PSoC® 4: PSoC 4100S Plus Datasheet
Programmable System-on-Chip (PSoC)
Cypress Semiconductor Corporation 198 Champion Court San Jose,CA 95134-1709 408-943-2600
Document Number: 002-19966 Rev. *H Revised September 14, 2018
General Description
PSoC® 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system controllers with an
Arm® Cortex™-M0+ CPU. It combines programmable and reconfigurable analog and digital blocks with flexible automatic routing.
PSoC 4100S Plus is a member of the PSoC 4 platform architecture. It is a combination of a microcontroller with standard communi-
cation and timing peripherals, a capacitive touch-sensing system (CapSense) with best-in-class performance, programmable
general-purpose continuous-time and switched-capacitor analog blocks, and programmable connectivity. PSoC 4100S Plus products
will be upward compatible with members of the PSoC 4 platform for new applications and design needs.
Features
32-bit MCU Subsystem
48-MHz Arm Cortex-M0+ CPU with single-cycle multiply
Up to 128 KB of flash with Read Accelerator
Up to 16 KB of SRAM
8-channel DMA engine
Programmable Analog
Two opamps with reconfigurable high-drive external and
high-bandwidth internal drive and Comparator modes and ADC
input buffering capability. Opamps can operate in Deep Sleep
low-power mode.
12-bit 1-Msps SAR ADC with differential and single-ended
modes, and Channel Sequencer with signal averaging
Single-slope 10-bit ADC function provided by a capacitance
sensing block
Two current DACs (IDACs) for general-purpose or capacitive
sensing applications on any pin
Two low-power comparators that operate in Deep Sleep
low-power mode
Programmable Digital
Programmable logic blocks allowing Boolean operations to be
performed on port inputs and outputs
Low-Power 1.71-V to 5.5-V Operation
Deep Sleep mode with operational analog and 2.5-A digital
system current
Capacitive Sensing
Cypress CapSense Sigma-Delta (CSD) provides best-in-class
signal-to-noise ratio (SNR) (>5:1) and water tolerance
Cypress-supplied software component makes capacitive
sensing design easy
Automatic hardware tuning (SmartSense™)
LCD Drive Capability
LCD segment drive capability on GPIOs
Serial Communication
Five independent run-time reconfigurable Serial
Communication Blocks (SCBs) with re-configurable I2C, SPI,
or UART functionality
Timing and Pulse-Width Modulation
Eight 16-bit timer/counter/pulse-width modulator (TCPWM)
blocks
Center-aligned, Edge, and Pseudo-random modes
Comparator-based triggering of Kill signals for motor drive and
other high-reliability digital logic applications
Quadrature decoder
Clock Sources
4 to 33 MHz external crystal oscillator (ECO)
PLL to generate 48-MHz frequency
32-kHz Watch Crystal Oscillator (WCO)
±2% Internal Main Oscillator (IMO)
32-kHz Internal Low-power Oscillator (ILO)
True Random Number Generator (TRNG)
TRNG generates truly random number for secure key gener-
ation for Cryptography applications
CAN Block
CAN 2.0B block with support for Time-Triggered CAN (TTCAN)
Up to 54 Programmable GPIO Pins
44-pin TQFP (0.8-mm pitch), 48-pin TQFP (0.5-mm pitch), and
64-pin TQFP normal (0.8 mm) and Fine Pitch (0.5 mm)
packages
Any GPIO pin can be CapSense, analog, or digital
Drive modes, strengths, and slew rates are programmable
PSoC Creator Design Environment
Integrated Development Environment (IDE) provides
schematic design entry and build (with analog and digital
automatic routing)
Applications Programming Interface (API) component for all
fixed-function and programmable peripherals
Industry-Standard Tool Compatibility
After schematic entry, development can be done with
Arm-based industry-standard development tools
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 2 of 44
More Information
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you
to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article
KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:
Overview: PSoC Portfolio, PSoC Roadmap
Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
In addition, PSoC Creator includes a device selection tool.
Application notes: Cypress offers a large number of PSoC
application notes covering a broad range of topics, from basic
to advanced level. Recommended application notes for getting
started with PSoC 4 are:
AN79953: Getting Started With PSoC 4
AN88619: PSoC 4 Hardware Design Considerations
AN86439: Using PSoC 4 GPIO Pins
AN57821: Mixed Signal Circuit Board Layout
AN81623: Digital Design Best Practices
AN73854: Introduction To Bootloaders
AN89610: Arm Cortex Code Optimization
AN85951: PSoC® 4 and PSoC Analog Coprocessor
CapSense® Design Guide
Technical Reference Manual (TRM) is in two documents:
Architecture TRM details each PSoC 4 functional block.
Registers TRM describes each of the PSoC 4 registers.
Development Kits:
CY8CKIT-041-41XX PSoC 4100S CapSense Pioneer Kit, is
an easy-to-use and inexpensive development platform. This
kit includes connectors for Arduino™ compatible shields.
CY8CKIT-149 PSoC® 4100S Plus Prototyping Kit enables
you to evaluate and develop with Cypress' fourth-generation,
low-power CapSense solution using the PSoC 4100S Plus
devices.
The MiniProg3 device provides an interface for flash
programming and debug.
Software User Guide:
A step-by-step guide for using PSoC Creator. The software
user guide shows you how the PSoC Creator build process
works in detail, how to use source control with PSoC Creator,
and much more.
Component Datasheets:
The flexibility of PSoC allows the creation of new peripherals
(components) long after the device has gone into production.
Component datasheets provide all the information needed to
select and use a particular component, including a functional
description, API documentation, example code, and AC/DC
specifications.
Online:
In addition to print documentation, the Cypress PSoC forums
connect you with fellow PSoC users and experts in PSoC
from around the world, 24 hours a day, 7 days a week.
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 3 of 44
PSoC Creator
PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design
of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100
pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:
1. Drag and drop component icons to build your hardware
system design in the main design workspace
2. Codesign your application firmware with the PSoC hardware,
using the PSoC Creator IDE C compiler
3. Configure components using the configuration tools
4. Explore the library of 100+ components
5. Review component datasheets
Figure 1. Multiple-Sensor Example Project in PSoC Creator
3
1
2
4
5
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 4 of 44
Contents
Functional Definition........................................................ 6
CPU and Memory Subsystem ..................................... 6
System Resources ...................................................... 6
Analog Blocks.............................................................. 7
Programmable Digital Blocks ...................................... 8
Fixed Function Digital Blocks ...................................... 8
GPIO ........................................................................... 8
Special Function Peripherals....................................... 9
Pinouts ............................................................................ 10
Alternate Pin Functions ............................................. 12
Power............................................................................... 14
Mode 1: 1.8 V to 5.5 V External Supply .................... 14
Mode 2: 1.8 V ±5% External Supply.......................... 14
Electrical Specifications ................................................ 15
Absolute Maximum Ratings....................................... 15
Device Level Specifications....................................... 15
Analog Peripherals .................................................... 19
Digital Peripherals ..................................................... 26
Memory ..................................................................... 29
System Resources .................................................... 29
Ordering Information...................................................... 33
Packaging........................................................................ 35
Package Diagrams.................................................... 36
Acronyms........................................................................ 38
Document Conventions ................................................. 40
Units of Measure ....................................................... 40
Revision History ............................................................. 41
Sales, Solutions, and Legal Information ...................... 42
Worldwide Sales and Design Support....................... 42
Products .................................................................... 42
PSoC® Solutions ...................................................... 42
Cypress Developer Community................................. 42
Technical Support ..................................................... 42
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 5 of 44
Figure 2. Block Diagram
PSoC 4100S Plus devices include extensive support for
programming, testing, debugging, and tracing both hardware
and firmware.
The Arm Serial-Wire Debug (SWD) interface supports all
programming and debug features of the device.
Complete debug-on-chip functionality enables full-device
debugging in the final system using the standard production
device. It does not require special interfaces, debugging pods,
simulators, or emulators. Only the standard programming
connections are required to fully support debug.
The PSoC Creator IDE provides fully integrated programming
and debug support for the PSoC 4100S Plus devices. The SWD
interface is fully compatible with industry-standard third-party
tools. PSoC 4100S Plus provides a level of security not possible
with multi-chip application solutions or with microcontrollers. It
has the following advantages:
Allows disabling of debug features
Robust flash protection
Allows customer-proprietary functionality to be implemented in
on-chip programmable blocks
The debug circuits are enabled by default and can be disabled
in firmware. If they are not enabled, the only way to re-enable
them is to erase the entire device, clear flash protection, and
reprogram the device with new firmware that enables debugging.
Thus firmware control of debugging cannot be over-ridden
without erasing the firmware thus providing security.
Additionally, all device interfaces can be permanently disabled
(device security) for applications concerned about phishing
attacks due to a maliciously reprogrammed device or attempts to
defeat security by starting and interrupting flash programming
sequences. All programming, debug, and test interfaces are
disabled when maximum device security is enabled. Therefore,
PSoC 4100S Plus, with device security enabled, may not be
returned for failure analysis. This is a trade-off the PSoC 4100S
Plus allows the customer to make.
Peripherals
CPU Subsystem
System Interconnect (Single Layer AHB)
PSoC 4100S
Plus
IOSS GPIO ( 8 x p or t s)
I/O Subsystem
Peripheral Interconnect ( MMIO)
PCLK
FLASH
128 KB
Read Accelerator
SPCIF
SRAM Controller
ROM
8 KB
ROM Controller
32-bit
AHB- Lite
Up to 54 x GPIOs
DeepSleep
Active / Sleep
Power Modes
Digital DFT
Test
Analog DFT
System Resources
Lite
Power
Clock
Reset
Clock Control
IMO
Sleep Control
REFPOR
Reset Control
TestMode Entry
WIC
XRES
WDT
ILO
PWRSYS
8x TCPWM
WCO
2x LP Comparator
SAR ADC
(12-bit)
x1
CTBm
2 x Opamp
Programmable
Analog
SARMUX
High Speed I /O Matrix & Smart I/O
SWD/TC, MTB
NVIC, IRQMUX, MPU
Cortex
M0+
48 MHz
FAST MUL
LCD
CapSense(v2)
5x SCB-I2C/SPI/UART
SRAM
16 KB
ECO (w/PLL)
CAN
DataWire/
DMA
Initiator / MMIO
TRNG
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 6 of 44
Functional Definition
CPU and Memory Subsystem
CPU
The Cortex-M0+ CPU in the PSoC 4100S Plus is part of the
32-bit MCU subsystem, which is optimized for low-power
operation with extensive clock gating. Most instructions are 16
bits in length and the CPU executes a subset of the Thumb-2
instruction set. It includes a nested vectored interrupt controller
(NVIC) block with eight interrupt inputs and also includes a
Wakeup Interrupt Controller (WIC). The WIC can wake the
processor from Deep Sleep mode, allowing power to be switched
off to the main processor when the chip is in Deep Sleep mode.
The CPU subsystem includes an 8-channel DMA engine and
also includes a debug interface, the serial wire debug (SWD)
interface, which is a two-wire form of JTAG. The debug configu-
ration used for PSoC 4100S Plus has four breakpoint (address)
comparators and two watchpoint (data) comparators.
Flash
The PSoC 4100S Plus device has a flash module with a flash
accelerator, tightly coupled to the CPU to improve average
access times from the flash block. The low-power flash block is
designed to deliver two wait-state (WS) access time at 48 MHz.
The flash accelerator delivers 85% of single-cycle SRAM access
performance on average.
SRAM
16 KB of SRAM are provided with zero wait-state access at
48 MHz.
SROM
An 8-KB supervisory ROM that contains boot and configuration
routines is provided.
System Resources
Power System
The power system is described in detail in the section Power. It
provides assurance that voltage levels are as required for each
respective mode and either delays mode entry (for example, on
power-on reset (POR)) until voltage levels are as required for
proper functionality, or generates resets (for example, on
brown-out detection). PSoC 4100S Plus operates with a single
external supply over the range of either 1.8 V ±5% (externally
regulated) or 1.8 to 5.5 V (internally regulated) and has three
different power modes, transitions between which are managed
by the power system. PSoC 4100S Plus provides Active, Sleep,
and Deep Sleep low-power modes.
All subsystems are operational in Active mode. The CPU
subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep
mode, while all peripherals and interrupts are active with
instantaneous wake-up on a wake-up event. In Deep Sleep
mode, the high-speed clock and associated circuitry is switched
off; wake-up from this mode takes 35 µs. The opamps can
remain operational in Deep Sleep mode.
Clock System
The PSoC 4100S Plus clock system is responsible for providing
clocks to all subsystems that require clocks and for switching
between different clock sources without glitching. In addition, the
clock system ensures that there are no metastable conditions.
The clock system for the PSoC 4100S Plus consists of the IMO,
ILO, a 32-kHz Watch Crystal Oscillator (WCO), MHz ECO and
PLL, and provision for an external clock. The WCO block allows
locking the IMO to the 32-kHz oscillator.
Figure 3. PSoC 4100S Plus MCU Clocking Architecture
The HFCLK signal can be divided down as shown to generate
synchronous clocks for the Analog and Digital peripherals. There
are 18 clock dividers for the PSoC 4100S Plus (six with fractional
divide capability, twelve with integer divide only). The twelve
16-bit integer divide capability allows a lot of flexibility in
generating fine-grained frequency. In addition, there are five
16-bit fractional dividers and one 24-bit fractional divider.
IMO Clock Source
The IMO is the primary source of internal clocking in the
PSoC 4100S Plus. It is trimmed during testing to achieve the
specified accuracy.The IMO default frequency is 24 MHz and it
can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO
tolerance with Cypress-provided calibration settings is ±2% over
the entire voltage and temperature range.
ILO Clock Source
The ILO is a very low power, nominally 40-kHz oscillator, which
is primarily used to generate clocks for the watchdog timer
(WDT) and peripheral operation in Deep Sleep mode. ILO-driven
counters can be calibrated to the IMO to improve accuracy.
Cypress provides a software component, which does the
calibration.
ECO
IMO
PLL
LFCLK
ILO
WCO
Watchdog Counters (WDC)
WDT
Watchdog Timer (WDT)
WDC0
16-bits
WDC1
16-bits
WDC2
32-bits
External Clock
Divide By
2,4,8
HFCLK
HFCLK
5X 16.5-bit, 1X 24.5 bit
Integer
Dividers
Fractional
Dividers
SYSCLK
Prescaler
12X 16-bit
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 7 of 44
Watch Crystal Oscillator (WCO)
The PSoC 4100S Plus clock subsystem also implements a
low-frequency (32-kHz watch crystal) oscillator that can be used
for precision timing applications.
External Crystal Oscillators (ECO)
The PSoC 4100S Plus also implements a 4 to 33 MHz crystal
oscillator.
Watchdog Timer and Counters
A watchdog timer is implemented in the clock block running from
the ILO; this allows watchdog operation during Deep Sleep and
generates a watchdog reset if not serviced before the set timeout
occurs. The watchdog reset is recorded in a Reset Cause
register, which is firmware readable. The Watchdog counters can
be used to implement a Real-Time clock using the 32-kHz WCO.
Reset
PSoC 4100S Plus can be reset from a variety of sources
including a software reset. Reset events are asynchronous and
guarantee reversion to a known state. The reset cause is
recorded in a register, which is sticky through reset and allows
software to determine the cause of the reset. An XRES pin is
reserved for external reset by asserting it active low. The XRES
pin has an internal pull-up resistor that is always enabled.
Analog Blocks
12-bit SAR ADC
The 12-bit, 1-Msps SAR ADC can operate at a maximum clock
rate of 18 MHz and requires a minimum of 18 clocks at that
frequency to do a 12-bit conversion.
The Sample-and-Hold (S/H) aperture is programmable allowing
the gain bandwidth requirements of the amplifier driving the SAR
inputs, which determine its settling time, to be relaxed if required.
It is possible to provide an external bypass (through a fixed pin
location) for the internal reference amplifier.
The SAR is connected to a fixed set of pins through an 8-input
sequencer. The sequencer cycles through selected channels
autonomously (sequencer scan) with zero switching overhead
(that is, aggregate sampling bandwidth is equal to 1 Msps
whether it is for a single channel or distributed over several
channels). The sequencer switching is effected through a state
machine or through firmware driven switching. A feature
provided by the sequencer is buffering of each channel to reduce
CPU interrupt service requirements. To accommodate signals
with varying source impedance and frequency, it is possible to
have different sample times programmable for each channel.
Also, signal range specification through a pair of range registers
(low and high range values) is implemented with a corresponding
out-of-range interrupt if the digitized value exceeds the
programmed range; this allows fast detection of out-of-range
values without the necessity of having to wait for a sequencer
scan to be completed and the CPU to read the values and check
for out-of-range values in software.
The SAR is not available in Deep Sleep mode as it requires a
high-speed clock (up to 18 MHz). The SAR operating range is
1.71 V to 5.5 V.
Figure 4. SAR ADC
Two Opamps (Continuous-Time Block; CTB)
PSoC 4100S Plus has two opamps with Comparator modes
which allow most common analog functions to be performed
on-chip eliminating external components; PGAs, Voltage
Buffers, Filters, Trans-Impedance Amplifiers, and other functions
can be realized, in some cases with external passives. saving
power, cost, and space. The on-chip opamps are designed with
enough bandwidth to drive the Sample-and-Hold circuit of the
ADC without requiring external buffering.
Low-power Comparators (LPC)
PSoC 4100S Plus has a pair of low-power comparators, which
can also operate in Deep Sleep modes. This allows the analog
system blocks to be disabled while retaining the ability to monitor
external voltage levels during low-power modes. The
comparator outputs are normally synchronized to avoid
metastability unless operating in an asynchronous power mode
where the system wake-up circuit is activated by a comparator
switch event. The LPC outputs can be routed to pins.
Current DACs
PSoC 4100S Plus has two IDACs, which can drive any of the
pins on the chip. These IDACs have programmable current
ranges.
Analog Multiplexed Buses
PSoC 4100S Plus has two concentric independent buses that go
around the periphery of the chip. These buses (called amux
buses) are connected to firmware-programmable analog
switches that allow the chip's internal resources (IDACs,
comparator) to connect to any pin on the I/O Ports.
SARMUX
SARMUX Port
(Up to 16 inputs)
vplusvminus
Data and
Status Flags
Reference
Selection
External
Reference and
Bypass
(op tio nal )
POS
NEG
SAR Sequencer
SARADC
Inputs from other Ports
VDDA /2 VDDA VREF
AHB System Bus and Programmable Logic
Interconnect
Sequencing
and Control
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 8 of 44
Programmable Digital Blocks
Smart I/O Block
The Smart I/O block is a fabric of switches and LUTs that allows
Boolean functions to be performed in signals being routed to the
pins of a GPIO port. The Smart I/O can perform logical opera-
tions on input pins to the chip and on signals going out as
outputs.
Fixed Function Digital Blocks
Timer/Counter/PWM (TCPWM) Block
The TCPWM block consists of a 16-bit counter with
user-programmable period length. There is a capture register to
record the count value at the time of an event (which may be an
I/O event), a period register that is used to either stop or
auto-reload the counter when its count is equal to the period
register, and compare registers to generate compare value
signals that are used as PWM duty cycle outputs. The block also
provides true and complementary outputs with programmable
offset between them to allow use as dead-band programmable
complementary PWM outputs. It also has a Kill input to force
outputs to a predetermined state; for example, this is used in
motor drive systems when an over-current state is indicated and
the PWM driving the FETs needs to be shut off immediately with
no time for software intervention. Each block also incorporates a
Quadrature decoder. There are eight TCPWM blocks in
PSoC 4100S Plus.
Serial Communication Block (SCB)
PSoC 4100S Plus has five serial communication blocks, which
can be programmed to have SPI, I2C, or UART functionality.
I2C Mode: The hardware I2C block implements a full
multi-master and slave interface (it is capable of multi-master
arbitration). This block is capable of operating at speeds of up to
400 kbps (Fast Mode) and has flexible buffering options to
reduce interrupt overhead and latency for the CPU. It also
supports EZI2C that creates a mailbox address range in the
memory of PSoC 4100S Plus and effectively reduces I2C
communication to reading from and writing to an array in
memory. In addition, the block supports an 8-deep FIFO for
receive and transmit which, by increasing the time given for the
CPU to read data, greatly reduces the need for clock stretching
caused by the CPU not having read data on time.
The I2C peripheral is compatible with the I2C Standard-mode and
Fast-mode devices as defined in the NXP I2C-bus specification
and user manual (UM10204). The I2C bus I/O is implemented
with GPIO in open-drain modes.
PSoC 4100S Plus is not completely compliant with the I2C spec
in the following respect:
GPIO cells are not overvoltage tolerant and, therefore, cannot
be hot-swapped or powered up independently of the rest of the
I2C system.
UART Mode: This is a full-feature UART operating at up to
1 Mbps. It supports automotive single-wire interface (LIN),
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all
of which are minor variants of the basic UART protocol. In
addition, it supports the 9-bit multiprocessor mode that allows
addressing of peripherals connected over common RX and TX
lines. Common UART functions such as parity error, break
detect, and frame error are supported. An 8-deep FIFO allows
much greater CPU service latencies to be tolerated.
SPI Mode: The SPI mode supports full Motorola SPI, TI SSP
(adds a start pulse used to synchronize SPI Codecs), and
National Microwire (half-duplex form of SPI). The SPI block can
use the FIFO.
CAN
There is a CAN 2.0B block with support for TT-CAN.
GPIO
PSoC 4100S Plus has up to 54 GPIOs. The GPIO block imple-
ments the following:
Eight drive modes:
Analog input mode (input and output buffers disabled)
Input only
Weak pull-up with strong pull-down
Strong pull-up with weak pull-down
Open drain with strong pull-down
Open drain with strong pull-up
Strong pull-up with strong pull-down
Weak pull-up with weak pull-down
Input threshold select (CMOS or LVTTL).
Individual control of input and output buffer enabling/disabling
in addition to the drive strength modes
Selectable slew rates for dV/dt related noise control to improve
EMI
The pins are organized in logical entities called ports, which are
8-bit in width (less for Ports 5 and 6). During power-on and reset,
the blocks are forced to the disable state so as not to crowbar
any inputs and/or cause excess turn-on current. A multiplexing
network known as a high-speed I/O matrix is used to multiplex
between various signals that may connect to an I/O pin.
Data output and pin state registers store, respectively, the values
to be driven on the pins and the states of the pins themselves.
Every I/O pin can generate an interrupt if so enabled and each
I/O port has an interrupt request (IRQ) and interrupt service
routine (ISR) vector associated with it.
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 9 of 44
Special Function Peripherals
CapSense
CapSense is supported in the PSoC 4100S Plus through a
CapSense Sigma-Delta (CSD) block that can be connected to
any pins through an analog multiplex bus via analog switches.
CapSense function can thus be provided on any available pin or
group of pins in a system under software control. A PSoC
Creator component is provided for the CapSense block to make
it easy for the user.
Shield voltage can be driven on another analog multiplex bus to
provide water-tolerance capability. Water tolerance is provided
by driving the shield electrode in phase with the sense electrode
to keep the shield capacitance from attenuating the sensed
input. Proximity sensing can also be implemented.
The CapSense block has two IDACs, which can be used for
general purposes if CapSense is not being used (both IDACs are
available in that case) or if CapSense is used without water
tolerance (one IDAC is available).
The CapSense block also provides a 10-bit Slope ADC function
which can be used in conjunction with the CapSense function.
The CapSense block is an advanced, low-noise, programmable
block with programmable voltage references and current source
ranges for improved sensitivity and flexibility. It can also use an
external reference voltage. It has a full-wave CSD mode that
alternates sensing to VDDA and ground to null out power-supply
related noise.
