May 2009 i
© 2009 Actel Corporation See the Actel website for the latest version of the datasheet.
v5.4
RTAX-S/SL RadTolerant FPGAs
Radiation Performance
SEU-Hardened Registers Eliminate the Need for Triple-
Module Redundancy (TMR)
Immune to Single-Event Upsets (SEU) to LETTH > 37
MeV-cm2/mg
–SEU Rate < 10
-10 Errors/Bit-Day in Worst-Case
Geosynchronous Orbit
Expected SRAM Upset Rate of <10-10 Errors/Bit-Day with
Use of Error Detection and Correction (EDAC) IP (included)
with Integrated SRAM Scrubber
Single-Bit Correction, Double-Bit Detection
Variable-Rate Background Refreshing
Total Ionizing Dose Up to 300 krad (Si, Functional)
Single-Event Latch-Up Immunity (SEL) to LETTH > 117 MeV-
cm2/mg
TM1019 Test Data Available
Single Event Transient (SET) – No Anomalies up to 150
MHz
Processing Flows
B-Flow – MIL-STD-883B
E-Flow – Actel Extended Flow
EV-Flow – Class V Equivalent Flow Processing Consistent
with MIL-PRF 38535
Prototyping Options
Commercial Axcelerator Devices for Functional
Verification
RTAX-S PROTO Devices with Same Functional and Timing
Characteristics as Flight Unit in a Non-Hermetic Package
Low Priced Reprogrammable ProASIC®3 Option for
Functional Verification
RTAX-SL Low Power Option
Offers Approximately Half the Standby Current of the
Standard RTAX-S Device at Worst-Case Conditions
Leading-Edge Performance
High-Performance Embedded FIFOs
350+ MHz System Performance
500+ MHz Internal Performance
700 Mb/s LVDS Capable I/Os
Specifications
Up to 4 Million Equivalent System Gates or 500 k
Equivalent ASIC Gates
Up to 20,160 SEU-Hardened Flip-Flops
Up to 840 I/Os
Up to 540 kbits Embedded SRAM
Manufactured on Advanced 0.15 μm CMOS Antifuse
Process Technology, 7 Layers of Metal
Electrostatic Discharge (ESD) is 2,000 V (HBM MIL-STD-883,
TM3015)
Features
Single-Chip, Nonvolatile Solution
1.5 V Core Voltage for Low Power
Flexible, Multi-Standard I/Os:
1.5 V, 1.8 V, 2.5 V, 3.3 V Mixed Voltage Operation
Bank-Selectable I/Os – 8 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS, 3.3 V PCI
JTAG Boundary Scan Testing (as per IEEE 1149.1)
Differential I/O Standards: LVPECL and LVDS
Voltage-Referenced I/O Standards: GTL+, HSTL Class 1,
SSTL2 Class 1 and 2, SSTL3 Class 1 and 2
Hot-Swap Compliant with Cold-Sparing Support
(Except PCI)
Embedded Memory with Variable Aspect Ratio and
Organizations:
Independent, Width-Configurable Read and Write Ports
Programmable Embedded FIFO Control Logic
ROM Emulation Capability
Deterministic, User-Controllable Timing
Unique In-System Diagnostic and Debug Capability
Table 1 RTAX-S/SL Family Product Profile
Device RTAX250S/SL RTAX1000S/SL RTAX2000S/SL RTAX4000S/SL
Capacity
Equivalent System Gates
ASIC Gates
250,000
30,000
1,000,000
125,000
2,000,000
250,000
4,000,000
500,000
Modules
Register (R-cells)
Combinatorial (C-cells)
Flip-Flops (maximum)
1,408
2,816
2,816
6,048
12,096
12,096
10,752
21,504
21,504
20,160
40,320
40,320
Embedded RAM/FIFO (without EDAC)
Core RAM Blocks
Core RAM Bits (K = 1,024)
12
54 k
36
162 k
64
288 k
120
540 k
Clocks (segmentable)
Hardwired
Routed
4
4
4
4
4
4
4
4
I/Os
I/O Banks
User I/Os (maximum)
I/O Registers
8
198
744
8
418
1,548
8
684
2,052
8
840
2,520
Package
CCGA/LGA
CQFP
624
208, 352
624
352
624, 1152
256, 352
1272
352
v5.4
RTAX-S/SL RadTolerant FPGAs
ii v5.4
Ordering Information
Temperature Grade Offerings
Package RTAX250S/SL RTAX1000S/SL RTAX2000S/SL RTAX4000S/SL
CQ208 B, E, EV
CQ256 B, E, EV
CQ352 B, E, EV B, E, EV B, E, EV B, E, EV
CG624/LG624 B, E, EV B, E, EV B, E, EV
CG1152/LG1152 B, E, EV
CG1272/LG1272 B, E, EV
Note: B = MIL-STD-883 Class B
E = E-Flow (Actel Space-Level Flow)
EV = Actel "V" Equivalent Flow (Class V processing consistent with MIL-PRF 38535)
RTAX2000S/SL1 CGS
_
Part Number
Speed Grade
Blank =Standard Speed
=Approximately 15% Faster than Standard (applies to RTAX250S/SL, RTAX1000S/SL. RTAX2000S/SL)1
=Approximately 10% Faster than Standard (applies to RTAX4000S/SL)1
Package Type
CQ =Ceramic Quad Flat Pack
CG =Ceramic Column Grid Array
LG =
=
Land Grid Array
624 B
Package Lead Count
Application
B = MIL-STD 883 Class B
E = E-Flow (Actel Space-Level Flow)
EV = Class V Equivalent Flow Processing Consistent with MIL-PRF 38535
RTAX1000S/SL
1,000,000 Equivalent System Gates
=
RTAX250S/SL
250,000 Equivalent System Gates
=
S
Standard Family
=
SL
Low-Power Option
=
RTAX2000S/SL
2,000,000 Equivalent System Gates
=
Note: PROTO refers to the RTAX-S/SL Prototype Units. All CCGA PROTO units will be offered with the Six Sigma Column.
SSix Sigma Column
RTAX4000S/SL4,000,000 Equivalent System Gates
=
RTAX-S/SL RadTolerant FPGAs
v5.4 iii
Speed Grade and Temperature Grade Matrix
Device Resources
I/Os per Package
RTAX250S/SL RTAX1000S/SL RTAX2000S/SL RTAX4000S/SL
STD ✓✓✓✓
-1 ✓✓✓✓
Notes:
1. Data applies to B,E,EV flow devices.
2. Contact your Actel representative for availability.
User I/Os (Including Clock Buffers)
Device RTAX250S/SL RTAX1000S/SL RTAX2000S/SL RTAX4000S/SL
CQ208 115
CQ256 ––136
CQ352 198 198 198 166
CG624/LG624 232 418 418
CG1152/LG1152 ––684
CG1272/LG1272 –––840
Note: CQFP = Ceramic Quad Flat Pack and CCGA = Ceramic Column Grid Array, LGA = Land Grid Array
Package Device Single-Ended Differential Pair Pair Total I/Os
CQ208 RTAX250S 7 41 13 115
CQ256 RTAX2000S 4 66 0 136
CQ352 RTAX250S 2 98 0 198
RTAX1000S 2 98 0 198
RTAX2000S 2 98 0 198
RTAX4000S 4 81 0 166
CG624 RTAX250S 0 124 0 248
RTAX1000S 68 170 5 418
RTAX2000S 52 178 5 418
CG1152 RTAX2000S 0 342 0 684
CG1272 RTAX4000S 0 420 0 840
RTAX-S/SL RadTolerant FPGAs
iv v5.4
Actel MIL-STD-883 Class B Product Flow
Table 2 Actel MIL-STD-883 Class B Product Flow for RTAX-S/SL1, 2
Step Screen Method Requirement
1Internal Visual 2010, Condition B 100%
2Serialization 100%
3Temperature Cycling 1010, Condition C, 10 cycles minimum 100%
4Constant Acceleration 2001, Y1 Orientation Only
Condition B for CQ352, LG624, LG1152
Condition D for CQ208
Condition A3 for LG1272, CQ352
100%
5Particle Impact Noise Detection 2020, Condition A 100%
6Seal (Fine & Gross Leak Test) 1014 100%
7Pre-Burn-In Electrical Parameters In accordance with applicable Actel device
specification
100%
8Dynamic Burn-In 1015, Condition D,
160 hours at 125°C or 80 hours at 150°C minimum
100%
9Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Actel device
specification
100%
10 Percent Defective Allowable (PDA) Calculation 5% All Lots
11 Final Electrical Test2
a. Static Tests
(1) 25°C
(2) –55°C and +125°C
b. Functional Tests
(1) 25°C
(2) –55°C and +125°C
c. Switching Tests at 25°C
In accordance with applicable Actel device
specification, which includes a, b, and c:
5005, Table 1, Subgroup 1
5005, Table 1, Subgroup 2, 3
5005, Table 1, Subgroup 7
5005, Table 1, Subgroup 8a, 8b
5005, Table 1, Subgroup 9
100%
12 External Visual 2009 100%
Notes:
1. For CCGA devices, all Assembly, Screening, and TCI testing are performed at LGA level. Only QA electrical and mechanical visual are
performed after solder column attachment.
2. RTAX-S and RTAX-SL devices have the same silicon and are distinguished by screening the ICCA current limits at 125°C final electrical
test.
3. Condition A applies to RTAX4000S/SL packages only.
RTAX-S/SL RadTolerant FPGAs
v5.4 v
Actel Extended Flow
Table 3 Actel Extended Flow for RTAX-S/SL1, 2, 3, 4
Step Screen Method Requirement
1Destructive Bond Pull52011, Condition D Extended Sample
2Internal Visual 2010, Condition A 100%
3Serialization 100%
4Temperature Cycling 1010, Condition C, 10 cycles minimum 100%
5Constant Acceleration 2001, Y1 Orientation Only
Condition B for CQ352, LG624, LG1152
Condition D for CQ208
Condition A5 for LG1272, CQ352
6Particle Impact Noise Detection 2020, Condition A 100%
7Radiographic (X-Ray) 2012, One View (Y1 Orientation) Only 100%
8Pre-Burn-In Electrical Parameters In accordance with applicable Actel device
specification
9Dynamic Burn-In 1015, Condition D,
240 hours at 125°C or 120 hours at 150°C
minimum
100%
10 Interim (Post-Dynamic-Burn-In) Electrical
Parameters
In accordance with applicable Actel device
specification
100%
11 Static Burn-In 1015, Condition C, 72 hours at 150°C or 144
hours at 125°C minimum
100%
12 Interim (Post-Static-Burn-In) Electrical Parameters In accordance with applicable Actel device
specification
100%
13 Percent Defective Allowable (PDA) Calculation 5% Overall, 3% Functional Parameters at 25°C All Lots
14 Final Electrical Test4
a. Static Tests
(1) 25°C
(2) –55°C and +125°C
b. Functional Tests
(1) 25°C
(2) –55°C and +125°C
c. Switching Tests at 25°C
In accordance with applicable Actel device
specification, which includes a, b, and c:
5005, Table 1, Subgroup 1
5005, Table 1, Subgroup 2, 3
5005, Table 1, Subgroup 7
5005, Table 1, Subgroup 8a, 8b
5005, Table 1, Subgroup 9
100%
15 Seal (Fine & Gross Leak Test) 1014 100%
16 External Visual 2009 100%
Notes:
1. Actel offers Extended Flow for users requiring additional screening beyond MIL-STD-833, Class B requirement. Actel is offering this
Extended Flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883, Class S.
2. The Quality Conformance Inspection (QCI) for Extended Flow devices still comply to MIL-STD-833, Class B requirement.
3. For CCGA devices, all Assembly/Screening/TCI testing are performed at LGA level. Only QA electrical and mechanical visual are
performed after solder column attachment.
4. RTAX-S and RTAX-SL devices have the same silicon and are distinguished by screening the ICCA current limits at 125°C final electrical
test.
5. Condition A applies to RTAX4000S/SL packages only.
6. Requirement for 100% nondestructive bond pull per Method 2003 is substituted by an extensive destructive bond pull to Method
2011 Condition D on an extended sample basis.
RTAX-S/SL RadTolerant FPGAs
vi v5.4
Actel "EV" Flow (Class V Flow Equivalent Processing)
Table 4 Actel "EV" Flow (Class V Equivalent Flow Processing) for RTAX-S/SL1, 2, 3
Step Screen Method Requirement
1Destructive Bond Pull42011, Condition D Extended Sample
2Internal Visual 2010, Condition A 100%
3Serialization 100%
4Temperature Cycling 1010, Condition C, 50 cycles minimum 100%
5Constant Acceleration 2001, Y1 Orientation Only
Condition B for CQ352, LG624, LG1152
Condition D for CQ208
Condition A5 for LG1272, CQ352
100%
6Particle Impact Noise Detection 2020, Condition A 100%
7Radiographic (X-Ray) 2012, One View (Y1 Orientation) Only 100%
8Pre-Burn-In Electrical Parameters In accordance with applicable Actel device
specification
100%
9Dynamic Burn-In 1015, Condition D,
240 hours at 125°C or 120 hours at 150°C
minimum
100%
10 Interim (Post-Dynamic-Burn-In) Electrical Parameters In accordance with applicable Actel device
specification
100%
11 Static Burn-In 1015, Condition C, 72 hours at 150°C or 144 hours
at 125°C minimum
100%
12 Interim (Post-Static-Burn-In) Electrical Parameters In accordance with applicable Actel device
specification
100%
13 Percent Defective Allowable (PDA) Calculation 5% Overall, 3% Functional Parameters at 25°C All Lots
14 Final Electrical Test3
a. Static Tests
(1) 25°C
(2) –55°C and +125°C
b. Functional Tests
(1) 25°C
(2) –55°C and +125°C
c. Switching Tests at 25°C
In accordance with applicable Actel device
specification, which includes a, b, and c:
5005, Table 1, Subgroup 1
5005, Table 1, Subgroup 2, 3
5005, Table 1, Subgroup 7
5005, Table 1, Subgroup 8a, 8b
5005, Table 1, Subgroup 9
100%
15 Seal (Fine & Gross Leak Test) 1014 100%
16 External Visual 2009 100%
17 Wafer Lot Specific Life Test (Group C) MIL-PRF-38535, Appendix B, sec. B.4.2.c All Wafer Lots
Notes:
1. Actel offers "EV" flow for users requiring full compliance to MIL-PRF-38535 class V requirement.
The "EV" process flow is expanded from the existing E-flow requirement (it still meets the full SMD requirement for current E-flow
devices) with the intention to be in full compliance to MIL-PRF-38535 Table IA and Appendix B requirement, but without the official
class V certification from DSCC.
2. For CCGA devices, all Assembly/Screening/TCI testing are performed at LGA level. Only QA electrical and mechanical visual are
performed after solder column attachment.
3. RTAX-S and RTAX-SL devices have the same silicon and are distinguished by screening the ICCA current limits at 125°C final electrical
test.
4. Condition A applies to RTAX4000S/SL packages only.
5. Requirement for 100% nondestructive bond pull per Method 2003 is substituted by an extensive destructive bond pull to Method
2011 Condition D on an extended sample basis.
v5.4 vii
Table of Contents
RTAX-S/SL RadTolerant FPGAs
General Description
Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Programmable Interconnect Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Embedded Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Low-Cost Prototyping Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
In-System Diagnostic and Debug Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Detailed Specifications
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
Routing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
Embedded Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102
Package Pin Assignments
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
352-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
624-Pin CCGA/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
1152-Pin CCGA/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
1272-Pin CCGA/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
International Traffic in Arms Regulations (ITAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Actel Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . 4-7
RTAX-S/SL RadTolerant FPGAs
v5.4 1-1
General Description
RTAX-S/SL offers high performance at densities of up to
four million equivalent system gates for space-based
applications. Based upon the Actel commercial
Axcelerator® family, RTAX-S/SL has several system-level
features such as embedded SRAM (with built-in FIFO
control logic), segmentable clocks, chip-wide highway
routing, and carry logic.
Featuring SEU-hardened flip-flops that offer the benefits
of user-implemented Triple Module Redundancy (TMR)
without the associated overhead, the RTAX-S/SL family is
the second generation Actel product offering for space
applications. The RTAX-S/SL devices are manufactured
using a 0.15 µm technology at a UMC facility in Taiwan.
These devices offer levels of radiation survivability far in
excess of typical CMOS devices.
Device Architecture
Actel RTAX-S/SL architecture, derived from the highly-
successful A54SX-A sea-of-modules architecture, has
been designed for high performance and total logic
module utilization (Figure 1-1). Unlike traditional FPGAs,
the entire floor of the RTAX-S/SL device is covered with a
grid of logic modules, with virtually no chip area lost to
interconnect elements or routing.
Programmable Interconnect
Element
The RTAX-S/SL family uses a patented metal-to-metal
antifuse programmable interconnect element that resides
between the upper two layers of metal (Figure 1-2 on
page 1-2). This completely eliminates the channels of
routing and interconnect resources between logic
modules (as implemented on traditional FPGAs) and
enables the efficient sea-of-modules architecture. The
antifuses are normally open circuit and, when
programmed, form a permanent, passive, low-
impedance connection, leading to the fastest signal
propagation in the industry. In addition, the extremely
small size of these interconnect elements gives the
RTAX-S family abundant routing resources.
Figure 1-1 Sea-of-Modules Comparison
Switch
Matrix
Routing
Logic Block
Logic
Modules
Sea-of-Modules
Architecture
Traditional FPGA
Architecture
RTAX-S/SL RadTolerant FPGAs
1-2 v5.4
The very nature of Actel's nonvolatile antifuse
technology provides excellent protection against design
pirating and cloning (FuseLock® technology). Cloning is
impossible (even if the security fuse is left
unprogrammed) as no bitstream or programming file is
ever downloaded or stored in the device. Reverse
engineering is virtually impossible due to the difficulty of
trying to distinguish between programmed and
unprogrammed antifuses and also due to the
programming methodology of antifuse devices (see
"Security" on page 2-101).
Actel's RTAX-S/SL family provides two types of logic
modules: the register cell (R-cell) and the combinatorial
cell (C-cell). The RTAX-S/SL C-cell can implement more
than 4,000 combinatorial functions of up to five inputs
(Figure 1-3 on page 1-3). The C-cell contains carry logic
for even more efficient implementation of arithmetic
functions. With its small size, the C-cell structure is
extremely synthesis-friendly, simplifying the overall
design as well as reducing design time.
While each SEU-hardened R-cell appears as a single
D-Type flip-flop to the user, each is implemented in
silicon using triple redundancy to achieve a LET threshold
of greater than 60 MeV-mg/cm2. Each TMR R-cell consist
of three master-slave latch pairs, each with asynchronous
self-correcting feedback paths. The output of each latch
on the master or slave side votes with the outputs of the
other two latches on that side. If one of the three latches
is struck by an ion and starts to change state, the voting
with the other two latches prevents that change from
feeding back and permanently latching. Care was also
taken in the layout to ensure that a single ion strike
could not affect more than one latch (see "R-Cell" on
page 2-66 for more details).
The R-cell contains a flip-flop featuring asynchronous
clear, asynchronous preset, and active-low enable control
signals (Figure 1-3 on page 1-3). The R-cell registers
feature programmable clock polarity selectable on a
register-by-register basis. This provides additional
flexibility (e.g., easy mapping of dual-data-rate functions
into the FPGA) while conserving valuable clock resources.
The clock source for the R-cell can be chosen from the
hardwired clocks, routed clocks, or internal logic.
Two C-cells, a single R-cell, and two Transmit (TX) and two
Receive (RX) routing buffers form a Cluster, while two
Clusters comprise a SuperCluster (Figure 1-4 on page 1-3).
Each SuperCluster also contains an independent Buffer (B)
module, which supports buffer insertion on high-fanout
nets by the place-and-route tool, minimizing system
delays while improving logic utilization.
The logic modules within the SuperCluster are arranged
so that two combinatorial modules are side-by-side,
giving a C–C–R – C–C–R pattern to the SuperCluster. This
C–C–R pattern enables efficient implementation
(minimum delay) of two-bit carry logic for improved
arithmetic performance (Figure 1-5 on page 1-3).
The RTAX-S/SL architecture is fully fracturable, meaning
that if one or more of the logic modules in a
SuperCluster are used by a particular signal path, the
other logic modules are still available for use by other
paths.
Figure 1-2 RTAX-S/SL Family Interconnect Elements
RTAX-S/SL RadTolerant FPGAs
v5.4 1-3
Figure 1-3 RTAX-S/SL C-Cell and R-Cell
Figure 1-4 RTAX-S/SL SuperCluster
Figure 1-5 RTAX-S/SL Two-Bit Carry Logic
A[0:1]
B[0:1]
D[0:3]
DB
CFN
FCI
FCO
Y
C-cell
PRE
CLR
D
E
CLK
Q
(Positive Edge Triggered)
C-Cell R-Cell
RX
TX
B
CRCC C R
RX RX RX
TX TXTX
DCOUT
Y
Y
C-Cell C-Cell
Carry Logic
FCI
FCO
RTAX-S/SL RadTolerant FPGAs
1-4 v5.4
At the chip level, SuperClusters are organized into core
tiles, which are arrayed to build up the full chip. For
example, the RTAX1000S/SL is composed of a 3×3 array
of nine core tiles. Surrounding the array of core tiles are
blocks of I/O Clusters and the I/O bank ring (Table 1-1).
Each core tile consists of an array of 336 SuperClusters
and four SRAM blocks (176 SuperClusters and three
SRAM blocks for the RTAX250S/SL). The SRAM blocks are
arranged in a column on the west side of the tile
(Figure 1-6).
Table 1-1 Number of Core Tiles per Device
Device Number of Core Tiles
RTAX250S/SL 4 smaller tiles
RTAX1000S/SL 9 regular tiles
RTAX2000S/SL 16 regular tiles
RTAX4000S/SL 30 regular tiles
Figure 1-6 RTAX-S/SL Device Architecture (RTAX1000S/SL shown)
Chip Layout
SuperCluster
I/O Structure
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
Core Tile
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
RX
TX
B
CRCC C R
RX RX RX
TX TXTX
RTAX-S/SL RadTolerant FPGAs
v5.4 1-5
Embedded Memory
As mentioned earlier, each core tile has either three (in a
smaller tile) or four (in the regular tile) embedded SRAM
blocks along the west side, and each variable-aspect-
ratio SRAM block is 4,608 bits in size. Available memory
configurations are: 128x36, 256x18, 512x9, 1kx4, 2kx2 or
4kx1 bits. The individual blocks have separate read and
write ports that can be configured with different bit
widths on each port. For example, data can be written in
by eight and read out by one.
In addition, every SRAM block has an embedded FIFO
control unit. The control unit allows the SRAM block to
be configured as a synchronous FIFO without using core
logic modules. The FIFO width and depth are
programmable. The FIFO also features programmable
ALMOST-EMPTY (AEMPTY) and ALMOST-FULL (AFULL)
flags in addition to the normal EMPTY and FULL flags. In
addition to the flag logic, the embedded FIFO control
unit also contains the counters necessary for the
generation of the read and write address pointers as well
as control circuitry to prevent metastability and
erroneous operation. The embedded SRAM/FIFO blocks
can be cascaded to create larger configurations.
The FIFO control unit was not implemented with SEU-
hardened registers. Designs requiring high SEU tolerance
should implement the FIFO control unit from hardened
core logic.
SRAM structures are inherently susceptible to upsets
caused by high-energy particles encountered in space.
High-energy particles can cause an SRAM cell to change
state, resulting in the loss or corruption of a valuable
data bit. Actel has enhanced the SEU tolerance of the
embedded SRAM within RTAX-S/SL by employing the use
of two upset-mitigation techniques:
Actel has developed Error Detection and Correction
(EDAC) IP for use with RTAX-S/SL. EDAC can be
accomplished by the use of SmartGen-generated
Error Correcting Codes (ECC) IP, which employs the
use of shortened Hamming Codes
A background memory-refresher, or scrubber
circuitry, which has been embedded into the EDAC IP.
The embedded scrubber circuitry periodically
refreshes memory in the background to ensure that
no data corruption occurs while the memory is not in
use.
The use of EDAC IP combined with the embedded
memory scrubber circuitry, gives the RTAX-S/SL an SEU
radiation performance level of better than 10-10 errors/
bit-day. See the application note Using EDAC RAM for
RadTolerant RTAX-S/SL FPGAs and Axcelerator FPGAs.
I/O Logic
The RTAX-S/SL family of FPGAs features a flexible I/O
structure, supporting a range of mixed voltages with its
bank-selectable I/Os: 1.5 V, 1.8 V, 2.5 V, and 3.3 V. In all,
RTAX-S/SL FPGAs support at least 14 different I/O
standards (single-ended, differential, voltage-
referenced). The I/Os are organized into banks, with
eight banks per device (two per side). The configuration
of these banks determines the I/O standards supported
(see "User I/Os" on page 2-12 for more information). All
I/O standards are available in each bank.
Each I/O module has an input register (InReg), an output
register (OutReg), and an enable register (EnReg)
(Figure 1-7 on page 1-6). An I/O Cluster includes two I/O
modules, four RX modules, two TX modules, and a buffer
(B) module.
By design, all user flip-flops in the RTAX-S FPGAs are
immune to SEUs including the following three registers
located in every I/O cell buffer: InReg, OutReg, and
EnReg.
Routing
The RTAX-S/SL hierarchical routing structure ties the logic
modules, the embedded memory blocks, and the I/O
modules together (Figure 1-8 on page 1-6). At the lowest
level, in and between SuperClusters, there are three local
routing structures: FastConnect, DirectConnect, and
CarryConnect routing. DirectConnects provide the highest
performance routing inside the SuperClusters by
connecting a C-cell to the adjacent R-cell. DirectConnects
do not require an antifuse to make the connection and
achieve a signal propagation time of less than 0.1 ns.
FastConnects provide high-performance, horizontal
routing inside the SuperCluster and vertical routing to
the SuperCluster immediately below it. Only one
programmable connection is used in a FastConnect path,
delivering a maximum routing delay of 0.4 ns.
CarryConnects are used for routing carry logic between
adjacent SuperClusters. They connect the carry-logic FCO
output of one C-cell pair to the carry-logic FCI input of
the C-cell pair of the SuperCluster below. CarryConnects
do not require an antifuse to make the connection and
achieve a signal propagation time of less than 0.1 ns.
The next level contains the core tile routing. Over the
SuperClusters within a core tile, both vertical and
horizontal tracks run across rows or columns,
respectively. At the chip level, vertical and horizontal
tracks extend across the full length of the device, both
north-to-south and east-to-west. These tracks are
composed of highway routing that extend the entire
length of the device (segmented at core tile boundaries)
as well as segmented routing of varying lengths.
RTAX-S/SL RadTolerant FPGAs
1-6 v5.4
Figure 1-7 I/O Cluster Arrangement
Figure 1-8 RTAX-S/SL Routing Structures
I/O Cluster
I/O Module
CoreTile
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
OutReg EnRegInReg
I/O
Module
I/O
Module
RX RX RX RX
TX TX
B
N
I
O
B
A
K
RTAX-S/SL RadTolerant FPGAs
v5.4 1-7
Global Resources
Each family member has three types of global signals
available to the designer: HCLK, CLK, and GCLR/GPSET.
There are four hardwired clocks (HCLK) per device that
can directly drive the clock input of each R-cell. Each of
the four routed clocks (CLK) can drive the clock, clear,
preset, or enable pin of an R-cell or any input of a C-cell
(Figure 1-3 on page 1-3). Both these clocks can be
segmented, allowing significantly more than eight clock
domains to be implemented in the devices.
The RTAX1000S/SL, RTAX2000S/SL, and RTAX4000S/SL
devices have 12 HCLK segments per tile and 28 RCLK
segments per tile. The RTAX250S/SL has 8 HCLK segments
per tile and 22 RCLK segments per tile.
Global clear (GCLR) and global preset (GPSET) drive the
clear and preset inputs of each R-cell as well as each I/O
Register on a chip-wide basis at power-up.
Design Environment
The RTAX-S/SL family of FPGAs is fully supported by both
Actel Libero® Integrated Design Environment (IDE) and
Designer FPGA Development software. Actel Libero IDE
is an integrated design manager that seamlessly
integrates design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessary design data among tools. Additionally,
Libero IDE allows users to integrate both schematic and
HDL synthesis into a single flow and verify the entire
design in a single environment (see the Libero IDE Flow
diagram located on the Actel website). Libero IDE
includes Synplify® AE from Synplicity®, ViewDraw® AE
from Mentor Graphics®, ModelSim® HDL Simulator from
Mentor Graphics, WaveFormer Lite™ AE from
SynaptiCAD®, and Designer software from Actel.
Actel's Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
the following:
Timer – a world-class integrated static timing analyzer
and constraints editor which support timing-driven
place-and-route
NetlistViewer – a design netlist schematic viewer
ChipPlanner – a graphical floorplanner viewer and editor
SmartPower – allows the designer to quickly estimate
the power consumption of a design
PinEditor – a graphical application for editing pin
assignments and I/O attributes
I/O Attribute Editor – displays all assigned and
unassigned I/O macros and their attributes in a
spreadsheet format
With the Designer software, a user can lock the design
pins before layout while minimally impacting the results
of place-and-route. Additionally, the Actel back-
annotation flow is compatible with all the major
simulators and the simulation results can be cross-probed
with Silicon Explorer II, the Actel integrated verification
and logic analysis tool. Another tool included in the
Designer software is the SmartGen core generator, which
easily creates popular and commonly used logic
functions for implementation into your schematic or HDL
design.
Actel Designer software is compatible with the most
popular FPGA design entry and verification tools from
EDA vendors, such as Mentor Graphics, Synplicity,
Synopsys, and Cadence Design Systems. The Designer
software is available for both the Windows and UNIX
operating systems.
Programming
Programming support is provided through Actel Silicon
Sculptor 3, a single-site programmer driven via a
PC-based GUI. Factory programming is available for high-
volume production needs.
Low-Cost Prototyping Solutions
Since the enhanced radiation characteristics of radiation-
tolerant devices are not required during the prototyping
phase of the design, Actel has developed two prototyping
options for RTAX-S/SL. For early design development and
functional verification, Actel offers the commercial
Axcelerator devices while for final flight design verification
in hardware, Actel offers the RTAX-S PROTO device that has
the same form, fit, and function as the flight silicon.
Prototyping with Axcelerator Units
The prototyping solution using the commercial Axcelerator
devices consists of two parts:
A well-documented design flow that allows the
customer to target an RTAX-S/SL design to the
equivalent commercial Axcelerator device
A set of Actel Extender circuit boards that map the
commercial device package to the appropriate
RTAX-S package footprint
This methodology provides the user with a cost-effective
solution while maintaining the short time-to-market
associated with Actel FPGAs.
Prototyping with RTAX-S PROTO Units
The RTAX-S PROTO units offer a prototyping solution
that can be used for final timing verification of the flight
design. The RTAX-S PROTO prototype units have the
same timing attributes as the RTAX-S/SL flight units.
Prototype units are offered in non-hermetic ceramic
packages. The prototype units include "PROTO" in their
part number, and “PROTO” is marked on devices to
indicate that they are not intended for space flight. They
RTAX-S/SL RadTolerant FPGAs
1-8 v5.4
also are not intended for applications, which require the
quality of space-flight units, such as qualification of
space-flight hardware. RT-PROTO units offer no
guarantee of hermeticity, and no MIL-STD-883B
processing. At a minimum, users should plan on using
class B level devices for all qualification activities.
The RT-PROTO units are electrically tested in a manner to
guarantee their performance over the full military
temperature range. The RT-PROTO units will also be
offered in -1 or standard speed grades, so as to enable
customers to validate the timing attributes of their
space designs using actual flight silicon.
Prototyping with ProASIC3E
Reprogrammable Units
Using Actel’s ProASIC3E prototyping solution offers the
unique advantage of reprogrammability, resulting in cost
savings while providing faster functional verification of
designs in prototype stage. This methodology employs a
footprint compatible adaptor board and an EDIF netlist
and pinout convertor for easy migration.
Please see the application note Prototyping for RTAX-S
and RTAX-SL Devices for more details.
In-System Diagnostic and Debug
Capabilities
The RTAX-S/SL family of FPGAs includes internal probe
circuitry, allowing the designer to dynamically observe
and analyze any signal inside the FPGA without disturbing
normal device operation. Up to four individual signals can
be brought out to dedicated probe pins (PRA/B/C/D) on
the device. The probe circuitry is accessed and controlled
via Silicon Explorer II (Figure 1-9), the Actel integrated
verification and logic analysis tool that attaches to the
serial port of a PC and communicates with the FPGA via
the JTAG port (See "Silicon Explorer II Probe Interface"
on page 2-102).
In addition, Actel offers a Configurable Logic Analyzer
Module (CLAM), which allows a real-time verification
and debug capability to be embedded into IP
programmed into Actel FPGAs. CLAM allows signals from
the inside of the IP core to be routed to the exterior of
the chip for verification purposes.
Summary
The Actel RTAX-S/SL family of FPGAs extends the
successful RTSX-SU family of radiation-tolerant FPGAs,
adding embedded RAM, FIFOs, and high-speed I/Os. With
the support of a suite of robust software tools, design
engineers can incorporate high gate counts and fixed
pins into an RTAX-S/SL design yet still achieve high
performance and efficient device utilization in an SEU-
hardened device.
Note: *Refer to the "Pin Descriptions" on page 2-11 for more information.
Figure 1-9 Probe Setup
Serial
Connection
Additional 14 Channels
(Logic Analyzer)
RTAX-S/SL FPGAs
Silicon Explorer II
16-Pin
Connection
22-Pin
Connection
CH3/PRC*
CH4/PRD*
TDI*
TCK*
TMS*
PRA*
PRB*
TDO*
RTAX-S/SL RadTolerant FPGAs
v5.4 1-9
Related Documents
Application Notes
Simultaneous Switching Noise and Signal Integrity
http://www.actel.com/documents/SSN_AN.pdf
Differences Between RTAX-S/SL and Axcelerator
http://www.actel.com/documents/RTAXS_AX_Features_AN.pdf
Using EDAC RAM for RadTolerant RTAX-S/SL FPGAs and Axcelerator FPGAs
http://www.actel.com/documents/EDAC_AN.pdf
Prototyping for RTAX-S and RTAX-SL Devices
http://www.actel.com/documents/PrototypingRTAXS_AN.pdf
Implementation of Security in Actel Antifuse FPGAs
http://www.actel.com/documents/Antifuse_Security_AN.pdf
Actel CQFP to FBGA Adapter Socket Instructions
http://www.actel.com/documents/CCGA_FBGA_AN.pdf
Actel CCGA to FBGA Adapter Socket Instructions
http://www.actel.com/documents/CQ352-FPGA_Adapter_AN.pdf
IEEE Standard 1149.1 (JTAG) in the Axcelerator Family
http://www.actel.com/documents/AX_JTAG_AN.pdf
User’s Guides and Manuals
Antifuse Macro Library Guide
http://www.actel.com/documents/libguide_UG.pdf
SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder User’s Guide
http://www.actel.com/documents/smarttime_ug.pdf
Silicon Sculptor User’s Guide
http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf
Silicon Explorer II User’s Guide
http://www.actel.com/documents/Silexpl_UG.pdf
White Papers
Design Security in Nonvolatile Flash and Antifuse FPGAs
http://www.actel.com/documents/DesignSecurity_WP.pdf
Understanding Actel Antifuse Device Security
http://www.actel.com/documents/AntifuseSecurityWP.pdf
RTAX-S/SL Testing and Reliability Update
http://www.actel.com/documents/RTAXS_Rel_Test_WP.pdf
Miscellaneous
Libero IDE flow diagram
http://www.actel.com/products/software/libero/#flow
RTAX-S/SL RadTolerant FPGAs
v5.4 2-1
Detailed Specifications
5 V Tolerance
3.3 V PCI and 3.3 V LVTTL (with clamp diode enabled) I/O
standards directly allow 5 V tolerance. For example, the
3.3V PCI I/O standard provides an internal clamp diode
between the input pad and the VCCI pad so that the
voltage at the input pin is clamped below the absolute
maximum input voltage of 4.1 V (Table 2-2 on page 2-2).
An example of the input pad voltage level is shown in
EQ 2-1:
Vinput = VCCI + Vdiode = 3.3 V + 0.7 V = 4.0 V
EQ 2-1
The internal clamp diode is only enabled while the
device is powered on, so the voltage at the input will not
be clamped if the VCCI is powered off. An external series
resistor (~100 Ω) is required between the input pin and
the 5 V signal source to limit the current to less than 20
mA (Figure 2-1). The 100 Ω resistor was chosen to meet
the input Tr/Tf requirement (Table 2-20 on page 2-22).
5 V tolerance is not allowable for VCCI greater than 3.3 V
or for input signals greater than 5.0 V.
Table 2-1 I/O Features Comparison
I/O Assignment Clamp Diode
Hot Insertion /
Cold Sparing 5V Tolerance Input Buffer Output Buffer
3.3 V LVTTL Yes1No Yes1 Enabled/Disabled
3.3 V PCI Yes No Yes2Enabled/Disabled
LVCMOS2.5 V No Yes No Enabled/Disabled
LVCMOS1.8 V No Yes No Enabled/Disabled
LVCMOS1.5 V (JESD8-11) No Yes No Enabled/Disabled
Voltage-Referenced Input Buffer No Yes No Enabled/Disabled
Differential, LVDS/LVPECL, Input No Yes No Enabled Disabled3
Differential, LVDS/LVPECL, Output No Yes No Disabled Enabled4
Notes:
1. Default setting for the clamp diode is set to be PCI. The LVTTL clamp diode is not enabled by default. To allow 5 V tolerance, the
LVTTL clamp diode needs to be enabled using settings in Designer. Hot-insertion and cold-sparing are not supported when the
clamp diode is enabled.
2. Can be implemented with an external resistor.
3. The OE input of the output buffer is automatically deasserted by Designer.
4. The OE input of the output buffer is automatically asserted by Designer.
Figure 2-1 Use of an External Resistor for 5 V Tolerance
Rext
.
