General Description
The MAX4000/MAX4001/MAX4002 low-cost, low-power
logarithmic amplifiers are designed to control RF power
amplifiers (PA) operating in the 0.1GHz to 2.5GHz fre-
quency range. A typical dynamic range of 45dB makes
this family of log amps useful in a variety of wireless appli-
cations including cellular handset PA control, transmitter
power measurement, and RSSI for terminal devices.
Logarithmic amplifiers provide much wider measurement
range and superior accuracy to controllers based on
diode detectors. Excellent temperature stability is
achieved over the full operating range of -40°C to +85°C.
The choice of three different input voltage ranges elimi-
nates the need for external attenuators, thus simplifying
PA control-loop design. The logarithmic amplifier is a volt-
age-measuring device with a typical signal range of
-58dBV to -13dBV for the MAX4000, -48dBV to -3dBV for
the MAX4001, and -43dBV to +2dBV for the MAX4002.
The input signal for the MAX4000 is internally AC-coupled
using an on-chip 5pF capacitor in series with a 2kinput
resistance. This highpass coupling, with a corner at
16MHz, sets the lowest operating frequency and allows
the input signal source to be DC grounded. The
MAX4001/MAX4002 require an external coupling capaci-
tor in series with the RF input port. These PA controllers
feature a power-on delay when coming out of shutdown,
holding OUT low for approximately 5µs to ensure glitch-
free controller output.
The MAX4000/MAX4001/MAX4002 family is available in
an 8-pin µMAX package and an 8-bump chip-scale pack-
age (UCSP™). The device consumes 5.9mA with a 5.5V
supply, and when powered down the typical shutdown
current is 13µA.
Applications
Transmitter Power Measurement and Control
TSSI for Wireless Terminal Devices
Cellular Handsets (TDMA, CDMA, GPRS, GSM)
RSSI for Fiber Modules
UCSP is a registered trademark of Maxim Integrated Products,
Inc.
Features
Complete RF-Detecting PA Controllers
Variety of Input Ranges
MAX4000: -58dBV to -13dBV
(-45dBm to 0dBm in 50)
MAX4001: -48dBV to -3dBV
(-35dBm to +10dBm in 50)
MAX4002: -43dBV to +2dBV
(-30dBm to +15dBm in 50)
Frequency Range from 100MHz to 2.5GHz
Temperature Stable Linear-in-dB Response
Fast Response: 70ns 10dB Step
10mA Output Sourcing Capability
Low Power: 17mW at 3V (typ)
Shutdown Current 30µA (max)
Available in an 8-Bump UCSP and a Small 8-Pin
µMAX Package
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
________________________________________________________________ Maxim Integrated Products 1
19-2288; Rev 1; 7/02
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Ordering Information
PART TEMP RANGE PIN-
PACKAGE
TOP
MARK
MAX4000EBL-T -40°C to +85°C 8 UCSP-8 ABF
MAX4000EUA -40°C to +85°C 8 µMAX
MAX4001EBL-T -40°C to +85°C 8 UCSP-8 ABE
MAX4001EUA -40°C to +85°C 8 µMAX
MAX4002EBL-T -40°C to +85°C 8 UCSP-8 ABD
MAX4002EUA -40°C to +85°C 8 µMAX
Functional Diagram
10dB
DET
10dB 10dB10dB
DET DET DETDET
OFFSET
COMP
LOW-
NOISE
BANDGAP
OUTPUT
ENABLE
DELAY
GND
(PADDLE)
gm
+
-
X1
V-I
RFIN
VCC
SHDN
OUT
CLPF
SET
MAX4000
Pin Configurations appear at end of data sheet.
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = 3V, SHDN = 1.8V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 2.7 5.5 V
Supply Current ICC VCC = 5.5V 5.9 9.3 mA
Shutdown Supply Current ICC SHDN = 0.8V, VCC = 5.5V 13 30 µA
Shutdown Output Voltage VOUT SHDN = 0.8V 100 mV
Logic-High Threshold VH1.8 V
Logic-Low Threshold VL0.8 V
SHDN = 3V 5 20
SHDN Input Current ISHDN SHDN = 0 -0.8 -0.01 µA
SET-POINT INPUT
Voltage Range (Note 2) VSET Corresponding to central 40dB 0.35 1.45 V
Input Resistance RIN 30 M
Slew Rate (Note 3) 16 V/µs
MAIN OUTPUT
High, ISOURCE = 10mA 2.65 2.75
Voltage Range VOUT Low, ISINK = 350µA 0.15 V
Output-Referred Noise From CLPF 8 nV/Hz
Small-Signal Bandwidth BW From CLPF 20 MHz
Slew Rate VOUT = 0.2V to 2.6V 8 V/µs
(Voltages Referenced to GND)
VCC ...........................................................................-0.3V to +6V
OUT, SET, SHDN, CLPF.............................-0.3V to (VCC + 0.3V)
RFIN
MAX4000 ......................................................................+6dBm
MAX4001 ....................................................................+16dBm
MAX4002 ....................................................................+19dBm
Equivalent Voltage
MAX4000 ..................................................................0.45VRMS
MAX4001 ....................................................................1.4VRMS
MAX4002 ....................................................................2.0VRMS
OUT Short Circuit to GND ..........................................Continuous
Continuous Power Dissipation (TA = +70°C)
8-Bump UCSP (derate 4.7mW/°C above +70°C).........379mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering , 10s) ................................+300°C
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
_______________________________________________________________________________________ 3
Note 1: All devices are 100% production tested at TA= +25°C and are guaranteed by design for TA= -40°C to +85°C as specified.
