PMC 8818T S Contents Product Program. . . . . . . . . . . . . . . . . . . . . . 2 Mechanical Data. . . . . . . . . . . . . . . . . . . . . . 2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . 3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Product Qualification Specification. . . . . . . . 4 Safety Specification . . . . . . . . . . . . . . . . . . . 5 Adjusted to 1.0 Vout - Data. . . . . . . . . . . . . . 6 Adjusted to 1.2 Vout - Data. . . . . . . . . . . . . . 9 Adjusted to 1.5 Vout - Data. . . . . . . . . . . . . 12 Adjusted to 1.8 Vout - Data. . . . . . . . . . . . . 15 Adjusted to 2.5 Vout - Data. . . . . . . . . . . . . 18 Adjusted to 3.3 Vout - Data. . . . . . . . . . . . . 21 Adjusted to 5.0 Vout - Data. . . . . . . . . . . . . 24 EMC Specification. . . . . . . . . . . . . . . . . . . . 27 Operating Information. . . . . . . . . . . . . . . . . 28 Thermal Considerations . . . . . . . . . . . . . . . 30 Soldering Information . . . . . . . . . . . . . . . . . 31 Delivery Package Information. . . . . . . . . . . 32 Compatibility with RoHS requirements. . . . 32 Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Sales Offices and Contact Information. . . . 33 DC/DC regulator Input 8.3 - 16 V Output 16 A Key Features * Wide input, 8.3 - 16 Vdc * Programmable output, 0.75 - 5.5 Vdc * Monotonic start up into pre-biased output * Under voltage protection * Short circuit protection * Remote sense * Remote On/Off * Design for Environment (DfE) * European Commission Directive 2002/95/EC (RoHs) compliant The PMC series of surface mount DC/DC regulators (POL) are intended to be used as local distributed power sources in distributed power architecture. The high efficiency and high reliability of the PMC series makes them particularly suited for the communications equipment of today and tomorrow. These products are manufactured using the most advanced technologies and materials to comply with en- E vironmental requirements. Designed to meet high reliability requirements of systems manufacturers, the PMC responds to world-class specifications. Ericsson Power Modules is an ISO 9001/14001 certified supplier. Datasheet Product Program VO/IO max VI PO max Ordering No. Comment 0.75 - 5.50/16 A 80 W PMC 8818T S Released 1.0 V/16 A 16 W PMC 8118NA S On request 1.2 V/16 A 19.2 W PMC 8118LA S On request 1.5 V/16 A 24 W PMC 8218H S On request 1.8 V/10 A 28.8 W PMC 8218G S On request 2.5 V/10 A 40 W PMC 8419 S On request 3.3 V/16 A 52.8 W PMC 8510 S On requeast 5 V/16 A 80 W PMC 8811 S On request Output 1 8.3 - 16V 8.3 - 16V Option Suffix Negative Remote Control logic Example N PMC 8818T SN Mechanical Data 33,00 [1.299] 7,54 [0.297] <> <> 4,83(3x) [0.190] #PUUPN7JFX 7,87 [0.310] max 8,25 [0.324] 7,54 <> 4FOTF 7BEK 0VU (OE Dimensionsin mm[inch] Tolerances(unlessspecified): x,xx 0,25[0,01] Pin true position w ithin 0,4 [0,016] 3,80 <> 3FDPNNFOEFEGPPUQSJOU 5PQ7JFX Weight Connections Pin Designation Function 1 RC Remote Control 2 + In Input Voltage 3 Gnd Ground 4 + Out Output Voltage 5 Vadj Output Voltage Adjust 6 +S Remote sensing PMC 8818T S Datasheet 2,6 [0.102] *O 3$ 10,29 [0.405] Co-planaritymax 0,1[0,004] <> 2,70(6x) [0.106] 10,92 10,92 [0.430] 1,50(6x) [0.059] 4,83(3x) [0.190] 10,29 [0.405] 13,46 [0.530] 7,87 [0.310] 7g 4FOTF7BEK 0VU(OE 3$ Pins *O Material: Copper Plating: Flash gold over nickel EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Absolute Maximum Ratings Characteristics min typ max Unit Tref Maximum Operating Temperature, see thermal considerations -45 +115 C TS Storage temperature -55 +125 C VI Input voltage -0.3 16 Vdc Vtr Input voltage transient -0.3 40 Vdc VRC Remote control voltage Negative logic -0.3 16 Vdc Positive logic -0.3 16 Vdc Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner. Input Tref = -30 ... +90 C, VI = 8.3...16.0 V unless otherwise specified Typ values specified at: Tref = +25 C, VInom, Iomax = 16 A Characteristics Conditions min typ max 8.3 12 16 Unit VI Input voltage range Vloff Turn-off input voltage Iomax 7.8 V VIon Turn-on input voltage Iomax 8.0 V CI Input capacitance 30 F PIi PRC VIac Input idling power Io = 0 A, VI = 12 V Input stand-by power Input ripple 1) 20 Hz ... 