KAI-11002 IMAGE SENSOR
4008 (H) X 2672 (V) INTERLINE CCD IMAGE SENSOR
JUNE 22, 2012
DEVICE PERFORMANCE SPECIFICATION
REVISION 1.0 PS-0012
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 2
TABLE OF CONTENTS
Summary Specification ......................................................................................................................................................................................... 5
Description .................................................................................................................................................................................................... 5
Features ......................................................................................................................................................................................................... 5
Applications .................................................................................................................................................................................................. 5
Ordering Information ............................................................................................................................................................................................ 6
Device Description ................................................................................................................................................................................................. 7
Architecture .................................................................................................................................................................................................. 7
Pixel................................................................................................................................................................................................................. 8
Vertical to Horizontal Transfer ................................................................................................................................................................ 9
Horizontal Register to Floating Diffusion .......................................................................................................................................... 10
Horizontal Register Split......................................................................................................................................................................... 11
Single Output Operation .................................................................................................................................................................... 11
Dual Output Operation ....................................................................................................................................................................... 11
Output ......................................................................................................................................................................................................... 12
Pin Description and Physical Orientation ........................................................................................................................................... 13
Imaging Performance .......................................................................................................................................................................................... 14
Imaging Performance Operational Conditions ................................................................................................................................. 14
Specifications............................................................................................................................................................................................. 14
All Configurations ................................................................................................................................................................................ 14
KAI-11002-ABA Configuration .......................................................................................................................................................... 15
KAI-11002-CBA Configuration ........................................................................................................................................................... 15
Typical Performance Curves ............................................................................................................................................................................ 16
Quantum Efficiency.................................................................................................................................................................................. 16
Monochrome with Microlens ............................................................................................................................................................. 16
Monochrome without Microlens ...................................................................................................................................................... 16
Color with Microlens ............................................................................................................................................................................ 17
Color without Microlens ..................................................................................................................................................................... 17
Angular Quantum Efficiency .................................................................................................................................................................. 18
Monochrome with Microlens ............................................................................................................................................................. 18
Color with Microlens ............................................................................................................................................................................ 18
Power - Estimated .................................................................................................................................................................................... 19
Frame Rates Continuous Mode .......................................................................................................................................................... 19
Defect Definitions ................................................................................................................................................................................................ 20
Defect Map ................................................................................................................................................................................................. 20
Test Definitions ..................................................................................................................................................................................................... 21
Test Regions of Interest ......................................................................................................................................................................... 21
OverClocking ............................................................................................................................................................................................. 21
Tests ............................................................................................................................................................................................................. 22
Dark Field Defect Test ........................................................................................................................................................................ 22
Bright Field Defect Test ...................................................................................................................................................................... 22
Operation .................................................................................................................................................................................................................. 23
Maximum Ratings ..................................................................................................................................................................................... 23
Maximum Voltage Ratings Between Pins .......................................................................................................................................... 23
DC Bias Operating Conditions ............................................................................................................................................................... 23
Power Up Sequence ............................................................................................................................................................................. 24
AC Operating Conditions ........................................................................................................................................................................ 24
Clock Levels ........................................................................................................................................................................................... 24
Clock Line Capacitances ...................................................................................................................................................................... 24
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 3
Timing Requirements .............................................................................................................................................................................. 25
Main Timing Continuous Mode .......................................................................................................................................................... 25
Frame Timing Continuous Mode ....................................................................................................................................................... 26
Frame Timing without Binning .......................................................................................................................................................... 26
Frame Timing for Vertical Binning by 2 .......................................................................................................................................... 26
Frame Timing Edge Alignment .......................................................................................................................................................... 27
Line Timing Continuous Mode............................................................................................................................................................ 28
Line Timing Single Output.................................................................................................................................................................. 28
Line Timing Dual Output Left Output .......................................................................................................................................... 28
Line Timing Dual Output Right Output ....................................................................................................................................... 29
Line Timing Vertical Binning by 2 ..................................................................................................................................................... 29
Line Timing Detail................................................................................................................................................................................. 30
Line Timing Binning by 2 Detail ........................................................................................................................................................ 30
Line Timing Edge Alignment .............................................................................................................................................................. 31
Pixel Timing Continuous Mode .......................................................................................................................................................... 32
Pixel Timing Detail ............................................................................................................................................................................... 32
Fast Line Dump Timing ............................................................................................................................................................................ 33
Electronic Shutter ..................................................................................................................................................................................... 34
Electronic Shutter Line Timing .......................................................................................................................................................... 34
Electronic Shutter Integration Time Definition ......................................................................................................................... 34
Electronic Shutter Description .......................................................................................................................................................... 35
Storage and Handling .......................................................................................................................................................................................... 36
Storage Conditions................................................................................................................................................................................... 36
ESD ............................................................................................................................................................................................................... 36
Cover Glass Care and Cleanliness ......................................................................................................................................................... 36
