Standard Power MOSFETs IRFF320, IRFF321, IRFF322, IRFF323 N-Channel Enhancement-Mode Power Field-Effect Transistors 2.0A and 2.5A, 350V - 400V lposton = 1.80 and 2.5Q Features: m SOA is power-dissipation limited a Nanosecond switching speeds Linear transfer characteristics @ High input impedance a Majority carrier device The IRFF320, IRFF321, IRFF322 and IRFF323 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings File Number 1890 N-CHANNEL ENHANCEMENT MODE o $s 92CS~33741 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE SOURCE DRAIN (CASE) JEDEC TO-205AF Parameter IRFF320 (RFF321 IRFF322 IRFF323 Unite | Vos Drain Source Voltage @ 400 350 400 360 Vv VocR Drain Gate Voltage(Rgg = 20 kti@ 400 350 400 350 Vv lp @ Te = 26C Continuous Drain Current 2.6 2.5 2.0 2.0 A lom Pulsed Drain Currant @ 10 10 8.0 6.0 A Vv Gate Source Voltage 20 v Pp @To = 25C Max. Power Dissipation 20 (See Fig. 14) Ww Linear Derating Factor 0.16 (See Fig, 14) WPCC ILM inductive Current, Clarmped (See Fig. 15 and 16) L = 100yH A 10 10 8.0 | 8.0 T. rati i TH, Seeing ctor ~$8 0 180 *e Lead Temperature 300 (0.063 in. (1.6mm) from case for 108) c 3-284Standard Power MOSFETs (RFF320, IRFF321, IRFF322, IRFF323 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpsg_ Drain Source Breakdown Voltage IRFF320 - inpr322 | 400 | - | Vv Vag = OV IRFF321 IRFF323 350 ~ - v Ip = 250nA Vesithy Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Yes: Ip = 250nA | 'gss Gate Source Leakage Forward ALL - = 100 nA Ves = 20V | Gate Source Leskage Reverse ALL = - -100 nA Ygs. = -20V loss Zero Gate Voltage Drain Currant ALL = - 250 BA Vos * Max. Rating, Ves = OV - - 1000 BA Vos, = Max. Rating x 0.8, Yes = OV, Te = 125C 'Dion) On-State Orain Current @ IRFF320 | 9 5 _ _ A FFS24 Vps > !pion) RDSion) max. VGS = 10V (RFF322 2.0 _ _ A IRFF323 Rosion) Static Drain Source On-State IRFF320 _ 18) 18 a Resistance @ IRFF321 . . Vv, tov. t 1.254 inerazz| lag | os a Gs ube IRFF323 . . Of Forward Transconductance ALL 1.0 2.0 - Siu) Vos >! x Fy tip = 1.254 2 DS? 'Dion) XFDSion) max. !O = 1-268 C, Input Capacitance ALL - 450 pF Veg * OV, Vpg = 28V, f = 1.0 MHz Cc Output Capacitance ALL - 100 pF Ses fig. 10 Cros Reverse Tranafer Capacitance ALL - 20 pF t Turn-On Delay Time ALL - 20 40 ns Vop * 0.5 BVpsg_ Ip = 2.0A, Zy = SON t Rise Time ALL = 25 60 ns See Fig. 17 tgtoft) Turn-Off Delay Time ALL ~ 50 100 ns (MOSFET switching times are Ntially ty Fall Time ALL _ 25 60 ne independent of operating tamperatura.) Qa Total Gate Charge Veg = 10V, Ip =8.0A, Vpg = 0.8V Max. Rating. 8 (Gate-Source Plus Gate-Drain} ALL 7 12 1s nc See Fig. 18 tor taat circuit. Bate charge is essentlally ip: of op ig tamperatur | G6 Gate-Source Charge ALL - 6.0 9.0 ac Qaa G rain (Miller) Charge ALL - 6.0 9.0 nc Lp Internal Drain Inductance ALL _ 6.0 - nH Measured from the Modified MOSFET draln lead, 5mm aymboi showing the (0.2 in.) fram header internal device to center of dia. inductances. D> by is Internal Source Inductance ALL - 16 - oH Measured from the sourcs lead, 5mm 6 {0.2 in.) from header Ls to source bonding pad. 8 Thermal Resistance [ Pihuc _Junction-to-Case qT au] - |] | 6.25 | ecw L Rina _Junction-to-Ambient T au { | [176 ct c/w | Free Air Operation | Source-Drain Diode Ratings and Characteristics @OTy = 26C to 160C. @Pulse Test: Pulse width < 300x8, Duty Cycie < 2%. Ig Continuous Source Current tRFF320 ~ _ 28 A Moditied MOSFET symbol (Body Diode) tRFF321 . showing the integral 2 IRFF322 reverse P-N junction rectifier. inreaza| ~ | ~ | 207 A ism Pulse Source Current IRFF320 _ _ a (Body Diode) @ iREF321 