5 MHz VI = 12 V, Io = 1.0 x Iomax V Vo = 1.00 V 470 560 mW Vo = 1.20 V 500 600 mW Vo = 1.50 V 550 660 mW Vo = 1.80 V 605 725 mW Vo = 2.50 V 750 900 mW Vo = 3.30 V 910 1090 mW Vo = 5.00 V 1150 1410 mW VI = 12 V, RC activated 35 mW Vo = 1.00 V 170 mVp-p Vo = 1.20 V 180 mVp-p Vo = 1.50 V 190 mVp-p Vo = 1.80 V 210 mVp-p Vo = 2.50 V 310 mVp-p Vo = 3.30 V 350 mVp-p Vo = 5.00 V 540 mVp-p 1) Measured with 4 x 4.7 F ceramic capacitors Fundamental Circuit Diagram +OUT +IN +SENSE GND GND Vadj PWM controller Error amplifier Ref RC RC Block GND GND PMC 8818T S Datasheet EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Absolute Maximum Ratings Characteristics min typ max Unit Tref Operating Reference Temperature, see pg. 27 -45 +115 C TS Storage temperature -55 +125 C VI Input voltage -0.3 +5.5 Vdc Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner. Input Tref = -30 ... +90 C, VI = 3.0...5.5 V unless otherwise specified Typ values specified at: Tref = +25 C, VInom, Iomax = 16 A Characteristics Conditions min typ 3.0 max Unit 5.5 Vdc VI Input voltage range VIoff Turn-off input voltage VIon Turn-on input voltage CI Input capacitance PIi Input idling power Io = 0 A, VI = 5.5 V 680 mW PRC Input stand-by power (RC active) Non operation, VI = 5 V 7.5 mW VIac Input ripple 1) 20 Hz ... 5 MHz, Iomax, VI = 5 V Ramp from higher voltage, Vout = 1.0- 2.5 V, Vin = 3.3 V 2.3 Ramp from higher voltage, Vout = 3.3 V, Vin = 5.0 V 3.4 Ramp from lower voltage, Vout = 1.0- 2.5 V, Vin = 3.3 V 2.4 Ramp from lower voltage, Vout = 3.3 V, Vin = 5.0 V 3.5 Vdc Vdc 20 400 F mV 1) Measured with 2 x 22 F ceramic capacitors Fundamental Circuit Diagram +OUT +IN +SENSE GND GND Vadj PWM controller Error amplifier Ref RC RC Block GND GND PMC 8818T S Datasheet EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Product Qualification Specification Characteristics Random Vibration JESD 22-B103-B Frequency Acceleration density 2 ... 500 Hz 0.008 ... 0.2 g2/Hz Sinusoidal vibration JESD 22-B103-B Frequency Acceleration 10 ... 1000 Hz 10 g Mechanical shock (half sinus) JESD 22-B104-B Peak acceleration Duration 200 g 1.5 ms Lead integrity JESD 22-B105-C Weight of 1000 g All terminals Temperature cycling JESD 22-A104-B Temperature Number of cycles -40 ... +125 C 300 Accelerated damp heat JESD 22-A101-B Temperature Humidity Duration Bias +85 C 85 % RH 1000 hours max input voltage Solderability IEC 60068-2-54 (Aged according to JESD 22A101-B, 240h no bias) Solder immersion depth Time for onset of wetting Wetting force 1 mm <4s > 100 mN/m Cold (in operation) IEC 60068-2-1A, test Ad Temperature Duration -45 C 72 h High temperature storage JESD 22-A103-B Temperature Duration +125 C 1000 h PMC 8818T S Datasheet EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Safety Specification General information. Isolated DC/DC converters. Ericsson Power Modules DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL 60 950, Safety of Information Technology Equipment. It is recommended that a fast blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem in the input filter or in the DC/DC converter that imposes a short circuit on the input source, this fuse will provide the following functions: IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards: * Electrical shock * Energy hazards * Fire * Mechanical and heat hazards * Radiation hazards * Chemical hazards * Isolate the faulty DC/DC converter from the input power source so as not to affect the operation of other parts of the system. * Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating. The galvanic isolation is verified in an electric strength test. The test voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification). Leakage current is less than 1A at nominal input voltage. On-board DC-DC converters are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without "Conditions of Acceptability". It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product. 24 V dc systems. The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions. Component power supplies for general use should comply with the requirements in IEC60950, EN60950 and UL60950 "Safety of information technology equipment". 48 and 60 V dc systems. There are other more product related standards, e.g. IEC612047 "Safety standard for power supplies", IEEE802.3af "Ethernet LAN/MAN Data terminal equipment power", and ETS300132-2 "Power supply interface at the input to telecommunications equipment; part 2: DC", but all of these standards are based on IEC/EN/UL60950 with regards to safety. If the input voltage to Ericsson Power Modules DC/DC converter is 75 V dc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions. Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 V dc. Ericsson Power Modules DC/DC converters and DC/DC regulators are UL 60 950 recognized and certified in accordance with EN 60 950. If the input power source circuit is a DC power system, the source may be treated as a TNV2 circuit and testing has demonstrated compliance with SELV limits and isolation requirements equivalent to Basic Insulation in accordance with IEC/EN/UL 60 950. The flammability rating for all construction parts of the products meets UL 94V-0. The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL 60 950. Non-isolated DC/DC regulators. The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions. It is recommended that a slow blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC regulator. PMC 8818T S Datasheet EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.0 Vout - Data Tref = -30 ... +90 C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 41.42 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 2 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12 V 100 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 22 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 24 s IO Output current 0 POmax Max output power 16 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 1.00 V 84.4 % Efficiency - 100% load IO = IOmax, VO = 1.00 V 83.2 % Pd Power Dissipation IO = IOmax, VO = 1.00 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 80.8 260 IO = IOmax, VO = 1.00 V 16 A 3.2 3.8 W 300 340 kHz 10 mA 2.4 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.0 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristics at 12 V input <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. <"> Output voltage vs. load current. Turn Off Start-Up Turn-off at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.0 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Transient Output Ripple Output voltage ripple (20 mV/div.) at Tref = +25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.2 Vout - Data Tref = -30 ... +90 C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom, IOmax = 16 A. Note: +Sense connected to +Out. Radj 22.46 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 2 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12 V 100 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 21 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 21 s IO Output current 0 POmax Max output power 19.2 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 1.20 V 86.5 % Efficiency - 100% load IO = IOmax, VO = 1.20 V 85.4 % Pd Power Dissipation IO = IOmax, VO = 1.20 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 81.5 260 IO = IOmax, VO = 1.20 V 16 A 3.3 4.4 W 300 340 kHz 10 mA 2.8 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.2 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristic at 12 V input <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> <"> Output voltage vs. load current. Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. Start-Up Turn Off Turn-off at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet 10 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.2 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Transient Output Ripple Output voltage ripple (20 mV/div.) at Tref = +25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 11 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.5 Vout - Data Tref = -30 ... +90 C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 13.05 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 2 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12 V 100 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 20 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 20 s IO Output current 0 POmax Max output power 24 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 1.50 V 88.5 % Efficiency - 100% load IO = IOmax, VO = 1.50 V 87.6 % Pd Power Dissipation IO = IOmax, VO = 1.50 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 84.2 260 IO = IOmax, VO = 1.50 V 12 16 A 3.4 4.5 W 300 340 kHz 10 mA 3.4 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.5 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Power Dissipation Efficiency <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristic at 12 V input <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. <"> Output voltage vs. load current. Start-Up Turn Off Turn-off at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet 13 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.5 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Output Ripple Transient Output voltage ripple (20 mV/div.) at Tref = +25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 14 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.8 Vout - Data Tref = -30...