Non-Actel Part Actel FPGA
5 V 3.3 V 3.3 V
PCI
clamp
diode
PCI
clamp
diode
RTAX-S/SL RadTolerant FPGAs
2-2 v5.4
Operating Conditions
Absolute Maximum Conditions
Stresses beyond those listed in Table 2-2 may cause permanent damage to the device. Exposure to Absolute Maximum
rated conditions for extended periods may affect device reliability. Devices should not be operated outside the
recommended operating conditions in Table 2-3.
Overshoot/Undershoot Limits
For AC signals, the input signal may undershoot during
transitions to –1.0 V for no longer than 10% of the
period or 11 ns (whichever is smaller). Current during the
transition must not exceed 95 mA.
For AC signals, the input signal may overshoot during
transitions to VCCI + 1.0 V for no longer than 10% of the
period or 11 ns (whichever is smaller). Current during the
transition must not exceed 95 mA.
Note: The above specification does not apply to the PCI
standard. The RTAX-S/SL PCI I/Os are compliant to the PCI
standard including the PCI overshoot/undershoot
specifications.
Table 2-2 Absolute Maximum Ratings
Symbol Parameter Limits Units
TJJunction Temperature –55 to +135 °C
VCCA AC Core Supply Voltage1–0.3 to 1.8 V
VCCA DC Core Supply Voltage –0.3 to 1.7 V
VCCI DC I/O Supply Voltage –0.3 to 3.75 V
VREF DC I/O Reference Voltage –0.3 to 3.75 V
VIInput Voltage –0.5 to 4.1 V
VOOutput Voltage –0.5 to 3.75 V
TSTG Storage Temperature –60 to +150 °C
VCCDA2Supply Voltage for Differential I/Os –0.3 to 3.75 V
VPUMP Supply Voltage for External Pump –0.3 to 3.75 V
Notes:
1. The AC transient VCCA limit is for radiation-induced transients less than 10 µs duration and not intended for repetitive use. Core voltage
spikes from a single event transient will not negatively affect the reliability of the device if, for this non-repetitive event, the transient
does not exceed 1.8 V at any time and the total time that the transient exceeds 1.575 V does not exceed 10 µs in duration.
2. VCCDA must be greater than or equal to the highest VCCI voltage
Table 2-3 RTAX-S/SL Recommended Operating Conditions
Parameter Range Military Units
Junction Temperature (TJ) –55 to +125 °C
Ambient Temperature (TA)1 –55 to +125 °C
1.5 V Core Supply Voltage 1.425 to 1.575 V
1.5 V I/O Supply Voltage 1.425 to 1.575 V
1.8 V I/O Supply Voltage 1.71 to 1.89 V
2.5 V I/O Supply Voltage 2.375 to 2.625 V
3.3 V I/O Supply Voltage 3.0 to 3.6 V
2.5 V VCCDA I/O Supply Voltage (no differential I/O used) 2.375 to 2.625 V
3.3 V VCCDA I/O Supply Voltage (differential or voltage-referenced I/O used)23.0 to 3.6 V
3.3 V VPUMP Supply Voltage 3.0 to 3.6 V
Notes:
1. Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.
2. Please see "VCCDA Supply Voltage" on page 2-11 more detail.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-3
Power-Up/Down Sequence
VCCA, VCCI, and VCCDA can be powered up or powered down in any sequence. During power-up, all RTAX-S/SL I/Os are
tristated until they reach the state defined by the design.
Calculating Power Dissipation
Table 2-4 RTAX-S Standby Current
Device Temperature ICCA (mA) ICCI (mA) ICCDA (mA) ICCDIFFA (mA) IIH, IIL, IOZ A)1
RTAX4000S
Typical 25ºC 75 15 15 3.13 1
125ºC 600 60 20 3.7 5
RTAX2000S
Typical 25ºC 50 10 7 3.13 1
125ºC 500 35 10 3.7 5
RTAX1000S
Typical 25ºC 30 10 7 3.13 1
125ºC 450 35 10 3.7 5
RTAX250S
Typical 25ºC 20 5 5 3.13 1
125ºC 250 20 10 3.7 5
Notes:
1. IIH, IIL, or IOZ values are measured with inputs at the same level as VCCI for IIH and GND for IIL and IOZ.
2. Above values are maximum.
3. Values in the ICCDIFFA column refer to the current (in addition to ICCDA) flowing per pair through differential amplifiers only when
using differential pairs or voltage references pins.
Table 2-5 RTAX-SL Standby Current
Device Temperature ICCA (mA) ICCI (mA) ICCDA (mA) ICCDIFFA (mA) IIH, IIL, IOZ A)1
RTAX4000SL
Typical 25ºC 40 15 15 3.13 1
125ºC 300 60 20 3.7 5
RTAX2000SL
Typical 25ºC 30 10 7 3.13 1
125ºC 150 35 10 3.7 5
RTAX1000SL
Typical 25ºC 20 10 7 3.13 1
125ºC 90 35 10 3.7 5
RTAX250SL
Typical 25ºC 15 5 5 3.13 1
125ºC 60 20 10 3.7 5
Notes:
1. IIH, IIL, or IOZ values are measured with inputs at the same level as VCCI for IIH and GND for IIL and IOZ.
2. Above values are maximum.
3. Values in the ICCDIFFA column refer to the current (in addition to ICCDA) flowing per pair through differential amplifiers only when
using differential pairs or voltage references pins.
RTAX-S/SL RadTolerant FPGAs
2-4 v5.4
Table 2-6 Default Cload / VCCI
C
load (pF) VCCI (V) Pload (µW/MHz) P10 (µW/MHz) PI/O (µW/MHZ)*
Single-Ended without VREF
LVCMOS – 15 (JESD8-11) 35 1.5 78.8 49.5 128.3
LVCMOS –18 35 1.8 113.4 73.4 186.8
LVCMOS 25 35 2.5 218.8 148.0 366.8
LVTTL 8 mA Low Slew 35 3.3 381.2 118.7 499.9
LVTTL 12 mA Low Slew 35 3.3 381.2 138.6 519.8
LVTTL 16 mA Low Slew 35 3.3 381.2 150.8 532.0
LVTTL 24 mA Low Slew 35 3.3 381.2 169.2 550.4
LVTTL 8 mA High Slew 35 3.3 381.2 130.3 511.5
LVTTL 12 mA High Slew 35 3.3 381.2 165.9 547.1
LVTTL 16 mA High Slew 35 3.3 381.2 225.1 606.3
LVTTL 24 mA High Slew 35 3.3 381.2 267.5 648.7
PCI 10 3.3 108.9 218.5 327.4
PCI-X 10 3.3 108.9 162.9 271.8
Single-Ended with VREF
SSTL2-I 30 2.5 171.2 171.2
SSTL2-II 30 2.5 147.8 147.8
SSTL3-I 30 3.3 327.2 327.2
SSTL3-II 30 3.3 288.4 288.4
HSTL-I 20 1.5 40.9 40.9
GTLP – 33 10 3.3 68.5 68.5
Differential
LVPECL – 33 N/A 3.3 260.6 260.6
LVDS – 25 N/A 2.5 145.8 145.8
Note: *PI/O = P10 + Cload * VCCI2
Table 2-7 Different Components Contributing to the Total Power Consumption in RTAX-S/SL Devices
Symbol Power Component
Device-Specific Value (in µW/MHz)
RTAX250S/SL RTAX1000S/SL RTAX2000S/SL RTAX4000S/SL
P1 Core tile HCLK power component 85.8 227.5 378.0 700
P2 R-cell power component 0.6 0.6 0.6 0.6
P3 HCLK signal power dissipation 7.7 23.2 31.0 50
P4 Core tile RCLK power component 1.8 227.5 378.0 700
P5 R-cell power component 0.9 0.9 0.9 0.9
P6 RCLK signal power dissipation 8.6 25.7 34.3 55
P7 Power dissipation due to the switching activity on
the R-cell
1.6 1.6 1.6 1.6
P8 Power dissipation due to the switching activity on
the C-cell
1.4 1.4 1.4 1.4
P9 Power component associated with input voltage 10.0 10.0 10.0 10
P10 Power component associated with output voltage See Ta ble 2- 4 and Table 2-5 on page 2-3 for per pin contribution.
P11 Power component associated with the read
operation in the RAM block
25.0 25.0 25.0 25.0
P12 Power component associated with the write
operation in the RAM block
30.0 30.0 30.0 30.0
RTAX-S/SL RadTolerant FPGAs
v5.4 2-5
Ptotal = Pdc + Pac
PHCLK= (P1 + P2 * s + P3 * sqrt[s]) * Fs
PCLK = (P4 + P5 * s + P6 * sqrt[s]) * Fs
PR-cells = P7 * ms * Fs
PC-cells = P8 * mc * Fs
Pinputs = P9 * pi * Fpi
Poutputs = (P10 + Cload * VCCI2) * po * Fpo
Pmemory = P11 * Nblock * FRCLK + P12 * Nblock * FWCLK
Pdc =I
CCA * VCCA + ICCI * VCCI + ICCDA * VCCDA + ICCDIFFA * VCCDA * Nb_da_pairs
Pac =P
HCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory
Nb_da_pairs = number of differential pairs or voltage referenced pins used
s = number of R-cells clocked by this clock
Fs = clock frequency
s = number of R-cells clocked by this clock
Fs = clock frequency
ms = number of R-cells switching at each Fs cycle
Fs = clock frequency
mc = number of C-cells switching at each Fs cycle
Fs = clock frequency
pi = number of inputs
Fpi = average input frequency
Cload = output load (technology dependent)
VCCI = output voltage (technology dependent)
po = number of outputs
Fpo = average output frequency
Nblock = number of RAM/FIFO blocks (1 block = 4k)
FRCLK = read-clock frequency of the memory
FWCLK = write-clock frequency of the memory
RTAX-S/SL RadTolerant FPGAs
2-6 v5.4
Power Estimation Example
This example employs an RTAX1000S/SL shift-register design with 1,080 R-cells, one C-cell, one reset input, and one
output. This design also uses a single clock (HCLK) at 100 MHz and is operated under room temperature.
ms = 1,080 (in a shift register 100% of R-cells are toggling at each clock cycle)
Fs = 100 MHz
s = 1,080
=> PHCLK = (P1 + P2 * s + P3 * sqrt[s]) * Fs = 163.8 mW
and Fs = 100 MHz
=> PR-cells = P7 * ms * Fs = 172.8 mW
mc = 1 (1 C-cell in this design)
and Fs = 100 MHz
=> PC-cells = P8 * mc * Fs = 0.14 mW
Fpi ~ 0 MHz
and pi= 1 (1 reset input => this is why Fpi = 0)
=> Pinputs = P9 * pi * Fpi = 0 mW
Fpo = 50 MHz
Cload = 35 pF
VCCI= 3.3 V
and po = 1
=> Poutputs = (P10 + Cload * VCCI2) * po * Fpo = 23.6 mW
No RAM/FIFO in this shift-register
=> Pmemory = 0 mW
Pac =P
HCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory = 360.4 mW
Pdc =I
CCA * VCCA + ICCI * VCCI + ICCDA * VCCDA + ICCDIFFA * VCCDA * Nb_da_pairs = 101.1 mW
Ptotal =P
dc + Pac = 360.4 mW + 101.1 mW = 461.5 mW
RTAX-S/SL RadTolerant FPGAs
v5.4 2-7
Thermal Characteristics
The temperature variable in Actel Designer software
refers to the junction temperature, not the ambient, case
or board temperature. This is an important distinction
because dynamic and static power consumption causes
the chip's junction temperature to be higher than the
ambient, case or board temperature. EQ 2-2, EQ 2-3, and
EQ 2-4 show the relationship between thermal
resistance, temperature, and power.
EQ 2-2
EQ 2-3
EQ 2-4
Where:
θja TjTa
P
----------------
=
θjc TjTc
P
----------------
=
θjb TjTb
P
----------------
=
θja =Thermal resistance from junction to air
θjc =Thermal resistance from junction to case
θjb =Thermal resistance from junction to board
Tj= Junction Temperature
Ta= Ambient Temperature
Tc= Case Temperature
Tb= Board Temperature
P = Power
Table 2-8 Package Thermal Characteristics
Product Package Type θja θjc θjb Units
RTAX250S/SL CQ208 19.9 0.8 N/A C/W
CQ352 16.8 0.7 N/A C/W
CG624 13.7 TBD TBD C/W
RTAX1000S/SL CQ352 13.3 0.4 N/A C/W
CG624 10.8 5.6 4.5 C/W
RTAX2000S/SL CQ256 15.8 0.25 N/A C/W
CQ352 12.3 0.2 N/A C/W
CG624 9.7 4.3 3.5 C/W
CG1152 9.0 2.0 2.6 C/W
RTAX4000S/SL CQ352 12.3 0.2 N/A C/W
CG1272 8.0 2.0 2.2 C/W
Notes:
1. θja are estimated at still air.
2. θjc for CQFP refers to the thermal resistance between the junction and the bottom surface of the package.
3. θjc for CG packages refers to the thermal resistance between the junction and the top surface of the package.
4. The θjb values in the table are simulated under conduction heat transfer only.
RTAX-S/SL RadTolerant FPGAs
2-8 v5.4
Calculation for Power
Sample Case 1: Convection 0
A sample calculation of the power dissipation allowed for an RTAX1000S/SL-CG624 in still air is shown below. Assume
that the maximum junction temperature is maintained at 110°C and the ambient temperature is 50°C. The maximum
power allowed can be estimated using the equation below.
Tj= 110°C
Ta= 50°C
P = 5.55 W
Sample Case 2: Convection = 0
A sample calculation of the power dissipation when there is no air in the environment is shown below. An RTAX1000S/
SL-CQ352 is attached to the board with a thermal adhesive between the package body. The thermal resistance of the
paste is 0.58°C/W. Since air is not present in the environment, most of the heat will be flowing through the bottom of
the package, through the thermal paste, and to the board. Neglecting the heat flowing through the package leads,
the maximum power allowed can be estimated as shown in the equations below.
Tj= 110°C
θcb = Thermal resistance of the thermal paste from case to board (i.e., = 0.58°C/W)
Tb= 70°C
P = 40.8 W
The thermal resistances, shown in Table 2-8 on page 2-7, are based on the simulations done with test conditions and test
boards configurations specified in JEDEC specification JESD51.
=
Figure 2-2 Heat Flow when Air is Present
θja 10.8°C/W 110°C 50°C
P
-----------------------------------
==
Solder Columns
Air
PCB
θjb (Total)
110°C 70°C
P
-----------------------------------
=
θjb (Total) θjc θcb
+=
θjc θcb
+110°C 70°C
P
-----------------------------------
=
0.4°C/W 0.58°C/W+110°C 70°C
P
-----------------------------------
=
Figure 2-3 Heat Flow in a Vacuum
Thermal Adhesive
PCB
RTAX-S/SL RadTolerant FPGAs
v5.4 2-9
Timing Characteristics
RTAX-S/SL devices are manufactured in a CMOS process, therefore, device performance varies according to
temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating
voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-9 should
be applied to all timing data contained within this datasheet.
All timing numbers listed in this datasheet represent sample timing characteristics of RTAX-S/SL devices. Actual timing
delay values are design-specific and can be derived from the Timer tool in Actel’s Designer software after place-and-
route.
Table 2-9 Temperature and Voltage Timing Derating Factors
(Normalized to Worst-Case Military, TJ = 125°C, VCCA = 1.4 V)
VCCA
Junction Temperature
–55°C –40°C 0°C 25°C 70°C 85°C 125°C
1.4V 0.74 0.75 0.80 0.84 0.89 0.92 1.00
1.425V 0.72 0.74 0.79 0.82 0.88 0.91 0.98
1.5V 0.69 0.71 0.75 0.78 0.84 0.86 0.94
1.575V 0.66 0.68 0.72 0.75 0.80 0.83 0.90
1.6V 0.65 0.67 0.71 0.74 0.79 0.82 0.89
Notes:
1. The user can set the junction temperature in Designer software to be any integer value in the range of –55°C to 125°C.
2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.
RTAX-S/SL RadTolerant FPGAs
2-10 v5.4
Timing Model
Hardwired Clock1Routed Clock1
Note: Timing data is for the RTAX2000S/SL, –1 speed.
Figure 2-4 Timing Model
Combinatorial
Cell
Combinatorial
Cell
Combinatorial
Cell
Combinatorial
Cell
DQ DQ DQ
Y
FCO
+
+
Routed Clock
Register Cell
LVPECL
LVPECL
LVDS
Register Cell
Hardwired or Routed Clock
Routed or Hardwired
I/O Module
I/O Module
(Registered)I/O Module
(Nonregistered)
I/O Module
(Non- registered)
I/O Module
(Nonregistered)
Y
Buffer
Module
Buffer
Module
Buffer
Module
Carry Chain
I/O
I/O
LVTTL
Output Drive Strength = 4 (24mA)
High Slew Rate
tHCKH = 3.65 ns
FMAX (external) = 350 MHz
FMAX (internal) = 700 MHz
tSUD = 0.31 ns
tICLKQ = 0.91 ns
tDP = 1.83 ns
tRD2 = 0.84 ns
tDP = 2.00 ns
tHCKL = 3.48 ns
tRCKL = 3.55 ns
tRCO = 0.96 ns
tSUD = 0.21 ns
tRD1 = 0.66 ns
tPD = 0.95 ns
tRCKL = 3.54 ns
FMAX (external) = 350 MHz
FMAX (internal) = 700 MHz
tRCO = 0.96 ns
tSUD = 0.21 ns
tBPFD = 0.21ns
tPY = 1.26 ns
GTL + 3.3V
tOCLKQ = 0.91 ns
tSUD = 0.31 ns
tBFPD = 0.17 ns tPD = 0.95 ns tBFPD = 0.17 ns
tPDC = 0.70 ns tCCY = 0.76 ns
tPY = 3.51 ns
tPY = 2.45 ns
tRD1 = 0.66 ns
tRD2 = 0.84 ns
tRD3 = 1.07 ns
tRCKH = 3.71 ns
tRCKL = 3.54 ns
LVTTL
tDP = 1.85 ns
LVTTL
tDP = 1.85 ns
LVTTL
tDP = 1.85 ns
External Setup
=(t
DP + tRD2 + tSUD) – tHCKH
= (1.85 + 0.84 + 0.31) – 3.65
= –0.61
Clock-to-Out (Pad-to-Pad)
=t
HCKH + tRCO + tRD1 + tPY
= 3.65 + 0.96 + 0.66 + 3.51
= 8.78 ns
1. Calculations are examples of how to calculate related parameters and do not necessary match the path represented in the
"Timing Model".
External Setup
=(t
DP + tRD2 + tSUD) – tRCKH
= (1.85 + 0.84 + 0.31) – 3.54
= –0.71 ns
Clock-to-Out (Pad-to-Pad)
=t
RCKH + tRCO + tRD1 + tPY
= 3.71 + 0.96 + 0.66 + 3.51
= 8.84 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-11
I/O Specifications
Pin Descriptions
Supply Pins
GND Ground
Low supply voltage.
VCCA Supply Voltage
Supply voltage for array (1.5 V).
VCCIBx Supply Voltage
Supply voltage for I/Os. Bx is the I/O Bank ID – 0 to 7. See
"User I/Os" on page 2-12 for more information. Unused
VCCIBX I/O banks may be tied to GND or can be tied to
other used VCCIBX I/O banks within the same device.
VCCDA Supply Voltage
Supply voltage for the I/O differential amplifier and JTAG
and probe interfaces. VCCDA is either 3.3 V or 2.5 V and
must use 3.3 V when voltage-referenced and/or
differential is used. Additionally, VCCDA must be greater
than or equal to any VCCI voltages (i.e. VCCDA VCCIBx).
VPUMP Supply Voltage (External Pump)
In low-power mode, VPUMP will be used to access an
external charge pump (if the user desires to bypass the
internal charge pump to further reduce power). The
device starts using the external charge pump when the
voltage level on VPUMP reaches 3.3 V.2 In normal device
operation, when using the internal charge pump, VPUMP
can be directly tied or through a 1K resistor to GND.
User-Defined Supply Pins
VREF Supply Voltage
Reference voltage for I/O banks. VREF pins are configured
by the user from regular I/O pins; VREF are not in fixed
locations. There can be one or more VREF pins in an I/O
bank.
Global Pins
HCLKA/B/C/D Dedicated (Hardwired)
Clocks A, B, C, and D
These pins are the clock input for sequential modules.
Input levels are compatible with all supported I/O
standards (there is a P/N pin pair for support of
differential I/O standards). This input is directly wired to
each R-cell and offers clock speeds independent of the
number of R-cells being driven. HCLK pins may be used
either as HCLK inputs or as user I/Os. If they are not being
used for either purpose, Actel recommends that they are
tied to ground.
CLKE/F/G/H Global Clocks E, F, G, and H
These pins are clock inputs for clock distribution
networks. Input levels are compatible with all supported
I/O standards (there is a P/N pin pair for support of
differential I/O standards). The clock input is buffered
prior to clocking the R-cells. CLK pins may be used either
as CLK inputs or as user I/Os. If they are not being used
for either purpose, Actel recommends that they are tied
to a known state.
2. When VPUMP = 3.3V, it shuts off the internal charge pump.
RTAX-S/SL RadTolerant FPGAs
2-12 v5.4
JTAG/Probe Pins
PRA/B/C/D3Probes A, B, C, and D
The dedicated probe pins are used to output data from
any user-defined design node within the device
(controlled with Silicon Explorer II). These independent
diagnostic pins can be used to allow real-time diagnostic
output of any signal path within the device. The pins’
probe capabilities can be permanently disabled to
protect programmed design confidentiality. Refer to
Table 2-102 on page 2-100 for recommendations on pin
status for flight boards.
TCK2 Test Clock
Test clock input for JTAG boundary-scan testing and
diagnostic probe (Silicon Explorer II).
TDI2Test Data Input
Serial input for JTAG boundary-scan testing and
diagnostic probe. TDI is equipped with an internal pull-
up resistor with approximately 10 kΩ resistance.
TDO2Test Data Output
Serial output for JTAG boundary-scan testing.
TMS Test Mode Select
The TMS pin controls the use of the IEEE 1149.1
boundary-scan pins (TCK, TDI, TDO, TRST). TMS is
equipped with an internal pull-up resistor with
approximately 10 kΩ resistance.
TRST Boundary Scan Reset Pin
The TRST pin functions as an active-low input to
asynchronously initialize or reset the boundary scan
circuit. The TRST pin is equipped with a programmable
pull-up resistor with approximately 10 kΩ resistance (i.e.
with or without the pull-up resistor). This pin must be
hardwired to ground for flight.
Special Functions
NC No Connection
This pin is not connected to circuitry within the device.
These pins can be driven to any voltage or can be left
floating with no effect on the operation of the device.
User I/Os4
Introduction
The RTAX-S/SL family features a flexible I/O structure,
supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V,
and 3.3 V) with its bank-selectable I/Os. Table 2-10 on
page 2-13 contains the I/O standards supported by the
RTAX-S/SL family.
Unused I/Os are configured as follows:
Output buffer is disabled (with tristated value of
Hi-Z)
Input buffer is disabled (with tristated value of Hi-Z)
No pull-up/pull-down is programmed
In Actel Designer Software, unused RTAX-S/SL I/Os are
configured as tristate with no pull-up resistors.
Each I/O provides programmable slew rates, drive
strengths, and weak pull-up and weak pull-down circuits.
All I/O standards are 3.3 V tolerant, and I/O standards,
except 3.3 V PCI, are capable of hot insertion and cold
sparing. 3.3 V PCI is also 5 V tolerant with the aid of an
external resistor (see "5 V Tolerance" on page 2-1).
Each I/O includes three registers: an input (InReg), an
output (OutReg), and an enable register (EnReg). By
design, all user flip-flops in the RTAX-S/SL FPGAs are
immune to SEUs including the following three registers
located in every I/O cell buffer: InReg, OutReg, and
EnReg.
I/Os are organized into banks, and there are eight banks per
device – two per side (
Figure 2-7 on page 2-21
). Each I/O
bank has a common V
CCI
, the supply voltage for its I/Os.
3. Actel recommends that you use a series termination resistor on every probe connector (TDI, TCK, TDO, PRA, PRB, PRC, and
PRD). The series termination is used to prevent data transmission corruption (i.e., due to reflection from the FPGA to the probe
connector) during probing and reading back the checksum. With an internal setup we have seen 70-ohm termination resistor
improved the signal transmission. Since the series termination depends on the setup, Actel recommends users to calculate the
termination resistor for their own setup. Below is a guideline on how to calculate the resistor value.
The resistor value should be chosen so that the sum of it and the probe signal’s driver impedance equals the effective trace
impedance.
Z0 = Rs + Zd
Z0 = trace impedance (silicon explorer’s breakout cable’s resistance + PCB trace impedance), Rs = series termination,
Zd = probe signal’s driver impedance.
The termination resistor should be placed as close as possible to the driver.
Among the probe signals, TDI, TCK, and TMS are driven by Silicon Explorer. A54SX16 is used in Silicon Explorer and hence the
driver impedances needs to be calculated from RTAX-S IBIS Models (Mixed Voltage Operation). PRA, PRB, PRC, PRD, and TDO
are driven by the FPGA and driver impedance can also be calculated from the IBIS Model.
Silicon explorer’s breakout cable’s resistance is usually close to 1 ohm.
4. Do not use an external resistor to pull the I/O above VCCI for a higher logic “1” voltage level. The desired higher logic “1”
voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above VCCI.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-13
For voltage-referenced I/Os, each bank also has a
common reference-voltage bus, VREF
. While VREF must
have a common voltage for an entire I/O bank, its
location is user-selectable. In other words, any user I/O in
the bank can be selected to be a VREF
.
The location of the VREF pin should be selected according
to the following rules:
Any pin that is assigned as a VREF can control a
maximum of eight user I/O pad locations in each
direction (16 total maximum) within the same I/O
bank.
I/O package locations listed as no-connects are
counted as part of the 16 maximum. In many
cases, this leads to fewer than eight user I/O
package pins in each direction being controlled by
a VREF pin.
Dedicated I/O pins (GND, VCCI...) are not counted
as part of the 16.
The user I/O pad immediately adjacent on either
side of the VREF pin may only be used as an input.
The exception is when there is a VCCI/GND pair
separating the VREF pin and the user I/O pad
location.
The differential amplifier supply voltage VCCDA should be
connected to 3.3 V. When neither voltage-referenced nor
differential I/Os are used, VCCDA may be connected to
2.5 V when VCCI <= 2.5 V in a given I/O bank; however, it
is still recommended to connect VCCDA to 3.3 V.
The user can gain access to the various I/O standards in
three ways:
Instantiate specific library macros that represent
the desired specific standard
Use generic I/O macros and then use Actel
Designer’s PinEditor to specify the desired I/O
standards. (Please note that this is not applicable
to differential standards.)
A combination of the first two methods
Please refer to the I/O Features in Axcelerator Family
Devices application note and the Antifuse Macro Library
Guide for more details.
Table 2-10 I/O Standards Supported by the RTAX-S/SL Family
I/O Standard
Input/Output Supply
Voltage (VCCI)
Input Reference Voltage
(VREF)
Board Termination Voltage
(VTT)
LVTTL 3.3 N/A N/A
LVCMOS 2.5 V 2.5 N/A N/A
LVCMOS 1.8 V 1.8 N/A N/A
LVCMOS 1.5 V (JDEC8-11) 1.5 N/A N/A
3.3 V PCI 3.3 N/A N/A
GTL+ 3.3 V 3.3 1.0 1.2
GTL+ 2.5 V*2.5 1.0 1.2
HSTL Class 1 1.5 0.75 0.75
SSTL3 Class 1 and II 3.3 1.5 1.5
SSTL2 Class1 and II 2.5 1.25 1.25
LVDS 2.5 N/A N/A
LVPECL 3.3 N/A N/A
Note: * 2.5 V GTL+ is not supported across the full military temperature range.
RTAX-S/SL RadTolerant FPGAs
2-14 v5.4
Simultaneous Switching Outputs (SSO)
Actel defines SSOs as any outputs that transition in phase
within a 1 ns window. The measurements made by Actel
are based on the following worst-case conditions:
1. The switching outputs are adjacent to the quiet
output on either side.
2. All unused I/O buffers are tristated so they do not
help either ground or VCC.
3. A worst-case package was used.
When multiple output drivers switch simultaneously,
they induce a voltage drop in the chip/package power
distribution. This simultaneous switching momentarily
raises the ground voltage within the device relative to
the system ground. This apparent shift in the ground
potential to a non-zero value is known as simultaneous
switching noise (SSN) or more commonly, ground
bounce.
SSN becomes more of an issue in high pin count
packages and when using high performance devices such
as the RTAX-S/SL family.
Please refer to the Simultaneous Switching Noise and
Signal Integrity application note for more information.
I/O Banks and Compatibility
Since each I/O bank has its own user-assigned input
reference voltage (VREF) and an input/output supply
voltage (VCCI), only I/Os with compatible standards can
be assigned to the same bank.
Table 2-11 shows the compatible I/O standards for a
common VREF (for voltage-referenced standards).
Similarly, Table 2-12 shows compatible standards for a
common VCCI.
Table 2-13 on page 2-15 summarizes the different
combinations of voltages and I/O standards that can be
used together in the same I/O bank. Note that two I/O
standards are compatible if:
Their VCCI values are identical
Their VREF standards are identical (if applicable)
For example, if LVTTL 3.3 V (VREF= 1.0V) is used, then the
other available (i.e. compatible) I/O standards in the
same bank are LVTTL 3.3 V PCI, GTL+, and LVPECL.
Also note that when multiple I/O standards are used
within a bank, the voltage tolerance will be limited to
the minimum tolerance of all I/O standards used in the
bank. For instance, when using LVCMOS2.5 (+/-8% V
CCI
tolerance) and LVDS (+/-5% VCCI tolerance) within an I/O
bank, the maximum voltage tolerance of the bank will
be +/-5% VCCI.
Table 2-11 Compatible I/O Standards for Different VREF
Values
VREF Compatible Standards
1.5 V SSTL 3 (Class I and II)
1.25 V SSTL 2 (Class I and II)
1.0 V GTL+ (2.5 V and 3.3 V Outputs)
0.75 V HSTL (Class I)
Table 2-12 Compatible I/O Standards for Different VCCI
Values
VCCI1Compatible Standards VREF
3.3 V LVTTL, PCI, LVPECL, GTL+ 3.3V 1.0
3.3 V SSTL 3 (Class I and II), LVTTL, PCI, LVPECL 1.5
2.5 V LVCMOS 2.5V, GTL+ 2.5V, LVDS21.0
2.5 V LVCMOS 2.5V, SSTL 2 (Classes I and II), LVDS21.25
1.8 V LVCMOS 1.8V N/A
1.5 V LVCMOS 1.5V, HSTL Class I 0.75
Notes:
1. VCCI is used for both inputs and outputs.
2. VCCI tolerance is ±5%.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-15
Table 2-13 Legal I/O Usage Matrix
I/O Standard
LVTTL 3.3 V
LVCMOS 2.5 V
LVCMOS1.8 V
LVCMOS1.5 V (JESD8-11)
3.3 V PCI
GTL + (3.3 V)
GTL + (2.5 V)
HSTL Class I (1.5 V)
SSTL2 Class I & II (2.5 V)
SSTL3 Class I & II (3.3 V)
LVDS (2.5 V ±5%)
LVPECL (3.3 V)
LVTTL 3. 3V (VREF=1.0V) –––✓✓ –––
LVTTL 3. 3V(VREF=1.5V) ––––––
LVCMOS 2.5 V (VREF=1.0V) – ––––––
LVCMOS 2.5 V (VREF=1.25V) – ––––––
LVCMOS1.8 V –––––
LVCMOS1.5 V (VREF=1.75 V) (JESD8-11) ––––––
3.3 V PCI (VREF=1.0V) –––✓✓ –––
3.3 V PCI (VREF=1.5V) ––––––
GTL+ (3.3 V) –––✓✓ –––
GTL+ (2.5 V) –––– –––
HSTL Class I ––––––
SSTL2 Class I & II ––––––
SSTL3 Class I & II ––––––
LVDS (VREF=1.0 V) ––––––
LVDS (VREF=1.25 V) ––––––
LVPECL (VREF=1.0 V) –––✓✓ –––
LVPECL (VREF=1.5 V) ––––––
Notes:
1. Note that GTL+2.5 V is not supported across the full military temperature range.
2. A "" indicates whether standards can be used within a bank at the same time.
Examples:
a) LVTTL can be used with 3.3 V PCI and GTL+ (3.3 V), when VREF = 1.0 V (GTL+ requirement).
b) LVTTL can be used with 3.3 V PCI and SSTL3 Class I and II, when VREF = 1.5 V (SSTL3 requirement).
c) LVDS VCCI = 2.5 V ±5%.
RTAX-S/SL RadTolerant FPGAs
2-16 v5.4
I/O Clusters
Each I/O cluster incorporates two I/O modules, four RX modules and two TX modules, and a buffer module. In turn,
each I/O module contains one Input Register (InReg), one Output Register (OutReg), and one Enable Register (EnReg)
(Figure 2-5).
Using an I/O Register
To access the I/O registers, registers must be instantiated
in the netlist and then connected to the I/Os. Usage of
each I/O register (register combining) is individually
controlled and can be selected/deselected using the
PinEditor tool in Actel's Designer software. I/O register
combining can also be controlled at the device level,
affecting all I/Os. Please note, the I/O register option is
deselected by default in any given design.5
In addition, Designer software provides a global option to
enable/disable the usage of registers in the I/Os. This option
is design specific. The setting for each individual I/O
overrides this global option. Furthermore, the Global Set
Fuse option in the Designer software, when checked,
causes all I/O registers to output logic HIGH at device
power-up.
Using the Weak Pull-Up and Pull-Down
Circuits
Each RTAX-S/SL I/O comes with a weak pull-up/down
circuit (on the order of 10 kΩ). I/O macros are provided
for combinations of pull up/down for LVTTL, LVCMOS
(2.5 V, 1.8 V, and 1.5 V) standards. These macros can be
instantiated if a keeper circuit for any input buffer is
required.
Figure 2-5 I/O Cluster Interface
EnReg
DIN YOUT
Y DCIN
OutREg
DIN YOUT
InReg
I/O CLUSTER
FPGA LOGIC CORE
OEP
UOP
UIP
Slew Rate
I/O
OEN
UON
UIN
Drive Strength
Slew Rate
Drive Strength
P PAD
N PAD
Routed Input Track
Routed Input Track
Output Track
Routed Input Track
Routed Input Track
Output Track Output Track
EnReg
DIN YOUT
Y DCIN
OutREg
DIN YOUT
InReg
I/O
VREF
VREF
BSR BSR
Routed Input Track
Routed Input Track
Output Track
Routed Input Track
Routed Input Track
5. Please note that register combining for multi fanout nets is not supported.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-17
Customizing the I/O
A five-bit programmable input delay element is
associated with each I/O. The value of this delay is
set on a bank-wide basis (Table 2-14). It is optional
for each input buffer within the bank (i.e. the user
can enable or disable the delay element for the I/
O). When the input buffer drives a register within
the I/O, the delay element is activated by default to
ensure a zero hold-time. The default setting for this
property can be set in Designer. When the input
buffer does not drive a register, the delay element
is deactivated to provide higher performance.
Again, this can be overridden by changing the
default setting for this property in Designer.
The slew-rate value for the LVTTL output buffer
can be programmed and can be set to either slow
or fast.
The drive strength value for LVTTL output buffers
can be programmed as well. There are four
different drive strength values – 8mA, 12mA,
16mA, or 24mA – that can be specified in
Designer.6
Using the Differential I/O Standards
Differential I/O macros should be instantiated in the
netlist. The settings for these I/O standards cannot be
changed inside Designer. Note that there are no tristated
or bidirectional I/O buffers for differential standards.
Using the Voltage-Referenced I/O Standards
Using these I/O standards is similar to that of single-
ended I/O standards. Their settings can be changed in
Designer.
Using DDR (Double Data Rate)
In Double Data Rate mode, new data is present on every
transition of the clock signal. Clock and data lines have
identical bandwidth and signal integrity requirements,
making it very efficient for implementing very high-
speed systems.
To implement a DDR, users must do the following:
1. Instantiate an input buffer (with the required I/O
standard).
2. Instantiate the DDR_REG macro (Figure 2-6).
3. Connect the output from the Input buffer to the
input of the DDR macro.
4. DDR supports all I/O standards.
5. The DDR macro in SmartGen can be used to
implement DDR.
6. Bit width and I/O standard can be chosen in
SmartGen.
Macros for Specific I/O Standards
There are different macro types for any I/O standard or
feature that determine the required VCCI and VREF
voltages for an I/O. The generic buffer macros require
the LVTTL standard with slow slew rate and 24 mA-drive
Table 2-14 Bank Wide Delay Values
–1 Std.
Bit Setting Delay (ns)
0 0.88 1.03
1 1.10 1.29
2 1.21 1.42
3 1.44 1.69
4 1.53 1.80
5 1.75 2.06
6 1.86 2.19
7 2.09 2.46
8 2.16 2.54
9 2.38 2.80
10 2.49 2.93
11 2.72 3.20
12 2.81 3.30
13 3.04 3.57
14 3.15 3.70
15 3.37 3.96
16 3.39 3.98
17 3.61 4.25
18 3.72 4.38
19 3.95 4.64
20 4.04 4.75
21 4.27 5.01
6. These values are minimum drive strengths.
22 4.38 5.14
23 4.60 5.41
24 4.67 5.49
25 4.90 5.76
26 5.01 5.89
27 5.23 6.15
28 5.32 6.26
29 5.55 6.52
30 5.66 6.65
31 5.88 6.92
Note: Data for RTAX2000S/SL is shown in the table above; it
was measured at VCCA = 1.425 and 125°C.
Table 2-14 Bank Wide Delay Values
–1 Std.