10 A (RFF322 inFraz3 {| ~ | ~ | & | A 5 Vsp Diode Forward Voltage @ IRFF320 _ _ 16 v To = 26C, ig = 2.54, Vag = OV Inrars} - | - | 18] Te = 26C, Ig = 2.0, Vgg = OV ter Raverae Recovery Time ALL = 450 - ns Ty = 160C, Ig = 2.6A, dig/dt = 100A/us Qrra Reverse Recovered Charge ALL ~ 3.1 ae Ty = 150C, ig = 2.5A, dig/dt = 100A/ue ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). : 3-285Standard Power MOSFETs IRFF320, IRFF321, IRFF322, IRFF323 SOus | | | Vos > 'p{on) * Boston) mex. a a = = = i, i : : z E =z = <= = 3 3 zi z < < z Q o 8 s 1 Qo 4 8 W 18 20 0 1 2 3 4 5 6 Vos, ORAIN-TO-SOURCE VOLTAGE {VOLTS} Vas, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. 20 1S LIMITED BY Rpsion} 10 a 5 _ = a = g : 2 z 5 1 : r4 z = os = o 3 z = = 02 z 5 Te = 2506 S Ss at Ty = 15000 MAX, + Ric 6.25 KW 0.05 FF sinGLE PULSE 0.02 0.01 0 100 200 300 Yog. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. y = 2 a L batty t 2 0.05 1. DUTY FACTOR, D = z THERMAL IMPEDANCE (PER UNIT) SINGLE 2, PER UNIT BASE = Rinjg = 6.25 DEG. C/W. THERMAL IMPEQANCE) 3. Tym - Te * Pom 2rnucit). 0.01 10-5 2 10-4 t 5 10-3 2 5 10-2 2 5 19-1 2 1.0 2 5 10 11, SQUARE WAVE PULSE DURATION (SECONDS) 2 2 s Zihucltl/Renye. NORMALIZED EFFECTIVE TRANSIENT Fig. 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. 3-28690 us PULSE { Vos >!o(an) x Rastan! max. fs, TRANSCONDUCTANCE (StEMENS) 8 1 2 3 5 8 ip. ORAIN CURRENT (AMPERES) a 1 Fig. Typical transconductance vs. drain current. 25 1.15 1.05 0.95 085 BV ggs. ORAIN.TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 0.75 -40 o 40 80 120 160 Tj, JUNCTION TEMPERATURE (9C) Fig. 8 - Breakdown voltage vs. temperature. 1000 Ves #0 i : 1 He 800 Cigg = Cop + Cog, Cys SHORTED Coss * Cou Cy 6, Con Ct 600 Cds + Ogg 400 C, CAPACITANCE (pF) 200 Q 10 20 30 40 50 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 - Typical capacitance vs. drain-to-source voltage. Standard Power MOSFETs IRFF320, IRFF321, IRFF322, IRFF323 a ~ w so Ny w lpn. REVERSE ORAIN CURRENT (AMPERES} a w ne Ty = 269C a 1 2 : 3 : a Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 - Typical source-drain diode forward voltage. 22 (NORMALIZED) a 2 Ves * be Ip = 1.254 ApSion). DRAIN-TO-SOURCE ON RESISTANCE 40 0 40 80 120 160 Ty. JUNCTION TEMPERATURE (C) Fig. 9 - Normalized on-resistance vs. temperature. Vos = 80V Vos = 200V Vas, GATE-TO-SOURCE VOLTAGE (VOLTS) Ip=5A FOR TEST CIACUIT SEE w, 0 4 8 12 16 20 Oy, TOTAL GATE CHARGE Int) Fig. 11 - Typical gate charge vs. gate-to-source voltage. 3-287Standard Power MOSFETs IRFF320, IRFF321, IRFF322, IRFF323 2.0 us QURATION. INITIAL Ty = 25C. (HEATING Aps(on) MEASURED WITH CURRENT PULSE OF EFFECT OF 2.0 us PULSE IS MINIMAL } \ A, Ves=! A Ros(on}. ORAIN-TO-SOURCE ON RESISTANCE (OHMS) 0 2 4 6 8 10 12 Ip, ORAIN CURRENT (AMPERES) Fig. 12 - Typical on-resistance vs. drain current. Pp, POWER DISSIPATION (WATTS) Q 20 40 60 a0 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 - Power vs. temperature derating curve. ADJUST Ry TO OBTAIN SPECIFIED ip GENERATOR Fore 7 TO SCOPE O02 HIGH FREQUENCY SHUNT Fig. 17 - Switching time test circuit. 3-288 12v BATTERY 1s IRFF322, Ip, BRAIN CURRENT (AMPERES) Os 0 25 50 7 100 128 150 Te, CASE TEMPERATURE (9C) Fig. 13 - Maximum drain current vs. case temperature. VARY tp TO OBTAIN REQUIRED PEAK I, t ouT Vgg* 10V bt, E}=058Vpgs Ec = 0.75 BVggs Fig. 15 - Clamped inductive test circuit. Fig. 16 - Clamped inductive waveforms. o Vos (SOLATED SUPPLY) CURRENT REGULATOR SAME TYPE + AS DUT 1 out CURRENT = CURAENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 - Gate charge test circuit.