+90 C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 9.024 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 2 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12 V 100 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 18 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 18 s IO Output current 0 POmax Max output power 28.8 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 1.80 V 89.9 % Efficiency - 100% load IO = IOmax, VO = 1.80 V 89.1 % Pd Power Dissipation IO = IOmax, VO = 1.80 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 86.1 260 IO = IOmax, VO = 1.80 V 15 16 A 3.5 4.6 W 300 340 kHz 10 mA 4.0 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.8 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> <"> Dissipated power vs. load current and input voltage at Tref=+25 C Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating at 12 V input Output Characteristic <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. <"> Output voltage vs. load current. Turn Off Start-Up Turn-off at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet 16 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 1.8 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Output Ripple Transient Output voltage ripple (20 mV/div.) at Tref=+25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 17 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 2.5 Vout - Data Tref = -30 ... +90 C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 5-009 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 6 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12 V 140 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 16 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 16 s IO Output current 0 POmax Max output power 40 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 2.50 V 91.9 % Efficiency - 100% load IO = IOmax, VO = 2.50 V 91.3 % Pd Power Dissipation IO = IOmax, VO = 2.50 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 88.8 260 IO = IOmax, VO = 2.50 V 18 16 A 3.8 5.0 W 300 340 kHz 10 mA 5.3 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 2.5 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristic at 12 V input <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> <"> Output voltage vs. load current. Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. Turn Off Start-Up Turn-off at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet 19 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 2.5 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Output Ripple Transient Output voltage ripple (20 mV/div.) at Tref =+25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 20 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 3.3 Vout - Data Tref = -30 ... +90 C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 3.122 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 6 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12 V 140 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 17 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 17 s IO Output current 0 POmax Max output power 52.8 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 3.30 V 93.2 % Efficiency - 100% load IO = IOmax, VO = 3.30 V 92.9 % Pd Power Dissipation IO = IOmax, VO = 3.30 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 90.6 260 IO = IOmax, VO = 3.30 V 21 16 A 4.0 5.5 W 300 340 kHz 10 mA 6.9 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 3.3 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristic at 12 V input <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. <"> Output voltage vs. load current. Start-Up Turn Off Turn-off at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet 22 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 3.3 Vout - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Output Ripple Transient Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. Output voltage ripple (20 mV/div.) at Tref = +25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet 23 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 5.0 Vout - Data Tref = -30 ... +90 C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 F, Output filter 2 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 1.472 k Characteristics Output Conditions min typ max Unit dVOi Output voltage adjusted setting Tref = +25 C, VInom, IOmax -2 +2 % VO dVO Output voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO dVO Idling voltage IO = 0 A -2 +2 % VO dVO Line regulation VImin ... VImax, IOmax 12 mV dVO Load regulation IO = 0.01...1.0 x IOmax 25 mV ttr Load transient recovery time 40 s Vtr Load transient voltage Load step = 0.25-0.75-0.25 x IOmax, dI/dt = 5 A/s, CO = 2 x 150 F, VI = 12V -150 +190 mV Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax -0.6 mV/C ts Start-up VI on to 0.9 x VO IO = IOmax, VInom 7 ms tr Ramp-up, VI ... 0.9 x VO IO = IOmax, VInom 3 ms tf Fall time, VI to 0.1 x VO IO = IOmax, VInom 1 ms tf Fall time, VI to 0.1 x VO IO = 0 A, VInom 16 s tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms tRC RC fall time, 0.1 x VO IO = 0 A, VInom 15 s IO Output current 0 POmax Max output power 80 W Ilim Current limiting threshold Tref < Trefmax 19 A VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VO = 3.30 V 94.9 % Efficiency - 100% load IO = IOmax, VO = 3.30 V 94.7 % Pd Power Dissipation IO = IOmax, VO = 3.30 V Fo Switching frequency IO = (0... 1) x IOmax Isense Remote sense current II Static input current Vi = 8.3 V MTBF Predicted reliability PMC 8818T S Datasheet 91.3 260 IO = IOmax, VO = 3.30 V 24 16 A 4.5 7.6 W 300 340 kHz 10 mA 10.2 A 5 million hours EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 5.0 V out - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristic at 12 V input <"> <7> NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW 7 7 7 7 <$> Available load current vs. ambient air temperature and airflow at Vin = 12 V. See conditions on page 30. <"> Output voltage vs. load current. Start-Up Turn Off Turn-off at IO =16 A resistive load at Tref = +25 C, Vin = 12 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (2 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. Start-up at IO = 16 A resistive load at Tref = +25 C, Vin = 12 V. Start enabled by connecting Vin. Top trace: output voltage (2 V/div.). Bottom trace: input voltage (10 V/div.). Time scale: 2 ms/div. PMC 8818T S Datasheet 25 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Adjusted to 5.0 V out - Typical Characteristics General conditions: Input filter 4 x 4.7 F, Output filter 2 x 150 F Output Ripple Transient Output voltage response to load current step-change (4-12-4 A) at Tref =+25 C, Vin = 12 V. dI/dt = 5 A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. Output voltage ripple (20 mV/div.) at Tref = +25 C, Vin = 12 V, IO = 16 A resistive load. Band width = 5 MHz. Time scale: 2 s/div. PMC 8818T S Datasheet 26 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 EMC Specification The conducted EMI measurement was performed using a regulator placed directly on the test bench. The fundamental switching frequency for PMC 8000 is 300 kHz. The measurement below has been performed with Vin = 12 V, Vout = 5 V and max load. Input filter 4 x 4.7 F and output filter 2 x 150 F was used during the measurement. Layout Recommendation The radiated EMI performance of the DC/DC regulator will be optimised by including a ground plane in the PCB area under the DC/ DC regulator. This approach will return switching noise to ground as directly as possible, with improvements to both emissions and susceptibility. Conducted EMI Input terminal value (typ) Output ripple and noise The circuit below has been used for the ripple and noise measurements on the PMC 8000 Series DC/DC regulators. Level [dBA] 100 80 60 7PVU 40 -PX&431PMZNFS $BQBDJUPS 4FOTF 20 YM -PBE 5SJN 0 -10 150k 300k 500k 1M 2M Frequency [Hz] 3M 5M 7M 10M (/% 30M MES EPM_PMC16A_1_pre PK #/$ $POOFDUPS UP4DPQF $POEVDUPSGSPN7PVUUPDBQBDJUPSTNN PMC 8818. Output ripple and noise test setup &.$3FDJWFS ' $PNQVUFS 1SJOUFE$JSDVU#PBSE 1PXFS 3FHVMBUPS %$ 1PXFS 4PVSDF 3FTJTUJWF -PBE DN PMC 8818T S Datasheet DN 27 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Operating Information Turn off input voltage Output Voltage Adjust (Vadj) The PMC 8000 Series DC/DC regulators monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is 0.2 V where the turn on input voltage is the highest. All PMC 8000 Series DC/DC regulators have an Output Voltage adjust pin (Vadj). This pin can be used to adjust the output voltage above output voltage initial setting (0.75 V). When increasing the output voltage the maximum power rating of the converter remains the same, and the output current capability will therefore decrease correspondingly. To increase the output voltage a resistor or a voltage signal should be connected/applied between Vadj pin and GND. The resistor/voltage signal value for some standard output trims are given below, for other voltage set points use the formulas to calculate the correct resistor or voltage signal. For output voltages of 5.25 V and higher the input voltage is restricted to maximum 14 Vin. Remote Control (RC) Standard Version with "positive logic". The RC pin may be used to turn on or turn off the regulator using a suitable open collector function. Turn off is achieved by connecting the RC pin to ground. The regulator will run in normal operation when the RC pin is left open. Formula 1: Radj = (10 500 / (Vout - 0.7525)) - 1000 (ohm) Formula 2: Vtrim = (0.7 - 0.0667 x (Vout - 0.7525)) (V) RC Regulator condition min Low level OFF Open ON referenced to GND Vout (V) Radj (kohm) Vtrim (V) 0.75 Open Open 1.0 41.42 0.684 1.2 22.46 0.670 1.5 13.05 0.650 1.8 9.024 0.630 2.5 5.009 0.583 3.3 3.122 0.530 5.00 1.472 0.417 5.50 1.212 0.383 typ max Unit -0.3 0.3 V 1.7 16 V +IN +IN RC Module GND Option "negative logic" The RC pin may be used to turn on or turn off the regulator using a suitable