This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
June 2017 DocID030584 Rev 2 1/84
STM8S001J3
16 MHz STM8S 8-bit MCU, 8-Kbyte Flash memory, 128-byte data
EEPROM, 10-bit ADC, 3 timers, UART, SPI, I2C
Datasheet - preliminary data
Features
Core
16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
Extended instruction set
Memories
Program memory: 8 Kbytes Flash memory;
data retention 20 years at 55 °C after 100
cycles
RAM: 1 Kbyte
Data memory: 128-byte true data EEPROM;
endurance up to 100 k write/erase cycles
Clock, reset and supply management
2.95 V to 5.5 V operating voltage
Flexible clock control, 3 master clock sources
External clock input
Internal, user-trimmable 16 MHz RC
Internal low-power 128 kHz RC
Clock security system with clock monitor
Power management
Low-power modes (wait, active-halt, halt)
Switch-off peripheral clocks individually
Permanently active, low-consumption
power-on and power-down reset
Interrupt management
Nested interrupt controller with 32 interrupts
Up to 5 external interrupts
Timers
Advanced control timer: 16-bit, 2 CAPCOM
channels, 2 outputs, dead-time insertion and
flexible synchronization
16-bit general purpose timer, with 3 CAPCOM
channels (IC, OC or PWM)
8-bit basic timer with 8-bit prescaler
Auto wakeup timer
Window and independent watchdog timers
Communications interfaces
UART, SmartCard, IrDA, LIN master mode
SPI unidirectional interface up to 8 Mbit/s
(master simplex mode, slave receiver only)
I2C interface up to 400 Kbit/s
Analog to digital converter (ADC)
10-bit ADC, ± 1 LSB ADC with up to 3
multiplexed channels, scan mode and analog
watchdog
I/Os
Up to 5 I/Os including 4 high-sink outputs
Highly robust I/O design, immune against
current injection
Development support
Embedded single-wire interface module
(SWIM) or fast on-chip programming and non-
intrusive debugging
SO8N
4.9x6 mm or 150 mils width
www.st.com
Contents STM8S001J3
2/84 DocID030584 Rev 2
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
4.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 12
4.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.10 TIM2 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.11 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.12 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.13 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.13.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.13.2 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13.3 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 STM8S001J3 SO8N pinout and pin description . . . . . . . . . . . . . . . . . . . . 20
5.2 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DocID030584 Rev 2 3/84
STM8S001J3 Contents
4
6.2.3 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 33
7 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.1 Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 53
9.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 53
9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.3.7 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.3.8 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.3.9 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.1 SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 79
11 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 81
Contents STM8S001J3
4/84 DocID030584 Rev 2
12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
12.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
DocID030584 Rev 2 5/84
STM8S001J3 List of tables
6
List of tables
Table 1. STM8S001J3 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 15
Table 3. TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Legend/abbreviations for STM8S001J3 pin description tables. . . . . . . . . . . . . . . . . . . . . . 20
Table 5. STM8S001J3 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Flash, Data EEPROM and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 7. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 11. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. STM8S001J3 alternate function remapping bits for 8-pin devices . . . . . . . . . . . . . . . . . . . 38
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 18. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Total current consumption with code execution in run mode at VDD = 5 V . . . . . . . . . . . . 44
Table 20. Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 45
Table 21. Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 22. Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 23. Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 47
Table 24. Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . 47
Table 25. Total current consumption in halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 26. Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 27. Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 29. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 30. HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 32. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 33. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 34. Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 36. Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 37. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 38. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 39. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 40. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 41. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 42. ADC accuracy with RAIN < 10 kΩ , VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 43. ADC accuracy with RAIN < 10 kΩ RAIN, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 44. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 45. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 46. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 47. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 48. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
List of tables STM8S001J3
6/84 DocID030584 Rev 2
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 49. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 50. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
DocID030584 Rev 2 7/84
STM8S001J3 List of figures
7
List of figures
Figure 1. STM8S001J3 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM8S001J3 SO8N pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 6. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 7. fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 8. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 9. Typ. IDD(RUN) vs VDD, HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 50
Figure 10. Typ. IDD(RUN) vs fCPU, HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 11. Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 12. Typ. IDD(WFI) vs. VDD HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . 51
Figure 13. Typ. IDD(WFI) vs. fCPU, HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 14. Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 15. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 16. Typical HSI frequency variation vs VDD at 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 17. Typical LSI frequency variation vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 18. Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 19. Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 20. Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 21. Typ. VOL @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 22. Typ. VOL @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 23. Typ. VOL @ VDD = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 24. Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 25. Typ. VOL @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 26. Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 27. Typ. VDD - VOH @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 28. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 29. Typ. VDD - VOH @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 30. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 31. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 32. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 33. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 34. Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 35. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 36. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 37. SO8N – 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package outline . 76
Figure 38. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 39. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 40. STM8S001J3 ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Introduction STM8S001J3
8/84 DocID030584 Rev 2
1 Introduction
This datasheet contains the description of the STM8S001J3 features, pinout, electrical
characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S and STM8A microcontroller families reference
manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the PM0051 (How to program STM8S and STM8A Flash program
memory and data EEPROM).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
DocID030584 Rev 2 9/84
STM8S001J3 Description
23
2 Description
The STM8S001J3 8-bit microcontrollers offer 8 Kbytes of Flash program memory, plus
integrated true data EEPROM. It is referred to as low-density device in the STM8S
microcontroller family reference manual (RM0016).
The STM8S001J3 device provides the following benefits: performance, robustness and
reduced system cost.
Device performance and robustness are ensured by true data EEPROM supporting up to
100000 write/erase cycles, advanced core and peripherals made in a state-of-the-art
technology at 16 MHz clock frequency, robust I/Os, independent watchdogs with separate
clock source, and a clock security system.
The system cost is reduced thanks to a high system integration level with internal clock
oscillators, watchdog, and brown-out reset.
Full documentation is offered as well as a wide choice of development tools.
Table 1. STM8S001J3 features
Features STM8S001J3
Pin count 8
Max. number of GPIOs (I/O) 5
External interrupt pins 5
Timer CAPCOM channels 3
Timer complementary outputs 1
A/D converter channels 3
High-sink I/Os 4
Low-density Flash program memory
(byte) 8 K
RAM (byte) 1 K
True data EEPROM (byte) 128(1)
1. Without read-while-write capability.
Peripheral set
Multi purpose timer (TIM1), SPI unidirectional, I2C, UART,
Window WDG,
independent WDG, ADC, PWM timer (TIM2), 8-bit timer
(TIM4)
Block diagram STM8S001J3
10/84 DocID030584 Rev 2
3 Block diagram
Figure 1. STM8S001J3 block diagram
06Y9
5HVHWEORFN
5HVHW
325 %25
&ORFNFRQWUROOHU
'HWHFWRU
5&LQW0+]
5&LQWN+]
([W&ORFNLQSXW
±0+]
670FRUH
'HEXJ6:,0
,&
8QLGLUHFWLRQDO63,
8$57
$'&
:LQGRZ:'*
,QGHSHQGHQW:'*
.E\WH
SURJUDP)ODVK
E\WH
GDWD((3520
.E\WH5$0
ELWDGYDQFHG
FRQWUROWLPHU70
ELWJHQHUDO
SXUSRVHWLPHU
7,0
ELWEDVLFWLPHU
7,0
$:8WLPHU
$GGUHVVDQGGDWDEXV
&ORFNWRSHULSKHUDOVDQGFRUH
8SWR
FKDQQHOV
/,1PDVWHU
0ELWV
.ELWV
6LQJOHZLUH
GHEXJ
LQWHUIDFH
8SWR
&$3&320
FKDQQHOV
8SWR
&$3&320
FKDQQHOV
DocID030584 Rev 2 11/84
STM8S001J3 Functional overview
23
4 Functional overview
The following section intends to give an overview of the basic features of the STM8S001J3
functional modules and peripherals.
For more detailed information please refer to the corresponding family reference manual
(RM0016).
4.1 Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It contains six internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching for most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64 K-level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers
Functional overview STM8S001J3
12/84 DocID030584 Rev 2
4.2 Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time in-
circuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory
programming. The interface can be activated in all device operation modes. The maximum
data transmission speed is 145 byte/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-
time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all program-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations
Recommendation for SWIM pin (pin #8) sharing
As the NRST pin is not available on this device, if the SWIM pin should be used with the I/O
pin functionality, it is recommended to add a ~5 seconds delay in the firmware before
changing the functionality on the pin with SWIM functions. This action allows the user to set
the device into SWIM mode after the device power on and to be able to reprogram the
device. If the pin with SWIM functionality is set to I/O mode immediately after the device
reset, the device is unable to connect through the SWIM interface and it gets locked forever.
This initial delay can be removed in the final (locked) code.
