LTC1960 Dual Battery Charger/Selector with SPI Interface Simultaneous Charge or Discharge of Two Batteries, DAC Programmable
Current and Voltage, Input Current Limiting Maximizes Charge Current
LTC3711 No RSENSE Synchronous Step-Down Controller
with VID
3.5V ≤ VIN ≤ 36V, 0.925V ≤ VOUT ≤ 2V, for Transmeta, AMD and Intel Mobile
Processors
LTC4006 Small, High Efficiency, Fixed Voltage, Lithium-Ion
Battery Charger with Termination
Complete Charger for 3- or 4-Cell Li-Ion Batteries, AC Adapter Current Limit
and Thermistor Sensor, 16-Pin Narrow SSOP Package
LTC4007 High Efficiency, Programmable Voltage
Battery Charger with Termination
Complete Charger for 3- or 4-Cell Li-Ion Batteries, AC Adapter Current Limit,
Thermistor Sensor and Indicator Outputs
LTC4100 Smart Battery Charger Controller SMBus Rev 1.1 Compliant