All production AC testing is done at 100MHz.
Note 2: Typical value only, set-point input voltage range determined by logarithmic slope and logarithmic intercept.
Note 3: Set-point slew rate is the rate at which the reference level voltage, applied to the inverting input of the gmstage, responds to
a voltage step at the SET pin (see Figure 1).
Note 4: Typical min/max range for detector.
Note 5: MAX4000 internally AC-coupled.
Note 6: MAX4001/MAX4002 are internally resistive-coupled to VCC.
ELECTRICAL CHARACTERISTICS
(VCC = 3V, SHDN = 1.8V, fRF = 100MHz to 2.5GHz, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.)
(Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Input Frequency fRF 100 2500 MHz
MAX4000 -58 -13
MAX4001 -48 -3
RF Input Voltage Range
(Note 4) VRF
MAX4002 -43 +2
dBV
MAX4000 -45 0
MAX4001 -35 +10
Equivalent Power Range
(50 Terminated) (Note 4) PRF
MAX4002 -30 +15
dBm
fRF = 100MHz 22.5 25.5 28.5
fRF = 900MHz 25Logarithmic Slope VS
fRF = 1900MHz 29
mV/dB
MAX4000 -62 -55 -49
MAX4001 -52 -45 -39fRF = 100MHz
MAX4002 -47 -40 -34
MAX4000 -57
MAX4001 -48
fRF = 900MHz
MAX4002 -43
MAX4000 -56
MAX4001 -45
Logarithmic Intercept PX
fRF = 1900MHz
MAX4002 -41
dBm
RF INPUT INTERFACE
DC Resistance RDC MAX4001/MAX4002, connected to VCC
(Note 5) 2k
Inband Resistance RIB 2k
Inband Capacitance CIB MAX4000, internally AC-coupled
(Note 6) 0.5 pF
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
4 _______________________________________________________________________________________
Typical Operating Characteristics
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4001 LOG CONFORMANCE
vs. INPUT POWER (µMAX)
MAX4000 toc08
INPUT POWER (dBm)
ERROR (dB)
100-30 -20 -10
-3
-2
-1
0
1
2
3
4
-4
-40 20
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4002 LOG CONFORMANCE
vs. INPUT POWER (µMAX)
MAX4000 toc09
INPUT POWER (dBm)
ERROR (dB)
155-25 -15 -5
-3
-2
-1
0
1
2
3
4
-4
-35 25
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4000 LOG CONFORMANCE
vs. INPUT POWER (µMAX)
MAX4000 toc07
INPUT POWER (dBm)
ERROR (dB)
0-10-40 -30 -20
-3
-2
-1
0
1
2
3
4
-4
-50 10
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4002
SET vs. INPUT POWER (UCSP)
MAX4000 toc06
INPUT POWER (dBm)
SET (V)
2010-10 0-20-30
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0
-40 30
2.5GHz
1.9GHz 0.9GHz
0.1GHz
MAX4001
SET vs. INPUT POWER (UCSP)
INPUT POWER (dBm)
SET (V)
100-20 -10-30-40
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0
-50 20
2.5GHz
1.9GHz 0.9GHz
0.1GHz
MAX4000 toc05
MAX4000
SET vs. INPUT POWER (UCSP)
MAX4000 toc04
INPUT POWER (dBm)
SET (V)
0-10-30 -20-40-50
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0
-60 10
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4002
SET vs. INPUT POWER (µMAX)
MAX4000 toc03
INPUT POWER (dBm)
SET (V)
2010-30 -20 -10 0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-40 30
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4001
SET vs. INPUT POWER (µMAX)
MAX4000 toc02
INPUT POWER (dBm)
SET (V)
100-40 -30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-50 20
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4000
SET vs. INPUT POWER (µMAX)
MAX4000 toc01
INPUT POWER (dBm)
SET (V)
0-10-50 -40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-60 10
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
_______________________________________________________________________________________ 5
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (UCSP)
MAX4000 toc18