open collector function. Turn off is achieved by connecting the RC pin to the input voltage. The regulator will run in normal operation when the RC pin is left open. +Out 0VU Sense 4FOTF Load Vadj Radj GND Increase -PBE 7BEK RC Regulator condition min High level OFF 1.7 Open ON referenced to GND (/% max Unit 16 V *ODSFBTF Circuit configuration for output voltage adjust Vi Vi Input Voltage The input voltage range 8.3...16 Vdc makes the PMC 8000 easy to use in intermediate bus applications when powered by a nonregulated bus converter or a regulated bus converter. For output voltage trims over 5.25 Vout the input voltage must be reduced to a maximum of 14 V in order to maintain specified data. PMC 8818T S Datasheet typ RC Module GND 28 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Operating Information Remote Sense Optional Input Filter All PMC 8000 Series DC/DC regulators have a positive remote sense pin that can be used to compensate for moderate amounts of resistance in the distribution system and allow for voltage regulation at the load or other selected point. The remote sense line will carry very little current and does not need a large cross sectional area. However, the sense line on the PCB should be located close to a ground trace or ground plane. The remote sense circuitry will compensate for up to 10% voltage drop between the sense voltage and the voltage at the output pins from VOnom. If the remote sense is not needed the sense pin should be left open or connected to the positive output. To minimize input ripple and to ensure even better stability more capacitors can be added, see table below. Consider the max output power in a given application and choose sufficient capacitors to obtain desired ripple level. Make sure that the extra capacitors are placed near the input pins. The table below is just an example since the board layout also has effect on the result. Output power Current Limit Protection The PMC 8000 Series DC/DC regulators include current limiting circuitry that allows them to withstand continuous overloads or short circuit conditions on the output. The output voltage will decrease towards zero for output currents in excess of max output current (Iomax). When the current limit is reached the regulator will go into hiccup mode. The current limit is temperature dependent, i.e. the limit decrease at higher operating temperature, the regulator is guaranteed to start at IOmax x 1.25 @ Tref 115C. The regulator will resume normal operation after removal of the overload. The load distribution system should be designed to carry the maximum output short circuit current specified. 250 500 0-20 W 2 x 4.7 F ----- ----- 20-40 W 5 x 4.7 F 2 x 4.7 F ----- 40-60 W 8 x 4.7 F 4 x 4.7 F 2 x 4.7 F 60-80 W 11 x 4.7 F 7 x 4.7 F 4 x 4.7 F Note: All output characteristics in the datasheet are measured with 4*4.7F at the input pins. Required output filter External output capacitance is also required to reduce the output ripple and to obtain specified load step response. It is recommended to use low ESR polymer capacitors or low ESR ceramic capacitors. Minimum requirement: PMC 8818T S 2 x 150 F. (low ESR polymer type). This is the output filter used in the verification and a requirement to meet the specification. Over Temperature Protection (OTP) The PMC 8000 Series DC/DC regulators are protected from thermal overload by an internal over temperature shutdown circuit. When the PCB temperature near the IC circuit reaches 130 C the converter will shut down immediately. The regulator will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped below the temperature threshold. Maximum Capacitive Load When powering loads with significant dynamic current requirements, the voltage regulation at the load can be improved by addition of decoupling capacitance at the load. The most effective technique is to locate low ESR ceramic capacitors as close to the load as possible, using several capacitors to lower the total ESR. These ceramic capacitors will handle short duration highfrequency components of dynamic load changes. In addition, higher values of capacitors (electrolytic capacitors) should be used to handle the mid-frequency components. It is equally important to use good design practice when configuring the DC distribution system. Input And Output Impedance The impedance of both the power source and the load will interact with the impedance of the DC/DC regulator. It is most important to have a low characteristic impedance, both at the input and output, as the regulators have a low energy storage capability. Use capacitors across the input if the source inductance is greater than 4.7 H. Suitable input capacitors are 22 F - 220 F low