LCD Segment Drive
PSoC 4100S Plus has an LCD controller, which can drive up to
4 commons and up to 50 segments. It uses full digital methods
to drive the LCD segments requiring no generation of internal
LCD voltages. The two methods used are referred to as Digital
Correlation and PWM. Digital Correlation pertains to modulating
the frequency and drive levels of the common and segment
signals to generate the highest RMS voltage across a segment
to light it up or to keep the RMS signal to zero. This method is
good for STN displays but may result in reduced contrast with TN
(cheaper) displays. PWM pertains to driving the panel with PWM
signals to effectively use the capacitance of the panel to provide
the integration of the modulated pulse-width to generate the
desired LCD voltage. This method results in higher power
consumption but can result in better results when driving TN
displays. LCD operation is supported during Deep Sleep
refreshing a small display buffer (4 bits; one 32-bit register per
port).
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 10 of 44
Pinouts
The following table provides the pin list for PSoC 4100S Plus for the 44-pin TQFP, 48-pin TQFP, and 64-pin TQFP Normal and Fine
Pitch packages.
64-TQFP 44-TQFP 48-TQFP
Pin Name Pin Name Pin Name
39 P0.0 24 P0.0 28 P0.0
40 P0.1 25 P0.1 29 P0.1
41 P0.2 26 P0.2 30 P0.2
42 P0.3 27 P0.3 31 P0.3
43 P0.4 28 P0.4 32 P0.4
44 P0.5 29 P0.5 33 P0.5
45 P0.6 30 P0.6 34 P0.6
46 P0.7 31 P0.7 35 P0.7
47 XRES 32 XRES 36 XRES
48 VCCD 33 VCCD 37 VCCD
34 VDDD
49 VSSD 38 VSSD
50 VDDD 39 VDDD
51 P5.0
52 P5.1
53 P5.2
54 P5.3
55 P5.5
56 VDDA 35 VDDA 40 VDDA
57 VSSA 36 VSSA 41 VSSA
58 P1.0 37 P1.0 42 P1.0
59 P1.1 38 P1.1 43 P1.1
60 P1.2 39 P1.2 44 P1.2
61 P1.3 40 P1.3 45 P1.3
62 P1.4 41 P1.4 46 P1.4
63 P1.5 42 P1.5 47 P1.5
64 P1.6 43 P1.6 48 P1.6
1P1.7 44 P1.7 1P1.7
1VSSD
2P2.0 2P2.0 2P2.0
3P2.1 3P2.1 3P2.1
4P2.2 4P2.2 4P2.2
5P2.3 5P2.3 5P2.3
6P2.4 6P2.4 6P2.4
7P2.5 7P2.5 7P2.5
8P2.6 8P2.6 8P2.6
9P2.7 9P2.7 9P2.7
10 VSSD
11 NC
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 11 of 44
Descriptions of the Power pins are as follows:
VDDD: Power supply for the digital section.
VDDA: Power supply for the analog section.
VSSD, VSSA: Ground pins for the digital and analog sections respectively.
VCCD: Regulated digital supply (1.8 V ±5%)
VDD: Power supply to all sections of the chip
VSS: Ground for all sections of the chip
GPIOs by package:
12 P6.0 10 P6.0
13 P6.1
14 P6.2
15 P6.4
16 P6.5
17 VSSD 10 VSSD
11 NC
18 P3.0 11 P3.0 12 P3.0
19 P3.1 12 P3.1 13 P3.1
20 P3.2 13 P3.2 14 P3.2
15 NC
21 P3.3 14 P3.3 16 P3.3
22 P3.4 15 P3.4 17 P3.4
23 P3.5 16 P3.5 18 P3.5
24 P3.6 17 P3.6 19 P3.6
25 P3.7 18 P3.7 20 P3.7
26 VDDD 19 VDDD 21 VDDD
27 P4.0 20 P4.0 22 P4.0
28 P4.1 21 P4.1 23 P4.1
29 P4.2 22 P4.2 24 P4.2
30 P4.3 23 P4.3 25 P4.3
31 P4.4
32 P4.5
33 P4.6
34 P4.7
35 P5.6
36 P5.7
37 P7.0 26 P7.0
38 P7.1 27 P7.1
64 TQFP 44 TQFP 48 TQFP
Number 54 37 38
64-TQFP 44-TQFP 48-TQFP
Pin Name Pin Name Pin Name
Document Number: 002-19966 Rev. *H Page 12 of 44
Alternate Pin Functions
Each Port pin has can be assigned to one of multiple functions; it can, for example, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin
assignments are shown in the following table.
Port/Pin Analog Smart I/O ACT #0 ACT #1 ACT #3 DS #2 DS #3
P0.0 lpcomp.in_p[0] tcpwm.tr_in[0] scb[2].uart_cts:0 scb[2].i2c_scl:0 scb[0].spi_select1:0
P0.1 lpcomp.in_n[0] tcpwm.tr_in[1] scb[2].uart_rts:0 scb[2].i2c_sda:0 scb[0].spi_select2:0
P0.2 lpcomp.in_p[1] scb[0].spi_select3:0
P0.3 lpcomp.in_n[1] scb[2].spi_select0:1
P0.4 wco.wco_in scb[1].uart_rx:0 scb[2].uart_rx:0 scb[1].i2c_scl:0 scb[1].spi_mosi:1
P0.5 wco.wco_out scb[1].uart_tx:0 scb[2].uart_tx:0 scb[1].i2c_sda:0 scb[1].spi_miso:1
P0.6 exco.eco_in srss.ext_clk:0 scb[1].uart_cts:0 scb[2].uart_tx:1 scb[1].spi_clk:1
P0.7 exco.eco_out tcpwm.line[0]:3 scb[1].uart_rts:0 scb[1].spi_select0:1
P5.0 tcpwm.line[4]:2 scb[2].uart_rx:1 scb[2].i2c_scl:1 scb[2].spi_mosi:0
P5.1 tcpwm.line_compl[4]:2 scb[2].uart_tx:2 scb[2].i2c_sda:1 scb[2].spi_miso:0
P5.2 tcpwm.line[5]:2 scb[2].uart_cts:1 lpcomp.comp[0]:2 scb[2].spi_clk:0
P5.3 tcpwm.line_compl[5]:2 scb[2].uart_rts:1 lpcomp.comp[1]:0 scb[2].spi_select0:0
P5.4 tcpwm.line[6]:2 scb[2].spi_select1:0
P5.5 tcpwm.line_compl[6]:2 scb[2].spi_select2:0
P1.0 ctb0_oa0+ SmartIo[2].io[0] tcpwm.line[2]:1 scb[0].uart_rx:1 scb[0].i2c_scl:0 scb[0].spi_mosi:1
P1.1 ctb0_oa0- SmartIo[2].io[1] tcpwm.line_compl[2]:1 scb[0].uart_tx:1 scb[0].i2c_sda:0 scb[0].spi_miso:1
P1.2 ctb0_oa0_out SmartIo[2].io[2] tcpwm.line[3]:1 scb[0].uart_cts:1 tcpwm.tr_in[2] scb[2].i2c_scl:2 scb[0].spi_clk:1
P1.3 ctb0_oa1_out SmartIo[2].io[3] tcpwm.line_compl[3]:1 scb[0].uart_rts:1 tcpwm.tr_in[3] scb[2].i2c_sda:2 scb[0].spi_select0:1
P1.4 ctb0_oa1- SmartIo[2].io[4] tcpwm.line[6]:1 scb[3].i2c_scl:0 scb[0].spi_select1:1
P1.5 ctb0_oa1+ SmartIo[2].io[5] tcpwm.line_compl[6]:1 scb[3].i2c_sda:0 scb[0].spi_select2:1
P1.6 ctb0_oa0+ SmartIo[2].io[6] tcpwm.line[7]:1 scb[0].spi_select3:1
P1.7 ctb0_oa1+
sar_ext_vref0
sar_ext_vref1
SmartIo[2].io[7] tcpwm.line_compl[7]:1 scb[2].spi_clk:1
P2.0 sarmux[0] SmartIo[0].io[0] tcpwm.line[4]:0 csd.comp tcpwm.tr_in[4] scb[1].i2c_scl:1 scb[1].spi_mosi:2
P2.1 sarmux[1] SmartIo[0].io[1] tcpwm.line_compl[4]:0 tcpwm.tr_in[5] scb[1].i2c_sda:1 scb[1].spi_miso:2
P2.2 sarmux[2] SmartIo[0].io[2] tcpwm.line[5]:1 scb[1].spi_clk:2
P2.3 sarmux[3] SmartIo[0].io[3] tcpwm.line_compl[5]:1 scb[1].spi_select0:2
Document Number: 002-19966 Rev. *H Page 13 of 44
P2.4 sarmux[4] SmartIo[0].io[4] tcpwm.line[0]:1 scb[3].uart_rx:1 scb[1].spi_select1:1
P2.5 sarmux[5] SmartIo[0].io[5] tcpwm.line_compl[0]:1 scb[3].uart_tx:1 scb[1].spi_select2:1
P2.6 sarmux[6] SmartIo[0].io[6] tcpwm.line[1]:1 scb[3].uart_cts:1 scb[1].spi_select3:1
P2.7 sarmux[7] SmartIo[0].io[7] tcpwm.line_compl[1]:1 scb[3].uart_rts:1 lpcomp.comp[0]:0 scb[2].spi_mosi:1
P6.0 tcpwm.line[4]:1 scb[3].uart_rx:0 can.can_tx_enb_n:0 scb[3].i2c_scl:1 scb[3].spi_mosi:0
P6.1 tcpwm.line_compl[4]:1 scb[3].uart_tx:0 can.can_rx:0 scb[3].i2c_sda:1 scb[3].spi_miso:0
P6.2 tcpwm.line[5]:0 scb[3].uart_cts:0 can.can_tx:0 scb[3].spi_clk:0
P6.3 tcpwm.line_compl[5]:0 scb[3].uart_rts:0 scb[3].spi_select0:0
P6.4 tcpwm.line[6]:0 scb[4].i2c_scl scb[3].spi_select1:0
P6.5 tcpwm.line_compl[6]:0 scb[4].i2c_sda scb[3].spi_select2:0
P3.0 SmartIo[1].io[0] tcpwm.line[0]:0 scb[1].uart_rx:1 scb[1].i2c_scl:2 scb[1].spi_mosi:0
P3.1 SmartIo[1].io[1] tcpwm.line_compl[0]:0 scb[1].uart_tx:1 scb[1].i2c_sda:2 scb[1].spi_miso:0
P3.2 SmartIo[1].io[2] tcpwm.line[1]:0 scb[1].uart_cts:1 cpuss.swd_data scb[1].spi_clk:0
P3.3 SmartIo[1].io[3] tcpwm.line_compl[1]:0 scb[1].uart_rts:1 cpuss.swd_clk scb[1].spi_select0:0
P3.4 SmartIo[1].io[4] tcpwm.line[2]:0 tcpwm.tr_in[6] scb[1].spi_select1:0
P3.5 SmartIo[1].io[5] tcpwm.line_compl[2]:0 scb[1].spi_select2:0
P3.6 SmartIo[1].io[6] tcpwm.line[3]:0 scb[4].spi_select3 scb[1].spi_select3:0
P3.7 SmartIo[1].io[7] tcpwm.line_compl[3]:0 lpcomp.comp[1]:1 scb[2].spi_miso:1
P4.0 csd.vref_ext scb[0].uart_rx:0 can.can_rx:1 scb[0].i2c_scl:1 scb[0].spi_mosi:0
P4.1 csd.cshield scb[0].uart_tx:0 can.can_tx:1 scb[0].i2c_sda:1 scb[0].spi_miso:0
P4.2 csd.cmod scb[0].uart_cts:0 can.can_tx_enb_n:1 lpcomp.comp[0]:1 scb[0].spi_clk:0
P4.3 csd.csh_tank scb[0].uart_rts:0 lpcomp.comp[1]:2 scb[0].spi_select0:0
P4.4 scb[4].uart_rx scb[4].spi_mosi scb[0].spi_select1:2
P4.5 scb[4].uart_tx scb[4].spi_miso scb[0].spi_select2:2
P4.6 scb[4].uart_cts scb[4].spi_clk scb[0].spi_select3:2
P4.7 scb[4].uart_rts scb[4].spi_select0
P5.6 tcpwm.line[7]:0 scb[4].spi_select1 scb[2].spi_select3:0
P5.7 tcpwm.line_compl[7]:0 scb[4].spi_select2
P7.0 tcpwm.line[0]:2 scb[3].uart_rx:2 scb[3].i2c_scl:2 scb[3].spi_mosi:1
P7.1 tcpwm.line_compl[0]:2 scb[3].uart_tx:2 scb[3].i2c_sda:2 scb[3].spi_miso:1
P7.2 tcpwm.line[1]:2 scb[3].uart_cts:2 scb[3].spi_clk:1
Port/Pin Analog Smart I/O ACT #0 ACT #1 ACT #3 DS #2 DS #3
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 14 of 44
Power
The following power system diagram shows the set of power
supply pins as implemented for the PSoC 4100S Plus. The
system has one regulator in Active mode for the digital circuitry.
