VDSM ITAVM ITRMS ITSM VT0 rT = = = = = = 6500 V 1330 A 2080 A 22000 A 1.20 V 0.600 m Phase Control Thyristor 5STP 12M6500 Doc. No. 5SYA1004-03 Sep. 01 * Patented free-floating silicon technology * Low on-state and switching losses * Designed for traction, energy and industrial applications * Optimum power handling capability Blocking Part Number 5STP 12M6200 5STP 12M5800 Conditions 5STP VDSM VRSM 6500 V 6200 V 5800 V f = 5 Hz, tp = 10ms VDRM VRRM 5600 V 5300 V 4900 V f = 50 Hz, tp = 10ms 7000 V 6700 V 6300 V tp = 5ms, single pulse VRSM1 IDSM 600 mA VDSM IRSM 600 mA VRSM dV/dtcrit 2000 V/s Exp. to 0.67 x VDRM, Tj = 125C VDRM/ VRRM are equal to VDSM/ VRSM values up to Tj = 110C Mechanical data FM a Mounting force nom. 50 kN min. 45 kN max. 60 kN Acceleration Device unclamped 50 m/s2 Device clamped 100 m/s2 m Weight 1.85 kg DS Surface creepage distance 45 mm Da Air strike distance 21 mm Tj = 125C ABB Semiconductors AG reserves the right to change specifications without notice. 5STP 12M6500 On-state ITAVM Max. average on-state current 1330 A ITRMS Max. RMS on-state current 2080 A ITSM Max. peak non-repetitive 22000 A surge current 24000 A 2 It Limiting load integral Half sine wave, TC = 70C tp = 10 ms Tj = 125C tp = 8.3 ms After surge: 2 2420 kA s tp = 10 ms VD = VR = 0V 2 8.3 ms 2390 kA s tp = VT On-state voltage 2.12 V IT = 1500 A VT0 Threshold voltage 1.20 V IT = 670 - 2000 A rT Slope resistance 0.600 m IH Holding current IL Latching current 50-125 mA Tj = 25C 20-75 mA Tj = 125C 150- mA 600 50-200 mA Tj = 25C Tj = 125C Tj = 125C Switching di/dtcrit Critical rate of rise of on-state current 100 A/s Cont. f = 50 Hz VD 0.67VDRM , Tj = 125C 200 A/s 60 sec. f = 50Hz ITRM = 2000 A IFG = 2 A, tr = 0.5 s IFG = 2 A, tr = 0.5 s td Delay time 3.0 s VD = 0.4VDRM tq Turn-off time 800 s VD 0.67VDRM ITRM = 2000 A, Tj = 125C dvD/dt = 20V/s VR > 200 V, diT/dt = -1 A/s Qrr Recovery charge min 1600 As max 2600 As Triggering VGT Gate trigger voltage 2.6 V Tj = 25 IGT Gate trigger current 400 mA Tj = 25 VGD Gate non-trigger voltage 0.3 V VD =0.4 x VDRM IGD Gate non-trigger current 10 mA VD = 0.4 x VDRM VFGM Peak forward gate voltage 12 V IFGM Peak forward gate current 10 A VRGM Peak reverse gate voltage 10 V PG Gate power loss 3W ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1004-03 Sep. 01 page 2 of 6 5STP 12M6500 Thermal Tjmax Max. operating junction temperature range Tstg Storage temperature range RthJC Thermal resistance 24 K/kW Anode side cooled junction to case 24 K/kW Cathode side cooled 12 K/kW Double side cooled Thermal resistance case to 4 K/kW Single side cooled heat sink 2 K/kW Double side cooled -40...140 C Analytical function for transient thermal impedance: n ZthJC(t) = a Ri(1 - e - t/ i ZthJC [K/kW] 15 180 sine: add 1 K/kW 180 rectangular: add 1 K/kW 120 rectangular: add 1 K/kW 60 rectangular: add 2 K/kW ) i =1 10 5 i 1 2 3 4 Ri(K/kW) 7.63 1.85 1.78 0.8 i(s) 0.7681 0.1842 0.0265 0.0102 Fm = 45..60 kN Double-side cooling 0 0.001 TM1 RthCH 125 C 0.010 0.100 1.000 10.000 t [s] Fig. 1 Transient thermal impedance junction to case. On-state characteristic model: VT = A + B iT + C ln(iT +1) + D IT Valid for iT = 200 - 2000 A A B C D 1.328 0.0002567 -0.092 0.028 Fig. 2 On-state characteristics. Tj=125C, 10ms half sine Fig. 3 On-state characteristics. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1004-03 Sep. 01 page 3 of 6 5STP 12M6500 Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded. Fig. 5 Max. permissible case temperature vs. mean on-state current. Fig. 6 Surge on-state current vs. pulse length. Half-sine wave. Fig. 7 Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1004-03 Sep. 01 page 4 of 6 5STP 12M6500 Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss. Fig. 10 Recovery charge vs. decay rate of onstate current. Fig. 11 Peak reverse recovery current vs. decay rate of on-state current. Turn - off time, typical parameter relationship. Fig. 12 tq/tq1 = f1(Tj) Fig. 13 tq/tq1 = f2(-diT/dt) tq = tq1 * f1(Tj) * f2(-diT/dt) * f3(dv/dt) Fig. 14 tq/tq1 = f3(dv/dt) tq1 :at normalized values (see page 2) tq : at varying conditions ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1004-03 Sep. 01 page 5 of 6 5STP 12M6500 Turn-on and Turn-off losses Fig. 15 Won = f(IT, tP), Tj = 125C. Half sinusoidal waves. Fig. 16 Won = f(IT, di/dt), Tj = 125C. Rectangular waves. Fig. 17 Woff = f(V0,IT), Tj = 125C. Half sinusoidal waves. tP = 10 ms. Fig. 18 Woff = f(V0,di/dt), Tj = 125C. Rectangular waves. ABB Semiconductors AG reserves the right to change specifications without notice. ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone Fax Email Internet +41 (0)62 888 6419 +41 (0)62 888 6306 abbsem@ch.abb.com www.abbsem.com Doc. No. 5SYA1004-03 Sep. 01