Key Features
Wide input, 8.3 - 16 Vdc
Programmable output, 0.75 - 5.5 Vdc
Monotonic start up into pre-biased output
Under voltage protection
Short circuit protection
Remote sense
Remote On/Off
Design for Environment (DfE)
European Commission Directive 2002/95/EC
(RoHs) compliant
EDatasheet
DC/DC regulator
Input 8.3 - 16 V
Output 16 A
PMC 8818T S
The PMC series of surface mount DC/DC regulators
(POL) are intended to be used as local distributed power
sources in distributed power architecture. The high ef-
ficiency and high reliability of the PMC series makes them
particularly suited for the communications equipment of
today and tomorrow.
These products are manufactured using the most ad-
vanced technologies and materials to comply with en-
vironmental requirements. Designed to meet high reliability
requirements of systems manufacturers, the PMC responds
to world-class specifications.
Ericsson Power Modules is an ISO 9001/14001 certified
supplier.
Contents
Product Program ......................2
Mechanical Data ......................2
Connections .........................2
Absolute Maximum Ratings . . . . . . . . . . . . . 3
Input ...............................3
Product Qualification Specification . . . . . . . . 4
Safety Specification . . . . . . . . . . . . . . . . . . . 5
Adjusted to 1.0 Vout - Data . . . . . . . . . . . . . . 6
Adjusted to 1.2 Vout - Data . . . . . . . . . . . . . . 9
Adjusted to 1.5 Vout - Data . . . . . . . . . . . . . 12
Adjusted to 1.8 Vout - Data . . . . . . . . . . . . . 15
Adjusted to 2.5 Vout - Data . . . . . . . . . . . . . 18
Adjusted to 3.3 Vout - Data . . . . . . . . . . . . . 21
Adjusted to 5.0 Vout - Data . . . . . . . . . . . . . 24
EMC Specification . . . . . . . . . . . . . . . . . . . . 27
Operating Information . . . . . . . . . . . . . . . . . 28
Thermal Considerations . . . . . . . . . . . . . . . 30
Soldering Information . . . . . . . . . . . . . . . . . 31
Delivery Package Information . . . . . . . . . . . 32
Compatibility with RoHS requirements . . . . 32
Reliability ...........................32
Sales Offices and Contact Information . . . . 33
2 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Pin Designation Function
1 RC Remote Control
2 + In Input Voltage
3 Gnd Ground
4 + Out Output Voltage
5 Vadj Output Voltage Adjust
6 + S Remote sensing
Dimensions in mm[inch]
Tolerances (unless specified):
x,xx ±0,25[0,01]
Pin true position w ithin 0,4[0,016]
4,83(3x)
[0.190]
7,54
<>
7,87
[0.310]
10,92
<>
10,29
[0.405]
3,80
<>
2,6
[0.102]
3FDPNNFOEFEGPPUQSJOU
5PQ7JFX
max 8,25
[0.324]
Co-planarity max 0,1[0,004]
33,00
[1.299]
13,46
[0.530]
2,70(6x)
[0.106]
4,83(3x)
[0.190]
[0.310]
7,87 7,54
[0.297]
10,29
[0.405]
10,92
[0.430]
1,50(6x)
[0.059]

