ae wn ete - - = vic o ff yassuse cooeyo4 s ff pata sheet No. PD-9.462A INTERNATIONAL RECTIFIER T-37-25 INTERNATIONAL RECTIFIER | T64aR HEXFET TRANSISTORS IRFDS020 P-CHANNEL rDIRFOSO22 HEXDIP 1-WATT RATED POWER MOSFETs & IN A 4-PIN, DUAL-IN-LINE PACKAGE 5 -50 Voit, 0.28 Ohm, 1-Watt HEXDIP Features The HEXFET technology is the key to {nternational Rectifi- For Automatic Insertion er's advanced line of power MOSFET transistors. The effi- C End Stackabl cient geometry and unique processing of the HEXFET ompact, En ackabie design achieve very low on-state resistance combined with Fast Switching high transconductance and extreme device ruggedness. Low Drive Current Easily Paralleled The P-Channel HEXFETs are designed for application which require the convenience of reverse polarity operation. They as retain all of the features of the more common N-Channel Excellent Temperature Stability HEXFETs such as voltage control, very fast switching, ease of a ai paralleling, and excellent temperature stability. P-Channel Versatility ; P-Channel HEXFETs are intended for use in power stages where complementary symmetry with N-Channel devices Product Summary offers circuit simplification. They are also very useful in drive stages because of the circuit versatility offered by the reverse Part Number Vpbs RDS(on) Ip polarity connection. Applications include motor control, audio amplifiers, switched mode converters, control circuits IRFD9020 -50V 0.28Q -1.6 and pulse amplifiers. IRFD9022 -50V 0.330 -1.4 CASE STYLE AND DIMENSIONS 629 (0248) 114 0044 eos (ez) 5.02 (0.198) ca 78 (0188) | $9199 | i 6.29 (0.248) MAX. 715 (0 124} | t 2.40 (0 534} ' | I f i 1 zarioossy | f i Le 216 10035} i! \ \ 060 (0 0241 O5t(0 02) sate | L_ 4 PLACES O34 0013) @ 9-159 16 10.048) 782 11030) 2PLACES = eg (0.035) HOTES: M. 2PLACES CG APPLIES 10 SPREAD OF CEADS PRIOR TO INSTALLATION. APPLIES To INSTALLED LEAD CENTERS Case Style HD-1 (Similar to JEDEC Outline MO-O01AN) Dimensions in Millimeters and (Inches) C-153IRFD9020, IRFD9022 Devices Lie o Bp vassus2 cooauos 7 ff INTERNATIONAL RECTIFIER T-37-25 Absolute Maximum Ratings Current) @ ~ Storage Range ~65 to 150 tead Temperature 300 {0.063 In, (1.6mm) from case for 10s) Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Typ. Test _ _ = 0V Ip = 260 yA Vos > Ipten) * Rostonimax. Vas = ~10V Veg = 10V, Ip = -11A See Fig. 10 = = See Fig. 16 (MOSFET switching times ara essentially independent of Time operating temperature.) {Gate-Source Pius Gate-Drain} See Fig. 17 for test circuit. (Gate charge is essentially independent of operating temperature.) drain fead, 6mm (0.25 in) | showing the from package to center of intemal device ie, source fead, 6mm (0.25 in.) from package to source banding pad. Thermal Resistance | Fini _ Junction-to-Amblent J au | - | - | 120 | kw:@] Typical socket mount C-154LLE OD i Y8SS4YS2 Gods4ob 4 i INTERNATIONAL RECTIFIER IRFD9020, IRFD9022 Devices T-37-25 Source-Drain Diode Ratings and Characteristics Modified MOSFET symbo! showing the integra! reverse Ig Fontes pource Current IRFD9020} ~ = -1.8 A Mo 0 io: junction rectifier. y wnrosoz2| | | -14] a a Ism Pulse Source Current IRFD$020} - -13 A . ~ OF (Bady Diode} @ IRFD9022 - - -11 A Vsp Diode Forward Voltage @ ALL - - ~63 Vv Te = 25C, Ig = -1.6A, Vag = 0V tr Reverse Recovery Time ALL 56 110 280 ns Ty = 25C, Ip = 9.7A, digit. = 100A/ys Orr Reverse Recovered Charge ALL O17 0.34 0.85 pe Ty = 26C, Ip = 9.7A, digit = 100Alps ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially contralled by lg + Lp QOTy = 25C to 150C Repetitive Rating: Pulse width limited by @ Vaq= -25V, Tj = 25C Pulse Tast: Pulse width = 306 ps, @KMW = CWW max, junction temperature. Sea Transient = 100 zH, Rg = 260 Duty Cycle < 2% WIK = WiC Thermal !mpedance Curve (Fig. 5}. - 15 102 = @ 3 ig rey c feng #12 i = = 2 = = B 10 Ty} w 9 c c Ss 7 a o a z z KM H & 6 = a a . . 1 2 2? w w 5 a> 4 > E E & & wy Bw BFF =150% Ty=28C. 0. 10 15 20 25 9 2 4 6 8 10 NEGATIVE Ip, DAAIN CURRENT (AMPERES) NEGATIVE Vos, DAAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics 45 -av 1 2 3 4 5 NEGATIVE Vpg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) 0 Fig. 3 Typical Saturation Characteristics C-155 NEGATIVE Ip, DRAIN CURRENT (AMPERES) is? NEGATIVE Vgc, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics oe uy tw op m a a ao * =25C 150C PULSE vf? 5 4 2 5S 49 2 1072 5 103 NEGATIVE Ypg, DAAIN-TO-SOURCE VOLTAGE (VOLTS) Fe Tt 2 Fig. 4 Maximum Safe Operating AreaAT ene oe wee - ee tee = eee IRFD9020, IRFD9022 Devices: due o J vassuse cooasa7 o INTERNATIGNAL RECTIFIER T-37-25 > oO NOTES: 4, DUTY FACTOR, D=t,/to 2. PEAK Ty=Ppom X Zthuc + Te THERMAL RESPONSE (Zpnyc) 4072 4075 40-4 1073 4072 0.4 4 40 t,, RECTANGULAR PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junctlon-to-Case Vs. Pulse Duration 0 B0ys PULSE TEST Vpg = -50V Tyras%e Ty=450C Ty = 190C TRANSCONDUCTANCE. (SIEMENS) NEGATIVE Ipq, REVERSE ORAIN CURRENT (AMPERES) os) 2 a 0.4 0.0 8 16 20 0 2 4 6 NEGATIVE Ip, DRAIN CUARENT (AMPERES) NEGATIVE Ven, SOUACE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typicat Source-Drain Diode Forward Voltage 41.25 3. - rn a 4,05 qi.8 u N Hw a = z 0.95 $1.2 Zz DRAIN-TO~SOURCE ON RESISTANCE BVpsg DRAIN-TO-SOUACE BREAKDOWN VOLTAGE (NORMALIZED) 0.85 2 0.6 3 no - a ~ Veg = - 0.78 Oo 20 40 60 100 40 0.055 -40 -20 0 20 40 GO 80 100 120 140 Ty. JUNCTION TEMPERATURE ( C) Ty, JUNCTION TEMPERATURE ( C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature C-156ME O ff 4assuse coosvas 2 \pep9oz0, iRFD9022 Devices INTERNATIONAL RECTIFIER : T=37~25 1000 = Cyt Cgg Cys SHOATED Cogs = Cog Coss = Cas + Cgg Cgq 7 [gg + Cyg) * Cys + Cog 800 600 400 , CAPACITANCE (pF) 200 FOA TEST CIACUIT SEE FIGURE 17 0 NEGATIVE Vgg. GATE-TO-SOURCE VOLTAGE {VOLTS) 1 2 5 10 2 5 102 8 16 24 32 40 NEGATIVE Vpg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Gg, TOTAL GATE CHARGE (nc) Fig. 10 Typical Capacitance Vs, Fig. 11 Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage . na o to a o DRAIN-TO~SOURCE ON AESISTANCE So a Veg = ~20 NEGATIVE Ip. DRAIN CURRENT {AMPERES} Pips (on)- , 0 8 16 24 32. 40 50 75 100 125 NEGATIVE Ip, OAAIN CURRENT (AMPERES) _ Tg GASE TEMPERATURE ( C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature VARY tp TO OBTAIN REQUIRED PEAK tI p~" DUT 4 @ wo a 1 = > <= os Vpp =0.58Vpsg & = 0.75 BYpss Fig. 14a Clamped Inductive Test Circuit Fig. 14b Clamped Inductive Waveforms C-157we - tree . 1 oooawaa 4 IRFD9020, IRFD9022 Devices Lue 0 ff vassuse ; T-37-25 -" ~ for 7-r ~ / Yoo VARY {p TO OBTAIN Um. Vl . REQUIRED PEAK I, i J Vgg 2 ~10V Lo tp et) a 4 Vps BYpss Fig. 15a Unclamped Inductive Test Circuit INTERNATIONAL RECTIFIER Fig. 15b Unclamped Inductive Load Test Waveforms Vv, oS GURRENT (ISOLATED REGULATOR SUPPLY) SAME TYPE 12 BATTERY O *Yps Vgg 7-10Vf-tp | CURRENT S" CURRENT _ SAMPLING SAMPLING RESISTOR . =RESISTOR Fig. 16 Switching Time Test Circuit Fig. 17 Gate Charge Test Circult 4012 ro! e 10? 1 * . 2 2 2 108 s g 5 102 3 us = o = ue wi = 6 Ss Qa Fe 1 g s = iol 104 102 1 0.0001 50 70 90 110 130 180 50 70 90 110 130180 TEMPERATURE (C) TEMPERATURE (C) *Fig. 18 Typical Time to Accumulated 1% Gate Failure *Fig. 19 Typical High Temperature Reverse Bias (HTRB) Failure Rate *The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office. C-158