Environmental Exposure ........................................................................................................................................................................ 36
Soldering Recommendations ................................................................................................................................................................ 36
Mechanical Information ..................................................................................................................................................................................... 37
Package ....................................................................................................................................................................................................... 37
Die to Package Alignment ...................................................................................................................................................................... 38
Glass ............................................................................................................................................................................................................. 39
Glass Transmission ................................................................................................................................................................................... 40
Quality Assurance and Reliability .................................................................................................................................................................. 41
Quality and Reliability ............................................................................................................................................................................. 41
Replacement .............................................................................................................................................................................................. 41
Liability of the Supplier ........................................................................................................................................................................... 41
Liability of the Customer ........................................................................................................................................................................ 41
Test Data Retention ................................................................................................................................................................................. 41
Mechanical .................................................................................................................................................................................................. 41
Life Support Applications Policy .................................................................................................................................................................... 41
Revision Changes................................................................................................................................................................................................... 42
MTD/PS-0938 ............................................................................................................................................................................................. 42
PS-0012 ....................................................................................................................................................................................................... 42
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 4
TABLE OF FIGURES
Figure 1: Block Diagram ................................................................................................................................................................................ 7
Figure 2: Pixel Architecture .......................................................................................................................................................................... 8
Figure 3: Vertical to Horizontal Transfer Architecture ......................................................................................................................... 9
Figure 4: Horizontal Register to Floating Diffusion Architecture .................................................................................................... 10
Figure 5: Horizontal Register ..................................................................................................................................................................... 11
Figure 6: Output Architecture ................................................................................................................................................................... 12
Figure 7: Pin Description ............................................................................................................................................................................. 13
Figure 8: Monochrome with Microlens Quantum Efficiency.............................................................................................................. 16
Figure 9: Monochrome without Microlens Quantum Efficiency ....................................................................................................... 16
Figure 10: Color with Microlens Quantum Efficiency Using AR Glass ............................................................................................. 17
Figure 11: Color without Microlens Quantum Efficiency Using AR Glass ....................................................................................... 17
Figure 12: Monochrome with Microlens Angular Quantum Efficiency ........................................................................................... 18
Figure 13: Color with Microlens Angular Quantum Efficiency .......................................................................................................... 18
Figure 14: Power ........................................................................................................................................................................................... 19
Figure 15: Frame Rates ................................................................................................................................................................................ 19
Figure 16: Overclock Regions of Interest ............................................................................................................................................... 21
Figure 17: Main Timing - Continuous Mode............................................................................................................................................ 25
Figure 18: Framing Timing without Binning ........................................................................................................................................... 26
Figure 19: Frame Timing for Vertical Binning by 2 ............................................................................................................................... 26
Figure 20: Frame Timing Edge Alignment .............................................................................................................................................. 27
Figure 21: Line Timing Single Output ...................................................................................................................................................... 28
Figure 22: Line Timing Dual Output Left Output............................................................................................................................... 28
Figure 23: Line Timing Dual Output Right Output ............................................................................................................................ 29
Figure 24: Line Timing Vertical Binning by 2 .......................................................................................................................................... 29
Figure 25: Line Timing Detail ..................................................................................................................................................................... 30
Figure 26: Line Timing by 2 Detail ............................................................................................................................................................ 30
Figure 27: Line Timing Edge Alignment .................................................................................................................................................. 31
Figure 28: Pixel Timing ................................................................................................................................................................................ 32
Figure 29: Pixel Timing Detail .................................................................................................................................................................... 32
Figure 30: Fast Line Dump Timing ............................................................................................................................................................ 33
Figure 31: Electronic Shutter Line Timing .............................................................................................................................................. 34
Figure 32: Integration Time Definition .................................................................................................................................................... 34
Figure 33: Package Drawing ....................................................................................................................................................................... 37
Figure 34: Die to Package Alignment ...................................................................................................................................................... 38
Figure 35: Glass Drawing ............................................................................................................................................................................. 39
Figure 36: Glass Transmission .................................................................................................................................................................... 40
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 5
Summary Specification
KAI-11002 Image Sensor
DESCRIPTION
The KAI-11002 Image Sensor is a high-performance 11-
million pixel sensor designed for professional digital still
camera applications. The 9.0 μm square pixels with
microlenses provide high sensitivity and the large full
well capacity results in high dynamic range. The two high-
speed outputs and binning capabilities allow for 1-3
frames per second (fps) video rate for the progressively
scanned images. The vertical overflow drain structure
provides antiblooming protection and enables electronic
shuttering for precise exposure control. Other features
include low dark current, negligible lag and low smear.
FEATURES
High resolution
High sensitivity
High dynamic range
Low noise architecture
High frame rate
Binning capability for higher frame rate
Electronic shutter
APPLICATIONS
Industrial Inspection
Aerial Photography
Parameter
Value
Architecture
Interline CCD;
Progressive Scan
Total Number of Pixels
4072 (H) x 2720 (V) = 11.1M
Number of Effective Pixels
4033 (H) x 2688 (V) = 10.8M
Number of Active Pixels
4008 (H) x 2672 (V) = 10.7M
Number of Outputs
1 or 2
Pixel Size
9.0 μm (H) x 9.0 μm (V)
Imager Size
43.3mm (diagonal)
Chip Size
37.25mm (H) x 25.70mm (V)
Aspect Ratio
3:2
Saturation Signal
60,000 electrons
Quantum Efficiency
KAI-11002-ABA
KAI-11002-CBA (RGB)
50%
34%, 37%, 42%
Output Sensitivity
13 μV/e
Total Noise
30 electrons
Dark Current
< 50 mV/s
Dark Current Doubling
Temperature
7 °C
Dynamic Range
66 dB
Charge Transfer Efficiency
> 0.99999
Blooming Suppression
> 1000X
Smear
< -80 dB
Image Lag
< 10 electrons
Maximum Data Rate
28 MHz
Package
40-pin, CerDIP,
0.070” pin spacing
Cover Glass
AR Coated
All parameters above are specified at T = 40 °C
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 6
Ordering Information
Catalog
Number
Product Name
Description
Marking Code
KAI-11002-AAA-CR-B1
Monochrome, No Microlens, CERDIP Package (sidebrazed),
Taped Clear Cover Glass with AR coating (2 sides), Grade 1
KAI-11002-AAA
S/N
KAI-11002-AAA-CR-B2
Monochrome, No Microlens, CERDIP Package (sidebrazed),
Taped Clear Cover Glass with AR coating (2 sides), Grade 2
KAI-11002-AAA-CR-AE
Monochrome, No Microlens, CERDIP Package (sidebrazed),
Taped Clear Cover Glass with AR coating (2 sides), Engineering Sample
KAI-11002-ABA-CD-BX
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Special Grade
KAI-11002-ABA
S/N
KAI-11002-ABA-CD-B0
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 0
KAI-11002-ABA-CD-B1
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 1
KAI-11002-ABA-CD-B2
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 2
KAI-11002-ABA-CD-AE
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Engineering Sample
KAI-11002-ABA-CR-B1
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Taped Clear Cover Glass with AR coating (2 sides), Grade 1
KAI-11002-ABA-CR-B2
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Taped Clear Cover Glass with AR coating (2 sides), Grade 2
KAI-11002-ABA-CR-AE
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed),
Taped Clear Cover Glass with AR coating (2 sides), Engineering Sample
KAI-11002-CAA-CD-B1
Color (Bayer RGB), No Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 1
KAI-11002-CAA
S/N
KAI-11002-CAA-CD-B2
Color (Bayer RGB), No Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 2
KAI-11002-CAA-CD-AE
Color (Bayer RGB), No Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Engineering Sample
KAI-11002-CBA-CD-B1
Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 1
KAI-11002-CBA
S/N
KAI-11002-CBA-CD-B2
Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Grade 2
KAI-11002-CBA-CD-AE
Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed),
Clear Cover Glass with AR coating (both sides), Engineering Sample
KEK-4H0178-KAI-11000/11002-12-30
Evaluation Board (Complete Kit)
n/a
See Application Note Product Naming Convention for a full description of the naming convention used for Truesense
Imaging image sensors. For reference documentation, including information on evaluation kits, please visit our web
site at www.truesenseimaging.com.
Please address all inquiries and purchase orders to:
Truesense Imaging, Inc.
1964 Lake Avenue
Rochester, New York 14615
Phone: (585) 784-5500
E-mail: info@truesenseimaging.com
Truesense Imaging reserves the right to change any information contained herein without notice. All information
furnished by Truesense Imaging is believed to be accurate.
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 7
Device Description
ARCHITECTURE
Figure 1: Block Diagram
There are 17 light shielded rows followed 2688 photoactive rows and finally 16 more light shielded rows. The first 8
and the last 8 photoactive rows are buffer rows giving a total of 2672 lines of image data.
In the single output mode all pixels are clocked out of the Video L output in the lower left corner of the sensor. The
first 4 empty pixels of each line do not receive charge from the vertical shift register. The next 20 pixels receive charge
from the left light shielded edge followed by 4033 photosensitive pixels and finally 19 more light shielded pixels from
the right edge of the sensor. The first 12 and last 13 photosensitive pixels are buffer pixels giving a total of 4008 pixels
of image data.
In the dual output mode the clocking of the right half of the horizontal CCD is reversed. The left half of the image is
clocked out Video L and the right half of the image is clocked out Video R. For the Video L each row consists of 4 empty
pixels followed by 20 light shielded pixels followed by 2016 photosensitive pixels. For the Video R each row consists of
4 empty pixels followed by 19 light shielded pixels followed by 2017 photosensitive pixels. When reconstructing the
image, data from Video R will have to be reversed in a line buffer and appended to the Video L data.
The dark rows are not entirely dark and so should not be used for a dark reference level. Use the dark columns on the
left or right side of the image sensor as a dark reference.
Of the dark columns, the first and last dark columns should not be used for determining the zero signal level. Some
light does leak into the first and last dark columns.
4008 (H) x 2672 (V)
Active Pixels
GG
R
BGG
R
B
GG
R
B
GG
R
B
Pixel
1,1
8 Buffer Rows
8 Buffer Rows
17 Dark Rows
16 Dark Rows
12 Buffer Columns
13 Buffer Columns
20 Dark Columns
19 Dark Columns
4 Dummy Pixels
4 Dummy Pixels
Dual
Output
or
Video L Video R
420 12 4008 13 19 4
Single
420 12 2004 2004 13 19 4
Fast Line Dump
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 8
PIXEL
Figure 2: Pixel Architecture
An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-
hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of
potential wells at each photosite. Below photodiode saturation, the number of photoelectrons collected at each pixel
is linearly dependent upon light level and exposure time and non-linearly dependent on wavelength. When the
photodiodes charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming.
Top View
Direction
of
Charge
Transfer
True Two Phase Burried Channel VCCD
Lightshield over VCCD not shown
9.0
m
V1
Photodiode
9.0
m
V2
Transfer
Gate
Direction of
Charge
Transfer
V1 V2 V1
n- n
n- n-
p Well (GND)
Cross Section Down Through VCCD
n Substrate
p
V1
np+
Light Shield
p
p
n
n
Substrate
p
Cross Section Through
Photodiode and VCCD Phase 1
Photo
diode
pp
V2
np+
Light Shield
p
p
n
n
Substrate
p
Cross Section Through Photodiode
and VCCD Phase 2 at Transfer Gate
Transfer
Gate
Cross Section Showing Lenslet
Lenslet
VCCD VCCD
Light Shield Light Shield
Photodiode
Drawings not scale
Red Color Filter
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 9
VERTICAL TO HORIZONTAL TRANSFER
Figure 3: Vertical to Horizontal Transfer Architecture
When the V1 and V2 timing inputs are pulsed, charge in every pixel of the VCCD is shifted one row towards the HCCD.
The last row next to the HCCD is shifted into the HCCD. When the VCCD is shifted, the timing signals to the HCCD must
be stopped. H1 must be stopped in the high state and H2 must be stopped in the low state. The HCCD clocking may
begin THD µs after the falling edge of the V1 and V2 pulse.
Charge is transferred from the last vertical CCD phase into the H1S horizontal CCD phase. Refer to Figure 25 for an
example of timing that accomplishes the vertical to horizontal transfer of charge.
If the fast line dump is held at the high level (FDH) during a vertical to horizontal transfer, then the entire line is
removed and not transferred into the horizontal register.
Top View
Direction of
Vertical
Charge
Transfer
V1
V2
V1
Photo
diode
V2
Transfer
Gate
Fast
Line
Dump
H1S
H2
S
H
1
B
H
2
B
Direction of
Horizontal
Charge Transfer
Lightshield
not shown
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 10
HORIZONTAL REGISTER TO FLOATING DIFFUSION
Figure 4: Horizontal Register to Floating Diffusion Architecture
The HCCD has a total of 4080 pixels. The 4072 vertical shift registers (columns) are shifted into the center 4072 pixels
of the HCCD. There are 4 pixels at both ends of the HCCD, which receive no charge from a vertical shift register. The
first 4 clock cycles of the HCCD will be empty pixels (containing no electrons). The next 20 clock cycles will contain only
electrons generated by dark current in the VCCD and photodiodes. The next 4033 clock cycles will contain photo-
electrons (image data). Finally, the last 19 clock cycles will contain only electrons generated by dark current in the
VCCD and photodiodes. Of the 20 dark columns at the start of the line and the 19 dark columns at the end of the line,
the first and last dark columns should not be used for determining the zero signal level. Some light does leak into the
first and last dark columns. Only use the center 18 columns of the 20 column dark reference at the start of the line.
Only use the center 17 columns of the 19 column dark reference at the end of the line.
When the HCCD is shifting valid image data, the timing inputs to the electronic shutter (SUB), VCCD (V1, V2), and fast
line dump (FD) should be not be pulsed. This prevents unwanted noise from being introduced. The HCCD is a type of
charge coupled device known as a pseudo-two phase CCD. This type of CCD has the ability to shift charge in two
directions. This allows the entire image to be shifted out to the video L output, or to the video R output (left/right
image reversal). The HCCD is split into two equal halves of 2040 pixels each. When operating the sensor in single
output mode the two halves of the HCCD are shifted in the same direction. When operating the sensor in dual output
mode the two halves of the HCCD are shifted in opposite directions. The direction of charge transfer in each half is
controlled by the H1BL, H2BL, H1BR, and H2BR timing inputs.
n+
ROG H1 H2S H2B H1S H1B H2S
n- n- n-
RD
Floating
Diffusion
n (burried channel)
n
n+
p (GND)
n (SUB)
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 11
HORIZONTAL REGISTER SPLIT
Figure 5: Horizontal Register
Single Output Operation
When operating the sensor in single output mode all pixels of the image sensor will be shifted out the Video L output
(pin 2). To conserve power and lower heat generation the output amplifier for Video R may be turned off by
connecting VDDR (pin 18) and VOUTR (pin 19) to GND (zero volts).
The H1 timing from the timing diagrams should be applied to H1SL, H1BL, H1SR, H2BR, and the H2 timing should be
applied to H2SL, H2BL, H2SR, and H1BR. In other words, the clock driver generating the H1 timing should be
connected to pins 8, 9, 13, and 11. The clock driver generating the H2 timing should be connected to pins 7, 10, 14, and
12. The horizontal CCD should be clocked for 4 empty pixels plus 20 light shielded pixels plus 4032 photoactive pixels
plus 20 light shielded pixels for a total of 4076 pixels. H1BINL and H1BINR use the H1 timing, but should be generated
from a separate clock driver for optimal performance.
Dual Output Operation
In dual output mode the connections to the H1BR and H2BR pins are swapped from the single output mode to change
the direction of charge transfer of the right side horizontal shift register. In dual output mode both VDDL and VDDR
(pins 3, 18) should be connected to 15 V. The H1 timing from the timing diagrams should be applied to H1SL, H1BL,
H1SR, H1BR, and the H2 timing should be applied to H2SL, H2BL, H2SR, and H2BR. The clock driver generating the H1
timing should be connected to pins 8, 9, 13, and 12. The clock driver generating the H2 timing should be connected to
pins 7, 10, 14, and 11. The horizontal CCD should be clocked for 4 empty pixels plus 20 light shielded pixels plus 2016
photoactive pixels for a total of 2040 pixels. If the camera is to have the option of dual or single output mode, the
clock driver signals sent to H1BR and H2BR may be swapped by using a relay. Another alternative is to have two extra
clock drivers for H1BR and H2BR and invert the signals in the timing logic generator. If two extra clock drivers are used,
care must be taken to ensure the rising and falling edges of the H1BR and H2BR clocks occur at the same time (within
3ns) as the other HCCD clocks.
Single Output
H2SL
H1SL H1BL H2SRH1SR H2BRH1BR
Pixel
2040 Pixel
2041
H2SL H2BLH1BL
H1 H1 H1 H1 H1H2 H2 H2 H2 H2
H2SL
H1SL H1BL H2SRH1SR H2BRH1BR
Pixel
2040 Pixel
2041
H2SL H2BLH1BL
H1 H1 H1 H1 H2H2 H2 H2 H1 H2
Dual Output
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 12
OUTPUT
Figure 6: Output Architecture
Charge packets contained in the horizontal register are dumped pixel by pixel onto the floating diffusion (fd) output
node whose potential varies linearly with the quantity of charge in each packet. The amount of potential charge is
determined by the expression ΔVfd=ΔQ/Cfd. A three-stage source-follower amplifier is used to buffer this signal
voltage off chip with slightly less than unity gain. The translation from the charge domain to the voltage domain is
quantified by the output sensitivity or charge to voltage conversion in terms of microvolts per electron (μV/e-). After
the signal has been sampled off chip, the reset clock (R) removes the charge from the floating diffusion and resets its
potential to the reset drain voltage (RD).
Floating
Diffusion
HCCD
Charge
Transfer
Source
Follower
#1
Source
Follower
#2
Source
Follower
#3
RD
R
OG
H1BIN
H2S
H2B
H1S
H1B
VDD
VOUT
31 K
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 13
PIN DESCRIPTION AND PHYSICAL ORIENTATION
Figure 7: Pin Description
Pin
Name
Description
Pin
Name
Description
1
RL
Reset Gate, Left
40
OGL
Output Gate, Left
2
VOUTL
Video Output, Left
39
FD
Fast Line Dump Gate
3
VDDL
Vdd, Left
38
RDL
Reset Drain, Left
4
GND
Ground
37
V1
Vertical Clock, Phase 1
5
H1BINL
H1 Last Phase, Left
36
V2
Vertical Clock, Phase 2
6
GND
Ground
35
GND
Ground
7
H2SL
H2 Storage, Left
34
SUB
Substrate
8
H1SL
H1 Storage, Left
33
GND
Ground
9
H1BL
H1 Barrier, Left
32
GND
Ground
10
H2BL
H2 Barrier, Left
31
GND
Ground
11
H2BR
H2 Barrier, Right
30
GND
Ground
12
H1BR
H1 Barrier, Right
29
GND
Ground
13
H1SR
H1 Storage, Right
28
GND
Ground
14
H2SR
H2 Storage, Right
27
ESD
ESD Protection
15
GND
Ground
26
GND
Ground
16
H1BINR
H1 Last Phase, Right
25
V1
Vertical Clock, Phase 1
17
GND
Ground
24
V2
Vertical Clock, Phase 2
18
VDDR
Vdd, Right
23
RDR
Reset Drain, Right
19
VOUTR
Video Output, Right
22
FD
Fast Line Dump Gate
20
RR
Reset Gate, Right
21
OGR
Output Gate, Right
The pins are on a 0.070” spacing
Pixel 1,1
1
RL
VOUTL
VDDL
OGL
OGR
GND
H1BINL
GND
H2SL
H1SL
H1BL
H2BL
102 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20
H2BR
H1BR
H1SR
H2SR
GND
H1BINR
GND
VDDR
VOUTR
RR
2122232425262728293031323334353637383940
FD
VRDL
V1
V2
GND
SUB
GND
GND
GND
GND
GND
GND
ESD
GND
V1
V2
VRDR
FD
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 14
Imaging Performance
IMAGING PERFORMANCE OPERATIONAL CONDITIONS
Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.
Description
Condition
Notes
Frame Time
1732 msec
1
Horizontal Clock Frequency
10 MHz
Light Source
Continuous red, green and blue illumination centered at 450, 530 and 650 nm
2,3
Operation
Nominal operating voltages and timing
Notes:
1. Electronic shutter is not used. Integration time equals frame time.
2. LEDs used: Blue: Nichia NLPB500, Green: Nichia NSPG500S and Red: HP HLMP-8115.
3. For monochrome sensor, only green LED used.
SPECIFICATIONS
All Configurations
Description
Symbol
Min.
Nom.
Max.
Units
Sample
Plan
Temperature
Tested At (°C)
Notes
Maximum Photoresponse
Nonlinearity
NL
n/a
2
%
Design
2, 3
Maximum Gain Difference
Between Outputs
ΔG
n/a
10
%
Design
2, 3
Max. Signal Error due to
Nonlinearity Dif.