INPUT POWER (dBm)
SET (V)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (UCSP)
MAX4000 toc17
INPUT POWER (dBm)
SET (V)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (UCSP)
MAX4000 toc16
INPUT POWER (dBm)
SET (V)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (µMAX)
MAX4000 toc15
INPUT POWER (dBm)
SET (V)
ERROR (dB)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = +25°C
TA = -40°C
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (µMAX)
MAX4000 toc14
INPUT POWER (dBm)
SET (V)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (µMAX)
MAX4000 toc13
INPUT POWER (dBm)
SET (V)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4002 LOG CONFORMANCE
vs. INPUT POWER (UCSP)
MAX4000 toc12
INPUT POWER (dBm)
ERROR (dB)
155-25 -15 -5
-3
-2
-1
0
1
2
3
4
-4
-35 25
2.5GHz
0.9GHz
0.1GHz
1.9GHz
MAX4000 LOG CONFORMANCE
vs. INPUT POWER (UCSP)
MAX4000 toc10
INPUT POWER (dBm)
ERROR (dB)
0-10-40 -30 -20
-3
-2
-1
0
1
2
3
4
-4
-50 10
2.5GHz
0.9GHz
0.1GHz
1.9GHz
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
6 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (µMAX)
MAX4000 toc27
INPUT POWER (dBm)
SET (V)
ERROR (dB)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (µMAX)
MAX4000 toc25
INPUT POWER (dBm)
SET (V)
ERROR (dB)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (UCSP)
MAX4000 toc24
INPUT POWER (dBm)
SET (V)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (UCSP)
MAX4000 toc23
INPUT POWER (dBm)
SET (V)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (UCSP)
MAX4000 toc22
INPUT POWER (dBm)
SET (V)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
ERROR (dB)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (µMAX)
MAX4000 toc21
INPUT POWER (dBm)
SET (V)
ERROR (dB)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = +25°C
TA = -40°C
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (µMAX)
MAX4000 toc20
INPUT POWER (dBm)
SET (V)
ERROR (dB)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (µMAX)
MAX4000 toc19
INPUT POWER (dBm)
SET (V)
ERROR (dB)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
_______________________________________________________________________________________ 7
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (UCSP)
MAX4000 toc35
INPUT POWER (dBm)
SET (V)
ERROR (dB)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (UCSP)
MAX4000 toc34
INPUT POWER (dBm)
SET (V)
ERROR (dB)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (µMAX)
MAX4000 toc33
INPUT POWER (dBm)
SET (V)
ERROR (dB)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (µMAX)
MAX4000 toc32
INPUT POWER (dBm)
SET (V)
ERROR (dB)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (µMAX)
MAX4000 toc31
INPUT POWER (dBm)
SET (V)
ERROR (dB)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (UCSP)
MAX4000 toc30
INPUT POWER (dBm)
SET (V)
ERROR (dB)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (UCSP)
MAX4000 toc29
INPUT POWER (dBm)
SET (V)
ERROR (dB)
100-30 -20 -10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-40 20
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (UCSP)
MAX4000 toc28
INPUT POWER (dBm)
SET (V)
ERROR (dB)
0-10-40 -30 -20
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-50 10
TA = +85°C
TA = +25°C
TA = -40°C
TA = +85°C
TA = +25°C
TA = -40°C
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (UCSP)
MAX4000 toc36
INPUT POWER (dBm)
SET (V)
ERROR (dB)
155-25 -15 -5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.2
-3
-2
-1
0
1
2
3
4
-4
-35 25
TA = +85°C