4.3 Interrupt controller
Nested interrupts with three software priority levels
32 interrupt vectors with hardware priority
Up to 5 external interrupts including TLI
Trap and reset interrupts
4.4 Flash program memory and data EEPROM
8 Kbytes of Flash program single voltage Flash memory
128 byte true data EEPROM
User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user software malfunction.
DocID030584 Rev 2 13/84
STM8S001J3 Functional overview
23
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to modify the
content of main program memory and data EEPROM, or to reprogram the device option
bytes.
A second level of write protection, can be enabled to further protect a specific area of
memory known as UBC (user boot code). Refer to Figure 2.
The size of the UBC is programmable through the UBC option byte (Table 12), in increments
of 1 page (64-byte block) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: 8 Kbyte minus UBC
User-specific boot code (UBC): Configurable up to 8 Kbyte
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program memory.
Even if no protection can be considered as totally unbreakable, the feature provides a very
high level of protection for a general purpose microcontroller.
069
/RZGHQVLW\
)ODVKSURJUDP
PHPRU\
.E\WHV
3URJUDPPDEOH
DUHDIURPE\WHV
SDJHXSWR
.E\WHV
LQSDJHVWHSV
3URJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
'DWD((3520E\WHV
2SWLRQE\WHV
Functional overview STM8S001J3
14/84 DocID030584 Rev 2
Recommendation for the device's programming:
The device's 8 Kbytes program memory is not empty on virgin devices; there is code loop
implemented on the reset vector. It is recommended to keep valid code loop in the device to
avoid the program execution from an invalid memory address (which would be any memory
address out of 8 Kbytes program memory space).
If the device's program memory is empty (0x00 content), it displays the behavior described
below:
After the power on, the “empty” code is executed (0x0000 opcodes = instructions: NEG
(0x00, SP)) until the device reaches the end of the 8 Kbytes program memory (the end
address = 0x9FFF).
It takes around 4 milliseconds to reach the end of the 8 Kbytes memory space @2 MHz
HSI clock.
Once the device reaches the end of the 8 Kbytes program memory, the program
continues and code from a non-existing memory is fetched and executed.
The reading of non-existing memory is a random content which can lead to the
execution of invalid instructions.
The execution of invalid instructions generates a software reset and the program starts
again. A reset can be generated every 4 milliseconds or more.
Only the “connect on-the-fly” method can be used to program the device through the SWIM
interface. The “connect under-reset” method cannot be used because the NRST pin is not
available on this device.
The “connect on-the-fly” mode can be used while the device is executing code, but if there is
a device reset (by software reset) during the SWIM connection, this connection is aborted
and it must be performed again from the debug tool. Note that the software reset occurrence
can be of every 4 milliseconds, making it difficult to successfully connect to the device's
debug tool (there is practically only one successful connection trial for every 10 attempts).
Once that a successful connection is reached, the device can be programmed with a valid
firmware without problems; therefore it is recommended that device is never erased and
that is contains always a valid code loop.
DocID030584 Rev 2 15/84
STM8S001J3 Functional overview
23
4.5 Clock controller
The clock controller distributes the system clock (fMASTER) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a
programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: Three different clock sources can be used to drive the master
clock:
Up to 16 MHz high-speed user-external clock (HSE user-ext)
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can optionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock
PCKEN17 TIM1 PCKEN13 UART1 PCKEN27 Reserved PCKEN23 ADC
PCKEN16 Reserved PCKEN12 Reserved PCKEN26 Reserved PCKEN22 AWU
PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved
PCKEN14 TIM4 PCKEN10 I2C PCKEN24 Reserved PCKEN20 Reserved
Functional overview STM8S001J3
16/84 DocID030584 Rev 2
4.6 Power management
For efficient power management, the application can be put in one of four different low-
power modes. You can configure each mode to obtain the best compromise between the
lowest power consumption, the fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake
up unit (AWU). The main voltage regulator is kept powered on, so current consumption
is higher than in active halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time
is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
4.7 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application software must refresh the counter before time-out and during a limited time
window.
A reset is generated in two situations:
1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2. Refresh out of window: the down-counter is refreshed before its value is lower than the
one stored in the window register.
DocID030584 Rev 2 17/84
STM8S001J3 Functional overview
23
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.
4.8 Auto wakeup counter
Used for auto wakeup from active halt mode
Clock source: internal 128 kHz internal low frequency RC oscillator or external clock
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration
4.9 TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to lighting and half-bridge driver.
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output
Synchronization module to control the timer with external signals
Break input to force the timer outputs into a defined state
One complementary output (CH1 with CH1N option) with adjustable dead time
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
4.10 TIM2 - 16-bit general purpose timer
16-bit autoreload (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
3 individually configurable capture/compare channels
PWM mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update
4.11 TIM4 - 8-bit basic timer
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update
Functional overview STM8S001J3
18/84 DocID030584 Rev 2
4.12 Analog-to-digital converter (ADC1)
STM8S001J3 contains a 10-bit successive approximation A/D converter (ADC1) with up to
three external multiplexed input channels and the following main features:
Input voltage range: 0 to VDDA
Conversion time: 14 clock cycles
Single and continuous, buffered continuous conversion modes
Buffer size (10 x 10 bits)
Scan mode for single and continuous conversion of a sequence of channels
Analog watchdog capability with programmable upper and lower thresholds
Analog watchdog interrupt
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt
4.13 Communication interfaces
The following communication interfaces are implemented:
UART1: full feature UART, synchronous mode, SmartCard mode, IrDA mode, LIN2.1
master capability
SPI: master mode transmit/receive only, slave mode receive only, 8 Mbit/s
I²C: up to 400 Kbit/s
4.13.1 UART1
Main features
1 Mbit/s full duplex SCI
High precision baud rate generator
Smartcard reader emulation
IrDA SIR encoder decoder
LIN master mode
Single wire half duplex mode
Table 3. TIM timer features
Timer
Counter
size
(bits)
Prescaler Counting
mode
CAPCOM
channels
Complem.
outputs
Ext.
trigger
Timer
synchr-
onization/
chaining
TIM1 16 Any integer from 1 to 65536 Up/down 2 1(1) No
No
TIM2 16 Any power of 2 from 1 to 32768 Up 3 0 No
TIM4 8 Any power of 2 from 1 to 128 Up 0 0 No
1. TIM1_CH2N with TIM1_CH1
DocID030584 Rev 2 19/84
STM8S001J3 Functional overview
23
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of
following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
LIN master mode
Emission: generates 13-bit synch. break frame
Reception: detects 11-bit break frame
4.13.2 SPI
Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave
Unidirectional transfer: SPI master mode transmit/receive only, SPI slave mode receive
only
Simplex master synchronous transfers on two lines with a possible bidirectional data
line
Master or slave operation - selectable by software
CRC calculation
1 byte Tx and Rx buffer
4.13.3 I2C
I2C master features
Clock generation
Start and stop generation
I2C slave features
Programmable I2C address detection
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds
Standard speed (up to 100 kHz)
Fast speed (up to 400 kHz)
Pinouts and pin descriptions STM8S001J3
20/84 DocID030584 Rev 2
5 Pinouts and pin descriptions
This section presents the pinouts and pin descriptions for STM8S001J3. Table 4 introduces
the legends and abbreviations that are used in the upcoming subsections.
5.1 STM8S001J3 SO8N pinout and pin description
Figure 3 presents the STM8S001J3 pinout image and Table 5 below presents the device’s
pins description.
Figure 3. STM8S001J3 SO8N pinout
1. [ ] Alternative function option (if the same alternate function is shown twice, it indicated an exclusive choice
and not a duplication of the function).
Table 4. Legend/abbreviations for STM8S001J3 pin description tables
Type I = input, O = output, S = power supply
Level
Input CM = CMOS
Output HS = high sink
Output speed
O1 = slow (up to 2 MHz)
O2 = fast (up to 10 MHz)
O3 = fast/slow programmability with slow as default state after reset
O4 = fast/slow programmability with fast as default state after reset
Port and control
configuration
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Reset state
Bold x (pin state after internal reset release)
Unless otherwise specified, the pin state is the same during the reset phase
and after the internal reset release.
06Y9
6706
3'$,18$57B7;
3'$,17,0B&+$'&B(75
3'6:,0
3&63,B026,>7,0B&+@
3&63,B6&.>7,0B&+@
3&&/.B&&27,0B&+>$,1@>7,0B&+1@
3&7,0B&+>7/,@>7,0B&+1@
3%,&B6&/>$'&B(75@
3%,&B6'$>7,0B%.,1@
3$7,0B&+>63,B166@>8$57B7;@
3'$,18$57B5;
3$26&,1
966966$
9&$3
9''9''$
DocID030584 Rev 2 21/84
STM8S001J3 Pinouts and pin descriptions
23
Table 5. STM8S001J3 pin description
Pin no.
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
SO8N
floating
wpu
Ext. interr.