ΔNL
n/a
1
%
Design
2, 3
Horizontal CCD Charge Capacity
HNe
139
ke-
Design
Vertical CCD Charge Capacity
VNe
90
91
ke-
Die
Photodiode Charge Capacity
PNe
58
60
ke-
Die
Horizontal CCD Charge Transfer
Efficiency
HCTE
0.99999
n/a
Design
Vertical CCD Charge Transfer
Efficiency
VCTE
0.99999
n/a
Design
Photodiode Dark Current
Ipd
n/a
800
e/p/s
Die
27, 40
Photodiode Dark Current
Ipd
n/a
0.15
nA/cm2
Die
27, 40
Vertical CCD Dark Current
Ivd
n/a
3800
e/p/s
Die
27, 40
Vertical CCD Dark Current
Ivd
n/a
0.5
nA/cm2
Die
27, 40
Image Lag
Lag
n/a
<10
50
e-
Design
Antiblooming Factor
Xab
100
300
n/a
Design
Vertical Smear
Smr
n/a
-85
-75
dB
Design
Total Noise
ne-T
30
e-rms
Design
4
Dynamic Range
DR
66
dB
Design
5
Output Amplifier DC Offset
Vodc
4
9
14
V
Die
Output Amplifier Bandwidth
F-3db
106
MHz
Die
6
Output Amplifier Impedance
ROUT
100
150
200
Ohms
Die
Output Amplifier Sensitivity
ΔV/ΔN
13
μV/e-
Design
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 15
KAI-11002-ABA Configuration
Description
Symbol
Min.
Nom.
Max.
Units
Sample
Plan
Temperature
Tested At (°C)
Notes
Peak Quantum Efficiency
QEmax
45
50
n/a
%
Design
Peak Quantum Efficiency
Wavelength
λQE
n/a
500
n/a
nm
KAI-11002-CBA Configuration
Description
Symbol
Min.
Nom.
Max.
Units
Sample
Plan
Temperature
Tested At (°C)
Notes
Peak Red
Quantum Green
Efficiency Blue
QEmax
34
37
42
n/a
n/a
n/a
%
Design
Peak Red
Quantum Green
Efficiency Blue
Wavelength
λQE
630
550
470
n/a
n/a
n/a
nm
Design
n/a: not applicable
Notes:
1. Per color.
2. Value is over the range of 10% to 90% of photodiode saturation.
3. Value is for the sensor operated without binning
4. Includes system electronics noise, dark pattern noise and dark current shot noise at 30 MHz.
5. Uses 20LOG(PNe/ ne-T)
6. Last stage only, Cload=10pF. Then f-3db = (1 / (2π*Rout*Cload))
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 16
Typical Performance Curves
QUANTUM EFFICIENCY
Monochrome with Microlens
Figure 8: Monochrome with Microlens Quantum Efficiency
Monochrome without Microlens
Figure 9: Monochrome without Microlens Quantum Efficiency
0.00
0.10
0.20
0.30
0.40
0.50
0.60
300 400 500 600 700 800 900 1000
Wavelength (nm)
Absolute Quantum Efficiency
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
400 500 600 700 800 900 1000
Wavelength (nm)
Absolute Quantum Efficiency
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 17
Color with Microlens
Figure 10: Color with Microlens Quantum Efficiency Using AR Glass
Color without Microlens
Figure 11: Color without Microlens Quantum Efficiency Using AR Glass
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
400 500 600 700 800 900 1000
Absolute Quantum Efficiency
Wavelength (nm)
Red Green Blue
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
400 500 600 700 800 900 1000
Wavelength (nm)
Absolute Quantum Efficiency
Red Green Blue
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 18
ANGULAR QUANTUM EFFICIENCY
For the curves marked “Horizontal”, the incident light angle is varied in a plane parallel to the HCCD.
For the curves marked “Vertical”, the incident light angle is varied in a plane parallel to the VCCD.
Monochrome with Microlens
Figure 12: Monochrome with Microlens Angular Quantum Efficiency
Color with Microlens
Figure 13: Color with Microlens Angular Quantum Efficiency
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0 5 10 15 20 25 30
Relative Quantum Efficiency (%)
Angle (degress)
Vertical
Horizontal
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
-25 -20 -15 -10 -5 0 5 10 15 20 25
Angle (degress)
Relative Quantum Efficiency
Red
Green
Blue
Vertical
Horizontal
Vertical
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 19
POWER - ESTIMATED
Figure 14: Power
FRAME RATES CONTINUOUS MODE
Figure 15: Frame Rates
Right Output Disabled
0
50
100
150
200
250
300
350
400
450
500
0 5 10 15 20 25 30
Horizontal Clock Frequency (MHz)
Power (mW)
Output Power One Output(mW) Horizonatl Power (mW)
Vertical Power One Output(mW) Total Power One Output (mW)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0 5 10 15 20 25 30
Pixel Clock (MHz)
Frame Rate (fps)
Dual output
Single output
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 20
Defect Definitions
Description
Definition
Class X
Monochrome
with microlens
only
Class 0
Monochrome
with microlens
only
Class 1
Class 2
Color
Only
Class 2
Monochrome
Only
Notes
Major dark
field defective
pixel
Defect 239 mV
100
100
100
200
200
1,2
Major bright
field defective
pixel
Defect ≥ 15%
1,2
Minor dark
field defective
pixel
Defect 123 mV
1000
1000
1000
2000
2000
1,2
Cluster defect
A group of 2 to “N”
contiguous major
defective pixels, but
no more than “W”
adjacent defects
horizontally
0
1
N=10
W=3
20
N=10
W=3
20
N=10
W=3
20
N=12
W=5
1,2
Column defect
A group of more than
10 contiguous major
defective pixels along
a single column
0
0
0
10
2
1,2
Notes:
1. There will be at least two non-defective pixels separating any two major defective pixels.
2. Tested at 27 °C and 40 °C.
Class X sensors are offered strictly “as available”. Truesense Imaging cannot guarantee delivery dates. Please call for availability.
DEFECT MAP
The defect map supplied with each sensor is based upon testing at an ambient (27 °C) temperature. Minor point
defects are not included in the defect map. All defective pixels are reference to pixel 1,1 in the defect maps.
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 21
Test Definitions
TEST REGIONS OF INTEREST
Active Area ROI: Pixel (1, 1) to Pixel (4008, 2672)
Center 100 by 100 ROI: Pixel (1954, 1336) to Pixel (2053, 1435)
Only the active pixels are used for performance and defect tests.
OVERCLOCKING
The test system timing is configured such that the sensor is overclocked in both the vertical and horizontal directions.
See Figure 16 for a pictorial representation of the regions.
Figure 16: Overclock Regions of Interest
Pixel 1,1
Vertical Overclock
Horizontal Overclock
H
V
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 22
TESTS
Dark Field Defect Test
This test is performed under dark field conditions. The sensor is partitioned into 384 sub regions of interest, each of
which is 167 by 167 pixels in size. In each region of interest, the median value of all pixels is found. For each region of
interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the
defect threshold specified in theDefect Definitions” section.