<>

<>
#PUUPN7JFX
3$
*O
4FOTF 7BEK 0VU (OE
Connections Weight
7 g
Mechanical Data
Pins
Material: Copper
Plating: Flash gold over nickel
Product Program
3$ *O
4FOTF7BEK0VU(OE
VI
VO/IO max PO max Ordering No. Comment
Output 1
8.3 - 16V 0.75 - 5.50/16 A 80 W PMC 8818T S Released
8.3 - 16V
1.0 V/16 A 16 W PMC 8118NA S On request
1.2 V/16 A 19.2 W PMC 8118LA S On request
1.5 V/16 A 24 W PMC 8218H S On request
1.8 V/10 A 28.8 W PMC 8218G S On request
2.5 V/10 A 40 W PMC 8419 S On request
3.3 V/16 A 52.8 W PMC 8510 S On requeast
5 V/16 A 80 W PMC 8811 S On request
Option Suffix Example
Negative Remote Control logic N PMC 8818T SN
3 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Absolute Maximum Ratings
Characteristics min typ max Unit
Tref Maximum Operating Temperature, see thermal considerations -45 +115 ˚C
TSStorage temperature -55 +125 ˚C
VIInput voltage -0.3 16 Vdc
Vtr Input voltage transient -0.3 40 Vdc
VRC Remote control voltage
Negative logic -0.3 16 Vdc
Positive logic -0.3 16 Vdc
Characteristics Conditions min typ max Unit
VIInput voltage range 8.3 12 16 V
Vloff Turn-off input voltage Iomax 7.8 V
VIon Turn-on input voltage Iomax 8.0 V
CIInput capacitance 30 µF
PIi
Input idling power
Io = 0 A, VI = 12 V
Vo = 1.00 V 470 560 mW
Vo = 1.20 V 500 600 mW
Vo = 1.50 V 550 660 mW
Vo = 1.80 V 605 725 mW
Vo = 2.50 V 750 900 mW
Vo = 3.30 V 910 1090 mW
Vo = 5.00 V 1150 1410 mW
PRC Input stand-by power VI = 12 V, RC activated 35 mW
VIac Input ripple 1) 20 Hz ... 5 MHz
VI = 12 V, Io = 1.0 x Iomax
Vo = 1.00 V 170 mVp-p
Vo = 1.20 V 180 mVp-p
Vo = 1.50 V 190 mVp-p
Vo = 1.80 V 210 mVp-p
Vo = 2.50 V 310 mVp-p
Vo = 3.30 V 350 mVp-p
Vo = 5.00 V 540 mVp-p
Input
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are
normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function
and performance may degrade in an unspecified manner.
Tref = -30 ... +90 ˚C, VI = 8.3...16.0 V unless otherwise specified
Typ values specified at: Tref = +25 ˚C, VInom, Iomax = 16 A
Fundamental Circuit Diagram
GND
GND
PWM
+IN +OUT
+SENSE
Vadj
controller
Ref
GND
Error
amplifier
RC RC
GND
Block
1) Measured with 4 x 4.7 µF ceramic capacitors
4 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Fundamental Circuit Diagram
GND
GND
PWM
+IN +OUT
+SENSE
Vadj
controller
Ref
GND
Error
amplifier
RC RC
GND
Block
Characteristics min typ max Unit
Tref Operating Reference Temperature, see pg. 27 -45 +115 ˚C
TSStorage temperature -55 +125 ˚C
VIInput voltage -0.3 +5.5 Vdc
Input
Stress in excess of Absolute Maximum Ratings may cause permanent damage.
Absolute Maximum Ratings, sometimes referred to as no destruction limits, are
normally tested with one parameter at a time exceeding the limits of Output data
or Electrical Characteristics. If exposed to stress above these limits, function and
performance may degrade in an unspecified manner.
Absolute Maximum Ratings
Tref = -30 ... +90 ˚C, VI = 3.0...5.5 V unless otherwise specified
Typ values specified at: Tref = +25 ˚C, VInom, Iomax = 16 A
1) Measured with 2 x 22 µF ceramic capacitors
Characteristics Conditions min typ max Unit
VIInput voltage range 3.0 5.5 Vdc
VIoff Turn-off input voltage
Ramp from higher voltage, Vout = 1.0- 2.5 V, Vin = 3.3 V 2.3
Vdc
Ramp from higher voltage, Vout = 3.3 V, Vin = 5.0 V 3.4
VIon Turn-on input voltage
Ramp from lower voltage, Vout = 1.0- 2.5 V, Vin = 3.3 V 2.4
Vdc
Ramp from lower voltage, Vout = 3.3 V, Vin = 5.0 V 3.5
CIInput capacitance 20 µF
PIi Input idling power Io = 0 A, VI = 5.5 V 680 mW
PRC Input stand-by power (RC active) Non operation, VI = 5 V 7.5 mW
VIac Input ripple 1) 20 Hz ... 5 MHz, Iomax, VI = 5 V 400 mV
5 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Characteristics
Random Vibration JESD 22-B103-B Frequency
Acceleration density
2 ... 500 Hz
0.008 ... 0.2 g2/Hz
Sinusoidal vibration JESD 22-B103-B Frequency
Acceleration
10 ... 1000 Hz
10 g
Mechanical shock
(half sinus) JESD 22-B104-B Peak acceleration
Duration
200 g
1.5 ms
Lead integrity JESD 22-B105-C Weight of 1000 g All terminals
Temperature cycling JESD 22-A104-B Temperature
Number of cycles
-40 ... +125 ˚C
300
Accelerated damp heat JESD 22-A101-B
Temperature
Humidity
Duration
Bias
+85 ˚C
85 % RH
1000 hours
max input voltage
Solderability
IEC 60068-2-54
(Aged according to JESD 22-
A101-B, 240h no bias)
Solder immersion depth
Time for onset of wetting
Wetting force
1 mm
< 4 s
> 100 mN/m
Cold (in operation) IEC 60068-2-1A, test AdTemperature
Duration
-45 ˚C
72 h
High temperature storage JESD 22-A103-B Temperature
Duration
+125 ˚C
1000 h
Product Qualification Specification
