This is information on a product in full production.
January 2014 DocID16873 Rev 3 1/25
TSC103
High-voltage, high-side current sense amplifier
Datasheet - production data
Features
Independent supply and input common-mode
voltages
Wide common-mode operating range:
2.9 V to 70 V in single-supply configuration,
-2.1 V to 65 V in dual-supply configuration
Wide common-mode surviving range:
-16 V to 75 V (reversed battery and load-dump
conditions)
Supply voltage range:
2.7 to 5.5 V in single-supply configuration
Low current consumption: ICC max = 360 µA
Pin selectable gain: 20 V/V, 25 V/V, 50 V/V or
100 V/V
Buffered output
Applications
Automotive current monitoring
DC motor control
Photo-voltaic systems
Battery chargers
Precision current sources
Current monitoring of notebook computers
Uninterruptible power supplies
High-end power supplies
Description
The TSC103 measures a small differential voltage
on a high-side shunt resistor and translates it into
a ground-referenced output voltage. The gain is
adjustable to four different values from 20 V/V up
to 100 V/V by two selection pins.
Wide input common-mode voltage range, low
quiescent current, and tiny TSSOP8 packaging
enable use in a wide variety of applications.
The input common-mode and power-supply
voltages are independent. The common-mode
voltage can range from 2.9 V to 70 V in the single-
supply configuration or be offset by an adjustable
voltage supplied on the Vcc- pin in the dual-
supply configuration.
With a current consumption lower than 360 µA
and a virtually null input leakage current in
standby mode, the power consumption in the
applications is minimized.
SO8
(Plastic package)
TSSOP8
(Plastic package)
2
1
3
SEL2
Vm
SEL1
6
8
Gnd
Vp
4
Ou
t
7Vcc-
5Vcc+
Pin connections
(top view)
www.st.com
Contents TSC103
2/25 DocID16873 Rev 3
Contents
1 Application schematic and pin description . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Electrical characteristics curves: current sense amplifier . . . . . . . . . 10
5 Parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Common-mode rejection ratio (CMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Supply voltage rejection ratio (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Gain (Av) and input offset voltage (Vos) . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Input offset drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Maximum permissible voltages on pins . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID16873 Rev 3 3/25
TSC103 Application schematic and pin description
25
1 Application schematic and pin description
The TSC103 high-side current sense amplifier can be used in either single- or dual-supply
mode. In the single-supply configuration, the TSC103 features a wide 2.9 V to 70 V input
common-mode range totally independent of the supply voltage. In the dual-supply range,
the common-mode range is shifted by the value of the negative voltage applied on the Vcc-
pin. For instance, with Vcc+ = 5 V and Vcc- = -5 V, then the input common-mode range is
-2.1 V to 65 V.
Figure 1. Single-supply configuration schematic
AM04517
5 V
Vsense
load
Iload
Rsense
Common-mode voltage: 2.9 V to 70 V
Vp Vm
Rg1 Rg2
Vcc+ Vcc
SEL1
Vout
load
Iload
Rsense
Rg3
Vp Vm
Out
Rg1 Rg2
Voltage
buffer
Sense
amplifier
Vcc+
TSC103
Gnd
Vcc-
K2
µ Controller
ADC
Vcc
GPIO2
Gnd
SEL1
SEL2
GPIO1
Application schematic and pin description TSC103
4/25 DocID16873 Rev 3
Figure 2. Dual-supply configuration schematic
Figure 3. Common-mode versus supply voltage in dual-supply configuration
5 V
Vsense
Vout
load
Iload
Rsense
µ
Controller
ADC
Gnd
Vcc
GPIO1
GPIO2
-5 V
Vp Vm Vcc+
TSC103
Out
Gnd
SEL1
SEL2
Vcc-
Common-mode voltage: -2.1 V to 65 V
AM04518
Max = 70 V
min = 2.9 V
Max = 65 V
min = -2.1 V
Vcc- = 0 V Vcc- = -5 V
Max = 60 V
min = -7.1 V
Vcc- = -10 V
Single-supply Dual-supply
Vicm
common-mode voltage
operating range
AM04519
DocID16873 Rev 3 5/25
TSC103 Application schematic and pin description
25
Table 1 describes the function of each pin. Their position is shown in the illustration on the
cover page and in Figure 1 on page 3.