High
sink(1)
Speed
OD PP
1
PD6/ AIN6/
UART1 _RX I/O XXX HS O3 XX Port D6
Analog input
6/ UART1
data receive
-
PA1/ OSCIN(2) I/O X X X - O1 X X Port A1
External
clock input
(HSE clock)
-
2 VSS/VSSA S - - - - - - - Ground -
3 VCAP S - - - - - - - 1.8 V regulator
capacitor -
4 VDD/VDDA S - - - - - - - Power supply -
5
PA3/ TIM2_ CH3
[SPI_ NSS]\
[UART1_TX]
I/O X X X HS O3 X X Port A3 Timer 2
channel 3
SPI master/
slave select
[AFR1]
UART1 data
transmit
[AFR1 and
AFR0]
PB5/ I2C_ SDA
[TIM1_ BKIN] I/O X- X - O1 T
(3) - Port B5 I2C data
Timer 1 -
break input
[AFR4]
6PB4/ I2C_ SCL
/[ADC_ETR] I/O X- X - O1 T
(3) - Port B4 I2C clock
ADC
external
trigger
[AFR4]
7
PC3/ TIM1_CH3
[TLI]
[TIM1_ CH1N]
I/O X X X HS O3 X X Port C3 Timer 1 -
channel 3
To p l e v el
interrupt
[AFR3]
Timer 1 -
inverted
channel 1
[AFR7]
PC4/ CLK_CCO/
TIM1_
CH4/[AIN2]/
[TIM1_ CH2N]
I/O X X X HS O3 X X Port C4
Configurable
clock
output/Timer
1 - channel 4
Analog input
2 [AFR2],
Timer 1 -
inverted
channel 2
[AFR7]
PC5/ SPI_SCK
[TIM2_ CH1] I/O X X X HS O3 X X Port C5 SPI clock
Timer 2 -
channel 1
[AFR0]
Pinouts and pin descriptions STM8S001J3
22/84 DocID030584 Rev 2
Note: The PA2, PB0, PB1, PB2, PB3, PB6, PB7, PC1, PC2, PC7, PD0, PD2, PD4, PD7, PE5 and
PF4 GPIOs should be configured after device reset in output push-pull mode with output
low-state to reduce the device’s consumption and to improve its EMC immunity. The GPIOs
mentioned above are not connected to pins, and they are in input-floating mode after a
device reset.
Note: As several pins provide a connection to multiple GPIOs, the mode selection for any of those
GPIOs impacts all the other GPIOs connected to the same pin. The user is responsible for
the proper setting of the GPIO modes in order to avoid conflicts between GPIOs bonded to
the same pin (including their alternate functions). For example, pull-up enabled on PD1 is
also seen on PC6, PD3 and PD5. Push-pull configuration of PC3 is also seen on PC4 and
PC5, etc.
8
PC6/ SPI_MOSI
[TIM1_ CH1] I/O X(4) X X HS O3 X X Port C6 SPI master
out/slave in
Timer 1 -
channel 1
[AFR0]
PD1/ SWIM(4) I/O X X(4) X HS O4 X X Port D1 SWIM data
interface -
PD3/ AIN4/
TIM2_ CH2/
ADC_ ETR
I/O X(4) X X HS O3 X X Port D3
Analog input
4/ Timer 2 -
channel
2/ADC
external
trigger
-
PD5/ AIN5/
UART1 _TX I/O X(4) XX HS O3 XX Port D5
Analog input
5/ UART1
data transmit
-
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total
driven current must respect the absolute maximum ratings.
2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended d to use PA1 only in input mode
if halt/active-halt is used in the application.
3. In the open-drain output column, “T” defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented). Although PB5 itself is a true open drain GPIO with its respective internal circuitry and characteristics, VIN
maximum of the pin number 5 is limited by the standard GPIO PA3 which is also bonded to pin number 5.
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release. This PD1 default state influences all
GPIOs connected in parallel on pin# 8 (PC6, PD3, PD5).
Table 5. STM8S001J3 pin description (continued)
Pin no.
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
SO8N
floating
wpu
Ext. interr.
High
sink(1)
Speed
OD PP
DocID030584 Rev 2 23/84
STM8S001J3 Pinouts and pin descriptions
23
5.2 Alternate function remapping
As shown in the rightmost column of the pin description table, some alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. Refer to Section 8: Option bytes. When the remapping option is active,
the default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the family reference manual, RM0016).
Memory and register map STM8S001J3
24/84 DocID030584 Rev 2
6 Memory and register map
6.1 Memory map
Figure 4. Memory map
[)))
)ODVKSURJUDPPHPRU\
.E\WH
[
5$0
[))
.E\WH
E\WHVWDFN
5HVHUYHG
5HVHUYHG
[$
[)))
[))
[ LQWHUUXSWYHFWRUV
[)
*3,2DQGSHULSKUHJ
[
[))
[
[)))
[%
[)))
[())
&386:,0GHEXJ,7&
UHJLVWHUV
[)
5HVHUYHG
2SWLRQE\WHV
[$
[
[
[
5HVHUYHG
[)
'DWD((3520
[
5HVHUYHG
069
DocID030584 Rev 2 25/84
STM8S001J3 Memory and register map
35
Table 6 lists the boundary addresses for each memory size. The top of the stack is at the
RAM end address in each case.
6.2 Register map
6.2.1 I/O port hardware register map
Table 6. Flash, Data EEPROM and RAM boundary addresses
Memory area Size (byte) Start address End address
Flash program memory 8 K 0x00 8000 0x00 9FFF
RAM 1 K 0x00 0000 0x00 03FF
Data EEPROM 128 0x00 4000 0x00 407F
Table 7. I/O port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xXX(1)
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX(1)
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0xXX(1)
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX(1)
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x02
0x00 5013 PD_CR2 Port D control register 2 0x00
Memory and register map STM8S001J3
26/84 DocID030584 Rev 2
6.2.2 General hardware register map
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX(1)
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX(1)
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
1. Depends on the external circuitry.
Table 7. I/O port hardware register map (continued)
Address Block Register label Register name Reset
status
DocID030584 Rev 2 27/84
STM8S001J3 Memory and register map
35
Table 8. General hardware register map
Address Block Register label Register name Reset
status
0x00 501E to
0x00 5059 Reserved area (60 byte)
0x00 505A
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF
0x00 505D FLASH _FPR Flash protection register 0x00
0x00 505E FLASH _NFPR Flash complementary protection register 0xFF
0x00 505F FLASH _IAPSR Flash in-application programming status
register 0x00
0x00 5060 to
0x00 5061 Reserved area (2 byte)
0x00 5062 Flash FLASH _PUKR Flash Program memory unprotection
register 0x00
0x00 5063 Reserved area (1 byte)
0x00 5064 Flash FLASH _DUKR Data EEPROM unprotection register 0x00
0x00 5065 to
0x00 509F Reserved area (59 byte)
0x00 50A0
ITC
EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 to
0x00 50B2 Reserved area (17 byte)
0x00 50B3 RST RST_SR Reset status register 0xXX(1)
0x00 50B4 to
0x00 50BF Reserved area (12 byte)
0x00 50C0
CLK
CLK_ICKR Internal clock control register 0x01
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
0x00 50C3
CLK
CLK_CMSR Clock master status register 0xE1
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
0x00 50C7 CLK_PCKENR1 Peripheral clock gating register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF
0x00 50CB Reserved area (1 byte)
Memory and register map STM8S001J3
28/84 DocID030584 Rev 2
0x00 50CC
CLK
CLK_HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CD CLK_SWIMCCR SWIM clock control register 0bXXXX
XXX0
0x00 50CE to
0x00 50D0 Reserved area (3 byte)
0x00 50D1
WWDG
WWDG_CR WWDG control register 0x7F
0x00 50D2 WWDG_WR WWDR window register 0x7F
0x00 50D3 to
0x00 50DF Reserved area (13 byte)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX(2)
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF Reserved area (13 byte)
0x00 50F0
AWU
AWU_CSR1 AWU control/status register 1 0x00
0x00 50F1 AWU_APR AWU asynchronous prescaler buffer register 0x3F
0x00 50F2 AWU_TBR AWU timebase selection register 0x00
0x00 50F3 to
0x00 50FF Reserved area (13 byte)
0x00 5200
SPI
SPI_CR1 SPI control register 1 0x00
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0x00
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0x00
0x00 5208 to
0x00 520F Reserved area (8 byte)
0x00 5210
I2C
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C own address register low 0x00
0x00 5214 I2C_OARH I2C own address register high 0x00
0x00 5215 Reserved
Table 8. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID030584 Rev 2 29/84
STM8S001J3 Memory and register map
35
0x00 5216
I2C
I2C_DR I2C data register 0x00
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x00
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C clock control register low 0x00
0x00 521C I2C_CCRH I2C clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
0x00 521E I2C_PECR I2C packet error checking register 0x00
0x00 521F to
0x00 522F Reserved area (17 byte)
0x00 5230
UART1
UART1_SR UART1 status register 0xC0
0x00 5231 UART1_DR UART1 data register 0xXX
0x00 5232 UART1_BRR1 UART1 baud rate register 1 0x00
0x00 5233 UART1_BRR2 UART1 baud rate register 2 0x00
0x00 5234 UART1_CR1 UART1 control register 1 0x00
0x00 5235 UART1_CR2 UART1 control register 2 0x00