5 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Ericsson Power Modules DC/DC converters and DC/DC regulators
are designed in accordance with safety standards
IEC/EN/UL 60 950, Safety of Information Technology Equipment.
IEC/EN/UL60950 contains requirements to prevent injury or
damage due to the following hazards:
Electrical shock
Energy hazards
Fire
Mechanical and heat hazards
Radiation hazards
Chemical hazards
On-board DC-DC converters are defined as component power
supplies. As components they cannot fully comply with the
provisions of any Safety requirements without “Conditions of
Acceptability”. It is the responsibility of the installer to ensure that
the final product housing these components complies with the
requirements of all applicable Safety standards and Directives for
the final product.
Component power supplies for general use should comply with
the requirements in IEC60950, EN60950 and UL60950 “Safety of
information technology equipment”.
There are other more product related standards, e.g.
IEC61204-7 “Safety standard for power supplies",
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment
power”, and ETS300132-2 “Power supply interface at the input
to telecommunications equipment; part 2: DC”, but all of these
standards are based on IEC/EN/UL60950 with regards to safety.
Ericsson Power Modules DC/DC converters and DC/DC regulators
are UL 60 950 recognized and certified in accordance with EN 60
950.
The flammability rating for all construction parts of the products
meets UL 94V-0.
The products should be installed in the end-use equipment, in
accordance with the requirements of the ultimate application.
Normally the output of the DC/DC converter is considered as SELV
(Safety Extra Low Voltage) and the input source must be isolated by
minimum Double or Reinforced Insulation from the primary circuit
(AC mains) in accordance with IEC/EN/UL 60 950.
Safety Specification
Isolated DC/DC converters.
The input voltage to the DC/DC regulator is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
It is recommended that a slow blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC regulator.
Non-isolated DC/DC regulators.
24 V dc systems.
The input voltage to the DC/DC converter is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
48 and 60 V dc systems.
If the input voltage to Ericsson Power Modules DC/DC converter
is 75 V dc or less, then the output remains SELV (Safety Extra Low
Voltage) under normal and abnormal operating conditions.
Single fault testing in the input power supply circuit should be
performed with the DC/DC converter connected to demonstrate
that the input voltage does not exceed 75 V dc.
If the input power source circuit is a DC power system, the source
may be treated as a TNV2 circuit and testing has demonstrated
compliance with SELV limits and isolation requirements equivalent
to Basic Insulation in accordance with IEC/EN/UL 60 950.
It is recommended that a fast blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC converter. If an input filter is
used in the circuit the fuse should be placed in front of the input
filter.
In the rare event of a component problem in the input filter or in the
DC/DC converter that imposes a short circuit on the input source,
this fuse will provide the following functions:
• Isolate the faulty DC/DC converter from the input power source
so as not to affect the operation of other parts of the system.
• Protect the distribution wiring from excessive current and power
loss thus preventing hazardous overheating.
The galvanic isolation is verified in an electric strength test. The test
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for
60 seconds (refer to product specification). Leakage current is less
than 1µA at nominal input voltage.
General information.
6 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 41.42 k
Adjusted to 1.0 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 22 s
tRC RC shut-down time 0.1 x VOIO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 24 s
IOOutput current 0 16 A
POmax Max output power 16 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.00 V 84.4 %
ηEfficiency - 100% load IO = IOmax, VO = 1.00 V 80.8 83.2 %
PdPower Dissipation IO = IOmax, VO = 1.00 V 3.2 3.8 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 1.00 V 2.4 A
MTBF Predicted reliability 5 million
hours
7 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Start-Up
Output voltage vs. load current.
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Output Characteristics
Adjusted to 1.0 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
 