Table 1. Pin description
Symbol Type Function
Out Analog output The Out voltage is proportional to the magnitude of the sense
voltage Vp-Vm.
Gnd
Power supply
Ground line
Vcc+ Positive power supply line.
Vcc- Negative power supply line.
Vp
Analog input
Connection for the external sense resistor. The measured current
enters the shunt on the Vp side.
Vm Connection for the external sense resistor. The measured current
exits the shunt on the Vm side.
SEL1
Digital input Gain-select pin
SEL2
Absolute maximum ratings and operating conditions TSC103
6/25 DocID16873 Rev 3
2 Absolute maximum ratings and operating conditions
Table 2. Absolute maximum ratings
Symbol Parameter Value Unit
Vid Input pins differential voltage (Vp-Vm20
V
Vin_sense Sensing pins input voltages (Vp, Vm)(1)
1. These voltage values are measured with respect to the Vcc- pin.
-16 to 75
Vin_sel Gain selection pins input voltages (SEL1, SEL2)(2)
2. These voltage values are measured with respect to the Gnd pin.
-0.3 to Vcc++0.3
Vcc+ Positive supply voltage(2) -0.3 to 7
Vcc+-Vcc- DC supply voltage 0 to 15
Vout DC output pin voltage(2) -0.3 to Vcc++0.3
Tstg Storage temperature -55 to 150
°C
TjMaximum junction temperature 150
Rthja
TSSOP8 thermal resistance junction to ambient 120
°C/W
SO8 thermal resistance junction to ambient 125
ESD
HBM: human body model(3)
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
2.5 kV
MM: machine model(4)
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
150 V
CDM: charged device model(5)
5. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
1.5 kV
Table 3. Operating conditions
Symbol Parameter Value Unit
Vcc+
Supply voltage in single-supply configuration from
Tmin to Tmax
(Vcc- connected to Gnd = 0 V)
2.7 to 5.5 V
Vcc-
Negative supply voltage in dual-supply
configuration from Tmin to Tmax
-
V
Vcc+ = 5.5 V max -8 to 0
Vcc+ = 3 V max -11 to 0
Vicm
Common-mode voltage range referred to pin Vcc -
(Tmin to Tmax)2.9 to 70 V
Toper Operational temperature range (Tmin to Tmax) -40 to 125 °C
DocID16873 Rev 3 7/25
TSC103 Electrical characteristics
25
3 Electrical characteristics
The electrical characteristics given in the following tables are measured under the following
test conditions unless otherwise specified.
Tamb = 25 °C, Vcc+ = 5 V, Vcc- connected to Gnd (single-supply configuration).
Vsense = Vp-Vm = 50 mV, Vm = 12 V, no load on Out, all gain configurations.
Table 4. Supply
Symbol Parameter Test conditions Min. Typ. Max. Unit
ICC Total supply current Vsense = 0 V, Tmin < Tamb < Tmax
-
200 360
µA
ICC1 Total supply current Vsense = 50 mV Av = 50 V/V
Tmin < Tamb < Tmax
300 480
Table 5. Input
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC CMR
DC common-mode rejection
Variation of Vout versus Vicm
referred to input(1)
2.9 V< Vm < 70 V
Tmin < Tamb < Tmax
90 105
dBAC CMR
AC common-mode rejection
Variation of Vout versus Vicm
referred to input (peak-to-peak
voltage variation)
Av = 50 V/V or 100 V/V
2.9 V< Vm < 30 V
1 kHz sine wave
95
SVR
Supply voltage rejection
Variation of Vout versus VCC(2)
SEL1 = Gnd, SEL2 = Gnd
2.7 V< VCC < 5.5 V
Vsense = 30 mV
Tmin < Tamb < Tmax
85 95
Vos Input offset voltage(3) Tamb = 25 °C
Tmin < Tamb < Tmax
±500
±1100 µV
dVos/dT Input offset drift vs. T Av = 50 V/V
Tmin < Tamb < Tmax
-20 +5 µV/°C
Ilk Input leakage current VCC = 0 V
Tmin < Tamb < Tmax
1
µA
Iib Input bias current Vsense = 0 V
Tmin < Tamb < Tmax
10 15
VIL
Logic low voltage threshold
(SEL1 and SEL2)
VCCmin < VCC < VCCmax
Tmin < Tamb < Tmax
-0.3 0.5
V
VIH
Logic high voltage threshold
(SEL1 and SEL2)
VCCmin < VCC < VCCmax
Tmin < Tamb < Tmax
1.2 VCC
Isel
Gain-select pins (SEL1 and SEL2)