0x00 5236 UART1_CR3 UART1 control register 3 0x00
0x00 5237 UART1_CR4 UART1 control register 4 0x00
0x00 5238 UART1_CR5 UART1 control register 5 0x00
0x00 5239 UART1_GTR UART1 guard time register 0x00
0x00 523A UART1_PSCR UART1 prescaler register 0x00
0x00 523B to
0x00 523F Reserved area (5 bytes)
0x00 523B to
0x00523F Reserved area (21 byte)
Table 8. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8S001J3
30/84 DocID030584 Rev 2
0x00 5250
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00
0x00 525C TIM1_CCER1 TIM1 capture/compare enable register 1 0x00
0x00 525D TIM1_CCER2 TIM1 capture/compare enable register 2 0x00
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00
0x00 5265 TIM1_CCR1H TIM1 capture/compare register 1 high 0x00
0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00
0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/compare register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x00
0x00 5270 to
0x00 52FF Reserved area (147 byte)
Table 8. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID030584 Rev 2 31/84
STM8S001J3 Memory and register map
35
0x00 5300
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5301 Reserved
0x00 5302 Reserved
0x00 5303 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5304 TIM2_SR1 TIM2 status register 1 0x00
0x00 5305 TIM2_SR2 TIM2 status register 2 0x00
0x00 5306 TIM2_EGR TIM2 event generation register 0x00
0x00 5307 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5308 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 5309 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00
0x00 530A TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 530B TIM2_CCER2 TIM2 capture/compare enable register 2 0x00
0x00 530C TIM2_CNTRH TIM2 counter high 0x00
0x00 530D TIM2_CNTRL TIM2 counter low 0x00
0x00 530E TIM2_PSCR TIM2 prescaler register 0x00
0x00 530F TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 5310 TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 5311 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5312 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5313 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0x00
0x00 5314 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5315 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00
0x00 5316 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00
0x00 5317 to
0x00 533F Reserved area (43 byte)
0x00 5340
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 5341 Reserved
0x00 5342 Reserved
0x00 5343 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5344 TIM4_SR TIM4 status register 0x00
0x00 5345 TIM4_EGR TIM4 event generation register 0x00
0x00 5346 TIM4_CNTR TIM4 counter 0x00
0x00 5347 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5348 TIM4_ARR TIM4 auto-reload register 0xFF
Table 8. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8S001J3
32/84 DocID030584 Rev 2
0x00 5349 to
0x00 53DF Reserved area (153 byte)
0x00 53E0 to
0x00 53F3 ADC1 ADC_DBxR ADC data buffer registers 0x00
0x00 53F4 to
0x00 53FF Reserved area (12 byte)
0x00 5400
ADC1
ADC _CSR ADC control/status register 0x00
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00
0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00
0x00 5408 ADC_HTRH ADC high threshold register high 0x03
0x00 5409 ADC_HTRL ADC high threshold register low 0xFF
0x00 540A ADC_LTRH ADC low threshold register high 0x00
0x00 540B ADC_LTRL ADC low threshold register low 0x00
0x00 540C ADC_AWSRH ADC analog watchdog status register high 0x00
0x00 540D ADC_AWSRL ADC analog watchdog status register low 0x00
0x00 540E ADC_AWCRH ADC analog watchdog control register high 0x00
0x00 540F ADC_AWCRL ADC analog watchdog control register low 0x00
0x00 5410 to
0x00 57FF Reserved area (1008 byte)
1. Depends on the previous reset source.
2. Write only register.
Table 8. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID030584 Rev 2 33/84
STM8S001J3 Memory and register map
35
6.2.3 CPU/SWIM/debug module/interrupt controller registers
Table 9. CPU/SWIM/debug module/interrupt controller registers
Address Block Register Label Register Name Reset
Status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to
0x00 7F5F Reserved area (85 byte)
0x00 7F60 CPU CFG_GCR Global configuration register 0x00
0x00 7F70
ITC
ITC_SPR1 Interrupt software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF
0x00 7F78 to
0x00 7F79 Reserved area (2 byte)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F Reserved area (15 byte)
Memory and register map STM8S001J3
34/84 DocID030584 Rev 2
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM debug module control register 1 0x00
0x00 7F97 DM_CR2 DM debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F Reserved area (5 byte)
1. Accessible by debug module only
Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Register Name Reset
Status
DocID030584 Rev 2 35/84
STM8S001J3 Interrupt vector mapping
35
7 Interrupt vector mapping
Table 10. Interrupt mapping
IRQ
no.
Source
block Description Wakeup from
Halt mode
Wakeup from
Active-halt mode Vector address
- RESET Reset Yes Yes 0x00 8000
- TRAP Software interrupt - - 0x00 8004
0 TLI External top level interrupt - - 0x00 8008
1 AWU Auto wake up from halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTI0 Port A external interrupts Yes(1) Yes(1) 0x00 8014
4 EXTI1 Port B external interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external interrupts Yes Yes 0x00 801C
6 EXTI3 Port D external interrupts Yes Yes 0x00 8020
7 EXTI4 Port E external interrupts Yes Yes 0x00 8024
8 - Reserved 0x00 8028
9 - Reserved 0x00 802C
10 SPI End of transfer Yes Yes 0x00 8030
11 TIM1 TIM1 update/overflow/underflow/
trigger/break - - 0x00 8034
12 TIM1 TIM1 capture/compare - - 0x00 8038
13 TIM2 TIM2 update /overflow - - 0x00 803C
14 TIM2 TIM2 capture/compare - - 0x00 8040
15 - Reserved 0x00 8044
16 - Reserved 0x00 8048
17 UART1 Tx complete - - 0x00 804C
18 UART1 Receive register DATA FULL - - 0x00 8050
19 I2C I2C interrupt Yes Yes 0x00 8054
20 - Reserved 0x00 8058
21 - Reserved 0x00 805C
22 ADC1 ADC1 end of conversion/analog
watchdog interrupt - - 0x00 8060
23 TIM4 TIM4 update/overflow - - 0x00 8064
24 Flash EOP/WR_PG_DIS - - 0x00 8068
Reserved 0x00 806C to
0x00 807C
1. Except PA1
Option bytes STM8S001J3
36/84 DocID030584 Rev 2
8 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Table 11: Option bytes below. Option bytes can also be modified ‘on the fly’ by the
application in IAP mode, except the ROP option that can only be modified in ICP mode (via
SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM
communication protocol and debug module user manual (UM0470) for information on SWIM
programming procedures.
Table 11. Option bytes
Addr. Option
name
Option
byte no.
Option bits Factory
default
setting
76543210
0x4800
Read-out
protection
(ROP)
OPT0 ROP[7:0] 0x00
0x4801 User boot code
(UBC)
OPT1 UBC[7:0] 0x00
0x4802 NOPT1 NUBC[7:0] 0xFF
0x4803 Alternate
function
remapping
(AFR)
OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00
0x4804 NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 0xFF
0x4805
Misc. option
OPT3 Reserved HSITRIM LSI
_EN
IWDG
_HW
WWDG
_HW
WWDG
_HALT 0x00
0x4806 NOPT3 Reserved NHSI
TRIM
NLSI
_EN
NIWDG
_HW
NWWDG
_HW
NWWDG
_HALT 0xFF
0x4807
Clock option
OPT4 Reserved EXT
CLK
CKAWU
SEL
PRS
C1
PRS
C0 0x00
0x4808 NOPT4 Reserved NEXT
CLK
NCKAW
USEL
NPR
SC1
NPR
SC0 0xFF
0x4809 HSE clock
startup
OPT5 HSECNT[7:0] 0x00
0x480A NOPT5 NHSECNT[7:0] 0xFF
Table 12. Option byte description
Option byte no. Description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
DocID030584 Rev 2 37/84
STM8S001J3 Option bytes
38
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Pages 0 defined as UBC, memory write-protected
0x02: Pages 0 to 1 defined as UBC, memory write-protected
Page 0 and page 1 contain the interrupt vectors.
...
0x7F: Pages 0 to 126 defined as UBC, memory write-protected
Other values: Pages 0 to 127 defined as UBC, memory-write protected.
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM write protection for more details.
OPT2
AFR[7:0]
Refer to the following section for alternate function remapping descriptions
of bits [7:2] and [1:0] respectively.
OPT3
HSITRIM: high-speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
OPT4
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL: Auto wakeup unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilization time.