Bright Field Defect Test
This test is performed with the imager illuminated to a level such that the output is at approximately 40,000 electrons.
Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is
60,000 electrons. The average signal level of all active pixels is found. The bright and dark thresholds are set as:
Dark defect threshold = Active Area Signal * threshold
Bright defect threshold = Active Area Signal * threshold
The sensor is then partitioned into 384 sub regions of interest, each of which is 167 by 167 pixels in size. In each region
of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is
greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less
than or equal to the median value of that region of interest minus the dark threshold specified.
Example for major bright field defective pixels:
Average value of all active pixels is found to be 520 mV (40,000 electrons).
Dark defect threshold: 520mV * 15% = 78 mV
Bright defect threshold: 520mV * 15% = 78 mV
Region of interest #1 selected. This region of interest is pixels 1,1 to pixels 167,167.
o Median of this region of interest is found to be 520 mV.
o Any pixel in this region of interest that is (520+78 mV) 598 mV in intensity will be marked defective.
o Any pixel in this region of interest that is (520-78 mV) 442 mV in intensity will be marked defective.
All remaining 384 sub regions of interest are analyzed for defective pixels in the same manner.
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 23
Operation
MAXIMUM RATINGS
Absolute maximum rating is defined as a level or condition that should not be exceeded at any time per the
description. If the level or the condition is exceeded, the device will be degraded and may be damaged.
Description
Symbol
Minimum
Maximum
Units
Notes
Operating Temperature
TOP
-50
70
°C
1
Humidity
RH
5
90
%
2
Output Bias Current
Iout
0.0
-40
mA
3
Off-chip Load
CL
10
pF
Notes:
1. Noise performance will degrade at higher temperatures.
2. T=25 °C. Excessive humidity will degrade MTTF.
3. Total for both outputs. Current is -20 mA for each output. Avoid shorting output pins to ground or any low impedance
source during operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of
reduced gain (sensitivity). Operation at these values will reduce MTTF.
MAXIMUM VOLTAGE RATINGS BETWEEN PINS
Description
Minimum
Maximum
Units
Notes
RL, RR, H1BINL, H1BINR, H2SL, H1SL, H1BL, H2BL, H2BR,
H1BR, H1SR, H2SR, OGL, OGR to ESD
0
17
V
Pin to Pin with ESD Protection
-17
17
V
1
VDDL, VDDR to GND
0
25
V
Notes:
1. Pins with ESD protection are: RL, RR, H1BINL, H1BINR, H2SL, H1SL, H1BL, H2BL, H2BR, H1BR, H1SR, H2SR, OGL, and OGR.
DC BIAS OPERATING CONDITIONS
Description
Symbol
Minimum
Nominal
Maximum
Units
Maximum DC
Current (mA)
Notes
Output Gate
OG
-3.0
-2.5
-2.0
V
1 μA
Reset Drain
RD
10.5
11.5
12.0
V
1 μA
Output Amplifier Supply
VDD
14.5
15.0
15.5
V
2 mA
4
Ground
GND
0.0
0.0
0.0
V
Substrate
SUB
8.0
TBD
17.0
V
1, 5
ESD Protection
ESD
-9.0
-8.0
-7.0
V
2
Output Bias Current
Iout
-5
-10
mA
3
Notes:
1. The operating of the substrate voltage, Vab, will be marked on the shipping container for each device. The value of Vab is
set such that the photodiode charge capacity is 60,000 electrons.
2. VESD must be at least 1 V more negative than H1L and H2L during sensor operation AND during camera power turn on.
3. An output load sink must be applied to Vout to activate output amplifier.
4. The maximum DC current is for one output unloaded. This is the maximum current that the first two stages of one output
amplifier will draw. This value is with Vout disconnected.
5. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 24
Power Up Sequence
1. Substrate
2. ESD Protection
3. All other biases and clocks.
AC OPERATING CONDITIONS
Clock Levels
Description
Symbol
Minimum
Nominal
Maximum
Units
Notes
Vertical CCD Clock High
V2H
7.5
8.0
8.5
V
Vertical CCD Clocks Midlevel
V1M, V2M
-0.2
0.0
0.2
V
Vertical CCD Clocks Low
V1L, V2L
-9.5
-9.0
-8.5
V
Horizontal CCD Clocks Amplitude
H1H, H2H
5.8
6.0
6.2
V
Horizontal CCD Clocks Low
H1L, H2L
-4.2
-4.0
-3.8
V
Reset Clock High
RH
1.3
1.5
1.7
V
Reset Clock Low
RL
-3.7
-3.5
-3.3
V
Electronic Shutter Voltage
Vshutter
39
40
48
V
2
Fast Dump High
FDH
4.5
5.0
5.5
V
Fast Dump Low
FDL
-9.5
-9.0
-8.5
V
1
Notes:
1. FDL can use the same supply as Vertical CCD Clocks Low if desired.
2. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
Clock Line Capacitances
Clocks
Capacitance
Units
Notes
V1 to GND
108
nF
1
V2 to GND
118
nF
1
V1 to V2
56
nF
H1S to GND
27
pF
2
H2S to GND
27
pF
2
H1B to GND
13
pF
2
H2B to GND
4
pF
2
H1S to H2B and H2S
13
pF
2
H1B to H2B and H2S
13
pF
2
H2S to H1B and H1S
13
pF
2
H2B to H1B and H1S
13
pF
2
H1BIN to GND
20
pF
2
R to GND
10
pF
FD to GND
20
pF
Notes:
1. Gate capacitance to GND is voltage dependent. Value is for nominal VCCD clock voltages.
2. For nominal HCCD clock voltages, these values are for half of the imager (H1SL, H1BL, H2SL, H2BL and H1BINL or H1SR,
H1BR, H2SR, H2BR and H1BINR).