There is no analog regulator; the analog circuits run directly from
the VDD input.
Figure 5. Power Supply Connections
There are two distinct modes of operation. In Mode 1, the supply
voltage range is 1.8 V to 5.5 V (unregulated externally; internal
regulator operational). In Mode 2, the supply range is1.8 V ±5%
(externally regulated; 1.71 to 1.89, internal regulator bypassed).
Mode 1: 1.8 V to 5.5 V External Supply
In this mode, PSoC 4100S Plus is powered by an external power
supply that can be anywhere in the range of 1.8 to 5.5 V. This
range is also designed for battery-powered operation. For
example, the chip can be powered from a battery system that
starts at 3.5 V and works down to 1.8 V. In this mode, the internal
regulator of PSoC 4100S Plus supplies the internal logic and its
output is connected to the VCCD pin. The VCCD pin must be
bypassed to ground via an external capacitor (0.1 µF; X5R
ceramic or better) and must not be connected to anything else.
Mode 2: 1.8 V ±5% External Supply
In this mode, PSoC 4100S Plus is powered by an external power
supply that must be within the range of 1.71 to 1.89 V; note that
this range needs to include the power supply ripple too. In this
mode, the VDD and VCCD pins are shorted together and
bypassed. The internal regulator can be disabled in the firmware.
Bypass capacitors must be used from VDDD to ground. The
typical practice for systems in this frequency range is to use a
capacitor in the 1-µF range, in parallel with a smaller capacitor
(0.1 µF, for example). Note that these are simply rules of thumb
and that, for critical applications, the PCB layout, lead induc-
tance, and the bypass capacitor parasitic should be simulated to
design and obtain optimal bypassing.
An example of a bypass scheme is shown in the following
diagram.
Figure 6. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active
Analog
Domain
VDDA
VSSA
VDDA
1.8 Volt
Regulator
Digital
Domain
VDDD
VSSD
VDDD
VCCD
VDDD
VSS
1.8 V to 5.5 V
0.1 F
VCCD
0.1 F
Power supply bypass connections example
1F
1.8 V to 5.5 V
0.1 F1 F
VDDA
PSoC 4100S Plus
µF
µF
µF
µF
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 15 of 44
Electrical Specifications
Absolute Maximum Ratings
Device Level Specifications
All specifications are valid for –40 °C TA 105 °C and TJ 125 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V,
except where noted.
Note
1. Usage above the absolute maximum conditions listed in Ta bl e 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended
periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature
Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.
Table 1. Absolute Maximum Ratings[1]
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SID1 VDDD_ABS Digital supply relative to VSS –0.5 6
V
SID2 VCCD_ABS
Direct digital core voltage input relative
to VSS
–0.5 1.95
SID3 VGPIO_ABS GPIO voltage –0.5 VDD+0.5
SID4 IGPIO_ABS Maximum current per GPIO –25 25
mA
SID5 IGPIO_injection GPIO injection current, Max for VIH >
VDDD, and Min for VIL < VSS
–0.5 0.5 Current injected
per pin
BID44 ESD_HBM Electrostatic discharge human body
model 2200
V
BID45 ESD_CDM Electrostatic discharge charged device
model 500
BID46 LU Pin current for latch-up –140 140 mA
Table 2. DC Specifications
Typical values measured at VDD = 3.3 V and 25 °C.
Spec ID# Parameter Description Min Typ Max Units
Details/
Conditions
SID53 VDD Power supply input voltage 1.8 5.5
V
Internally
regulated supply
SID255 VDD
Power supply input voltage (VCCD =
VDDD = VDDA)1.71 1.89
Internally
unregulated
supply
SID54 VCCD Output voltage (for core logic) 1.8
SID55 CEFC External regulator voltage bypass 0.1
µF
X5R ceramic or
better
SID56 CEXC Power supply bypass capacitor 1 X5R ceramic or
better
Active Mode, VDD = 1.8 V to 5.5 V. Typical values measured at VDD = 3.3 V and 25 °C.
SID10 IDD5 Execute from flash; CPU at 6 MHz 1.8 2.4
mASID16 IDD8 Execute from flash; CPU at 24 MHz 3.0 4.6
SID19 IDD11 Execute from flash; CPU at 48 MHz 5.4 7.1
Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)
SID22 IDD17 I2C wakeup WDT, and Comparators on 1.1 1.8 mA 6 MHZ
SID25 IDD20 I2C wakeup, WDT, and Comparators on 1.5 2.1 12 MHZ
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 16 of 44
Sleep Mode, VDDD = 1.71 V to 1.89 V (Regulator bypassed)
SID28 IDD23 I2C wakeup, WDT, and Comparators on 1.1 1.8 mA 6 MHZ
SID28A IDD23A I2C wakeup, WDT, and Comparators on 1.5 2.1 mA 12 MHZ
Deep Sleep Mode, VDD = 1.8 V to 3.6 V (Regulator on)
SID30 IDD25 I2C wakeup and WDT on; T =40 °C to
60 °C
–2.540µA T = –40 °C to
60 °C
SID31 IDD26 I2C wakeup and WDT on 2.5 125 µA Max is at 3.6 V
and 85 °C
Deep Sleep Mode, VDD = 3.6 V to 5.5 V (Regulator on)
SID33 IDD28
I2C wakeup and WDT on; T =40 °C to
60 °C 2.5 40 µAT = –40 °C to
60 °C
SID34 IDD29 I2C wakeup and WDT on 2.5 125 µAMax is at 5.5 V
and 85 °C
Deep Sleep Mode, VDD = VCCD = 1.71 V to 1.89 V (Regulator bypassed)
SID36 IDD31
I2C wakeup and WDT on; T =40 °C to
60 °C 2.5 60 µAT = –40 °C to
60 °C
SID37 IDD32 I2C wakeup and WDT on 2.5 180 µAMax is at 1.89 V
and 85 °C
XRES Current
SID307 IDD_XR Supply current while XRES asserted 2 5 mA
Table 2. DC Specifications (continued)
Typical values measured at VDD = 3.3 V and 25 °C.
Spec ID# Parameter Description Min Typ Max Units
Details/
Conditions
Note
2. Guaranteed by characterization.
Table 3. AC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SID48 FCPU CPU frequency DC 48 MHz 1.71 VDD 5.5
SID49[2] TSLEEP Wakeup from Sleep mode 0 µs
SID50[2] TDEEPSLEEP Wakeup from Deep Sleep mode 35
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 17 of 44
GPIO
Table 4. GPIO DC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SID57 VIH[3] Input voltage high threshold 0.7 VDDD ––
V
CMOS Input
SID58 VIL Input voltage low threshold 0.3
VDDD CMOS Input
SID241 VIH[3] LVTTL input, VDDD < 2.7 V 0.7 VDDD ––
SID242 VIL LVTTL input, VDDD < 2.7 V 0.3
VDDD
SID243 VIH[3] LVTTL input, VDDD 2.7 V 2.0
SID244 VIL LVTTL input, VDDD 2.7 V 0.8
SID59 VOH Output voltage high level VDDD –0.6 IOH = 4 mA at 3 V VDDD
SID60 VOH Output voltage high level VDDD –0.5 IOH = 1 mA at 1.8 V
VDDD
SID61 VOL Output voltage low level 0.6 IOL = 4 mA at 1.8 V
VDDD
SID62 VOL Output voltage low level 0.6 IOL = 10 mA at 3 V VDDD
SID62A VOL Output voltage low level 0.4 IOL = 3 mA at 3 V VDDD
SID63 RPULLUP Pull-up resistor 3.5 5.6 8.5
SID64 RPULLDOWN Pull-down resistor 3.5 5.6 8.5
SID65 IIL
Input leakage current (absolute
value) 2 nA 25 °C, VDDD = 3.0 V
SID66 CIN Input capacitance 7 pF
SID67[4] VHYSTTL Input hysteresis LVTTL 25 40
mV
VDDD 2.7 V
SID68[4] VHYSCMOS Input hysteresis CMOS 0.05 × VDDD –– V
DD < 4.5 V
SID68A[4] VHYSCMOS5V5 Input hysteresis CMOS 200 VDD > 4.5 V
SID69[4] IDIODE
Current through protection diode to
VDD/VSS
100 µA–
SID69A[4] ITOT_GPIO
Maximum total source or sink chip
current 200 mA
Notes
3. VIH must not exceed VDDD + 0.2 V.
4. Guaranteed by characterization.
Table 5. GPIO AC Specifications
(Guaranteed by Characterization)
Spec ID# Parameter Description Min Typ Max Units
Details/
Conditions
SID70 TRISEF Rise time in fast strong mode 2 12
ns
3.3 V VDDD, Cload =
25 pF
SID71 TFALLF Fall time in fast strong mode 2 12 3.3 V VDDD, Cload =
25 pF
SID72 TRISES Rise time in slow strong mode 10 60 3.3 V VDDD, Cload =
25 pF
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 18 of 44
XRES
SID73 TFALLS Fall time in slow strong mode 10 60 3.3 V VDDD, Cload =
25 pF
SID74 FGPIOUT1 GPIO FOUT; 3.3 V VDDD 5.5 V
Fast strong mode ––33
MHz
90/10%, 25 pF load,
60/40 duty cycle
SID75 FGPIOUT2 GPIO FOUT; 1.71 VVDDD3.3 V
Fast strong mode ––16.7 90/10%, 25 pF load,
60/40 duty cycle
SID76 FGPIOUT3 GPIO FOUT; 3.3 V VDDD 5.5 V
Slow strong mode –– 7 90/10%, 25 pF load,
60/40 duty cycle
SID245 FGPIOUT4 GPIO FOUT; 1.71 V VDDD 3.3 V
Slow strong mode. ––3.5 90/10%, 25 pF load,
60/40 duty cycle
SID246 FGPIOIN GPIO input operating frequency;
1.71 V VDDD 5.5 V 48 90/10% VIO
Table 5. GPIO AC Specifications (continued)
(Guaranteed by Characterization)