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
Table 12. Option byte description (continued)
Option byte no. Description
Option bytes STM8S001J3
38/84 DocID030584 Rev 2
8.1 Alternate function remapping bits
Table 13. STM8S001J3 alternate function remapping bits for 8-pin devices
Option byte number Description
OPT2
AFR7Alternate function remapping option 7
0: AFR7 remapping option inactive: default alternate function(1)
1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function =
TIM1_CH2N.
AFR6 Alternate function remapping option 6
Reserved.
AFR5 Alternate function remapping option 5
Reserved.
AFR4 Alternate function remapping option 4
0: AFR4 remapping option inactive: default alternate function(1).
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =
TIM1_BKIN.
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: default alternate function(1)
1: Port C3 alternate function = TLI.
AFR2 Alternate function remapping option 2
0: AFR2 remapping option inactive: default alternate function(1)
1: Port C4 alternate function = AIN2.
AFR1 Alternate function remapping option 1 (2)
0: AFR1 remapping option inactive: default alternate function(1)
1: If AFR0=0: Port A3 alternate function = SPI_NSS
If AFR0=1: Port A3 alternate function = UART_TX.
AFR0 Alternate function remapping option 0(2)
0: AFR0 remapping option inactive: Default alternate functions(1)
1: Port C5 alternate function = TIM2_CH1; port C6 alternate function =
TIM1_CH1.
1. Refer to the pinout description.
2. Do not use more than one remapping option in the same port.
DocID030584 Rev 2 39/84
STM8S001J3 Electrical characteristics
75
9 Electrical characteristics
9.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ± 3 Σ).
9.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given
only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 Σ).
9.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 5.
Figure 5. Pin loading conditions
9.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 6.
50 pF
STM8 pin
Electrical characteristics STM8S001J3
40/84 DocID030584 Rev 2
Figure 6. Pin input voltage
9.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Device mission profile (application conditions) is compliant with JEDEC JESD47
Qualification Standard, extended mission profiles are available on demand.
VIN
STM8 pin
Table 14. Voltage characteristics
Symbol Ratings Min Max Unit
VDDx - VSS Supply voltage(1)
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply
-0.3 6.5
V
VIN
Input voltage on true open drain pins(2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected
VSS - 0.3 6.5
Input voltage on any other pin(2) VSS - 0.3 VDD + 0.3
VESD Electrostatic discharge voltage
see Absolute maximum
ratings (electrical
sensitivity) on page 74
-
DocID030584 Rev 2 41/84
STM8S001J3 Electrical characteristics
75
Table 15. Current characteristics
Symbol Ratings Max.(1)
1. Guaranteed by characterization results.
Unit
IVDD Total current into VDD power lines (source)(2)
2. All power (VDD) and ground (VSS) pins must always be connected to the external supply.
100
mA
IVSS Total current out of VSS ground lines (sink)(2) 80
IIO
Output current sunk by any I/O and control pin 20
Output current source by any I/Os and control pin -20
IINJ(PIN)(3)(4)
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected
4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.
Injected current on OSCIN pin ±4
Injected current on any other pin(5)
5. When several inputs are submitted to a current injection, the maximum
Σ
IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on characterization
with
Σ
IINJ(PIN) maximum current injection on four I/O port pins of the device.
±4
ΣIINJ(PIN)(3) Total injected current (sum of all I/O and control pins)(5) ±20
Table 16. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to 150
°C
TJMaximum junction temperature 150
Electrical characteristics STM8S001J3
42/84 DocID030584 Rev 2
9.3 Operating conditions
The device must be used in operating conditions that respect the parameters in Table 17. In
addition, full account must be taken of all physical capacitor characteristics and tolerances.
Figure 7. fCPUmax versus VDD
Table 17. General operating conditions
Symbol Parameter Conditions Min Max Unit
fCPU Internal CPU clock frequency - 0 16 MHz
VDD Standard operating voltage - 2.95 5.5 V
VCAP(1)
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter must be
respected for the full application range.
CEXT
: capacitance of external
capacitor - 470 3300 nF
ESR of external capacitor
At 1 MHz(2)
2. This frequency of 1 MHz as a condition for VCAP parameters is given by the design of the internal regulator.
-0.3ohm
ESL of external capacitor - 15 nH
PD(3)
3. To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/Θ
JA (see Section 10.2: Thermal
characteristics on page 78) with the value for TJmax given in Table 17 above and the value for Θ
JA given in
Table 49: Thermal characteristics.
Power dissipation at
TA = 125° C SO8N - 49 mW
TAAmbient temperature Maximum power dissipation -40 125
°C
TJJunction temperature range - -40 130
ϭϲ
ϭϮ
ϴ
ϰ
Ϭ
Ϯϵϱ ϰϬ ϱϬ ϱϱ
I&380+]
&ƵŶĐƚŝŽŶĂůŝƚLJŐƵĂƌĂŶƚĞĞĚ
ΛdͲϰϬƚŽϭϮϱΣ
6XSSO\YROWDJH
D^ǀϰϲϯϬϱsϭ
)XQFWLRQDOLW\
QRWJXDUDQWHHG
LQWKLVDUHD
DocID030584 Rev 2 43/84
STM8S001J3 Electrical characteristics
75
Table 18. Operating conditions at power-up/power-down
Symbol Parameter Conditions Min Typ Max Unit
tVDD
VDD rise time rate - 2 -
µs/V
VDD fall time rate(1)
1. Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the
minimum operating voltage (VDD min) when the tTEMP delay has elapsed.
-2-
tTEMP
Reset release
delay VDD rising - - 1.7 ms
VIT+
Power-on reset
threshold -2.62.72.85V
VIT-
Brown-out reset
threshold - 2.5 2.65 2.8 V
VHYS(BOR)
Brown-out reset
hysteresis --70-mV
Electrical characteristics STM8S001J3
44/84 DocID030584 Rev 2
9.3.1 VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in Table 17. Care should be taken to limit the series inductance
to less than 15 nH.
Figure 8. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
9.3.2 Supply current characteristics
The current consumption is measured as described in Section 9.1.5: Pin input voltage.
Total current consumption in run mode
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled (clock stopped by Peripheral Clock Gating registers)
except if explicitly mentioned.
Subject to general operating conditions for VDD and TA.
06Y9
(65
5/HDN
(6/
&
Table 19. Total current consumption with code execution in run mode at VDD = 5 V
Symbol Parameter Conditions Typ Max (1) Unit
IDD(RUN)
Supply
current in
run mode,
code
executed
from RAM
fCPU = fMASTER = 16 MHz
HSE user ext. clock (16 MHz) 2 2.35
mA
HSI RC osc. (16 MHz) 1.7 2
fCPU = fMASTER/128 = 125 kHz
HSE user ext. clock (16 MHz) 0.86 -
HSI RC osc. (16 MHz) 0.7 0.87
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.41 0.55
Supply
current in
run mode,
code
executed
from Flash
fCPU = fMASTER = 16 MHz HSE user ext. clock (16 MHz) 4.3 4.75
HSI RC osc.(16 MHz) 3.7 4.5
fCPU = fMASTER = 2 MHz HSI RC osc. (16 MHz/8)(2) 0.84 1.05
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.72 0.9
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.42 0.57
1. Guaranteed by characterization results.
DocID030584 Rev 2 45/84
STM8S001J3 Electrical characteristics
75
2. Default clock configuration measured with all peripherals off.
Table 20. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(RUN)
Supply
current in
run mode,
code
executed
from RAM
fCPU = fMASTER = 16 MHz
HSE user ext. clock (16 MHz) 2 2.3
mA
HSI RC osc. (16 MHz) 1.5 2
fCPU = fMASTER/128 = 125 kHz
HSE user ext. clock (16 MHz) 0.81 -
HSI RC osc. (16 MHz) 0.7 0.87
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.41 0.55
Supply
current in
run mode,
code
executed
from Flash
fCPU = fMASTER = 16 MHz HSE user ext. clock (16 MHz) 3.9 4.7
HSI RC osc. (16 MHz) 3.7 4.5
fCPU = fMASTER = 2 MHz HSI RC osc. (16 MHz/8)(2) 0.84 1.05
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.72 0.9
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.42 0.57
1. Guaranteed by characterization results.
2. Default clock configuration, measured with all peripherals off.
Electrical characteristics STM8S001J3
46/84 DocID030584 Rev 2
Total current consumption in wait mode
Table 21. Total current consumption in wait mode at VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 16 MHz
HSE user ext. clock (16 MHz) 1.1 1.3
mA
HSI RC osc. (16 MHz) 0.89 1.1
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.7 0.88
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8)(2) 0.45 0.57
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.4 0.54
1. Guaranteed by characterization results.
2. Default clock configuration measured with all peripherals off.
Table 22. Total current consumption in wait mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 16 MHz