ESR ceramics. Low resistance and low inductance PCB layouts and cabling should be used. Remember that when using remote sensing, all resistance (including the ESR), inductance and capacitance of the distribution system is within the feedback loop of the regulator. This can affect on the regulators compensation and the resulting stability and dynamic response performance. Minimum Required External Capacitors Required Input Filter External input capacitors are required to increase the lifetime of the internal capacitors. Low ESR ceramics should be used, the minimum input capacitance is stated below. PMC 8818T S Desired input ripple (mVp-p) 150 Very low ESR and high capacitance must be used with care. A "rule of thumb" is that the total capacitance must never exceed typically 500-700 F if only low ESR (< 2 mW) ceramic capacitors is used. If more capacitance is needed, a combination of low ESR type and electrolytic capacitors should be used, otherwise the stability will be affected. 2 x 4.7 F. The PMC 8000 series regulator can accept up to 8 mF of capacitive load on the output at full load. This gives <500 F/A of IO. When using that large capacitance it is important to consider the selection of output capacitors; the resulting behavior is a combination of the amount of capacitance and ESR. PMC 8818T S Datasheet 29 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 NN A combination of low ESR and output capacitance exceeding 8 mF for PMC 8818 can cause the regulator into over current protection mode (hick-up) due to high start up current. The output filter must therefore be designed without exceeding the above stated capacitance levels if the ESR is lower then 30-40 mW. "JSGMPX Parallel Operation The PMC 8000 Series DC/DC regulators can be connected in parallel with a common input. Paralleling is accomplished by connecting the output voltage pins directly and using a load sharing device on the input. Layout considerations should be made to avoid load imbalance. For more details on paralleling, please consult your local applications support. 5FTU#PBSE Calculation of ambient temperature Thermal Considerations By using the thermal resistance the maximum allowed ambient temperature can be calculated. General The PMC 8000 Series DC/DC regulators are designed to operate in a variety of thermal environments, however sufficient cooling should be provided to help ensure reliable operation. Heat is removed by conduction, convection and radiation to the surrounding environment. Increased airflow enhances the heat transfer via convection. Proper cooling can be verified by measuring the temperature at the reference point (Tref). 1. The powerloss is calculated by using the formula ((1/) - 1) x output power = power losses. = efficiency of converter. E.g 88% = 0.88 2. Find the value of the thermal resistance for each product in the diagram by using the airflow speed at the output section of the converter. Take the thermal resistance x powerloss to get the temperature increase. 3. Max allowed calculated ambient temperature is: Max Tref of DC/DC regulator - temperature increase. Tref (max 115 C) E.g 5 V output at 1 m/s, full load, 12 V in: 1 A. (( ) - 1) x 80 W = 5.11 W 0.94 B. 5.11 W x 8 C/W = 40.9 C C. 115 C - 40.9 C = max ambient temperature is 74.1 C The real temperature will be dependent on several factors, like PCB size and type, direction of airflow, air turbulence etc. It is recommended to verify the temperature by testing. The PMC 8000 thermal testing is performed with the product mounted on an FR4 board 254 x 254 mm with 8 layers of 35 m copper. <$8> 7JO 7PVU 7JO 7PVU 7JO 7PVU Thermal resistance vs. airspeed measured at the regulator. PMC 8818T S Datasheet 30 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Soldering Information Low temperature solder - reflow profile The PMC series DC/DC regulators are intended for reflow soldering processes. Extra precautions must be taken when reflow soldering the module. Neglecting the soldering information given below may result in permanent damage or significant degradation of the power module performance. No responsibility is assumed if these recommendations are not strictly followed. Ramp up, ramp-down rate Pre-heat Soak zone max 3C/s max 0.5C/s For conventional Sn-Pb solder processes (solder melting point 179C -183C), The PMC series is qualified for MSL 1 according to JEDEC standard "J-STD-020c". During reflow, the module temperature must not exceed +225 C at any time. 150 Cooling 100 max 4C/s 50 Temperature interval, time Soak zone Reflow zone 150-200C, 60-180 s Above 220C, 30-80 s max pin temperature @ 225C (Low temp solder) @ 245C (High temp solder) 200 Ramp up, ramp-down rate max 3C/s (solid line)-High temperature solder (dashed line)-Low temperature solder [C] 300 High temperature solders - Reflow profile max 0.5C/s Reflow zone Above 183C, 30-80 s 210-225C, 10-30 s 250 max 3C/s Soak zone 130-170C, 60-120 s Reflow zone The reflow profile should be optimised to avoid solder paste drying and overheating of the module. Most important is to ensure that the interconnection pins on the coldest aera reach sufficient soldering temperature for sufficiently long time. A sufficiently extended soak time is recommended to ensure an even temperature throughout the PCB, for both small and large components. To reduce the risk of overheating the power module, it is also recommended to minimise the time in reflow as much as possible. Reflow zone max 4C/s Peak temperature, time To ensure proper soldering of the regulators the temperature should be monitored on interconnection pin GND. The interconnection GND is considered as representative due to the heavy copper path characterisation. A thermocouple can be attached to the pin GND by means of a suitable adhesive or heat conductive paste, see the mechanical data on page 4. Soak zone Cooling max 3C/s Temperature interval, time The module can be reflow soldered using vapour phase reflow (VPR) or forced convection reflow. Pre-heat Reflow zone reflow ramp-up cooling zone preheat max 3/s soak zone (150C-200C) 60-180s reflow zone 0 Time 70 140 210 280 350 0 Pin temperatures, graph of the 4-zones of reflow soldering. Peak temperature, time Reflow zone 235-245C, 10-30 s For lead free solder processes (solder melting point 217C), the PMC series is qualified for MSL 1 according to JEDEC standard "J-STD-020c". During reflow, the module temperature must not exceed +245 C at any time. PMC 8818T S Datasheet 31 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Delivery Package Information The PMC 8000 series regulators are delivered in antistatic tape & reel (EIA standards 481-2). Material: Tape width: Tape pitch: Total pocket height: Reel diameter: Reel capacity: Full reel weight: Conductive 44 mm [1.73 in.] 24 mm [0.95 in.] 9.1 mm [0.36 in.] 330 mm [13 in.] 200 pieces typ. 2.0 kg <> Tape & reel specification: 1*$,10*/5 <> " 1*$,10*/5 <> " QJUDI<> 4&$5*0/"" <> <> <> <> <> <> <> 'FFEEJSFDUJPO 3<> %JNFOTJPOTJONN 5BQFMFBEFSNJO<> 5BQFUSBJMFSNJO<> Compatibility with RoHS requirements The products are compatible with the relevant clauses and requirements of the RoHS directive 2002/95/EC and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium. Exemptions in the RoHS directive utilized in Ericsson Power Modules products include: * Lead in high melting temperature type solder (used to solder the die in semiconductor packages) * Lead in glass of electronics components and in electronic ceramic parts (e.g. fill material in chip resistors) * Lead as an alloying element in copper alloy containing up to 4% lead by weight (used in connection pins made of Brass) Reliability The Mean Time Between Failure (MTBF) of the PMC 8000 series DC/DC regulator family is calculated to be greater than 5 million hours at full output power and a reference temperature of +40 C using TelCordia SR 332. PMC 8818T S Datasheet 32 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007 Sales Offices and Contact Information Company Headquarters Italy, Spain (Mediterranean) Ericsson Power Modules AB LM Ericssons vag 30 SE-126 25 Stockholm Sweden Ericsson Power Modules AB Via Cadorna 71 20090 Vimodrone (MI) Italy Phone: +46-8-568-69620 Fax: +46-8-568-69599 Phone: +39-02-265-946-07 Fax: +39-02-265-946-69 China Japan Ericsson Simtek Electronics Co. 33 Fuhua Road Jiading District Shanghai 201 818 China Ericsson Power Modules AB Kimura Daini Building, 3 FL. 3-29-7 Minami-Oomachi, Shinagawa-ka Tokyo 140-0013 Japan Phone: +86-21-5990-3258 Fax: +86-21-5990-0188 Phone: +81-3-5733-5107 Fax: +81-3-5753-5162 Germany, Austria North and South America Ericsson Power Modules AB Muhlhauser Weg 18 85737 Ismaning Germany Ericsson Inc. Power Modules 6300 Legacy Dr. Plano, TX 75024 USA Phone: +49-89-9500-6905 Fax: +49-89-9500-6911 Phone: +1-972-583-5254 +1-972-583-6910 Fax: +1-972-583-7839 Hong Kong (Asia Pacific) Ericsson Ltd. 12/F. Devon House 979 King's Road Quarry Bay Hong Kong All other countries Contact Company Headquarters or visit our website: www.ericsson.com/powermodules Phone: +852-2590-2453 Fax: +852-2590-7152 Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Power Modules. These products are sold only according to Ericsson Power Modules' general conditions of sale, unless otherwise confirmed in writing. Specifications subject to change without notice. PMC 8818T S Datasheet 33 EN/LZT 146 064 R2A (c) Ericsson Power Modules, March 2007