Spec ID# Parameter Description Min Typ Max Units
Details/
Conditions
Note
5. Guaranteed by characterization.
Table 6. XRES DC Specifications
Spec ID# Parameter Description Min Typ Max Units
Details/
Conditions
SID77 VIH Input voltage high threshold 0.7 × VDDD ––
V CMOS Input
SID78 VIL Input voltage low threshold 0.3 VDDD
SID79 RPULLUP Pull-up resistor 60
SID80 CIN Input capacitance 7 pF
SID81[5] VHYSXRES Input voltage hysteresis 100 mV Typical hysteresis is
200 mV for VDD > 4.5 V
SID82 IDIODE
Current through protection diode
to VDD/VSS
––100µA
Table 7. XRES AC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SID83[5] TRESETWIDTH Reset pulse width 1 µs
BID194[5] TRESETWAKE Wake-up time from reset release 2.7 ms
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 19 of 44
Analog Peripherals
CTBm Opamp
Table 8. CTBm Opamp Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
IDD Opamp block current, External load
SID269 IDD_HI power=hi 1100 1850
µA
SID270 IDD_MED power=med 550 950
SID271 IDD_LOW power=lo 150 350
GBW Load = 20 pF, 0.1 mA
VDDA = 2.7 V
SID272 GBW_HI power=hi 6
MHz
Input and output are
0.2 V to VDDA-0.2 V
SID273 GBW_MED power=med 3 Input and output are
0.2 V to VDDA-0.2 V
SID274 GBW_LO power=lo 1 Input and output are
0.2 V to VDDA-0.2 V
IOUT_MAX VDDA = 2.7 V, 500 mV from rail
SID275 IOUT_MAX_HI power=hi 10
mA
Output is 0.5 V to VDDA
-0.5 V
SID276 IOUT_MAX_MID power=mid 10 Output is 0.5 V to VDDA
-0.5 V
SID277 IOUT_MAX_LO power=lo 5 Output is 0.5 V to VDDA
-0.5 V
IOUT VDDA = 1.71 V, 500 mV from rail
SID278 IOUT_MAX_HI power=hi 4
mA
Output is 0.5 V to VDDA
-0.5 V
SID279 IOUT_MAX_MID power=mid 4–– Output is 0.5 V to
VDDA-0.5 V
SID280 IOUT_MAX_LO power=lo 2Output is 0.5 V to
VDDA-0.5 V
IDD_Int Opamp block current Internal Load
SID269_I IDD_HI_Int power=hi 1500 1700
µA
SID270_I IDD_MED_Int power=med 700 900
SID271_I
IDD_LOW_Int power=lo ––
GBW VDDA = 2.7 V ––
SID272_I GBW_HI_Int power=hi 8 ––MHz Output is 0.25 V to
VDDA-0.25 V
General opamp specs for both
internal and external modes
SID281 VIN Charge-pump on, VDDA = 2.7 V –0.05 VDDA-0
.2 V
SID282 VCM Charge-pump on, VDDA = 2.7 V –0.05 VDDA-0
.2
VOUT VDDA = 2.7 V
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 20 of 44
SID283 VOUT_1 power=hi, Iload=10 mA 0.5 VDDA
-0.5
V
SID284 VOUT_2 power=hi, Iload=1 mA 0.2 VDDA
-0.2
SID285 VOUT_3 power=med, Iload=1 mA 0.2 VDDA
-0.2
SID286 VOUT_4 power=lo, Iload=0.1 mA 0.2 VDDA
-0.2
SID288 VOS_TR Offset voltage, trimmed –1.0 0.5 1.0
mV
High mode, input 0 V to
VDDA-0.2 V
SID288A VOS_TR Offset voltage, trimmed 1Medium mode, input
0 V to VDDA-0.2 V
SID288B VOS_TR Offset voltage, trimmed 2Low mode, input 0 V to
VDDA-0.2 V
SID290 VOS_DR_TR Offset voltage drift, trimmed –10 310 µV/°C High mode
SID290A VOS_DR_TR Offset voltage drift, trimmed 10
µV/°C Medium mode
SID290B VOS_DR_TR Offset voltage drift, trimmed 10 Low mode
SID291 CMRR DC 70 80
dB
Input is 0 V to
VDDA-0.2 V, Output is
0.2 V to VDDA-0.2 V
SID292 PSRR At 1 kHz, 10-mV ripple 70 85
VDDD = 3.6 V,
high-power mode, input
is 0.2 V to VDDA-0.2 V
Noise
SID294 VN2 Input-referred, 1 kHz, power = Hi 72
nV/rtHz
Input and output are at
0.2 V to VDDA-0.2 V
SID295 VN3 Input-referred, 10 kHz, power = Hi 28 Input and output are at
0.2 V to VDDA-0.2 V
SID296 VN4 Input-referred, 100 kHz, power = Hi 15 Input and output are at
0.2 V to VDDA-0.2 V
SID297 CLOAD Stable up to max. load. Performance
specs at 50 pF. ––
125 pF
SID298 SLEW_RATE Cload = 50 pF, Power = High,
VDDA = 2.7 V 6––V/µs
SID299 T_OP_WAKE From disable to enable, no external
RC dominating ––25 µs
SID299A OL_GAIN Open Loop Gain 90 dB
COMP_MODE Comparator mode; 50 mV drive,
Trise=Tfall (approx.)
Table 8. CTBm Opamp Specifications (continued)
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 21 of 44
SID300 TPD1 Response time; power=hi 150
ns
Input is 0.2 V to
VDDA-0.2 V
SID301 TPD2 Response time; power=med 500 Input is 0.2 V to
VDDA-0.2 V
SID302 TPD3 Response time; power=lo 2500 Input is 0.2 V to
VDDA-0.2 V
SID303 VHYST_OP Hysteresis 10 mV
SID304 WUP_CTB Wake-up time from Enabled to
Usable ––25 µs
Deep Sleep
Mode
Mode 2 is lowest current range.
Mode 1 has higher GBW.
SID_DS_1 IDD_HI_M1 Mode 1, High current 1400
µA
25 °C
SID_DS_2 IDD_MED_M1 Mode 1, Medium current 700 25 °C
SID_DS_3 IDD_LOW_M1 Mode 1, Low current 200 25 °C
SID_DS_4 IDD_HI_M2 Mode 2, High current 120 25 °C
SID_DS_5 IDD_MED_M2 Mode 2, Medium current 60 25 °C
SID_DS_6 IDD_LOW_M2 Mode 2, Low current 15 25 °C
SID_DS_7 GBW_HI_M1 Mode 1, High current 4
MHz
20-pF load, no DC load
0.2 V to VDDA-0.2 V
SID_DS_8 GBW_MED_M1 Mode 1, Medium current 220-pF load, no DC load
0.2 V to VDDA-0.2 V
SID_DS_9 GBW_LOW_M1 Mode 1, Low current 0.5 20-pF load, no DC load
0.2 V to VDDA-0.2 V
SID_DS_10 GBW_HI_M2 Mode 2, High current 0.5 20-pF load, no DC load
0.2 V to VDDA-0.2 V
SID_DS_11 GBW_MED_M2 Mode 2, Medium current 0.2 20-pF load, no DC load
0.2 V to VDDA-0.2 V
SID_DS_12 GBW_Low_M2 Mode 2, Low current 0.1 20-pF load, no DC load
0.2 V to VDDA-0.2 V
SID_DS_13 VOS_HI_M1 Mode 1, High current 5
mV
With trim 25 °C, 0.2 V to
VDDA-0.2 V
SID_DS_14 VOS_MED_M1 Mode 1, Medium current 5With trim 25 °C, 0.2 V to
VDDA-0.2 V
SID_DS_15 VOS_LOW_M1 Mode 1, Low current 5With trim 25 °C, 0.2 V to
VDDA-0.2 V
SID_DS_16 VOS_HI_M2 Mode 2, High current 5With trim 25 °C, 0.2V to
VDDA-0.2 V
SID_DS_17 VOS_MED_M2 Mode 2, Medium current 5With trim 25 °C, 0.2 V to
VDDA-0.2 V
SID_DS_18 VOS_LOW_M2 Mode 2, Low current 5With trim 25 °C, 0.2 V to
VDDA-0.2 V
Table 8. CTBm Opamp Specifications (continued)
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 22 of 44
Comparator
SID_DS_19 IOUT_HI_M1 Mode 1, High current 10
mA
Output is 0.5 V to
VDDA-0.5 V
SID_DS_20 IOUT_MED_M1 Mode 1, Medium current 10 Output is 0.5 V to
VDDA-0.5 V
SID_DS_21 IOUT_LOW_M1 Mode 1, Low current 4Output is 0.5 V to
VDDA-0.5 V
SID_DS_22 IOUT_HI_M2 Mode 2, High current 1
SID_DS_23 IOUT_MED_M2 Mode 2, Medium current 1
SID_DS_24 IOUT_LOW_M2 Mode 2, Low current 0.5
Table 8. CTBm Opamp Specifications (continued)
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
Note
6. Guaranteed by characterization.
Table 9. Comparator DC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SID84 VOFFSET1 Input offset voltage, Factory trim –±10
mV
SID85 VOFFSET2 Input offset voltage, Custom trim –±4
SID86 VHYST Hysteresis when enabled –10 35
SID87 VICM1
Input common mode voltage in normal
mode 0–V
DDD-0.1
V
Modes 1 and 2
SID247 VICM2
Input common mode voltage in low
power mode 0–V
DDD
SID247A VICM3
Input common mode voltage in ultra
low power mode 0–V
DDD-1.15 VDDD ≥ 2.2 V at –40 °C
SID88 CMRR Common mode rejection ratio 50 dB VDDD ≥ 2.7V
SID88A CMRR Common mode rejection ratio 42 –V
DDD ≤ 2.7V
SID89 ICMP1 Block current, normal mode –400
µA
SID248 ICMP2 Block current, low power mode –100
SID259 ICMP3 Block current in ultra low-power mode –6 VDDD ≥ 2.2 V at –40 °C
SID90 ZCMP DC Input impedance of comparator 35 –MΩ
Table 10. Comparator AC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SID91 TRESP1 Response time, normal mode, 50 mV
overdrive 38 110
ns
SID258 TRESP2 Response time, low power mode, 50 mV
overdrive 70 200
SID92 TRESP3 Response time, ultra-low power mode,
200 mV overdrive 2.3 15 µs VDDD ≥ 2.2 V at –40 °C
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 23 of 44
Temperature Sensor
SAR ADC
Table 11. Temperature Sensor Specifications
Spec ID# Parameter Description Min Typ Max Units Details /
Conditions
SID93 TSENSACC Temperature sensor accuracy –5 ±1 5 °C –40 to +85 °C
Table 12. SAR ADC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SAR ADC DC Specifications
SID94 A_RES Resolution 12 bits
SID95 A_CHNLS_S Number of channels - single ended 16
SID96 A-CHNKS_D Number of channels - differential 4 Diff inputs use
neighboring I/O
SID97 A-MONO Monotonicity Yes
SID98 A_GAINERR Gain error ±0.1 % With external
reference
SID99 A_OFFSET Input offset voltage 2 mV Measured with
1-V reference
SID100 A_ISAR Current consumption 1 mA
SID101 A_VINS Input voltage range - single ended VSS –V
DDA V
SID102 A_VIND Input voltage range - differential VSS –V
DDA V
SID103 A_INRES Input resistance 2.2
SID104 A_INCAP Input capacitance 10 pF
SID260 VREFSAR Trimmed internal reference to SAR 1.188 1.2 1.212 V
SAR ADC AC Specifications
SID106 A_PSRR Power supply rejection ratio 70 dB
SID107 A_CMRR Common mode rejection ratio 66 dB Measured at 1 V
SID108 A_SAMP Sample rate 1 Msps
SID109 A_SNR Signal-to-noise and distortion ratio (SINAD) 65 dB FIN = 10 kHz
SID110 A_BW Input bandwidth without aliasing A_samp/2 kHz
SID111 A_INL Integral non linearity. VDD = 1.71 to 5.5, 1 Msps –1.7 2 LSB VREF = 1 to VDD
SID111A A_INL Integral non linearity. VDDD = 1.71 to 3.6, 1 Msps –1.5 1.7 LSB VREF = 1.71 to
VDD
SID111B A_INL Integral non linearity. VDD = 1.71 to 5.5, 500 ksps –1.5 1.7 LSB VREF = 1 to VDD
SID112 A_DNL Differential non linearity. VDD = 1.71 to 5.5,
1 Msps
–1 2.2 LSB VREF = 1 to VDD
SID112A A_DNL Differential non linearity. VDD = 1.71 to 3.6,
1 Msps
–1 2LSBV
REF = 1.71 to
VDD
SID112B A_DNL Differential non linearity. VDD = 1.71 to 5.5,
500 ksps
–1 2.2 LSB VREF = 1 to VDD
SID113 A_THD Total harmonic distortion –65 dB Fin = 10 kHz
SID261 FSARINTREF SAR operating speed without external reference
bypass –– 100 ksps 12-bit resolution
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 24 of 44
CSD and IDAC
Table 13. CSD and IDAC Specifications
SPEC ID# Parameter Description Min Typ Max Units Details / Conditions
SYS.PER#3 VDD_RIPPLE Max allowed ripple on power supply,
DC to 10 MHz
±50 mV VDD > 2 V (with ripple),
25 °C TA, Sensitivity =
0.1 pF
SYS.PER#16 VDD_RIPPLE_1.8 Max allowed ripple on power supply,
DC to 10 MHz
±25 mV VDD > 1.75V (with ripple),
25 °C TA, Parasitic Capaci-
tance (CP) < 20 pF,
Sensitivity ≥ 0.4 pF
SID.CSD.BLK ICSD Maximum block current 4000 µA Maximum block current for
both IDACs in dynamic
(switching) mode including
comparators, buffer, and
reference generator
SID.CSD#15 VREF Voltage reference for CSD and
Comparator
0.6 1.2 VDDA - 0.6 VVDDA – 0.6 or 4.4,
whichever is lower
SID.CSD#15A VREF_EXT External Voltage reference for CSD
and Comparator
0.6 VDDA - 0.6 VVDDA – 0.6 or 4.4,
whichever is lower
SID.CSD#16 IDAC1IDD IDAC1 (7-bits) block current 1750 µA
SID.CSD#17 IDAC2IDD IDAC2 (7-bits) block current 1750 µA
SID308 VCSD Voltage range of operation 1.71 5.5 V1.8 V ±5% or 1.8 V to 5.5 V
SID308A VCOMPIDAC Voltage compliance range of IDAC 0.6 VDDA –0.6 VVDDA – 0.6 or 4.4,
whichever is lower
SID309 IDAC1DNL DNL –1 1 LSB
SID310 IDAC1INL INL –2 2 LSB INL is ±5.5 LSB for VDDA <
2V
SID311 IDAC2DNL DNL –1 1 LSB
SID312 IDAC2INL INL –2 2 LSB INL is ±5.5 LSB for VDDA <
2V
SID313 SNR Ratio of counts of finger to noise.