TA = -40°C
TA = +25°C
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4002
LOG SLOPE vs. VCC (µMAX)
MAX4000 toc45
VCC (V)
LOG SLOPE (mV/dB)
5.04.54.03.53.0
25
26
27
28
29
30
31
32
33
34
24
2.5 5.5
1.9GHz
0.9GHz
0.1GHz
2.5GHz
MAX4001
LOG SLOPE vs. VCC (µMAX)
MAX4000 toc44
VCC (V)
LOG SLOPE (mV/dB)
5.04.53.0 3.5 4.0
25
26
27
28
29
30
31
32
24
2.5 5.5
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4000
LOG SLOPE vs. VCC (µMAX)
MAX4000 toc43
VCC (V)
LOG SLOPE (mV/dB)
5.04.53.0 3.5 4.0
25
26
27
28
29
30
31
32
24
2.5 5.5
2.5GHz
1.9GHz
0.9GHz
0.1GHz
FREQUENCY (GHz)
LOG SLOPE (mV/dB)
25
26
27
28
29
30
31
32
24
MAX4002
LOG SLOPE vs. FREQUENCY (UCSP)
2.01.51.00.50 2.5
MAX4000 toc42
TA = +25°C
TA = +85°C
TA = -40°C
MAX4001
LOG SLOPE vs. FREQUENCY (UCSP)
FREQUENCY (GHz)
LOG SLOPE (mV/dB)
25
26
27
28
29
30
31
32
23
24
MAX4000 toc41
2.01.51.00.50 2.5
TA = +25°C
TA = +85°C
TA = -40°C
MAX4000
LOG SLOPE vs. FREQUENCY (UCSP)
MAX4000 toc40
FREQUENCY (GHz)
LOG SLOPE (mV/dB)
2.01.51.00.5
25
26
27
28
29
30
31
24
0 2.5
TA = +25°C
TA = +85°C
TA = -40°C
MAX4002
LOG SLOPE vs. FREQUENCY (µMAX)
MAX4000 toc39
FREQUENCY (GHz)
LOG SLOPE (mV/dB)
2.01.51.00.5
25
26
27
28
29
30
31
32
33
24
0 2.5
TA = +25°C
TA = -40°C
TA = +85°C
MAX4001
LOG SLOPE vs. FREQUENCY (µMAX)
MAX4000 toc38
FREQUENCY (GHz)
LOG SLOPE (mV/dB)
2.01.51.00.5
24
25
26
27
28
29
30
31
32
23
0 2.5
TA = +25°C
TA = -40°C
TA = +85°C
MAX4000
LOG SLOPE vs. FREQUENCY (µMAX)
MAX4000 toc37
FREQUENCY (GHz)
LOG SLOPE (mV/dB)
2.01.51.00.5
25
26
27
28
29
30
31
24
0 2.5
TA = +25°C
TA = -40°C
TA = +85°C
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
_______________________________________________________________________________________ 9
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
2.01.51.00.50 2.5
-44
-42
-40
-38
-36
-34
-32
-46
MAX4000 toc54
LOG INTERCEPT (dB)
MAX4002
LOG INTERCEPT vs. FREQUENCY (UCSP)
FREQUENCY (GHz)
TA = +85°C
TA = +25°C
TA = -40°C
-50
-48
-46
-44
-42
-40
-52
2.01.51.00.50 2.5
MAX4000 toc53
FREQUENCY (GHz)
LOG INTERCEPT (dBm)
MAX4001
LOG INTERCEPT vs. FREQUENCY (UCSP)
TA = +85°C
TA = +25°C
TA = -40°C
LOG INTERCEPT (dBm)
-60
-59
-58
-57
-56
-55
-61
MAX4000
LOG INTERCEPT vs. FREQUENCY (UCSP)
2.01.51.00.50 2.5
MAX4000 toc52
FREQUENCY (GHz)
TA = +85°C
TA = +25°C
TA = -40°C
MAX4002
LOG INTERCEPT vs. FREQUENCY (µMAX)
MAX4000 toc51
FREQUENCY (GHz)
LOG INTERCEPT (dBm)
2.01.51.00.5
-44
-42
-40
-38
-36
-34
-32
-46
0 2.5
TA = +25°C
TA = -40°C
TA = +85°C
MAX4001
LOG INTERCEPT vs. FREQUENCY (µMAX)
MAX4000 toc50
FREQUENCY (GHz)
LOG INTERCEPT (dBm)
2.01.51.00.5
-48
-47
-46
-45
-44
-43
-42
-41
-40
-39
-49
0 2.5
TA = +25°C
TA = -40°C
TA = +85°C
MAX4000
LOG INTERCEPT vs. FREQUENCY (µMAX)
MAX4000 toc49
FREQUENCY (GHz)
LOG INTERCEPT (dBm)
2.01.51.00.5
-58
-57
-56
-55
-54
-53
-52
-51
-50
-59
0 2.5
TA = +25°C
TA = -40°C
TA = +85°C
LOG SLOPE (mV/dB)
5.04.54.03.53.02.5 5.5
MAX4000 toc48
25
27
29
31
33
23
MAX4002
LOG SLOPE vs. VCC (UCSP)
VCC (V)
0.9GHz
2.5GHz
1.9GHz
0.1GHz
LOG SLOPE (mV/dB)
25
27
29
31
33
23
5.04.54.03.53.02.5 5.5
MAX4000 toc47
MAX4001
LOG SLOPE vs. VCC (UCSP)
VCC (V)
0.9GHz
2.5GHz
1.9GHz
0.1GHz
LOG SLOPE (mV/dB)
MAX4000
LOG SLOPE vs. VCC (UCSP)
5.04.54.03.53.02.5 5.5
MAX4000 toc46
25
26
27
28
29
30
31
32
24
VCC (V)
0.9GHz
2.5GHz
1.9GHz
0.1GHz
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4002 INPUT IMPEDANCE
vs. FREQUENCY (µMAX)
MAX4000 toc63
FREQUENCY (GHz)
RESISTANCE ()
REACTANCE ()
2.01.51.00.5
500
1000
1500
R
X
2000
2500
0
-400
-300
-200
-100