<">
<>
7
7
7
7
 





<">
<7>
7
7
7
7
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
Turn Off
Turn-off at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
8 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 1.0 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
9 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom, IOmax = 16 A. Note: +Sense connected to +Out. Radj 22.46 k
Adjusted to 1.2 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 21 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 21 s
IOOutput current 0 16 A
POmax Max output power 19.2 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.20 V 86.5 %
ηEfficiency - 100% load IO = IOmax, VO = 1.20 V 81.5 85.4 %
PdPower Dissipation IO = IOmax, VO = 1.20 V 3.3 4.4 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 1.20 V 2.8 A
MTBF Predicted reliability 5 million
hours
10 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Characteristic
Start-Up
Output voltage vs. load current.
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.2 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
 





<">
<7>
7
7
7
7
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
11 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 1.2 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
12 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 13.05 k
Adjusted to 1.5 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 20 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 20 s
IOOutput current 0 16 A
POmax Max output power 24 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.50 V 88.5 %
ηEfficiency - 100% load IO = IOmax, VO = 1.50 V 84.2 87.6 %
PdPower Dissipation IO = IOmax, VO = 1.50 V 3.4 4.5 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 1.50 V 3.4 A
MTBF Predicted reliability 5 million
hours
13 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Characteristic
Start-Up
Output voltage vs. load current.
 





<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.5 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
 






<">
<>
7
7
7
7
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
14 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 1.5 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
15 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = –30…+90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 9.024 k
Adjusted to 1.8 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 18 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 18 s
IOOutput current 0 16 A
POmax Max output power 28.8 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.80 V 89.9 %
ηEfficiency - 100% load IO = IOmax, VO = 1.80 V 86.1 89.1 %
PdPower Dissipation IO = IOmax, VO = 1.80 V 3.5 4.6 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 1.80 V 4.0 A
MTBF Predicted reliability 5 million
hours
16 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Efficiency
Output Current Derating at 12 V input
Adjusted to 1.8 Vout - Typical Characteristics
Output Characteristic
Start-Up
Output voltage vs. load current.
Efficiency vs. load current and input voltage at Tref = +25 °C
 






<">
<>
7
7
7
7
 





<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
Power Dissipation
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref=+25 °C
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Turn Off
Turn-off at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
17 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple
Adjusted to 1.8 Vout - Typical Characteristics
Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref=+25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
18 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 5-009 k
Adjusted to 2.5 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 6 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±140 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 16 s
tRC RC shut-down time 0.1 x VOIO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 16 s
IOOutput current 0 16 A
POmax Max output power 40 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 2.50 V 91.9 %
ηEfficiency - 100% load IO = IOmax, VO = 2.50 V 88.8 91.3 %
PdPower Dissipation IO = IOmax, VO = 2.50 V 3.8 5.0 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 2.50 V 5.3 A
MTBF Predicted reliability 5 million
hours
19 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Characteristic
Start-Up
Output voltage vs. load current.
 





<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 2.5 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
 






<">
<>
7
7
7
7
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
20 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref =+25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 2.5 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
21 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 3.122 k
Adjusted to 3.3 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 6 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±140 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 17 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 17 s
IOOutput current 0 16 A
POmax Max output power 52.8 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 3.30 V 93.2 %
ηEfficiency - 100% load IO = IOmax, VO = 3.30 V 90.6 92.9 %
PdPower Dissipation IO = IOmax, VO = 3.30 V 4.0 5.5 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 3.30 V 6.9 A
MTBF Predicted reliability 5 million
hours
22 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Current Derating at 12 V input Output Characteristic
Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
 





<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 3.3 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
 






<">
<>
7
7
7
7
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
23 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 3.3 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
24 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out. Radj 1.472 k
Adjusted to 5.0 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 12 mV
dVOLoad regulation IO = 0.01...1.0 x IOmax 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12V
40 µs
Vtr Load transient voltage -150
+190 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 16 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 15 s
IOOutput current 0 16 A
POmax Max output power 80 W
Ilim Current limiting threshold Tref < Trefmax 19 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 50 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 3.30 V 94.9 %
ηEfficiency - 100% load IO = IOmax, VO = 3.30 V 91.3 94.7 %
PdPower Dissipation IO = IOmax, VO = 3.30 V 4.5 7.6 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current Vi = 8.3 V IO = IOmax, VO = 3.30 V 10.2 A
MTBF Predicted reliability 5 million
hours
25 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Current Derating at 12 V input Output Characteristic
Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
 





<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 5.0 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
 