Guaranteed by characterization
5– Ratio Capacitance range of 5 to
35 pF, 0.1-pF sensitivity. All
use cases. VDDA > 2 V.
SID314 IDAC1CRT1 Output current of IDAC1 (7 bits) in
low range
4.2 5.4 µA LSB = 37.5-nA typ
SID314A IDAC1CRT2 Output current of IDAC1(7 bits) in
medium range
34 41 µA LSB = 300-nA typ
SID314B IDAC1CRT3 Output current of IDAC1(7 bits) in
high range
275 330 µA LSB = 2.4-µA typ
SID314C IDAC1CRT12 Output current of IDAC1 (7 bits) in
low range, 2X mode
8– 10.5µA LSB = 75-nA typ
SID314D IDAC1CRT22 Output current of IDAC1(7 bits) in
medium range, 2X mode
69 82 µA LSB = 600-nA typ.
SID314E IDAC1CRT32 Output current of IDAC1(7 bits) in
high range, 2X mode
540 660 µA LSB = 4.8-µA typ
SID315 IDAC2CRT1 Output current of IDAC2 (7 bits) in
low range
4.2 5.4 µA LSB = 37.5-nA typ
SID315A IDAC2CRT2 Output current of IDAC2 (7 bits) in
medium range
34 41 µA LSB = 300-nA typ
SID315B IDAC2CRT3 Output current of IDAC2 (7 bits) in
high range
275 330 µA LSB = 2.4-µA typ
SID315C IDAC2CRT12 Output current of IDAC2 (7 bits) in
low range, 2X mode
8– 10.5µA LSB = 75-nA typ
SID315D IDAC2CRT22 Output current of IDAC2(7 bits) in
medium range, 2X mode
69 82 µA LSB = 600-nA typ
SID315E IDAC2CRT32 Output current of IDAC2(7 bits) in
high range, 2X mode
540 660 µA LSB = 4.8-µA typ
SID315F IDAC3CRT13 Output current of IDAC in 8-bit mode
in low range
8– 10.5µA LSB = 37.5-nA typ
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 25 of 44
10-bit CapSense ADC
SID315G IDAC3CRT23 Output current of IDAC in 8-bit mode
in medium range
69 82 µA LSB = 300-nA typ
SID315H IDAC3CRT33 Output current of IDAC in 8-bit mode
in high range
540 660 µA LSB = 2.4-µA typ
SID320 IDACOFFSET All zeroes input 1 LSB Polarity set by Source or
Sink. Offset is 2 LSBs for
37.5 nA/LSB mode
SID321 IDACGAIN Full-scale error less offset ±10 %
SID322 IDACMISMATCH1 Mismatch between IDAC1 and
IDAC2 in Low mode
–– 9.2
LSB LSB = 37.5-nA typ
SID322A IDACMISMATCH2 Mismatch between IDAC1 and
IDAC2 in Medium mode
–– 5.6
LSB LSB = 300-nA typ
SID322B IDACMISMATCH3 Mismatch between IDAC1 and
IDAC2 in High mode
–– 6.8
LSB LSB = 2.4-µA typ
SID323 IDACSET8 Settling time to 0.5 LSB for 8-bit IDAC 5 µs Full-scale transition. No
external load
SID324 IDACSET7 Settling time to 0.5 LSB for 7-bit IDAC 5 µs Full-scale transition. No
external load
SID325 CMOD External modulator capacitor. 2.2 nF 5-V rating, X7R or NP0 cap
Table 13. CSD and IDAC Specifications (continued)
SPEC ID# Parameter Description Min Typ Max Units Details / Conditions
Table 14. 10-bit CapSense ADC Specifications
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
SIDA94 A_RES Resolution 10 bits Auto-zeroing is required
every millisecond
SIDA95 A_CHNLS_S Number of channels - single ended 16 Defined by AMUX Bus
SIDA97 A-MONO Monotonicity Yes
SIDA98 A_GAINERR Gain error ±3 % In VREF (2.4 V) mode
with VDDA bypass
capacitance of 10 µF
SIDA99 A_OFFSET Input offset voltage ±18 mV In VREF (2.4 V) mode
with VDDA bypass
capacitance of 10 µF
SIDA100 A_ISAR Current consumption 0.25 mA
SIDA101 A_VINS Input voltage range - single ended VSSA –V
DDA V
SIDA103 A_INRES Input resistance 2.2
SIDA104 A_INCAP Input capacitance 20 pF
SIDA106 A_PSRR Power supply rejection ratio 60 dB In VREF (2.4 V) mode
with VDDA bypass
capacitance of 10 µF
SIDA107 A_TACQ Sample acquisition time 1 µs
SIDA108 A_CONV8 Conversion time for 8-bit resolution at
conversion rate = Fhclk/(2^(N+2)).
Clock frequency = 48 MHz.
21.3 µs Does not include acqui-
sition time. Equivalent to
44.8 ksps including
acquisition time.
SIDA108A A_CONV10 Conversion time for 10-bit resolution at
conversion rate = Fhclk/(2^(N+2)).
Clock frequency = 48 MHz.
85.3 µs Does not include acqui-
sition time. Equivalent to
11.6 ksps including
acquisition time.
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 26 of 44
Digital Peripherals
Timer Counter Pulse-Width Modulator (TCPWM)
I2C
SIDA109 A_SND Signal-to-noise and Distortion ratio
(SINAD)
61 dB With 10-Hz input sine
wave, external 2.4-V
reference, VREF (2.4 V)
mode
SIDA110 A_BW Input bandwidth without aliasing 22.4 KHz 8-bit resolution
SIDA111 A_INL Integral Non Linearity. 1 ksps 2 LSB VREF = 2.4 V or greater
SIDA112 A_DNL Differential Non Linearity. 1 ksps 1 LSB
Table 14. 10-bit CapSense ADC Specifications (continued)
Spec ID# Parameter Description Min Typ Max Units Details/
Conditions
Table 15. TCPWM Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID.TCPWM.1 ITCPWM1 Block current consumption at 3 MHz 45
μA
All modes (TCPWM)
SID.TCPWM.2 ITCPWM2 Block current consumption at 12 MHz 155 All modes (TCPWM)
SID.TCPWM.2A ITCPWM3 Block current consumption at 48 MHz 650 All modes (TCPWM)
SID.TCPWM.3 TCPWMFREQ Operating frequency Fc MHz Fc max = CLK_SYS
Maximum = 48 MHz
SID.TCPWM.4 TPWMENEXT Input trigger pulse width 2/Fc
ns
For all trigger events[7]
SID.TCPWM.5 TPWMEXT Output trigger pulse widths 2/Fc
Minimum possible width
of Overflow, Underflow,
and CC (Counter equals
Compare value) outputs
SID.TCPWM.5A TCRES Resolution of counter 1/Fc Minimum time between
successive counts
SID.TCPWM.5B PWMRES PWM resolution 1/Fc Minimum pulse width of
PWM Output
SID.TCPWM.5C QRES Quadrature inputs resolution 1/Fc
Minimum pulse width
between Quadrature
phase inputs
Note
7. Guaranteed by characterization.
Table 16. Fixed I2C DC Specifications[7]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID149 II2C1 Block current consumption at 100 kHz 50
µA
SID150 II2C2 Block current consumption at 400 kHz 135
SID151 II2C3 Block current consumption at 1 Mbps 310
SID152 II2C4 I2C enabled in Deep Sleep mode 1
Table 17. Fixed I2C AC Specifications[7]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID153 FI2C1 Bit rate 1 Msps
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 27 of 44
SPI
UART
Note
8. Guaranteed by characterization.
Table 18. SPI DC Specifications[8]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID163 ISPI1 Block current consumption at 1 Mbps 360
µA
SID164 ISPI2 Block current consumption at 4 Mbps 560
SID165 ISPI3 Block current consumption at 8 Mbps 600
Table 19. SPI AC Specifications[8]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID166 FSPI SPI Operating frequency (Master; 6X
Oversampling) –– 8MHz
Fixed SPI Master Mode AC Specifications
SID167 TDMO MOSI Valid after SClock driving edge 15
ns
SID168 TDSI MISO Valid before SClock capturing
edge 20 Full clock, late MISO
sampling
SID169 THMO Previous MOSI data hold time 0 Referred to Slave capturing
edge
Fixed SPI Slave Mode AC Specifications
SID170 TDMI MOSI Valid before Sclock Capturing
edge 40
ns
SID171 TDSO MISO Valid after Sclock driving edge 42 +
3*Tcpu TCPU = 1/FCPU
SID171A TDSO_EXT MISO Valid after Sclock driving edge
in Ext. Clk mode ––48
SID172 THSO Previous MISO data hold time 0
SID172A TSSELSSCK SSEL Valid to first SCK Valid edge 100 ns
Table 20. UART DC Specifications[8]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID160 IUART1
Block current consumption at
100 Kbps 55 µA
SID161 IUART2
Block current consumption at
1000 Kbps ––312µA
Table 21. UART AC Specifications[8]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID162 FUART Bit rate 1 Mbps
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 28 of 44
LCD Direct Drive
Table 22. LCD Direct Drive DC Specifications[9]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID154 ILCDLOW Operating current in low power mode 5–µA
16 4 small segment disp.
at 50 Hz
SID155 CLCDCAP
LCD capacitance per
segment/common driver 500 5000 pF
SID156 LCDOFFSET Long-term segment offset 20 mV
SID157 ILCDOP1 LCD system operating current Vbias
= 5 V 2–
mA
32 4 segments at 50 Hz
25 °C
SID158 ILCDOP2
LCD system operating current Vbias
= 3.3 V 2– 32 4 segments at 50 Hz
25 °C
Table 23. LCD Direct Drive AC Specifications[9]
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID159 FLCD LCD frame rate 10 50 150 Hz
Note
9. Guaranteed by characterization.
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 29 of 44
Memory
System Resources
Power-on Reset (POR)
Table 24. Flash DC Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID173 VPE Erase and program voltage 1.71 5.5 V
Notes
10. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied
on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.
Make certain that these are not inadvertently activated.
11. Guaranteed by characterization.
Table 25. Flash AC Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID174 TROWWRITE[10] Row (block) write time (erase and
program) 20
ms
Row (block) = 256 bytes
SID175 TROWERASE[10] Row erase time 16
SID176 TROWPROGRAM[10] Row program time after erase 4
SID178 TBULKERASE[10] Bulk erase time (64 KB) 35
SID180[11] TDEVPROG[10] Total device program time 7 Seconds
SID181[11] FEND Flash endurance 100 K Cycles
SID182[11] FRET
Flash retention. TA 55 °C, 100 K
P/E cycles 20
Year s
SID182A[11] Flash retention. TA 85 °C, 10 K
P/E cycles 10
SID182B FRETQ Flash retention. TA 105 °C, 10K
P/E cycles, three years at TA
85 °C
10 years Guaranteed by charac-
terization.
SID256 TWS48 Number of Wait states at 48 MHz 2 CPU execution from
Flash
SID257 TWS24 Number of Wait states at 24 MHz 1 CPU execution from
Flash
Table 26. Power On Reset (PRES)
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID.CLK#6 SR_POWER_UP Power supply slew rate 1 67 V/ms At power-up
SID185[11] VRISEIPOR Rising trip voltage 0.80 1.5 V
SID186[11] VFALLIPOR Falling trip voltage 0.70 1.4
Table 27. Brown-out Detect (BOD) for VCCD
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID190[11] VFALLPPOR BOD trip voltage in active and
sleep modes
1.48 1.62 V
SID192[11] VFALLDPSLP BOD trip voltage in Deep Sleep 1.11 1.5
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 30 of 44
SWD Interface
Internal Main Oscillator
Internal Low-Speed Oscillator
Note
12. Guaranteed by design.
Table 28. SWD Interface Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID213 F_SWDCLK1 3.3 V VDD 5.5 V 14
MHz
SWDCLK 1/3 CPU
clock frequency
SID214 F_SWDCLK2 1.71 V VDD 3.3 V 7 SWDCLK 1/3 CPU
clock frequency
SID215[12] T_SWDI_SETUP T = 1/f SWDCLK 0.25*T
ns
SID216[12] T_SWDI_HOLD T = 1/f SWDCLK 0.25*T
SID217[12] T_SWDO_VALID T = 1/f SWDCLK 0.5*T
SID217A[12] T_SWDO_HOLD T = 1/f SWDCLK 1
Table 29. IMO DC Specifications
(Guaranteed by Design)
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID218 IIMO1 IMO operating current at 48 MHz 250 µA–
SID219 IIMO2 IMO operating current at 24 MHz 180 µA–
Table 30. IMO AC Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID223 FIMOTOL1
Frequency variation at 24, 32, and
48 MHz (trimmed) ––±2%
SID226 TSTARTIMO IMO startup time 7 µs
SID228 TJITRMSIMO2 RMS jitter at 24 MHz 145 ps
Table 31. ILO DC Specifications
(Guaranteed by Design)
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID231 IILO1 ILO operating current 0.3 1.05 µA
Table 32. ILO AC Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID234[12] TSTARTILO1 ILO startup time 2 ms
SID236[12] TILODUTY ILO duty cycle 40 50 60 %
SID237 FILOTRIM1 ILO frequency range 20 40 80 kHz
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 31 of 44
Watch Crystal Oscillator (WCO)
External Clock
External Crystal Oscillator and PLL
Table 35. External Crystal Oscillator (ECO) Specifications
System Clock
Table 33. WCO Specifications
Spec ID# Parameter Description Min Typ Max Units Details / Conditions
SID398 FWCO Crystal frequency 32.768 kHz
SID399 FTOL Frequency tolerance 50 250 ppm With 20-ppm crystal
SID400 ESR Equivalent series resistance 50 kΩ
SID401 PD Drive Level 1 µW
SID402 TSTART Startup time 500 ms
SID403 CL Crystal Load Capacitance 6 12.5 pF
SID404 C0 Crystal Shunt Capacitance 1.35 pF
SID405 IWCO1 Operating Current (high power mode) 8 uA
Table 34. External Clock Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID305[13] ExtClkFreq External clock input frequency 0 48 MHz
SID306[13] ExtClkDuty Duty cycle; measured at VDD/2 45 55 %
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID316[13] IECO1 External clock input frequency 1.5 mA
SID317[13] FECO Crystal frequency range 4 33 MHz
Table 36. PLL Specifications
Spec ID# Parameter Description Min Typ Max Units Details / Conditions
SID410 IDD_PLL_48 In = 3 MHz, Out = 48 MHz 530 610 uA
SID411 IDD_PLL_24 In = 3 MHz, Out = 24 MHz 300 405 uA
SID412 Fpllin PLL input frequency 1 48 MHz
SID413 Fpllint PLL intermediate frequency; prescaler out 1 3MHz
SID414 Fpllvco VCO output frequency before post-divide 22.5 104 MHz
SID415 Divvco
VCO Output post-divider range; PLL
output frequency is Fpplvco/Divvco 1 8
SID416 Plllocktime Lock time at startup ––
250 µs
SID417 Jperiod_1 Period jitter for VCO ≥ 67 MHz ––
150 ps Guaranteed by design
SID416A Jperiod_2 Period jitter for VCO ≤ 67 MHz ––
200 ps Guaranteed by design
Note
13. Guaranteed by characterization.
Table 37. Block Specs
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID262[13] TCLKSWITCH System clock source switching time 3 4 Periods
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 32 of 44
Smart I/O
CAN
Table 38. Smart I/O Pass-through Time (Delay in Bypass Mode)
Spec ID# Parameter Description Min Typ Max Units Details / Conditions
SID252 PRG_BYPASS Max delay added by Smart I/O in
bypass mode
––1.6 ns
Table 39. CAN Specifications
Spec ID Parameter Description Min Typ Max Units Details/Conditions
SID420 IDD_CAN Block current consumption ––
200 µA
SID421 CAN_bits CAN Bit rate ––1 Mbps Min 8-MHZ clock
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 33 of 44
Ordering Information
The marketing part numbers for the PSoC 4100S Plus devices are listed in the following table.
Category
MPN
Features Packages
Temperature Range (°C)
Max CPU Speed (MHz)
Flash (KB)
SRAM (KB)
Opamp (CTBm)
CSD
10-bit CSD ADC
12-bit SAR ADC
SAR ADC Sample Rate
LP Comparators
TCPWM Blocks
SCB Blocks
ECO
CAN Controller
Smart I/Os
GPIO
44-TQFP (0.8-mm pitch)
48-TQFP (0.5-mm pitch)
64-TQFP (0.5-mm pitch)
64-TQFP (0.8-mm pitch)
4126
CY8C4126AXI-S443 24 64 82011806 ksps 284024 37 –40 to 85
CY8C4126AZI-S445 24 64 82011806 ksps 285024 54 –40 to 85
CY8C4126AXI-S445 24 64 82011806 ksps 285024 54 ––––40 to 85
CY8C4126AZI-S455 24 64 82111806 ksps 285024 54 –40 to 85
CY8C4126AXI-S455 24 64 82111806 ksps 285024 54 ––––40 to 85
4146
CY8C4146AXI-S443 48 64 82011 1 Msps 284024 37 –40 to 85
CY8C4146AZI-S443 48 64 82011 1 Msps 284024 38 –40 to 85
CY8C4146AZI-S445 48 64 82011 1 Msps 285024 54 –40 to 85
CY8C4146AZQ-S445 48 64 82011 1 Msps 285024 54 –40 to 105
CY8C4146AXI-S445 48 64 82011 1 Msps 285024 54 ––––40 to 85
CY8C4146AXI-S453 48 64 82111 1 Msps 284024 37 –40 to 85
CY8C4146AZI-S453 48 64 82111 1 Msps 284024 38 –40 to 85
CY8C4146AZI-S455 48 64 82111 1 Msps 285024 54 –40 to 85
CY8C4146AZQ-S455 48 64 82111 1 Msps 285024 54 –40 to 105
CY8C4146AXI-S455 48 64 82111 1 Msps 285024 54 ––––40 to 85
CY8C4146AZI-S463 48 64 82011 1 Msps 284124 38 –40 to 85
4127
CY8C4127AXI-S443 24 128 16 2 0 1 1 806 ksps 284024 37 –40 to 85
CY8C4127AZI-S443 24 128 16 2 0 1 1 806 ksps 284024 38 –40 to 85
CY8C4127AZI-S445 24 128 16 2 0 1 1 806 ksps 285024 54 –40 to 85
CY8C4127AZQ-S445 24 128 16 2 0 1 1 806 ksps 285024 54 –40 to 105
CY8C4127AXI-S445 24 128 16 2 0 1 1 806 ksps 285024 54 ––––40 to 85
CY8C4127AXI-S453 24 128 16 2 1 1 1 806 ksps 284024 37 –40 to 85
CY8C4127AZI-S453 24 128 16 2 1 1 1 806 ksps 284024 38 –40 to 85
CY8C4127AZI-S455 24 128 16 2 1 1 1 806 ksps 285024 54 –40 to 85
CY8C4127AZQ-S455 24 128 16 2 1 1 1 806 ksps 285024 54 –40 to 105
CY8C4127AXI-S455 24 128 16 2 1 1 1 806 ksps 285024 54 ––––40 to 85
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 34 of 44
4147
CY8C4147AXI-S443 48 128 16 2 0 1 1 1 Msps 284024 37 –40 to 85
CY8C4147AZI-S443 48 128 16 2 0 1 1 1 Msps 284024 38 –40 to 85
CY8C4147AZI-S445 48 128 16 2 0 1 1 1 Msps 285024 54 –40 to 85
CY8C4147AZQ-S445 48 128 16 2 0 1 1 1 Msps 285024 54 –40 to 105
CY8C4147AXI-S445 48 128 16 2 0 1 1 1 Msps 285024 54 ––––40 to 85
CY8C4147AXI-S453 48 128 16 2 1 1 1 1 Msps 284024 37 –40 to 85
CY8C4147AZI-S453 48 128 16 2 1 1 1 1 Msps 284024 38 –40 to 85
CY8C4147AZI-S455 48 128 16 2 1 1 1 1 Msps 285024 54 –40 to 85
CY8C4147AZQ-S455 48 128 16 2 1 1 1 1 Msps 285024 54 –40 to 105
CY8C4147AXI-S455 48 128 16 2 1 1 1 1 Msps 285024 54 ––––40 to 85
CY8C4147AZI-S463 48 128 16 2 0 1 1 1 Msps 284124 38 –40 to 85
CY8C4147AZI-S465 48 128 16 2 0 1 1 1 Msps 285124 54 –40 to 85
CY8C4147AZQ-S465 48 128 16 2 0 1 1 1 Msps 285124 54 –40 to 105
CY8C4147AXI-S465 48 128 16 2 0 1 1 1 Msps 285124 54 –––-40 to 85
CY8C4147AZI-S475 48 128 16 2 1 1 1 1 Msps 285124 54 -40 to 85
CY8C4147AZQ-S475 48 128 16 2 1 1 1 1 Msps 285124 54 –40 to 105
CY8C4147AXI-S475 48 128 16 2 1 1 1 1 Msps 285124 54 –––-40 to 85
Category
MPN
Features Packages
Temperature Range (°C)
Max CPU Speed (MHz)
Flash (KB)
SRAM (KB)
Opamp (CTBm)
CSD
10-bit CSD ADC
12-bit SAR ADC
SAR ADC Sample Rate
LP Comparators
TCPWM Blocks
SCB Blocks
ECO
CAN Controller
Smart I/Os
GPIO
44-TQFP (0.8-mm pitch)
48-TQFP (0.5-mm pitch)
64-TQFP (0.5-mm pitch)
64-TQFP (0.8-mm pitch)
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 35 of 44
The nomenclature used in the preceding table is based on the following part numbering convention:
The following is an example of a part number:
Field Description Values Meaning
CY8C Cypress Prefix
4 Architecture 4 PSoC 4
A Family 1 4100 Family
B CPU Speed 2 24 MHz
448 MHz
C Flash Capacity 4 16 KB
532 KB
664 KB
7 128 KB
DE Package Code AX TQFP (0.8-mm pitch)
AZ TQFP (0.5-mm pitch)
LQ QFN
PV SSOP
FN CSP
F Temperature Range I Industrial
Q Extended Industrial
S Series Designator S PSoC 4 S-Series
M PSoC 4 M-Series
L PSoC 4 L-Series
BL PSoC 4 BLE-Series
XYZ Attributes Code 000-999 Code of feature set in the specific family
CY8C 4 A B C DE F XYZ
Cypress Prefix
Architecture
Family within Architecture
CPU Speed
Temperature Range
Package Code
Flash Capacity
Attributes Code
Example
4: PSoC 4
1: 4100 Family
4: 48 MHz
I : Industrial
AZ/AX:
TQFP
5: 32 KB
S
Series Designator
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 36 of 44
Packaging
The PSoC 4100S Plus will be offered in 44 TQFP, 48 TQFP, 64 TQFP Normal pitch, and 64 TQFP Fine Pitch packages.