0
-500
-600
-700
-800
0 2.5
FREQUENCY (GHz) R JX
0.1 2309 -1137
0.9 943 -120
1.9 129 -36
2.5 30 -26
MAX4001 INPUT IMPEDANCE
vs. FREQUENCY (µMAX)
MAX4000 toc62
FREQUENCY (GHz)
RESISTANCE ()
REACTANCE ()
2.01.51.00.5
500
1000
1500
R
X
2000
2500
0
-400
-300
-200
-100
0
-500
-600
-700
-800
0 2.5
FREQUENCY (GHz) R JX
0.1 2144 -1205
0.9 959 -121
1.9 104 -36
2.5 47 -29
MAX4000 INPUT IMPEDANCE
vs. FREQUENCY (µMAX)
MAX4000 toc61
FREQUENCY (GHz)
RESISTANCE ()
REACTANCE ()
2.01.51.00.5
500
1000
1500
R
X
2000
2500
0
-400
-300
-200
-100
0
-500
-600
-700
-800
0 2.5
FREQUENCY (GHz) R JX
0.1 2100 -794
0.9 500 -91
1.9 52
-35
2.5 27 -366
5.04.54.03.53.0
-44
-42
-40
-38
-36
-34
-46
2.5 5.5
MAX4000 toc60
VCC (V)
LOG INTERCEPT (dBm)
MAX4002
LOG INTERCEPT vs. VCC (UCSP)
1.9GHz
2.5GHz
0.1GHz
0.9GHz
5.04.54.03.53.02.5 5.5
MAX4000 toc59
-50
-48
-46
-44
-42
-40
-52
VCC (V)
LOG INTERCEPT (dBm)
MAX4001
LOG INTERCEPT vs. VCC (UCSP)
1.9GHz
2.5GHz
0.1GHz
0.9GHz
5.04.54.03.53.02.5 5.5
MAX4000 toc58
-60
-59
-58
-57
-56
-55
-61
VCC (V)
LOG INTERCEPT (dBm)
MAX4000
LOG INTERCEPT vs. VCC (UCSP)
1.9GHz
2.5GHz
0.1GHz
0.9GHz
MAX4002
LOG INTERCEPT vs. VCC (µMAX)
MAX4000 toc58
VCC (V)
LOG INTERCEPT (dBm)
5.04.54.03.53.0
-45
-43
-41
-39
-37
-35
-33
-47
2.5 5.5
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4001
LOG INTERCEPT vs. VCC (µMAX)
MAX4000 toc56
VCC (V)
LOG INTERCEPT (dBm)
5.04.54.03.53.0
-48
-46
-44
-42
-40
-38
-36
-50
2.5 5.5
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4000
LOG INTERCEPT vs. VCC (µMAX)
MAX4000 toc55
VCC (V)
LOG INTERCEPT (dBm)
5.04.54.03.53.0
-59
-58
-57
-56
-55
-54
-53
-52
-51
-50
-49
-60
2.5 5.5
2.5GHz
1.9GHz
0.9GHz
0.1GHz
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
______________________________________________________________________________________ 11
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
SUPPLY CURRENT
vs. SHDN VOLTAGE
MAX4000 toc67
SHDN (V)
SUPPLY CURRENT (mA)
1.81.60.2 0.4 0.6 1.0 1.20.8 1.4
0
1
2
3
4
5
6
7
-1
0 2.0
1.2V
VCC = 5.5V
SHDN POWER-ON DELAY RESPONSE TIME
MAX4000 toc68
2µs/div
OUT 500mV/div
1.5V/div
SHDN
5µs
SHDN RESPONSE TIME
MAX4000 toc69
2µs/div
OUT 500mV/div
1.5V/div
SHDN
MAX4002 INPUT IMPEDANCE
vs. FREQUENCY (UCSP)
MAX4000 toc66
FREQUENCY (GHz)
RESISTANCE ()
REACTANCE ()
2.01.51.00.5
500
1000
1500
R
X
2000
2500
0
0 2.5
FREQUENCY (GHz) R JX
0.1 1961 -1137
0.9 1130 -120
1.9 315 -36
2.5 163 -26
-400
-300
-200
-100
0
-500
-600
-700
-800
-900
-1000
MAX4000 INPUT IMPEDANCE
vs. FREQUENCY (UCSP)
MAX4000 toc64
FREQUENCY (GHz)
RESISTANCE ()
REACTANCE ()
2.01.51.00.5
500
1000
1500
R
X
2000
2500
0
-400
-300
-200
-100
0
-500
-600
-700
-800
0 2.5
FREQUENCY (GHz) R JX
0.1 1916 -839
0.9 909
-125
1.9 228
-48
2.5 102 -29
MAX4001 INPUT IMPEDANCE
vs. FREQUENCY (UCSP)
MAX4000 toc65
FREQUENCY (GHz)
RESISTANCE ()
REACTANCE ()
2.01.51.00.5
500
1000
1500
R
X
2000
2500
0
-400
-300
-200
-100
0
-500
-600
-700
-800
-900
-1000
0 2.5
FREQUENCY (GHz) R JX
0.1 1942 -927
0.9 1009 -136
1.9 314 -57
2.5 139 -37
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
12 ______________________________________________________________________________________
Pin Description
PIN
µMAX UCSP NAME FUNCTION
1 A1 RFIN RF Input
2A2SHDN Shutdown. Connect to VCC for normal operation.
3 A3 SET Set-Point Input for Controller Mode Operation
4 B3 CLPF Lowpass Filter Connection. Connect external capacitor between CLPF and GND to set
control-loop bandwidth.
5 C3 GND Ground
6N.C. No Connection. Not internally connected.
