www.irf.com 1
07/10/09
IRF8714GPbF
HEXFET® Power MOSFET
Notes through are on page 9
Benefits
lVery Low Gate Charge
lVery Low RDS(on) at 4.5V VGS
lUltra-Low Gate Impedance
lFully Characterized Avalanche Voltage
and Current
l20V VGS Max. Gate Rating
l100% tested for Rg
lLead-Free
lHalogen-Free
Applications
lControl MOSFET of Sync-Buck
Converters used for Notebook
Processor Power
lControl MOSFET for Isolated DC-DC
Converters in Networking Systems
Top View
8
1
2
3
45
6
7
D
D
D
DG
S
A
S
S
A
SO-8
Description
The IRF8714GPbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the
industry standard SO-8 package. The IRF8714GPbF has been optimized for parameters that are
critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC
converters that power the latest generation of processors for Notebook and Netcom applications.
VDSS RDS(on) max Qg
30V 8.7m
:
@VGS = 10V 8.1nC
PD - 96263
Absolute Maximum Ratin
g
s
Parameter Units
VDS Drain-to-Source Voltage
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V A
IDM Pulsed Drain Current
c
PD @TA = 25°C Power Dissipation
PD @TA = 70°C Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJL Junction-to-Drain Lead
g
––– 20
RθJA Junction-to-Ambient
f
––– 50
V
W
°C/W
°C
-55 to + 150
2.5
0.02
1.6
Max.
14
11
110
± 20
30
IRF8714GPbF
2www.irf.com
S
D
G
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. T
y
p. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– V
∆ΒVDSS
/
TJ Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 7.1 8.7 m
––– 10.9 13
VGS(th) Gate Threshold Voltage 1.35 1.80 2.35 V
VGS(th) Gate Threshold Voltage Coefficient ––– -6.0 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– –– 150
IGSS Gate-to-Source Forward Leakage ––– –– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 71 ––– –– S
QgTotal Gate Charge –– 8.1 12
Qgs1 Pre-Vth Gate-to-Source Charge ––– 1.9 ––
Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 –– nC
Qgd Gate-to-Drain Charge ––– 3.0 ––
Qgodr Gate Charge Overdrive ––– 2.2 –– See Figs. 15 & 16
Qsw Switch Char
g
e (Qgs2 + Qgd)––– 4.0 ––
Qoss Output Charge ––– 4.8 –– nC
RgGate Resistance ––– 1.6 2.6
td(on) Turn-On Delay Time ––– 10 ––
trRise Time ––– 9.9 –––
td(off) Turn-Off Delay Time ––– 11 –– ns
tfFall Time –– 5.0 ––
Ciss Input Capacitance ––– 1020 ––
Coss Output Capacitance ––– 220 ––– pF
Crss Reverse Transfer Capacitance ––– 110 ––
Avalanche Characteristics
Parameter Units
EAS
Si
n
gl
e
P
u
l
se
A
va
l
anc
h
e
E
ner
gy
d
mJ
IAR
A
va
l
anc
h
e
C
urrent
c
A
Diode Characteristics
Parameter Min. T
y
p. Max. Units
ISContinuous Source Current ––– ––– 3.1
(Body Diode) A
ISM Pulsed Source Current ––– ––– 110
Bod
Diode
c
VSD Diode Forward Voltage –– –– 1.0 V
trr Reverse Recovery Time ––– 14 21 ns
Qrr Reverse Recovery Charge ––– 15 23 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
–––
ID = 11A
VGS = 0V
VDS = 15V
VGS = 4.5V, ID = 11A
e
VGS = 4.5V
Typ.
–––
VDS = VGS, ID = 25µA
RG = 1.8
VDS = 15V, ID = 11A
VDS = 24V, VGS = 0V, TJ = 125°C
TJ = 2C, IF = 11A, VDD = 15V
di/dt = 300A/
µ
s
e
TJ = 2C, IS = 11A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
MOSFET symbol
VDS = VGS, ID = 25µA
VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 11A
VDS = 15V
VGS = 20V
VGS = -20V
VDS = 24V, VGS = 0V
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 14A
e
Conditions
See Fig. 18
Max.
65
11
ƒ = 1.0MHz
IRF8714GPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
123456
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 150°C
VDS = 15V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 14A
VGS = 10V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.001
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
60µs PULSE WIDTH
Tj = 25°C
2.3V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
2.3V 60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
IRF8714GPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0246810
QG, Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 11A
0 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TA = 25°C
Tj = 150°C
Single Pulse
100µsec
1msec
10msec
0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
IRF8714GPbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Fig 10. Threshold Voltage vs. Temperature
25 50 75 100 125 150
TA , Ambient Temperature (°C)
0
2
4
6
8
10
12
14
ID, Drain Current (A)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z thJA ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + TA
Ri (°C/W) τi (sec)
1.9778 0.000165
7.4731 0.022044
26.2617 0.82275
14.2991 28.4
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τA
τA
τ4
τ4
R4
R4
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
VGS(th), Gate Threshold Voltage (V)
ID = 25µA
IRF8714GPbF
6www.irf.com
Fig 13. Maximum Avalanche Energy
vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
Fig 15. Gate Charge Test Circuit
1K
VCC
DUT
0
L
S
20K
Fig 14. Unclamped Inductive Test Circuit
and Waveform
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 16. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
3 4 5 6 7 8 9 10 11 12
VGS, Gate -to -Source Voltage (V)
5
10
15
20
25
RDS(on), Drain-to -Source On Resistance (m)
ID = 14A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 0.82A
1.0A
BOTTOM 11A
IRF8714GPbF
www.irf.com 7
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Fig 18b. Switching Time Waveforms
Fig 18a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
td(on) trtd(off) tf
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
IRF8714GPbF
8www.irf.com
SO-8 Package Outline(Mosfet & Fetky)
H
'
(
\
E
$
$
+
.
/




%$6,&























%$6,&








0,1 0$;
0,//,0(7(56,1&+(6
0,1 0$;
',0

H
F    
%$6,& %$6,&


' %
(
$
H
;
+
>@ $
.[
;/ ;F
\
>@ & $ %
H $
$
;E
&
>@

)22735,17
;>@
>@
;>@ ;
>

@
287/,1(&21)250672-('(&287/,1(06$$
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
',0(16,21'2(6127,1&/8'(02/'3527586,216
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
02/'3527586,21612772(;&(('>@
Dimensions are shown in milimeters (inches)
SO-8 Part Marking Information
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
(;$03/(7+,6,6$1,5)*3%)
5(&7,),(5
/2*2
,17(51$7,21$/
)*
;;;;
3 ',6*1$7(6/($')5((
'$7(&2'(<::
< /$67',*,72) 7+(<($5
$ $66(0%/<6,7(&2'(
:: :((.
352'8&7
3$57180%(5*'(6,*1$7(6
/27&2'(
+$/2*(1)5((
IRF8714GPbF
www.irf.com 9
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 1.1mH, RG = 25, IAS = 11A.
Pulse width 400µs; duty cycle 2%.
When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/2009
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
FEED DIRECTION
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package