Package dimensions and Cypress drawing numbers are in the following table.
Table 40. Package List
Spec ID# Package Description Package Dwg
BID20 64-pin TQFP 14 × 14 × 1.4-mm height with 0.8-mm pitch 51-85046
BID27 64-pin TQFP 10 × 10 × 1.6-mm height with 0.5-mm pitch 51-85051
BID34A 44-pin TQFP 10 × 10 × 1.4-mm height with 0.8-mm pitch 51-85064
BID70 48-pin TQFP 7 × 7 × 1.4-mm height with 0.5-mm pitch 51-85135
Table 41. Package Thermal Characteristics
Parameter Description Package Min Typ Max Units
TAOperating ambient temperature –40 25 105 °C
TJOperating junction temperature –40 125 °C
TJA Package θJA 44-pin TQFP 55.6 °C/Watt
TJC Package θJC 44-pin TQFP 14.4 °C/Watt
TJA Package θJA 64-pin TQFP (0.5-mm pitch) 46 °C/Watt
TJC Package θJC 64-pin TQFP (0.5-mm pitch) 10 °C/Watt
TJA Package θJA 64-pin TQFP (0.8-mm pitch) 36.8 °C/Watt
TJC Package θJC 64-pin TQFP (0.8-mm pitch) 9.4 °C/Watt
TJA Package θJA 48-pin TQFP (0.5-mm pitch) 39.4 °C/Watt
TJC Package θJC 48-pin TQFP (0.5-mm pitch) 9.3 °C/Watt
Table 42. Solder Reflow Peak Temperature
Package Maximum Peak
Temperature Maximum Time at Peak Temperature
All 260 °C 30 seconds
Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020
Package MSL
All MSL 3
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 37 of 44
Package Diagrams
Figure 7. 64-pin TQFP Package (0.8-mm Pitch) Outline
ș 1
ș
ș 2
L11.00 REF
L
c
0.45 0.60 0.75
0.20
NOM.MIN.
D1
R2
E1
E
0.08
D
2
A
A
1
A
1.35 1.40
SYMBOL MAX.
0.20
1.45
1.60
0.15
ș
b0.30 0.35 0.40
e0.80 TYP
DIMENSIONS
1
R0.08
L20.25 BSC
0.05
0.20
15.75 16.00 16.25
13.95 14.00 14.05
L30.20
ș1
11° 13°ș212°
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT
MOLD PROTRUSION/END FLASH SHALL
3. DIMENSIONS IN MILLIMETERS
BODY LENGTH DIMENSIONS ARE MAX PLASTIC
INCLUDE MOLD PROTRUSION/END FLASH
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY SIZE INCLUDING MOLD MISMATCH
15.75 16.00 16.25
13.95 14.00 14.05
51-85046 *H
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 38 of 44
Figure 8. 64-pin TQFP Package (0.5-mm Pitch) Outline
Figure 9. 44-Pin TQFP Package Outline
51-85051 *D
51-85064 *G
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 39 of 44
Figure 10. 48-Pin 7 × 7 × 1.4 mm TQFP Package Outline
51-85135 *C
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 40 of 44
Acronyms
Table 44. Acronyms Used in this Document
Acronym Description
abus analog local bus
ADC analog-to-digital converter
AG analog global
AHB AMBA (advanced microcontroller bus
architecture) high-performance bus, an Arm data
transfer bus
ALU arithmetic logic unit
AMUXBUS analog multiplexer bus
API application programming interface
APSR application program status register
Arm®advanced RISC machine, a CPU architecture
ATM automatic thump mode
BW bandwidth
CAN Controller Area Network, a communications
protocol
CMRR common-mode rejection ratio
CPU central processing unit
CRC cyclic redundancy check, an error-checking
protocol
DAC digital-to-analog converter, see also IDAC, VDAC
DFB digital filter block
DIO digital input/output, GPIO with only digital
capabilities, no analog. See GPIO.
DMIPS Dhrystone million instructions per second
DMA direct memory access, see also TD
DNL differential nonlinearity, see also INL
DNU do not use
DR port write data registers
DSI digital system interconnect
DWT data watchpoint and trace
ECC error correcting code
ECO external crystal oscillator
EEPROM electrically erasable programmable read-only
memory
EMI electromagnetic interference
EMIF external memory interface
EOC end of conversion
EOF end of frame
EPSR execution program status register
ESD electrostatic discharge
ETM embedded trace macrocell
FIR finite impulse response, see also IIR
FPB flash patch and breakpoint
FS full-speed
GPIO general-purpose input/output, applies to a PSoC
pin
HVI high-voltage interrupt, see also LVI, LVD
IC integrated circuit
IDAC current DAC, see also DAC, VDAC
IDE integrated development environment
I2C, or IIC Inter-Integrated Circuit, a communications
protocol
IIR infinite impulse response, see also FIR
ILO internal low-speed oscillator, see also IMO
IMO internal main oscillator, see also ILO
INL integral nonlinearity, see also DNL
I/O input/output, see also GPIO, DIO, SIO, USBIO
IPOR initial power-on reset
IPSR interrupt program status register
IRQ interrupt request
ITM instrumentation trace macrocell
LCD liquid crystal display
LIN Local Interconnect Network, a communications
protocol.
LR link register
LUT lookup table
LVD low-voltage detect, see also LVI
LVI low-voltage interrupt, see also HVI
LVTTL low-voltage transistor-transistor logic
MAC multiply-accumulate
MCU microcontroller unit
MISO master-in slave-out
NC no connect
NMI nonmaskable interrupt
NRZ non-return-to-zero
NVIC nested vectored interrupt controller
NVL nonvolatile latch, see also WOL
opamp operational amplifier
PAL programmable array logic, see also PLD
Table 44. Acronyms Used in this Document (continued)
Acronym Description
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 41 of 44
PC program counter
PCB printed circuit board
PGA programmable gain amplifier
PHUB peripheral hub
PHY physical layer
PICU port interrupt control unit
PLA programmable logic array
PLD programmable logic device, see also PAL
PLL phase-locked loop
PMDD package material declaration data sheet
POR power-on reset
PRES precise power-on reset
PRS pseudo random sequence
PS port read data register
PSoC®Programmable System-on-Chip™
PSRR power supply rejection ratio
PWM pulse-width modulator
RAM random-access memory
RISC reduced-instruction-set computing
RMS root-mean-square
RTC real-time clock
RTL register transfer language
RTR remote transmission request
RX receive
SAR successive approximation register
SC/CT switched capacitor/continuous time
SCL I2C serial clock
SDA I2C serial data
S/H sample and hold
SINAD signal to noise and distortion ratio
SIO special input/output, GPIO with advanced
features. See GPIO.
SOC start of conversion
SOF start of frame
SPI Serial Peripheral Interface, a communications
protocol
SR slew rate
SRAM static random access memory
SRES software reset
SWD serial wire debug, a test protocol
Table 44. Acronyms Used in this Document (continued)
Acronym Description
SWV single-wire viewer
TD transaction descriptor, see also DMA
THD total harmonic distortion
TIA transimpedance amplifier
TRM technical reference manual
TTL transistor-transistor logic
TX transmit
UART Universal Asynchronous Transmitter Receiver, a
communications protocol
UDB universal digital block
USB Universal Serial Bus
USBIO USB input/output, PSoC pins used to connect to
a USB port
VDAC voltage DAC, see also DAC, IDAC
WDT watchdog timer
WOL write once latch, see also NVL
WRES watchdog timer reset
XRES external reset I/O pin
XTAL crystal
Table 44. Acronyms Used in this Document (continued)
Acronym Description
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 42 of 44
Document Conventions
Units of Measure
Table 45. Units of Measure
Symbol Unit of Measure
°C degrees Celsius
dB decibel
fF femto farad
Hz hertz
KB 1024 bytes
kbps kilobits per second
Khr kilohour
kHz kilohertz
kkilo ohm
ksps kilosamples per second
LSB least significant bit
Mbps megabits per second
MHz megahertz
Mmega-ohm
Msps megasamples per second
µA microampere
µF microfarad
µH microhenry
µs microsecond
µV microvolt
µW microwatt
mA milliampere
ms millisecond
mV millivolt
nA nanoampere
ns nanosecond
nV nanovolt
ohm
pF picofarad
ppm parts per million
ps picosecond
s second
sps samples per second
sqrtHz square root of hertz
Vvolt
PSoC® 4: PSoC 4100S Plus Datasheet
Document Number: 002-19966 Rev. *H Page 43 of 44
Revision History
Description Title: PSoC® 4: PSoC 4100S Plus Datasheet Programmable System-on-Chip (PSoC)
Document Number: 002-19966
Revision ECN Orig. of
Change
Submission
Date Description of Change
*E 5995731 WKA 12/15/2017 New release
*F 6069640 JIAO 02/13/2018 Updated Pinouts and DC Specifications.
*G 6169676 WKA 05/09/2018
Updated Clock Diagram to show Watchdog details and clock divider infor-
mation.
Removed preliminary statement in Pinouts.
*H 6310562 WKA 09/14/2018
Updated 32-bit MCU subsystem feature list.
Added 48-pin TQFP pin and package details.
Updated Watch Crystal Oscillator (WCO).
Corrected typos in CTBm Opamp Specifications.
Updated values for SID260.
Updated Conditions for SID.CSD#15, SID.CSD#15A, and SID308A.
Updated min and max values for SID172A.
Added extended temperature range.
Document Number: 002-19966 Rev. *H Revised September 14, 2018 Page 44 of 44
PSoC® 4: PSoC 4100S Plus Datasheet
© Cypress Semiconductor Corporation 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation
of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any
liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device
or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
Products
Arm® Cortex® Microcontrollers cypress.com/arm
Automotive cypress.com/automotive
Clocks & Buffers cypress.com/clocks
Interface cypress.com/interface
Internet of Things cypress.com/iot
Memory cypress.com/memory
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless
PSoC® Solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU
Cypress Developer Community
Community | Projects | Video | Blogs | Training | Components
Technical Support
cypress.com/support