<">
<>
7
7
7
7
 
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
      



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO =16 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
26 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 5.0 V out - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
27 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
EMC Specification
The conducted EMI measurement was performed using a
regulator placed directly on the test bench. The fundamental
switching frequency for PMC 8000 is 300 kHz. The measurement
below has been performed with Vin = 12 V, Vout = 5 V and max load.
Input filter 4 x 4.7 µF and output filter 2 x 150 µF was used during the
measurement.
1SJOUFE$JSDVU#PBSE
&.$3FDJWFS $PNQVUFS
DN
DN
%$
1PXFS
4PVSDF
3FTJTUJWF
-PBE
¬'
1PXFS
3FHVMBUPS
Layout Recommendation
-10
0
20
40
60
80
100
Level [dA]
150k 300k 500k 1M 2M 3M 5M 7M 10M 30M
Frequency [Hz]
MES EPM_PMC16A_1_pre PK
PMC 8818.
Conducted EMI Input terminal value (typ)
#/$
$POOFDUPS
UP4DPQF
7PVU
4FOTF
5SJN
(/%
-PBE
-PX&431PMZNFS
$BQBDJUPS
$POEVDUPSGSPN7PVUUPDBQBDJUPSTNN<JO>
YM
Output ripple and noise test setup
Output ripple and noise
The circuit below has been used for the ripple and noise measure-
ments on the PMC 8000 Series DC/DC regulators.
The radiated EMI performance of the DC/DC regulator will be opti-
mised by including a ground plane in the PCB area under the DC/
DC regulator. This approach will return switching noise to ground
as directly as possible, with improvements to both emissions and
susceptibility.
28 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Vout (V) Radj (kohm) Vtrim (V)
0.75 Open Open
1.0 41.42 0.684
1.2 22.46 0.670
1.5 13.05 0.650
1.8 9.024 0.630
2.5 5.009 0.583
3.3 3.122 0.530
5.00 1.472 0.417
5.50 1.212 0.383
Circuit configuration for output voltage adjust
Increase
+Out
GND
Vadj Load
Radj
Sense
*ODSFBTF
0VU
(/%
7BEK -PBE
4FOTF
Operating Information
Remote Control (RC)
Standard Version with "positive logic".
RC Regulator
condition min typ max Unit
Low level
referenced to GND OFF -0.3 0.3 V
Open ON 1.7 16 V
The RC pin may be used to turn on or turn off the regulator using a
suitable open collector function.
Turn off is achieved by connecting the RC pin to ground.
The regulator will run in normal operation when the RC pin is left
open.
RC
+IN
Module
+IN
GND
Input Voltage
The input voltage range 8.3…16 Vdc makes the PMC 8000 easy
to use in intermediate bus applications when powered by a non-
regulated bus converter or a regulated bus converter. For output
voltage trims over 5.25 Vout the input voltage must be reduced to a
maximum of 14 V in order to maintain specified data.
RC Regulator
condition min typ max Unit
High level
referenced to GND OFF 1.7 16 V
Open ON
The RC pin may be used to turn on or turn off the regulator using a
suitable open collector function.
Turn off is achieved by connecting the RC pin to the input voltage.
The regulator will run in normal operation when the RC pin is left
open.
RC
Vi
Module
Vi
GND
Option "negative logic"
Output Voltage Adjust (Vadj)
All PMC 8000 Series DC/DC regulators have an Output Voltage
adjust pin (Vadj). This pin can be used to adjust the output voltage
above output voltage initial setting (0.75 V). When increasing the
output voltage the maximum power rating of the converter remains
the same, and the output current capability will therefore decrease
correspondingly. To increase the output voltage a resistor or a volt-
age signal should be connected/applied between Vadj pin and GND.
The resistor/voltage signal value for some standard output trims are
given below, for other voltage set points use the formulas to calcu-
late the correct resistor or voltage signal. For output voltages of 5.25
V and higher the input voltage is restricted to maximum 14 Vin.
Formula 1: Radj = (10 500 / (Vout – 0.7525)) – 1000 (ohm)
Formula 2: Vtrim = (0.7 – 0.0667 x (Vout – 0.7525)) (V)
Turn off input voltage
The PMC 8000 Series DC/DC regulators monitor the input voltage
and will turn on and turn off at predetermined levels. The minimum
hysteresis between turn on and turn off input voltage is 0.2 V where
the turn on input voltage is the highest.
29 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
All PMC 8000 Series DC/DC regulators have a positive remote sense
pin that can be used to compensate for moderate amounts of resist-
ance in the distribution system and allow for voltage regulation at the
load or other selected point. The remote sense line will carry very lit-
tle current and does not need a large cross sectional area. However,
the sense line on the PCB should be located close to a ground trace
or ground plane. The remote sense circuitry will compensate for up
to 10% voltage drop between the sense voltage and the voltage at
the output pins from VOnom. If the remote sense is not needed the
sense pin should be left open or connected to the positive output.
Remote Sense
Current Limit Protection
The PMC 8000 Series DC/DC regulators include current limiting cir-
cuitry that allows them to withstand continuous overloads or short
circuit conditions on the output. The output voltage will decrease
towards zero for output currents in excess of max output current
(Iomax). When the current limit is reached the regulator will go into
hiccup mode.
The current limit is temperature dependent, i.e. the limit decrease at
higher operating temperature, the regulator is guaranteed to start at
IOmax x 1.25 @ Tref 115°C.
The regulator will resume normal operation after removal of the
overload. The load distribution system should be designed to carry