HSE user ext. clock (16 MHz) 1.1 1.3
mA
HSI RC osc. (16 MHz) 0.89 1.1
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.7 0.88
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8)(2) 0.45 0.57
fCPU = fMASTER/128 =
15.625 kHz LSI RC osc. (128 kHz) 0.4 0.54
1. Guaranteed by characterization results.
2. Default clock configuration measured with all peripherals off.
DocID030584 Rev 2 47/84
STM8S001J3 Electrical characteristics
75
Total current consumption in active halt mode
Table 23. Total current consumption in active halt mode at VDD = 5 V
Symbol Parameter
Conditions
Typ Max at
85°C(1)
Max at
125°C
(1) Unit
Main
voltage
regulator
(MVR)(2)
Flash mode(3) Clock source
IDD(AH)
Supply current
in active halt
mode
On
Operating mode
HSE user
external clock
(16 MHz)
1030 - -
µA
LSI RC oscillator
(128 kHz) 200 260 300
Power-down
mode
HSE user
external clock
(16 MHz)
970 - -
LSI RC oscillator
(128 kHz) 150 200 230
Off
Operating mode
LSI RC oscillator
(128 kHz)
66 85 110
Power-down
mode 10 20 40
1. Guaranteed by characterization results.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Table 24. Total current consumption in active halt mode at VDD = 3.3 V
Symbol Parameter
Conditions
Typ
Max
at
85°
C(1)
Max
at
125°
C(1)
Unit
Main voltage
regulator
(MVR)(2)
Flash mode(3) Clock source
IDD(AH)
Supply
current in
active halt
mode
On
Operating mode
HSE user external clock
(16 MHz) 550 - -
µA
LSI RC osc. (128 kHz) 200 260 290
Power-down
mode
HSE user external
clock(16 MHz) 970 - -
LSI RC osc. (128 kHz) 150 200 230
Off
Operating mode
LSI RC osc. (128 kHz)
66 80 105
Power-down
mode 10 18 35
1. Guaranteed by characterization results.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Electrical characteristics STM8S001J3
48/84 DocID030584 Rev 2
Total current consumption in halt mode
Low-power mode wakeup times
Table 25. Total current consumption in halt mode at VDD = 5 V
Symbol Parameter Conditions Typ Max at
85°C(1)
Max at
125°C(1) Unit
IDD(H)
Supply current in halt
mode
Flash in operating mode,
HSI clock after wakeup 63 75 105
µA
Flash in power-down mode,
HSI clock after wakeup 6.0 20 55
1. Guaranteed by characterization results.
Table 26. Total current consumption in halt mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max at
85° C(1)
Max at
125°
C(1)
Unit
IDD(H) Supply current in halt mode
Flash in operating mode, HSI
clock after wakeup 60 75 100
µA
Flash in power-down mode, HSI
clock after wakeup 4.5 17 30
1. Guaranteed by characterization results.
Table 27. Wakeup times
Symbol Parameter Conditions Typ Max(1) Unit
tWU(WFI)
Wakeup time from wait
mode to run mode(3)
0 to 16 MHz - -(2)
µs
fCPU = fMASTER = 16 MHz. 0.56 -
tWU(AH)
Wakeup time active halt
mode to run mode.(3)
MVR voltage
regulator on(4)
Flash in operating
mode(5)
HSI (after
wakeup)
1(6) 2(6)
Flash in power-down
mode(5) 3(6) -
MVR voltage
regulator off(4)
Flash in operating
mode(5) 48(6) -
Flash in power-down
mode(5) 50(6) -
tWU(H)
Wakeup time from halt
mode to run mode(3)
Flash in operating mode(5) 52 -
Flash in power-down mode(5) 54 -
1. Guaranteed by design.
2. tWU(WFI) = 2 x 1/fmaster + 7 x 1/fCPU
3. Measured from interrupt event to interrupt vector fetch.
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
DocID030584 Rev 2 49/84
STM8S001J3 Electrical characteristics
75
Total current consumption and timing in forced reset state
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/fCPU = fMASTER = 16 MHz, VDD = 5 V.
Table 28. Total current consumption and timing in forced reset state
Symbol Parameter Conditions Typ Max(1) Unit
IDD(R) Supply current in reset state (2) VDD = 5 V 400 -
µA
VDD = 3.3 V 300 -
tRESETBL Reset release to vector fetch - - 150 µs
1. Guaranteed by design.
2. Characterized with all I/Os tied to VSS.
Table 29. Peripheral current consumption
Symbol Parameter Typ. Unit
IDD(TIM1) TIM1 supply current (1)
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
210
µA
IDD(TIM2) TIM2 supply current (1) 130
IDD(TIM4) TIM4 timer supply current (1) 50
IDD(UART1) UART1 supply current(1) 120
IDD(SPI) SPI supply current(1) 45
IDD(I2C) I2C supply current (1) 65
IDD(ADC1) ADC1 supply current when converting(1) 1000
Electrical characteristics STM8S001J3
50/84 DocID030584 Rev 2
Current consumption curves
The following figures show the typical current consumption measured with code executing in
RAM.
Figure 9. Typ. IDD(RUN) vs VDD, HSE user external clock, fCPU = 16 MHz
Figure 10. Typ. IDD(RUN) vs fCPU, HSE user external clock, VDD = 5 V
DocID030584 Rev 2 51/84
STM8S001J3 Electrical characteristics
75
Figure 11. Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz
Figure 12. Typ. IDD(WFI) vs. VDD HSE user external clock, fCPU = 16 MHz
Electrical characteristics STM8S001J3
52/84 DocID030584 Rev 2
Figure 13. Typ. IDD(WFI) vs. fCPU, HSE user external clock, VDD = 5 V
Figure 14. Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz
DocID030584 Rev 2 53/84
STM8S001J3 Electrical characteristics
75
9.3.3 External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Figure 15. HSE external clock source
9.3.4 Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
Table 30. HSE user external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency
-
0-16MHz
VHSEH(1)
1. Guaranteed by characterization results.
OSCIN input pin high level
voltage 0.7 x VDD -V
DD + 0.3 V
V
VHSEL(1) OSCIN input pin low level
voltage VSS - 0.3 x VDD
ILEAK_HSE
OSCIN input leakage
current VSS < VIN < VDD -1 - +1 µA
s,^,
s,^>
džƚĞƌŶĂůĐůŽĐŬ
ƐŽƵƌĐĞ K^/E
Ĩ,^
^dDϴ
D^ϯϲϰϴϵsϮ
Electrical characteristics STM8S001J3
54/84 DocID030584 Rev 2
High speed internal RC oscillator (HSI)
Figure 16. Typical HSI frequency variation vs VDD at 4 temperatures
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 31. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
Accuracy of HSI oscillator
User-trimmed with the
CLK_HSITRIMR register
for given VDD and TA
conditions(1)
1. See the application note.
--1.0
(2)
%
Accuracy of HSI oscillator
(factory calibrated)
VDD = 5 V, TA = 25 °C -2.5 - 1.5
VDD = 5 V,
-40 °C TA 125 °C -5 - 5
tsu(HSI)
HSI oscillator wakeup
time including calibration - - - 1.0(2)
2. Guaranteed by design.
µs
IDD(HSI)
HSI oscillator power
consumption - - 170 250(3)
3. Guaranteed by characterization results.
µA
Table 32. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI Frequency - - 128 - kHz
DocID030584 Rev 2 55/84
STM8S001J3 Electrical characteristics
75
Figure 17. Typical LSI frequency variation vs VDD @ 4 temperatures
tsu(LSI) LSI oscillator wakeup time - - - 7(1) µs
IDD(LSI) LSI oscillator power consumption - - 5 - µA
1. Guaranteed by design.
Table 32. LSI oscillator characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM8S001J3
56/84 DocID030584 Rev 2
9.3.5 Memory characteristics
RAM and hardware registers
Flash program memory and data EEPROM
General conditions: TA = -40 to 85 °C.
Table 33. RAM and hardware registers
Symbol Parameter Conditions Min Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design.
Halt mode (or reset) VIT-max(2)
2. Refer to Table 18 on page 43 for the value of VIT-max.
V
Table 34. Flash program memory and data EEPROM
Symbol Parameter Conditions Min(1)
1. Guaranteed by characterization results.
Typ Max Unit
VDD
Operating voltage
(all modes, execution/write/erase) fCPU 16 MHz 2.95 - 5.5 V
tprog
Standard programming time (including
erase) for byte/word/block
(1 byte/4 bytes/64 bytes)
--6.06.6ms
Fast programming time for 1 block (64
bytes) --3.03.3ms
terase Erase time for 1 block (64 bytes) - - 3.0 3.3 ms
NRW
Erase/write cycles(2)
(program memory)
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a
write/erase operation addresses a single byte.