7 C2 OUT Output to PA Gain-Control Pin
8 B1, C1 VCC Supply Voltage. VCC = 2.7V to 5.5V.
MAXIMUM OUT VOLTAGE
vs. VCC BY LOAD CURRENT
MAX4000 toc71
VCC (V)
OUT VOLTAGE (V)
5.04.54.03.53.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
2.0
2.5 5.5
10mA
5mA
0
MAIN OUTPUT NOISE SPECTRAL DENSITY
MAX4000 toc70
FREQUENCY (Hz)
NOISE SPECTRAL DENSITY (nV/HZ)
1k 10k 100k 1M
10
1
100 10M
9
8
7
6
5
4
3
2
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA= +25°C, unless otherwise specified.)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
______________________________________________________________________________________ 13
Detailed Description
The MAX4000/MAX4001/MAX4002 family of logarithmic
amplifiers (log amps) is comprised of four main amplifi-
er/limiter stages each with a small-signal gain of 10dB.
The output stage of each amplifier is applied to a full-
wave rectifier (detector). A detector stage also pre-
cedes the first gain stage. In total, five detectors each
separated by 10dB, comprise the log amp strip. Figure
1 shows the functional diagram of the log amps.
A portion of the PA output power is coupled to RFIN of
the log amp controller, and is applied to the log amp
strip. Each detector cell outputs a rectified current and
all cell currents are summed and form a logarithmic
output. The detected output is applied to a high-gain
gmstage, which is buffered and then applied to OUT.
OUT is applied to the gain-control pin of the PA to close
the control loop. The voltage applied to SET determines
the output power of the PA in the control loop. The volt-
age applied to SET relates to an input power level
determined by the log amp detector characteristics.
Extrapolating a straight-line fit of the graph of SET vs.
RFIN provides the logarithmic intercept. Logarithmic
slope, the amount SET changes for each dB change of
RF input, is generally independent of waveform or ter-
mination impedance. The MAX4000/MAX4001/
MAX4002 slope at low frequencies is about 25mV/dB.
Variance in temperature and supply voltage does not
alter the slope significantly as shown in the Typical
Operating Characteristics.
The MAX4000/MAX4001/MAX4002 are specifically des-
igned for use in PA control applications. In a control
loop, the output starts at approximately 2.9V (with sup-
ply voltage of 3V) for the minimum input signal and falls
to a value close to ground at the maximum input. With a
portion of the PA output power coupled to RFIN, apply
a voltage to SET and connect OUT to the gain-control
pin of the PA to control its output power. An external
capacitor from the CLPF pin to ground sets the band-
width of the PA control loop.
Transfer Function
Logarithmic slope and intercept determine the transfer
function of the MAX4000/MAX4001/MAX4002 family of
log amps. The change in SET voltage per dB change in
RF input defines the logarithmic slope. Therefore, a
10dB change in RF input results in a 250mV change at
SET. The Log-Conformance plots (see Typical Oper-
ating Characteristics) show the dynamic range of the
log amp family. Dynamic range is the range for which
the error remains within a band of ±1dB.
The intercept is defined as the point where the linear
response, when extrapolated, intersects the y-axis of
the Log-Conformance plot. Using these parameters,
the input power can be calculated at any SET voltage
level within the specified input range with the following
equation:
where SET is the set-point voltage, SLOPE is the loga-
rithmic slope (V/dB), RFIN is in either dBm or dBV and
IP is the logarithmic intercept point utilizing the same
units as RFIN.
Applications Information
Controller Mode
Figure 2 provides a circuit example of the MAX4000/
MAX4001/MAX4002 configured as a controller. The
MAX4000/MAX4001/MAX4002 require a 2.7V to 5.5V
supply voltage. Place a 0.1µF low-ESR, surface-mount
ceramic capacitor close to VCC to decouple the supply.
Electrically isolate the RF input from other pins (espe-
cially SET) to maximize performance at high frequencies
(especially at the high-power levels of the MAX4002).
The MAX4000 has an internal input-coupling capacitor
RFIN SET
SLOPE IP=+
Figure 1. Functional Diagram
VCC
OUT
N.C.
GNDCLPF
SET
RFIN
MAX4000
SHDN
DAC
RF INPUT
VCC
VCC
XX
POWER AMPLIFIER
ANTENNA
50
CF
0.1µF
Figure 2. Controller Mode Application Circuit Block
10dB
DET
10dB 10dB10dB
DET DET DETDET
OFFSET
COMP
LOW-
NOISE
BANDGAP
OUTPUT
ENABLE
DELAY
GND
(PADDLE)
gm
+
-
X1
V-I
RFIN
VCC
SHDN
OUT
CLPF
SET
MAX4000
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
14 ______________________________________________________________________________________
and does not require external AC-coupling. Achieve
50input matching by connecting a 50resistor
between RFIN and ground. See the Typical Operating
Characteristics section for a plot of Input Impedance vs.
Frequency. See the Additional Input Coupling section
for other coupling methods.