input bias current
SEL pin connected to GND or
VCC Tmin < Tamb < Tmax
400 nA
1. See Section 5: Parameter definitions for the definition of CMR.
2. See Section 5 for the definition of SVR.
3. See Section 5 for the definition of Vos.
Electrical characteristics TSC103
8/25 DocID16873 Rev 3
Table 6. Output
Symbol Parameter Test conditions Min. Typ. Max. Unit
Av Gain
SEL1 = Gnd, SEL2 = Gnd
SEL1 = Gnd, SEL2 = Vcc+
SEL1 = Vcc+, SEL2 = Gnd
SEL1 = Vcc+, SEL2 = Vcc+
20
25
50
100
V/V
ΔVout/ΔT Output voltage drift vs. T(1) Av = 50 V/V
Tmin < Tamb < Tmax
±240 ppm/°C
ΔVout/ΔIout Output stage load regulation
-10 mA < Iout <10 mA
Iout sink or source current
Av = 50 V/V
0.3 ±1.5 mV/mA
ΔVout Total output voltage accuracy(2) Vsense = 50 mV(3) Tamb = 25 °C
Tmin < Tamb < Tmax
±2.5
±4
%
ΔVout Total output voltage accuracy Vsense = 90 mV(3) Tamb = 25 °C
Tmin < Tamb < Tmax
±3.5
±5
ΔVout Total output voltage accuracy Vsense = 20 mV Tamb = 25 °C
Tmin < Tamb < Tmax
±3.5
±5
ΔVout Total output voltage accuracy Vsense = 10 mV Tamb = 25 °C
Tmin < Tamb < Tmax
±5.5
±8
ΔVout Total output voltage accuracy Vsense = 5 mV Tamb = 25 °C
Tmin < Tamb < Tmax
±10
±22
Isc Short-circuit current OUT connected to VCC or GND 15 26 mA
VOH
Output stage high-state saturation
voltage
VOH = VCC-Vout
Vsense = 1 V
Iout = 1 mA 85 135
mV
VOL
Output stage low-state saturation
voltage
Vsense =-1 V
Iout = 1 mA 80 125
1. See Section 5: Parameter definitions for the definition of output voltage drift versus temperature.
2. Output voltage accuracy is the difference with the expected theoretical output voltage Vout-th=Av*Vsense. See Section 5 for
a more detailed definition.
3. Except for Av = 100 V/V.
DocID16873 Rev 3 9/25
TSC103 Electrical characteristics
25
Table 7. Frequency response
Symbol Parameter Test conditions Min. Typ. Max. Unit
ts
Response to input differential
voltage change.
Output settling to 1% of final value
Vsense square pulse applied to
generate a variation of Vout
from 500 mV to 3 V
Cload = 47 pF
-
-
s
Av = 20 V/V, 3
Av = 25 V/V 4
Av = 50 V/V 6
Av = 100 V/V 10
tSEL
Response to a gain change.
Output settling to 1% of final value
Any change of state of SEL1
or SEL2 pin
-
1
s
trec
Response to common-mode
voltage change.
Output settling to 1% of final value
Vcc+= 5 V, Vcc-= -5 V
Vm step change from -2 V to
30 V or 30 V to -2 V
20
SR Slew rate Vsense = 10 mV to 100 mV 0.4 0.6 - V/µs
BW 3 dB bandwidth
Cload = 47 pF Vm = 12 V
Vsense = 50 mV
Av = 50 V/V
- 700 - kHz
Table 8. Noise
Symbol Parameter Test conditions Min. Typ. Max. Unit
eNEquivalent input noise voltage f = 1 kHz - 40 - nV/ Hz
Electrical characteristics curves: current sense amplifier TSC103
10/25 DocID16873 Rev 3
4 Electrical characteristics curves: current sense
amplifier
Unless otherwise specified, the test conditions for the following curves are:
Tamb = 25 °C, VCC = 5 V, Vsense = Vp - Vm = 50 mV, Vm = 12 V
No load on Out pin
Figure 4. Output voltage vs. Vsense Figure 5. Output voltage accuracy vs. Vsense
0
1
2
3
4
5
6
-20 0 20 40 60 80 100
Vout (V)
Vsense (mV)
-25
-20
-15
-10
-5
0
5
10
15
20
25
020406080
100
delta in (%)
Vsense(mV)
Guaranteed
accuracy vs. T
Typical
accuracy
Guaranteed
accuracy @25°C
Figure 6. Supply current vs. supply voltage Figure 7. Supply current vs. Vsense
0
50
100
150
200
250
300
350
2.5 3 3.5 4 4.5 5
5.5
Icc (μA)
Vcc (V)
T = 25 °C
T = 125 °C
T =
-
40 °C
0
50
100
150
200
250
300
350
400
-100 -50 0 50
100
Icc (μA)
Vsense (mV)
T =
-
40°C
T = 25 °C
T = 125 °C
DocID16873 Rev 3 11/25
TSC103 Electrical characteristics curves: current sense amplifier
25
Figure 8. Vp pin input current vs. Vsense Figure 9. Vn pin input current vs. Vsense
0
5
10
15
20
25
30
35
40
-100 -50 0 50
100
Ip (μA)
Vsense (mV)
T =
-
40 °C
T
=
25 °C
T
=
125 °C
0
2
4
6
8
10
12
14
16
18
20
-100 -50 0 50
100
Im (μA)
Vsense (mV)
T =
-
40 °C
T
=
25 °C
T
=
125 °C
Figure 10. Output stage low-state saturation
voltage vs. output current (Vsense = -1 V)
Figure 11. Output stage high-state saturation
voltage vs. output current (Vsense = +1 V)
0
200
400
600
800
1000
1200
02468
10
Vol (mV)
Iout (mA)
T =
-
40 °C
T = 25 °C
T
=
125 °C
Output stage
sinking current
0
200
400
600
800
1000
1200
-10-8-6-4-2
0
Voh (mV)
Iout (mA)
T =
-
40 °C
T = 25 °C
T
=
125 °C
Output stage
sourcing current
Figure 12. Output stage load regulation Figure 13. Step response
-6
-5
-4
-3
-2
-1
0
1
-10 -5 0 5
10
Iout (mA)
T = 25°C
T = -40°C
T = 125°C
Output stage
sourcing current
Output stage
sinking current
Vout
-
(Vout @ Iout = 0A) (mV)
Vsense
Vout
Vout 500mV/div
Vsense 50mV/div
Time base 4µs/div
Electrical characteristics curves: current sense amplifier TSC103
12/25 DocID16873 Rev 3
Figure 16. Noise level
Figure 14. Bode diagram Figure 15. Power supply rejection ratio
-30
-20
-10
0
10
20
30
1.E+03 1.E+04 1.E+05 1.E+06
1.E+07
Gain (dB)
Frequency (Hz)
    





3655G%
)UHTXHQF\+]
0
20
40
60
80
100
120
Noise level (nv/sqrt(Hz))
Frequency (Hz)
DocID16873 Rev 3 13/25
TSC103 Parameter definitions
25
5 Parameter definitions
5.1 Common-mode rejection ratio (CMR)
The common-mode rejection ratio (CMR) measures the ability of the current-sensing
amplifier to reject any DC voltage applied on both inputs Vp and Vm. The CMR is referred
back to the input so that its effect can be compared with the applied differential signal. The
CMR is defined by the formula:
5.2 Supply voltage rejection ratio (SVR)
The supply-voltage rejection ratio (SVR) measures the ability of the current-sensing
amplifier to reject any variation of the supply voltage VCC. The SVR is referred back to the
input so that its effect can be compared with the applied differential signal. The SVR is
defined by the formula:
5.3 Gain (Av) and input offset voltage (Vos)
The input offset voltage is defined as the intersection between the linear regression of the
Vout vs. Vsense curve with the X-axis (see Figure 17). If Vout1 is the output voltage with
Vsense = Vsense1 and Vout2 is the output voltage with Vsense = Vsense2, then Vos can be
calculated with the following formula.