TA = 85 °C
100 - -
cycles
Erase/write cycles(2)
(data memory) 100 k - -
tRET
Data retention (program memory)
after 100 erase/write cycles at
TA = 85 °C TRET = 55° C
20 - -
years
Data retention (data memory) after
10 k erase/write cycles at TA = 85 °C 20 - -
Data retention (data memory) after
100 k erase/write cycles at
TA = 125 °C
TRET = 85° C 1.0 - -
IDD
Supply current (Flash programming or
erasing for 1 to 128 bytes) --2.0-mA
DocID030584 Rev 2 57/84
STM8S001J3 Electrical characteristics
75
9.3.6 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 35. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Input low level
voltage
VDD = 5 V
-0.3 - 0.3 x VDD V
VIH
Input high level
voltage 0.7 x VDD -V
DD + 0.3 V V
Vhys Hysteresis(1) -700- mV
Rpu Pull-up resistor VDD = 5 V, VIN = VSS 30 55 80 kΩ
tR, tF
Rise and fall time
(10% - 90%)
Fast I/Os
Load = 50 pF --20
(2) ns
Standard and high sink I/Os
Load = 50 pF - - 125(2) ns
Ilkg
Input leakage
current,
analog and digital
VSS VIN VDD --±A
Ilkg ana
Analog input
leakage current VSS VIN VDD --±250
(3) nA
Ilkg(inj)
Leakage current in
adjacent I/O Injection current ±4 mA - - ±1(3) µA
1. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
2. Guaranteed by design.
3. Guaranteed by characterization results.
Electrical characteristics STM8S001J3
58/84 DocID030584 Rev 2
Figure 18. Typical VIL and VIH vs VDD @ 4 temperatures
Figure 19. Typical pull-up resistance vs VDD @ 4 temperatures
DocID030584 Rev 2 59/84
STM8S001J3 Electrical characteristics
75
Figure 20. Typical pull-up current vs VDD @ 4 temperatures
1. The pull-up is a pure resistor (slope goes through 0).
Table 36. Output driving current (standard ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V - 2
V
Output low level with 4 pins sunk IIO = 4 mA, VDD = 3.3 V - 1(1)
VOH
Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 2.8 -
V
Output high level with 4 pins sourced IIO = 4 mA, VDD = 3.3 V 2.1(1) -
1. Guaranteed by characterization results.
Table 37. Output driving current (true open drain ports)
Symbol Parameter Conditions Max Unit
VOL Output low level with 2 pins sunk
IIO = 10 mA, VDD = 5 V 1
VIIO = 10 mA, VDD = 3.3 V 1.5(1)
IIO = 20 mA, VDD = 5 V 2(1)
1. Guaranteed by characterization results.
Electrical characteristics STM8S001J3
60/84 DocID030584 Rev 2
Typical output level curves
Figure 22 to Figure 29 show typical output level curves measured with output on a single
pin.
Figure 21. Typ. VOL @ VDD = 5 V (standard ports)
Table 38. Output driving current (high sink ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V - 0.8
V
Output low level with 4 pins sunk IIO = 10 mA, VDD = 3.3 V - 1.0(1)
Output low level with 4 pins sunk IIO = 20 mA, VDD = 5 V - 1.5(1)
VOH
Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 4.0 -
Output high level with 4 pins sourced IIO = 10 mA, VDD = 3.3 V 2.1(1) -
Output high level with 4 pins sourced IIO = 20 mA, VDD = 5 V 3.3(1) -
1. Guaranteed by characterization results.
DocID030584 Rev 2 61/84
STM8S001J3 Electrical characteristics
75
Figure 22. Typ. VOL @ VDD = 3.3 V (standard ports)
Figure 23. Typ. VOL @ VDD = 5 V (true open drain ports)
Electrical characteristics STM8S001J3
62/84 DocID030584 Rev 2
Figure 24. Typ. VOL @ VDD = 3.3 V (true open drain ports)
Figure 25. Typ. VOL @ VDD = 5 V (high sink ports)
DocID030584 Rev 2 63/84
STM8S001J3 Electrical characteristics
75
Figure 26. Typ. VOL @ VDD = 3.3 V (high sink ports)
Figure 27. Typ. VDD - VOH @ VDD = 5 V (standard ports)
Electrical characteristics STM8S001J3
64/84 DocID030584 Rev 2
Figure 28. Typ. VDD - VOH @ VDD = 3.3 V (standard ports)
Figure 29. Typ. VDD - VOH @ VDD = 5 V (high sink ports)
DocID030584 Rev 2 65/84
STM8S001J3 Electrical characteristics
75
Figure 30. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports)
9.3.7 SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 39 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 39. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 0 8
MHz
Slave mode 0 7
Electrical characteristics STM8S001J3
66/84 DocID030584 Rev 2
Figure 31. SPI timing diagram - slave mode and CPHA = 0
tr(SCK)
tf(SCK)
SPI clock rise and fall time Capacitive load: C = 30 pF - 25
ns
tsu(NSS)(1) NSS setup time Slave mode 4 x tMASTER -
th(NSS)(1) NSS hold time Slave mode 70 -
tw(SCKH)(1)
tw(SCKL)(1) SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15
tsu(MI) (1)
tsu(SI)(1) Data input setup time
Master mode 5 -
Slave mode 5 -
th(MI) (1)
th(SI)(1) Data input hold time
Master mode 7 -
Slave mode 10 -
ta(SO)(1)(2) Data output access time Slave mode - 3 x tMASTER
tdis(SO)(1)(3) Data output disable time Slave mode 25 -
tv(SO) (1) Data output valid time Slave mode (after enable edge) - 65
tv(MO)(1) Data output valid time Master mode (after enable edge) - 30
th(SO)(1)
Data output hold time
Slave mode (after enable edge) 27 -
th(MO)(1) Master mode (after enable edge) 11 -
1. Values based on design simulation and/or characterization results, and not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
Table 39. SPI characteristics (continued)
Symbol Parameter Conditions Min Max Unit
DocID030584 Rev 2 67/84
STM8S001J3 Electrical characteristics
75
Figure 32. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 33. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM8S001J3
68/84 DocID030584 Rev 2
9.3.8 I2C interface characteristics
Table 40. I2C characteristics
Symbol Parameter
Standard mode I2C Fast mode
I2C(1)
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production
Max(2) Min(2) Max(2)
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
-0
(4)
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) START condition hold time 4.0 - 0.6 -
µs
tsu(STA) Repeated START condition setup time 4.7 - 0.6 -
tsu(STO) STOP condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
STOP to START condition time
(bus free) 4.7 - 1.3 - µs
CbCapacitive load for each bus line - 400 - 400 pF
DocID030584 Rev 2 69/84
STM8S001J3 Electrical characteristics
75
Figure 34. Typical application with I2C bus and timing diagram
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD
DL9
67$57
6' $
,ð&EXV
9''
9''
670
6'$
6&/
WI6'$ WU6'$
6&/
WK67$
WZ6&/+
WZ6&//
WVX6'$
WU6&/ WI6&/
WK6'$
6 7$575(3($7('
67$57
WVX67$
WVX672
6723 WVX67$672
N N


Electrical characteristics STM8S001J3
70/84 DocID030584 Rev 2
9.3.9 10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise
specified.
Table 41. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
fADC ADC clock frequency
VDDA = 3 to 5.5 V 1 - 4
MHz
VDDA = 4.5 to 5.5 V 1 - 6
VAIN Conversion voltage range(1)
1. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on
the conversion result. Values for the sample clock tS depend on programming.
-V
SS -V
DD V
CADC
Internal sample and hold
capacitor --3-pF
tS(1) Sampling time
fADC = 4 MHz - 0.75 -
µs
fADC = 6 MHz - 0.5 -
tSTAB Wakeup time from standby - - 7 - µs
tCONV
Total conversion time (including
sampling time, 10-bit resolution)
fADC = 4 MHz 3.5 µs
fADC = 6 MHz 2.33 µs
-141/f
ADC
Table 42. ADC accuracy with RAIN < 10 kΩ , VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
|ET| Total unadjusted error (2)
fADC = 2 MHz 1.6 3.5
LSB
fADC = 4 MHz 2.2 4
fADC = 6 MHz 2.4 4.5
|EO| Offset error (2)
fADC = 2 MHz 1.1 2.5
fADC = 4 MHz 1.5 3
fADC = 6 MHz 1.8 3
|EG| Gain error (2)
fADC = 2 MHz 1.5 3
fADC = 4 MHz 2.1 3
fADC = 6 MHz 2.2 4
|ED| Differential linearity error (2)
fADC = 2 MHz 0.7 1.5
fADC = 4 MHz 0.7 1.5
fADC = 6 MHz 0.7 1.5
|EL| Integral linearity error (2)
fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.8 2
fADC = 6 MHz 0.8 2
DocID030584 Rev 2 71/84
STM8S001J3 Electrical characteristics
75
1. Guaranteed by characterization results.
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy.
Table 43. ADC accuracy with RAIN < 10 kΩ RAIN, VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
|ET| Total unadjusted error(2)
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy.
fADC = 2 MHz 1.6 3.5
LSB
fADC = 4 MHz 1.9 4
|EO| Offset error(2) fADC = 2 MHz 1 2.5
fADC = 4 MHz 1.5 2.5
|EG| Gain error(2) fADC = 2 MHz 1.3 3
fADC = 4 MHz 2 3
|ED| Differential linearity error(2) fADC = 2 MHz 0.7 1.0
fADC = 4 MHz 0.7 1.5
|EL| Integral linearity error(2) fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.8 2
Electrical characteristics STM8S001J3
72/84 DocID030584 Rev 2
Figure 35. ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 36. Typical application with ADC
EO
EG
1LSB
IDEAL
1LSBIDEAL
VDDA VSSA
1024
-----------------------------------------=
1023
1022
1021
5
4
3
2
1
0
7
6
1234567 1021102210231024
(1)
(2)
ET
ED
EL
(3)
V
DDA
VSSA
AINx
STM8
VDD
IL
±1µA
VT
0.6V
VT
0.6V CADC
VAIN
RAIN 10-bit A/D
conversion
CAIN
DocID030584 Rev 2 73/84
STM8S001J3 Electrical characteristics
75
9.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 44. EMS data
Symbol Parameter Conditions Level/class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = 25 °C,
fMASTER = 16 MHz,
conforming to IEC 61000-4-2
TBD(1)
1. Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 -
EMC guidelines for STM8Smicrocontrollers.
VEFTB
Fast transient voltage burst limits to be
applied through 100pF on VDD and VSS pins
to induce a functional disturbance
VDD = 3.3 V, TA = 25 °C,
fMASTER = 16 MHz,
conforming to IEC 61000-4-4
TBD(1)
Electrical characteristics STM8S001J3
74/84 DocID030584 Rev 2
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling two LEDs through the I/O
ports), the product is monitored in terms of emission. Emission tests conform to the IEC
61967-2 standard for test software, board layout and pin loading.
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, DLU and LU) using specific measurement methods,
the product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (one positive then one negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model
can be simulated: the Human Body Model (HBM). This test conforms to the JESD22-
A114A/A115A standard. For more details, refer to the application note AN1181.
Table 45. EMI data
Symbol Parameter
Conditions
Unit
General conditions Monitored
frequency band
Max fHSE/fCPU(1)
1. Guaranteed by characterization results.
16 MHz/
8 MHz
16 MHz/
16 MHz
SEMI
Peak level
VDD = 5 V
TA = 25 °C
SO8N package
conforming to IEC
61967-2
0.1 MHz to 30 MHz TBD TBD
dBµV30 MHz to 130 MHz TBD TBD
130 MHz to 1 GHz TBD TBD
EMI level - TBD TBD -
Table 46. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Guaranteed by characterization results.
Unit
VESD(HBM)
Electrostatic discharge voltage
(Human body model)
TA = 25°C, conforming to
JESD22-A114 ATBDV
VESD(CDM)
Electrostatic discharge voltage
(Charge device model)
TA= 25°C, conforming to
JESD22-C101 IV TBD V
DocID030584 Rev 2 75/84
STM8S001J3 Electrical characteristics
75
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance:
A supply overvoltage (applied to each power supply pin)
A current injection (applied to each input, output and configurable I/O pin) is performed
on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 47. Electrical sensitivities
Symbol Parameter Conditions Class(1)
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
LU Static latch-up class
TA = 25 °C TBD
TA = 85 °C TBD
Package information STM8S001J3
76/84 DocID030584 Rev 2
10 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Failure analysis and guarantee
The small number of pins available induces limitations on failure analysis depth in case of
isolated symptoms, typically with an impact lower than 0.1%. Please contact your sales
office for additional information for any failure analysis. STMicroelectronics will make a
feasibility study for investigation based on failure rate and symptom description prior to
responsibility endorsement.
10.1 SO8N package information
Figure 37. SO8N – 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width,
package outline
1. Drawing not to scale.
Table 48. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.750 - - 0.0689
A1 0.100 - 0.250 0.0039 - 0.0098
A2 1.250 - - 0.0492 - -
b 0.280 - 0.480 0.0110 - 0.0189
c 0.170 - 0.230 0.0067 - 0.0091
DocID030584 Rev 2 77/84
STM8S001J3 Package information
79
Figure 38. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package recommended footprint
Device marking for SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body
width
The following figure gives an example of topside marking orientation versus pin 1/ball A1
identifier location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
D 4.800 4.900 5.000 0.1890 0.1929 0.1969
E 5.800 6.000 6.200 0.2283 0.2362 0.2441
E1 3.800 3.900 4.000 0.1496 0.1535 0.1575
e - 1.270 - - 0.0500 -
h 0.250 - 0.500 0.0098 - 0.0197
k - -
L 0.400 - 1.270 0.0157 - 0.0500
L1 - 1.040 - - 0.0409 -
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Table 48. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
Package information STM8S001J3
78/84 DocID030584 Rev 2
Figure 39. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
10.2 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 17: General operating conditions.
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated
using the following equation:
TJmax = TAmax + (PDmax x Θ
JA)
Where:
TAmax is the maximum ambient temperature in °C
•Θ
JA is the package junction-to-ambient thermal resistance in ° C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins, where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*IOH), and taking account of the actual VOL/IOL and
VOH/IOH of the I/Os at low and high level in the application.
06YY
6-
5 < ::
3URGXFWLGHQWLILFDWLRQ
$GGLWLRQDOLQIRUPDWLRQ
'DWHFRGH
8QPDUNDEOHVXUIDFH
3,1UHIHUHQFH
DocID030584 Rev 2 79/84
STM8S001J3 Package information
79
10.2.1 Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
10.2.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Figure 40: STM8S001J3 ordering information scheme(1)).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax= 75 °C (measured according to JESD51-2)
IDDmax = 8 mA, VDD = 5.0 V
Maximum 4 I/Os used at the same time in output at low level with
IOL = 8 mA, VOL= 0.4 V
PINTmax = 8 mA x 5.0 V = 40 mW
PDmax = 40 mW + (8 x 0.4 x 4) mW
Thus: PDmax = 52.8 mW
Using the values obtained in Section Table 49.: Thermal characteristics TJmax is calculated
as follows for SO8N package 102 °C/W :
TJmax = 75 °C + (102 °C/W x 52.8 mW) = 75 °C + 5.4 °C = 80.4 °C.
Above information is within the range (-40 < TJ < 130 °C)
Table 49. Thermal characteristics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
SO8N 102 °C/W
Ordering information STM8S001J3
80/84 DocID030584 Rev 2
11 Ordering information
Figure 40. STM8S001J3 ordering information scheme(1)
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest
to you.
STM8 S 001 J 3 M 3 TR
Product class
STM8 microcontroller
Pin count
J = 8 pins
Package type
M =SO8N
Example:
Sub-family type
001 = low density
Family type
S = standard
Temperature range
3 = -40°C to 125°C
Program memory size
3 = 8 Kbyte
Packing
No character = tube
TR = Tape and reel
DocID030584 Rev 2 81/84
STM8S001J3 STM8 development tools
82
12 STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
12.1 Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in application execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows users to
order exactly what they need to meet their development requirements and to adapt their
emulation system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
Advanced breakpoints with up to 4 levels of conditions
Data breakpoints
Program and data trace recording up to 128 KB records
Read/write on the fly of memory during emulation
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows users to specify the components users need to meet their
development requirements and adapt to future requirements
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
STM8 development tools STM8S001J3
82/84 DocID030584 Rev 2
12.2 Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8. A free version that outputs up to Kbytes of code is
available.
12.2.1 STM8 toolset
STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,
write and verify the user STM8 microcontroller Flash program memory, data EEPROM and
option bytes. STVP also offers project mode for saving programming configurations and
automating programming sequences.
12.2.2 C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of user
application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – One free version that outputs up to Kbytes of code is
available. For more information, see www.cosmic-software.com.
Raisonance C compiler for STM8 – One free version that outputs up to Kbytes of
code. For more information, see www.raisonance.com.
STM8 assembler linker – Free assembly toolchain included in the STVD toolset,
which allows users to assemble and link the user application source code.
12.3 Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on user application board via the SWIM protocol. Additional tools are to
include a low-cost in-circuit programmer as well as ST socket boards, which provide
dedicated programming platforms with sockets for programming the user STM8.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
DocID030584 Rev 2 83/84
STM8S001J3 Revision history
83
13 Revision history
Table 50. Document revision history
Date Revision Changes
24-May-2017 1 Initial release.
29-Jun-2017 2
Updated:
Section 10: Package information
Figure 3: STM8S001J3 SO8N pinout
Table 5: STM8S001J3 pin description
Table 13: STM8S001J3 alternate function remapping
bits for 8-pin devices
Added:
Section : Device marking for SO8N – 8-lead 4.9 x 6 mm,
plastic small outline, 150 mils body width
STM8S001J3
84/84 DocID030584 Rev 2
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved