1/41April 2004
M29W800DT
M29W800DB
8 Mbit (1Mb x8 or 512Kb x16, Boot Block)
3V Supply Flash Memory
FEATURES SUMMARY
SUPPLY VOLTAGE
–V
CC = 2.7V to 3.6V for Program, Erase
and Read
ACCESS TIME: 70, 90ns
PROGRAMMING TIME
10µs per Byte/Word typical
19 MEMORY BLOCKS
1 Boot Block (Top or Bottom Location)
2 Parameter and 16 Main Blocks
PROGRAM/ERASE CONTROLLER
Embedded Byte/Word Program
algorithms
ERASE SUSPEND and RESUME MODES
Read and Program another Block during
Erase Susp e nd
UNLOCK BYPASS PROGRAM COMMAND
Faster Production/Batch Programming
TEMPORARY BLOCK UNPROTECTION
MODE
COMMON FLASH INTERFACE
64 bit Security Code
LOW POWER CONSUMPTION
Standby and Automatic Standby
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
Manufactu rer Code : 0020h
Top Device Code M29W800DT: 22D7h
Bottom Device Code M29W800DB:
225Bh
Figure 1. Packages
TSOP48 (N)
12 x 20mm
TFBGA48 (ZA)
6 x 9 mm
FBGA
SO44 (M)
TFBGA48 (ZE)
6 x 8mm
FBGA
M29W800DT, M29W800DB
2/41
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. SO Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 5. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 6. Block Addresses (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 7. Block Addresses (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input/Output or Address Input (DQ15A-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Write En abl e (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Reset/Block Temporary Unprotect (RP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Vss Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Special Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Block Protection and Blocks Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Table 2. Bus Operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Bus Operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read/Reset Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3/41
M29W800DT, M29W800DB
Unlock Bypass Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Erase Suspend Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Block Protect and Chip Unprotect Commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Commands, 16-bit mode, BYTE = VIH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Commands, 8-b it mode, BYTE = VIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 14
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 8. Data Polling Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Data Toggle Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 8. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 9. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12.Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 12. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 13.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 15.Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 15. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 16.SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Outline . . . . . . . . 24
Table 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data 24
Figure 17.TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline. . . . . . . . . 25
Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 25
Figure 18.TFBGA48 6x9mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline. . . . 26
M29W800DT, M29W800DB
4/41
Table 18. TFBGA48 6x9mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data. . 26
Figure 19.TFBGA48 6x8mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline. . . . 27
Table 19. TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data. . 27
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 20. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
APPENDIX A.BLOCK ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 21. Top Boot Block Addresses, M29W800DT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 22. Bottom Boot Block Addresses, M29W800DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 23. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 24. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 25. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 26. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 27. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
APPENDIX C.BLOCK PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 29. Programmer Technique Bus Operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 20.Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 21.Programmer Equipment Chip Unprotect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 22.In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 23.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5/41
M29W800DT, M29W800DB
SUMMARY D ESCRIPTION
The M29W800D is a 8 Mbit (1Mb x8 or 512Kb x16)
non-volatile memory that can be read, erased and
reprogrammed. These operations can be per-
formed using a single low voltage (2.7 to 3.6V)
supply. On power-up the memory defaults to its
Read mode where it can be read in the same way
as a ROM or EPROM.
The memory is divided into blocks that can be
erased independen tly s o it is po ss i ble to p re se rve
valid data while old data is erased. Each block can
be protected independently to prevent accidental
Program or Erase commands from modifying the
memory. Prog ram and Er ase comma nds are writ-
ten to the C ommand Interface o f the memo ry. An
on-chip Program/Erase Controller simplifies the
process of programming or erasing the memory by
taking care of all of the special operations that are
required to update the memory contents.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The blocks in the memory are asymmet rically ar-
ranged, see Figures 6 and 7, Block Addresses.
The first or la st 64 Kbytes have been divided into
four additional blocks. The 16 Kbyte Boot Block
can be used for small initialization code to start the
microprocessor, the two 8 Kbyte Parameter
Blocks can be used for parameter storage and the
remaining 32K is a small Main Block where the ap-
plication may be stored.
Chip Enable, Output Enable and Write Enable sig-
nals control the bus operation of the memory.
They allow simple connection to most micropro-
cessors, often without additional logic.
The memory is offered in SO44, TSOP48 (12 x
20mm), TFBGA48 6 x 9mm (0.8mm pitch) and
TFBGA4 8 6 x 8mm (0.8mm pit ch) packages. T he
memory is sup plied with all the bits eras ed (set to
’1’).
Figure 2. Logic Diagram Table 1. Signal Names
AI05470B
19
A0-A18
W
DQ0-DQ14
VCC
M29W800DT
M29W800DB
E
VSS
15
G
RP
DQ15A–1
RB
BYTE
A0-A18 Address Inputs
DQ0-DQ7 Data Inputs/Outputs
DQ8-DQ14 Data Inputs/Outputs
DQ15A–1 Data Input/Output or Address Input
EChip Enable
GOutput Enable
WWrite Enable
RP Reset/B lo ck Tempora ry Unpr ote ct
RB Ready/Busy Output
(not available on SO44 package)
BYTE Byte/Word Organization Select
VCC Supply Voltage
VSS Ground
NC Not Conn ect ed Inter na lly
M29W800DT, M29W800DB
6/41
Figure 3. SO Connections Figure 4. TSOP Connections
G
DQ0
DQ8
A3
A0
E
VSS
A2
A1
A13
VSS
A14
A15
DQ7
A12
A16
BYTE
DQ15A–1
DQ5DQ2
DQ3 VCC
DQ11 DQ4
DQ14
A9
NC
RP
A4
W
A7
AI05462b
M29W800DT
M29W800DB
8
2
3
4
5
6
7
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
2322
20
19
18
17DQ1
DQ9
A6
A5
DQ6
DQ13
44
39
38
37
36
35
34
33
A11
A10
DQ10 21 DQ12
40
43
1
42
41
A17 A8
A18
DQ3
DQ9
DQ2
A6 DQ0
W
A3
RB
DQ6
A8
A9 DQ13
A17
A10 DQ14
A2
DQ12
DQ10
DQ15A–1
VCC
DQ4
DQ5
A7
DQ7
NC
NC
AI05461
M29W800DT
M29W800DB
12
1
13
24 25
36
37
48
DQ8
NC
NC
A1
A18
A4
A5
DQ1
DQ11
G
A12
A13
A16
A11
BYTE
A15
A14 VSS
E
A0
RP
VSS
7/41
M29W800DT, M29W800DB
Figure 5. TFBGA Connections (Top view through package)
AI00656
B
A
4321
G
F
H
DQ15
A–1
A7
A3
DQ10DQ8E
DQ13DQ11
DQ9
G
VSS
DQ6DQ1VSS
DQ14
A12
NCA17
A4
A14A10NCA18A6A2
RP A8
DQ4
DQ3
VCC
DQ12
A9
BYTE
A15A11NCA1
A16DQ7DQ5DQ2A0
NC
DQ0
A5
E
D
C
RB W A13
65
M29W800DT, M29W800DB
8/41
Figure 6. Block Addresses (x8)
Note: Also see Appendix A, Tables 21 and 22 for a fu ll listing of the Block Addresses.
AI05463
16 KByte
FFFFFh
FC000h
64 KByte
1FFFFh
10000h
64 KByte
0FFFFh
00000h
M29W800DT
Top Boot Block Addresses (x8)
32 KByte
F7FFFh
F0000h
64 KByte
E0000h
EFFFFh
Total of 15
64 KByte Blocks
16 KByte
FFFFFh
F0000h 64 KByte
64 KByte
03FFFh
00000h
M29W800DB
Bottom Boot Block Addresses (x8)
32 KByte
EFFFFh
1FFFFh 64 KByte
E0000h
10000h
Total of 15
64 KByte Blocks
0FFFFh
08000h
8 KByte
8 KByte
FBFFFh
FA000h
F9FFFh
F8000h
8 KByte
8 KByte
07FFFh
06000h
05FFFh
04000h
9/41
M29W800DT, M29W800DB
Figure 7. Block Addresses (x16)
Note: Also see Appendix A, Tables 21 and 22 for a fu ll listing of the Block Addresses.
AI05464
8 KWord
7FFFFh
7E000h
32 KWord
0FFFFh
08000h
32 KWord
07FFFh
00000h
M29W800DT
Top Boot Block Addresses (x16)
16 KWord
7BFFFh
78000h
32 KWord
70000h
77FFFh
Total of 15
32 KWord Blocks
8 KWord
7FFFFh
78000h 32 KWord
32 KWord
01FFFh
00000h
M29W800DB
Bottom Boot Block Addresses (x16)
16 KWord
77FFFh
0FFFFh 32 KWord
70000h
08000h
Total of 15
32 KWord Blocks
07FFFh
04000h
4 KWord
4 KWord
7DFFFh
7D000h
7CFFFh
7C000h
4 KWord
4 KWord
03FFFh
03000h
02FFFh
02000h
M29W800DT, M29W800DB
10/41
SIGNAL DESCRIPTIONS
See Figu re 2, L ogi c Di ag ra m, an d Tab le 1 , Si gn al
Names, for a brief overview of the signals connect-
ed to this device.
Address Inputs (A0-A18). The Address Inputs
select the cells in the memory array to access dur-
ing Bus Read operations. During Bus Write opera-
tions they control the commands sent to the
Command Interface of the internal state machine.
Data Inputs/Outputs (DQ0-DQ7). The Data In-
puts/Outputs output the data stored at the selected
address during a Bus Read operation. During Bus
Write operations they represent the commands
sent to the Command Interface of the internal state
machine.
Data Inputs/Outputs (DQ8-DQ14). The Data In-
puts/Outputs output the data stored at the selected
address during a Bus Read operation when BYTE
is High, VIH. When BYTE is Low, VIL, these pins
are not used and are high impedance. During Bus
Write operations the Command Register does not
use these bits. Wh en readin g the Statu s Register
these bits should be ignored.
Data Input/Output or Address Input (DQ15A-
1). When BYTE is High , VIH, this pin beh aves as
a Data Input/Output pin (as DQ8-DQ14). When
BYTE is Low, VIL, this pin behaves as an address
pin; DQ15A–1 Low will select the LSB of the Word
on the other addresses, DQ15A–1 High will select
the MSB. Throughout the text consider references
to the Data Input/Output to include this pin when
BYTE is High and references to the Address In-
puts to inc lude this pin when BYT E is Low exc ept
when stated explicitly otherwise.
Chip Enable (E). The Chip Enable, E, activates
the memory, allowing Bus Read and Bus Write op-
erations to be performed. When Chip Enable is
High, VIH, all other pins are ignored.
Output Enable (G). The Output Enable, G, con-
trols the Bus Read operation of the memory.
Write Enable (W). The Writ e En a bl e, W , controls
the Bus Write operation of the memory’s Com-
mand Interface.
Reset/Block Temporary Unprotect (RP). The
Reset/Block Temporary Unprotect pin can be
us ed t o ap p ly a Ha r d wa r e R es et t o t he m e mo r y or
to tempora rily un prote ct a ll Bl oc k s that h av e be en
protected.
A Hardware Reset is achieved by holding Reset/
Block Temporary Unprotect Low, VIL, for at least
tPLPX. After Reset/Block Temporary Unprotect
goes High , VIH, the memory will be ready for Bu s
Read and Bus Write operations after tPHEL or
tRHEL, whichever occurs last. See the Ready/Busy
Output section, Table 15 and Figure 15, Reset/
Tem porary Unprotect AC Characteristics for more
details.
Holding RP at VID will temporarily unprotect the
protected Blocks in the memory. Program and
Erase operations on all blocks will be possible.
The transition from VIH to VID must be slower than
tPHPHH.
Ready/Busy Output (RB). The Ready/Busy pin
is an open-drain output that can be used to identify
when the device is performing a Program or Erase
operation. During Program or Erase operations
Ready/Busy is Low, VOL. Ready/Busy is high-im-
pedance during Read mode, Auto Select mode
and Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write
operations cannot begin until Ready/Busy be-
comes hi gh -impe dance. S ee Tabl e 15 an d F igur e
15, Reset/Temporary Unprotect AC Characteris-
tics.
The use of an open-drain output allows the Ready/
Busy pins from several memories to be connected
to a single pull-up resistor. A Low will then indicate
that one, or more, of the memories is busy.
Byte/Word Organization Select (BYTE). The
Byte/Word Organization Select pin is used to
switch between the 8-bit and 16-bit Bus modes of
the memory. When Byte/Word Organization Se-
lect is Low, VIL, the memory is in 8-bit mode, when
it is High, VIH, the memory is in 16-bit mode.
VCC Supply Voltage. The VCC Supply Voltage
supplies the power for all operations (Read, Pro-
gram, Erase etc.).
The Command Interface is disabled when the VCC
Supply Voltage is less than the Lockout Voltage,
VLKO. This prevents Bus Write operations from ac-
cidentally damaging the data during power up,
power down and power surges. If the Program/
Erase Controller is programming or erasing during
this time then the operation aborts and the memo-
ry contents being altered will be invalid.
A 0.1µF capacitor should be connected between
the VCC Supply Voltage pin and the VSS Ground
pin to decouple the current surges from the power
supply. The PCB track widths must be sufficient to
carry the currents required during program and
erase operations, ICC3.
Vss Ground. The VSS Ground is the reference
for all voltage measurements.
11/41
M29W800DT, M29W800DB
BUS OPERATIONS
There are five standard bus operations that control
the device. Thes e are Bus Read, Bus Writ e, Out -
put Disable, Standby and Automatic Standby. See
Tables 2 and 3, Bus Operations, for a summary.
Typicall y gl itc he s of less than 5ns on C hip Enab le
or Write Enable are ignored by the memory and do
not affect bus operations.
Bus Read. Bus Read operations read from the
memory cells, or specific registers in the Com-
mand Interface. A valid Bus Read operation in-
volves setting the desired address on the Address
Inputs, ap plyi ng a Low signal , V IL, to C h ip E nab le
and Output Enable and keeping Write Enable
High, VIH. The Data Inputs /Outp uts wil l outpu t the
value, see Figure 12, Read Mode AC Waveforms,
and Table 12, Read AC Characteristics, for details
of when the output becomes valid.
Bus Write. Bus Write operations write to the
Command Interface. A valid Bus Write operation
begins by setting the desired address on the Ad-
dress Inputs. The Address Inputs are latched by
the Command Interface on the falling edge of Chip
Enable or Write Enable, whichever occurs last.
The Data Inpu ts/Ou tputs are l atched by the Com -
mand Interfa ce on the rising ed ge of Chip Enab le
or Write Enable, whichever occurs first. Output En-
able must rema in High , VIH, duri ng the whol e Bu s
Write operation. See Figures 13 and 14, Write AC
Waveforms, and Tables 13 and 14, Write AC
Characteristics, for details of the timing require-
ments.
Output Disable. The Data Inputs/Outputs are in
the high impedance state when Output Enable is
High, VIH.
Standby. When Chip Enable is High, VIH, the
memory enters Standby mode and the Data In-
puts/Outputs pins are placed in the high-imped-
ance state. To reduce the Supply Current to the
Standby Supply Current, ICC2, Chip Enable should
be held within VCC ± 0.2V. For the Standby current
level see Table 11, DC Characteristics.
During program or erase operations the memory
will continue to use the Program/Erase Supply
Current, ICC3, for Program or Erase operations un-
til the operation completes.
Automatic Standby. If CMOS levels (VCC ± 0.2V)
are used to drive the bus and the bus is inactive for
150ns or more the memory enters Automatic
Standby where the internal Supply Current is re-
duced to the Standby Supply Current, ICC2. The
Data Inputs/Outputs will still output data if a Bus
Read operation is in progress.
Special Bus Operations. Additional bus opera-
tions can be performed to read the Electronic Sig-
nature and also to apply and remove Block
Protection. These bus operations are intended for
use by programming equipment an d are not u su-
ally used in applications. They require VID to be
applied to some pins.
Electronic Signature. The memory has two
codes, the manufacturer code and the device
code, that can be read to identify the memory.
These cod es can b e read b y apply ing the s ignals
listed in Tables 2 and 3, Bus Operations.
Block Protection and Blocks Unprotection.
Each block can be separately protected against
accidental Program or Erase. Protected blocks
can be unprotected to allow data to be changed.
There are two methods available for protecting
and unprotecting the blocks, one for use on pro-
gramming equipment and the other for in-system
use. Blo ck P ro tect a nd Chi p Un pr otect operation s
are described in Appendix C.
Table 2. Bus Operations, BYTE = VIL
Note: X = VIL or VIH.
Operation E G W Add res s Inp uts
DQ15 A– 1, A0 -A1 8 Data Inputs/Outputs
DQ14-DQ8 DQ7-DQ0
Bus Read VIL VIL VIH Cell Addre ss Hi-Z Data Outpu t
Bus Write VIL VIH VIL Command Address Hi-Z Data In put
Output Dis ab le X VIH VIH X Hi-Z Hi-Z
Standby VIH X X X Hi-Z Hi-Z
Read Manufacturer
Code VIL VIL VIH A0 = VIL, A1 = VIL, A9 = VID,
Others VIL or VIH Hi-Z 20h
Read Device Code VIL VIL VIH A0 = VIH, A1 = VIL, A9 = VID,
Others VIL or VIH Hi-Z D7h (M29W800DT)
5Bh (M29W800DB)
M29W800DT, M29W800DB
12/41
Table 3. Bus Operations, BYTE = VIH
Note: X = VIL or VIH.
COMMAND INTERFACE
All Bus Write operations to the memory are inter-
preted by the Command Interface. Commands
consist of one or more sequential Bus Write oper-
ations. Failure to observe a valid sequence of Bus
Write operations will result in the memory return-
ing to Read mode. The long command sequences
are imposed to maximize data security.
The address used for the commands changes de-
pending on whether the memory is in 16-bit or 8-
bit mode. S ee either Table 4, or 5, depending on
the configuration that is being used, for a summary
of the commands.
Read/Reset Command. The Read/Reset com-
mand returns the memory to its Read mode where
it behaves like a ROM or EPROM, unless other-
wise stated. It also resets the error s in the Status
Register. Either one or three Bus Write operations
can be used to issue the Read/Reset command.
The Read/Reset Command can be issued, be-
tween Bus Write cycles before the start of a pro-
gram or erase operation, to return the device to
read mod e. On ce th e progr am or erase oper ation
has started the Read/Reset command is no longer
accepted. The Read/Reset command will not
abort an Erase operation when issued while in
Erase Suspend.
Auto Select Command. The Auto Select com-
mand is u sed to read the M anufac turer Co de, the
Device Code and the Block Protection Status.
Three consecutive Bus Write operations are re-
quired to issue the Auto Select command. Once
the Auto Select command is issued the memory
remains in Auto Select mode until a Read/Reset
command is issued. Read CFI Query and Read/
Reset commands are accepted in Auto Select
mode, all other co mma nds are ignor ed.
From the Auto Select mode the Manufacturer
Code can be read using a Bus Read operation
with A0 = VIL and A1 = VIL. The other address bits
may be set to either VIL or VIH. The Manufacturer
Code for STMicroelectronics is 0020h.
The Device Code ca n be read using a Bus Read
operation with A0 = VIH and A1 = VIL. The other
address bits may be set to either VIL or VIH. The
Device Code for the M29W800DT is 22D7h and
for the M29W800DB is 225Bh.
The Block Protection Status of each block can be
read using a Bus Read operation with A0 = VIL,
A1 = VIH, and A12-A18 specifying the address of
the block. The other address bits may be set to ei-
ther VIL or VIH. If the addressed block is protect-
ed then 01h is output on Data Inputs/Outputs
DQ0-DQ7, otherwise 0 0h is output.
Program Command. The Program command
can be used to program a value to one address in
the memory array at a time. The command re-
quires four Bus Write operations, the final write op-
eration latches the address and data in the internal
state machine and starts the Program/Erase Con-
troller.
If the address falls in a protected block then the
Program command is ignored, the data remains
unchanged. The Status Register is never read and
no error condition is given.
During the p rogr am operation the me mory will ig-
nore all com mands . It is no t possib le to iss ue any
command to abort or pause the operation. Typical
program times are given in Table 6. Bus Read op-
erations during the program operation will output
the Status Register on the Data Inputs/Outputs.
See the section on the Status Register for more
details.
Operation E G W Add res s Inp uts
A0-A18 Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
Bus Read VIL VIL VIH Cell Addre ss Data Output
Bus Write VIL VIH VIL Command Address Data Input
Output Dis ab le X VIH VIH XHi-Z
Standby VIH XXX Hi-Z
Read Manufacturer
Code VIL VIL VIH A0 = VIL, A1 = VIL, A9 = VID,
Others VIL or VIH 0020h
Read Device Code VIL VIL VIH A0 = VIH, A1 = VIL, A9 = VID,
Others VIL or VIH 22D7h (M29W800DT)
225Bh (M29W800DB)
13/41
M29W800DT, M29W800DB
After the program operation has completed the
memory will return to the Read mode, unless an
error has occurred. When an error occurs the
memory will continue to output the Status Regis-
ter. A Read/Reset command must be issued to re-
set the error condition and return to Read mode.
Note that the Program command cannot change a
bit set at ’0’ back to ’1’. One of the Erase Com-
mands must be used to set all the bits in a block or
in the whole memory from ’0’ to ’1’.
Unlock Bypass Command. The Unlock Bypass
command is used in conjunction with the Unlock
Bypass Program command to program the memo-
ry. When the access time to the device is long (as
with some EPROM programmers) considerable
time saving can be made by using these com-
mands. Three Bus Write operations are required
to issue the Unlock Bypass command.
Once the Unlock Bypass command has been is-
sued the memory will only accept the Unlock By-
pass Program command and the Unlock Bypass
Reset command. The memory can be read as if in
Read mode.
Unlock Bypass Program Command. The Un-
lock Bypass Program command can be used to
program one address in memory at a time. The
command requires two Bus Write operations, the
final wr ite op erati on lat ches the addr ess and d ata
in the internal state machine and starts the Pro-
gram/Erase Controller.
The Program operation using the Unlock Bypass
Program command behaves identically to the Pro-
gram operation using the Program command. A
protected block cannot be pr og rammed; the oper-
ation cannot be aborted and the Status Register is
read. Errors must be reset using the Read/Reset
comma nd, which leaves the de vice in Unloc k By-
pass Mode. See the Program command for details
on the behavior.
Unlock Bypass Reset Command. The Unlock
Bypass Reset co mmand ca n be use d to retu rn to
Read/Reset mode from Unlock Bypass Mode.
Two Bus Write operations are required to issue the
Unlock Bypass Reset command. Read/Reset
command does not exit from Unlock Bypass
Mode.
Chip Erase Command. The Chip Erase com-
mand can be used to erase the entire chip. Six Bus
Write operations are required to issue the Chip
Erase Command and start the Program/Erase
Controller.
If any blocks are protected then these are ignored
and all the other blocks are erased. If all of the
blocks are protected the Chip Erase operation ap-
pears to start but will terminate within about 100µs,
leaving the da ta unc hanged . No err or con dition is
given when protected blocks are ignored.
During the erase operation the memory will ignore
all commands. It is not possible to issue any com-
mand to abort the operation. Typical chip erase
times are given in Table 6. All Bus Read opera-
tions during the Chip Erase operation will output
the Status Register on the Data Inputs/Outputs.
See the section on the Status Register for more
details.
After the C hip Erase o per at ion has co m ple ted the
memory will return to the Read Mode, unless an
error has occurred. When an error occurs the
memory will continue to output the Status Regis-
ter. A Read/Reset command must be issued to re-
set the error condition and return to Read Mode.
The Chip Erase Command sets all of the bits in un-
protected blocks of the memory to ’1’. All previous
data is lost.
Block Erase Command. The Block Erase com-
mand can be used to erase a list of one or more
blocks. Six Bus Write operations are required to
select the first block in the list. Each additional
block in the list can be selected by repeating the
sixth Bus Write operation using the address of the
additiona l blo ck . The Bl oc k Er ase operation st ar ts
the Program/Erase Controller about 50µs after the
last Bus Write operation. Once the Program/Erase
Controller starts it is not possible to select any
more blocks. Each additional block must therefore
be selected within 50µs of the last block. The 50µs
timer restarts when an additional block is selected.
The Status Register can be read after the sixth
Bus Write operation. See the Status Register for
details on how to identify if the Program/Erase
Controller has started the Block Erase operation.
If any selected blocks are protected then these are
ignored and all the other selected blocks are
erased. If all of the selected blo cks are protected
the Block Erase operation appears to start but will
terminate within about 100µs, leaving the data un-
changed. No error condition is given when protect-
ed blocks are ignored.
During the Bl ock Er ase o per at ion the memory wil l
ignore all commands except the Erase Suspend
command. Typical block erase times are given in
Table 6. All Bus Read operations during the Block
Erase operation will output the Status Register on
the Data Inputs/Outputs. See the section on the
Status Register for more details.
After the Block Erase operation has completed the
memory will return to the Read Mode, unless an
error has occurred. When an error occurs the
memory will continue to output the Status Regis-
ter. A Read/Reset command must be issued to re-
set the error condition and return to Read mode.
The Block Erase Command sets all of the bits in
the unprotected selected blocks to ’1’. All previous
data in the selected blocks is lost.
M29W800DT, M29W800DB
14/41
Erase Susp e nd Com m and . The Eras e S u sp end
Command may be used to tempor arily suspend a
Block Erase operation and return the memory to
Read mode. The command requires one Bus
Write operation.
The Progra m/Erase Controlle r will suspen d with in
the Erase Suspend Latency Time (refer to Table 6
for value) of the Eras e Suspend Com mand being
issued. Once the Program/Erase Controller has
stopped the memory will be set to Read mode and
the Erase will be suspended. If the Erase Suspend
command is issued during the period when the
memory is waiting for an additional block (before
the Program/Erase Controller starts) then the
Erase i s su spended i mme di atel y and wil l sta rt im -
mediately when the Erase Resume Command is
issued. It is not possible to select any further
blocks to erase after the Erase Resume.
During Erase Suspend it is possible to Read and
Program cells in blocks that are not being erased;
both Read and Program operations behave as
normal on these b locks. I f any attempt is mad e to
program in a protected bl ock or in the s uspended
block then the Program command is ignored and
the data remains unchanged. The Status Register
is not r ead and no error condit ion is given. Read -
ing from blocks that are being erased will output
the Status Register.
It is also possible to issue the Auto Select, Read
CFI Query and Unlock Bypass comman ds during
an Erase Suspend. The Read/Reset command
must be issued to return the device to Read Array
mode before the Resume command will be ac-
cepted.
Erase Resume Command. The Erase Resume
command must be used to restart the Program/
Erase Controller from Erase Suspend. An erase
can be suspended and resumed more than once.
Read CFI Query Command. The Read CFI
Query Command is used to read data from the
Com mon Fl ash Inte rface (CFI ) Memo ry Are a. Th is
comma nd is val id when the devi ce is in the Re ad
Array mode, or when the device is in Autoselected
mode.
One Bus Write cycle is required to issue the Read
CFI Query Command. Once the command is is-
sued subs equent Bus Read operatio ns read fr om
the Common Flash Interface Memory Area.
The Read/Reset command must b e issued to re-
turn the device to the previous mode (the Read Ar-
ray mode or Autoselected mode). A second Read/
Reset com mand wo uld be needed if the d evice i s
to be put in the Read Array mode from Autoselect-
ed mode.
See Appendix B, Tables 23, 24, 25, 26, 27 and for
details on the information contained in the Com-
mon Flash Interface (CFI) memory area.
Block Protect and
Chip Unprotect Commands.
Each block can be separately protected against
acciden tal Progr am or Eras e. The wh ole chi p can
be unprote cte d to a llow th e da ta inside the blocks
to be changed.
Block Protect and Chip Unprotect operations are
described in Appendix C.
15/41
M29W800DT, M29W800DB
Table 4. Commands, 16-bit mode, BYTE = VIH
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Bloc k.
All values in the table are in hexadec imal.
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A18, DQ8-DQ14 and DQ15 are Don’t
Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
Command
Length
Bus Write Operations
1st 2nd 3rd 4th 5th 6th
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
Read/Reset 1X F0
3555 AA2AA 55 X F0
Auto Select 3 555 AA 2AA 55 555 90
Program 4 555 AA 2AA 55 555 A0 PA PD
Unlock Bypass 3 555 AA 2AA 55 555 20
Unlock Bypass
Program 2 X A0 PA PD
Unlock Bypass Reset 2 X 90 X 00
Chip Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10
Block Erase 6+ 555 AA 2AA 55 555 80 555 AA 2AA 55 BA 30
Erase Suspend 1 X B0
Erase Resume 1 X 30
Read CFI Query 1 55 98
M29W800DT, M29W800DB
16/41
Table 5. Commands, 8-bit mode, BYTE = VIL
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Bloc k.
All values in the table are in hexadec imal.
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A18, DQ8-DQ14 and DQ15 are Don’t
Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
Table 6. Program, Erase Times and Program, Erase Endurance Cycles
Note: 1. Typical values meas ured at room temperature and nominal voltages.
2. Sam pl e d , but not 100 % tes t ed .
3. Maximum value measu r ed at worst case condit i ons for both temperature and VCC after 100,00 program/eras e cycles.
4. Maximum value measu r ed at worst case condit i ons for both temperature and VCC.
Command
Length
Bus Write Operations
1st 2nd 3rd 4th 5th 6th
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
Read/Reset 1X F0
3 AAA AA 555 55 X F0
Auto Select 3 AAA AA 555 55 AAA 90
Program 4 AAA AA 555 55 AAA A0 PA PD
Unlock Bypass 3 AAA AA 555 55 AAA 20
Unlock Bypass
Program 2 X A0 PA PD
Unlock Bypass Reset 2 X 90 X 00
Chip Erase 6 AAA AA 555 55 AAA 80 AAA AA 555 55 AAA 10
Block Erase 6+ AAA AA 555 55 AAA 80 AAA AA 555 55 BA 30
Erase Suspend 1 X B0
Erase Resume 1 X 30
Read CFI Query 1 AA 98
Parameter Min Typ (1, 2) Max(2) Unit
Chip Erase 12 60(3) s
Block Erase (64 Kbytes) 0.8 6(4) s
Erase Suspend Latency Time 15 25(3) µs
Program (Byte or Word) 10 200(3) µs
Chip Prog ram (Byte by Byte) 12 60(3) s
Chip Prog ram (Word by Word) 6 30(4) s
Program/Erase Cycles (per Block) 100,000 cycles
Data Retention 20 years
17/41
M29W800DT, M29W800DB
STATUS REGISTER
Bus Read operations from any address always
read the Status Register during Program and
Erase operations. It is also read during Erase Sus-
pend when an address within a block being erased
is accessed.
The bits in the S t atu s R egi st er ar e s umm ariz ed in
Table 7, Status Register Bits.
Data Polling Bit (DQ7). The Data P olling B it can
be used to identify whether the Program/Erase
Controller has successfully completed its opera-
tion or if it has responded to an Erase Suspend.
The Data Polling Bit is output on DQ7 when the
Status Register is read.
During Program operations the Data Polling Bit
outputs the complement of the bit being pro-
grammed to DQ7. After successful completion of
the Program operation the memory returns to
Read mode and Bus Read operations from the ad-
dress just programmed output DQ7, not its com-
plement.
During Erase operations the Data Polling Bit out-
puts ’0’, the complement of the erased state of
DQ7. Afte r succe ssfu l com pleti on o f th e Era se op-
eration the memory returns to Read Mode.
In Erase Suspend mode the Data Polling Bit will
output a ’1’ during a Bus Rea d operation within a
block being erased. The Data Polling Bit will
change from a ’0’ to a ’1’ when the Program/Erase
Controller has suspended the Erase operation.
Figure 8, Data Polling Flowchart, gives an exam -
ple of how to use the Dat a Polling Bit. A Va li d Ad -
dress is the address being programmed or an
address within the block being erased.
Toggle Bit (DQ6). The Toggle Bit can be used to
identify whether the Program/Erase Controller has
successfully completed its operation or if it has re-
sponded to an Erase Suspend. The Toggle Bit is
output on DQ6 when the Status Register is read.
During Prog ram a nd Eras e oper ations the Togg le
Bit change s from ’0’ to ’1’ to ’ 0’, etc. , with suc ces-
sive Bus Read operations at any address. After
successful completion of the operation the memo-
ry returns to Read mode.
During Erase Suspend mode the Toggle Bit will
output when addressing a cell within a block being
erased. The Toggle Bit will stop toggling when the
Program/Erase Controller has suspended the
Erase operation.
If any attemp t is mad e to e ra se a protec te d bl oc k,
the operati on is aborted, n o error is signal led and
DQ6 toggles for approximately 100µs. If any at-
tempt is made to program a protected block or a
suspende d block, the opera tion is ab orted, no er -
ror is signalled and DQ6 toggles for approximately
s.
Figure 9, Data Toggl e Flowchart, gives an ex am-
ple of how to use the Data Toggle Bit.
Error Bit (DQ5). The Error Bit can be used to
identify errors detected by the Program/Erase
Controller. The Error Bit is set to ’1’ when a Pro-
gram, Block Erase or Chip Erase operation fails to
write the correct data to the memory. If the Error
Bit is set a Read/Res et comm and mus t be issu ed
before other commands are issued. The Error bit
is output on DQ5 when the Status Register is read.
Note that the Program command cannot change a
bit set to ’0’ back to ’1’ and attempting to do so will
set DQ5 to ‘1’. A Bus Read operation to that ad-
dress w il l show the bi t is s ti ll ‘0 ’. On e of the Er as e
commands must be used to set all the bits in a
block or in the whole memory from ’0’ to ’1’
Erase Ti m er B it (D Q3). The Erase T imer B it can
be used to identify the start of Program/Erase
Controller operation during a Block Erase com-
mand. Once the Program/Erase Controller starts
erasing the Erase Timer Bit is set to ’1’. Before the
Program/Erase Controller starts the Erase Timer
Bit is s et to ’0’ a nd additiona l block s to be eras ed
may be written to the Command Interface. The
Erase Timer Bit is output on DQ3 when the Status
Register is read.
Alternative Toggle Bit (DQ2). The Alternative
Toggle Bit can be used to monitor the Program/
Erase con troller d uring Erase o perations. T he Al-
ternative Toggle Bit is output on DQ2 when the
Status Register is read.
During Chip Erase and Block Erase operations the
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with
successive Bus Rea d operations from addresse s
within the bl ocks being eras ed. A protected bl ock
is treated the same as a block not being erased.
Once the operation completes the memory returns
to Read mode.
During Erase Suspend the Alternative Toggle Bit
changes from ’0’ to ’1’ to ’0’, etc. with successive
Bus Read operations from addresses within the
blocks be ing erased . Bus Read ope rations to ad -
dresses wi thi n b lock s not b eing e ra se d will out put
the memory cell data as if in Read mode.
After an E r ase o peration th at ca us es th e Err or Bit
to be set the Alternative Toggle Bit can be used to
identify which block or blocks have caused the er-
ror. The Alternative Toggle Bit changes from ’0’ to
’1’ to ’0’, etc. with successive Bus Read Opera-
tions from addresses within blocks that have not
erased correctly. Th e Alternative Toggle Bit does
not change if the addressed block has erased cor-
rectly.
M29W800DT, M29W800DB
18/41
Table 7. Status Register Bits
Note: Unspecified data bits should be ignored.
Figure 8. Data Polling Flowchart Figure 9. Data Toggle Flowchart
Operation Address DQ7 DQ6 DQ5 DQ3 DQ2 RB
Program Any Address DQ7 Toggle 0 0
Program During Erase
Suspend Any Address DQ7 Toggle 0 0
Program Error Any Address DQ7 Toggle 1 0
Chip Erase Any Address 0 Toggle 0 1 Toggle 0
Block Erase before
timeout Erasing Block 0 Toggle 0 0 Toggle 0
Non-Erasing Block 0 Toggle 0 0 No Toggle 0
Block Erase Erasing Block 0 Toggle 0 1 Toggle 0
Non-Erasing Block 0 Toggle 0 1 No Toggle 0
Erase Suspend Erasing Block 1 No Toggle 0 Toggle 1
Non-Erasing Block Data read as normal 1
Erase Error Good Block Address 0 Toggle 1 1 No Toggle 0
Faulty Blo ck Addr ess 0 To gg le 1 1 Toggle 0
READ DQ5 & DQ7
at VALID ADDRESS
START
READ DQ7
at VALID ADDRESS
FAIL PASS
AI03598
DQ7
=
DATA YES
NO
YES
NO
DQ5
= 1
DQ7
=
DATA YES
NO
READ DQ6
START
READ DQ6
TWICE
FAIL PASS
AI01370C
DQ6
=
TOGGLE NO
NO
YES
YES
DQ5
= 1
NO
YES
DQ6
=
TOGGLE
READ
DQ5 & DQ6
19/41
M29W800DT, M29W800DB
MAXIMUM RATING
Stressing the dev ice above the ratin g lis ted in the
Absolute Maximum Ratin gs table ma y cause pe r-
manent damage to the device. Ex posur e to Ab so -
lute Maximum Rating conditions for extended
periods may affect device reliability. These are
stress ratings only and operation of th e device at
these or any other conditions above those indicat-
ed in the Operating sections of this specification is
not implied. Refer also to the STMicroelectronics
SURE Program and other relevant quality docu-
ments.
Table 8. Absolute Maximum Ratings
Note: 1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during tran sitions.
2. Maximum voltage may overshoot to VCC +2V durin g transiti on and for less than 20ns during transitions.
Symbol Parameter Min Max Unit
TBIAS Temperature Under Bias –50 125 °C
TSTG Storage Temperature –65 150 °C
VIO Input or Output Voltage (1,2) –0.6 VCC +0.6 V
VCC Supply Voltage –0.6 4 V
VID Identification Voltage –0.6 13.5 V
M29W800DT, M29W800DB
20/41
DC AND AC PARA METERS
This section summarizes the operating measure-
ment condi tions, an d the DC and AC characteri s-
tics of the device. The parameters in the DC and
AC characteristics Tables that follow, are derived
from tests performed under the Measurement
Conditions summarized in Table 9, Operating and
AC Measurement Conditions. Designers should
check that the operating conditions in their circuit
match the operating conditions when relying on
the quoted parameters.
Table 9. Operating and AC Measurement Conditions
Figure 10. AC Measurement I/O Waveform Figure 11. AC Measurement Load Circuit
Table 10. Device Capacitance
Note: Sampled only, no t 100% tested .
Parameter
M29W800D
Unit70 90
Min Max Min Max
VCC Supply Voltage 2.7 3.6 2.7 3.6 V
Ambient Operating Temperature (range 6) –40 85 40 85 °C
Ambient Operating Temperature (range 1) 0 70 0 70
Load Capacitance (CL)30 100 pF
Input Rise and Fall Times 10 10 ns
Input Pulse Voltages 0 to VCC 0 to VCC V
Input and Output Timing Ref. Voltages VCC/2 VCC/2 V
AI04498
VCC
0V
VCC/2
AI04499
CL
CL includes JIG capacitance
DEVICE
UNDER
TEST
25k
VCC
25k
VCC
0.1µF
Symb ol Parame te r Te st Co nd itio n Min Max Uni t
CIN Input Capacitance VIN = 0V 6pF
COUT Output Capacitance VOUT = 0V 12 pF
21/41
M29W800DT, M29W800DB
Table 11. DC Characteristics
Note: 1. Sampled only, not 100% test ed.
Figure 12. Read Mode AC Waveforms
Symbol Parameter Test Condition Min Max Unit
ILI Input Leakage Current 0V VIN VCC ±1 µA
ILO Output Le ak age Current 0V VOUT VCC ±1 µA
ICC1 Supply Cu rre nt (Re ad ) E = VIL, G = VIH,
f = 6MHz 10 mA
ICC2 Supply Cu rre nt (Stand by) E = VCC ±0.2V,
RP = VCC ±0.2V 100 µA
ICC3 (1) Su pp ly Cu rre nt (Pr og ram /E ra se) Program/Erase
Control ler ac tive 20 mA
VIL Input Low Voltage –0.5 0.8 V
VIH Input High Voltage 0.7VCC VCC +0.3 V
VOL Output Lo w Voltage IOL = 1.8mA 0.45 V
VOH Output Hig h Voltage IOH = –100µAVCC –0. 4 V
VID Identification Voltage 11.5 12.5 V
IID Identification Current A9 = VID 100 µA
VLKO Prog ram /E ra se Lo cko ut Supp ly
Voltage 1.8 2.3 V
AI05448
tAVAV
tAVQV tAXQX
tELQX tEHQZ
tGLQV
tGLQX tGHQX
VALID
A0-A18/
A–1
G
DQ0-DQ7/
DQ8-DQ15
E
tELQV tEHQX
tGHQZ
VALID
tBHQV
tELBL/tELBH tBLQZ
BYTE
M29W800DT, M29W800DB
22/41
Table 12. Read AC Characteristics
Note: 1. Sampled only, not 100% test ed.
Symbol Alt Parameter Test Condition M29W800D Unit
70 90
tAVAV tRC Address Valid to Next Address Valid E = VIL,
G = VIL Min 70 90 ns
tAVQV tACC Address Valid to Output Valid E = VIL,
G = VIL Max 70 90 ns
tELQX (1) tLZ Chip Enable Low to Output Transition G = VIL Min 0 0 ns
tELQV tCE Chip Enable Low to Output Valid G = VIL Max 70 90 ns
tGLQX (1) tOLZ Output Enable Low to Output
Transition E = VIL Min 0 0 ns
tGLQV tOE Output Enable Low to Output Valid E = VIL Max 30 35 ns
tEHQZ (1) tHZ Chip Enab le Hig h to Ou tpu t Hi-Z G = VIL Max 25 30 ns
tGHQZ (1) tDF Output Enable High to Output Hi-Z E = VIL Max 25 30 ns
tEHQX
tGHQX
tAXQX tOH Chip Enable, Output Enable or
Address Transition to Output Transition Min 0 0 ns
tELBL
tELBH tELFL
tELFH Chip Enab le to BY TE Low or High Max 5 5 ns
tBLQZ tFLQZ BYTE Low to Output Hi-Z Max 25 30 ns
tBHQV tFHQV BYTE High to Output Valid Max 30 40 ns
23/41
M29W800DT, M29W800DB
Figure 13. Write AC Waveforms, Write Enable Controlled
Table 13. Write AC Characteristics, Write Enable Controlled
Note: 1. Sampled only, not 100% test ed.
Symbol Alt Parameter M29W800D Unit
70 90
tAVAV tWC Address Valid to Next Address Valid Min 70 90 ns
tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 ns
tWLWH tWP Write Enable Low to Write Enable High Min 45 50 ns
tDVWH tDS Input V alid to Write Enable High Min 45 50 ns
tWHDX tDH Write Enable High to Input Transition Min 0 0 ns
tWHEH tCH Write Enable High to Chip Enable High Min 0 0 ns
tWHWL tWPH Write Enable High to Write Enable Low Min 30 30 ns
tAVWL tAS Address Valid to Write Enable Low Min 0 0 ns
tWLAX tAH Write Enable Low to Address Transition Min 45 50 ns
tGHWL Output Enable High to Write Enable Low Min 0 0 ns
tWHGL tOEH Write Enable High to Output Enable Low Min 0 0 ns
tWHRL (1) tBUSY Program/Erase Valid to RB Low Max 30 35 ns
tVCHEL tVCS VCC High to Chip Enable Low Min 50 50 µs
AI05449
E
G
W
A0-A18/
A–1
DQ0-DQ7/
DQ8-DQ15
VALID
VALID
VCC
tVCHEL
tWHEH
tWHWL
tELWL
tAVWL
tWHGL
tWLAX
tWHDX
tAVAV
tDVWH
tWLWHtGHWL
RB
tWHRL
M29W800DT, M29W800DB
24/41
Figure 14. Write AC Waveforms, Chip Enable Controlled
Table 14. Write AC Characteristics, Chip Enable Controlled
Note: 1. Sampled only, not 100% test ed.
Symbol Alt Parameter M29W800D Unit
70 90
tAVAV tWC Address Valid to Next Address Valid Min 70 90 ns
tWLEL tWS Write Enable Low to Ch ip En ab le Low Min 0 0 ns
tELEH tCP Chip Enable Low to Chip Enable High Min 45 50 ns
tDVEH tDS Input V alid to Chip Enable High Min 45 50 ns
tEHDX tDH Chip Enable High to Input Transition Min 0 0 ns
tEHWH tWH Chip Enable High to Write Enable High Min 0 0 ns
tEHEL tCPH Chip Enable High to Chip Enable Low Min 30 30 ns
tAVEL tAS Address Valid to Chip Enable Low Min 0 0 ns
tELAX tAH Chip Enable Low to Address Transition Min 45 50 ns
tGHEL Output Enable High Chip Enable Low Min 0 0 ns
tEHGL tOEH Chip Enable High to Output Enable Low Min 0 0 ns
tEHRL (1) tBUSY Program/Erase Valid to RB Low Max 30 35 ns
tVCHWL tVCS VCC High to Write Enable Low Min 50 50 µs
AI05450
E
G
W
A0-A18/
A–1
DQ0-DQ7/
DQ8-DQ15
VALID
VALID
VCC
tVCHWL
tEHWH
tEHEL
tWLEL
tAVEL
tEHGL
tELAX
tEHDX
tAVAV
tDVEH
tELEHtGHEL
RB
tEHRL
25/41
M29W800DT, M29W800DB
Figure 15. Reset/Block Temporary Unprotect AC Waveforms
Table 15. Reset/Block Temporary Unprotect AC Characteristics
Note: 1. Sampled only, not 100% test ed.
Symbol Alt Parameter M29W800D Unit
70 90
tPHWL (1)
tPHEL
tPHGL (1) tRH RP High to Write Enable Low, Chip Enable Low,
Output Enable Low Min 50 50 ns
tRHWL (1)
tRHEL (1)
tRHGL (1) tRB RB High to Write Enable Low, Chip Enable Low,
Output Enable Low Min 0 0 ns
tPLPX tRP RP Pulse Width Min 50 0 500 ns
tPLYH (1) tREADY RP Low to Read Mode Max 10 10 µs
tPHPHH (1) tVIDR RP Ris e Time to VID Min 500 500 ns
AI06870
RB
W,
RP tPLPX
tPHWL, tPHEL, tPHGL
tPLYH
tPHPHH
E, G
tRHWL, tRHEL, tRHGL
M29W800DT, M29W800DB
26/41
PACKAGE MECHANICAL
Figure 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Outline
Note: Drawing is not to scale.
Table 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 2.80 0.1102
A1 0.10 0.0039
A2 2.30 2.20 2.40 0.0906 0.0866 0.0945
b 0.40 0.35 0.50 0.0157 0.0138 0.0197
C 0.15 0.10 0.20 0.0059 0.0039 0.0079
CP 0.08 0.0030
D 28.20 28.00 28.40 1.1102 1.1024 1.1181
E 13.30 13.20 13.50 0.5236 0.5197 0.5315
EH 16.00 15.75 16.25 0.6299 0.6201 0.6398
e 1.27 0.0500
L 0.80 0.0315
a8 8
N44 44
SO-d
E
N
D
C
LA1 α
EH
A
1
eCP
b
A2
27/41
M29W800DT, M29W800DB
Figure 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline
Note: Drawing is not to scale.
Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.100 0.050 0.150 0.0039 0.0020 0.0059
A2 1.000 0.950 1.050 0.0394 0.0374 0.0413
B 0.220 0.170 0.270 0.0087 0.0067 0.0106
C 0.100 0.210 0.0039 0.0083
CP 0.080 0.0031
D1 12.000 11.900 12.100 0.4724 0.4685 0.4764
E 20.000 19.800 20.200 0.7874 0.7795 0.7953
E1 18.400 18.300 18.500 0.7244 0.7205 0.7283
e 0.500 0.0197
L 0.600 0.500 0.700 0.0236 0.0197 0.0276
L1 0.800 0.0315
a305305
TSOP-G
B
e
DIE
C
LA1 α
E1
E
A
A2
1
24
48
25
D1
L1
CP
M29W800DT, M29W800DB
28/41
Figure 18. TFBGA48 6x9mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline
Note: Drawing is not to scale.
Table 18. TFBGA48 6x9mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.200 0.0079
A2 1.000 0.0394
b 0.400 0.350 0.450 0.0157 0.0138 0.0177
D 6.000 5.900 6.100 0.2362 0.2323 0.2402
D1 4.000 0.1575
ddd 0.100 0.0039
E 9.000 8.900 9.100 0.3543 0.3504 0.3583
e 0.800 0.0315
E1 5.600 0.2205
FD 1.000 0.0394
FE 1.700 0.0669
SD 0.400 0.0157
SE 0.400 0.0157
E1E
D1
D
ebA2
A1
A
BGA-Z00
ddd
FD
FE SD
SE
e
BALL "A1"
29/41
M29W800DT, M29W800DB
Figure 19. TFBGA48 6x8mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline
Note: Drawing is not to scale.
Table 19. TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.260 0.0102
A2 0.900 0.0354
b 0.350 0.450 0.0138 0.0177
D 6.000 5.900 6.100 0.2362 0.2323 0.2402
D1 4.000 0.1575
ddd 0.100 0.0039
E 8.000 7.900 8.100 0.3150 0.3110 0.3189
E1 5.600 0.2205
e 0.800 0.0315
FD 1.000 0.0394
FE 1.200 0.0472
SD 0.400 0.0157
SE 0.400 0.0157
E1E
D1
D
eb
A2
A1
A
BGA-Z32
ddd
FD
FE SD
SE
e
BALL "A1"
M29W800DT, M29W800DB
30/41
PART NUMBERING
Table 20. Ordering Information Scheme
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,
please contact your nearest ST Sales Office.
Example: M29W800DB 90 N 6 T
Device Type
M29
Operatin g Voltage
W = VCC = 2.7 to 3.6V
Device Function
800D = 8 Mbit (x8/x16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
70 = 70 ns
90 = 90 ns
Package
M = SO44
N = TSOP48: 12 x 20 mm
ZA = TFBGA48: 6x9mm, 0.80mm pitch
ZE = TFBGA48: 6x8mm, 0.80mm pitch
Temperature Range
6 = –40 to 85 °C
1 = 0 to 70 °C
Option
T = Tape & Reel Packing
E = Lead-free Package, Standard Packing
F = Lead-free Package, Tape & Reel Packing
31/41
M29W800DT, M29W800DB
APPENDIX A. BLOCK ADDRESS TABLE
Table 21. Top Boot Block Addresses,
M29W800DT Table 22. Bottom Boot Block Addresses,
M29W800DB
#Size
(Kbytes) Address Range
(x8) Address Range
(x16)
18 16 FC000h-FFFFFh 7E000h-7FFFFh
17 8 FA000h-FBFFFh 7D000h-7DFFFh
16 8 F8000h-F9FFFh 7C000h-7CFFFh
15 32 F0000h-F7FFFh 78000h-7BFFFh
14 64 E0000h-EFFFFh 70000h-77FFFh
13 64 D0000h-DFFFFh 68000h-6FFFFh
12 64 C0000h-CFFFFh 60000h-67FFFh
11 64 B0000h-BFFFFh 58000h-5FFFFh
10 64 A0000h-AFFFFh 50000h-57FFFh
9 64 90000h-9FFFFh 48000h-4FFFFh
8 64 80000h-8FFFFh 40000h-47FFFh
7 64 70000h-7FFFFh 38000h-3FFFFh
6 64 60000h-6FFFFh 30000h-37FFFh
5 64 50000h-5FFFFh 28000h-2FFFFh
4 64 40000h-4FFFFh 20000h-27FFFh
3 64 30000h-3FFFFh 18000h-1FFFFh
2 64 20000h-2FFFFh 10000h-17FFFh
1 64 10000h-1FFFFh 08000h-0FFFFh
0 64 00000h-0FFFFh 00000h-07FFFh
#Size
(Kbytes) Address Range
(x8) Address Range
(x16)
18 64 F0000h-FFFFFh 78000h-7FFFFh
17 64 E0000h-EFFFFh 70000h-77FFFh
16 64 D0000h-DFFFFh 68000h-6FFFFh
15 64 C0000h-CFFFFh 60000h-67FFFh
14 64 B0000h-BFFFFh 58000h-5FFFFh
13 64 A0000h-AFFFFh 50000h-57FFFh
12 64 90000h-9FFFFh 48000h-4FFFFh
11 64 80000h-8FFFFh 40000h-47FFFh
10 64 70000h-7FFFFh 38000h-3FFFFh
9 64 60000h-6FFFFh 30000h-37FFFh
8 64 50000h-5FFFFh 28000h-2FFFFh
7 64 40000h-4FFFFh 20000h-27FFFh
6 64 30000h-3FFFFh 18000h-1FFFFh
5 64 20000h-2FFFFh 10000h-17FFFh
4 64 10000h-1FFFFh 08000h-0FFFFh
3 32 08000h-0FFFFh 04000h-07FFFh
2 8 06000h-07FFFh 03000h-03FFFh
1 8 04000h-05FFFh 02000h-02FFFh
0 16 00000h-03FFFh 00000h-01FFFh
M29W800DT, M29W800DB
32/41
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC ap-
proved, standardized data structure that can be
read from the Flash memory device. It allows a
system so ftware to quer y the device to determine
various electrical and timing parameters, density
informati on and functions su pported by the mem-
ory. The system can interface easily with the de-
vice, en abl ing the software to upgrade itself wh en
necessary.
When the CF I Query Command is issued the de -
vice enters CFI Query mode and the data structure
is read from the memory. Tables 23, 24, 25, 26, 27
and 27 show the addresses used to retrieve the
data.
The CFI data structure also contains a security
area where a 64 bit unique security number is writ-
ten (see Table , Security Code area). This area
can be accessed only in Read mode by the final
user. It is impo ssible to chang e the sec urity num -
ber after it has been written by ST. Issue a Read
command to return to Read mode.
Table 23. Query Structure Overview
Note: Query data are alway s presented on the lowes t order data outputs.
Tab le 24. CFI Query Identification String
Note: Query data are alway s presented on the lowest order data outputs (DQ7-DQ0 ) only. DQ8-DQ15 are ‘0’.
Address Sub-section Name Description
x16 x8
10h 20h CFI Query Identification String Command set ID and algorithm data offset
1Bh 36h System Interface Information Device timing & voltage information
27h 4Eh Device Geometry Definition Flash device layout
40h 80h Primary Algorithm-specific Extended
Query table Additional information specific to the Primary
Algorithm (optional)
61h C2h Security Code Area 64 bit unique device number
Address Data Description Value
x16 x8
10h 20h 0051h "Q"
11h 22h 0052h Query Unique ASCII String "QRY" "R"
12h 24h 0059h "Y"
13h 26h 0002h Primary Algorithm Command Set and Control Interface ID code 16 bit
ID code defining a specific algorithm AMD
Compatible
14h 28h 0000h
15h 2Ah 0040h Address for Primary Algorithm extended Query table (see Table 26) P = 40h
16h 2Ch 0000h
17h 2Eh 0000h Alternate Vendor Co mmand Set and Control Interface ID Code second
vendor - specified algorit hm supported NA
18h 30h 0000h
19h 32h 0000h Address for Alternate Algorithm extended Query table NA
1Ah 34h 0000h
33/41
M29W800DT, M29W800DB
Table 25. CFI Query System Interface Information
Note: 1. Not supported in the CFI
Table 26. Device Geometry Definition
Address Data Description Value
x16 x8
1Bh 36h 0027h VCC Logic Supply Minimum Program/Erase voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV 2.7V
1Ch 38h 0036h VCC Logic Supply Maximum Program/Erase voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV 3.6V
1Dh 3Ah 0000h VPP [Programming] Supply Minimum Program/Erase voltage NA
1Eh 3Ch 0000h VPP [Programming] Supply Maximum Program/Erase voltage NA
1Fh 3Eh 0004h Typical timeout per single byte/word program = 2n µs 16µs
20h 40h 0000h Typical timeout for minimum size write buffer program = 2n µs NA
21h 42h 000Ah Typical timeout per individual block erase = 2n ms 1s
22h 44h 0000h Typical timeout for full chip erase = 2n ms see note (1)
23h 46h 0004h Maximum timeout for byte/word program = 2n times typical 256µs
24h 48h 0000h Maximum timeout for write buffer program = 2n times typical NA
25h 4Ah 0003h Maximum timeout per individual block erase = 2n times typical 8s
26h 4Ch 0000h Maximum timeo ut for chip era se = 2n times typical see note (1)
Address Data Description Value
x16 x8
27h 4Eh 0014h Device Size = 2n in number of byt es 1 MByte
28h
29h 50h
52h 0002h
0000h Flash Device Interface Code description x8, x16
Async.
2Ah
2Bh 54h
56h 0000h
0000h Maximum number of bytes in multi-byte program or page = 2n NA
2Ch 58h 0004h Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing
contiguous Erase Blocks of the same size. 4
2Dh
2Eh 5Ah
5Ch 0000h
0000h Region 1 Infor mation
Number of identical size erase block = 0000h+1 1
2Fh
30h 5Eh
60h 0040h
0000h Region 1 Infor mation
Block size in Region 1 = 0040h * 256 byte 16 Kbyte
31h
32h 62h
64h 0001h
0000h Region 2 Infor mation
Number of identical size erase block = 0001h+1 2
33h
34h 66h
68h 0020h
0000h Region 2 Infor mation
Block size in Region 2 = 0020h * 256 byte 8 Kbyte
35h
36h 6Ah
6Ch 0000h
0000h Region 3 Infor mation
Number of identical size erase block = 0000h+1 1
M29W800DT, M29W800DB
34/41
Table 27. Primary Algorithm-Specific Extended Query Table
Table 28. Security Code Area
37h
38h 6Eh
70h 0080h
0000h Region 3 Infor mation
Block size in Region 3 = 0080h * 256 byte 32 Kbyte
39h
3Ah 72h
74h 000Eh
0000h Region 4 Infor mation
Number of identical-size erase block = 000Eh+1 15
3Bh
3Ch 76h
78h 0000h
0001h Region 4 Infor mation
Block size in Region 4 = 0100h * 256 byte 64 Kbyte
Address Data Description Value
x16 x8
40h 80h 0050h
Primary Algorithm extended Query table unique ASCII string “PRI”
"P"
41h 82h 0052h "R"
42h 84h 0049h "I"
43h 86h 0031h Major version number, ASCII "1"
44h 88h 0030h Minor version number, ASCII "0"
45h 8Ah 0000h Address Sensitive Unlock (bits 1 to 0)
00 = required, 01= not required
Silicon Revision Number (bits 7 to 2)
Yes
46h 8Ch 0002h Erase Suspend
00 = not supported, 01 = Read only, 02 = Read and Write 2
47h 8Eh 0001h Block Protection
00 = not supported, x = number of sectors in per group 1
48h 90h 0001h Temporary Block Unprotect
00 = not supported, 01 = supported Yes
49h 92h 0004h Block Protect /Unprotect
04 = M29W400B 4
4Ah 94h 0000h Simultaneous Operations, 00 = not supported No
4Bh 96h 0000h Burst Mode, 00 = not supported, 01 = supported No
4Ch 98h 0000h Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word No
Address Data Description
x16 x8
61h C3h, C2h XXXX
64 bit: unique device number
62h C5h, C4h XXXX
63h C7h, C6h XXXX
64h C9h, C8h XXXX
Address Data Description Value
x16 x8
35/41
M29W800DT, M29W800DB
APPENDIX C. BLOCK PROT ECTION
Block protection can be used to prevent any oper-
ation f rom modify ing the da ta stored in the Fl ash.
Each Block can be protected individually. Once
protected, Program and Erase operations on the
block fail to change the data.
There are three techniques that can be used to
control Block Protection, these are the Program-
mer technique, the In-System technique and Tem-
porary Unprotection. Temporary Unprotection is
controlled by the Reset/Block Temporary Unpro-
tection pi n, RP ; thi s is d es cribed i n th e Si gna l De -
scriptions section.
Unlike the Command Interface of the Program/
Erase Controller, the techniques for protecting and
unprotecting blocks change between different
Flash memory suppliers. For example, the tech-
niques for AMD parts will not work on STMicro-
electronics parts. Care should be taken when
changing drivers for one part to work on another.
Programmer Technique
The Programmer technique uses high (VID) volt-
age levels on some of the bus pins. These cannot
be achieved using a standard microprocessor bus,
therefore the technique is recommended only for
use in Progra mming Equipment.
To protect a block follow the flowchart in Figure 20,
Programmer Equipment Block Protect Flowchart.
To u npr o tect the wh ol e chi p i t i s ne ce ss ar y to pr o-
tect all of the blocks first, then all blocks can be un-
protected at the sam e time . To u nprotect the ch ip
follow Figure 21, Programmer Equipment Chip
Unprotect Flowchart. Table 29, Programmer
Technique Bus Operations, gives a summary of
each operation.
The timing on these flowcharts is critical. Care
should be tak en to ensure that, wh ere a pause is
specifi ed, it is followe d as closely as possibl e. Do
not abort the procedure before reaching the end.
Chip Unprotect can take several seconds and a
user message should be provided to show that the
operation is progressing.
In-System Technique
The In-System technique requires a high voltage
level on the Reset/Blocks Temporary Unprotect
pin, RP. This can be achieved without violating the
maximum ratings of the components on the micro-
processor bus, therefore this technique is suitable
for use after the Flas h has been fitted to t he sys-
tem.
To protect a block follow the flowchart in Figure 22,
In-System Block Protect Flowchart. To unprotect
the whole c hip it is nec essary to prote ct all of the
blocks first, then all the blocks can be unprotected
at the same time. To unprotect the chip follow Fig-
ure 23, In-System Chip Unprotect Flowchart.
The timing on these flowcharts is critical. Care
should be tak en to ensure that, wh ere a pause is
specifi ed, it is followe d as closely as possibl e. Do
not allow the mi croproce ssor to service interr upts
that will upset the timing and do not abor t the pro-
cedure before reaching the end. Chip Unprotect
can take several seconds and a user message
should be provided to show that the operation is
progressing.
Table 29. Programmer Technique Bus Operations, BYTE = VIH or VIL
Operation E G W Address Inputs
A0-A18 Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
Block Protect VIL VID VIL Pulse A9 = VID, A12-A18 Block Address
Others = X X
Chip Unpro te ct VID VID VIL Pulse A9 = VID, A12 = VIH, A1 5 = VIH
Others = X X
Block Protection
Verify VIL VIL VIH A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,
A12-A18 Block Address
Others = X
Pass = XX01h
Retry = XX00h
Block Unprotection
Verify VIL VIL VIH A0 = VIL, A1 = VIH, A6 = VIH, A9 = VID,
A12-A18 Block Address
Others = X
Retry = XX01h
Pass = XX00h
M29W800DT, M29W800DB
36/41
Figure 20. Programmer Equipment Block Protect Flowchart
ADDRESS = BLOCK ADDRESS
AI03469
G, A9 = VID,
E = VIL
n = 0
Wait 4µs
Wait 100µs
W = VIL
W = VIH
E, G = VIH,
A0, A6 = VIL,
A1 = VIH
A9 = VIH
E, G = VIH
++n
= 25
START
FAIL
PASS
YES
NO
DATA
=
01hYES
NO
W = VIH
E = VIL
Wait 4µs
G = VIL
Wait 60ns
Read DATA
Verify Protect Set-upEnd
A9 = VIH
E, G = VIH
37/41
M29W800DT, M29W800DB
Figure 21. Programmer Equipment Chip Unprotect Flowchart
PROTECT ALL BLOCKS
AI03470
A6, A12, A15 = VIH(1)
E, G, A9 = VID
DATA
W = VIH
E, G = VIH
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1, A6 = VIH
Wait 10ms
=
00h
INCREMENT
CURRENT BLOCK
n = 0
CURRENT BLOCK = 0
Wait 4µs
W = VIL
++n
= 1000
START
YES
YESNO
NO LAST
BLOCK
YES
NO
E = VIL
Wait 4µs
G = VIL
Wait 60ns
Read DATA
FAIL PASS
Verify Unprotect Set-upEnd
A9 = VIH
E, G = VIH A9 = VIH
E, G = VIH
M29W800DT, M29W800DB
38/41
Figure 22. In-System Equipment Bloc k Protect Flowchart
AI03471
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
n = 0
Wait 100µs
WRITE 40h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
RP = VIH ++n
= 25
START
FAIL
PASS
YES
NO
DATA
=
01hYES
NO
RP = VIH
Wait 4µs
Verify Protect Set-upEnd
READ DATA
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
RP = VID
ISSUE READ/RESET
COMMAND
ISSUE READ/RESET
COMMAND
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
39/41
M29W800DT, M29W800DB
Figure 23. In-System Equipment Chip Unpr otect Flowchart
AI03472
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
n = 0
CURRENT BLOCK = 0
Wait 10ms
WRITE 40h
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
RP = VIH
++n
= 1000
START
FAIL PASS
YES
NO
DATA
=
00h
YESNO
RP = VIH
Wait 4µs
READ DATA
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
RP = VID
ISSUE READ/RESET
COMMAND
ISSUE READ/RESET
COMMAND
PROTECT ALL BLOCKS
INCREMENT
CURRENT BLOCK
LAST
BLOCK
YES
NO
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
Verify Unprotect Set-upEnd
M29W800DT, M29W800DB
40/41
REVISION HISTORY
Table 30. Document Revision History
Version Revision Details
August 2001 1.0 First Issue
03-Dec-2001 2.0 Block Protection Appendix added, SO44 drawing and package mechanical data updated,
CFI Table 26, address 39h/72h data clarified, Read/Reset operation during Erase
Suspend cl arified
01-Mar-2002 3.0 Des crip tion of R e ady /B us y sign al cla rifie d (an d Fig ure 15 mod ifie d)
Clarified allowable commands during block erase
Clarified the mode the device returns to in the CFI Read Query command section
11-Apr-2002 4.0 Temperature range 1 added
Document promoted from Preliminary Data to full Data Sheet
31-Mar-2003 4.1
Erase Suspend Latency Time (typical and maximum) and Data Retention parameters
added to Table 6, Program, Erase Times and Program, Erase Endurance Cycles, and
Typical after 100k W/E Cycles column removed. Minimum voltage corrected for 70ns
Speed Cla ss in Table 9, Oper atin g an d AC Me as ure m ent Cond itions.
Logic Diagram and Data Toggle Flowchart corrected.
Lead-free package options E and F added to Table 20, Ordering Information Scheme.
13-Feb-2004 5.0 TSOP48 package Outline and Mechanical Data updated.
TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch added.
Table 9.Operating and AC Measurement Conditions updated for 70ns speed option.
23-Apr-2004 6.0 Figure 3., SO Connections updated.
41/41
M29W800DT, M29W800DB
Informatio n furnis hed is believ ed to be a ccurate and reli able. Howe ver, STMic roelectr onics assumes no r esponsib ility for th e consequences
of use of such informat ion nor for any inf ringement of pate nts or other rights of third p arties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change wi thout notic e. T his pub licat ion su persed es and repl aces all info rmat ion previou sly su pplie d. STMicroele ctro nics prod ucts ar e not
authorize d for use as critical components in life support devices or systems wi thout express writt en approval of STMicroelectronics.
The ST logo is a regis tered trademark of STMicroelect r onics.
All other names are the property of t heir respective owners.
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -
Spain - Swede n - Swi tz erland - United Kingdom - United States
www.st.com