CMR 20
ΔVout
ΔVicm Av
------------------------------log=
SVR 20
ΔVout
ΔVCC Av
------------------------------log=
Vos Vsense1
Vsense1 Vsense2
Vout1 Vout2
------------------------------------------------Vout1
⎝⎠
⎛⎞
=
Parameter definitions TSC103
14/25 DocID16873 Rev 3
Figure 17. Vout versus Vsense characteristics: detail for low Vsense values
The values of Vsense1 and Vsense2 used for the input offset calculations are detailed in
Table 9.
Table 9. Test conditions for Vos voltage calculation
Av (V/V) Vsense1 (mV) Vsense2 (mV)
20 50 5
25 50 5
50 50 5
100 40 5
AM04520
Vos Vsense2
Vsense
Vout
Vsense1
Vout_1
Vout_2
DocID16873 Rev 3 15/25
TSC103 Parameter definitions
25
5.4 Output voltage drift versus temperature
The output voltage drift versus temperature is defined as the maximum variation of Vout with
respect to its value at 25 °C over the temperature range. It is calculated as follows:
with Tmin < Tamb < Tmax.
Figure 18 provides a graphical definition of the output voltage drift versus temperature. On
this chart, Vout is always within the area defined by the maximum and minimum variation of
Vout versus T, and T = 25 °C is considered to be the reference.
Figure 18. Output voltage drift versus temperature (Av = 50 V/V Vsense = 50 mV)
ΔVout
ΔT
-----------------max
Vout Tamb
()Vout 25°C()
Tamb 25°C
--------------------------------------------------------------------------=
-60
-40
-20
0
20
40
60
-60 -40 -20 0 20 40 60 80 100 120
140
Vout-Vout@25°C (mV)
T (°C)
Parameter definitions TSC103
16/25 DocID16873 Rev 3
5.5 Input offset drift versus temperature
The input voltage drift versus temperature is defined as the maximum variation of Vos with
respect to its value at 25 °C over the temperature range. It is calculated as follows:
with Tmin < Tamb < Tmax.
Figure 19 provides a graphical definition of the input offset drift versus temperature. On this
chart, Vos is always within the area defined by the maximum and minimum variation of Vos
versus T, and T = 25 °C is considered to be the reference.
Figure 19. Input offset drift versus temperature (Av = 50 V/V)
5.6 Output voltage accuracy
The output voltage accuracy is the difference between the actual output voltage and the
theoretical output voltage. Ideally, the current sensing output voltage should be equal to the
input differential voltage multiplied by the theoretical gain, as in the following formula.
Vout-th = Av.Vsense
The actual value is very slightly different, mainly due to the effects of:
the input offset voltage Vos
the non-linearity
ΔVos
ΔT
---------------max
Vos Tamb
()Vos 25°C()
Tamb 25°C
---------------------------------------------------------------------=
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
-60 -40 -20 0 20 40 60 80 100 120
140
Vos-Vos@25°C (mV)
T (°C)
DocID16873 Rev 3 17/25
TSC103 Parameter definitions
25
Figure 20. Vout vs. Vsense theoretical and actual characteristics
The output voltage accuracy, expressed as a percentage, can be calculated with the
following formula,
with 20 V/V, 25 V/V, 50 V/V or 100 V/V depending on the configuration of the SEL1 and
SEL2 pins.
Vsense
5 mV
Ideal
Actual
Vout
AM04521
Vout accuracy for Vsense = 5 mV
ΔVout
abs Vout Av Vsense
()()
Av Vsense
---------------------------------------------------------------------------=
Maximum permissible voltages on pins TSC103
18/25 DocID16873 Rev 3
6 Maximum permissible voltages on pins
The TSC103 can be used in either a single or dual supply configuration. The dual-supply
configuration is achieved by disconnecting Vcc- and Gnd, and connecting Vcc- to a negative
supply. Figure 21 illustrates how the absolute maximum voltages on input pins Vp and Vm
are referred to the Vcc- potential, while the maximum voltages on the positive supply pin,
gain selection pins, and output pins are referred to the Gnd pin. It should also be noted that
the maximum voltage between Vcc- and Vcc+ is limited to 15 V.
Figure 21. Maximum voltages on pins
+75 V
Vp and Vm
Vcc+
-16 V
+15 V +7 V
Vp and Vm
-0.3 V
Vcc+
+ 0.3 V
SEL1, SEL2 and Out
SEL1, SEL2 and Out
Vcc- Vcc-
Gnd
Vcc+
Gnd
-0.3V
Vcc+
AM04522
DocID16873 Rev 3 19/25
TSC103 Application information
25
7 Application information
The TSC103 can be used to measure current and to feed back the information to a
microcontroller.
Figure 22. Single-supply configuration schematic
The current from the supply flows to the load through the Rsense resistor, causing a voltage
drop equal to Vsense across Rsense. The amplifier’s input currents are negligible, therefore its
inverting input voltage is equal to Vm. The amplifier's open-loop gain forces its non-inverting
input to the same voltage as the inverting input. Consequently, the amplifier adjusts the
current flowing through Rg1 so that the voltage drop across Rg1 matches Vsense exactly.
Therefore, the drop across Rg1 is:
VRg1 = Vsense = Rsense.Iload
If IRg1 is the current flowing through Rg1, then IRg1 is given by the formula:
IRg1 = Vsense/Rg1
The IRg1 current flows entirely into resistor Rg3 (the input bias current of the buffer is
negligible). Therefore, the voltage drop on the Rg3 resistor can be calculated as follows.
VRg3 = Rg3.IRg1 = (Rg3/Rg1).Vsense= K1.Vsense with K1=Rg3/Rg1.
The voltage across the Rg3 resistor is buffered to the Out pin by the voltage buffer, featuring
a gain equal to K2. Therefore Vout can be expressed as:
Vout = K1.K2.Vsense = Av.Vsense with Av= K1.K2
or: Vout = Av .Rsense.Iload
AM04517
5 V
Vsense
load
Iload
Rsense
Common-mode voltage: 2.9 V to 70 V
Vp Vm
Rg1 Rg2
Vcc+ Vcc
SEL1
Vout
load
Iload
Rsense
Rg3
Vp Vm
Out
Rg1 Rg2
Voltage
buffer
Sense
amplifier
Vcc+
TSC103
Gnd
Vcc-
K2
µ Controller
ADC
Vcc
GPIO2
Gnd
SEL1
SEL2
GPIO1
Application information TSC103
20/25 DocID16873 Rev 3
The resistor ratio, K1 = Rg3/Rg1, is internally set to 20 V/V, and the voltage buffer gain, K2,
can be set to 1, 1.25, 2.5, or 5 depending on the voltage applied on the SEL1 and SEL2
pins. Since they define the full-scale output range of the application, the Rsense resistor and
the amplification gain Av are important parameters and must therefore be selected carefully.
DocID16873 Rev 3 21/25
TSC103 Package information
25
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package information TSC103
22/25 DocID16873 Rev 3
8.1 TSSOP8 package information
Figure 23. TSSOP8 package mechanical drawing
Table 10. TSSOP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.200.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.10 0.004
DocID16873 Rev 3 23/25
TSC103 Package information
25
8.2 SO8 package information
Figure 24. SO8 package mechanical drawing
Table 11. SO8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0
ccc 0.10 0.004
Ordering information TSC103
24/25 DocID16873 Rev 3
9 Ordering information
10 Revision history
Table 12. Order codes
Part number Temperature range Package Packaging Marking
TSC103IPT
-40° C, +125 °C
TSSOP8
Tape and reel
103I
TSC103IDT SO8 TSC103I
TSC103IYPT(1) -40° C, +125 °C
automotive grade
TSSOP8 103Y
TSC103IYDT(1) SO8 TSC103Y
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q002 or equivalent.
Table 13. Document revision history
Date Revision Changes
04-Jan-2010 1 Initial release.
18-Nov-2011 2
Added Chapter 4: Electrical characteristics curves: current
sense amplifier.
Changed Figure 4 to Figure 16.
Added automotive grade qualification for SO8 package in
Table 12: Order codes.
31-Jan-2014 3 Table 12: Updated automotive-grade footnotes
DocID16873 Rev 3 25/25
TSC103
25
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com