SWITCHMODE II Series
NPN Silicon Power Transistors
The BUX 48/BUX 48A transistors are designed for high–voltage,
high–speed, power switching in inductive circuits where fall time is
critical. They are particularly suited for line–operated
SWITCHMODE applications such as:
Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits
Fast Turn–Off Times
60 ns Inductive Fall Time — 25C (Typ)
120 ns Inductive Crossover Time — 25C (Typ)
Operating Temperature Range –65 to +200C
100C Performance Specified for:
Reverse–Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltage
Leakage Currents (125C)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
BUX48
ÎÎÎÎÎ
ÎÎÎÎÎ
BUX48A
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎ
ÎÎÎÎ
VCEO(sus)
ÎÎÎÎÎ
ÎÎÎÎÎ
400
ÎÎÎÎÎ
ÎÎÎÎÎ
450
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage (VBE = – 1.5 V)
ÎÎÎÎ
ÎÎÎÎ
VCEX
ÎÎÎÎÎ
ÎÎÎÎÎ
850
ÎÎÎÎÎ
ÎÎÎÎÎ
1000
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎ
ÎÎÎÎ
VEB
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
7
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (1)
Overload
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
IC
ICM
IOI
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
15
30
60
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (1)
ÎÎÎÎ
ÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
5
20
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation — TC = 25C
— TC = 100C
Derate above 25C
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
175
100
1
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Watts
W/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎ
ÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
–65 to +200
ÎÎÎ
ÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎ
ÎÎÎÎ
RθJC
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
275
ÎÎÎ
Î
Î
Î
ÎÎÎ
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
ON Semiconductor
Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 9 1Publication Order Number:
BUX48/D
BUX48
BUX48A
15 AMPERES
NPN SILICON
POWER TRANSISTORS
400 AND 450 VOLTS
V(BR)CEO
850–1000 VOLTS
V(BR)CEX
175 WATTS
CASE 1–07
TO–204AA
(TO–3)
BUX48 BUX48A
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS (1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 200 mA, IB = 0) L = 25 mH BUX48
BUX48A
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
400
450
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEX = Rated Value, VBE(off) = 1.5 Vdc)
(VCEX = Rated Value, VBE(off) = 1.5 Vdc, TC = 125C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEX
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
0.2
2
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCE = Rated VCEX, RBE = 10 )T
C = 25C
TC = 125C
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICER
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.5
3
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 5 Vdc, IC = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IEBO
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.1
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter–Base Breakdown Voltage
(IE = 50 mA – IC = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
V(BR)EBO
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
7
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with Base Forward Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
See Figure 12
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
RBSOA
See Figure 13
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 10 Adc, VCE = 5 Vdc) BUX48
(IC = 8 Adc, VCE = 5 Vdc) BUX48A
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
8
8
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 10 Adc, IB = 2 Adc)
(IC = 15 Adc, IB = 3 Adc) BUX48
(IC = 10 Adc, IB = 2 Adc, TC = 100C)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 12 Adc, IB = 2.4 Adc) BUX48A
(IC = 8 Adc, IB = 1.6 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1.5
5
2
1.5
5
2
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 10 Adc, IB = 2 Adc) BUX48
(IC = 10 Adc, IB = 2 Adc, TC = 100C)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100C) BUX48A
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1.6
1.6
1.6
1.6
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1 MHz)
ÎÎÎÎÎ
ÎÎÎÎÎ
Cob
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
350
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS Resistive Load (Table 1)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
I10 A I 2 A BUX48
ÎÎÎÎÎ
ÎÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.1
ÎÎÎÎ
ÎÎÎÎ
0.2
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
IC = 10 A, IB = 2 A BUX48
IC = 8 A, IB = 1.6 A BUX48A
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.4
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
IC
=
8
A
,
IB
=
1
.
6
A BUX48A
Duty Cycle = 2%, VBE(off) = 5 V
T=30µsV
CC = 300 V
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.3
ÎÎÎÎ
ÎÎÎÎ
2
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Tp = 30 µs, VCC = 300 V
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.2
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
IC = 10 A
ÎÎÎÎÎ
ÎÎÎÎÎ
(T 25
C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.3
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
IC
10
A
IB1 = 2 A BUX48
ÎÎÎÎÎ
ÎÎÎÎÎ
(TC = 25C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.06
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
IC
=
8A
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.5
ÎÎÎÎ
ÎÎÎÎ
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
I
C =
8
A
IB1 = 1.6 A BUX48
A
ÎÎÎÎÎ
ÎÎÎÎÎ
(TC = 100C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.3
ÎÎÎÎ
ÎÎÎÎ
0.6
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
B1
A
ÎÎÎÎÎ
ÎÎÎÎÎ
(C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.17
ÎÎÎÎ
ÎÎÎÎ
0.35
ÎÎÎ
ÎÎÎ
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
Vcl = 300 V, VBE(off) = 5 V, Lc = 180µH
BUX48 BUX48A
http://onsemi.com
3
C, CAPACITANCE (pF)
, COLLECTOR CURRENT (A)µIC
VBE, BASE-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.1
IC, COLLECTOR CURRENT (AMPS)
0.3 3
2
1
0.7
0.5
5
IC, COLLECTOR CURRENT (AMPS)
3
2
1
0.7
0.5
0.3
0.2
0.3
IC = 5 A
50
1
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
12 3 5 8 10 20 30 50
20
10
7
Figure 2. Collector Saturation Region
0.1
IB, BASE CURRENT (AMPS)
0.1
0.3 0.5
3
0.5
0.3
30
hFE, DC CURRENT GAIN
5
3
2
VCE = 5 V
1234
Figure 3. Collector–Emitter Saturation Voltage
1011 2 3 7 10 5020 305
Figure 4. Base–Emitter Voltage
Figure 5. Collector Cutoff Region
10
5
1
-0.4
Figure 6. Capacitance
VBE, BASE-EMITTER VOLTAGE (VOLTS)
10-1
-0.2 0 0.2 0.4 0.6
10 k
1
VR, REVERSE VOLTAGE (VOLTS)
10 10
1 k
100
100 1000
100
FORWARD
0.1
VCE = 250 V
125°C
90%
75°C
7.5 A
TC = 25°C
TJ = 25°C
TJ = 100°C
REVERSE
101
102
103
104
Cib
βf = 5
10% 10 A 15 A
90%
10%
TJ = 150°C
100°C
25°C
Cob
TJ = 25°C
DC CHARACTERISTICS
BUX48 BUX48A
http://onsemi.com
4
Table 1. Test Conditions for Dynamic Performance
VCEO(sus) RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
INPUT
CONDITIONS
CIRCUIT
VALUES
TEST CIRCUITS
20
1
0
PW Varied to Attain
IC = 200 mA
Lcoil = 25 mH, VCC = 10 V
Rcoil = 0.7
Lcoil = 180 µH
Rcoil = 0.05
VCC = 20 V
VCC = 300 V
RL = 83
Pulse Width = 10 µs
INDUCTIVE TEST CIRCUIT
TURN–ON TIME
IB1 adjusted to
obtain the forced
hFE desired
TURN–OFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
t1 Adjusted to
Obtain IC
Test Equipment
Scope — Tektronix
475 or Equivalent
RESISTIVE TEST CIRCUITOUTPUT WAVEFORMS
2
IB1
1
2
Vclamp = 300 V
RB ADJUSTED TO ATTAIN DESIRED IB1
+10 V
220 100
680 pF 100
PULSES
δ = 3%
33
2 W
33
2 W
160
D1 22 µF
D3
22
680 pF
MM3735
1N4934D1D2D3D4
2N3763
160
680 pF 22
D4
0.22 µF
D3
2N6438
+10 V
MR854
0.1 µF
2N6339
MR854
Ib1 ADJUST
dTb ADJUST
Ib2 ADJUST
VCC
t1
IC
VCE
IC(pk) tf Clamped
tf
t
t
t2
TIME
VCE or
Vclamp
1
2
TUT
RL
VCC
t1 Lcoil (ICpk)
VCC
t2 Lcoil (ICpk)
VClamp
1
INPUT
2
Rcoil
Lcoil
VCC
Vclamp
RS =
0.1
1N4937
OR
EQUIVALENT
TUT
SEE ABOVE FOR
DETAILED CONDITIONS
VBE(off), BASE-EMITTER VOLTAGE (VOLTS)
Figure 7. Inductive Switching Measurements Figure 8. Peak–Reverse Current
12 34 5 6
10
8
6
4
2
0
, BASE CURRENT (AMPS)IB2(pk)
0
βf = 5
IC = 10 A
trv
TIME
IC
VCE
90% IB1
tsv
IC pk VCE(pk)
90% VCE(pk) 90% IC(pk)
10% VCE(pk) 10%
IC pk 2% IC
IB
tfi tti
tc
BUX48 BUX48A
http://onsemi.com
5
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 10–90% Vclamp
tfi = Current Fall Time, 90–10% IC
tti = Current Tail, 10–2% IC
tc = Crossover Time, 10% Vclamp to 10% IC
An enlarged portion of the inductive switching
waveforms is shown in Figure 7 to aid in the visual identity
of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN–222:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified a t 2 5C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100C.
1
Figure 9. Storage Time, tsv
IC, COLLECTOR CURRENT (AMPS)
25
0.1
Figure 10. Crossover and Fall Times
5
3
1
0.7
0.5
50
IC, COLLECTOR CURRENT (AMPS)
37
0
Figure 11. Turn–Off Times versus Forced Gain
βf, FORCED GAIN
0.01 12 45
2
0.5
0.3
0.2
Figure 12. Turn–Off Times versus Ib2/Ib1
Ib2/Ib1
3
1
0.1
3
TC = 25°C
IC = 10 A
VBE(off) = 5 V
0.01
1
0.5
0.2
0.3
0.1
t, TIME (s)µ
2
0.3
0.2
2010 30
βf = 5
t, TIME (s)µ
0.05
0.02
0.03
12 5 5037 2010 30
βf = 5
tc
tfi
0.05
0.03
0.02
689710
tsv
tfi
tc
t, TIME (s)µ
0.01
2
0.5
0.3
0.2
3
1
0.1
0.05
0.03
0.02
01 2 4 53689710
TC = 25°C
IC = 10 A
βf = 5
tsv
tfi
tc
TC = 25°C
TC = 100°C
TC = 100°C
TC = 100°C
TC = 25°C
TC = 25°C
INDUCTIVE SWITCHING
BUX48 BUX48A
http://onsemi.com
6
The Safe Operating Area figures shown in Figures 12 and 13
are specified for these devices under the test conditions
shown.
1
Figure 13. Forward Bias Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
550
0.01
30
10
2
1
5
0.5
100010 100
0
Figure 14. Reverse Bias Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0200 400
40
20
50
600
TC = 25°C
TC = 100°C
IC/IB1 5
IC, COLLECTOR CURRENT (AMPS)
0.1
200
DC 1 ms
IC, COLLECTOR CURRENT (AMPS)
tr 0.7 µs
LIMIT ONLY
FOR TURN ON
2 20 500
30
10
0.2
0.05
0.02
800 100
0
VBE(off) = 5 V
BUX48 BUX48A
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 13 is based on TC = 25C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 13 may be found at
any case temperature by using the appropriate curve on
Figure 15.
TJ(pk) may be calculated from the data in Figure 13. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished b y several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltage–current conditions during
reverse biased turn–off. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 14 gives RBSOA characteristics.
0
Figure 15. Power Derating
TC, CASE TEMPERATURE (°C)
040 80
80
40
100
120
POWER DERATING FACTOR (%)
160 200
60
20
SECOND BREAKDOWN
DERATING
THERMAL
DERATING
BUX48 BUX48A
http://onsemi.com
7
t, TIME (ms)
1
0.01
0.02
0.5
0.2
0.1
0.05
0.02
r(t), EFFECTIVE TRANSIENT THERMAL
0.05 1 2 5 10 20 50 100 200 500
RθJC(t) = r(t) RθJC
θJC = 1°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RθJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.01
SINGLE PULSE
0.1
0.1 0.50.2
RESISTANCE (NORMALIZED)
1000 2000
Figure 16. Thermal Response
SINGLE
PULSE
0.05
0.02
OVERLOAD CHARACTERISTICS
0
Figure 17. Rated Overload Safe Operating Area
(OLSOA)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
300
100
40
60
500100 400
TC = 25°C
IC, COLLECTOR CURRENT (AMPS)
450200
20
tp = 10 µsBUX48
BUX48A
80
OLSOA
OLSOA applies when maximum collector current is
limited and known. A good example is a circuit where an
inductor is inserted between the transistor and the bus, which
limits the rate of rise of collector current to a known value.
If the transistor is then turned off within a specified amount
of time, the magnitude of collector current is also known.
Maximum allowable collector–emitter voltage versus
collector current is plotted for several pulse widths. (Pulse
width is defined as the time lag between the fault condition
and the removal of base drive.) Storage time of the transistor
has been factored into the curve. Therefore, with bus voltage
and maximum collector current known, Figure 17 defines
the maximum time which can be allowed for fault detection
and shutdown of base drive.
OLSOA is measured in a common–base circuit (Figure
19) which allows precise definition of collector–emitter
voltage and collector current. This is the same circuit that is
used to measure forward–bias safe operating area.
0
Figure 18. IC = f(dV/dt)
dV/dt (KV/µs)
24
4
2
5
6810
3
1
IC (AMP)
500 µF
500 V
VEE
VCC
Figure 19. Overload SOA Test Circuit
Notes:
VCE = VCC + VBE
Adjust pulsed current source
for desired IC, tp
RBE = 100
RBE = 10
RBE = 2.2
RBE = 0
BUX48 BUX48A
http://onsemi.com
8
PACKAGE DIMENSIONS
CASE 1–07
ISSUE Z
TO–204AA (TO–3)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO-204AA OUTLINE SHALL APPLY.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A1.550 REF 39.37 REF
B--- 1.050 --- 26.67
C0.250 0.335 6.35 8.51
D0.038 0.043 0.97 1.09
E0.055 0.070 1.40 1.77
G0.430 BSC 10.92 BSC
H0.215 BSC 5.46 BSC
K0.440 0.480 11.18 12.19
L0.665 BSC 16.89 BSC
N--- 0.830 --- 21.08
Q0.151 0.165 3.84 4.19
U1.187 BSC 30.15 BSC
V0.131 0.188 3.33 4.77
A
N
E
C
K
–T– SEATING
PLANE
2 PL
D
M
Q
M
0.13 (0.005) Y M
T
M
Y
M
0.13 (0.005) T
–Q–
–Y–
2
1
UL
GB
V
H
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
BUX48/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC (SCILLC)
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland