LTC2634
21
Rev E
For more information www.analog.com
OPERATION
While the minimum input sequence is 24 bits, it may
optionally be extended to 32 bits to accommodate micro-
processors that have a minimum word width of 16 bits
(2 bytes). To use the 32-bit width, 8 don’t care bits must
be transferred to the device first, followed by the 24-bit
sequence described. Figure 3b shows the 32-bit sequence.
The 16-bit data word is ignored for all commands that do
not include a write operation.
Daisy-Chain Operation (QFN Package)
The serial output of the shift register appears at the SDO
pin on the QFN package. Data transferred to the device
from the SDI input is delayed 32 SCK rising edges before
being output at the next SCK falling edge, therefore, daisy
chaining multiple LTC2634 DACs requires 32-bit data
write cycles.
The SDO output can be used to facilitate control of multiple
serial devices from a single 3-wire serial port (i.e., SCK,
SDI and CS/LD). Such a “daisy-chain” series is config-
ured by connecting SDO of each upstream device to SDI
of the next device in the chain. The shift registers of the
devices are thus connected in series, effectively forming a
single input shift register which extends through the entire
chain. Because of this, the devices can be addressed and
controlled individually by simply concatenating their input
words; the first instruction addresses the last device in
the chain and so forth. The SCK and CS/LD signals are
common to all devices in the series. Figure 5 shows a
block diagram for daisy-chain operation.
In use, CS/LD is first taken low. Then the concatenated
input data is transferred to the chain, using SDI of the
first device as the data input. When the data transfer is
complete, CS/LD is taken high, completing the instruction
sequence for all devices simultaneously. A single device
can be controlled by using the no-operation command
(1111) for the other devices in the chain.
Reference Modes
For applications where an accurate external reference is
either not available, or not desirable due to limited space,
the LTC2634 has a low noise, user-selectable, integrated
reference. The integrated reference voltage is internally
amplified by 2x to provide the full-scale DAC output volt-
age range. The LTC2634-LMI/LTC2634-LMX/LTC2634-LZ
provides a full-scale DAC output of 2.5V. The LTC2634-
HMI/LTC2634-HMX/LTC2634-HZ provides a full-scale
DAC output of 4.096V. The internal reference can be
useful in applications where the supply voltage is poorly
regulated. Internal Reference mode can be selected by
using command 0110b, and is the power-on default for
LTC2634-HZ/LTC2634-LZ, as well as for LTC2634-HMI/
LTC2634-LMI.
The 10ppm/°C, 1.25V (LTC2634-LMI/LTC2634-LMX/
LTC2634-LZ) or 2.048V (LTC2634-HMI/LTC2634-HMX/
LTC2634-HZ) internal reference is available at the REF pin.
Adding bypass capacitance to the REF pin will improve
noise performance; 0.1µF is recommended, and up to
10µF can be driven without oscillation. The REF out-
put must be buffered when driving an external DC load
current.
Alternatively, the DAC can operate in external reference
mode using command 0111b. In this mode, an input
voltage supplied externally to the REF pin provides the
reference (1V ≤ V
REF
≤ V
CC
) and the supply current is
reduced. The external reference voltage supplied sets the
full-scale DAC output voltage. External reference mode is
the power-on default for LTC2634-HMX/LTC2634-LMX.
The reference mode of LTC2634-HZ/LTC2634-LZ/
LTC2634-HMI/LTC2634-LMI (internal reference power-
on default), can be changed by software command after
power up. The same is true for LTC2634-HMX/-LMX
(external reference power-on default).
The LTC2634’s QFN package offers a REFLO pin for the
negative reference. REFLO must be connected to GND.