The MAX4000/MAX4001/MAX4002 log amps function
as both the detector and controller in power-control
loops. Use a directional coupler to couple a portion of
the PAs output power to the log amps RF input. In
applications requiring dual-mode operation where there
are two PAs and two directional couplers, passively
combine the outputs of the directional couplers before
applying to the log amp. Apply a set-point voltage to
SET from a controlling source (usually a DAC). OUT,
which drives the automatic gain-control pin of the PA,
corrects any inequality between the RF input level and
the corresponding set-point level. This is valid assum-
ing the gain control of the variable gain element is posi-
tive, such that increasing OUT voltage increases gain.
OUT voltage can range from 150mV to within 250mV of
the supply rail while sourcing 10mA. Use a suitable
load resistor between OUT and GND for PA control
inputs that source current. The Typical Operating
Characteristics section has a plot of the sourcing capa-
bilities and output swing of OUT.
SHDN
and Power-On
The MAX4000/MAX4001/MAX4002 can be placed in
shutdown by pulling SHDN to ground. SHDN reduces
supply current to typically 13µA. A graph of SHDN
Response is included in the Typical Operating
Characteristics section. Connect SHDN and VCC
together for continuous on-operation.
Power Convention
Expressing power in dBm, decibels above 1mW, is the
most common convention in RF systems. Log amp
input levels specified in terms of power are a result of
following common convention. Note that input power
does not refer to power, but rather to input voltage rela-
tive to a 50impedance. Use of dBV, decibels with
respect to a 1VRMS sine wave, yields a less ambiguous
result. The dBV convention has its own pitfalls in that
log amp response is also dependent on waveform. A
complex input such as CDMA does not have the exact
same output response as the sinusoidal signal. The
MAX4000/MAX4001/MAX4002 performance specifica-
tions are in both dBV and dBm, with equivalent dBm
levels for a 50environment. To convert dBV values
into dBm in a 50network, add 13dB.
Filter Capacitor and Transient Response
In general, the choice of filter capacitor only partially
determines the time-domain response of a PA control
loop. However, some simple conventions can be
applied to affect transient response. A large filter
capacitor, CF, dominates time-domain response, but
the loop bandwidth remains a factor of the PA gain-
control range. The bandwidth is maximized at power
outputs near the center of the PAs range, and mini-
mized at the low and high power levels, where the
slope of the gain-control curve is lowest.
A smaller valued CFresults in an increased loop band-
width inversely proportional to the capacitor value.
Inherent phase lag in the PAs control path, usually
caused by parasitics at the OUT pin, ultimately results
in the addition of complex poles in the AC loop equa-
tion. To avoid this secondary effect, experimentally
determine the lowest usable CFfor the power amplifier
of interest. This requires full consideration to the intrica-
cies of the PA control function. The worst-case condi-
tion, where the PA output is smallest (gain function is
steepest), should be used because the PA control
function is typically nonlinear. An additional zero can
be added to improve loop dynamics by placing a resis-
tor in series with CF. See Figure 3 for the gain and
phase response for different CFvalues.
Additional Input Coupling
There are three common methods for input coupling:
broadband resistive, narrowband reactive, and series
attenuation. A broadband resistive match is implemented
by connecting a resistor to ground at RFIN as shown in
Figure 4a. A 50resistor (use other values for different
input impedances) in this configuration in parallel with the
input impedance of the MAX4000 presents an input
GAIN AND PHASE vs. FREQUENCY
MAX4000 fig03
FREQUENCY (Hz)
GAIN (dB)
PHASE (DEGREES)
10M1M10k 100k1k100
-80
-60
-40
-20
0
20
40
60
80
-100
-180
-135
-90
-45
0
45
90
135
180
-225
10 100M
GAIN
PHASE
CF = 2000pF
CF = 2000pF
CF = 200pF
CF = 200pF
Figure 3. Gain and Phase vs. Frequency Graph
impedance of approximately 50. See the Typical
Operating Characteristics for the input impedance plot to
determine the required external termination at the fre-
quency of interest. The MAX4001/MAX4002 require an
additional external coupling capacitor in series with the
RF input. As the operating frequency increases over
2GHz, input impedance is reduced, resulting in the need
for a larger-valued shunt resistor. Use a Smith Chart for
calculating the ideal shunt resistor value.
For high frequencies, use narrowband reactive coupling.
This implementation is shown in Figure 4b. The matching
components are drawn as reactances since these can
be either capacitors or inductors depending on the input
impedance at the desired frequency and available stan-
dard value components. A Smith Chart is used to obtain
the input impedance at the desired frequency and then
matching reactive components are chosen. Table 1 pro-
vides standard component values at some common fre-
quencies for the MAX4001. Note that these inductors
must have a high SRF (self-resonant frequency), much
higher than the intended frequency of operation to imple-
ment this matching scheme.
Device sensitivity is increased by the use of a reactive
matching network, because a voltage gain occurs
before being applied to RFIN. The associated gain is
calculated with the following equation:
where R1 is the source impedance to which the device
is being matched, and R2 is the input resistance of the
device. The gain is the best-case scenario for a perfect
match. However, component tolerance and standard
value choice often result in a reduced gain.
Figure 4c demonstrates series attenuation coupling.
This method is intended for use in applications where
the RF input signal is greater than the input range of the
device. The input signal is thus resistively divided by
the use of a series resistor connected to the RF source.
Since the MAX4000/MAX4001/MAX4002 log amps offer
a wide selection of RF input ranges, series attenuation
coupling is not needed for typical applications.
Voltage Gain R
R
dB
log=20 2
1
10
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
______________________________________________________________________________________ 15
Table 1. Suggested Components for
MAX4001 Reactive Matching Network
FREQUENCY
(GHz) jX1 (nH) jX2 (nH) VOLTAGE
GAIN (dB)
0.9 38 47 12.8
1.9 4.4 4.7 3.2
2.5 1.8 -0.3
MAX4000
MAX4001
MAX4002
50 SOURCE
50CC** CC*
CIN RIN
VCC
RS
50
*MAX4000 ONLY INTERNALLY COUPLED
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING
RFIN
Figure 4a. Broadband Resistive Matching
MAX4000
MAX4001
MAX4002
50 SOURCE
50CC** CC*
CIN RIN
VCC
*MAX4000 ONLY INTERNALLY COUPLED
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING
RFIN
jX1
jX2
Figure 4b. Narrowband Reactive Matching
MAX4000
MAX4001
MAX4002
RATTN CC** CC*
CIN RIN
VCC
*MAX4000 ONLY INTERNALLY COUPLED
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING
RFIN
STRIPLINE
Figure 4c. Series Attenuation Network
MAX4000/MAX4001/MAX4002
Waveform Considerations
The MAX4000/MAX4001/MAX4002 family of log amps
respond to voltage, not power, even though input levels
are specified in dBm. It is important to realize that input
signals with identical RMS power but unique waveforms
results in different log amp outputs.
Differing signal waveforms result in either an upward or
downward shift in the logarithmic intercept. However,
the logarithmic slope remains the same.
Layout Considerations
As with any RF circuit, the layout of the MAX4000/
MAX4001/MAX4002 circuits affects performance. Use a
short 50line at the input with multiple ground vias
along the length of the line. The input capacitor and
resistor should both be placed as close to the IC as
possible. VCC should be bypassed as close as possi-
ble to the IC with multiple vias connecting the capacitor
to the ground plane. It is recommended that good RF
components be chosen for the desired operating fre-
quency range. Electrically isolate RF input from
other pins (especially SET) to maximize perfor-
mance at high frequencies (especially at the high
power levels of the MAX4002).
UCSP Reliability
The UCSP represents a unique package that greatly
reduces board space compared to other packages.
UCSP reliability is integrally linked to the users assem-
bly methods, circuit board material, and usage environ-
ment. The user should closely review these areas when
considering use of a UCSP. This form factor may not
perform equally to a packaged product through tradi-
tional mechanical reliability tests. Performance through
operating life test and moisture resistance remains
uncompromised as it is primarily determined by the
wafer fabrication process. Mechanical stress perform-
ance is a greater consideration for a UCSP. UCSP sol-
der joint contact integrity must be considered since the
package is attached through direct solder contact to
the users PC board. Testing done to characterize the
UCSP reliability performance shows that it is capable of
performing reliably through environmental stresses.
Results of environmental stress tests and additional
usage data and recommendations are detailed in the
UCSP application note, which can be found on Maxims
website, www.maxim-ic.com.
Chip Information
TRANSISTOR COUNT: 358
PROCESS: Bipolar
2.5GHz 45dB RF-Detecting Controllers
16 ______________________________________________________________________________________
Pin Configurations
1
2
3
4
8
7
6
5
VCC
OUT
N.C.
GNDCLPF
A
123
B
C
SET
SHDN
RFIN
MAX4000
MAX4001
MAX4002
µMAX
TOP VIEW
RFIN SET
VCC CLPF
VCC OUT GND
SHDN
MAX4000
MAX4001
MAX4002
UCSP
TOP VIEW
(BUMPS ON BOTTOM)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
______________________________________________________________________________________ 17
9LUCSP, 3x3.EPS
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
8LUMAXD EPS
PACKAGE OUTLINE, 8L uMAX/uSOP
1
1
21-0036 J
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
MAX
0.043
0.006
0.014
0.120
0.120
0.198
0.026
0.007
0.037
0.0207 BSC
0.0256 BSC
A2 A1
c
eb
A
L
FRONT VIEW SIDE VIEW
E H
0.6±0.1
0.6±0.1
ÿ 0.50±0.1
1
TOP VIEW
D
8
A2 0.030
BOTTOM VIEW
16
S
b
L
H
E
D
e
c
0
0.010
0.116
0.116
0.188
0.016
0.005
8
4X S
INCHES
-
A1
A
MIN
0.002
0.950.75
0.5250 BSC
0.25 0.36
2.95 3.05
2.95 3.05
4.78
0.41
0.65 BSC
5.03
0.66
60
0.13 0.18
MAX
MIN
MILLIMETERS
- 1.10
0.05 0.15
α
α
DIM
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)