the maximum output short circuit current specified.
Over Temperature Protection (OTP)
The PMC 8000 Series DC/DC regulators are protected from thermal
overload by an internal over temperature shutdown circuit. When
the PCB temperature near the IC circuit reaches 130 °C the con-
verter will shut down immediately. The regulator will make continu-
ous attempts to start up (non-latching mode) and resume normal
operation automatically when the temperature has dropped below
the temperature threshold.
Input And Output Impedance
The impedance of both the power source and the load will interact
with the impedance of the DC/DC regulator. It is most important
to have a low characteristic impedance, both at the input and
output, as the regulators have a low energy storage capability.
Use capacitors across the input if the source inductance is greater
than 4.7 µH. Suitable input capacitors are 22 µF - 220 µF low ESR
ceramics.
Minimum Required External Capacitors
Required Input Filter
External input capacitors are required to increase the lifetime of the
internal capacitors. Low ESR ceramics should be used, the mini-
mum input capacitance is stated below.
PMC 8818T S 2 x 4.7 µF.
Optional Input Filter
To minimize input ripple and to ensure even better stability more
capacitors can be added, see table below.
Consider the max output power in a given application and choose
sufficient capacitors to obtain desired ripple level. Make sure that
the extra capacitors are placed near the input pins.
The table below is just an example since the board layout also has
effect on the result.
Required output filter
External output capacitance is also required to reduce the output
ripple and to obtain specified load step response. It is recom-
mended to use low ESR polymer capacitors or low ESR ceramic
capacitors.
Minimum requirement:
PMC 8818T S 2 x 150 µF. (low ESR polymer type).
This is the output filter used in the verification and a requirement
to meet the specification.
Output power
Desired input ripple (mVp-p)
150 250 500
0-20 W 2 x 4.7 µF ----- -----
20-40 W 5 x 4.7 µF 2 x 4.7 µF -----
40-60 W 8 x 4.7 µF 4 x 4.7 µF 2 x 4.7 µF
60-80 W 11 x 4.7 µF 7 x 4.7 µF 4 x 4.7 µF
Note: All output characteristics in the datasheet are measured with 4*4.7µF at the input pins.
Maximum Capacitive Load
When powering loads with significant dynamic current requirements,
the voltage regulation at the load can be
improved by addition of decoupling capacitance at the load. The
most effective technique is to locate low ESR ceramic capacitors as
close to the load as possible, using several capacitors to lower the
total ESR. These ceramic capacitors will handle short duration high-
frequency components of dynamic load changes. In addition, higher
values of capacitors (electrolytic capacitors) should be used to
handle the mid-frequency components. It is equally important to use
good design practice when configuring the DC distribution system.
Low resistance and low inductance PCB layouts and cabling should
be used. Remember that when using remote sensing, all resistance
(including the ESR), inductance and capacitance of the distribution
system is within the feedback loop of the regulator. This can affect
on the regulators compensation and the resulting stability and
dynamic response performance.
Very low ESR and high capacitance must be used with care. A “rule
of thumb” is that the total capacitance must never exceed typically
500-700 µF if only low ESR (< 2 mW) ceramic capacitors is used. If
more capacitance is needed, a combination of low ESR type and
electrolytic capacitors should be used, otherwise the stability will be
affected.
The PMC 8000 series regulator can accept up to 8 mF of capacitive
load on the output at full load. This gives <500 µF/A of IO. When
using that large capacitance it is important to consider the selection
of output capacitors; the resulting behavior is a combination of the
amount of capacitance and ESR.
Operating Information
30 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Thermal Considerations
General
The PMC 8000 Series DC/DC regulators are designed to operate in
a variety of thermal environments, however sufficient cooling should
be provided to help ensure reliable operation. Heat is removed
by conduction, convection and radiation to the surrounding
environment. Increased airflow enhances the heat transfer via
convection.
Proper cooling can be verified by measuring the temperature
at the reference point (Tref).
The PMC 8000 thermal testing is performed with the product
mounted on an FR4 board 254 × 254 mm with 8 layers of
35 µm copper.
Calculation of ambient temperature
By using the thermal resistance the maximum allowed
ambient temperature can be calculated.
1. The powerloss is calculated by using the formula
((1/η) - 1) × output power = power losses.
η = efficiency of converter. E.g 88% = 0.88
2. Find the value of the thermal resistance for each product
in the diagram by using the airflow speed at the output
section of the converter. Take the thermal resistance x
powerloss to get the temperature increase.
3. Max allowed calculated ambient temperature is: Max
Tref of DC/DC regulator – temperature increase.
B. 5.11 W × 8 °C/W = 40.9 °C
C. 115 °C - 40.9 °C = max ambient temperature is 74.1 °C
The real temperature will be dependent on several factors, like PCB
size and type, direction of airflow, air turbulence etc. It is recommen-
ded to verify the temperature by testing.
A. (( ) - 1) × 80 W = 5.11 W
1
0.94
E.g 5 V output at 1 m/s, full load, 12 V in:
Thermal resistance vs. airspeed measured at the regulator.
      



<NT>
<«$8>
7JO7PVU
7JO7PVU
7JO7PVU
Tref
NN<JO>
"JSGMPX
5FTU#PBSE
A combination of low ESR and output capacitance exceeding 8 mF
for PMC 8818 can cause the regulator into over current protection
mode (hick-up) due to high start up current. The output filter
must therefore be designed without exceeding the above stated
capacitance levels if the ESR is lower then
30-40 mW.
Parallel Operation
The PMC 8000 Series DC/DC regulators can be connected in paral-
lel with a common input. Paralleling is accomplished by connecting
the output voltage pins directly and using a load sharing device
on the input. Layout considerations should be made to avoid load
imbalance. For more details on paralleling, please consult your local
applications support.
(max 115 °C)
31 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
The PMC series DC/DC regulators are intended for reflow soldering
processes. Extra precautions must be taken when reflow soldering
the module. Neglecting the soldering information given below
may result in permanent damage or significant degradation of the
power module performance. No responsibility is assumed if these
recommendations are not strictly followed.
The module can be reflow soldered using vapour phase reflow (VPR)
or forced convection reflow.
To ensure proper soldering of the regulators the temperature should
be monitored on interconnection pin GND. The interconnection
GND is considered as representative due to the heavy copper path
characterisation. A thermocouple can be attached to the pin GND
by means of a suitable adhesive or heat conductive paste, see the
mechanical data on page 4.
The reflow profile should be optimised to avoid solder paste drying
and overheating of the module. Most important is to ensure that the
interconnection pins on the coldest aera reach sufficient soldering
temperature for sufficiently long time. A sufficiently extended soak
time is recommended to ensure an even temperature throughout
the PCB, for both small and large components. To reduce the risk of
overheating the power module, it is also recommended to minimise
the time in reflow as much as possible.
For lead free solder processes (solder melting point 217°C),
the PMC series is qualified for MSL 1 according to JEDEC standard
“J-STD-020c”. During reflow, the module temperature must not
exceed +245 °C at any time.
Soldering Information
For conventional Sn-Pb solder processes (solder melting point
179°C -183°C), The PMC series is qualified for MSL 1 according
to JEDEC standard “J-STD-020c”. During reflow, the module
temperature must not exceed +225 °C at any time.
070 140 210 280 350
0
50
100
150
200
250
300
[°C]
Time
reflow ramp-up
cooling
zone
preheat
max 3°/s
soak zone
(150°C-200°C)
60-180s
reflow
zone
max pin temperature
@ 225°C (Low temp solder)
@ 245°C (High temp solder)
(solid line)-High temperature solder
(dashed line)-Low temperature solder
Ramp up, ramp-down rate
Pre-heat Soak zone Reflow zone Cooling
max 3˚C/s max 0.5˚C/s max 3˚C/s max 4˚C/s
Temperature interval, time
Soak zone Reflow zone
130-170˚C, 60-120 s Above 183˚C, 30-80 s
Peak temperature, time
Reflow zone
210-225˚C, 10-30 s
Low temperature solder - reflow profile
Ramp up, ramp-down rate
Pre-heat Soak zone Reflow zone Cooling
max 3˚C/s max 0.5˚C/s max 3˚C/s max 4˚C/s
Temperature interval, time
Soak zone Reflow zone
150-200˚C, 60-180 s Above 220˚C, 30-80 s
Peak temperature, time
Reflow zone
235-245˚C, 10-30 s
High temperature solders - Reflow profile
Pin temperatures, graph of the 4-zones of reflow soldering.
32 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Reliability
The Mean Time Between Failure (MTBF) of the PMC 8000 series
DC/DC regulator family is calculated to be greater than
5 million hours at full output power and a reference temperature of
+40 °C using TelCordia SR 332.
The PMC 8000 series regulators are delivered in antistatic tape &
reel (EIA standards 481-2).
Tape & reel specification:
Material: Conductive
Tape width: 44 mm [1.73 in.]
Tape pitch: 24 mm [0.95 in.]
Total pocket height: 9.1 mm [0.36 in.]
Reel diameter: 330 mm [13 in.]
Reel capacity: 200 pieces
Full reel weight: typ. 2.0 kg
Delivery Package Information
1*$,10*/5
<>
<>
1*$,10*/5
'FFEEJSFDUJPO %JNFOTJPOTJONN<JODI>
5BQFMFBEFSNJO<>
5BQFUSBJMFSNJO<>
4&$5*0/""
"
QJUDI<>
3<>

<> 
<> "
£
<£>
£
<£>
<>
<>

<>

<>
Compatibility with RoHS requirements
The products are compatible with the relevant clauses and
requirements of the RoHS directive 2002/95/EC and have a
maximum concentration value of 0.1% by weight in homogeneous
materials for lead, mercury, hexavalent chromium, PBB and PBDE
and of 0.01% by weight in homogeneous materials for cadmium.
Exemptions in the RoHS directive utilized in Ericsson Power
Modules products include:
• Lead in high melting temperature type solder (used to solder the
die in semiconductor packages)
• Lead in glass of electronics components and in electronic
ceramic parts (e.g. fill material in chip resistors)
• Lead as an alloying element in copper alloy containing up to 4%
lead by weight (used in connection pins made of Brass)
33 EN/LZT 146 064 R2A © Ericsson Power Modules, March 2007
PMC 8818T S Datasheet
Sales Offices and Contact Information
Company Headquarters
Ericsson Power Modules AB
LM Ericssons väg 30
SE-126 25 Stockholm
Sweden
Phone: +46-8-568-69620
Fax: +46-8-568-69599
China
Ericsson Simtek Electronics Co.
33 Fuhua Road
Jiading District
Shanghai 201 818
China
Phone: +86-21-5990-3258
Fax: +86-21-5990-0188
North and South America
Ericsson Inc. Power Modules
6300 Legacy Dr.
Plano, TX 75024
USA
Phone: +1-972-583-5254
+1-972-583-6910
Fax: +1-972-583-7839
Hong Kong (Asia Pacific)
Ericsson Ltd.
12/F. Devon House
979 King’s Road
Quarry Bay
Hong Kong
Phone: +852-2590-2453
Fax: +852-2590-7152
Italy, Spain (Mediterranean)
Ericsson Power Modules AB
Via Cadorna 71
20090 Vimodrone (MI)
Italy
Phone: +39-02-265-946-07
Fax: +39-02-265-946-69
All other countries
Contact Company Headquarters
or visit our website:
www.ericsson.com/powermodules
Information given in this data sheet is believed to be accurate and reliable.
No responsibility is assumed for the consequences of its use nor for any infringement
of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
Ericsson Power Modules. These products are sold only according to
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in
writing. Specifications subject to change without notice.
Germany, Austria
Ericsson Power Modules AB
Mühlhauser Weg 18
85737 Ismaning
Germany
Phone: +49-89-9500-6905
Fax: +49-89-9500-6911
Japan
Ericsson Power Modules AB
Kimura Daini Building, 3 FL.
3-29-7 Minami-Oomachi, Shinagawa-ka
Tokyo 140-0013
Japan
Phone: +81-3-5733-5107
Fax: +81-3-5753-5162