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 25
TIMING REQUIREMENTS
Description
Symbol
Minimum
Nominal
Maximum
Units
Notes
HCCD Delay
THD
3.0
3.5
10.0
μs
VCCD Transfer time
TVCCD
3.0
3.5
20.0
μs
Photodiode Transfer time
TV3rd
8.0
10.0
15.0
μs
VCCD Pedestal time
T3P
100.0
120.0
200.0
μs
VCCD Delay
T3D
15.0
20.0
80.0
μs
Reset Pulse time
TR
2.5
5.0
ns
Shutter Pulse time
TS
3.0
4.0
10.0
μs
Shutter Pulse delay
TSD
1.0
1.5
10.0
μs
HCCD Clock Period
TH
33
200
ns
VCCD rise/fall time
TVR
0.0
0.1
1.0
μs
Fast Dump Gate delay
TFD
0.5
μs
Vertical Clock Edge Alignment
TVE
0.0
100
ns
MAIN TIMING CONTINUOUS MODE
Figure 17: Main Timing - Continuous Mode
Vertical Frame
Timing
Line Timing
Repeat for 2721
Lines
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 26
FRAME TIMING CONTINUOUS MODE
Frame Timing without Binning
Figure 18: Framing Timing without Binning
Frame Timing for Vertical Binning by 2
Figure 19: Frame Timing for Vertical Binning by 2
H2L
V1
V2
H1, H1BIN
H2
TLTV3rd
T3P T3D
TL
Line 2721 Line 1
2720 H1H, H1BINH
H1L, H1BINL
H2H
V2L
V2M
V1L
V1M
V1H
V1
V2
H1, H1BIN
H2
TLTV3rd
T3P T3D
TL
Line 1361 Line 1Line 1360
3 x TVCCD
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 27
Frame Timing Edge Alignment
Figure 20: Frame Timing Edge Alignment
V1
V2
T
VE
V1M
V1L
V2H
V2M
V2L
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 28
LINE TIMING CONTINUOUS MODE
Line Timing Single Output
Figure 21: Line Timing Single Output
Line Timing Dual Output Left Output
Figure 22: Line Timing Dual Output Left Output
V1
V2 TVCCD
TL
THD
H1, H1BIN
H2
R
23
2
3
4
5
6
24
25
26
27
4053
4054
4055
4057
4058
4074
4075
1
pixel count
28
4056
4073
4076
V1
V2 TVCCD
TL
THD
H1, H1BIN
H2
R
23
2
3
4
5
6
24
25
26
27
2030
2031
2032
2034
2035
2038
2039
1
pixel count
28
2033
2037
2040
2036
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 29
Line Timing Dual Output Right Output
Figure 23: Line Timing Dual Output Right Output
Line Timing Vertical Binning by 2
Figure 24: Line Timing Vertical Binning by 2
V1
V2 TVCCD
TL
THD
H1, H1BIN
H2
R
23
2
3
4
5
6
24
25
26
27
2030
2031
2032
2034
2035
2038
2039
1
pixel count
28
2033
2037
2040
2036
V1
V2 TVCCD
TL
THD
H1, H1BIN
H2
R
23
2
3
4
5
24
25
26
27
4053
4054
4055
4057
4058
4074
4075
1
pixel count
28
4056
4073
4076
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 30
Line Timing Detail
Figure 25: Line Timing Detail
Line Timing Binning by 2 Detail
Figure 26: Line Timing by 2 Detail
V1
V2 TVCCD
H2
H1, H1BIN
THD
TH
R
V1
V2 TVCCD
H2
H1, H1BIN
THD
TH
R
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 31
Line Timing Edge Alignment
Figure 27: Line Timing Edge Alignment
V1
V2
T
VE
T
VE
T
VCCD
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 32
PIXEL TIMING CONTINUOUS MODE
Figure 28: Pixel Timing
Pixel Timing Detail
Figure 29: Pixel Timing Detail
H1,
H1BIN
H2
R
Vout
V1
V2
1 2 3 4 5
Pixel
Count 23 24 25 26
Dummy Pixels Light Shielded Pixels Photosensitive Pixels
R
H1,
H1BIN
H2
VOUT
tRRH
RL
H1H, H1BINH
H1L, H1BINL
H2H
H2L
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 33
FAST LINE DUMP TIMING
Figure 30: Fast Line Dump Timing
TVCCD
V1
V2
TFD
FD
TFD
TVCCD
H1
H2
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 34
ELECTRONIC SHUTTER
Electronic Shutter Line Timing
Figure 31: Electronic Shutter Line Timing
Electronic Shutter Integration Time Definition
Figure 32: Integration Time Definition
V1
V2 TVCCD
TS
THD
H1
H2
R
TSD
VShutter
VSUB
V2
Integration Time
VShutter
VSUB
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 35
Electronic Shutter Description
The voltage on the substrate (SUB) determines the charge capacity of the photodiodes. When SUB is 8 volts the
photodiodes will be at their maximum charge capacity. Increasing VSUB above 8 volts decreases the charge capacity of
the photodiodes until 40 volts when the photodiodes have a charge capacity of zero electrons. Therefore, a short pulse
on SUB, with a peak amplitude greater than 40 volts, empties all photodiodes and provides the electronic shuttering
action.
It may appear the optimal substrate voltage setting is 8 volts to obtain the maximum charge capacity and dynamic
range. While setting VSUB to 8 volts will provide the maximum dynamic range, it will also provide the minimum
antiblooming protection.
The KAI-11002 VCCD has a charge capacity of 90,000 electrons (90 ke-). If the SUB voltage is set such that the
photodiode holds more than 90 ke-, then when the charge is transferred from a full photodiode to VCCD, the VCCD will
overflow. This overflow condition manifests itself in the image by making bright spots appear elongated in the vertical
direction. The size increase of a bright spot is called blooming when the spot doubles in size.
The blooming can be eliminated by increasing the voltage on SUB to lower the charge capacity of the photodiode. This
ensures the VCCD charge capacity is greater than the photodiode capacity. There are cases where an extremely bright
spot will still cause blooming in the VCCD. Normally, when the photodiode is full, any additional electrons generated
by photons will spill out of the photodiode. The excess electrons are drained harmlessly out to the substrate. There is a
maximum rate at which the electrons can be drained to the substrate. If that maximum rate is exceeded, (for example,
by a very bright light source) then it is possible for the total amount of charge in the photodiode to exceed the VCCD
capacity. This results in blooming.
The amount of antiblooming protection also decreases when the integration time is decreased. There is a compromise
between photodiode dynamic range (controlled by VSUB) and the amount of antiblooming protection. A low VSUB
voltage provides the maximum dynamic range and minimum (or no) antiblooming protection. A high VSUB voltage
provides lower dynamic range and maximum antiblooming protection. The optimal setting of VSUB is written on the
container in which each KAI-11002 is shipped. The given VSUB voltage for each sensor is selected to provide
antiblooming protection for bright spots at least 100 times saturation, while maintaining at least 60 ke- of dynamic
range.
The electronic shutter provides a method of precisely controlling the image exposure time without any mechanical
components. If an integration time of TINT is desired, then the substrate voltage of the sensor is pulsed to at least 40
volts TINT seconds before the photodiode to VCCD transfer pulse on V2. Use of the electronic shutter does not have to
wait until the previously acquired image has been completely read out of the VCCD.
The figure below shows the DC bias (SUB) and AC clock (Vshutter) applied to the SUB pin. Both the DC bias and AC
clock are referenced to ground.
SUB
Vshutter
GND GND
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 36
Storage and Handling
STORAGE CONDITIONS
Description
Symbol
Minimum
Maximum
Units
Notes
Storage
Temperature
TST
-20
80
°C
1
Humidity
RH
5
90
%
2
Notes:
1. Long-term exposure toward the maximum
temperature will accelerate color filter degradation.
2. T=25 °C. Excessive humidity will degrade MTTF
ESD
1. This device contains limited protection against
Electrostatic Discharge (ESD). ESD events may
cause irreparable damage to a CCD image sensor
either immediately or well after the ESD event
occurred. Failure to protect the sensor from
electrostatic discharge may affect device
performance and reliability.
2. Devices should be handled in accordance with
strict ESD procedures for Class 0 (<250V per
JESD22 Human Body Model test), or Class A
(<200V JESD22 Machine Model test) devices.
Devices are shipped in static-safe containers and
should only be handled at static-safe
workstations.
3. See Application Note Image Sensor Handling Best
Practices for proper handling and grounding
procedures. This application note also contains
workplace recommendations to minimize
electrostatic discharge.
4. Store devices in containers made of electro-
conductive materials.
COVER GLASS CARE AND CLEANLINESS
1. The cover glass is highly susceptible to particles
and other contamination. Perform all assembly
operations in a clean environment.
2. Touching the cover glass must be avoided.
3. Improper cleaning of the cover glass may
damage these devices. Refer to Application Note
Image Sensor Handling Best Practices.
ENVIRONMENTAL EXPOSURE
1. Extremely bright light can potentially harm CCD
image sensors. Do not expose to strong sunlight
for long periods of time, as the color filters
and/or microlenses may become discolored. In
addition, long time exposures to a static high
contrast scene should be avoided. Localized
changes in response may occur from color
filter/microlens aging. For Interline devices, refer
to Application Note Using Interline CCD Image
Sensors in High Intensity Visible lighting
Conditions.
2. Exposure to temperatures exceeding maximum
specified levels should be avoided for storage
and operation, as device performance and
reliability may be affected.
3. Avoid sudden temperature changes.
4. Exposure to excessive humidity may affect
device characteristics and may alter device
performance and reliability, and therefore should
be avoided.
5. Avoid storage of the product in the presence of
dust or corrosive agents or gases, as
deterioration of lead solderability may occur. It is
advised that the solderability of the device leads
be assessed after an extended period of storage,
over one year.
SOLDERING RECOMMENDATIONS
1. The soldering iron tip temperature is not to
exceed 370 °C. Higher temperatures may alter
device performance and reliability.
2. Flow soldering method is not recommended.
Solder dipping can cause damage to the glass
and harm the imaging capability of the device.
Recommended method is by partial heating using
a grounded 30W soldering iron. Heat each pin for
less than 2 seconds duration.
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 37
Mechanical Information
PACKAGE
Figure 33: Package Drawing
.
NOTES:
1. SEE ORDERING INFORMATION FOR
MARKING CODE
2. COVER GLASS IS MANUALLY PLACED AND
VISUALLY ALIGNED OVER DIE LOCATION
ACCURACY IS NOT GUARANTEED.
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 38
DIE TO PACKAGE ALIGNMENT
Figure 34: Die to Package Alignment
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 39
GLASS
Figure 35: Glass Drawing
1. Multi-Layer Anti-Reflective Coating on 2 sides:
3. Substrate - Schott D263T eco or Equivalent
2. Dust, Scratch specification - 20 microns max.
NOTES:
Double Sided Reflectance:
4. Epoxy: NCO-150HB
Range (nm)
450 -630 nm < 1%
630 -680 nm < 2%
Thickness: 0.002" - 0.005"
420 -450 nm < 2%
Coat Both Sides
Chamfer 0.008" [0.20] (Typ.
8 plcs.)
Epoxy: NC0-150 HB
Thk. 0.002" - 0.005"
Chamfer 0.020" [0.50] (Typ. 4 plcs.)
0.020R [0.50] (Typ. 8 plcs.)
Ref. AR coat area
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 40
GLASS TRANSMISSION
Figure 36: Glass Transmission
0
10
20
30
40
50
60
70
80
90
100
200 300 400 500 600 700 800 900
Wavelength (nm)
Transmission (%)
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 41
Quality Assurance and Reliability
QUALITY AND RELIABILITY
All image sensors conform to the specifications stated in this document. This is accomplished through a combination
of statistical process control and visual inspection and electrical testing at key points of the manufacturing process,
using industry standard methods. Information concerning the quality assurance and reliability testing procedures and
results are available from Truesense Imaging upon request. For further information refer to Application Note Quality
and Reliability.
REPLACEMENT
All devices are warranted against failure in accordance with the Terms of Sale. Devices that fail due to mechanical and
electrical damage caused by the customer will not be replaced.
LIABILITY OF THE SUPPLIER
A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the
customer. Product liability is limited to the cost of the defective item, as defined in the Terms of Sale.
LIABILITY OF THE CUSTOMER
Damage from mishandling (scratches or breakage), electrostatic discharge (ESD), or other electrical misuse of the
device beyond the stated operating or storage limits, which occurred after receipt of the sensor by the customer, shall
be the responsibility of the customer.
TEST DATA RETENTION
Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2
years after date of delivery.
MECHANICAL
The device assembly drawing is provided as a reference.
Truesense Imaging reserves the right to change any information contained herein without notice. All information
furnished by Truesense Imaging is believed to be accurate.
Life Support Applications Policy
Truesense Imaging image sensors are not authorized for and should not be used within Life Support Systems without
the specific written consent of Truesense Imaging, Inc.
KAI-11002 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0012 Pg 42
©Truesense Imaging Inc., 2012. TRUESENSE is a registered trademark of Truesense Imaging, Inc.
Revision Changes
MTD/PS-0938
Revision Number
Description of Changes
1.0
Initial formal release
2.0
Reformatted Ordering Information, Storage and Handling, and Quality Assurance and Reliability pages
3.0
Added the note “Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
to the following sections
o DC Bias Operating Conditions
o AC Operating Conditions
o Storage and Handling
Added figure in Electronic Shutter Description section showing relationship between ground and the substrate DC bias
and the electronic shutter pulse
Changed cover glass material to D263T eco or equivalent
PS-0012
Revision Number
Description of Changes
1.0
Initial release with new document number, updated branding and document template
Updated Storage and Handling and Quality Assurance and Reliability sections
Reorganized structure for consistency with other Interline Transfer CCD documents