GE Data Sheet
ESTW010A0A Series Ei
hth-Brick Power Modules
36–75Vdc Input; 5.0Vdc Output; 10A Output Current
October 30, 2019 ©2016 General Electric Company. All rights reserved. Page 7
Feature Description
Remote On/Off
Two remote on/off options are available. Positive logic
turns the module on during a logic high voltage on the
ON/OFF pin, and off during a logic low. Negative logic
remote On/Off, device code suffix “1”, turns the module
off during a logic high and on during a logic low.
ON/OFF
Vin+
Vin-
Ion/off
Von/off
Vout+
TRIM
Vout-
Figure 10. Remote On/Off Implementation.
To turn the power module on and off, the user must
supply a switch (open collector or equivalent) to control
the voltage (Von/off) between the ON/OFF terminal and the
VIN(-) terminal (see Figure 10). Logic low is
0V ≤ Von/off ≤ 0.6V. The maximum Ion/off during a logic low
is 0.15mA; the switch should maintain a logic low level
whilst sinking this current.
During a logic high, the typical maximum Von/off generated
by the module is 15V, and the maximum allowable
leakage current at Von/off = 2.4V is 25μA.
If not using the remote on/off feature:
For positive logic, leave the ON/OFF pin open.
For negative logic, short the ON/OFF pin to VIN(-).
Remote Sense
Remote sense minimizes the effects of distribution losses
by regulating the voltage at the remote-sense
connections (See Figure 11). The voltage between the
remote-sense pins and the output terminals must not
exceed the output voltage sense range given in the
Feature Specifications table:
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] 0.5 V
Although the output voltage can be increased by both the
remote sense and by the trim, the maximum increase for
the output voltage is not the sum of both. The maximum
increase is the larger of either the remote sense or the
trim.
The amount of power delivered by the module is defined
as the voltage at the output terminals multiplied by the
output current. When using remote sense and trim, the
output voltage of the module can be increased, which at
the same output current would increase the power output
of the module. Care should be taken to ensure that the
maximum output power of the module remains at or
below the maximum rated power (Maximum rated power
= Vo,set x Io,max).
Figure 11. Circuit Configuration for remote
sense .
Input Undervoltage Lockout
At input voltages below the input undervoltage lockout
limit, the module operation is disabled. The module will
only begin to operate once the input voltage is raised
above the undervoltage lockout turn-on threshold, VUV/ON.
Once operating, the module will continue to operate until
the input voltage is taken below the undervoltage turn-off
threshold, VUV/OFF.
Overt e m p eratu re Pro t ectio n
To provide protection under certain fault temperature
conditions, the unit is equipped with a thermal shutdown
circuit. The unit will shutdown if any of the thermal
reference points identified in Figures 13 & 14, exceed the
stated trip points (typical). However, the thermal
shutdown is not intended as a guarantee that the unit will
survive temperatures beyond its rating. The module can
be restarted by cycling the dc input power for at least one
second or by toggling the remote on/off signal for at least
one second. If the auto-restart option (4) is ordered, the
module will automatically restart upon cool-down to a
safe temperature.
Output Overvoltage Protection
The output over voltage protection scheme of the
modules has an independent over voltage loop to prevent
single point of failure. This protection feature latches in
the event of over voltage across the output. Cycling the
on/off pin or input voltage resets the latching protection
feature. If the auto-restart option (4) is ordered, the
module will automatically restart upon an internally
programmed time elapsing.
Overcurrent Protection
To provide protection in a fault (output overload)
condition, the unit is equipped with internal
current-limiting circuitry and can endure current
limiting continuously. At the point of current-limit
inception, the unit enters hiccup mode. If the unit is
not configured with auto–restart, then it will latch off
following the over current condition. The module can be
restarted by cycling the dc input power for at least one
second or by toggling the remote on/off signal for at least
one second.
VO(+)
SENSE(+)
SENSE(–)
VO(–)
VI(+)
VI(-)
IOLOAD
CONTACT AND
DISTRIBUTION LOSS
SUPPLY II
CONTACT
RESISTANCE