Bit Setting Delay (ns)
RTAX-S/SL RadTolerant FPGAs
2-18 v5.4
strength. LVTTL can support high slew rate but this
should only be used for critical signals.
Most of the macro symbols represent variations of the six
generic symbol types:
CLKBUF: Clock Buffer
HCLKBUF: Hardwired Clock Buffer
INBUF: Input Buffer
OUTBUF: Output Buffer
TRIBUFF: Tristate Buffer
BIBUF: Bidirectional Buffer
Other macros include the following:
Differential I/O standard macros: The LVDS and
LVPECL macros either have a pair of differential
inputs (e.g. INBUF_LVDS) or a pair of differential
outputs (e.g. OUTBUF_LVPECL).
Pull-up and pull-down variations of the INBUF,
BIBUF, and TRIBUFF macros. These are available
only with TTL and LVCMOS thresholds. They can
be used to model the behavior of the pull-up and
pull-down resistors available in the architecture.
Whenever an input pin is left unconnected, the
output pin will either go high or low rather than
unknown. This allows users to leave inputs
unconnected without having the negative effect
on simulation of propagating unknowns.
DDR_REG macro. It can be connected to any I/O
standard input buffers (i.e., INBUF) to implement a
double data rate register. Designer software will
map it to the I/O module in the same way it maps
the other registers to the I/O module.
Figure 2-6 DDR Register
DQR
QF
E
CLR
PRE
CLK
RTAX-S/SL RadTolerant FPGAs
v5.4 2-19
Table 2-15, Table 2-16, and Table 2-17 on page 2-20 list all the available macro names differentiated by I/O standard,
type, slew rate, and drive strength.
Table 2-15 Macros for Single-Ended I/O Standards
Standard VCCI Macro Names
LVTTL 3.3 V CLKBUF, HCLKBUF
INBUF,
OUTBUF,
OUTBUF_S_8, OUTBUF_S_12, OUTBUF_S_16, OUTBUF_S_24,
OUTBUF_F_8, OUTBUF_F_12, OUTBUF_F_16, OUTBUF_F_24,
TRIBUFF,
TRIBUFF_S_8, TRIBUFF_S_12, TRIBUFF_S_16, TRIBUFF_S_24,
TRIBUFF_F_8, TRIBUFF_F_12, TRIBUFF_F_16, TRIBUFF_F_24,
BIBUF,
BIBUF_S_8, BIBUF_S_12, BIBUF_S_16, BIBUF_S_24,
BIBUF_F_8, BIBUF_F_12, BIBUF_F_16, BIBUF_F_24,
3.3V PCI 3.3 V CLKBUF_PCI, HCLKBUF_PCI,
INBUF_PCI,
OUTBUF_PCI,
TRIBUFF_PCI,
BIBUF_PCI
LVCMOS25 2.5 V CLKBUF_LVCMOS25,
HCLKBUF_LVCMOS25,
INBUF_LVCMOS25,
OUTBUF_LVCMOS25,
TRIBUFF_LVCMOS25,
BIBUF_LVCMOS25
LVCMOS18 1.8 V CLKBUF_LVCMOS18,
HCLKBUF_LVCMOS18,
INBUF_LVCMOS18,
OUTBUF_LVCMOS18,
TRIBUFF_LVCMOS18,
BIBUF_LVCMOS18
LVCMOS15 (JESD8-11) 1.5 V CLKBUF_LVCMOS15,
HCLKBUF_LVCMOS15,
INBUF_LVCMOS15,
OUTBUF_LVCMOS15,
TRIBUFF_LVCMOS15,
BIBUF_LVCMOS15
RTAX-S/SL RadTolerant FPGAs
2-20 v5.4
Table 2-16 I/O Macros for Differential I/O Standards
Standard VCCI Macro Names
LVPECL 3.3 V CLKBUF_LVPECL, HCLKBUF_LVPECL,
INBUF_LVPECL, OUTBUF_LVPECL
LVDS 2.5 V CLKBUF_LVDS, HCLKBUF_LVDS,
INBUF_LVDS, OUTBUF_LVDS
Table 2-17 I/O Macros for Voltage-Referenced I/O Standards
Standard VCCI V
REF Macro Names
GTL+ 3.3 V 1.0 V CLKBUF_GTP33, HCLKBUF_GTP33, INBUF_GTP33, OUTBUF_GTP33, TRIBUFF_GTP33,
BIBUF_GTP33
GTL+ 2.5 V 1.0 V CLKBUF_GTP25, HCLKBUF_GTP25, INBUF_GTP25, OUTBUF_GTP25, TRIBUFF_GTP25,
BIBUF_GTP25
SSTL2 Class I 2.5 V 1.25 V CLKBUF_SSTL2_I, HCLKBUF_SSTL2_I, TRIBUFF_SSTL2_I, BIBUF_SSTL2_I, INBUF_SSTL2_I,
OUTBUF_SSTL2_I
SSTL2 Class II 2.5 V 1.25 V CLKBUF_SSTL2_II, HCLKBUF_SSTL2_II, TRIBUFF_SSTL2_II, BIBUF_SSTL2_II, INBUF_SSTL2_II,
OUTBUF_SSTL2_II
SSTL3 Class I 3.3 V 1.5 V CLKBUF_SSTL3_I, HCLKBUF_SSTL3_I, TRIBUFF_SSTL3_I, BIBUF_SSTL3_I, INBUF_SSTL3_I,
OUTBUF_SSTL3_I
SSTL3 Class II 3.3 V 1.5 V CLKBUF_SSTL3_II, HCLKBUF_SSTL3_II, TRIBUFF_SSTL3_II, BIBUF_SSTL3_II, INBUF_SSTL3_II,
OUTBUF_SSTL3_II
HSTL Class I 1.5 V 0.75 V CLKBUF_HSTL_I, BIBUF_HSTL_I, HCLKBUF_HSTL_I, INBUF_HSTL_I, OUTBUF_HSTL_I,
TRIBUFF_HSTL_I
RTAX-S/SL RadTolerant FPGAs
v5.4 2-21
User I/O Naming Conventions
Due to the complex and flexible nature of the RTAX-S/SL family’s user I/Os, a naming scheme is used to show the details
of the I/O. The naming scheme explains to which bank an I/O belongs, as well as the pairing and pin polarity for
differential I/Os (Figure 2-7).
Figure 2-7 I/O Bank and Dedicated Pin Layout
Figure 2-8 General Naming Schemes
PRC
PRD
PRB
PRA
TDO
TDI
TCK
TMS
TRST
Corner4 Corner3
Corner1
I/O BANK 3 I/O BANK 2
I/O BANK 0
I/O BANK 5
I/O BANK 1
I/O BANK 4
I/O BANK 7 I/O BANK 6
Corner2
RTAX-S/SLGND
V
CCDA
GND
V
CCDA
V
PUMP
GND
V
CCDA
GND
V
CCDA
GND
V
CCDA
GND
V
CCDA
GND
V
CCDA
GND
V
CCDA
GND
V
CCA
GND
V
CCA
GND
V
CCA
GND
V
CCA
GND
V
CCA
GND
V
CCA
GND
V
CCI
2
GND
V
CCI
1
GND GND
V
CCI
5
GND
V
CCI
4
GND
V
CCDA
GND
V
CCDA
GND
V
CCDA
GND
V
CCA
GND
V
CCA
GND
V
CCI
6
GND
V
CCI
7
GND
V
CCI
3
V
CCI
0
IOxxXBxFx
Fx refers to an
unimplemented feature
and can be ignored
Bank I/D 0 through 7,
clockwise from IOB NW
P - Positive Pin/ N- Negative Pin
Pair number in the
bank, starting at 00,
clockwise from IOB NW
IO12PB1F1 Is the positive pin of the thirteenth pair of the
first I/O bank (IOB NE). IO12PB1 combined
with IO12NB1 form a differential pair.
For those I/Os that can be employed
either as a user I/O or as a special
function, the following nomenclature
is used:
IOxxXBxFx/special_function_name
IOxxPB1Fx/CLKx This pin can be configured as a clock
input or as a user I/O
Examples:
RTAX-S/SL RadTolerant FPGAs
2-22 v5.4
I/O Standard Electrical Specifications
Table 2-18 Input Capacitance
Symbol Parameter Conditions Min. Max. Units
CIN Input Capacitance VIN = 0, f =1.0 MHz 10 pF
CINCLK Input Capacitance on Clock Pin VIN = 0, f =1.0 MHz 10 pF
Table 2-19 I/O Weak Pull-Up/Pull-Down Resistances1
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R(Pull up) (kΩ)2R(Pull down) (kΩ)3
I/O Configuration (VCCI) Min. Max. Min. Max.
3.3 V 35 65 30 60
2.5 V 50 75 40 85
1.8 V 80 140 70 130
1.5 V 100 210 90 180
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive
strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the
corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
Table 2-20 I/O Input Rise Time and Fall Time*
Input Buffer Input Rise/Fall Time (Min) Input Rise/Fall Time (Max)
LVTTL No Requirement 50 ns
LVCMOS 2.5 V No Requirement 50 ns
LVCMOS 1.8 V No Requirement 50 ns
LVCMOS 1.5 V No Requirement 50 ns
PCI No Requirement 50 ns
PCIX No Requirement 50 ns
GTL+ No Requirement 50 ns
HSTL No Requirement 50 ns
SSTL2 No Requirement 50 ns
HSTL3 No Requirement 50 ns
LVDS No Requirement 50 ns
LVPECL No Requirement 50 ns
Note: *Input Rise/Fall time applies to all inputs, including clock or data. Inputs have to ramp up/down linearly, in a monotonic way.
Glitches or a plateau may cause double-clocking. They must be avoided. For Output Rise/Fall time, refer to IBIS Models for
extraction.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-23
Figure 2-9 Input Buffer Delays
Figure 2-10 Output Buffer Delays
YIN INBUF
PAD
ln
Y
GND
Input High
0V
VCCA
tDP
tDP
Vtrip
Vtrip
50%50%
(Rising) (Falling)
ln
ln
Out
GND
50%50%
TRIBUF
En
En
Out
GND
50%
10%
50%
En
Out
GND
50%50%
90%
To AC test loads (shown below)
OUT Pad
V
TT
t
ENHZ
t
ENHZ
V
OH
V
trip
GND/V
TT
V
TT
V
OL
t
ENLZ
t
ENLZ
V
CCI
/V
TT
V
trip
V
trip
V
trip
V
OH
t
PY
t
PY
(t
DLH
)(t
DHL
)
V
CCA
V
CCA
V
CCA
V
OL
RTAX-S/SL RadTolerant FPGAs
2-24 v5.4
I/O Module Timing Characteristics
Figure 2-11 Timing Model
Figure 2-12 Input Register Timing Characteristics
OE
Out
IN
DQ
CLK
OutReg
EnReg
InReg
DQ
Q
Q
D
D
CLK
(Routed or
Hardwired)
E
D
Q
CLR
PRESET
CLK
t
SUE
t
HE
t
SUD
t
HD
t
ICLKQ
t
WASYN
t
HASYN
t
CLR
t
REASYN
t
CPWHL
t
CPWLH
t
PRESET
t
WASYN
t
HASYN
t
REASYN
RTAX-S/SL RadTolerant FPGAs
v5.4 2-25
Figure 2-13 Output Register Timing Characteristics
Figure 2-14 Output Enable Register Timing Characteristics
E
D
Q
CLR
PRESET
CLK
tSUE tHE
tSUD tHD
tOCLKQ
tWASYN
tHASYN
tCLR
tREASYN
tCPWHL tCPWLH
tPRESET
tWASYN
tHASYN tREASYN
E
D
Q
CLR
PRESET
CLK
tSUE tHE
tSUD tHD
tOCLKQ
tWASYN
tHASYN
tCLR
tREASYN
tCPWHL tCPWLH
tPRESET
tWASYN
tHASYN tREASYN
RTAX-S/SL RadTolerant FPGAs
2-26 v5.4
3.3 V LVTTL
Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL
input buffer and push-pull output buffer.
AC Loadings
Table 2-21 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 0.8 2.0 3.6 0.4* 2.4 24 –24
Note: For RTAX250S/SL-CQ352 devices only, VOL limits are 500 mV across all operating temperatures.
Figure 2-15 AC Test Loads
Table 2-22 AC Waveforms, Measuring Points, and Capacitive Load
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
0 3.0 1.40 N/A 35
* Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1 k
for t
pd
RTAX-S/SL RadTolerant FPGAs
v5.4 2-27
Timing Characteristics
Table 2-23 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
LVTTL I/O Module Drive Strength = 1 (8 mA) / Low Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 15.82 18.60 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 16.64 19.56 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 15.56 18.29 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 1.63 1.64 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 1.97 1.97 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVTTL I/O Module Drive Strength = 2 (12 mA) / Low Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 13.26 15.58 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 13.56 15.94 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 13.28 15.61 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 1.81 1.82 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 2.24 2.24 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
RTAX-S/SL RadTolerant FPGAs
2-28 v5.4
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVTTL I/O Module Drive Strength = 3 (16 mA) / Low Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 12.04 14.16 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 12.46 14.65 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 12.05 14.17 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 1.95 1.96 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 2.52 2.53 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVTTL I/O Module Drive Strength = 4 (24 mA) / Low Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 11.41 13.41 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 11.58 13.61 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 11.43 13.43 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 2.01 2.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 2.59 2.60 ns
Table 2-23 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-29
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVTTL I/O Module Drive Strength = 1 (8 mA) / High Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 4.78 5.62 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 5.06 5.95 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 4.61 5.42 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 1.98 1.99 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 2.03 2.03 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
Table 2-23 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-30 v5.4
LVTTL I/O Module Drive Strength = 2 (12 mA) / High Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 3.87 4.55 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 4.08 4.79 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 3.34 3.93 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 1.98 1.99 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 2.31 2.31 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVTTL I/O Module Drive Strength = 3 (16 mA) / High Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 3.66 4.31 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 2.47 2.48 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 3.03 3.57 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 2.00 2.01 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.07 4.79 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
Table 2-23 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-31
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVTTL I/O Module Drive Strength = 4 (24 mA) / High Slew Rate
tDP Input buffer 1.85 2.17 ns
tPY Output buffer 3.51 4.12 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 2.34 2.35 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 1.91 1.92 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 2.96 3.48 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.17 4.90 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
Table 2-23 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-32 v5.4
2.5 V LVCMOS
Low-Voltage Complementary Metal-Oxide Semiconductor for 2.5 V is an extension of the LVCMOS standard (JESD8-5)
used for general-purpose 2.5 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.
AC Loadings
Table 2-24 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 0.7 1.7 3.6 0.4 2.0 12 –12
Figure 2-16 AC Test Loads
Table 2-25 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
02.5 1.25 N/A 35
Note: *Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1 k
for t
pd
RTAX-S/SL RadTolerant FPGAs
v5.4 2-33
Timing Characteristics
Table 2-26 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
LVCMOS25 I/O Module Drive Strength = 1 (6 mA) / Low Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 21.66 25.46 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 22.81 26.81 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 20.47 24.07 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.53 4.53 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.92 4.92 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS25 I/O Module Drive Strength = 2 (12 mA) / Low Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 18.09 21.26 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 19.05 22.39 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 17.40 20.46 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.53 4.53 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.92 4.92 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
RTAX-S/SL RadTolerant FPGAs
2-34 v5.4
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS25 I/O Module Drive Strength = 3 (16 mA) / Low Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 16.62 19.53 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 17.50 20.57 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 15.84 18.62 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.53 4.53 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.92 4.92 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS25 I/O Module Drive Strength = 4 (24 mA) / Low Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 15.66 18.41 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 16.49 19.38 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 15.09 17.74 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.53 4.53 ns
Table 2-26 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-35
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.92 4.92 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS25 I/O Module Drive Strength = 1 (6 mA) / High Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 6.32 7.44 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 3.36 3.37 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 4.26 4.27 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 6.72 7.90 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 7.72 9.08 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
Table 2-26 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-36 v5.4
LVCMOS25 I/O Module Drive Strength = 2 (12 mA) / High Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 4.43 5.21 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 2.61 2.62 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 2.99 3.00 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 6.72 7.90 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 7.72 9.08 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS25 I/O Module Drive Strength = 3 (16 mA) / High Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 3.91 4.59 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 2.46 2.47 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 2.64 2.64 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 6.72 7.90 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 7.72 9.08 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
Table 2-26 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-37
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS25 I/O Module Drive Strength = 4 (24 mA) / High Slew Rate
tDP Input buffer 2.13 2.51 ns
tPY Output buffer 3.59 4.22 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 2.34 2.35 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 2.43 2.43 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 6.72 7.90 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 7.72 9.08 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
Table 2-26 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-38 v5.4
1.8 V LVCMOS
Low-Voltage Complementary Metal-Oxide Semiconductor for 1.8 V is an extension of the LVCMOS standard (JESD8-5)
used for general-purpose 1.8 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.
AC Loadings
Table 2-27 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 0.2VCCI 0.7VCCI 2.1 0.2 VCCI-0.2 8mA –8mA
Figure 2-17 AC Test Loads
Table 2-28 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
0 1.8 0.5VCCI N/A 35
Note: *Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1 k
for t
pd
RTAX-S/SL RadTolerant FPGAs
v5.4 2-39
Timing Characteristics
Table 2-29 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.7 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
LVCMOS18 I/O Module Drive Strength = 2 (2 mA) / Low Slew Rate
tDP Input buffer 3.57 4.19 ns
tPY Output buffer 33.79 39.72 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 35.58 41.83 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 26.65 31.33 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.74 4.75 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.02 5.02 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS18 I/O Module Drive Strength = 3 (6 mA) / Low Slew Rate
tDP Input buffer 3.57 4.19 ns
tPY Output buffer 31.06 36.51 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 32.70 38.44 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 24.32 28.59 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.74 4.75 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.02 5.02 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
RTAX-S/SL RadTolerant FPGAs
2-40 v5.4
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS18 I/O Module Drive Strength = 4 (8 mA) / Low Slew Rate
tDP Input buffer 3.57 4.19 ns
tPY Output buffer 29.73 34.95 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 31.31 36.80 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 23.23 27.31 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 4.74 4.75 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.02 5.02 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS18 I/O Module Drive Strength = 2 (2 mA) / High Slew Rate
tDP Input buffer 3.57 4.19 ns
tPY Output buffer 6.54 7.69 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 3.06 3.07 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 4.41 4.41 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 7.04 8.27 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 7.88 9.26 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
Table 2-29 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.7 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-41
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS18 I/O Module Drive Strength = 3 (6 mA) / High Slew Rate
tDP Input buffer 3.57 4.19 ns
tPY Output buffer 5.55 6.52 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 2.85 2.86 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 3.74 3.75 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 7.04 8.27 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 7.88 9.26 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
Table 2-29 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.7 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-42 v5.4
LVCMOS18 I/O Module Drive Strength = 4 (8 mA) / High Slew Rate
tDP Input buffer 4.97 5.85 ns
tPY Output buffer 2.65 2.66 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 3.35 3.36 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 7.04 8.27 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 7.88 9.26 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 0.91 1.07 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.31 0.37 ns
tSUD Data input setup 0.35 0.41 ns
tSUE Enable input setup 0.00 0.00 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.39 0.39 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.37 0.37 ns
tWASYN Asynchronous pulse width 0.17 0.21 ns
tREASYN Asynchronous recovery time 0.00 0.00 ns
tHASYN Asynchronous removal time 0.31 0.37 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 4.97 5.85 ns
Table 2-29 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.7 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-43
1.5 V LVCMOS (JESD8-11)
Low-Voltage Complementary Metal-Oxide Semiconductor for 1.5 V is an extension of the LVCMOS standard (JESD8-5)
used for general-purpose 1.5 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.
AC Loadings
Table 2-30 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.5 0.35VCCI 0.65VCCI 1.95 0.4 VCCI-0.4 8mA –8mA
Figure 2-18 AC Test Loads
Table 2-31 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
0 1.5 0.5VCCI N/A 35
Note: *Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1 k
for t
pd
RTAX-S/SL RadTolerant FPGAs
2-44 v5.4
Timing Characteristics
Table 2-32 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.4 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
LVCMOS15 I/O Module Drive Strength = 1 (2 mA) / Low Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 60.38 70.98 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 63.58 74.74 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 44.80 52.67 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.17 5.17 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 2 (4 mA) / Low Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 53.29 62.65 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 56.12 65.97 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 37.88 44.53 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.17 5.17 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-45
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 3 (6 mA) / Low Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 48.90 57.49 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 51.50 60.54 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 34.84 40.95 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.17 5.17 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 8 (4 mA) / Low Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 47.21 55.49 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 49.71 58.43 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 33.18 39.01 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.17 5.17 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
Table 2-32 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.4 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-46 v5.4
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 1 (2 mA) / High Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 14.59 17.15 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 8.38 9.85 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 14.59 17.15 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 5.17 5.17 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 2 (4 mA) / High Slew Rate
tDP Input buffer 3.93 4.62 ns
Table 2-32 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.4 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-47
tPY Output buffer 9.12 10.73 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 3.69 3.70 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 9.12 10.73 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 8.12 9.54 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 3 (6 mA) / High Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 7.62 8.96 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 3.42 3.42 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 7.62 8.96 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 5.02 5.02 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 8.12 9.54 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
Table 2-32 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.4 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
2-48 v5.4
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
LVCMOS15 I/O Module Drive Strength = 4 (8 mA) / High Slew Rate
tDP Input buffer 3.93 4.62 ns
tPY Output buffer 6.60 7.76 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 3.12 3.13 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 4.45 4.46 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 7.45 8.76 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 8.12 9.54 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
Table 2-32 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.4 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-49
3.3 V PCI
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI bus applications. It
uses an LVTTL input buffer and a push-pull output buffer. The input and output buffers are 5V tolerant with the aid of
external components. The RTAX-S/SL 3.3 V PCI buffer is compliant with the PCI Local Bus Specification Rev. 2.1.
AC Loadings
Per PCI Specification except for tristate. Actel loading for tristate is in the figure below.
Table 2-33 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
PCI –0.5 0.3VCCI 0.5VCCI VCCI+0.5 (per PCI specification)
Figure 2-19 AC Test Loads
Table 2-34 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
(Per PCI Spec) N/A 10
Note: *Measuring Point = Vtrip
R to V for tpl
R to GND for tph
CCI
10 pF
GND
Test point for data
R = 25
35 pF for tpzl/tpzh
5 pF for tphz/tplz
R to VCCI for tplz/tpzl
R to GND for tphz/tpzh
Test Point
for tristate
R =1 k
RTAX-S/SL RadTolerant FPGAs
2-50 v5.4
Timing Characteristics
Table 2-35 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
3.3V PCI I/O Module Timing
tDP Input buffer 1.72 2.02 ns
tPY Output buffer 2.25 2.64 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 1.52 1.52 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 1.42 1.43 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 2.98 3.50 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 4.12 4.84 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-51
Table 2-36 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
3.3V PCI-X I/O Module Timing
tDP Input buffer 1.72 2.02 ns
tPY Output buffer 2.30 2.71 ns
tENZL Enable to Pad delay through the Output Buffer—HIGH to Z 1.52 1.52 ns
tENZH Enable to Pad delay through the Output Buffer—Z to HIGH 1.56 1.57 ns
tENLZ Enable to Pad delay through the Output Buffer—LOW to Z 3.10 3.65 ns
tENHZ Enable to Pad delay through the Output Buffer—Z to LOW 3.64 4.28 ns
tIOCLKQ Sequential clock-to-Q for the input register 0.91 1.07 ns
tIOCLKY Clock-to-output Y for the IO output register and the enable
register
0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
2-52 v5.4
Voltage-Referenced I/O Standards
GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It requires a differential amplifier input buffer
and an open drain output buffer. The VCCI pin should be connected to 2.5 V or 3.3 V. Note that 2.5 V GTL+ is not
supported across the full military temperature range.
AC Loadings
Timing Characteristics
Table 2-37 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
N/A VREF-0.1 VREF+0.1 N/A 0.6* NA NA NA
Note: For high temperature of 125°C only, VOL limits are 700 mV, for all other temperatures 600 mV applies.
Figure 2-20 AC Test Loads
Table 2-38 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.2 VREF+0.2 VREF 1.0 10
Note: *Measuring Point = Vtrip
Test Point
10 pF
25
V
TT
Table 2-39 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
3.3 V GTL+ I/O Module Timing
tDP Input buffer 2.01 2.36 ns
tPY Output buffer 1.26 1.49 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-53
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). The RTAX-S/SL devices
support Class I. This requires a differential amplifier input buffer and a push-pull output buffer.
AC Loadings
Timing Characteristics
Table 2-40 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 VREF-0.1 VREF+0.1 3.6 0.4 VCC-0.4 8 –8
Figure 2-21 AC Test Loads
Table 2-41 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.5 VREF+0.5 VREF 0.75 20
Note: *Measuring Point = Vtrip
Test Point
20 pF
50
V
TT
Table 2-42 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 1.4 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
1.5 V HSTL Class I I/O Module Timing
tDP Input buffer 2.12 2.49 ns
tPY Output buffer 5.35 6.29 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
2-54 v5.4
SSTL2
Stub Series Terminated Logic for 2.5 V is a general-purpose 2.5 V memory bus standard (JESD8-9). The RTAX-S/SL
devices support both classes of this standard. This requires a differential amplifier input buffer and a push-pull output
buffer.
Class I
AC Loadings
Timing Characteristics
Table 2-43 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.57 VREF+0.57 7.6 –7.6
Figure 2-22 AC Test Loads
Table 2-44 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.75 VREF+0.75 VREF 1.25 30
Note: *Measuring Point = Vtrip
Test Point
30 pF
50
25
V
TT
Table 2-45 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
2.5 V SSTL2 Class I I/O Module Timing
tDP Input buffer 2.14 2.52 ns
tPY Output buffer 2.61 3.07 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-55
Class II
AC Loadings
Timing Characteristics
Table 2-46 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.8 VREF+0.8 15.2 –15.2
Figure 2-23 AC Test Loads
Table 2-47 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.75 VREF+0.75 VREF 1.25 30
Note: *Measuring Point = Vtrip
Test Point
30 pF
25
25
V
TT
Table 2-48 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
2.5 V SSTL2 Class II I/O Module Timing
tDP Input buffer 2.22 2.61 ns
tPY Output buffer 2.61 3.07 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
2-56 v5.4
SSTL3
Stub Series Terminated Logic for 3.3 V is a general-purpose 3.3 V memory bus standard (JESD8-8). The RTAX-S/SL
devices support both classes of this standard. This requires a differential amplifier input buffer and a push-pull output
buffer.
Class I
AC Loadings
Timing Characteristics
Table 2-49 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.6 VREF+0.6 8 –8
Figure 2-24 AC Test Loads
Table 2-50 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-1.0 VREF+1.0 VREF 1.50 30
Note: *Measuring Point = Vtrip
Test Point
30 pF
50
25
V
TT
Table 2-51 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
3.3 V SSTL3 Class I I/O Module Timing
tDP Input buffer 2.09 2.46 ns
tPY Output buffer 2.55 2.99 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-57
Class II
AC Loadings
Timing Characteristics
Table 2-52 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
–0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.8 VREF+0.8 16 –16
Figure 2-25 AC Test Loads
Table 2-53 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-1.0 VREF+1.0 VREF 1.50 30
Note: *Measuring Point = Vtrip
Test Point
30 pF
25
25
V
TT
Table 2-54 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
3.3 V SSTL3 Class II I/O Module Timing
tDP Input buffer 2.17 2.55 ns
tPY Output buffer 2.55 2.99 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
2-58 v5.4
Differential Standards
Physical Implementation
Implementing differential I/O standards requires the
configuration of a pair of external I/O pads, resulting in a
single internal signal. To facilitate construction of the
differential pair, a single I/O cluster contains the
resources for a pair of I/Os. Configuration of the I/O
Cluster as a differential pair is handled by Actel's
Designer software when the user instantiates a
differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the
embedded Input Register (InReg), Output Register
(OutReg), and Enable Register (EnReg). However, there is
no support for bidirectional I/Os or tristates with these
standards.
LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a
high-speed differential I/O standard. It requires that one
data bit is carried through two signal lines, so two pins
are needed. It also requires an external resistor
termination. The voltage swing between these two
signal lines is approximately 350 mV.
The LVDS circuit consists of a differential driver
connected to a terminated receiver through a constant-
impedance transmission line. The receiver is a wide-
common-mode-range differential amplifier. The
common-mode range is from 0.2 V to 2.2 V for a
differential input with 400 mV swing.
To implement the driver for the LVDS circuit, drivers from
two adjacent I/O cells are used to generate the
differential signals (Note that the driver is not a current-
mode driver). This driver provides a nominal constant
current of 3.5 mA. When this current flows through a
100 Ω termination resistor on the receiver side, a voltage
swing of 350 mV is developed across the resistor. The
direction of the current flow is controlled by the data fed
to the driver.
An external-resistor network (three resistors) is needed
to reduce the voltage swing to about 350 mV. Therefore,
four external resistors are required, three for the driver
and one for the receiver.
Figure 2-26 LVDS Circuit
140 Ω100 Ω
ZO = 50 Ω
ZO = 50 Ω
165 Ω
165 Ω
+
P
N
P
N
INBUF_LVDS
OUTBUF_LVDS
FPGA FPGA
Table 2-55 DC Input and Output Levels
DC Parameter Description Min. Typ. Max. Units
VCCI1Supply voltage 2.375 2.5 2.625 V
VOL Output low voltage 0.9 1.075 1.25 V
VOH Output high voltage 1.25 1.425 1.6 V
VIInput voltage 0 2.925 V
VODIFF Differential output voltage 250 350 450 mV
VOCM Output common mode voltage 1.125 1.25 1.375 V
VICM2Input common mode voltage 0.2 1.25 2.2 V
VIDIFF Differential input voltage 100 350 mV
Notes:
1. +/- 5%
2. Differential input voltage = ±400 mV.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-59
AC Loadings
For AC test loads, see the above LVDS circuit.
Timing Characteristics
Table 2-56 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) Cload (pF)
1.2-0.125 1.2+0.125 1.2 N/A
Note: *Measuring Point = Vtrip
Table 2-57 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
LVDS I/O Module Timing
tDP Input buffer 2.00 2.35 ns
tPY Output buffer 2.54 2.99 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
2-60 v5.4
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit
is carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The
voltage swing between these two signal lines is approximately 850 mV.
The LVPECL circuit is similar to the LVDS scheme. It requires four external resistors, three for the driver and one for the
receiver. The values for the three driver resistors are different from that of LVDS, since the output voltage levels are
different. Please note that the VOH levels are 200 mV below the standard LVPECL levels.
AC Loadings
For AC test loads, See the above LVPECL circuit.
Figure 2-27 LVPECL Circuit
Table 2-58 DC Input and Output Levels
DC Parameter
Min. Typ. Max.
UnitsMin. Max. Min. Max. Min. Max.
VCCI 3–3.33.6V
VOH 1.8 2.11 1.92 2.28 2.13 2.41 V
VOL 0.96 1.27 1.06 1.43 1.3 1.57 V
VIH 1.49 2.72 1.49 2.72 1.49 2.72 V
VIL 0.86 2.125 0.86 2.125 0.86 2.125 V
Differential Input Voltage 0.3 0.3 0.3 V
Table 2-59 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) Cload (pF)
1.6-0.3 1.6+0.3 1.6 N/A
Note: *Measuring Point = Vtrip
187 Ω100 Ω
ZO = 50 Ω
ZO = 50 Ω
100 Ω
100 Ω
+
P
N
P
N
INBUF_LVPECL
OUTBUF_LVPECL
FPGA FPGA
RTAX-S/SL RadTolerant FPGAs
v5.4 2-61
Timing Characteristics
Table 2-60 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
LVPECL I/O Module Timing
tDP Input buffer 1.83 2.15 ns
tPY Output buffer 2.45 2.88 ns
tICLKQ Clock-to-Q for the I/O input register 0.91 1.07 ns
tOCLKQ Clock-to-Q for the IO output register and the I/O enable register 0.91 1.07 ns
tSUD Data input setup 0.31 0.37 ns
tSUE Enable input setup 0.35 0.41 ns
tHD Data input hold 0.00 0.00 ns
tHE Enable input hold 0.00 0.00 ns
tCPWHL Clock pulse width High to Low 0.39 0.39 ns
tCPWLH Clock pulse width Low to High 0.39 0.39 ns
tWASYN Asynchronous pulse width 0.37 0.37 ns
tREASYN Asynchronous recovery time 0.17 0.21 ns
tHASYN Asynchronous removal time 0.00 0.00 ns
tCLR Asynchronous Clear-to-Q 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.31 0.37 ns
RTAX-S/SL RadTolerant FPGAs
2-62 v5.4
Module Specifications
C-Cell
Introduction
The C-cell is one of the two logic module types in the
RTAX-S/SL architecture. It is the combinatorial logic
resource in the RTAX-S/SL device. The RTAX-S/SL
architecture implements a new Combinatorial Cell that is
an extension of the C-cell implemented in the A54SX-A
family. The main enhancement of the new C-cell is the
addition of carry-chain logic.
The C-cell can be used in a carry-chain mode to construct
arithmetic functions. If carry-chain logic is not required,
it can be disabled.
The C-cell features the following (Figure 2-28):
Eight-input MUX (data: D0-D3, select: A0, A1, B0,
B1). User signals can be routed to any one of these
inputs. Any of the C-cell inputs (D0-D3, A0, A1, B0,
B1) can be tied to one of the four routed clocks
(CLKE/F/G/H).
Inverter (DB input) can be used to drive a
complement signal of any of the inputs to the
C-cell.
A carry input and a carry output. The carry input
signal of the C-cell is the carry output from the
C-cell directly to the north.
Carry connect for carry-chain logic with a signal
propagation time of less than 0.1 ns.
A hardwired connection (direct connect) to the
adjacent R-cell (Register Cell) for all C-cells on the
east side of a SuperCluster with a signal
propagation time of less than 0.1 ns.
This layout of the C-cell (and the C-cell Cluster) enables
the implementation of over 4,000 functions of up to five
bits. For example, two C-cells can be used together to
implement a four-input XOR function in a single cell
delay.
The carry-chain configuration is handled automatically
for the user with the extensive Actel macro library. Refer
to the Actel Antifuse Macro Library Guide for a complete
listing of available RTAX-S/SL macros.
Figure 2-28 C-Cell
1
0
D1 D3 B1B0
D0 D2 DB A1A0
CFN FCI
FCO Y
0
0
0
0
1
1
1
1
RTAX-S/SL RadTolerant FPGAs
v5.4 2-63
Timing Model and Waveforms
Timing Characteristics
Figure 2-29 C-Cell Timing Model and Waveforms
Y, FCO
Y, FCO
GND
VCCA
50%50%
50%50%
GND
GND
50%50%
A, B, D, FCI
tPD, tPDC
VCCA
VCCA
tPD, tPDC
tPD, tPDC tPD, tPDC
Table 2-61 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
C-Cell Propagation Delays
tPD Any input to output 0.95 1.11 ns
tPDC Any input to carry chain output (FCO) 0.70 0.82 ns
tPDB Any input thorough DB when 1 input is used 1.49 1.75 ns
tCCY Input carry chain (FCI) to Y 0.76 0.90 ns
tCC Input carry chain (FCI) to carry chain output (FCO) 0.10 0.12 ns
RTAX-S/SL RadTolerant FPGAs
2-64 v5.4
Carry-Chain Logic
The RTAX-S/SL dedicated carry-chain logic offers a very
compact solution for implementing arithmetic functions
without sacrificing performance.
To implement the carry-chain logic, two C-cells in a
Cluster are connected together so the FCO (i.e., carry
out) for the two bits is generated in a Carry Look-ahead
scheme to achieve minimum propagation delay from the
FCI (i.e., carry in) into the two-bit Cluster. The two-bit
carry logic is shown in Figure 2-30.
The FCI of one C-cell pair is driven by the FCO of the
C-cell pair immediately above it. Similarly, the FCO of one
C-cell pair, drives the FCI input of the C-cell pair
immediately below it (Figure 1-5 on page 1-3 and
Figure 2-31 on page 2-65).
The carry-chain logic is selected via the CFN input. When
carry logic is not required, this signal is deasserted to
save power. Again, this configuration is handled
automatically for the user through the Actel macro
library.
The signal propagation delay between two C-cells in the
carry-chain sequence is 0.1 ns.
Figure 2-30 RTAX-S/SL Two-Bit Carry Logic
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
01
0
1
0
1
0
DCOUT
D0
D2
DB
A1
A0
Y
FCO
Y
D0
D2
DB
A1
A0
D1
D3
B1
B0
D1
D3
B1
B0
CFN
CFN
FCI
RTAX-S/SL RadTolerant FPGAs
v5.4 2-65
Timing Characteristics
Refer to the C-cell timing characteristics in Table 2-61 on page 2-63 for more information on carry-chain timing.
Note: The carry-chain sequence can end on either C-cell.
Figure 2-31 Carry-Chain Sequencing of C-Cells
DCINDCOUT
C-cell1 C-cell2
DCOUT
R-cell1
DCIN
C-cell
(2n-1)
C-cell2n
DCOUT
R-celln
CDIN
n-2
Clusters
FCO2n
FCI(2n-1)
FCI5
FCO4
FCI3
FCO2
FCI1
RTAX-S/SL RadTolerant FPGAs
2-66 v5.4
R-Cell
Introduction
The R-cell, the sequential logic resource of the RTAX-S/SL
devices, is the second logic module type in the RTAX-S/SL
family architecture. The RTAX-S/SL R-cell is an enhanced
version of the A54SX-A R-cell. It includes additional clock
inputs for all eight global resources of the RTAX-S/SL
architecture as well as global presets and clears (Figure 2-
32).
The main features of the R-cell include the following:
Direct connection to the adjacent logic module
through the hardwired connection DCIN. DCIN is
driven by the DCOUT of an adjacent C-cell via the
Direct-Connect routing resource, providing a
connection with less than 0.1 ns of routing delay.
The R-cell can be used as a standalone flip-flop. It
can be driven by any C-cell or I/O modules through
the regular routing structure (using DIN as a
routable data input). This gives the option of
using the R-cell as a 2:1 MUXed flip-flop as well.
Provision of data enable-input (S0).
Independent active low asynchronous clear (CLR).
Independent active low asynchronous preset
(PSET). If both CLR and PSET are low, CLR has
higher priority.
Clock can be driven by any of the following (CKP
selects clock polarity):
One of the four high performance hardwired
fast clocks (HCLKs)
One of the four routed clocks (CLKs)
User signals
Global power-on clear (GCLR) and preset (GPSET),
which drive each flip-flop on a chip-wide basis.
When the Global Set Fuse option in the
Designer software is unchecked (by default),
GCLR = 0 and GPSET =1 at device power-up.
When the option is checked, GCLR = 1 and
GPSET= 0. Both pins are pulled HIGH when the
device is in user mode.
S0, S1, PSET, and CLR can be driven by routed
clocks CLKE/F/G/H or user signals.
DIN and S1 can be driven by user signals.
As with the C-cell, the configuration of the R-cell to
perform various functions is handled automatically for
the user through Actel's extensive macro library (please
see the Actel Macro Library Guide for a complete listing
of available RTAX-S/SL macros).
Figure 2-32 R-Cell
CLR
GCLR
PRE
GPRE
Y
S1 S0
CKS
DCIN
DIN (user signals)
HCLKA/B/C/D
CLKE/F/G/H
Internal Logic
CKP
SEU
Enhanced
D-FF
RTAX-S/SL RadTolerant FPGAs
v5.4 2-67
SEU Hardened D Flip-Flop (DFF)
In order to meet the stringent SEU requirements of a LETTH
greater than 37 MeV-cm2/mg, the internal design of the
R-cell was modified without changing the functionality of
the cell. Figure 2-33 illustrates a simplified representation
of how the D flip-flop in the SuperCluster is implemented in
the RTAX-S/SL architecture. The flip-flop consists of a master
and a slave latch gated by opposite edges of the clock. Each
latch is constructed by feeding back the output to the input
stage. The potential problem in a space environment is that
either of the latches can change state when hit by a particle
with enough energy.
To achieve the SEU requirements, the D flip-flop in the
RTAX-S/SL R-cell is enhanced (Figure 2-34). Both the
master and slave "latches" are actually implemented
with three latches. The asynchronous self-correcting
feedback paths of each of the three latches is voted with
the outputs of the other two latches. If one of the three
latches is struck by an ion and starts to change state, the
voting with the other two latches prevents the change
from feeding back and permanently latching. Care was
taken in the layout to ensure that a single ion strike
could not affect more than one latch. Figure 2-35 on
page 2-68 is a simplified schematic of the test circuitry
that has been added to test the functionality of all the
components of the flip-flop. The inputs to each of the
three latches are independently controllable, so the
voting circuitry in the asynchronous self-correcting
feedback paths can be tested exhaustively. This testing is
performed on an unprogrammed array during wafer
sort, final test, and post-burn-in test. This test circuitry
cannot be used to test the flip-flops once the device has
been programmed.
Figure 2-33 RTAX-S/SL R-cell Implementation of D Flip-Flop
Figure 2-34 RTAX-S/SL R-cell Implementation of D Flip-Flop Using Voter Gate Logic
D
CLK CLK
Q
Q
CLK
CLK
D
CLK
Voter
Gate
CLK
CLK
CLK
CLK
CLK
RTAX-S/SL RadTolerant FPGAs
2-68 v5.4
Timing Models and Waveforms
Figure 2-35 RTAX-S/SL R-Cell Implementation – Test Circuitry
Tst1
CLK
DQ
Voter
Gate
Tst2
Tst3
Test
Circuitry
Figure 2-36 R-Cell Delays
E
D
Q
CLR
PRESET
CLK
tSUE tHE
tSUD tHD
tRCO
tWASYN
tHASYN
tCLR
tREASYN
tCPWHL tCPWLH
tPRESET
tWASYN
tHASYN tREASYN
RTAX-S/SL RadTolerant FPGAs
v5.4 2-69
Timing Characteristics
Buffer Module
Introduction
An additional resource inside each SuperCluster is the Buffer (B) module (Figure 1-4 on page 1-3).
When a fanout constraint is applied to a design, the synthesis tool inserts buffers as needed. The buffer module has
been added to the RTAX-S/SL architecture to avoid logic duplication resulting from the hard fanout constraints. The
router utilizes this logic resource to save area and reduce loading and delays on medium-to-high-fanout nets.
Timing Models and Waveforms
Timing Characteristics
Table 2-62 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
R-Cell Propagation Delays
tRCO Sequential Clock to Q 0.96 1.12 ns
tCLR Asynchronous Clear to Q 0.63 0.74 ns
tPRESET Asynchronous Preset to Q 0.76 0.89 ns
tSUD FF Data input setup 0.21 0.25 ns
tSUE FF Enable input setup 0.21 0.25 ns
tHD FF Data Hold 0.00 0.00 ns
tHE FF Enable Hold time 0.00 0.00 ns
tWASYN Asynchronous Pulse width 0.48 0.48 ns
tREASYN Asynchronous Recovery time 0.00 0.00 ns
tHASYN Asynchronous Removal time 0.00 0.00 ns
tCPWHL Clock pulse width high to low 0.36 0.36 ns
tCPWLH Clock pulse width low to high 0.36 0.36 ns
Figure 2-37 Buffer Module Timing Model
IN OUT
Figure 2-38 Buffer Module Waveform
OUT
GND
50%50%
50%50%
GND
IN
VCCA
VCCA
tBFPD
tBFPD
Table 2-63 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tBFPD Any input to output Y 0.17 0.20 ns
RTAX-S/SL RadTolerant FPGAs
2-70 v5.4
Routing Specifications
Routing Resources
The routing structure found in RTAX-S/SL devices enables
any logic module to be connected to any other logic
module while retaining high performance. There are
multiple paths and routing resources that can be used to
route one logic module to another, both within a
SuperCluster and elsewhere on the chip.
There are four primary types of routing within the RTAX-S/
SL architecture: DirectConnect, CarryConnect, FastConnect
and Vertical and Horizontal Routing.
DirectConnect
DirectConnects provide a high-speed connection
between an R-cell and its adjacent C-cell (Figure 2-39).
This connection can be made from DCOUT of the C-cell
to DCIN of the R-cell by configuring of the S1 line of the
R-cell. This provides a connection that does not require
an antifuse and has a delay of less than 0.1 ns.
CarryConnect
CarryConnects are used to build carry chains for
arithmetic functions (Figure 2-39). The FCO output of the
right C-cell of a two-C-cell Cluster drives the FCI input of
the left C-cell in the two-C-cell Cluster immediately
below it. This pattern continues down both sides of each
SuperCluster column.
Similar to the DirectConnects, CarryConnects can be built
without an antifuse connection. This connection has a
delay of less than 0.1 ns from the FCO of one two-C-cell
Cluster to the FCI of the two-C-cell Cluster immediately
below it (see the "Carry-Chain Logic" on page 2-64 for
more information).
FastConnect
For high-speed routing of logic signals, FastConnects can
be used to build a short distance connection using a
single antifuse (Figure 2-40 on page 2-71). FastConnects
provide a maximum delay of 0.4 ns. The outputs of each
logic module connect directly to the Output Tracks
within a SuperCluster. Signals on the Output Tracks can
then be routed through a single antifuse connection to
drive the inputs of logic modules either within one
SuperCluster or in the SuperCluster immediately below
it.
Vertical and Horizontal Routing
Vertical and Horizontal Tracks provide both local and
long distance routing (Figure 2-41 on page 2-71). These
tracks are composed of both short-distance, segmented
routing and across-chip routing tracks (segmented at
core tile boundaries). The short-distance, segmented
routing resources can be concatenated through antifuse
connections to build longer routing tracks.
These short-distance routing tracks can be used within
and between SuperClusters or between modules of non-
adjacent SuperClusters. They can be connected to the
Output Tracks and to any logic module input (R-cell,
C-cell, Buffer, and TX module).
Figure 2-39 DirectConnect and CarryConnect
RTAX-S/SL RadTolerant FPGAs
v5.4 2-71
The across-chip horizontal and vertical routing provides
long-distance, routing resources. These resources
interface with the rest of the routing structures through
the RX and TX modules (Figure 2-41 on page 2-71). The
RX module is used to drive signals from the across-chip
horizontal and vertical routing to the Output Tracks
within the SuperCluster. The TX module is used to drive
vertical and horizontal across-chip routing from either
short-distance horizontal tracks or from Output Tracks.
The TX module can also be used to drive signals from
vertical across-chip tracks to horizontal across-chip tracks
and vice versa.
Figure 2-40 FastConnect Routing
Figure 2-41 Horizontal and Vertical Tracks
RTAX-S/SL RadTolerant FPGAs
2-72 v5.4
Timing Characteristics
Table 2-64 RTAX250S/SL (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitMin. Max. Min. Max.
Predicted Routing Delays
tDC Direct connect 0.08 0.07 ns
tFC Fast connect F01 0.24 0.29 ns
tRD1 Fanout 1 0.66 0.77 ns
tRD2 Fanout 2 0.84 0.99 ns
tRD3 Fanout 3 1.07 1.25 ns
tRD4 Fanout 4 1.38 1.62 ns
tRD5 Fanout 5 1.45 1.7 ns
tRD6 Fanout 6 2.08 2.44 ns
tRD7 Fanout 7 2.26 2.66 ns
tRD8 Fanout 8 2.44 2.87 ns
tRD9 Fanout 9 2.87 3.37 ns
tRD10 Fanout 10 3.3 3.88 ns
Table 2-65 RTAX1000S/SL (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitMin. Max. Min. Max.
Predicted Routing Delays
tDC Direct connect 0.08 0.07 ns
tFC Fast connect F01 0.24 0.29 ns
tRD1 Fanout 1 0.66 0.77 ns
tRD2 Fanout 2 0.84 0.99 ns
tRD3 Fanout 3 1.07 1.25 ns
tRD4 Fanout 4 1.38 1.62 ns
tRD5 Fanout 5 1.45 1.7 ns
tRD6 Fanout 6 2.08 2.44 ns
tRD7 Fanout 7 2.26 2.66 ns
tRD8 Fanout 8 2.44 2.87 ns
tRD9 Fanout 9 2.87 3.37 ns
tRD10 Fanout 10 3.3 3.88 ns
RTAX-S/SL RadTolerant FPGAs
v5.4 2-73
Table 2-66 RTAX2000S/SL (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitMin. Max. Min. Max.
Predicted Routing Delays
tDC Direct connect 0.08 0.07 ns
tFC Fast connect F01 0.24 0.29 ns
tRD1 Fanout 1 0.66 0.77 ns
tRD2 Fanout 2 0.84 0.99 ns
tRD3 Fanout 3 1.07 1.25 ns
tRD4 Fanout 4 1.38 1.62 ns
tRD5 Fanout 5 1.45 1.70 ns
tRD6 Fanout 6 2.08 2.44 ns
tRD7 Fanout 7 2.26 2.66 ns
tRD8 Fanout 8 2.44 2.87 ns
tRD9 Fanout 9 2.87 3.37 ns
tRD10 Fanout 10 3.30 3.88 ns
Table 2-67 RTAX4000S (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'Std.' Speed
UnitMin. Max.
Predicted Routing Delays
tDC Direct connect 0.07 ns
tFC Fast connect F01 0.29 ns
tRD1 Fanout 1 0.77 ns
tRD2 Fanout 2 0.99 ns
tRD3 Fanout 3 1.25 ns
tRD4 Fanout 4 1.62 ns
tRD5 Fanout 5 1.7 ns
tRD6 Fanout 6 2.44 ns
tRD7 Fanout 7 2.66 ns
tRD8 Fanout 8 2.87 ns
tRD9 Fanout 9 3.37 ns
tRD10 Fanout 10 3.88 ns
RTAX-S/SL RadTolerant FPGAs
2-74 v5.4
Global Resources
One of the most important aspects of any FPGA
architecture is its global resources or clocks. The RTAX-S/
SL family provides the user with flexible and easy-to-use
global resources, without the limitations normally found
in other FPGA architectures. In addition, these global
resources have been hardened to improve SEU
performance.
The RTAX-S/SL architecture contains two types of global
resources, the HCLK (hardwired clock) and CLK (routed
clock). Every RTAX-S/SL device is provided with four
HCLKs and four CLKs for a total of eight clocks,
regardless of device density.
Hardwired Clocks
The hardwired (HCLK) is a low-skew network that can
directly drive the clock inputs of all sequential modules
(R-cells, I/O registers and embedded RAM/FIFOs) in the
device with no antifuse in the path. All four HCLKs are
available everywhere on the chip.
Timing Characteristics
Table 2-68 RTAX250S/SL (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tHCKL Input Low to High 2.76 3.24 ns
tHCKH Input High to Low 2.94 3.46 ns
Table 2-69 RTAX250S/SL Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tHPWH Minimum Pulse width High 0.77 0.77 ns
tHPWL Minimum Pulse width Low 0.26 0.26 ns
fHMAX1Maximum frequency 649 649 MHz
Note: *fHMAX = 1000/(2*(MAX(tHPWH,tHPWL)))
Table 2-70 RTAX1000S/SL (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tHCKL Input Low to High 3.65 4.29 ns
tHCKH Input High to Low 3.48 4.09 ns
Table 2-71 RTAX1000S/SL Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tHPWH Minimum Pulse width High 0.86 0.86 ns
tHPWL Minimum Pulse width Low 0.31 0.31 ns
fHMAX1Maximum frequency 581 581 MHz
Note: *fHMAX = 1000/(2*(MAX(tHPWH,tHPWL)))
RTAX-S/SL RadTolerant FPGAs
v5.4 2-75
Table 2-72 RTAX2000S/SL (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tHCKL Input Low to High 3.65 4.29 ns
tHCKH Input High to Low 3.48 4.09 ns
Table 2-73 RTAX2000S/SL Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tHPWH Minimum Pulse width High 0.77 0.77 ns
tHPWL Minimum Pulse width Low 0.26 0.26 ns
fHMAX1Maximum frequency 649 649 MHz
Note: *fHMAX = 1000/(2*(MAX(tHPWH,tHPWL)))
Table 2-74 RTAX4000S (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'Std.' Speed
UnitsMin. Max.
tHCKL Input Low to High 4.37 ns
tHCKH Input High to Low 4.16 ns
Table 2-75 RTAX4000S Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'Std.' Speed
UnitsMin. Max.
tHPWH Minimum Pulse width High TBD ns
tHPWL Minimum Pulse width Low TBD ns
fHMAX1Maximum frequency TBD MHz
Note: *fHMAX = 1000/(2*(MAX(tHPWH,tHPWL)))
RTAX-S/SL RadTolerant FPGAs
2-76 v5.4
Routed Clocks
The routed clock (CLK) is a low-skew network that can drive the clock inputs of all sequential modules in the device
(logically equivalent to the HCLK), but has the added flexibility in that it can drive the S0 (Enable), S1, PSET, and CLR
input of a register (R-cells and I/O registers) as well as any of the inputs of any C-cell in the device. This allows CLKs to
be used not only as clocks, but also for other global signals or high fanout nets. All four CLKs are available everywhere
on the chip.
Timing Characteristics
Table 2-76 RTAX250S/SL (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tRCKL Input Low to High 2.78 3.26 ns
tRCKH Input High to Low 2.92 3.43 ns
tRCKSW Maximum skew – 16 Loads 1.40 1.65 ns
Maximum skew – 24 Loads 1.81 2.13 ns
Table 2-77 RTAX250S/SL Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tRPWH Minimum Pulse width High 0.79 0.79 ns
tRPWL Minimum Pulse width Low 0.27 0.27 ns
fRMAX1Maximum frequency 633 633 MHz
Note: *fRMAX = 1000/(2*(MAX(tRPWH,tRPWL)))
Table 2-78 RTAX1000S/SL (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tRCKL Input Low to High 3.71 4.37 ns
tRCKH Input High to Low 3.54 4.16 ns
tRCKSW Maximum skew – 16 Loads 1.39 1.64 ns
Maximum skew – 24 Loads 1.80 2.12 ns
Maximum skew – 36 Loads 1.87 2.20 ns
Table 2-79 RTAX1000S/SL Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tRPWH Minimum Pulse width High 1.04 1.04 ns
tRPWL Minimum Pulse width Low 0.33 0.33 ns
fRMAX1Maximum frequency 481 481 MHz
Note: *fRMAX = 1000/(2*(MAX(tRPWH,tRPWL)))
RTAX-S/SL RadTolerant FPGAs
v5.4 2-77
Table 2-80 RTAX2000S/SL (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tRCKL Input Low to High 3.71 4.37 ns
tRCKH Input High to Low 3.54 4.16 ns
tRCKSW Maximum skew – 16 Loads 1.39 1.64 ns
Maximum skew – 24 Loads 1.80 2.12 ns
Maximum skew – 36 Loads 2.12 2.49 ns
Table 2-81 RTAX2000S/SL Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std.' Speed
UnitsMin. Max. Min. Max.
tRPWH Minimum Pulse width High 0.79 ns
tRPWL Minimum Pulse width Low 0.27 ns
fRMAX1Maximum frequency 633 MHz
Note: *fRMAX = 1000/(2*(MAX(tRPWH,tRPWL)))
Table 2-82 RTAX4000S (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'Std.' Speed
UnitsMin. Max.
tRCKL Input Low to High 6.41 ns
tRCKH Input High to Low 6.19 ns
tRCKSW Maximum skew – 16 Loads 1.65 ns
Maximum skew – 24 Loads 2.11 ns
Maximum skew – 36 Loads 2.16 ns
Table 2-83 RTAX4000S Worst-Case MPW (VCCA = 1.575 V, VCCI = 3.6 V, TJ = 125°C)
Parameter Description
'Std.' Speed
UnitsMin. Max.
tRPWH Minimum Pulse width High TBD ns
tRPWL Minimum Pulse width Low TBD ns
fRMAX1Maximum frequency TBD MHz
Note: *fRMAX = 1000/(2*(MAX(tRPWH,tRPWL)))
RTAX-S/SL RadTolerant FPGAs
2-78 v5.4
Global Resource Distribution
At the root of each global resource is a ClockDistBuffer
(CDB). There are two groups of four CDBs for every device.
One group, located at the center of the north edge (in the
I/O ring) of the chip, sources the four HCLKs. The second
group, located at the center of the south edge (again in the
I/O ring), sources the four CLKs (Figure 2-42).
Regardless of the type of global resource, HCLK or CLK,
each of the eight resources reach the ClockTileDist (CTD)
Cluster located at the center of every core tile with zero
skew. From the ClockTileDist Cluster, all four HCLKs and four
CLKs are distributed through the core tile (Figure 2-43).
Figure 2-42 ClockDistBuffer Group
Figure 2-43 Example of HCLK and CLK Distributions on the RTAX2000S/SL
CDB Cluster
CDB Cluster
PN PN PN PN
PN PN PN PN
HCLKA HCLKB HCLKC HCLKD
CLKE CLKF CLKG CLKH
CDB Cluster
HCLK CLK
CDB Cluster
4
4
ClockTileDist Cluster
RTAX-S/SL RadTolerant FPGAs
v5.4 2-79
The ClockTileDist Cluster contains an HCLKMux (HM)
module for each of the four HCLK trees and a CLKMux
(CM) module for each of the CLK trees. The HCLK
branches then propagate horizontally through the
middle of the core tile to HCLKColDist (HD) modules in
every SuperCluster column. The CLK branches propagate
vertically through the center of the core tile to
CLKRowDist (RD) modules in every SuperCluster row.
Together, the HCLK and CLK branches provide for a low-
skew global fanout within the core tile (Figure 2-44 and
Figure 2-45).
Figure 2-44 CTD, CD, and HD Module Layout
Figure 2-45 HCLK and CLK Distribution within a Core Tile
RTAX-S/SL RadTolerant FPGAs
2-80 v5.4
The HM and CM modules can select between:
The HCLK or CLK source
A local signal routed on generic routing resources
This allows each core tile to have eight clocks
independent of the other core tiles in the device.
Both HCLK and CLK are segmentable, meaning that
individual branches of the global resource can be used
independently.
Like the HM and CM modules, the HD and RD modules
can select between:
The HCLK or CLK source from the HM or CM
module, respectively
A local signal routed on generic routing resources
Again, an unused input can be tied to ground for power
savings.
The RTAX-S/SL architecture is capable of supporting a
large number of local clocks – 24 segments per HCLK
driving north-south and 28 segments per CLK driving
east-west per core tile.
Actel Designer software’s place-and-route takes
advantage of the segmented clock structure found in
RTAX-S/SL devices by turning off any unused clock
segments. This results in not only better performance but
also lower power consumption. Future releases of
Designer will give the user greater control over these
individual clock segments.
Global Resource Access Macros
Global resources can be driven by one of three sources:
external pad(s) or an internal net. These connections can
be made by using one of two types of macros: CLKBUF
and CLKINT.
CLKBUF and HCLKBUF
CLKBUF (HCLKBUF) is used to drive a CLK (HCLK) from
external pads. These macros can be used either
generically or with the specific I/O standard desired
(e.g. CLKBUF_LVCMOS25, HCLKBUF_LVDS, etc.)
(Figure 2-46).
Package pins CLKEP and CLKEN are associated with
CLKE; package pins HCLKAP and HCLKAN are
associated with HCLKA, etc.
Note that when CLKBUF (HCLKBUF) is used with a
single-ended I/O standard, it must be tied to the P-
pad of the CLK (HCLK) package pin. In this case, the
CLK (HCLK) N-pad can be used for user signals.
CLKINT and HCLKINT
CLKINT (HCLKINT) is used to access the CLK (HCLK)
resource internally from the user signals (Figure 2-47).
Figure 2-46 CLKBUF and HCLKBUF
Figure 2-47 CLKINT and HCLKINT
P
NCLKBUF
HCLKBUF
Clock
Network
CLKINT
HCLKINT
Clock
Network
Logic
RTAX-S/SL RadTolerant FPGAs
v5.4 2-81
Embedded Memory
The RTAX-S/SL architecture provides extensive, high-
speed memory resources to the user. Each 4,608-bit block
of RAM contains its own embedded FIFO controller,
allowing the user to configure each block as either RAM
or FIFO.
To meet the needs of high performance designs, the
memory blocks operate in synchronous mode for both
read and write operations. However, the read and write
clocks are completely independent, and each may
operate beyond 500 MHz.
No additional core logic resources are required to
cascade the address and data buses when cascading
different RAM blocks. Dedicated routing runs along each
column of RAM to facilitate cascading.
The RTAX-S/SL memory block includes dedicated FIFO
control logic to generate internal addresses and external
flag logic (FULL, EMPTY, AFULL, AEMPTY). Since read and
write operations can occur asynchronously to one another,
special control circuitry is included to prevent
metastability, overflow, and underflow. A block diagram
of the memory module is illustrated in Figure 2-48.
During RAM operation, read (RA) and write (WA)
addresses are sourced by user logic and the FIFO
controller is ignored. In FIFO mode, the internal
addresses are generated by the FIFO controller and
routed to the RAM array by internal MUXes. Enables
with programmable polarity are provided to create
upper address bits for cascading up to 16 memory blocks.
When cascading memory blocks, the bussed signals WA,
WD, WEN, RA, RD, and REN are internally linked to
eliminate external routing congestion.
RAM
Each memory block consists of 4,608 bits that can be
organized as 128x36, 256x18, 512x9, 1kx4, 2kx2, or 4kx1
and are cascadable to create larger memory sizes. This
allows built-in bus width conversion (Table 2-84). Each
block has independent read and write ports, which
enable simultaneous read and write operations.
Simultaneous read and write operations to the same
address is not supported.
Figure 2-48 RTAX-S/SL Memory Module
RA [K:0] RD [(N-1):0]
REN
RCLK
WD [(M-1):0]
WA [J:0]
WEN
WCLK
PIPE
RW [2:0]
WW [2:0]
Table 2-84 Memory Block WxD Options
Data-Word (in bits) Depth Address Bus Data Bus
1 4,096 RA/WA[11:0] RD/WD[0]
2 2,048 RA/WA[10:0] RD/WD[1:0]
4 1,024 RA/WA[9:0] RD/WD[3:0]
9 512 RA/WA[8:0] RD/WD[8:0]
18 256 RA/WA[7:0] RD/WD[17:0]
36 128 RA/WA[6:0] RD/WD[35:0]
RTAX-S/SL RadTolerant FPGAs
2-82 v5.4
Clocks
The RCLK and the WCLK have independent source
polarity selection and can be sourced by any global or
local signal.
RAM Configurations
The RTAX-S/SL architecture allows the read side and
write side of RAMs to be organized independently,
allowing for bus conversion. For example, the write side
can be set to 256x18 and the read side to 512x9.
Both the write width and read width for the RAM blocks
can be specified independently and changed dynamically
with the WW (write width) and RW (read width) pins.
The available DxW configurations are: 128x36, 256x18,
512x9, 1kx4, 2kx2, and 4kx1. The allowable RW and WW
values are shown in Table 2-86.
When widths of one, two, and four are selected, the
ninth bit is unused. For example, when writing nine-bit
values and reading four-bit values, only the first four bits
and the second four bits of each nine-bit value are
addressable for read operations. The ninth bit is not
accessible. Conversely, when writing four-bit values and
reading nine-bit values, the ninth bit of a read operation
will be undefined.
Note that the RAM blocks employ little-endian byte
order for read and write operations.
Table 2-85 RAM Signal Description
Signal Direction Description
WCLK Input Write clock (can be active on either edge).
WA[J:0] Input Write address bus.The value J is dependent on the RAM configuration and the number of cascaded
memory blocks. The valid range for J is from 6 to15.
WD[M-1:0] Input Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or
36.
RCLK Input Read clock (can be active on either edge).
RA[K:0] Input Read address bus. The value K is dependent on the RAM configuration and the number of cascaded
memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0] Output Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
REN Input Read enable. When this signal is valid on the active edge of the clock, data at location RA will be
driven onto RD.
WEN Input Write enable. When this signal is valid on the active edge of the clock, WD data will be written at
location WA.
RW[2:0] Input Width of the read operation dataword.
WW[2:0] Input Width of the write operation dataword.
Pipe Input Sets the pipeline option to be on or off.
Table 2-86 Allowable RW and WW Values
RW(2:0) WW(2:0) D x W
000 000 4kx1
001 001 2kx2
010 010 1kx4
011 011 512x9
100 100 256x18
101 101 128x36
11x 11x reserved
RTAX-S/SL RadTolerant FPGAs
v5.4 2-83
Modes of Operation
There are two read modes and one write mode:
Read Nonpipelined (synchronous – one clock
edge):
In the standard read mode, new data is driven
onto the RD bus in the clock cycle immediately
following RA and REN valid. The read address is
registered on the read-port active-clock edge and
data appears at read-data after the RAM access
time. Setting PIPE to OFF enables this mode.
Read Pipelined (synchronous – two clock edges):
The pipelined mode incurs an additional clock
delay from address to data, but enables operation
at a much higher frequency. The read-address is
registered on the read-port active-clock edge, and
the read data is registered and appears at RD after
the second read clock edge. Setting PIPE to ON
enables this mode.
Write (synchronous – one clock edge):
On the write active-clock edge, the write data are
written into the SRAM at the write address when
WEN is high. The setup time of the write address,
write enables, and write data are minimal with
respect to the write clock.
Write and read transfers are described with timing
requirements beginning in "Timing Characteristics" on
page 2-85.
Enhancing SEU Performance
SRAM structures are inherently susceptible to upsets
caused by high-energy particles encountered in space.
High-energy particles can cause an SRAM cell to change
state, resulting in the loss or corruption of a valuable
data bit. To allow users to achieve high levels of SEU
performance, Actel has developed an intellectual
property (IP) core to enhance the SEU tolerance of the
embedded SRAM within RTAX-S/SL.
This IP employs two upset-mitigation techniques:
Error Detection and Correction (EDAC)
A background memory-refresher, or scrubber
The EDAC IP employs the use of shortened Hamming
Codes to provide the user with single-error correction/
double-error detection (SEC/DED) capabilities. These
shortened Hamming Codes provide the user with an
implementation that has a reduced number of logic
levels and less complexity than traditional Hamming
Codes. The SmartGen-generated EDAC IP supports RAM
widths of 8, 16, and 32 bits, with a variable RAM depth
from 256 to 4k words.
The memory scrubber circuitry has also been embedded
in the EDAC IP as an optional block. The scrubber
circuitry periodically refreshes memory in the
background to ensure that no corruption of its contents
has taken place while the memory was not in use. The
refresh rate can be set by the user.
The use of EDAC IP combined with the embedded
memory scrubber circuitry, gives the RTAX-S/SL an SEU
radiation performance level of better than 10-10 errors/
bit-day. See the application note Using EDAC RAM for
RadTolerant RTAX-S/SL FPGAs and Axcelerator FPGAs.
RTAX-S/SL RadTolerant FPGAs
2-84 v5.4
Timing Model and Waveforms
Table 2-87 SRAM Model
Figure 2-49 RAM Write Timing Waveforms
Figure 2-50 RAM Read Timing Waveforms
WD RD
RA
REN
WA
WCLK RCLK
WEN
WCLK
tWCKP
tWxxSUtWxxHD
tWCKH tWCKL
WA<11:0>, WD<35:0>, WEN<4:0>
RCLK
RA<11:0>, REN<4:0>
RD <35:0>
tRxxSU tRxxHD
tRCKP tRCKH tRCKL
tRCK2RD1 tRCK2RD2
RTAX-S/SL RadTolerant FPGAs
v5.4 2-85
Timing Characteristics
Table 2-88 One RAM Block (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
–1 Speed Std. Speed
UnitsMin. Max. Min. Max.
Write Mode
tWDASU Write Data Setup vs. WCLK 1.45 1.70 ns
tWDAHD Write Data Hold vs. WCLK 0.30 0.35 ns
tWADSU Write Address Setup vs. WCLK 1.45 1.70 ns
tWADHD Write Address Hold vs. WCLK 0.00 0.00 ns
tWENSU Write Enable Setup vs. WCLK 1.45 1.70 ns
tWENHD Write Enable Hold vs. WCLK 0.30 0.35 ns
tWCKH WCLK Minimum High Pulse Width 0.75 0.75 ns
tWCLKL WCLK Minimum Low Pulse Width 0.88 0.88 ns
tWCKP WCLK Minimum Period 1.63 1.63 ns
Read Mode
tRADSU Read Address Setup vs. RCLK 1.08 1.27 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 1.08 1.27 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.77 2.08 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 2.90 3.41 ns
tRCLKH RCLK Minimum High Pulse Width 0.77 0.77 ns
tRCLKL RCLK Minimum Low Pulse Width 0.93 0.93 ns
tRCKP RCLK Minimum Period 1.70 1.70 ns
Note: Timing data for this single block RAM has a depth of 4,096. For all other combinations, use Actel's SmartTime tool.
RTAX-S/SL RadTolerant FPGAs
2-86 v5.4
Table 2-89 Two RAM Blocks Are Cascaded (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
Write Mode
tWDASU Write Data Setup vs. WCLK 1.86 2.19 ns
tWDAHD Write Data Hold vs. WCLK 0.00 0.00 ns
tWADSU Write Address Setup vs. WCLK 1.86 2.19 ns
tWADHD Write Address Hold vs. WCLK 0.00 0.00 ns
tWENSU Write Enable Setup vs. WCLK 1.86 2.19 ns
tWENHD Write Enable Hold vs. WCLK 0.00 0.00 ns
tWCKH WCLK Minimum High Pulse Width 0.75 0.75 ns
tWCLKL WCLK Minimum Low Pulse Width 1.76 1.76 ns
tWCKP WCLK Minimum Period 2.51 2.51 ns
Read Mode
tRADSU Read Address Setup vs. RCLK 2.28 2.68 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 2.28 2.68 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.92 2.26 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 3.03 3.56 ns
tRCLKH RCLK Minimum High Pulse Width 0.73 0.73 ns
tRCLKL RCLK Minimum Low Pulse Width 1.89 1.89 ns
tRCKP RCLK Minimum Period 2.62 2.62 ns
Note: Timing data for two cascaded RAM blocks uses a depth of 8,192. For all other combinations, use Actel's SmartTime tool.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-87
Table 2-90 Four RAM Blocks Are Cascaded (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
Write Mode
tWDASU Write Data Setup vs. WCLK 3.17 3.73 ns
tWDAHD Write Data Hold vs. WCLK 0.00 0.00 ns
tWADSU Write Address Setup vs. WCLK 3.17 3.73 ns
tWADHD Write Address Hold vs. WCLK 0.00 0.00 ns
tWENSU Write Enable Setup vs. WCLK 3.17 3.73 ns
tWENHD Write Enable Hold vs. WCLK 0.00 0.00 ns
tWCKH WCLK Minimum High Pulse Width 0.75 0.75 ns
tWCLKL WCLK Minimum Low Pulse Width 2.51 2.51 ns
tWCKP WCLK Minimum Period 3.26 3.26 ns
Read Mode
tRADSU Read Address Setup vs. RCLK 4.13 4.85 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 4.13 4.85 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 3.16 3.72 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 3.79 4.46 ns
tRCLKH RCLK Minimum High Pulse Width 0.73 0.73 ns
tRCLKL RCLK Minimum Low Pulse Width 2.96 2.96 ns
tRCKP RCLK Minimum Period 3.69 3.69 ns
Note: Timing data for four cascaded RAM blocks uses a depth of 16,384. For all other combinations, use Actel's SmartTime
tool.
RTAX-S/SL RadTolerant FPGAs
2-88 v5.4
Table 2-91 Eight RAM Blocks Are Cascaded (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
Write Mode
tWDASU Write Data Setup vs. WCLK 7.74 9.09 ns
tWDAHD Write Data Hold vs. WCLK 0.00 0.00 ns
tWADSU Write Address Setup vs. WCLK 7.74 9.09 ns
tWADHD Write Address Hold vs. WCLK 0.00 0.00 ns
tWENSU Write Enable Setup vs. WCLK 7.74 9.09 ns
tWENHD Write Enable Hold vs. WCLK 0.00 0.00 ns
tWCKH WCLK Minimum High Pulse Width 0.75 0.75 ns
tWCLKL WCLK Minimum Low Pulse Width 5.13 5.13 ns
tWCKP WCLK Minimum Period 5.88 5.88 ns
Read Mode
tRADSU Read Address Setup vs. RCLK 9.04 10.63 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 9.04 10.63 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 4.54 5.33 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 6.60 7.76 ns
tRCLKH RCLK Minimum High Pulse Width 0.73 0.73 ns
tRCLKL RCLK Minimum Low Pulse Width 5.77 5.77 ns
tRCKP RCLK Minimum Period 6.50 6.50 ns
Note: Timing data for eight cascaded RAM blocks uses a depth of 32,768. For all other combinations, use Actel's SmartTime
tool.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-89
Table 2-92 Sixteen RAM Blocks Are Cascaded (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
Write Mode
tWDASU Write Data Setup vs. WCLK 22.14 26.03 ns
tWDAHD Write Data Hold vs. WCLK 0.30 0.35 ns
tWADSU Write Address Setup vs. WCLK 22.14 26.03 ns
tWADHD Write Address Hold vs. WCLK 0.30 0.35 ns
tWENSU Write Enable Setup vs. WCLK 22.14 26.03 ns
tWENHD Write Enable Hold vs. WCLK 0.30 0.35 ns
tWCKH WCLK Minimum High Pulse Width 1.31 1.54 ns
tWCLKL WCLK Minimum Low Pulse Width 23.34 27.44 ns
tWCKP WCLK Minimum Period 46.69 54.88 ns
Read Mode
tRADSU Read Address Setup vs. RCLK 24.27 28.53 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 24.27 28.53 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 17.02 20.01 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 18.62 21.89 ns
tRCLKH RCLK Minimum High Pulse Width 1.27 1.49 ns
tRCLKL RCLK Minimum Low Pulse Width 25.10 29.51 ns
tRCKP RCLK Minimum Period 50.21 59.02 ns
Note: Timing data for sixteen cascaded RAM blocks uses a depth of 65,536. For all other combinations, use Actel's SmartTime
tool.
RTAX-S/SL RadTolerant FPGAs
2-90 v5.4
FIFO
Every memory block has its own embedded FIFO
controller. Each FIFO block has one read port and one
write port. This embedded FIFO controller uses no
internal FPGA logic and features:
Glitch-free FIFO Flags
Gray-code address counters/pointers to prevent
metastability problems
Overflow and underflow control
Both ports are configurable in various size from 4kx1 to
128x36, similar to the RAM block size. Each port is fully
synchronous.
Read and write operations can be completely
independent. Data on the appropriate WD pins are
written to the FIFO on every active WCLK edge as long as
WEN is high. Data is read from the FIFO and output on
the appropriate RD pins on every active RCLK edge as
long as REN is asserted.
The FIFO block offers programmable Almost-Empty
(AEMPTY) and Almost-Full (AFULL) flags as well as
EMPTY and FULL flags (Figure 2-51):
The FULL flag is synchronous to WCLK. It allows
the FIFO to inhibit writing when full.
The EMPTY flag is synchronous to RCLK. It allows
the FIFO to inhibit reading at the empty condition.
Note: Actel recommends that the WCLK and the RCLK
are in phase with each other. For more information refer
to the application note, EMPTY and FULL Flag Behaviors
of the Axcelerator FIFO Controller.
Gray code counters are used to prevent metastability
problems associated with flag logic. The depth of the
FIFO is dependent on the data width and the number of
memory blocks used to create the FIFO. The write
operations to the FIFO are synchronous with respect to
the WCLK, and the read operations are synchronous with
respect to the RCLK.
The FIFO block may be reset to the empty state
The FIFO control unit was not implemented with SEU-
hardened registers. Designs requiring high SEU tolerance
should implement the FIFO control unit from hardened
core logic.
Figure 2-51 RTAX-S/SL RAM with Embedded FIFO Controller
CNT 16
E
CNT 16
E=
=
AFVAL
AEVAL
>
> =
SUB 16
RCLK
WD
WCLK
CLR
FWEN
FREN
DEPTH[3:0]
RD [n-1:0]
WD [n-1:0]
RCLK
WCLK
RA [J:0]
WA [J:0]
REN
WEN
FULL
AEMPTY
AFULL
EMPTY
RD
PIPE
RW[2:0]
WW[2:0]
WIDTH[2:0]
RAM
RTAX-S/SL RadTolerant FPGAs
v5.4 2-91
FIFO Flag Logic
The FIFO is user configurable into various depths and
widths. Figure 2-52 shows the FIFO address counter
details.
Bits 11 to 5 are active for all modes.
As the data word size is reduced, more least-
significant bits are added to the address.
As the number of cascaded blocks increases, the
number of significant bits in the address increases.
For example, if four blocks are cascaded as a 1kx16 FIFO
with each block having a 1kx4 aspect ratio, bits 11 to 2 of
the address will be used to specify locations within each
RAM block, whereas bits 13 and 12 will be used to specify
the RAM block.
The AFULL and AEMPTY flag threshold values are
programmable. The threshold values are AFVAL and
AEVAL, respectively. Although the trigger threshold for
each flag is defined with eight bits, the effective number
of threshold bits in the comparison depends on the
configuration. Note that the effective number of
threshold bits corresponds to the range of active bits in
the FIFO address space (Table 2-93).
Note: Inactive counter bits are set to zero.
Figure 2-52 FIFO Address Counters
Table 2-93 FIFO Flag Logic
Mode Inactive AEVAL/AFVAL bits Inactive DIFF bits (set to 0) DIFF comparison to AFVAL/AEVAL
Non-cascade [7:4] [15:12] DIFF[11:8] withAE/FVAL[3:0]
Cascade 2 blocks [7:5] [15:13] DIFF[12:8] withAE/FVAL[4:0]
Cascade 4 blocks [7:6] [15:14] DIFF[13:8] withAE/FVAL[5:0]
Cascade 8 blocks [7] [15] DIFF[14:8] withAE/FVAL[6:0]
Cascade 16 blocks None None DIFF[15:8] withAE/FVAL[7:0]
CNTR [12]
activate
FIFO Address Counters
>> REN [4:0], RAD [11:0]
>> WEN [4:0], WAD [11:0]
[12:W] [13:W]
[14:W]
[15:W]
128x36 1kx4512x9256x18
[11:5]
[11:4] [11:3]
[11:2]
[11:1] [11:0]
4kx1
2kx2
Variable Active Address Space
CNTR [15]
activate
CNTR [2]
activate
CNTR [3]
activate
CNTR [4]
activate
CNTR [11:5]
always active
CNTR [13]
activate
CNTR [14]
activate
CNTR [0]
activate
CNTR [1]
activate
Cas 16 blks
by 1
by 2
by 4
by 9
by 18
by 36
Cas 2 blks
Cas 4 blks
Cas 8 blks
Mode when
Active
Counter
Bits
R/W EN[3]
R/W ADD[0]
R/W ADD[1]
R/W ADD[2]
R/W ADD[3]
R/W ADD[7:5]
R/W ADD[11:8]
R/W EN[0]
R/W EN[1]
R/W EN[2]
R/W ADD[4]
FIFO Address
AEVAL/AFVAL[7]
not compared
not compared
not compared
not compared
not compared
not compared
AEVAL/AFVAL[3:0]
AEVAL/AFVAL[4]
AEVAL/AFVAL[5]
AEVAL/AFVAL[6]
CNTR [15:0]
Alignment of
Threshold bits
RTAX-S/SL RadTolerant FPGAs
2-92 v5.4
Figure 2-53 illustrates flag generation. The Verilog statements for flag assignment are:
assign AF = (DIFF[15:0] >={AFVAL[7:0],8'b00000000})?1:0;
assign AE = ({AEVAL[7:0],8'b00000000}>=DIFF[15:0])?1:0;
The number of DIFF-bits active depends on the configuration depth and width (Table 2-94). The active-high CLR pin is
used to reset the FIFO to the empty state, which sets FULL and AFULL low, and EMPTY and AEMPTY high.
Assuming that the EMPTY flag is not set, new data is read from the FIFO when REN is valid on the active edge of the
clock. Write and read transfers are described with timing requirements in "Timing Characteristics" on page 2-95. For
more information refer to the application note, EMPTY and FULL Flag Behaviors of the Axcelerator FIFO Controller.
Figure 2-53 ALMOST-EMPTY and ALMOST-FULL Logic
Table 2-94 Number of Available Configuration Bits
Number of Blocks Block DxW Number of AEVAL/AFVAL Bits
11x14
21x24
22x15
41x44
42x25
44x16
81x84
82x45
84x26
88x17
16 1x16 4
16 2x8 5
16 4x4 6
16 8x2 7
16 16x1 8
WCNTR
[15:0]
WCLK
RCNTR
[15:0]
RCLK
16
16
X
Y
X
Y
AEMPTY
AFULL
X>=Y
(16-bit)
DIFF [15:0]
AEVAL [7:0], GND [7:0] (MSB....LSB)
AFVAL [7:0], GND [7:0] (MSB....LSB)
RTAX-S/SL RadTolerant FPGAs
v5.4 2-93
Glitch Elimination
An analog filter is added to each FIFO controller to
guarantee, glitch-free FIFO-flag logic.
Overflow and Underflow Control
The counter MSB keeps track of the difference between
the read address (RA) and the write address (WA). The
EMPTY flag is set when the read and write addresses are
equal. To prevent underflow, the write address is double-
sampled by the read clock prior to comparison with the
read address (part A in Figure 2-54). To prevent overflow,
the read address is double-sampled by the write clock
prior to comparison to the write address (part B in
Figure 2-54).
FIFO Configurations
Unlike the RAM, the FIFO's write width and read width
cannot be specified independently. For the FIFO, the
write and read widths must be the same. The WIDTH pins
are used to specify one of six allowable word widths, as
shown in Table 2-95.
The DEPTH pins allow RAM cells to be cascaded to create
larger FIFOs. The four pins allow depths of 2, 4, 8, and 16
to be specified. Table 2-84 on page 2-81 describes the
FIFO depth options for various data width and memory
blocks.
Interface
Figure 2-55 shows a logic block diagram of the RTAX-S/SL
FIFO module.
Cascading FIFO Blocks
FIFO blocks can be cascaded to create deeper FIFO
functions. When building larger FIFO blocks, if the word
width can be fractured in a multi-bit FIFO, the fractured
word configuration is recommended over a cascaded
configuration. For example, 256x36 can be configured as
two blocks of 256x18. This should be taken into account
when building the FIFO blocks manually. However, when
using SmartGen, the user only needs to specify the depth
and width of the necessary FIFO blocks. SmartGen
automatically configures these blocks to optimize
performance.
Clock
As with RAM configuration, the RCLK and WCLK pins
have independent polarity selection
Figure 2-54 Overflow and Underflow Control
AB
=EMPTY
WA
RA
RCLK =FULL
RA
WA
WCLK
Table 2-95 FIFO Width Configurations
WIDTH(2:0) WxD
000 1x4k
001 2x2k
010 4x1k
011 9x512
100 18x256
101 36x128
11x reserved
Figure 2-55 FIFO Block Diagram
DEPTH [3:0] RD [35:0]
FULL
EMPTY
AFULL
AEMPTY
WIDTH [2:0]
FWEN
FREN
PIPE
RCLK
WD [35:0]
AEVAL [7:0]
AFVAL [7:0]
WCLK
CLR
RTAX-S/SL RadTolerant FPGAs
2-94 v5.4
Table 2-96 FIFO Signal Description
Signal Direction Description
WCLK Input Write clock (active either edge).
FWEN Input FIFO write enable. When this signal is asserted, the WD bus data is latched into the
FIFO, and the internal write counters are incremented.
WD[N-1:0] Input Write data bus. The value N is dependent on the RAM configuration and can be 1,
2, 4, 9, 18, or 36.
FULL Output Active high signal indicating that the FIFO is FULL. When this signal is set,
additional write requests are ignored.
AFULL Output Active high signal indicating that the FIFO is AFULL.
AFVAL Input 8-bit input defining the AFULL value of the FIFO.
RCLK Input Read clock (active either edge).
FREN Input FIFO read enable.
RD[N-1:0] Output Read data bus. The value N is dependent on the RAM configuration and can be 1,
2, 4, 9, 18, or 36.
EMPTY Output Empty flag indicating that the FIFO is EMPTY. When this signal is asserted,
attempts to read the FIFO will be ignored.
AEMPTY Output Active high signal indicating that the FIFO is AEMPTY.
AEVAL Input 8-bit input defining the almost-empty value of the FIFO.
PIPE Input Sets the pipe option on or off.
CLR Input Active high clear input.
DEPTH Input Determines the depth of the FIFO and the number of FIFOs to be cascaded.
WIDTH Input Determines the width of the dataword / width of the FIFO, and the number of the
FIFOs to be cascaded.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-95
Timing Characteristics
Figure 2-56 FIFO Model
Figure 2-57 FIFO Write Timing
WD
FWEN
FREN
RCLK
WCLK
RD
AFULL
EMPTY
AEMPTY
FULL
Clr
tWCKP
tWSU tWHD
tWCK2xF
tCLR2xF
tCLR2HF
tWCKH tWCKL
WCLK
CLR
WD<35:0>, FWEN
EMPTY, AEMPTY, AFULL, FULL
RTAX-S/SL RadTolerant FPGAs
2-96 v5.4
Figure 2-58 FIFO Read Timing
RCLK
CLR
tRCKP
tRSU tRHD
tRCK2RD1 tRCK2RD2
tCK2xF
tCLR2xF
tCLRHF
tRCKH tRCKL
FREN
EMPTY, AEMPTY, AFULL, FULL
RD <35:0>
RTAX-S/SL RadTolerant FPGAs
v5.4 2-97
Table 2-97 One FIFO Block (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
FIFO Module Timing
tWSU Write Setup 15.26 17.93 ns
tWHD Write Hold 0.30 0.35 ns
tWCKH WCLK High 0.75 0.75 ns
tWCKL WCLK Low 0.88 0.88 ns
tWCKP Minimum WCLK Period 1.63 1.63
tRSU Read Setup 15.58 18.31 ns
tRHD Read Hold 0.00 0.00 ns
tRCKH RCLK High 0.77 0.77 ns
tRCKL RCLK Low 0.93 0.93 ns
tRCKP Minimum RCLK period 1.70 1.70
tCLR2FF Clear-to-flag (EMPTY/FULL) 2.57 3.02 ns
tCLR2AF Clear-to-flag (AEMPTY/AFULL) 5.88 6.91 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 2.85 3.35 ns
tCK2AF Clock-to-flag (AEMPTY/AFULL) 6.75 7.94 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.77 2.08 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 3.50 4.12 ns
Note: Timing data for this single cascaded FIFO block uses a depth of 4,096. For all other combinations, please use Actel's Timing
software.
Table 2-98 Two FIFO Blocks Are Cascaded (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
FIFO Module Timing
tWSU Write Setup 18.40 21.64 ns
tWHD Write Hold 0.00 0.00 ns
tWCKH WCLK High 0.75 0.75 ns
tWCKL WCLK Low 1.76 1.76 ns
tWCKP Minimum WCLK Period 2.51 2.51
tRSU Read Setup 19.18 22.55 ns
tRHD Read Hold 0.00 0.00 ns
tRCKH RCLK High 0.73 0.73 ns
tRCKL RCLK Low 1.89 1.89 ns
tRCKP Minimum RCLK period 2.62 2.62
tCLR2FF Clear-to-flag (EMPTY/FULL) 2.57 3.02 ns
tCLR2AF Clear-to-flag (AEMPTY/AFULL) 5.88 6.91 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 2.85 3.35 ns
tCK2AF Clock-to-flag (AEMPTY/AFULL) 6.75 7.94 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.92 2.26 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 3.03 3.56 ns
Note: Timing data for two cascaded FIFO blocks uses a depth of 8,192. For all other combinations, please use Actel's Timing software.
RTAX-S/SL RadTolerant FPGAs
2-98 v5.4
Table 2-99 Four FIFO Blocks Are Cascaded (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
FIFO Module Timing
tWSU Write Setup 19.55 22.98 ns
tWHD Write Hold 0.00 0.00 ns
tWCKH WCLK High 0.75 0.75 ns
tWCKL WCLK Low 2.51 2.51 ns
tWCKP Minimum WCLK Period 3.26 3.26
tRSU Read Setup 20.44 24.03 ns
tRHD Read Hold 0.00 0.00 ns
tRCKH RCLK High 0.73 0.73 ns
tRCKL RCLK Low 2.96 2.96 ns
tRCKP Minimum RCLK period 3.69 3.69
tCLR2FF Clear-to-flag (EMPTY/FULL) 2.57 3.02 ns
tCLR2AF Clear-to-flag (AEMPTY/AFULL) 5.88 6.91 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 2.85 3.35 ns
tCK2AF Clock-to-flag (AEMPTY/AFULL) 6.75 7.94 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 3.16 3.72 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 3.79 4.46 ns
Note: Timing data for four cascaded FIFO blocks uses a depth of 16,384. For all other combinations, please use Actel's Timing software.
Table 2-100 Eight FIFO Blocks Are Cascaded (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter
'–1' Speed 'Std' Speed
UnitsDescription Min. Max. Min. Max.
FIFO Module Timing
tWSU Write Setup 20.69 24.32 ns
tWHD Write Hold 0.00 0.00 ns
tWCKH WCLK High 0.75 0.75 ns
tWCKL WCLK Low 5.13 5.13 ns
tWCKP Minimum WCLK Period 5.88 5.88
tRSU Read Setup 21.71 25.52 ns
tRHD Read Hold 0.00 0.00 ns
tRCKH RCLK High 0.73 0.73 ns
tRCKL RCLK Low 5.77 5.77 ns
tRCKP Minimum RCLK period 6.50 6.50
tCLR2FF Clear-to-flag (EMPTY/FULL) 2.57 3.02 ns
tCLR2AF Clear-to-flag (AEMPTY/AFULL) 5.88 6.91 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 2.85 3.35 ns
tCK2AF Clock-to-flag (AEMPTY/AFULL) 6.75 7.94 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 4.54 5.33 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 6.60 7.76 ns
Note: Timing data for eight cascaded FIFO blocks uses a depth of 32,768. For all other combinations, please use Actel's Timing software.
RTAX-S/SL RadTolerant FPGAs
v5.4 2-99
Building RAM and FIFO Modules
RAM and FIFO modules can be generated and included in a design in two different ways:
Using the SmartGen core generator where the user defines the depth and width of the FIFO/RAM, and then
instantiates this block into the design (please refer to the Actel SmartGen, FlashROM, Analog System Builder,
and Flash Memory System Builder User’s Guide for more information).
The alternative is to instantiate the RAM/FIFO blocks manually, using inverters for polarity control and tying all
unused data bits to ground.
Table 2-101 Sixteen FIFO Blocks are Cascaded (Worst-Case MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
Parameter Description
'–1' Speed 'Std' Speed
UnitsMin. Max. Min. Max.
FIFO Module Timing
tWSU Write Setup 21.85 25.69 ns
tWHD Write Hold 0.00 0.00 ns
tWCKH WCLK High 0.75 0.75 ns
tWCKL WCLK Low 13.40 13.40 ns
tWCKP Minimum WCLK Period 14.15 14.15
tRSU Read Setup 22.97 27.00 ns
tRHD Read Hold 0.00 0.00 ns
tRCKH RCLK High 0.73 0.73 ns
tRCKL RCLK Low 14.41 14.41 ns
tRCKP Minimum RCLK period 15.14 15.14
tCLR2FF Clear-to-flag (EMPTY/FULL) 2.57 3.02 ns
tCLR2AF Clear-to-flag (AEMPTY/AFULL) 5.88 6.91 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 2.85 3.35 ns
tCK2AF Clock-to-flag (AEMPTY/AFULL) 6.75 7.94 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 16.17 19.01 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 17.18 20.19 ns
Note: Timing data for sixteen cascaded FIFO blocks uses a depth of 65,536. For all other combinations, please use Actel's Timing
software.
RTAX-S/SL RadTolerant FPGAs
2-100 v5.4
Other Architectural Features
Charge Pump Bypass
To reduce power consumption, the internal charge pump
can be bypassed and an external power supply voltage
can be used instead. This saves the internal charge-pump
operating current, resulting in no DC current draw. The
RTAX-S/SL family devices have a dedicated "VPUMP" pin
that can be used to access an external charge pump
device. In normal chip operation, when using the
internal charge pump, VPUMP should be tied to GND.
When the voltage level on VPUMP is set to 3.3 V, the
internal charge pump is turned off, and the VPUMP
voltage will be used as the charge pump voltage.
Adequate voltage regulation (i.e., high drive, low output
impedance, and good decoupling) should be used at
VPUMP
.
JTAG
RTAX-S/SL offers a JTAG interface that is compliant with
the IEEE 1149.1 standard except for the device ID length
which is 33 bits. The user can employ the JTAG interface
for probing a design and executing any JTAG public
instructions as defined in the Table 2-102. The JTAG pins
and probes are configured as a LVTTL standard port.
Refer to the IEEE Standard 1149.1 (JTAG) in the
Axcelerator Family application note, which also applies
to the RTAX-S/SL family of devices. The JTAG pins
should not be left floating on flight systems.
Interface
The interface consists of four inputs: Test Mode Select
(TMS), Test Data In (TDI), Test Clock (TCK), TAP Controller
Reset (TRST), and an output, Test Data Out (TDO). TMS,
TDI, and TRST have on-chip pull-up resistors.
TRST
TRST (Test-Logic Reset) is an active-low asynchronous
reset signal to the TAP controller. The TRST input can be
used to reset the Test Access Port (TAP) Controller to the
TRST state. The TAP Controller can be held at this state
permanently by grounding the TRST pin. To hold the
JTAG TAP controller in the TRST state, it is recommended
to connect TRST directly to ground for flight.
There is an optional internal pull-up resistor available for
the TRST input that can be set by the user at
programming. Care should be exercised when using this
option in combination with an external tie-off to
ground.
An on-chip power-on-reset (POWRST) circuit is included.
POWRST has the same function as "TRST," but it only
occurs at power-up or during recovery from a VCCA and/
or VCCDA voltage drop.
TDO
TDO is normally tristated, and it is active only when the
TAP controller is in the "Shift_DR" state or "Shift_IR"
state. The least significant bit of the selected register
(i.e., IR or DR) is clocked out to TDO first by the falling
edge of TCK.
TAP Controller
The TAP Controller is compliant with the IEEE Standard
1149.1. It is a state machine of 16 states that controls the
Instruction Register (IR) and the Data Registers (such as
Boundary-Scan Register, IDCODE, USRCODE, BYPASS,
etc.). The TAP Controller steps into one of the states
depending on the sequence of TMS at the rising edges of
TCK.
Instruction Register (IR)
The IR has five bits (IR4 to IR0). At the TRST state, IR is
reset to IDCODE. Each time when IR is selected, it goes
through "select IR-Scan," "Capture-IR," "Shift-IR," all the
way through "Update-IR." When there is no test error,
the first five data bits coming out of TDO during the
"Shift-IR" will be "10111." If a test error occurs, the last
three bits will contain one to three zeroes corresponding
to negatively asserted signals: "TDO_ERRORB,"
"PROBA_ERRORB," and "PROBB_ERRORB." The error(s)
will be erased when the TAP is at the "Update-IR" or the
TRST state. When in user mode start-up sequence, if the
micro-probe has not been used, the "PROBA_ERRORB" is
used as a "Power-up done successfully" flag.
During flight, the following configurations for all JTAG
and Probe pins are recommended (Table 2-103 on
page 2-101).
Table 2-102 JTAG Instruction Code
Instruction (IR4:IR0) Binary Code
EXTEST 00000
PRELOAD / SAMPLE 00001
INTEST 00010
USERCODE 00011
IDCODE 00100
HIGHZ 01110
CLAMP 01111
DIAGNOSTIC 10000
Reserved All others
BYPASS 11111
RTAX-S/SL RadTolerant FPGAs
v5.4 2-101
Data Registers (DRs)
Data registers are distributed throughout the chip. They
store testing/programming vectors. The MSB of a data
register is connected to TDI, while the LSB is connected
to TDO. There are different types of data registers.
Descriptions of the main registers are as follow:
1. IDCODE:
The IDCODE is a 33-bit hard coded JTAG Silicon
Signature. It is a hardwired device ID code, which
contains the Actel identity, part number, and version
number in a specific JTAG format. Refer to the IEEE
Standard 1149.1 (JTAG) in the Axcelerator Family
application note for more information.
2. USERCODE:
The USERCODE is a 33-bit programmable JTAG Silicon
Signature. It is a supplementary identity code for the
user to program information to distinguish different
programmed parts. USERCODE fuses will read out as
"zeroes" when not programmed, so only the "1" bits
need to be programmed. Refer to the IEEE Standard
1149.1 (JTAG) in the Axcelerator Family application
note for more information.
3. Boundary-Scan Register (BSR):
Each I/O contains three BSR Cells. Each cell has a shift
register bit, a latch, and two MUXes. The boundary-
scan cells are used for the Output-enable (E), Output
(O), and Input (I) registers. The bit order of the
boundary-scan cells for each of them is E-O-I. The
boundary-scan cells are then chained serially to form
the BSR. The length of the BSR is the number of I/Os
in the die (not the package) multiplied by three. This
excludes special function pins (TRST, TCK, TMS, TDI,
TDO, PRA, PRB, PRC, PRD, and VPUMP).
4. Bypass Register (BYR):
This is the "1-bit" register. It is used to shorten the
TDI-TDO serial chain in board-level testing to only
one bit per device not being tested. It is also selected
for all "reserved" or unused instructions.
Probing
Internal activities of the JTAG interface can be observed
via the Silicon Explorer II probes: "PRA," "PRB," "PRC,"
and "PRD."
Special Fuses
Security
Actel antifuse FPGAs, with FuseLock technology, offer
the highest level of design security available in a
programmable logic device. Since antifuse FPGAs are live
at power-up, there is no bitstream that can be
intercepted, and no bitstream or programming data is
ever downloaded to the device during power-up, thus
making device cloning impossible. In addition, special
security fuses are hidden throughout the fabric of the
device and may be programmed by the user to thwart
attempts to reverse engineer the device by attempting
to exploit either the programming or probing interfaces.
Both invasive and noninvasive attacks against an RTAX-S/
SL device that access or bypass these security fuses will
destroy access to the rest of the device. (refer to the
Design Security in Nonvolatile Flash and Antifuse FPGAs
white paper).
Look for this symbol to ensure your valuable IP is secure.
Table 2-103 JTAG and Probe Pin Recommendations for Flight
JTAG and Probe Pins Configurations
TCK Can be hardwired to VCCDA or ground
Can be driven to VCCDA or ground
Must not be left unterminated
TDO Must be left unconnected
TDI Can be hardwired or driven to VCCDA
Can be left unconnected (equipped with internal 10 k pull-up resistor)
TMS Can be hardwired or driven to VCCDA
Can be left unconnected (equipped with internal 10 k pull-up resistor)
TRST Must be hardwired to ground (equipped with optional internal 10 k pull-up resistor)
PRA/B/C/D Must be left unconnected
Figure 2-59 FuseLock Logo
e
u
RTAX-S/SL RadTolerant FPGAs
2-102 v5.4
To ensure maximum security in RTAX-S/SL devices, it is
recommended that the user program the device security
fuse (SFUS). When programmed, the Silicon Explorer II
testing probes are disabled to prevent internal probing,
and the programming interface is also disabled. All JTAG
public instructions are still accessible by the user.
For more information, refer to Actel’s Implementation of
Security in Actel Antifuse FPGAs application note.
Global Set Fuse
The Global Set Fuse determines if all R-cells and I/O
Registers (InReg, OutReg, and EnReg) are either cleared
or preset by driving the GCLR and GPSET inputs of all
R-cells and I/O Registers ("R-Cell" on page 2-66). Default
setting is to clear all registers (GCLR = 0 and GPSET =1) at
device power-up. When the GBSETFUS option is checked
during FUSE file generation, all registers are preset
(GCLR = 1 and GPSET= 0). A local CLR or PRESET will take
precedence overt this setting. Both pins are pulled HIGH
during normal device operation. For use details, see
Libero IDE online help.
Silicon Explorer II Probe Interface
Silicon Explorer II is an integrated hardware and
software solution that, in conjunction with the Designer
tools, allows users to examine any of the internal nets
(except I/O registers) of the device while it is operating in
a prototype or a production system. The user can probe
up to four nodes at a time without changing the
placement and routing of the design and without using
any additional device resources. Highlighted nets in
Designer’s ChipPlanner can be accessed using Silicon
Explorer II in order to observe their real time values.
Silicon Explorer II's noninvasive method does not alter
timing or loading effects, thus shortening the debug
cycle. In addition, Silicon Explorer II does not require
relayout or additional MUXes to bring signals out to an
external pin, which is necessary when using
programmable logic devices from other suppliers. By
eliminating multiple place-and-route program cycles the
integrity of the design is maintained throughout the
debug process.
Each member of the RTAX-S/SL family has four external
pads: PRA, PRB, PRC, and PRD. These can be used to bring
out four probe signals from the RTAX-S/SL device. Each
core tile can has up to two probe signals. To disallow
probing, the SFUS security fuse in the silicon signature
has to be programmed (see "Special Fuses" on page 2-
101 for more information).
Silicon Explorer II connects to the host PC using a
standard serial port connector. Connections to the circuit
board are achieved using a nine-pin D-Sub connector
(Figure 1-9 on page 1-8). Once the design has been
placed-and-routed, and the RTAX-S/SL device has been
programmed, Silicon Explorer II can be connected and
the Explorer software can be launched.
Silicon Explorer II comes with an additional optional PC
hosted tool that emulates an 18-channel logic analyzer.
Four channels are used to monitor four internal nodes,
and 14 channels are available to probe external signals.
The software included with the tool provides the user
with an intuitive interface that allows for easy viewing
and editing of signal waveforms.
Programming
Device programming is supported through the Silicon
Sculptor 3, a single-site, robust and compact device
programmer for the PC. Up to four Silicon Sculptor 3s can
be daisy-chained and controlled from a single PC host.
With standalone software for the PC, Silicon Sculptor 3 is
designed to allow concurrent programming of multiple
units from the same PC when daisy-chained.
Silicon Sculptor 3 programs devices independently to
achieve the fastest programming times possible. Each
fuse is verified by Silicon Sculptor 3 to ensure correct
programming. Furthermore, at the end of programming,
there are integrity tests that are run to ensure that
programming was completed properly. Not only does it
test programmed and nonprogrammed fuses, Silicon
Sculptor 3 also provides a self-test to test its own
hardware extensively.
Programming an RTAX-S/SL device using Silicon Sculptor
3 is similar to programming any other antifuse device.
The procedure is as follows:
1. Load the AFM file.
2. Select the device to be programmed.
3. Begin programming.
When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via our In-House
Programming Center.
For more details on programming the RTAX-S/SL devices,
please refer to the Silicon Sculptor User’s Guide.
RTAX-S/SL RadTolerant FPGAs
v5.4 3-1
Package Pin Assignments
208-Pin CQFP
Note
For Package Manufacturing and Environmental information, visit the Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Figure 3-1 208-Pin CQFP (Top View)
Ceramic
Tie Bar
208-Pin CQFP
1
2
3
4
49
50
51
52
53
54
55
56
101
102
103
104
156
155
154
153
108
107
106
105
208
207
206
205
160
159
158
157
Pin 1
RTAX-S/SL RadTolerant FPGAs
3-2 v5.4
208 CQFP
RTAX250S/SL Function
Pin
Number
Bank 0
IO02NB0F0 197
IO03NB0F0 198
IO03PB0F0 199
IO12NB0F0/HCLKAN 191
IO12PB0F0/HCLKAP 192
IO13NB0F0/HCLKBN 185
IO13PB0F0/HCLKBP 186
Bank 1
IO14NB1F1/HCLKCN 180
IO14PB1F1/HCLKCP 181
IO15NB1F1/HCLKDN 174
IO15PB1F1/HCLKDP 175
IO16NB1F1 170
IO16PB1F1 171
IO24NB1F1 165
IO24PB1F1 166
IO26NB1F1 161
IO26PB1F1 162
IO27NB1F1 159
IO27PB1F1 160
Bank 2
IO29NB2F2 151
IO29PB2F2 153
IO30NB2F2 152
IO30PB2F2 154
IO31PB2F2 148
IO32NB2F2 146
IO32PB2F2 147
IO34NB2F2 144
IO34PB2F2 145
IO39NB2F2 139
IO39PB2F2 140
IO40PB2F2 141
IO41NB2F2 137
IO41PB2F2 138
IO43NB2F2 132
IO43PB2F2 134
IO44NB2F2 131
IO44PB2F2 133
Bank 3
IO45NB3F3 127
IO45PB3F3 129
IO46NB3F3 126
IO46PB3F3 128
IO48NB3F3 122
IO48PB3F3 123
IO50NB3F3 120
IO50PB3F3 121
IO55NB3F3 116
IO55PB3F3 117
IO57NB3F3 114
IO57PB3F3 115
IO59NB3F3 110
IO59PB3F3 111
IO60NB3F3 108
IO60PB3F3 109
IO61NB3F3 106
IO61PB3F3 107
Bank 4
IO62NB4F4 100
IO62PB4F4 103
IO63NB4F4 101
IO63PB4F4 102
IO64NB4F4 96
IO64PB4F4 97
IO72NB4F4 91
IO72PB4F4 92
IO74NB4F4/CLKEN 87
IO74PB4F4/CLKEP 88
IO75NB4F4/CLKFN 81
IO75PB4F4/CLKFP 82
Bank 5
IO76NB5F5/CLKGN 76
208 CQFP
RTAX250S/SL Function
Pin
Number
IO76PB5F5/CLKGP 77
IO77NB5F5/CLKHN 70
IO77PB5F5/CLKHP 71
IO78NB5F5 66
IO78PB5F5 67
IO86NB5F5 62
IO87NB5F5 60
IO87PB5F5 61
IO88NB5F5 56
IO88PB5F5 57
IO89NB5F5 54
IO89PB5F5 55
Bank 6
IO91NB6F6 47
IO91PB6F6 49
IO92NB6F6 48
IO92PB6F6 50
IO93NB6F6 42
IO93PB6F6 43
IO94PB6F6 44
IO96NB6F6 40
IO96PB6F6 41
IO101NB6F6 35
IO101PB6F6 36
IO102PB6F6 37
IO103NB6F6 33
IO103PB6F6 34
IO105NB6F6 28
IO105PB6F6 30
IO106NB6F6 27
IO106PB6F6 29
Bank 7
IO107NB7F7 23
IO107PB7F7 25
IO108NB7F7 22
IO108PB7F7 24
IO110NB7F7 18
208 CQFP
RTAX250S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-3
IO110PB7F7 19
IO112NB7F7 16
IO112PB7F7 17
IO117NB7F7 12
IO117PB7F7 13
IO119NB7F7 10
IO119PB7F7 11
IO121PB7F7 7
IO122NB7F7 5
IO122PB7F7 6
IO123NB7F7 3
IO123PB7F7 4
Dedicated I/O
GND 9
GND 15
GND 21
GND 32
GND 39
GND 46
GND 51
GND 59
GND 65
GND 69
GND 90
GND 94
GND 99
GND 104
GND 113
GND 119
GND 125
GND 136
GND 143
GND 150
GND 155
GND 164
GND 169
GND 173
208 CQFP
RTAX250S/SL Function
Pin
Number
GND 194
GND 196
GND 201
GND 208
NC 72
NC 73
NC 74
NC 75
NC 83
NC 84
NC 85
NC 86
NC 176
NC 177
NC 178
NC 179
NC 187
NC 188
NC 189
NC 190
PRA 184
PRB 183
PRC 80
PRD 79
TCK 205
TDI 204
TDO 203
TMS 206
TRST 207
VCCA 2
VCCA 14
VCCA 38
VCCA 52
VCCA 64
VCCA 93
VCCA 118
VCCA 142
208 CQFP
RTAX250S/SL Function
Pin
Number
VCCA 156
VCCA 168
VCCA 195
VCCDA 1
VCCDA 26
VCCDA 53
VCCDA 63
VCCDA 78
VCCDA 95
VCCDA 105
VCCDA 130
VCCDA 157
VCCDA 167
VCCDA 182
VCCDA 202
VCCIB0 193
VCCIB0 200
VCCIB1 163
VCCIB1 172
VCCIB2 135
VCCIB2 149
VCCIB3 112
VCCIB3 124
VCCIB4 89
VCCIB4 98
VCCIB5 58
VCCIB5 68
VCCIB6 31
VCCIB6 45
VCCIB7 8
VCCIB7 20
VPUMP 158
208 CQFP
RTAX250S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-4 v5.4
256-Pin CQFP
Note
For Package Manufacturing and Environmental information, visit the Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Figure 3-2 256-Pin CQFP (Top View)
Ceramic
Tie Bar
256-Pin CQFP
1
2
3
4
61
62
63
64
65
66
67
68
125
126
127
128
192
191
190
189
132
131
130
129
256
255
254
253
196
195
194
193
Pin 1
RTAX-S/SL RadTolerant FPGAs
v5.4 3-5
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
Bank 0
IO01NB0F0 248
IO01PB0F0 249
IO04NB0F0 246
IO04PB0F0 247
IO05NB0F0 242
IO05PB0F0 243
IO08NB0F0 240
IO08PB0F0 241
Bank 0
IO37NB0F3 234
IO37PB0F3 235
IO41NB0F3/HCLKAN 232
IO41PB0F3/HCLKAP 233
IO42NB0F3/HCLKBN 228
IO42PB0F3/HCLKBP 229
Bank 1 -
IO43NB1F4/HCLKCN 220
IO43PB1F4/HCLKCP 221
IO44NB1F4/HCLKDN 216
IO44PB1F4/HCLKDP 217
Bank 1
IO65NB1F6 210
IO65PB1F6 211
IO69NB1F6 208
IO69PB1F6 209
IO70NB1F6 199
IO71NB1F6 204
IO71PB1F6 205
IO73NB1F6 202
IO73PB1F6 203
IO74NB1F6 197
IO74PB1F6 198
Bank 2
IO87NB2F8 187
IO87PB2F8 188
IO89PB2F8 186
Bank 2
IO107NB2F10 184
IO107PB2F10 185
IO110NB2F10 180
IO110PB2F10 181
IO111NB2F10 178
IO111PB2F10 179
IO112NB2F10 174
IO112PB2F10 175
IO113NB2F10 172
IO113PB2F10 173
IO114NB2F10 168
IO114PB2F10 169
IO115NB2F10 166
IO115PB2F10 167
IO117NB2F10 162
IO117PB2F10 163
Bank 3
IO139NB3F13 158
IO139PB3F13 159
IO141NB3F13 154
IO141PB3F13 155
IO142NB3F13 152
IO142PB3F13 153
IO145NB3F13 148
IO145PB3F13 149
IO146NB3F13 146
IO146PB3F13 147
IO147NB3F13 140
IO147PB3F13 141
IO148NB3F13 142
IO148PB3F13 143
IO149NB3F13 136
IO149PB3F13 137
Bank 3
IO165NB3F15 135
IO167NB3F15 133
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
IO167PB3F15 134
Bank 4
IO181NB4F17 124
IO181PB4F17 125
IO182NB4F17 122
IO182PB4F17 123
IO183NB4F17 118
IO183PB4F17 119
IO184NB4F17 116
IO184PB4F17 117
IO190NB4F17 112
IO190PB4F17 113
IO192NB4F17 110
IO192PB4F17 111
Bank 4
IO212NB4F19/CLKEN 104
IO212PB4F19/CLKEP 105
IO213NB4F19/CLKFN 100
IO213PB4F19/CLKFP 101
Bank 5
IO214NB5F20/CLKGN 92
IO214PB5F20/CLKGP 93
IO215NB5F20/CLKHN 88
IO215PB5F20/CLKHP 89
Bank 5
IO236NB5F22 82
IO236PB5F22 83
IO238NB5F22 80
IO238PB5F22 81
IO240NB5F22 76
IO240PB5F22 77
IO242NB5F22 74
IO242PB5F22 75
IO243NB5F22 70
IO243PB5F22 71
IO244NB5F22 68
IO244PB5F22 69
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-6 v5.4
Bank 6
IO257PB6F24 60
IO258NB6F24 58
IO258PB6F24 59
Bank 6
IO279NB6F26 56
IO279PB6F26 57
IO280NB6F26 52
IO280PB6F26 53
IO281NB6F26 50
IO281PB6F26 51
IO282NB6F26 46
IO282PB6F26 47
IO284NB6F26 44
IO284PB6F26 45
IO285NB6F26 40
IO285PB6F26 41
IO286NB6F26 38
IO286PB6F26 39
IO287NB6F26 34
IO287PB6F26 35
Bank 7 9
IO310NB7F29 30
IO310PB7F29 31
IO311NB7F29 26
IO311PB7F29 27
IO312NB7F29 24
IO312PB7F29 25
IO315NB7F29 20
IO315PB7F29 21
IO316NB7F29 18
IO316PB7F29 19
IO317NB7F29 14
IO317PB7F29 15
IO318NB7F29 12
IO318PB7F29 13
IO320NB7F29 8
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
IO320PB7F29 9
Bank 7
IO341NB7F31 6
IO341PB7F31 7
Dedicated I/O
GND 1
GND 5
GND 11
GND 17
GND 23
GND 29
GND 33
GND 37
GND 43
GND 49
GND 55
GND 62
GND 64
GND 65
GND 73
GND 79
GND 85
GND 91
GND 97
GND 103
GND 109
GND 115
GND 121
GND 128
GND 129
GND 132
GND 139
GND 145
GND 151
GND 157
GND 161
GND 165
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
GND 171
GND 177
GND 183
GND 190
GND 192
GND 193
GND 201
GND 207
GND 213
GND 219
GND 225
GND 231
GND 239
GND 245
GND 256
PRA 227
PRB 226
PRC 99
PRD 98
TCK 253
TDI 252
TDO 250
TMS 254
TRST 255
VCCA 3
VCCA 4
VCCA 22
VCCA 42
VCCA 61
VCCA 63
VCCA 84
VCCA 108
VCCA 127
VCCA 131
VCCA 150
VCCA 170
VCCA 189
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-7
VCCA 191
VCCA 212
VCCA 238
VCCDA 2
VCCDA 32
VCCDA 66
VCCDA 67
VCCDA 86
VCCDA 87
VCCDA 94
VCCDA 95
VCCDA 96
VCCDA 106
VCCDA 107
VCCDA 126
VCCDA 130
VCCDA 160
VCCDA 194
VCCDA 196
VCCDA 214
VCCDA 215
VCCDA 222
VCCDA 223
VCCDA 224
VCCDA 236
VCCDA 237
VCCDA 251
VCCIB0 230
VCCIB0 244
VCCIB1 200
VCCIB1 206
VCCIB1 218
VCCIB2 164
VCCIB2 176
VCCIB2 182
VCCIB3 138
VCCIB3 144
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
VCCIB3 156
VCCIB4 102
VCCIB4 114
VCCIB4 120
VCCIB5 72
VCCIB5 78
VCCIB5 90
VCCIB6 36
VCCIB6 48
VCCIB6 54
VCCIB7 10
VCCIB7 16
VCCIB7 28
VPUMP 195
256-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-8 v5.4
352-Pin CQFP
Note:
The 352-pin CQFP pin assignments for RTAX250S/SL, RTAX1000S/SL and RTAX2000S/SL are compatible except for the
following pins.
Figure 3-3 352-Pin CQFP
Table 3-1 Compatibility Table for the CQ352 Package
RTAX250S/SL RTAX1000S/SL RTAX2000S/SL RTAX4000S/SL
RTAX250S/SL NA 117, 148, 294, 327, 328, 91, 117, 130, 131, 148,
174, 268, 294, 307, 308,
327, 328,
Not Pin Compatible
RTAX1000S/SL 117, 148, 294, 327, 328, NA 91,130, 131, 174, 268,
307, 308
Not Pin Compatible
RTAX2000S/SL 91, 117, 130, 131, 148,
174, 268, 294, 307, 308,
327, 328,
91,130, 131, 174, 268,
307, 308
NA Not Pin Compatible
Ceramic
Tie Bar
352-Pin CQFP
1
2
3
4
41
42
43
44
45
46
47
48
49
85
86
87
88
89
90
91
92
127
128
129
130
131
132
133
134
135
173
174
175
176
264
263
262
261
180
179
178
177
223
222
221
220
219
218
217
216
215
352
351
350
349
339
338
337
336
335
334
333
332
331
268
267
266
265
Pin 1
RTAX-S/SL RadTolerant FPGAs
v5.4 3-9
Where exceptions occur, the smaller density devices have those pins designated as No Connects (NC). Customers are
therefore recommended to layout their board targeting the larger density device, in order to preserve
interchangeability between the two devices. Note: RTAX4000S is not pin compatible with any of the smaller density
devices.
For Package Manufacturing and Environmental information, visit the Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
RTAX-S/SL RadTolerant FPGAs
3-10 v5.4
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
Bank 0
IO00NB0F0 341
IO00PB0F0 342
IO01NB0F0 343
IO02NB0F0 337
IO02PB0F0 338
IO04NB0F0 335
IO04PB0F0 336
IO06NB0F0 331
IO06PB0F0 332
IO08NB0F0 325
IO08PB0F0 326
IO10NB0F0 323
IO10PB0F0 324
IO12NB0F0/HCLKAN 319
IO12PB0F0/HCLKAP 320
IO13NB0F0/HCLKBN 313
IO13PB0F0/HCLKBP 314
Bank 1
IO14NB1F1/HCLKCN 305
IO14PB1F1/HCLKCP 306
IO15NB1F1/HCLKDN 299
IO15PB1F1/HCLKDP 300
IO16NB1F1 289
IO16PB1F1 290
IO17NB1F1 295
IO17PB1F1 296
IO18NB1F1 287
IO18PB1F1 288
IO20NB1F1 283
IO20PB1F1 284
IO22NB1F1 277
IO22PB1F1 278
IO23NB1F1 281
IO23PB1F1 282
IO24NB1F1 275
IO24PB1F1 276
IO25NB1F1 271
IO25PB1F1 272
IO27NB1F1 269
IO27PB1F1 270
Bank 2
IO29NB2F2 261
IO29PB2F2 262
IO30NB2F2 259
IO30PB2F2 260
IO31NB2F2 255
IO31PB2F2 256
IO33NB2F2 249
IO33PB2F2 250
IO34NB2F2 253
IO34PB2F2 254
IO35NB2F2 247
IO35PB2F2 248
IO36NB2F2 243
IO36PB2F2 244
IO37NB2F2 241
IO37PB2F2 242
IO38NB2F2 237
IO38PB2F2 238
IO39NB2F2 235
IO39PB2F2 236
IO41NB2F2 231
IO41PB2F2 232
IO42NB2F2 229
IO42PB2F2 230
IO43NB2F2 225
IO43PB2F2 226
IO44NB2F2 223
IO44PB2F2 224
Bank 3
IO45NB3F3 217
IO45PB3F3 218
IO46NB3F3 219
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
IO46PB3F3 220
IO47NB3F3 213
IO47PB3F3 214
IO48NB3F3 211
IO48PB3F3 212
IO49NB3F3 207
IO49PB3F3 208
IO51NB3F3 205
IO51PB3F3 206
IO52NB3F3 201
IO52PB3F3 202
IO53NB3F3 199
IO53PB3F3 200
IO54NB3F3 195
IO54PB3F3 196
IO55NB3F3 193
IO55PB3F3 194
IO56NB3F3 187
IO56PB3F3 188
IO57NB3F3 189
IO57PB3F3 190
IO59NB3F3 183
IO59PB3F3 184
IO60NB3F3 181
IO60PB3F3 182
IO61NB3F3 179
IO61PB3F3 180
Bank 4
IO62NB4F4 172
IO62PB4F4 173
IO64NB4F4 166
IO64PB4F4 167
IO65NB4F4 170
IO65PB4F4 171
IO66NB4F4 164
IO66PB4F4 165
IO67NB4F4 160
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-11
IO67PB4F4 161
IO68NB4F4 158
IO68PB4F4 159
IO70NB4F4 154
IO70PB4F4 155
IO72NB4F4 152
IO72PB4F4 153
IO73NB4F4 146
IO73PB4F4 147
IO74NB4F4/CLKEN 142
IO74PB4F4/CLKEP 143
IO75NB4F4/CLKFN 136
IO75PB4F4/CLKFP 137
Bank 5
IO76NB5F5/CLKGN 128
IO76PB5F5/CLKGP 129
IO77NB5F5/CLKHN 122
IO77PB5F5/CLKHP 123
IO78NB5F5 112
IO78PB5F5 113
IO79NB5F5 118
IO79PB5F5 119
IO80NB5F5 110
IO80PB5F5 111
IO82NB5F5 106
IO82PB5F5 107
IO84NB5F5 100
IO84PB5F5 101
IO85NB5F5 104
IO85PB5F5 105
IO86NB5F5 98
IO86PB5F5 99
IO87NB5F5 94
IO87PB5F5 95
IO89NB5F5 92
IO89PB5F5 93
Bank 6
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
IO90PB6F6 86
IO91NB6F6 84
IO91PB6F6 85
IO92NB6F6 78
IO92PB6F6 79
IO93NB6F6 82
IO93PB6F6 83
IO95NB6F6 76
IO95PB6F6 77
IO96NB6F6 72
IO96PB6F6 73
IO97NB6F6 70
IO97PB6F6 71
IO98NB6F6 66
IO98PB6F6 67
IO99NB6F6 64
IO99PB6F6 65
IO100NB6F6 60
IO100PB6F6 61
IO101NB6F6 58
IO101PB6F6 59
IO103NB6F6 54
IO103PB6F6 55
IO104NB6F6 52
IO104PB6F6 53
IO105NB6F6 48
IO105PB6F6 49
IO106NB6F6 46
IO106PB6F6 47
Bank 7
IO107NB7F7 40
IO107PB7F7 41
IO108NB7F7 42
IO108PB7F7 43
IO109NB7F7 36
IO109PB7F7 37
IO110NB7F7 34
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
IO110PB7F7 35
IO111NB7F7 30
IO111PB7F7 31
IO113NB7F7 28
IO113PB7F7 29
IO114NB7F7 24
IO114PB7F7 25
IO115NB7F7 22
IO115PB7F7 23
IO116NB7F7 18
IO116PB7F7 19
IO117NB7F7 16
IO117PB7F7 17
IO118NB7F7 12
IO118PB7F7 13
IO119NB7F7 10
IO119PB7F7 11
IO121NB7F7 6
IO121PB7F7 7
IO123NB7F7 4
IO123PB7F7 5
Dedicated I/O
GND 1
GND 9
GND 15
GND 21
GND 27
GND 33
GND 39
GND 45
GND 51
GND 57
GND 63
GND 69
GND 75
GND 81
GND 88
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-12 v5.4
GND 89
GND 97
GND 103
GND 109
GND 115
GND 121
GND 133
GND 145
GND 151
GND 157
GND 163
GND 169
GND 176
GND 177
GND 186
GND 192
GND 198
GND 204
GND 210
GND 216
GND 222
GND 228
GND 234
GND 240
GND 246
GND 252
GND 258
GND 264
GND 265
GND 274
GND 280
GND 286
GND 292
GND 298
GND 310
GND 322
GND 330
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
GND 334
GND 340
GND 345
GND 352
NC 91
NC 117
NC 124
NC 125
NC 126
NC 127
NC 130
NC 131
NC 138
NC 139
NC 140
NC 141
NC 148
NC 174
NC 268
NC 294
NC 301
NC 302
NC 303
NC 304
NC 307
NC 308
NC 315
NC 316
NC 317
NC 318
NC 327
NC 328
PRA 312
PRB 311
PRC 135
PRD 134
TCK 349
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
TDI 348
TDO 347
TMS 350
TRST 351
VCCA 3
VCCA 14
VCCA 32
VCCA 56
VCCA 74
VCCA 87
VCCA 102
VCCA 114
VCCA 150
VCCA 162
VCCA 175
VCCA 191
VCCA 209
VCCA 233
VCCA 251
VCCA 263
VCCA 279
VCCA 291
VCCA 329
VCCA 339
VCCDA 2
VCCDA 44
VCCDA 90
VCCDA 116
VCCDA 132
VCCDA 149
VCCDA 178
VCCDA 221
VCCDA 266
VCCDA 293
VCCDA 309
VCCDA 346
VCCIB0 321
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-13
VCCIB0 333
VCCIB0 344
VCCIB1 273
VCCIB1 285
VCCIB1 297
VCCIB2 227
VCCIB2 239
VCCIB2 245
VCCIB2 257
VCCIB3 185
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
VCCIB3 197
VCCIB3 203
VCCIB3 215
VCCIB4 144
VCCIB4 156
VCCIB4 168
VCCIB5 96
VCCIB5 108
VCCIB5 120
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
VCCIB6 50
VCCIB6 62
VCCIB6 68
VCCIB6 80
VCCIB7 8
VCCIB7 20
VCCIB7 26
VCCIB7 38
VPUMP 267
352-Pin CQFP
RTAX250S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-14 v5.4
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
Bank 0
IO02NB0F0 341
IO02PB0F0 342
IO03PB0F0 343
IO04NB0F0 337
IO04PB0F0 338
IO08NB0F0 331
IO08PB0F0 332
IO09NB0F0 335
IO09PB0F0 336
IO24NB0F2 325
IO24PB0F2 326
IO25NB0F2 323
IO25PB0F2 324
IO30NB0F2/HCLKAN 319
IO30PB0F2/HCLKAP 320
IO31NB0F2/HCLKBN 313
IO31PB0F2/HCLKBP 314
Bank 1
IO32NB1F3/HCLKCN 305
IO32PB1F3/HCLKCP 306
IO33NB1F3/HCLKDN 299
IO33PB1F3/HCLKDP 300
IO38NB1F3 295
IO38PB1F3 296
IO54NB1F5 287
IO54PB1F5 288
IO55NB1F5 289
IO55PB1F5 290
IO56NB1F5 281
IO56PB1F5 282
IO57NB1F5 283
IO57PB1F5 284
IO59NB1F5 277
IO59PB1F5 278
IO60NB1F5 275
IO60PB1F5 276
IO61NB1F5 271
IO61PB1F5 272
IO63NB1F5 269
IO63PB1F5 270
Bank 2
IO64NB2F6 259
IO64PB2F6 260
IO67NB2F6 261
IO67PB2F6 262
IO68NB2F6 255
IO68PB2F6 256
IO69NB2F6 253
IO69PB2F6 254
IO74NB2F7 249
IO74PB2F7 250
IO75NB2F7 247
IO75PB2F7 248
IO76NB2F7 243
IO76PB2F7 244
IO77NB2F7 241
IO77PB2F7 242
IO78NB2F7 237
IO78PB2F7 238
IO79NB2F7 235
IO79PB2F7 236
IO82NB2F7 231
IO82PB2F7 232
IO83NB2F7 229
IO83PB2F7 230
IO94NB2F8 225
IO94PB2F8 226
IO95NB2F8 223
IO95PB2F8 224
Bank 3
IO96NB3F9 217
IO96PB3F9 218
IO97NB3F9 219
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
IO97PB3F9 220
IO99NB3F9 213
IO99PB3F9 214
IO108NB3F10 211
IO108PB3F10 212
IO109NB3F10 207
IO109PB3F10 208
IO111NB3F10 205
IO111PB3F10 206
IO112NB3F10 199
IO112PB3F10 200
IO113NB3F10 201
IO113PB3F10 202
IO115NB3F10 195
IO115PB3F10 196
IO116NB3F10 193
IO116PB3F10 194
IO117NB3F10 189
IO117PB3F10 190
IO124NB3F11 183
IO124PB3F11 184
IO125NB3F11 187
IO125PB3F11 188
IO127NB3F11 181
IO127PB3F11 182
IO128NB3F11 179
IO128PB3F11 180
Bank 4
IO130NB4F12 172
IO130PB4F12 173
IO131NB4F12 170
IO131PB4F12 171
IO132NB4F12 166
IO132PB4F12 167
IO133NB4F12 164
IO133PB4F12 165
IO134NB4F12 160
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-15
IO134PB4F12 161
IO136NB4F12 158
IO136PB4F12 159
IO137NB4F12 154
IO137PB4F12 155
IO138NB4F12 152
IO138PB4F12 153
IO153NB4F14 146
IO153PB4F14 147
IO159NB4F14/CLKEN 142
IO159PB4F14/CLKEP 143
IO160NB4F14/CLKFN 136
IO160PB4F14/CLKFP 137
Bank 5
IO161NB5F15/CLKGN 128
IO161PB5F15/CLKGP 129
IO162NB5F15/CLKHN 122
IO162PB5F15/CLKHP 123
IO167NB5F15 118
IO167PB5F15 119
IO183NB5F17 110
IO183PB5F17 111
IO184NB5F17 112
IO184PB5F17 113
IO185NB5F17 104
IO185PB5F17 105
IO186NB5F17 106
IO186PB5F17 107
IO187NB5F17 98
IO187PB5F17 99
IO188NB5F17 100
IO188PB5F17 101
IO190NB5F17 94
IO190PB5F17 95
IO192NB5F17 92
IO192PB5F17 93
Bank 6
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
IO193PB6F18 86
IO194NB6F18 84
IO194PB6F18 85
IO196NB6F18 78
IO196PB6F18 79
IO197NB6F18 82
IO197PB6F18 83
IO198NB6F18 76
IO198PB6F18 77
IO203NB6F19 72
IO203PB6F19 73
IO204NB6F19 70
IO204PB6F19 71
IO205NB6F19 66
IO205PB6F19 67
IO206NB6F19 64
IO206PB6F19 65
IO207NB6F19 60
IO207PB6F19 61
IO208NB6F19 58
IO208PB6F19 59
IO211NB6F19 54
IO211PB6F19 55
IO212NB6F19 52
IO212PB6F19 53
IO223NB6F20 48
IO223PB6F20 49
IO224NB6F20 46
IO224PB6F20 47
Bank 7
IO225NB7F21 40
IO225PB7F21 41
IO226NB7F21 42
IO226PB7F21 43
IO237NB7F22 34
IO237PB7F22 35
IO238NB7F22 36
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
IO238PB7F22 37
IO240NB7F22 30
IO240PB7F22 31
IO241NB7F22 28
IO241PB7F22 29
IO242NB7F22 24
IO242PB7F22 25
IO244NB7F22 22
IO244PB7F22 23
IO245NB7F22 18
IO245PB7F22 19
IO246NB7F22 16
IO246PB7F22 17
IO249NB7F23 12
IO249PB7F23 13
IO250NB7F23 10
IO250PB7F23 11
IO256NB7F23 4
IO256PB7F23 5
IO257NB7F23 6
IO257PB7F23 7
Dedicated I/O
GND 1
GND 9
GND 15
GND 21
GND 27
GND 33
GND 39
GND 45
GND 51
GND 57
GND 63
GND 69
GND 75
GND 81
GND 88
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-16 v5.4
GND 89
GND 97
GND 103
GND 109
GND 115
GND 121
GND 133
GND 145
GND 151
GND 157
GND 163
GND 169
GND 176
GND 177
GND 186
GND 192
GND 198
GND 204
GND 210
GND 216
GND 222
GND 228
GND 234
GND 240
GND 246
GND 252
GND 258
GND 264
GND 265
GND 274
GND 280
GND 286
GND 292
GND 298
GND 310
GND 322
GND 330
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
GND 334
GND 340
GND 345
GND 352
NC 91
NC 124
NC 125
NC 126
NC 127
NC 130
NC 131
NC 138
NC 139
NC 140
NC 141
NC 174
NC 268
NC 301
NC 302
NC 303
NC 304
NC 307
NC 308
NC 315
NC 316
NC 317
NC 318
PRA 312
PRB 311
PRC 135
PRD 134
TCK 349
TDI 348
TDO 347
TMS 350
TRST 351
VCCA 3
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
VCCA 14
VCCA 32
VCCA 56
VCCA 74
VCCA 87
VCCA 102
VCCA 114
VCCA 150
VCCA 162
VCCA 175
VCCA 191
VCCA 209
VCCA 233
VCCA 251
VCCA 263
VCCA 279
VCCA 291
VCCA 329
VCCA 339
VCCDA 2
VCCDA 44
VCCDA 90
VCCDA 116
VCCDA 117
VCCDA 132
VCCDA 148
VCCDA 149
VCCDA 178
VCCDA 221
VCCDA 266
VCCDA 293
VCCDA 294
VCCDA 309
VCCDA 327
VCCDA 328
VCCDA 346
VCCIB0 321
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-17
VCCIB0 333
VCCIB0 344
VCCIB1 273
VCCIB1 285
VCCIB1 297
VCCIB2 227
VCCIB2 239
VCCIB2 245
VCCIB2 257
VCCIB3 185
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
VCCIB3 197
VCCIB3 203
VCCIB3 215
VCCIB4 144
VCCIB4 156
VCCIB4 168
VCCIB5 96
VCCIB5 108
VCCIB5 120
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
VCCIB6 50
VCCIB6 62
VCCIB6 68
VCCIB6 80
VCCIB7 8
VCCIB7 20
VCCIB7 26
VCCIB7 38
VPUMP 267
352-Pin CQFP
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-18 v5.4
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
Bank 0
IO01NB0F0 341
IO01PB0F0 342
IO02PB0F0 343
IO04NB0F0 337
IO04PB0F0 338
IO05NB0F0 335
IO05PB0F0 336
IO08NB0F0 331
IO08PB0F0 332
IO37NB0F3 325
IO37PB0F3 326
IO38NB0F3 323
IO38PB0F3 324
IO41NB0F3/HCLKAN 319
IO41PB0F3/HCLKAP 320
IO42NB0F3/HCLKBN 313
IO42PB0F3/HCLKBP 314
Bank 1
IO43NB1F4/HCLKCN 305
IO43PB1F4/HCLKCP 306
IO44NB1F4/HCLKDN 299
IO44PB1F4/HCLKDP 300
IO48NB1F4 295
IO48PB1F4 296
IO65NB1F6 283
IO65PB1F6 284
IO66NB1F6 289
IO66PB1F6 290
IO68NB1F6 287
IO68PB1F6 288
IO69NB1F6 275
IO69PB1F6 276
IO70NB1F6 281
IO70PB1F6 282
IO71NB1F6 277
IO71PB1F6 278
IO73NB1F6 269
IO73PB1F6 270
IO74NB1F6 271
IO74PB1F6 272
Bank 2
IO87NB2F8 261
IO87PB2F8 262
IO88NB2F8 255
IO88PB2F8 256
IO89NB2F8 259
IO89PB2F8 260
IO91NB2F8 253
IO91PB2F8 254
IO99NB2F9 249
IO99PB2F9 250
IO100NB2F9 247
IO100PB2F9 248
IO107NB2F10 243
IO107PB2F10 244
IO110NB2F10 241
IO110PB2F10 242
IO111NB2F10 237
IO111PB2F10 238
IO112NB2F10 235
IO112PB2F10 236
IO113NB2F10 231
IO113PB2F10 232
IO114NB2F10 229
IO114PB2F10 230
IO115NB2F10 225
IO115PB2F10 226
IO117NB2F10 223
IO117PB2F10 224
Bank 3
IO129NB3F12 219
IO129PB3F12 220
IO132NB3F12 217
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
IO132PB3F12 218
IO137NB3F12 213
IO137PB3F12 214
IO139NB3F13 211
IO139PB3F13 212
IO141NB3F13 205
IO141PB3F13 206
IO142NB3F13 207
IO142PB3F13 208
IO145NB3F13 199
IO145PB3F13 200
IO146NB3F13 201
IO146PB3F13 202
IO147NB3F13 193
IO147PB3F13 194
IO148NB3F13 195
IO148PB3F13 196
IO149NB3F13 189
IO149PB3F13 190
IO161NB3F15 183
IO161PB3F15 184
IO163NB3F15 187
IO163PB3F15 188
IO165NB3F15 181
IO165PB3F15 182
IO167NB3F15 179
IO167PB3F15 180
Bank 4
IO181NB4F17 172
IO181PB4F17 173
IO182NB4F17 170
IO182PB4F17 171
IO183NB4F17 166
IO183PB4F17 167
IO184NB4F17 164
IO184PB4F17 165
IO185NB4F17 160
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-19
IO185PB4F17 161
IO190NB4F17 158
IO190PB4F17 159
IO191NB4F17 154
IO191PB4F17 155
IO192NB4F17 152
IO192PB4F17 153
IO207NB4F19 146
IO207PB4F19 147
IO212NB4F19/CLKEN 142
IO212PB4F19/CLKEP 143
IO213NB4F19/CLKFN 136
IO213PB4F19/CLKFP 137
Bank 5
IO214NB5F20/CLKGN 128
IO214PB5F20/CLKGP 129
IO215NB5F20/CLKHN 122
IO215PB5F20/CLKHP 123
IO217NB5F20 118
IO217PB5F20 119
IO236NB5F22 110
IO236PB5F22 111
IO237NB5F22 112
IO237PB5F22 113
IO238NB5F22 104
IO238PB5F22 105
IO239NB5F22 106
IO239PB5F22 107
IO240NB5F22 100
IO240PB5F22 101
IO242NB5F22 94
IO242PB5F22 95
IO243NB5F22 98
IO243PB5F22 99
IO244NB5F22 92
IO244PB5F22 93
Bank 6
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
IO257PB6F24 86
IO258NB6F24 84
IO258PB6F24 85
IO261NB6F24 82
IO261PB6F24 83
IO262NB6F24 78
IO262PB6F24 79
IO265NB6F24 76
IO265PB6F24 77
IO279NB6F26 72
IO279PB6F26 73
IO280NB6F26 70
IO280PB6F26 71
IO281NB6F26 66
IO281PB6F26 67
IO282NB6F26 64
IO282PB6F26 65
IO284NB6F26 60
IO284PB6F26 61
IO285NB6F26 58
IO285PB6F26 59
IO286NB6F26 54
IO286PB6F26 55
IO287NB6F26 52
IO287PB6F26 53
IO294NB6F27 48
IO294PB6F27 49
IO296NB6F27 46
IO296PB6F27 47
Bank 7
IO300NB7F28 42
IO300PB7F28 43
IO303NB7F28 40
IO303PB7F28 41
IO310NB7F29 34
IO310PB7F29 35
IO311NB7F29 36
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
IO311PB7F29 37
IO312NB7F29 28
IO312PB7F29 29
IO315NB7F29 30
IO315PB7F29 31
IO316NB7F29 22
IO316PB7F29 23
IO317NB7F29 24
IO317PB7F29 25
IO318NB7F29 18
IO318PB7F29 19
IO320NB7F29 16
IO320PB7F29 17
IO334NB7F31 10
IO334PB7F31 11
IO335NB7F31 12
IO335PB7F31 13
IO338NB7F31 6
IO338PB7F31 7
IO341NB7F31 4
IO341PB7F31 5
Dedicated I/O
GND 1
GND 9
GND 15
GND 21
GND 27
GND 33
GND 39
GND 45
GND 51
GND 57
GND 63
GND 69
GND 75
GND 81
GND 88
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-20 v5.4
GND 89
GND 97
GND 103
GND 109
GND 115
GND 121
GND 133
GND 145
GND 151
GND 157
GND 163
GND 169
GND 176
GND 177
GND 186
GND 192
GND 198
GND 204
GND 210
GND 216
GND 222
GND 228
GND 234
GND 240
GND 246
GND 252
GND 258
GND 264
GND 265
GND 274
GND 280
GND 286
GND 292
GND 298
GND 310
GND 322
GND 330
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
GND 334
GND 340
GND 345
GND 352
NC 124
NC 125
NC 126
NC 127
NC 138
NC 139
NC 140
NC 141
NC 301
NC 302
NC 303
NC 304
NC 315
NC 316
NC 317
NC 318
PRA 312
PRB 311
PRC 135
PRD 134
TCK 349
TDI 348
TDO 347
TMS 350
TRST 351
VCCA 3
VCCA 14
VCCA 32
VCCA 56
VCCA 74
VCCA 87
VCCA 102
VCCA 114
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
VCCA 150
VCCA 162
VCCA 175
VCCA 191
VCCA 209
VCCA 233
VCCA 251
VCCA 263
VCCA 279
VCCA 291
VCCA 329
VCCA 339
VCCDA 2
VCCDA 44
VCCDA 90
VCCDA 91
VCCDA 116
VCCDA 117
VCCDA 130
VCCDA 131
VCCDA 132
VCCDA 148
VCCDA 149
VCCDA 174
VCCDA 178
VCCDA 221
VCCDA 266
VCCDA 268
VCCDA 293
VCCDA 294
VCCDA 307
VCCDA 308
VCCDA 309
VCCDA 327
VCCDA 328
VCCDA 346
VCCIB0 321
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-21
VCCIB0 333
VCCIB0 344
VCCIB1 273
VCCIB1 285
VCCIB1 297
VCCIB2 227
VCCIB2 239
VCCIB2 245
VCCIB2 257
VCCIB3 185
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
VCCIB3 197
VCCIB3 203
VCCIB3 215
VCCIB4 144
VCCIB4 156
VCCIB4 168
VCCIB5 96
VCCIB5 108
VCCIB5 120
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
VCCIB6 50
VCCIB6 62
VCCIB6 68
VCCIB6 80
VCCIB7 8
VCCIB7 20
VCCIB7 26
VCCIB7 38
VPUMP 267
352-Pin CQFP
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-22 v5.4
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
Bank 0
IO02NB0F0 341
IO02PB0F0 342
IO03PB0F0 343
IO05NB0F0 337
IO05PB0F0 338
IO06NB0F0 335
IO06PB0F0 336
IO07NB0F0 331
IO07PB0F0 332
IO11NB0F0 329
IO11PB0F0 330
IO50NB0F4/HCLKAN 317
IO50PB0F4/HCLKAP 318
IO51NB0F4/HCLKBN 313
IO51PB0F4/HCLKBP 314
Bank 1
IO52NB1F6/HCLKCN 303
IO52PB1F6/HCLKCP 304
IO53NB1F6/HCLKDN 299
IO53PB1F6/HCLKDP 300
IO94NB1F10 287
IO94PB1F10 288
IO97NB1F10 281
IO97PB1F10 282
IO98NB1F10 285
IO98PB1F10 286
IO99NB1F10 275
IO99PB1F10 276
IO100NB1F10 279
IO100PB1F10 280
IO102NB1F10 273
IO102PB1F10 274
IO103NB1F10 269
IO103PB1F10 270
Bank 2
IO104NB2F12 259
IO104PB2F12 260
IO106NB2F12 253
IO106PB2F12 254
IO107NB2F12 257
IO107PB2F12 258
IO111NB2F12 251
IO111PB2F12 252
IO139NB2F16 241
IO139PB2F16 242
IO140NB2F16 245
IO140PB2F16 246
IO141NB2F16 235
IO141PB2F16 236
IO142NB2F16 239
IO142PB2F16 240
IO143NB2F16 229
IO143PB2F16 230
IO144NB2F16 233
IO144PB2F16 234
IO145NB2F16 223
IO145PB2F16 224
IO146NB2F16 227
IO146PB2F16 228
Bank 3
IO175NB3F20 213
IO175PB3F20 214
IO176NB3F20 217
IO176PB3F20 218
IO177NB3F20 207
IO177PB3F20 208
IO178NB3F20 211
IO178PB3F20 212
IO179NB3F20 205
IO179PB3F20 206
IO181NB3F20 201
IO181PB3F20 202
IO182NB3F20 199
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
IO182PB3F20 200
IO183NB3F20 195
IO183PB3F20 196
IO203NB3F23 189
IO203PB3F23 190
IO204NB3F23 183
IO204PB3F23 184
IO206NB3F23 187
IO206PB3F23 188
IO209NB3F23 181
IO209PB3F23 182
Bank 4
IO210NB4F24 167
IO210PB4F24 168
IO211NB4F24 173
IO213NB4F24 171
IO213PB4F24 172
IO214NB4F24 161
IO214PB4F24 162
IO215NB4F24 165
IO215PB4F24 166
IO216NB4F24 155
IO216PB4F24 156
IO217NB4F24 159
IO217PB4F24 160
IO219NB4F24 153
IO219PB4F24 154
IO260NB4F28/CLKEN 141
IO260PB4F28/CLKEP 142
IO261NB4F28/CLKFN 137
IO261PB4F28/CLKFP 138
Bank 5
IO262NB5F30/CLKGN 127
IO262PB5F30/CLKGP 128
IO263NB5F30/CLKHN 123
IO263PB5F30/CLKHP 124
IO304NB5F34 111
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-23
IO304PB5F34 112
IO305NB5F34 109
IO305PB5F34 110
IO307NB5F34 103
IO307PB5F34 104
IO308NB5F34 105
IO308PB5F34 106
IO309NB5F34 97
IO309PB5F34 98
IO310NB5F34 99
IO310PB5F34 100
IO312NB5F34 93
IO312PB5F34 94
IO313NB5F34 92
Bank 6
IO314PB6F36 84
IO316NB6F36 82
IO316PB6F36 83
IO317NB6F36 78
IO317PB6F36 79
IO319NB6F36 76
IO319PB6F36 77
IO349NB6F40 66
IO349PB6F40 67
IO350NB6F40 70
IO350PB6F40 71
IO351NB6F40 60
IO351PB6F40 61
IO352NB6F40 64
IO352PB6F40 65
IO353NB6F40 54
IO353PB6F40 55
IO354NB6F40 58
IO354PB6F40 59
IO355NB6F40 48
IO355PB6F40 49
IO356NB6F40 52
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
IO356PB6F40 53
Bank 7
IO385NB7F44 42
IO385PB7F44 43
IO386NB7F44 38
IO386PB7F44 39
IO387NB7F44 36
IO387PB7F44 37
IO388NB7F44 32
IO388PB7F44 33
IO389NB7F44 30
IO389PB7F44 31
IO391NB7F44 26
IO391PB7F44 27
IO392NB7F44 24
IO392PB7F44 25
IO393NB7F44 20
IO393PB7F44 21
IO413NB7F47 14
IO413PB7F47 15
IO414NB7F47 8
IO414PB7F47 9
IO416NB7F47 12
IO416PB7F47 13
IO419NB7F47 6
IO419PB7F47 7
Dedicated I/O
GND 1
GND 5
GND 11
GND 17
GND 19
GND 23
GND 29
GND 35
GND 41
GND 45
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
GND 47
GND 51
GND 57
GND 63
GND 69
GND 73
GND 75
GND 81
GND 86
GND 88
GND 89
GND 96
GND 102
GND 108
GND 117
GND 119
GND 126
GND 132
GND 134
GND 140
GND 147
GND 149
GND 158
GND 164
GND 170
GND 176
GND 177
GND 180
GND 186
GND 192
GND 194
GND 198
GND 204
GND 210
GND 216
GND 220
GND 222
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
RTAX-S/SL RadTolerant FPGAs
3-24 v5.4
GND 226
GND 232
GND 238
GND 244
GND 248
GND 250
GND 256
GND 262
GND 264
GND 265
GND 272
GND 278
GND 284
GND 293
GND 295
GND 302
GND 308
GND 310
GND 316
GND 323
GND 325
GND 334
GND 340
GND 345
GND 352
PRA 312
PRB 311
PRC 136
PRD 135
TCK 349
TDI 348
TDO 347
TMS 350
TRST 351
VCCA 3
VCCA 4
VCCA 18
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
VCCA 34
VCCA 44
VCCA 56
VCCA 72
VCCA 85
VCCA 87
VCCA 101
VCCA 116
VCCA 129
VCCA 131
VCCA 148
VCCA 163
VCCA 175
VCCA 179
VCCA 193
VCCA 209
VCCA 219
VCCA 231
VCCA 247
VCCA 261
VCCA 263
VCCA 277
VCCA 292
VCCA 305
VCCA 307
VCCA 324
VCCA 339
VCCDA 2
VCCDA 16
VCCDA 46
VCCDA 74
VCCDA 90
VCCDA 91
VCCDA 113
VCCDA 114
VCCDA 115
VCCDA 118
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
VCCDA 120
VCCDA 121
VCCDA 122
VCCDA 130
VCCDA 133
VCCDA 143
VCCDA 144
VCCDA 145
VCCDA 146
VCCDA 150
VCCDA 151
VCCDA 152
VCCDA 174
VCCDA 178
VCCDA 191
VCCDA 221
VCCDA 249
VCCDA 266
VCCDA 268
VCCDA 289
VCCDA 290
VCCDA 291
VCCDA 294
VCCDA 296
VCCDA 297
VCCDA 298
VCCDA 306
VCCDA 309
VCCDA 319
VCCDA 320
VCCDA 321
VCCDA 322
VCCDA 326
VCCDA 327
VCCDA 328
VCCDA 346
VCCIB0 315
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-25
VCCIB0 333
VCCIB0 344
VCCIB1 271
VCCIB1 283
VCCIB1 301
VCCIB2 225
VCCIB2 237
VCCIB2 243
VCCIB2 255
VCCIB3 185
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
VCCIB3 197
VCCIB3 203
VCCIB3 215
VCCIB4 139
VCCIB4 157
VCCIB4 169
VCCIB5 95
VCCIB5 107
VCCIB5 125
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
VCCIB6 50
VCCIB6 62
VCCIB6 68
VCCIB6 80
VCCIB7 10
VCCIB7 22
VCCIB7 28
VCCIB7 40
VPUMP 267
352-Pin CQFP
RTAX4000S/SL
Function Pin Number
RTAX-S/SL RadTolerant FPGAs
3-26 v5.4
624-Pin CCGA/LGA
Note:
The 624-pin CCGA pin assignments for RTAX250S/SL, RTAX1000S/SL and RTAX2000S/SL are compatible except for the
following pins.
Where exceptions occur, the smaller density devices have those pins designated as No Connects (NC). Customers are
therefore recommended to layout their board targeting the larger density device, in order to preserve interchangeability
between the two devices. Note: RTAX4000S is not pin compatible with any of the smaller density devices.
For Package Manufacturing and Environmental information, visit the Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Figure 3-4 624-Pin CCGA/LGA (Bottom View)
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
A
A
AC
AB
AD
AE
Table 3-2 Compatibility Table for the CGA/LGA 624 Package
RTAX250S/SL RTAX1000S/SL RTAX2000S/SL
RTAX250S/SL NA A12, AD11, AE17, B15, D13 A12, A14, AA20, AB13, AD11, AD4,
AE12, B15, D13, F21, G10
RTAX1000S/SL A12, AD11, AE17, B15, D13 NA A14, AA20, AB13, AD4, AE12, F21,
G10
RTAX2000S/SL A12, A14, AA20, AB13, AD11,
AD4, AE12, B15, D13, F21, G10
A14, AA20, AB13, AD4, AE12, F21,
G10
NA
RTAX-S/SL RadTolerant FPGAs
v5.4 3-27
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
Bank 0
IO00NB0F0 C9
IO00PB0F0 C8
IO01NB0F0 B5
IO01PB0F0 B4
IO02NB0F0 D10
IO02PB0F0 D9
IO03NB0F0 A5
IO03PB0F0 A4
IO04NB0F0 H8
IO04PB0F0 H7
IO05NB0F0 A7
IO05PB0F0 A6
IO06NB0F0 H10
IO06PB0F0 H9
IO07NB0F0 B11
IO07PB0F0 B10
IO08NB0F0 J8
IO08PB0F0 J7
IO09NB0F0 A9
IO09PB0F0 B9
IO12NB0F0/HCLKAN G13
IO12PB0F0/HCLKAP G12
IO13NB0F0/HCLKBN C13
IO13PB0F0/HCLKBP C12
Bank 1
IO16NB1F1 D14
IO16PB1F1 C14
IO17NB1F1 A16
IO17PB1F1 A15
IO18NB1F1 H20
IO18PB1F1 H19
IO19NB1F1 B17
IO19PB1F1 B16
IO20NB1F1 D16
IO20PB1F1 D15
IO21NB1F1 A20
IO21PB1F1 A19
IO22NB1F1 D18
IO22PB1F1 D17
IO23NB1F1 A22
IO23PB1F1 A21
IO24NB1F1 G17
IO24PB1F1 H17
IO25NB1F1 C21
IO25PB1F1 C20
IO26NB1F1 C19
IO26PB1F1 C18
IO27NB1F1 D20
IO27PB1F1 D19
IO14NB1F1/HCLKCN G15
IO14PB1F1/HCLKCP G14
IO15NB1F1/HCLKDN B14
IO15PB1F1/HCLKDP B13
Bank 2
IO28NB2F2 J22
IO28PB2F2 H22
IO29NB2F2 L18
IO29PB2F2 K18
IO30NB2F2 F23
IO30PB2F2 E23
IO31NB2F2 J21
IO31PB2F2 J20
IO32NB2F2 E25
IO32PB2F2 D25
IO33NB2F2 M19
IO33PB2F2 M18
IO34NB2F2 H23
IO34PB2F2 G23
IO35NB2F2 L22
IO35PB2F2 K22
IO36NB2F2 G25
IO36PB2F2 F25
IO37NB2F2 L24
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
IO37PB2F2 K24
IO38NB2F2 J24
IO38PB2F2 H24
IO39NB2F2 N22
IO39PB2F2 M22
IO40NB2F2 N24
IO40PB2F2 M24
IO41NB2F2 N19
IO41PB2F2 N18
IO42NB2F2 L25
IO42PB2F2 K25
IO43NB2F2 N23
IO43PB2F2 M23
IO44NB2F2 N25
IO44PB2F2 M25
Bank 3
IO45NB3F3 R22
IO45PB3F3 P22
IO46NB3F3 R25
IO46PB3F3 P25
IO47NB3F3 R23
IO47PB3F3 P23
IO48NB3F3 Y25
IO48PB3F3 W25
IO49NB3F3 U24
IO49PB3F3 U23
IO50NB3F3 T24
IO50PB3F3 R24
IO51NB3F3 Y23
IO51PB3F3 AA23
IO52NB3F3 V23
IO52PB3F3 V24
IO53NB3F3 P20
IO53PB3F3 P19
IO54NB3F3 U25
IO54PB3F3 T25
IO55NB3F3 V22
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-28 v5.4
IO55PB3F3 U22
IO56NB3F3 AA24
IO56PB3F3 Y24
IO57NB3F3 V20
IO57PB3F3 U20
IO58NB3F3 AB25
IO58PB3F3 AA25
IO59NB3F3 Y22
IO59PB3F3 Y21
IO60NB3F3 W22
IO60PB3F3 W23
IO61NB3F3 T18
IO61PB3F3 R18
Bank 4
IO62NB4F4 V19
IO62PB4F4 W19
IO63NB4F4 AE19
IO63PB4F4 AE20
IO64NB4F4 W18
IO64PB4F4 V18
IO65NB4F4 AC20
IO65PB4F4 AC21
IO66NB4F4 AD14
IO66PB4F4 AC14
IO67NB4F4 AD21
IO67PB4F4 AD22
IO68NB4F4 AD15
IO68PB4F4 AD16
IO69NB4F4 AD19
IO69PB4F4 AD20
IO70NB4F4 AB14
IO70PB4F4 AB15
IO71NB4F4 AD17
IO71PB4F4 AD18
IO72NB4F4 V15
IO72PB4F4 V16
IO73NB4F4 AE15
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
IO73PB4F4 AE16
IO74NB4F4/CLKEN W14
IO74PB4F4/CLKEP W15
IO75NB4F4/CLKFN AC13
IO75PB4F4/CLKFP AD13
Bank 5
IO78NB5F5 AE10
IO78PB5F5 AE11
IO79NB5F5 AD9
IO79PB5F5 AD10
IO80NB5F5 V9
IO80PB5F5 V10
IO81NB5F5 AD7
IO81PB5F5 AD8
IO82NB5F5 AB10
IO82PB5F5 AB11
IO83NB5F5 AE6
IO83PB5F5 AE7
IO84NB5F5 AB8
IO84PB5F5 AC8
IO85NB5F5 AE4
IO85PB5F5 AE5
IO86NB5F5 U13
IO86PB5F5 V13
IO87NB5F5 AC5
IO87PB5F5 AC6
IO88NB5F5 Y7
IO88PB5F5 W7
IO89NB5F5 AB7
IO89PB5F5 AC7
IO76NB5F5/CLKGN W13
IO76PB5F5/CLKGP Y13
IO77NB5F5/CLKHN AC12
IO77PB5F5/CLKHP AD12
Bank 6
IO90NB6F6 Y3
IO90PB6F6 AA3
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
IO91NB6F6 U4
IO91PB6F6 V4
IO92NB6F6 AA1
IO92PB6F6 AB1
IO93NB6F6 W2
IO93PB6F6 Y2
IO94NB6F6 V3
IO94PB6F6 W3
IO95NB6F6 R4
IO95PB6F6 T4
IO96NB6F6 W1
IO96PB6F6 Y1
IO97NB6F6 Y5
IO97PB6F6 W5
IO98NB6F6 T2
IO98PB6F6 U2
IO99NB6F6 N3
IO99PB6F6 P3
IO100NB6F6 T1
IO100PB6F6 U1
IO101NB6F6 N4
IO101PB6F6 P4
IO102NB6F6 P2
IO102PB6F6 R2
IO103NB6F6 R8
IO103PB6F6 T8
IO104NB6F6 P1
IO104PB6F6 R1
IO105NB6F6 M2
IO105PB6F6 N2
IO106NB6F6 M1
IO106PB6F6 N1
Bank 7
IO107NB7F7 H4
IO107PB7F7 J4
IO108NB7F7 K1
IO108PB7F7 L1
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-29
IO109NB7F7 L3
IO109PB7F7 M3
IO10NB0F0 D12
IO10PB0F0 D11
IO110NB7F7 J2
IO110PB7F7 J1
IO111NB7F7 N10
IO111PB7F7 N9
IO112NB7F7 K2
IO112PB7F7 L2
IO113NB7F7 K8
IO113PB7F7 L8
IO114NB7F7 F1
IO114PB7F7 G1
IO115NB7F7 J6
IO115PB7F7 J5
IO116NB7F7 H3
IO116PB7F7 H2
IO117NB7F7 K4
IO117PB7F7 L4
IO118NB7F7 E2
IO118PB7F7 F2
IO119NB7F7 M9
IO119PB7F7 M8
IO11NB0F0 A11
IO11PB0F0 A10
IO120NB7F7 D1
IO120PB7F7 E1
IO121NB7F7 F3
IO121PB7F7 E3
IO122NB7F7 G4
IO122PB7F7 G3
IO123NB7F7 H5
IO123PB7F7 H6
Dedicated IO
GND K5
GND T5
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
GND V5
GND AA10
GND AA16
GND AA18
GND T21
GND K21
GND H21
GND E16
GND E10
GND E8
GND A18
GND A2
GND A24
GND A25
GND A8
GND AA21
GND AA5
GND AB22
GND AB4
GND AC10
GND AC16
GND AC23
GND AC3
GND AD1
GND AD2
GND AD24
GND AD25
GND AE1
GND AE18
GND AE2
GND AE24
GND AE25
GND AE8
GND B1
GND B2
GND B24
GND B25
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
GND C10
GND C16
GND C23
GND C3
GND D22
GND D4
GND E21
GND E5
GND H1
GND H25
GND K23
GND K3
GND L11
GND L12
GND L13
GND L14
GND L15
GND M11
GND M12
GND M13
GND M14
GND M15
GND N11
GND N12
GND N13
GND N14
GND N15
GND P11
GND P12
GND P13
GND P14
GND P15
GND R11
GND R12
GND R13
GND R14
GND R15
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-30 v5.4
GND T23
GND T3
GND V1
GND V25
NC A12
NC A14
NC A17
NC AA11
NC AA12
NC AA14
NC AA17
NC AA19
NC AA2
NC AA20
NC AA6
NC AA8
NC AA9
NC AB13
NC AB16
NC AB17
NC AB18
NC AB19
NC AB2
NC AB24
NC AB6
NC AB9
NC AC15
NC AC17
NC AC18
NC AC19
NC AC9
NC AD11
NC AD4
NC AD5
NC AD6
NC AE12
NC AE14
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
NC AE17
NC AE21
NC AE22
NC AE9
NC B12
NC B15
NC B18
NC B19
NC B20
NC B21
NC B22
NC B6
NC B7
NC B8
NC C11
NC C17
NC C7
NC D13
NC D2
NC D24
NC D7
NC D8
NC E11
NC E12
NC E14
NC E15
NC E17
NC E18
NC E24
NC E7
NC E9
NC F10
NC F11
NC F12
NC F14
NC F15
NC F16
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
NC F17
NC F18
NC F19
NC F20
NC F21
NC F24
NC F7
NC F8
NC F9
NC G10
NC G11
NC G16
NC G18
NC G19
NC G2
NC G20
NC G21
NC G22
NC G24
NC G6
NC G7
NC G8
NC G9
NC H11
NC H12
NC H13
NC H14
NC H15
NC H16
NC H18
NC J12
NC J13
NC J14
NC J18
NC J19
NC J23
NC J25
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-31
NC J3
NC K13
NC K19
NC K20
NC K6
NC K7
NC L19
NC L20
NC L21
NC L23
NC L5
NC L6
NC L7
NC M17
NC M20
NC M21
NC M4
NC M5
NC M6
NC M7
NC N16
NC N17
NC N20
NC N6
NC N7
NC N8
NC P17
NC P18
NC P21
NC P24
NC P5
NC P6
NC P7
NC P8
NC P9
NC R19
NC R20
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
NC R21
NC R3
NC R5
NC R6
NC R7
NC T13
NC T19
NC T20
NC T22
NC T6
NC T7
NC U12
NC U14
NC U18
NC U19
NC U21
NC U3
NC U5
NC U6
NC U7
NC U8
NC V11
NC V12
NC V14
NC V17
NC V2
NC V21
NC V6
NC V7
NC V8
NC W10
NC W11
NC W12
NC W16
NC W17
NC W20
NC W24
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
NC W4
NC W6
NC W8
NC W9
NC Y10
NC Y11
NC Y12
NC Y14
NC Y15
NC Y16
NC Y17
NC Y18
NC Y19
NC Y20
NC Y6
NC Y8
NC Y9
PRA F13
PRB A13
PRC AB12
PRD AE13
TCK F5
TDI C5
TDO F6
TMS D6
TRST E6
VCCA F4
VCCA Y4
VCCA AB20
VCCA F22
VCCA J17
VCCA J9
VCCA K10
VCCA K11
VCCA K15
VCCA K16
VCCA L10
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-32 v5.4
VCCA L16
VCCA R10
VCCA R16
VCCA T10
VCCA T11
VCCA T15
VCCA T16
VCCA U17
VCCA U9
VCCDA G5
VCCDA N5
VCCDA AA7
VCCDA AC11
VCCDA AA13
VCCDA AA15
VCCDA W21
VCCDA N21
VCCDA E19
VCCDA C15
VCCDA E13
VCCDA C6
VCCIB0 A3
VCCIB0 B3
VCCIB0 C4
VCCIB0 D5
VCCIB0 J10
VCCIB0 J11
VCCIB0 K12
VCCIB1 A23
VCCIB1 B23
VCCIB1 C22
VCCIB1 D21
VCCIB1 J15
VCCIB1 J16
VCCIB1 K14
VCCIB2 C24
VCCIB2 C25
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
VCCIB2 D23
VCCIB2 E22
VCCIB2 K17
VCCIB2 L17
VCCIB2 M16
VCCIB3 AA22
VCCIB3 AB23
VCCIB3 AC24
VCCIB3 AC25
VCCIB3 P16
VCCIB3 R17
VCCIB3 T17
VCCIB4 AB21
VCCIB4 AC22
VCCIB4 AD23
VCCIB4 AE23
VCCIB4 T14
VCCIB4 U15
VCCIB4 U16
VCCIB5 AB5
VCCIB5 AC4
VCCIB5 AD3
VCCIB5 AE3
VCCIB5 T12
VCCIB5 U10
VCCIB5 U11
VCCIB6 AA4
VCCIB6 AB3
VCCIB6 AC1
VCCIB6 AC2
VCCIB6 P10
VCCIB6 R9
VCCIB6 T9
VCCIB7 C1
VCCIB7 C2
VCCIB7 D3
VCCIB7 E4
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
VCCIB7 K9
VCCIB7 L9
VCCIB7 M10
VPUMP E20
624-Pin CCGA/LGA
RTAX250S/SL Pin
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-33
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
Bank 0
IO00NB0F0 F8
IO00PB0F0 F7
IO02NB0F0 G7
IO02PB0F0 G6
IO04NB0F0 E9
IO04PB0F0 D8
IO06NB0F0 G9
IO06PB0F0 G8
IO07PB0F0 B6
IO08NB0F0 F10
IO08PB0F0 F9
IO09PB0F0 C7
IO10NB0F0 H8
IO10PB0F0 H7
IO11NB0F0 D10
IO11PB0F0 D9
IO12NB0F1 B5
IO12PB0F1 B4
IO13NB0F1 A7
IO13PB0F1 A6
IO14NB0F1 C9
IO14PB0F1 C8
IO15PB0F1 B7
IO16NB0F1 A5
IO16PB0F1 A4
IO17NB0F1 A9
IO17PB0F1 B9
IO18NB0F1 D12
IO18PB0F1 D11
IO20NB0F1 B11
IO20PB0F1 B10
IO21NB0F1 A11
IO21PB0F1 A10
IO22NB0F2 H10
IO22PB0F2 H9
IO23NB0F2 E11
IO23PB0F2 F11
IO24NB0F2 D7
IO24PB0F2 E7
IO25PB0F2 B12
IO26NB0F2 H11
IO26PB0F2 G11
IO27NB0F2 C11
IO27PB0F2 B8
IO28NB0F2 J13
IO28PB0F2 K13
IO29NB0F2 J8
IO29PB0F2 J7
IO30NB0F2/HCLKAN G13
IO30PB0F2/HCLKAP G12
IO31NB0F2/HCLKBN C13
IO31PB0F2/HCLKBP C12
Bank 1
IO32NB1F3/HCLKCN G15
IO32PB1F3/HCLKCP G14
IO33NB1F3/HCLKDN B14
IO33PB1F3/HCLKDP B13
IO34NB1F3 G16
IO34PB1F3 H16
IO35NB1F3 C17
IO35PB1F3 B18
IO36NB1F3 H18
IO36PB1F3 H15
IO37NB1F3 H13
IO38NB1F3 E15
IO38PB1F3 F15
IO39NB1F3 D14
IO39PB1F3 C14
IO40NB1F3 D16
IO40PB1F3 D15
IO41NB1F4 F16
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO42NB1F4 G21
IO42PB1F4 G20
IO43NB1F4 A16
IO43PB1F4 A15
IO44NB1F4 A20
IO44PB1F4 A19
IO45NB1F4 B17
IO45PB1F4 B16
IO46NB1F4 G17
IO46PB1F4 H17
IO47NB1F4 A17
IO48NB1F4 C19
IO48PB1F4 C18
IO49NB1F4 B20
IO49PB1F4 B19
IO50NB1F4 H20
IO50PB1F4 H19
IO51NB1F4 A22
IO51PB1F4 A21
IO52NB1F4 C21
IO52PB1F4 C20
IO53NB1F4 B22
IO53PB1F4 B21
IO54NB1F5 J18
IO54PB1F5 J19
IO55NB1F5 D18
IO55PB1F5 D17
IO56NB1F5 F20
IO56PB1F5 F19
IO58NB1F5 E17
IO58PB1F5 F17
IO60NB1F5 D20
IO60PB1F5 D19
IO62NB1F5 E18
IO62PB1F5 F18
IO63NB1F5 G19
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-34 v5.4
IO63PB1F5 G18
Bank 2
IO64NB2F6 M17
IO64PB2F6 G22
IO65NB2F6 J21
IO65PB2F6 J20
IO66NB2F6 L23
IO66PB2F6 K20
IO67NB2F6 F23
IO67PB2F6 E23
IO68NB2F6 L18
IO68PB2F6 K18
IO70NB2F6 E24
IO70PB2F6 D24
IO71NB2F6 H23
IO71PB2F6 G23
IO72NB2F6 L19
IO72PB2F6 K19
IO74NB2F7 J22
IO74PB2F7 H22
IO75NB2F7 N23
IO75PB2F7 M23
IO76NB2F7 N17
IO76PB2F7 N16
IO77NB2F7 L22
IO77PB2F7 K22
IO78NB2F7 M19
IO78PB2F7 M18
IO79NB2F7 N19
IO79PB2F7 N18
IO80NB2F7 L21
IO80PB2F7 L20
IO82NB2F7 P18
IO82PB2F7 P17
IO83NB2F7 N22
IO83PB2F7 M22
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO84NB2F7 M20
IO84PB2F7 M21
IO86NB2F8 E25
IO86PB2F8 D25
IO87NB2F8 L24
IO87PB2F8 K24
IO88NB2F8 G24
IO88PB2F8 F24
IO89NB2F8 J25
IO90NB2F8 G25
IO90PB2F8 F25
IO91NB2F8 L25
IO91PB2F8 K25
IO92NB2F8 J24
IO92PB2F8 H24
IO93PB2F8 J23
IO94NB2F8 N24
IO94PB2F8 M24
IO95NB2F8 N25
IO95PB2F8 M25
Bank 3
IO96NB3F9 T18
IO96PB3F9 R18
IO97NB3F9 N20
IO97PB3F9 P24
IO98NB3F9 P20
IO98PB3F9 P19
IO99NB3F9 P21
IO100NB3F9 T22
IO100PB3F9 W24
IO101NB3F9 R22
IO101PB3F9 P22
IO102NB3F9 U19
IO102PB3F9 T19
IO104NB3F9 V20
IO104PB3F9 U20
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO105NB3F9 R23
IO105PB3F9 P23
IO106NB3F9 R19
IO106PB3F9 R20
IO107NB3F10 AB24
IO108NB3F10 R25
IO108PB3F10 P25
IO109NB3F10 U25
IO109PB3F10 T25
IO110NB3F10 U24
IO110PB3F10 U23
IO112NB3F10 T24
IO112PB3F10 R24
IO113NB3F10 Y25
IO113PB3F10 W25
IO114NB3F10 V23
IO114PB3F10 V24
IO116NB3F10 AA24
IO116PB3F10 Y24
IO117NB3F10 AB25
IO117PB3F10 AA25
IO118NB3F11 T20
IO118PB3F11 R21
IO120NB3F11 W22
IO120PB3F11 W23
IO122NB3F11 V22
IO122PB3F11 U22
IO124NB3F11 Y23
IO124PB3F11 AA23
IO126NB3F11 V21
IO126PB3F11 U21
IO128NB3F11 Y22
IO128PB3F11 Y21
Bank 4
IO129NB4F12 W20
IO129PB4F12 Y20
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-35
IO131NB4F12 V19
IO131PB4F12 W19
IO133NB4F12 Y18
IO133PB4F12 Y19
IO135NB4F12 W18
IO135PB4F12 V18
IO137NB4F12 Y17
IO137PB4F12 AA17
IO138NB4F12 AB19
IO138PB4F12 AB18
IO139NB4F13 AA19
IO139PB4F13 U18
IO140NB4F13 AC20
IO140PB4F13 AC21
IO141NB4F13 AD17
IO141PB4F13 AD18
IO142NB4F13 AD21
IO142PB4F13 AD22
IO143NB4F13 AB17
IO143PB4F13 AC17
IO144PB4F13 AE22
IO145NB4F13 AE15
IO145PB4F13 AE16
IO146NB4F13 AD19
IO146PB4F13 AD20
IO147NB4F13 AD15
IO147PB4F13 AD16
IO148PB4F13 AE21
IO149NB4F13 AD14
IO149PB4F13 AC14
IO150NB4F13 AE19
IO150PB4F13 AE20
IO151NB4F13 V17
IO151PB4F13 W17
IO152NB4F14 AB16
IO152PB4F14 W16
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO153NB4F14 Y15
IO153PB4F14 Y16
IO155NB4F14 V15
IO155PB4F14 V16
IO156NB4F14 AB14
IO156PB4F14 AB15
IO157NB4F14 AE14
IO157PB4F14 AC18
IO158NB4F14 AC15
IO158PB4F14 AC19
IO159NB4F14/CLKEN W14
IO159PB4F14/CLKEP W15
IO160NB4F14/CLKFN AC13
IO160PB4F14/CLKFP AD13
Bank 5
IO161NB5F15/CLKGN W13
IO161PB5F15/CLKGP Y13
IO162NB5F15/CLKHN AC12
IO162PB5F15/CLKHP AD12
IO163NB5F15 V9
IO163PB5F15 V10
IO164NB5F15 V11
IO164PB5F15 T13
IO165NB5F15 U13
IO165PB5F15 V13
IO167NB5F15 W11
IO167PB5F15 W12
IO168NB5F15 AB6
IO168PB5F15 AA6
IO169NB5F15 V8
IO169PB5F15 V7
IO171NB5F16 W8
IO171PB5F16 W9
IO172NB5F16 AB8
IO172PB5F16 AC8
IO173NB5F16 AA11
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO173PB5F16 Y11
IO174NB5F16 AB10
IO174PB5F16 AB11
IO175NB5F16 AC9
IO175PB5F16 AE9
IO177NB5F16 AA8
IO177PB5F16 Y8
IO178NB5F16 Y6
IO178PB5F16 W6
IO179NB5F16 Y10
IO179PB5F16 W10
IO180NB5F16 Y7
IO180PB5F16 W7
IO181NB5F17 AD9
IO181PB5F17 AD10
IO182NB5F17 AE10
IO182PB5F17 AE11
IO183NB5F17 AD7
IO183PB5F17 AD8
IO184NB5F17 AB9
IO185NB5F17 AE6
IO185PB5F17 AE7
IO186NB5F17 AE4
IO186PB5F17 AE5
IO187NB5F17 AA9
IO187PB5F17 Y9
IO188NB5F17 U8
IO189NB5F17 AD5
IO189PB5F17 AD6
IO191NB5F17 AC5
IO191PB5F17 AC6
IO192NB5F17 AB7
IO192PB5F17 AC7
Bank 6
IO193NB6F18 U6
IO193PB6F18 U5
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-36 v5.4
IO194NB6F18 Y3
IO194PB6F18 AA3
IO195NB6F18 V6
IO195PB6F18 W4
IO197NB6F18 R5
IO197PB6F18 U3
IO198NB6F18 P6
IO199NB6F18 Y5
IO199PB6F18 W5
IO200NB6F18 V3
IO200PB6F18 W3
IO201NB6F18 T7
IO201PB6F18 U7
IO202NB6F18 V2
IO203NB6F19 W2
IO203PB6F19 Y2
IO204NB6F19 AA1
IO204PB6F19 AB1
IO205NB6F19 R6
IO205PB6F19 T6
IO206NB6F19 W1
IO206PB6F19 Y1
IO207NB6F19 T2
IO207PB6F19 U2
IO208NB6F19 T1
IO208PB6F19 U1
IO209NB6F19 AA2
IO209PB6F19 AB2
IO210NB6F19 P5
IO211NB6F19 M1
IO211PB6F19 N1
IO212NB6F19 P1
IO212PB6F19 R1
IO213NB6F19 R8
IO213PB6F19 T8
IO215NB6F20 U4
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO215PB6F20 V4
IO216NB6F20 P8
IO216PB6F20 R3
IO217NB6F20 P7
IO217PB6F20 R7
IO219NB6F20 R4
IO219PB6F20 T4
IO220NB6F20 P2
IO220PB6F20 R2
IO221NB6F20 N4
IO221PB6F20 P4
IO223NB6F20 M2
IO223PB6F20 N2
IO224NB6F20 N3
IO224PB6F20 P3
Bank 7
IO225NB7F21 J2
IO225PB7F21 J1
IO226PB7F21 G2
IO227NB7F21 H3
IO227PB7F21 H2
IO229NB7F21 K2
IO229PB7F21 L2
IO230NB7F21 K1
IO230PB7F21 L1
IO231NB7F21 E2
IO231PB7F21 F2
IO232NB7F21 F1
IO232PB7F21 G1
IO233NB7F21 L3
IO233PB7F21 M3
IO234NB7F21 D1
IO234PB7F21 E1
IO235NB7F21 K4
IO235PB7F21 L4
IO236NB7F22 M6
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
IO237NB7F22 N8
IO237PB7F22 N7
IO238NB7F22 M5
IO239NB7F22 L6
IO239PB7F22 L5
IO240NB7F22 M4
IO241NB7F22 L7
IO241PB7F22 M7
IO242NB7F22 J3
IO243NB7F22 M9
IO243PB7F22 M8
IO244NB7F22 P9
IO244PB7F22 N6
IO245NB7F22 K8
IO245PB7F22 L8
IO246NB7F22 F3
IO246PB7F22 E3
IO247NB7F23 K7
IO247PB7F23 K6
IO248NB7F23 D2
IO249NB7F23 G4
IO249PB7F23 G3
IO251NB7F23 N10
IO251PB7F23 N9
IO253NB7F23 H4
IO253PB7F23 J4
IO255NB7F23 J6
IO255PB7F23 J5
IO257NB7F23 H5
IO257PB7F23 H6
Dedicated I/O
GND K5
GND A18
GND A2
GND A24
GND A25
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-37
GND A8
GND AA10
GND AA16
GND AA18
GND AA21
GND AA5
GND AB22
GND AB4
GND AC10
GND AC16
GND AC23
GND AC3
GND AD1
GND AD2
GND AD24
GND AD25
GND AE1
GND AE18
GND AE2
GND AE24
GND AE25
GND AE8
GND B1
GND B2
GND B24
GND B25
GND C10
GND C16
GND C23
GND C3
GND D22
GND D4
GND E10
GND E16
GND E21
GND E5
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
GND E8
GND H1
GND H21
GND H25
GND K21
GND K23
GND K3
GND L11
GND L12
GND L13
GND L14
GND L15
GND M11
GND M12
GND M13
GND M14
GND M15
GND N11
GND N12
GND N13
GND N14
GND N15
GND P11
GND P12
GND P13
GND P14
GND P15
GND R11
GND R12
GND R13
GND R14
GND R15
GND T21
GND T23
GND T3
GND T5
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
GND V1
GND V25
GND V5
NC A14
NC AA12
NC AA14
NC AA20
NC AB13
NC AD4
NC AE12
NC E12
NC E14
NC F12
NC F14
NC F21
NC G10
NC H12
NC H14
NC J12
NC J14
NC U12
NC U14
NC V12
NC V14
NC Y12
NC Y14
PRA F13
PRB A13
PRC AB12
PRD AE13
TCK F5
TDI C5
TDO F6
TMS D6
TRST E6
VCCA AB20
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-38 v5.4
VCCA F22
VCCA F4
VCCA J17
VCCA J9
VCCA K10
VCCA K11
VCCA K15
VCCA K16
VCCA L10
VCCA L16
VCCA R10
VCCA R16
VCCA T10
VCCA T11
VCCA T15
VCCA T16
VCCA U17
VCCA U9
VCCA Y4
VCCDA A12
VCCDA AA13
VCCDA AA15
VCCDA AA7
VCCDA AC11
VCCDA AD11
VCCDA AE17
VCCDA B15
VCCDA C15
VCCDA C6
VCCDA D13
VCCDA E13
VCCDA E19
VCCDA G5
VCCDA N21
VCCDA N5
VCCDA W21
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
VCCIB0 A3
VCCIB0 B3
VCCIB0 C4
VCCIB0 D5
VCCIB0 J10
VCCIB0 J11
VCCIB0 K12
VCCIB1 A23
VCCIB1 B23
VCCIB1 C22
VCCIB1 D21
VCCIB1 J15
VCCIB1 J16
VCCIB1 K14
VCCIB2 C24
VCCIB2 C25
VCCIB2 D23
VCCIB2 E22
VCCIB2 K17
VCCIB2 L17
VCCIB2 M16
VCCIB3 AA22
VCCIB3 AB23
VCCIB3 AC24
VCCIB3 AC25
VCCIB3 P16
VCCIB3 R17
VCCIB3 T17
VCCIB4 AB21
VCCIB4 AC22
VCCIB4 AD23
VCCIB4 AE23
VCCIB4 T14
VCCIB4 U15
VCCIB4 U16
VCCIB5 AB5
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
VCCIB5 AC4
VCCIB5 AD3
VCCIB5 AE3
VCCIB5 T12
VCCIB5 U10
VCCIB5 U11
VCCIB6 AA4
VCCIB6 AB3
VCCIB6 AC1
VCCIB6 AC2
VCCIB6 P10
VCCIB6 R9
VCCIB6 T9
VCCIB7 C1
VCCIB7 C2
VCCIB7 D3
VCCIB7 E4
VCCIB7 K9
VCCIB7 L9
VCCIB7 M10
VPUMP E20
624-Pin CCGA/LGA
RTAX1000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-39
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
Bank 0
IO00NB0F0 D7
IO00PB0F0 E7
IO01NB0F0 G7
IO01PB0F0 G6
IO02NB0F0 B5
IO02PB0F0 B4
IO04PB0F0 C7
IO05NB0F0 F8
IO05PB0F0 F7
IO06NB0F0 H8
IO06PB0F0 H7
IO11NB0F0 J8
IO11PB0F0 J7
IO12PB0F1 B6
IO13NB0F1 E9
IO13PB0F1 D8
IO15NB0F1 C9
IO15PB0F1 C8
IO16NB0F1 A5
IO16PB0F1 A4
IO17NB0F1 D10
IO17PB0F1 D9
IO18NB0F1 A7
IO18PB0F1 A6
IO19NB0F1 G9
IO19PB0F1 G8
IO20PB0F1 B7
IO23NB0F2 F10
IO23PB0F2 F9
IO26NB0F2 C11
IO26PB0F2 B8
IO27NB0F2 H10
IO27PB0F2 H9
IO28NB0F2 A9
IO28PB0F2 B9
IO30NB0F2 B11
IO30PB0F2 B10
IO31NB0F2 E11
IO31PB0F2 F11
IO33NB0F2 D12
IO33PB0F2 D11
IO34NB0F3 A11
IO34PB0F3 A10
IO37NB0F3 J13
IO37PB0F3 K13
IO38NB0F3 H11
IO38PB0F3 G11
IO40PB0F3 B12
IO41NB0F3/HCLKAN G13
IO41PB0F3/HCLKAP G12
IO42NB0F3/HCLKBN C13
IO42PB0F3/HCLKBP C12
Bank 1
IO43NB1F4/HCLKCN G15
IO43PB1F4/HCLKCP G14
IO44NB1F4/HCLKDN B14
IO44PB1F4/HCLKDP B13
IO45NB1F4 H13
IO47NB1F4 D14
IO47PB1F4 C14
IO48NB1F4 A16
IO48PB1F4 A15
IO49PB1F4 H15
IO51NB1F4 E15
IO51PB1F4 F15
IO52NB1F4 A17
IO55NB1F5 G16
IO55PB1F5 H16
IO56NB1F5 A20
IO56PB1F5 A19
IO57NB1F5 D16
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO57PB1F5 D15
IO58NB1F5 A22
IO58PB1F5 A21
IO59NB1F5 F16
IO61NB1F5 G17
IO61PB1F5 H17
IO62NB1F5 B17
IO62PB1F5 B16
IO63NB1F5 H18
IO65NB1F6 C17
IO66PB1F6 B18
IO67NB1F6 J18
IO67PB1F6 J19
IO68NB1F6 B20
IO68PB1F6 B19
IO69NB1F6 E17
IO69PB1F6 F17
IO70NB1F6 B22
IO70PB1F6 B21
IO71PB1F6 G18
IO73NB1F6 G19
IO74NB1F6 C19
IO74PB1F6 C18
IO75NB1F6 D18
IO75PB1F6 D17
IO76NB1F7 C21
IO76PB1F7 C20
IO79NB1F7 H20
IO79PB1F7 H19
IO80NB1F7 E18
IO80PB1F7 F18
IO81NB1F7 G21
IO81PB1F7 G20
IO82NB1F7 F20
IO82PB1F7 F19
IO85NB1F7 D20
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-40 v5.4
IO85PB1F7 D19
Bank 2
IO86NB2F8 F23
IO86PB2F8 E23
IO87NB2F8 H23
IO87PB2F8 G23
IO88NB2F8 E24
IO88PB2F8 D24
IO89NB2F8 M17
IO89PB2F8 G22
IO91NB2F8 J22
IO91PB2F8 H22
IO92NB2F8 L18
IO92PB2F8 K18
IO96NB2F9 G24
IO96PB2F9 F24
IO97NB2F9 J21
IO97PB2F9 J20
IO98PB2F9 J23
IO99NB2F9 L19
IO99PB2F9 K19
IO100NB2F9 E25
IO100PB2F9 D25
IO103PB2F9 K20
IO105NB2F9 M19
IO105PB2F9 M18
IO106NB2F9 J24
IO106PB2F9 H24
IO107NB2F10 L23
IO107PB2F10 N16
IO109NB2F10 L22
IO109PB2F10 K22
IO110NB2F10 G25
IO110PB2F10 F25
IO111NB2F10 L21
IO111PB2F10 L20
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO112NB2F10 L24
IO112PB2F10 K24
IO113NB2F10 N17
IO115NB2F10 M20
IO115PB2F10 M21
IO117NB2F10 N19
IO117PB2F10 N18
IO118NB2F11 J25
IO121NB2F11 N24
IO121PB2F11 M24
IO122NB2F11 L25
IO122PB2F11 K25
IO123NB2F11 N22
IO123PB2F11 M22
IO124NB2F11 N23
IO124PB2F11 M23
IO127NB2F11 P18
IO127PB2F11 P17
IO128NB2F11 N25
IO128PB2F11 M25
Bank 3
IO129NB3F12 N20
IO130PB3F12 P24
IO131NB3F12 P21
IO133NB3F12 P20
IO133PB3F12 P19
IO138NB3F12 R23
IO138PB3F12 P23
IO139NB3F13 R22
IO139PB3F13 P22
IO141NB3F13 R19
IO142NB3F13 R25
IO142PB3F13 P25
IO143PB3F13 R21
IO145NB3F13 T18
IO145PB3F13 R18
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO146NB3F13 T24
IO146PB3F13 R24
IO147NB3F13 T20
IO147PB3F13 R20
IO148NB3F13 U25
IO148PB3F13 T25
IO149NB3F13 T22
IO153NB3F14 U19
IO153PB3F14 T19
IO154NB3F14 Y25
IO154PB3F14 W25
IO157NB3F14 V20
IO157PB3F14 U20
IO158NB3F14 AB25
IO158PB3F14 AA25
IO160PB3F14 W24
IO161NB3F15 U24
IO161PB3F15 U23
IO162NB3F15 AA24
IO162PB3F15 Y24
IO163NB3F15 V22
IO163PB3F15 U22
IO164NB3F15 V23
IO164PB3F15 V24
IO166NB3F15 AB24
IO167NB3F15 V21
IO167PB3F15 U21
IO168NB3F15 Y23
IO168PB3F15 AA23
IO169NB3F15 W22
IO169PB3F15 W23
IO170NB3F15 Y22
IO170PB3F15 Y21
Bank 4
IO171NB4F16 AC20
IO171PB4F16 AC21
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-41
IO172NB4F16 W20
IO172PB4F16 Y20
IO173NB4F16 AD21
IO173PB4F16 AD22
IO174NB4F16 AA19
IO176NB4F16 Y18
IO176PB4F16 Y19
IO177NB4F16 AB19
IO177PB4F16 AB18
IO182NB4F17 V19
IO182PB4F17 W19
IO183PB4F17 AC19
IO184NB4F17 AB17
IO184PB4F17 AC17
IO185NB4F17 AD19
IO185PB4F17 AD20
IO187PB4F17 AC18
IO188NB4F17 Y17
IO188PB4F17 AA17
IO189PB4F17 AE22
IO191NB4F17 W18
IO191PB4F17 V18
IO192PB4F17 U18
IO195PB4F18 AE21
IO196NB4F18 AB16
IO197NB4F18 AD17
IO197PB4F18 AD18
IO198NB4F18 V17
IO198PB4F18 W17
IO199NB4F18 AE19
IO199PB4F18 AE20
IO200NB4F18 AC15
IO201NB4F18 AD15
IO201PB4F18 AD16
IO202NB4F18 Y15
IO202PB4F18 Y16
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO206NB4F19 AB14
IO206PB4F19 AB15
IO207NB4F19 AE15
IO207PB4F19 AE16
IO208PB4F19 W16
IO209NB4F19 AE14
IO210NB4F19 V15
IO210PB4F19 V16
IO211NB4F19 AD14
IO211PB4F19 AC14
IO212NB4F19/CLKEN W14
IO212PB4F19/CLKEP W15
IO213NB4F19/CLKFN AC13
IO213PB4F19/CLKFP AD13
Bank 5
IO214NB5F20/CLKGN W13
IO214PB5F20/CLKGP Y13
IO215NB5F20/CLKHN AC12
IO215PB5F20/CLKHP AD12
IO216NB5F20 U13
IO216PB5F20 V13
IO217NB5F20 AE10
IO217PB5F20 AE11
IO218NB5F20 W11
IO218PB5F20 W12
IO222NB5F20 AA11
IO222PB5F20 Y11
IO223PB5F21 AE9
IO225NB5F21 AE6
IO225PB5F21 AE7
IO226NB5F21 Y10
IO226PB5F21 W10
IO227PB5F21 T13
IO228NB5F21 AB10
IO228PB5F21 AB11
IO229NB5F21 AD9
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO229PB5F21 AD10
IO230NB5F21 V11
IO233NB5F21 AD7
IO233PB5F21 AD8
IO234NB5F21 V9
IO234PB5F21 V10
IO236NB5F22 AC9
IO238NB5F22 W8
IO238PB5F22 W9
IO239NB5F22 AE4
IO239PB5F22 AE5
IO240NB5F22 AB9
IO242NB5F22 AA9
IO242PB5F22 Y9
IO243NB5F22 AD5
IO243PB5F22 AD6
IO244NB5F22 U8
IO246NB5F23 AB8
IO246PB5F23 AC8
IO247NB5F23 AB7
IO247PB5F23 AC7
IO250NB5F23 AA8
IO250PB5F23 Y8
IO251NB5F23 V8
IO251PB5F23 V7
IO252NB5F23 Y7
IO252PB5F23 W7
IO253NB5F23 AC5
IO253PB5F23 AC6
IO254NB5F23 Y6
IO254PB5F23 W6
IO256NB5F23 AB6
IO256PB5F23 AA6
Bank 6
IO257NB6F24 Y3
IO257PB6F24 AA3
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-42 v5.4
IO258NB6F24 V3
IO258PB6F24 W3
IO259NB6F24 AA2
IO259PB6F24 AB2
IO260NB6F24 V6
IO260PB6F24 W4
IO262NB6F24 U4
IO262PB6F24 V4
IO263NB6F24 Y5
IO263PB6F24 W5
IO268NB6F25 U6
IO268PB6F25 U5
IO269PB6F25 U3
IO272NB6F25 T2
IO272PB6F25 U2
IO273NB6F25 W2
IO273PB6F25 Y2
IO274NB6F25 R6
IO274PB6F25 T6
IO275NB6F25 T7
IO275PB6F25 U7
IO277NB6F25 V2
IO278NB6F26 R4
IO278PB6F26 T4
IO279PB6F26 R3
IO280NB6F26 R5
IO281NB6F26 AA1
IO281PB6F26 AB1
IO284NB6F26 R8
IO284PB6F26 T8
IO285NB6F26 W1
IO285PB6F26 Y1
IO286NB6F26 P2
IO286PB6F26 R2
IO287NB6F26 T1
IO287PB6F26 U1
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO288NB6F26 P5
IO290NB6F27 P6
IO291NB6F27 P1
IO291PB6F27 R1
IO292NB6F27 P7
IO292PB6F27 R7
IO293NB6F27 M1
IO293PB6F27 N1
IO294NB6F27 P8
IO296NB6F27 N3
IO296PB6F27 P3
IO298NB6F27 N4
IO298PB6F27 P4
IO299NB6F27 M2
IO299PB6F27 N2
Bank 7
IO300NB7F28 P9
IO300PB7F28 N6
IO302NB7F28 M6
IO304NB7F28 N8
IO304PB7F28 N7
IO308NB7F28 M4
IO309NB7F28 L3
IO309PB7F28 M3
IO310NB7F29 N10
IO310PB7F29 N9
IO311NB7F29 K1
IO311PB7F29 L1
IO313NB7F29 M5
IO316NB7F29 L6
IO316PB7F29 L5
IO317NB7F29 K2
IO317PB7F29 L2
IO318NB7F29 K4
IO318PB7F29 L4
IO320NB7F29 J3
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
IO321NB7F30 J2
IO321PB7F30 J1
IO323NB7F30 L7
IO323PB7F30 M7
IO324NB7F30 M9
IO324PB7F30 M8
IO327NB7F30 F1
IO327PB7F30 G1
IO328NB7F30 K7
IO328PB7F30 K6
IO329NB7F30 D1
IO329PB7F30 E1
IO331PB7F30 G2
IO332NB7F31 H3
IO332PB7F31 H2
IO333NB7F31 E2
IO333PB7F31 F2
IO334NB7F31 H4
IO334PB7F31 J4
IO335NB7F31 H5
IO335PB7F31 H6
IO337NB7F31 D2
IO338NB7F31 J6
IO338PB7F31 J5
IO339NB7F31 F3
IO339PB7F31 E3
IO340NB7F31 G4
IO340PB7F31 G3
IO341NB7F31 K8
IO341PB7F31 L8
Dedicated I/O
GND K5
GND A18
GND A2
GND A24
GND A25
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-43
GND A8
GND AA10
GND AA16
GND AA18
GND AA21
GND AA5
GND AB22
GND AB4
GND AC10
GND AC16
GND AC23
GND AC3
GND AD1
GND AD2
GND AD24
GND AD25
GND AE1
GND AE18
GND AE2
GND AE24
GND AE25
GND AE8
GND B1
GND B2
GND B24
GND B25
GND C10
GND C16
GND C23
GND C3
GND D22
GND D4
GND E10
GND E16
GND E21
GND E5
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
GND E8
GND H1
GND H21
GND H25
GND K21
GND K23
GND K3
GND L11
GND L12
GND L13
GND L14
GND L15
GND M11
GND M12
GND M13
GND M14
GND M15
GND N11
GND N12
GND N13
GND N14
GND N15
GND P11
GND P12
GND P13
GND P14
GND P15
GND R11
GND R12
GND R13
GND R14
GND R15
GND T21
GND T23
GND T3
GND T5
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
GND V1
GND V25
GND V5
NC AA12
NC AA14
NC E12
NC E14
NC F12
NC F14
NC H12
NC H14
NC J12
NC J14
NC U12
NC U14
NC V12
NC V14
NC Y12
NC Y14
PRA F13
PRB A13
PRC AB12
PRD AE13
TCK F5
TDI C5
TDO F6
TMS D6
TRST E6
VCCA AB20
VCCA F22
VCCA F4
VCCA J17
VCCA J9
VCCA K10
VCCA K11
VCCA K15
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-44 v5.4
VCCA K16
VCCA L10
VCCA L16
VCCA R10
VCCA R16
VCCA T10
VCCA T11
VCCA T15
VCCA T16
VCCA U17
VCCA U9
VCCA Y4
VCCDA A12
VCCDA A14
VCCDA AA13
VCCDA AA15
VCCDA AA20
VCCDA AA7
VCCDA AB13
VCCDA AC11
VCCDA AD11
VCCDA AD4
VCCDA AE12
VCCDA AE17
VCCDA B15
VCCDA C15
VCCDA C6
VCCDA D13
VCCDA E13
VCCDA E19
VCCDA F21
VCCDA G10
VCCDA G5
VCCDA N21
VCCDA N5
VCCDA W21
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
VCCIB0 A3
VCCIB0 B3
VCCIB0 C4
VCCIB0 D5
VCCIB0 J10
VCCIB0 J11
VCCIB0 K12
VCCIB1 A23
VCCIB1 B23
VCCIB1 C22
VCCIB1 D21
VCCIB1 J15
VCCIB1 J16
VCCIB1 K14
VCCIB2 C24
VCCIB2 C25
VCCIB2 D23
VCCIB2 E22
VCCIB2 K17
VCCIB2 L17
VCCIB2 M16
VCCIB3 AA22
VCCIB3 AB23
VCCIB3 AC24
VCCIB3 AC25
VCCIB3 P16
VCCIB3 R17
VCCIB3 T17
VCCIB4 AB21
VCCIB4 AC22
VCCIB4 AD23
VCCIB4 AE23
VCCIB4 T14
VCCIB4 U15
VCCIB4 U16
VCCIB5 AB5
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
VCCIB5 AC4
VCCIB5 AD3
VCCIB5 AE3
VCCIB5 T12
VCCIB5 U10
VCCIB5 U11
VCCIB6 AA4
VCCIB6 AB3
VCCIB6 AC1
VCCIB6 AC2
VCCIB6 P10
VCCIB6 R9
VCCIB6 T9
VCCIB7 C1
VCCIB7 C2
VCCIB7 D3
VCCIB7 E4
VCCIB7 K9
VCCIB7 L9
VCCIB7 M10
VPUMP E20
624-Pin CCGA/LGA
RTAX2000S/SL Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-45
1152-Pin CCGA/LGA
Note
For Package Manufacturing and Environmental information, visit the Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Figure 3-5 1152-Pin CCGA/LGA (Bottom View)
12345678910111213141516171819202122232425262728293031323334
AP
AN
AM
AL
AK
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
RTAX-S/SL RadTolerant FPGAs
3-46 v5.4
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
Bank 0
IO00NB0F0 D6
IO00PB0F0 C6
IO01NB0F0 H10
IO01PB0F0 H9
IO02NB0F0 F8
IO02PB0F0 G8
IO03NB0F0 A6
IO03PB0F0 B6
IO04NB0F0 C7
IO04PB0F0 D7
IO05NB0F0 K10
IO05PB0F0 J10
IO06NB0F0 F9
IO06PB0F0 G9
IO07NB0F0 F10
IO07PB0F0 G10
IO08NB0F0 E9
IO08PB0F0 E8
IO09NB0F0 J11
IO09PB0F0 K11
IO10NB0F0 C8
IO10PB0F0 D8
IO11NB0F0 K12
IO11PB0F0 J12
IO12NB0F1 G11
IO12PB0F1 H11
IO13NB0F1 G12
IO13PB0F1 H12
IO14NB0F1 A7
IO14PB0F1 B7
IO15NB0F1 H13
IO15PB0F1 J13
IO16NB0F1 C9
IO16PB0F1 D9
IO17NB0F1 F12
IO17PB0F1 F11
IO18NB0F1 E11
IO18PB0F1 E10
IO19NB0F1 F13
IO19PB0F1 G13
IO20NB0F1 A10
IO20PB0F1 A9
IO21NB0F1 K14
IO21PB0F1 K13
IO22NB0F2 B11
IO22PB0F2 B10
IO23NB0F2 C12
IO23PB0F2 C11
IO24NB0F2 A12
IO24PB0F2 A11
IO25NB0F2 H14
IO25PB0F2 J14
IO26NB0F2 D13
IO26PB0F2 D12
IO27NB0F2 F14
IO27PB0F2 G14
IO28NB0F2 E14
IO28PB0F2 E13
IO29NB0F2 B13
IO29PB0F2 B12
IO30NB0F2 C14
IO30PB0F2 C13
IO31NB0F2 H15
IO31PB0F2 J15
IO32NB0F2 A14
IO32PB0F2 B14
IO33NB0F2 K15
IO33PB0F2 L15
IO34NB0F3 D15
IO34PB0F3 D14
IO35NB0F3 A15
IO35PB0F3 B15
IO36NB0F3 B16
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO36PB0F3 A16
IO37NB0F3 G16
IO37PB0F3 G15
IO38NB0F3 D16
IO38PB0F3 C16
IO39NB0F3 K16
IO39PB0F3 L16
IO40NB0F3 D17
IO40PB0F3 C17
IO41NB0F3/HCLKAN E16
IO41PB0F3/HCLKAP F16
IO42NB0F3/HCLKBN G17
IO42PB0F3/HCLKBP F17
Bank 1
IO43NB1F4/HCLKCN G19
IO43PB1F4/HCLKCP G18
IO44NB1F4/HCLKDN E19
IO44PB1F4/HCLKDP F19
IO45NB1F4 C18
IO45PB1F4 D18
IO46NB1F4 A18
IO46PB1F4 B18
IO47NB1F4 K19
IO47PB1F4 L19
IO48NB1F4 C19
IO48PB1F4 D19
IO49NB1F4 K20
IO49PB1F4 L20
IO50NB1F4 A19
IO50PB1F4 B19
IO51NB1F4 H20
IO51PB1F4 J20
IO52NB1F4 B20
IO52PB1F4 A20
IO53NB1F4 F20
IO53PB1F4 E20
IO54NB1F5 B21
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-47
IO54PB1F5 A21
IO55NB1F5 K21
IO55PB1F5 J21
IO56NB1F5 D21
IO56PB1F5 C21
IO57NB1F5 G22
IO57PB1F5 G21
IO58NB1F5 E22
IO58PB1F5 E21
IO59NB1F5 D22
IO59PB1F5 C22
IO60NB1F5 B23
IO60PB1F5 A23
IO61NB1F5 H22
IO61PB1F5 H21
IO62NB1F5 C24
IO62PB1F5 C23
IO63NB1F5 F23
IO63PB1F5 F22
IO64NB1F6 B24
IO64PB1F6 A24
IO65NB1F6 J22
IO65PB1F6 K22
IO66NB1F6 B25
IO66PB1F6 A25
IO67NB1F6 K23
IO67PB1F6 J23
IO68NB1F6 F24
IO68PB1F6 E24
IO69NB1F6 C27
IO69PB1F6 C26
IO70NB1F6 H24
IO70PB1F6 G24
IO71NB1F6 H23
IO71PB1F6 G23
IO72NB1F6 B28
IO72PB1F6 A28
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO73NB1F6 E26
IO73PB1F6 E25
IO74NB1F6 F26
IO74PB1F6 F25
IO75NB1F6 K25
IO75PB1F6 K24
IO76NB1F7 D27
IO76PB1F7 D26
IO77NB1F7 B29
IO77PB1F7 A29
IO78NB1F7 D28
IO78PB1F7 C28
IO79NB1F7 H25
IO79PB1F7 G25
IO80NB1F7 F27
IO80PB1F7 E27
IO81NB1F7 J25
IO81PB1F7 J24
IO82NB1F7 D29
IO82PB1F7 C29
IO83NB1F7 H26
IO83PB1F7 G26
IO84NB1F7 F28
IO84PB1F7 E28
IO85NB1F7 H27
IO85PB1F7 G27
Bank 2
IO86NB2F8 J28
IO86PB2F8 J27
IO87NB2F8 M25
IO87PB2F8 L25
IO88NB2F8 L26
IO88PB2F8 K26
IO89NB2F8 G31
IO89PB2F8 F31
IO90NB2F8 H29
IO90PB2F8 G29
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO91NB2F8 K28
IO91PB2F8 K27
IO92NB2F8 J30
IO92PB2F8 H30
IO93NB2F8 L28
IO93PB2F8 L27
IO94NB2F8 K29
IO94PB2F8 J29
IO95NB2F8 K31
IO95PB2F8 J31
IO96NB2F9 J32
IO96PB2F9 H32
IO97NB2F9 M27
IO97PB2F9 M26
IO98NB2F9 L30
IO98PB2F9 K30
IO99NB2F9 N25
IO99PB2F9 N26
IO100NB2F9 M29
IO100PB2F9 L29
IO101NB2F9 L33
IO101PB2F9 L32
IO102NB2F9 K34
IO102PB2F9 K33
IO103NB2F9 N28
IO103PB2F9 M28
IO104NB2F9 M34
IO104PB2F9 L34
IO105NB2F9 P27
IO105PB2F9 N27
IO106NB2F9 M32
IO106PB2F9 M31
IO107NB2F10 P25
IO107PB2F10 P26
IO108NB2F10 N33
IO108PB2F10 M33
IO109NB2F10 P29
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-48 v5.4
IO109PB2F10 N29
IO110NB2F10 P30
IO110PB2F10 N30
IO111NB2F10 R24
IO111PB2F10 R25
IO112NB2F10 P31
IO112PB2F10 N31
IO113NB2F10 R28
IO113PB2F10 P28
IO114NB2F10 P32
IO114PB2F10 N32
IO115NB2F10 R30
IO115PB2F10 R29
IO116NB2F10 P34
IO116PB2F10 P33
IO117NB2F10 R27
IO117PB2F10 R26
IO118NB2F11 R34
IO118PB2F11 R33
IO119NB2F11 T24
IO119PB2F11 T25
IO120NB2F11 T33
IO120PB2F11 T34
IO121NB2F11 T27
IO121PB2F11 T26
IO122NB2F11 T30
IO122PB2F11 T29
IO123NB2F11 U28
IO123PB2F11 T28
IO124NB2F11 T31
IO124PB2F11 T32
IO125NB2F11 U24
IO125PB2F11 U25
IO126NB2F11 U33
IO126PB2F11 U34
IO127NB2F11 U26
IO127PB2F11 U27
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO128NB2F11 U31
IO128PB2F11 U32
Bank 3
IO129NB3F12 V29
IO129PB3F12 U29
IO130NB3F12 V31
IO130PB3F12 V32
IO131NB3F12 V24
IO131PB3F12 V25
IO132NB3F12 W28
IO132PB3F12 V28
IO133NB3F12 W26
IO133PB3F12 V26
IO134NB3F12 W33
IO134PB3F12 V33
IO135NB3F12 W25
IO135PB3F12 W24
IO136NB3F12 W31
IO136PB3F12 W32
IO137NB3F12 Y30
IO137PB3F12 W30
IO138NB3F12 Y29
IO138PB3F12 W29
IO139NB3F13 Y27
IO139PB3F13 W27
IO140NB3F13 AA33
IO140PB3F13 Y33
IO141NB3F13 Y25
IO141PB3F13 Y24
IO142NB3F13 AA31
IO142PB3F13 Y31
IO143NB3F13 AA28
IO143PB3F13 Y28
IO144NB3F13 AA34
IO144PB3F13 Y34
IO145NB3F13 AA26
IO145PB3F13 Y26
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO146NB3F13 AA29
IO146PB3F13 AA30
IO147NB3F13 AB30
IO147PB3F13 AB29
IO148NB3F13 AB32
IO148PB3F13 AA32
IO149NB3F13 AB27
IO149PB3F13 AA27
IO150NB3F14 AC31
IO150PB3F14 AB31
IO151NB3F14 AD33
IO151PB3F14 AC33
IO152NB3F14 AC28
IO152PB3F14 AB28
IO153NB3F14 AB25
IO153PB3F14 AA25
IO154NB3F14 AD32
IO154PB3F14 AC32
IO155NB3F14 AD29
IO155PB3F14 AC29
IO156NB3F14 AE30
IO156PB3F14 AD30
IO157NB3F14 AC26
IO157PB3F14 AB26
IO158NB3F14 AH33
IO158PB3F14 AG33
IO159NB3F14 AD27
IO159PB3F14 AC27
IO160NB3F14 AG32
IO160PB3F14 AF32
IO161NB3F15 AG31
IO161PB3F15 AF31
IO162NB3F15 AF29
IO162PB3F15 AE29
IO163NB3F15 AE28
IO163PB3F15 AD28
IO164NB3F15 AG30
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-49
IO164PB3F15 AF30
IO165NB3F15 AE26
IO165PB3F15 AD26
IO166NB3F15 AJ30
IO166PB3F15 AH30
IO167NB3F15 AG28
IO167PB3F15 AF28
IO168NB3F15 AF27
IO168PB3F15 AE27
IO169NB3F15 AH29
IO169PB3F15 AG29
IO170NB3F15 AD25
IO170PB3F15 AC25
Bank 4
IO171NB4F16 AP29
IO171PB4F16 AN29
IO172NB4F16 AH26
IO172PB4F16 AH27
IO173NB4F16 AJ27
IO173PB4F16 AJ28
IO174NB4F16 AL27
IO174PB4F16 AL28
IO175NB4F16 AM28
IO175PB4F16 AM29
IO176NB4F16 AG25
IO176PB4F16 AG26
IO177NB4F16 AK26
IO177PB4F16 AK27
IO178NB4F16 AF25
IO178PB4F16 AE25
IO179NB4F16 AP28
IO179PB4F16 AN28
IO180NB4F16 AJ25
IO180PB4F16 AJ26
IO181NB4F17 AM26
IO181PB4F17 AM27
IO182NB4F17 AF24
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO182PB4F17 AE24
IO183NB4F17 AH24
IO183PB4F17 AH25
IO184NB4F17 AG23
IO184PB4F17 AG24
IO185NB4F17 AL25
IO185PB4F17 AL26
IO186NB4F17 AP25
IO186PB4F17 AP26
IO187NB4F17 AK24
IO187PB4F17 AK25
IO188NB4F17 AF23
IO188PB4F17 AE23
IO189NB4F17 AN24
IO189PB4F17 AM24
IO190NB4F17 AH22
IO190PB4F17 AH23
IO191NB4F17 AJ23
IO191PB4F17 AJ24
IO192NB4F17 AG21
IO192PB4F17 AG22
IO193NB4F18 AP23
IO193PB4F18 AP24
IO194NB4F18 AN22
IO194PB4F18 AN23
IO195NB4F18 AM23
IO195PB4F18 AL23
IO196NB4F18 AF21
IO196PB4F18 AF22
IO197NB4F18 AL22
IO197PB4F18 AM22
IO198NB4F18 AE21
IO198PB4F18 AE22
IO199NB4F18 AJ21
IO199PB4F18 AJ22
IO200NB4F18 AK21
IO200PB4F18 AK22
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO201NB4F18 AM21
IO201PB4F18 AL21
IO202NB4F18 AE20
IO202PB4F18 AD20
IO203NB4F19 AN21
IO203PB4F19 AP21
IO204NB4F19 AP20
IO204PB4F19 AN20
IO205NB4F19 AN19
IO205PB4F19 AP19
IO206NB4F19 AG20
IO206PB4F19 AF20
IO207NB4F19 AL19
IO207PB4F19 AL20
IO208NB4F19 AG19
IO208PB4F19 AF19
IO209NB4F19 AN18
IO209PB4F19 AP18
IO210NB4F19 AE19
IO210PB4F19 AD19
IO211NB4F19 AL18
IO211PB4F19 AM18
IO212NB4F19/CLKEN AJ20
IO212PB4F19/CLKEP AK20
IO213NB4F19/CLKFN AJ18
IO213PB4F19/CLKFP AJ19
Bank 5
IO214NB5F20/CLKGN AJ16
IO214PB5F20/CLKGP AJ17
IO215NB5F20/CLKHN AJ15
IO215PB5F20/CLKHP AK15
IO216NB5F20 AD16
IO216PB5F20 AE17
IO217NB5F20 AM17
IO217PB5F20 AL17
IO218NB5F20 AG16
IO218PB5F20 AF16
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-50 v5.4
IO219NB5F20 AM16
IO219PB5F20 AL16
IO220NB5F20 AP16
IO220PB5F20 AN16
IO221NB5F20 AN15
IO221PB5F20 AP15
IO222NB5F20 AD15
IO222PB5F20 AE16
IO223NB5F21 AL14
IO223PB5F21 AL15
IO224NB5F21 AN14
IO224PB5F21 AP14
IO225NB5F21 AK13
IO225PB5F21 AK14
IO226NB5F21 AE15
IO226PB5F21 AF15
IO227NB5F21 AG14
IO227PB5F21 AG15
IO228NB5F21 AJ13
IO228PB5F21 AJ14
IO229NB5F21 AM13
IO229PB5F21 AM14
IO230NB5F21 AE14
IO230PB5F21 AF14
IO231NB5F21 AN12
IO231PB5F21 AP12
IO232NB5F21 AG13
IO232PB5F21 AH13
IO233NB5F21 AL12
IO233PB5F21 AL13
IO234NB5F21 AE13
IO234PB5F21 AF13
IO235NB5F22 AN11
IO235PB5F22 AP11
IO236NB5F22 AM11
IO236PB5F22 AM12
IO237NB5F22 AJ11
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO237PB5F22 AJ12
IO238NB5F22 AH11
IO238PB5F22 AH12
IO239NB5F22 AK10
IO239PB5F22 AK11
IO240NB5F22 AE12
IO240PB5F22 AF12
IO241NB5F22 AN10
IO241PB5F22 AP10
IO242NB5F22 AG11
IO242PB5F22 AG12
IO243NB5F22 AL9
IO243PB5F22 AL10
IO244NB5F22 AM8
IO244PB5F22 AM9
IO245NB5F23 AH10
IO245PB5F23 AJ10
IO246NB5F23 AF10
IO246PB5F23 AF11
IO247NB5F23 AJ9
IO247PB5F23 AK9
IO248NB5F23 AN7
IO248PB5F23 AP7
IO249NB5F23 AL7
IO249PB5F23 AL8
IO250NB5F23 AE10
IO250PB5F23 AE11
IO251NB5F23 AK8
IO251PB5F23 AJ8
IO252NB5F23 AH8
IO252PB5F23 AH9
IO253NB5F23 AN6
IO253PB5F23 AP6
IO254NB5F23 AG9
IO254PB5F23 AG10
IO255NB5F23 AJ7
IO255PB5F23 AK7
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO256NB5F23 AL6
IO256PB5F23 AM6
Bank 6
IO257NB6F24 AG6
IO257PB6F24 AH6
IO258NB6F24 AD9
IO258PB6F24 AE9
IO259NB6F24 AF7
IO259PB6F24 AG7
IO260NB6F24 AH3
IO260PB6F24 AH4
IO261NB6F24 AH5
IO261PB6F24 AJ5
IO262NB6F24 AE6
IO262PB6F24 AF6
IO263NB6F24 AF5
IO263PB6F24 AG5
IO264NB6F24 AD8
IO264PB6F24 AE8
IO265NB6F24 AF3
IO265PB6F24 AG3
IO266NB6F24 AC10
IO266PB6F24 AD10
IO267NB6F25 AD7
IO267PB6F25 AE7
IO268NB6F25 AD5
IO268PB6F25 AE5
IO269NB6F25 AE4
IO269PB6F25 AF4
IO270NB6F25 AB9
IO270PB6F25 AC9
IO271NB6F25 AC6
IO271PB6F25 AD6
IO272NB6F25 AB8
IO272PB6F25 AC8
IO273NB6F25 AE1
IO273PB6F25 AE2
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-51
IO274NB6F25 AA10
IO274PB6F25 AB10
IO275NB6F25 AB7
IO275PB6F25 AC7
IO276NB6F25 AD1
IO276PB6F25 AD2
IO277NB6F25 AC4
IO277PB6F25 AC3
IO278NB6F26 AA8
IO278PB6F26 AA9
IO279NB6F26 AB5
IO279PB6F26 AB6
IO280NB6F26 Y10
IO280PB6F26 Y11
IO281NB6F26 AB3
IO281PB6F26 AB4
IO282NB6F26 Y7
IO282PB6F26 AA7
IO283NB6F26 AC2
IO283PB6F26 AC1
IO284NB6F26 Y9
IO284PB6F26 Y8
IO285NB6F26 AA5
IO285PB6F26 AA6
IO286NB6F26 W10
IO286PB6F26 W11
IO287NB6F26 AA3
IO287PB6F26 AA4
IO288NB6F26 W9
IO288PB6F26 W8
IO289NB6F27 AA1
IO289PB6F27 AA2
IO290NB6F27 W6
IO290PB6F27 Y6
IO291NB6F27 W5
IO291PB6F27 Y5
IO292NB6F27 V7
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO292PB6F27 W7
IO293NB6F27 W4
IO293PB6F27 Y4
IO294NB6F27 V10
IO294PB6F27 V11
IO295NB6F27 Y1
IO295PB6F27 Y2
IO296NB6F27 W1
IO296PB6F27 W2
IO297NB6F27 V1
IO297PB6F27 V2
IO298NB6F27 V9
IO298PB6F27 V8
IO299NB6F27 U4
IO299PB6F27 V4
Bank 7
IO300NB7F28 U10
IO300PB7F28 U11
IO301NB7F28 U2
IO301PB7F28 U1
IO302NB7F28 U6
IO302PB7F28 U7
IO303NB7F28 T3
IO303PB7F28 U3
IO304NB7F28 U9
IO304PB7F28 U8
IO305NB7F28 R2
IO305PB7F28 R1
IO306NB7F28 R4
IO306PB7F28 T4
IO307NB7F28 R5
IO307PB7F28 T5
IO308NB7F28 T11
IO308PB7F28 T10
IO309NB7F28 T6
IO309PB7F28 T7
IO310NB7F29 T9
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
IO310PB7F29 T8
IO311NB7F29 N3
IO311PB7F29 P3
IO312NB7F29 P7
IO312PB7F29 R7
IO313NB7F29 P6
IO313PB7F29 R6
IO314NB7F29 M2
IO314PB7F29 N2
IO315NB7F29 N4
IO315PB7F29 P4
IO316NB7F29 R9
IO316PB7F29 R8
IO317NB7F29 N5
IO317PB7F29 P5
IO318NB7F29 R10
IO318PB7F29 R11
IO319NB7F29 L2
IO319PB7F29 L1
IO320NB7F29 N8
IO320PB7F29 P8
IO321NB7F30 M6
IO321PB7F30 N6
IO322NB7F30 P10
IO322PB7F30 P9
IO323NB7F30 L3
IO323PB7F30 M3
IO324NB7F30 M7
IO324PB7F30 N7
IO325NB7F30 K2
IO325PB7F30 K1
IO326NB7F30 G2
IO326PB7F30 H2
IO327NB7F30 L6
IO327PB7F30 L5
IO328NB7F30 N10
IO328PB7F30 N9
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-52 v5.4
IO329NB7F30 J4
IO329PB7F30 K4
IO330NB7F30 J5
IO330PB7F30 K5
IO331NB7F30 M10
IO331PB7F30 M9
IO332NB7F31 L8
IO332PB7F31 M8
IO333NB7F31 F2
IO333PB7F31 F1
IO334NB7F31 J6
IO334PB7F31 K6
IO335NB7F31 H4
IO335PB7F31 H3
IO336NB7F31 K7
IO336PB7F31 L7
IO337NB7F31 G4
IO337PB7F31 G3
IO338NB7F31 K9
IO338PB7F31 L9
IO339NB7F31 H6
IO339PB7F31 H5
IO340NB7F31 H7
IO340PB7F31 J7
IO341NB7F31 J8
IO341PB7F31 K8
Dedicated I/O
GND A13
GND A2
GND A22
GND A27
GND A3
GND A31
GND A32
GND A33
GND A4
GND A8
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
GND AA14
GND AA15
GND AA16
GND AA17
GND AA18
GND AA19
GND AA20
GND AA21
GND AB1
GND AB13
GND AB22
GND AB34
GND AC12
GND AC23
GND AC30
GND AC5
GND AD11
GND AD24
GND AD31
GND AD4
GND AE3
GND AE32
GND AF2
GND AF33
GND AG1
GND AG27
GND AG34
GND AG8
GND AH28
GND AH7
GND AJ29
GND AJ6
GND AK12
GND AK17
GND AK18
GND AK23
GND AK30
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
GND AK5
GND AL1
GND AL11
GND AL2
GND AL24
GND AL3
GND AL31
GND AL32
GND AL33
GND AL34
GND AL4
GND AM1
GND AM10
GND AM15
GND AM2
GND AM20
GND AM25
GND AM3
GND AM31
GND AM32
GND AM33
GND AM34
GND AM4
GND AN1
GND AN2
GND AN26
GND AN3
GND AN31
GND AN32
GND AN33
GND AN34
GND AN4
GND AN9
GND AP13
GND AP2
GND AP22
GND AP27
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-53
GND AP3
GND AP31
GND AP32
GND AP33
GND AP4
GND AP8
GND B1
GND B2
GND B26
GND B3
GND B31
GND B32
GND B33
GND B34
GND B4
GND B9
GND C1
GND C10
GND C15
GND C2
GND C20
GND C25
GND C3
GND C31
GND C32
GND C33
GND C34
GND C4
GND D1
GND D11
GND D2
GND D24
GND D3
GND D31
GND D32
GND D33
GND D34
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
GND D4
GND E12
GND E17
GND E18
GND E23
GND E30
GND E5
GND F29
GND F30
GND F6
GND G28
GND G6
GND G7
GND H1
GND H34
GND J2
GND J33
GND K3
GND K32
GND L11
GND L24
GND L31
GND L4
GND M12
GND M23
GND M30
GND M5
GND N1
GND N13
GND N22
GND N34
GND P14
GND P15
GND P16
GND P17
GND P18
GND P19
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
GND P20
GND P21
GND R14
GND R15
GND R16
GND R17
GND R18
GND R19
GND R20
GND R21
GND R3
GND R32
GND T14
GND T15
GND T16
GND T17
GND T18
GND T19
GND T20
GND T21
GND U14
GND U15
GND U16
GND U17
GND U18
GND U19
GND U20
GND U21
GND U30
GND U5
GND V14
GND V15
GND V16
GND V17
GND V18
GND V19
GND V20
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-54 v5.4
GND V21
GND V30
GND V5
GND W14
GND W15
GND W16
GND W17
GND W18
GND W19
GND W20
GND W21
GND Y14
GND Y15
GND Y16
GND Y17
GND Y18
GND Y19
GND Y20
GND Y21
GND Y3
GND Y32
NC A17
NC A26
NC AB2
NC AB33
NC AC34
NC AD17
NC AD3
NC AD34
NC AE18
NC AE31
NC AE33
NC AE34
NC AF1
NC AF17
NC AF18
NC AF34
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
NC AG2
NC AG4
NC AH1
NC AH16
NC AH19
NC AH2
NC AH31
NC AH32
NC AH34
NC AJ1
NC AJ2
NC AJ3
NC AJ31
NC AJ32
NC AJ33
NC AJ34
NC AJ4
NC AK16
NC AK19
NC AL29
NC AM19
NC AM7
NC AN13
NC AN17
NC AN25
NC AN27
NC AN8
NC AP17
NC AP9
NC B17
NC B22
NC B27
NC B8
NC D10
NC D20
NC D23
NC D25
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
NC F3
NC F32
NC F33
NC F34
NC F4
NC G1
NC G32
NC G33
NC G34
NC H16
NC H19
NC H31
NC H33
NC J1
NC J16
NC J19
NC J3
NC J34
NC K17
NC K18
NC L17
NC L18
NC M1
NC M4
NC P1
NC P2
NC R31
NC T1
NC T2
NC V3
NC V34
NC W3
NC W34
PRA J17
PRB F18
PRC AD18
PRD AH18
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-55
TCK J9
TDI F7
TDO L10
TMS H8
TRST E6
VCCA AA13
VCCA AA22
VCCA AB14
VCCA AB15
VCCA AB16
VCCA AB17
VCCA AB18
VCCA AB19
VCCA AB20
VCCA AB21
VCCA AF8
VCCA AK28
VCCA G30
VCCA G5
VCCA N14
VCCA N15
VCCA N16
VCCA N17
VCCA N18
VCCA N19
VCCA N20
VCCA N21
VCCA P13
VCCA P22
VCCA R13
VCCA R22
VCCA T13
VCCA T22
VCCA U13
VCCA U22
VCCA V13
VCCA V22
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
VCCA W13
VCCA W22
VCCA Y13
VCCA Y22
VCCDA AF26
VCCDA AF9
VCCDA AG17
VCCDA AG18
VCCDA AH14
VCCDA AH15
VCCDA AH17
VCCDA AH20
VCCDA AH21
VCCDA AK29
VCCDA AK6
VCCDA E15
VCCDA E29
VCCDA E7
VCCDA F15
VCCDA F21
VCCDA F5
VCCDA G20
VCCDA H17
VCCDA H18
VCCDA H28
VCCDA J18
VCCDA V27
VCCDA V6
VCCIB0 A5
VCCIB0 B5
VCCIB0 C5
VCCIB0 D5
VCCIB0 L12
VCCIB0 L13
VCCIB0 L14
VCCIB0 M13
VCCIB0 M14
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
VCCIB0 M15
VCCIB0 M16
VCCIB0 M17
VCCIB1 A30
VCCIB1 B30
VCCIB1 C30
VCCIB1 D30
VCCIB1 L21
VCCIB1 L22
VCCIB1 L23
VCCIB1 M18
VCCIB1 M19
VCCIB1 M20
VCCIB1 M21
VCCIB1 M22
VCCIB2 E31
VCCIB2 E32
VCCIB2 E33
VCCIB2 E34
VCCIB2 M24
VCCIB2 N23
VCCIB2 N24
VCCIB2 P23
VCCIB2 P24
VCCIB2 R23
VCCIB2 T23
VCCIB2 U23
VCCIB3 AA23
VCCIB3 AA24
VCCIB3 AB23
VCCIB3 AB24
VCCIB3 AC24
VCCIB3 AK31
VCCIB3 AK32
VCCIB3 AK33
VCCIB3 AK34
VCCIB3 V23
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-56 v5.4
VCCIB3 W23
VCCIB3 Y23
VCCIB4 AC18
VCCIB4 AC19
VCCIB4 AC20
VCCIB4 AC21
VCCIB4 AC22
VCCIB4 AD21
VCCIB4 AD22
VCCIB4 AD23
VCCIB4 AL30
VCCIB4 AM30
VCCIB4 AN30
VCCIB4 AP30
VCCIB5 AC13
VCCIB5 AC14
VCCIB5 AC15
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
VCCIB5 AC16
VCCIB5 AC17
VCCIB5 AD12
VCCIB5 AD13
VCCIB5 AD14
VCCIB5 AL5
VCCIB5 AM5
VCCIB5 AN5
VCCIB5 AP5
VCCIB6 AA11
VCCIB6 AA12
VCCIB6 AB11
VCCIB6 AB12
VCCIB6 AC11
VCCIB6 AK1
VCCIB6 AK2
VCCIB6 AK3
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
VCCIB6 AK4
VCCIB6 V12
VCCIB6 W12
VCCIB6 Y12
VCCIB7 E1
VCCIB7 E2
VCCIB7 E3
VCCIB7 E4
VCCIB7 M11
VCCIB7 N11
VCCIB7 N12
VCCIB7 P11
VCCIB7 P12
VCCIB7 R12
VCCIB7 T12
VCCIB7 U12
VPUMP J26
1152-Pin CCGA/LGA
RTAX2000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-57
1272-Pin CCGA/LGA
Note
For Package Manufacturing and Environmental information, visit the Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Figure 3-6 1272-Pin CCGA/LGA (Bottom View)
36
AT
AR
AP
AN
AM
AL
AK
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
35 34 33 32 31 30 29 28 27 2625 24 23 22 21 20 19 18 17 1615 14 13 12 11 10 9 8 7 654 132
RTAX-S/SL RadTolerant FPGAs
3-58 v5.4
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
Bank 0
IO00NB0F0 E9
IO00PB0F0 D9
IO01NB0F0 D8
IO01PB0F0 D7
IO02NB0F0 J10
IO02PB0F0 J9
IO03NB0F0 E7
IO03PB0F0 E8
IO04NB0F0 F9
IO04PB0F0 G9
IO05NB0F0 B7
IO05PB0F0 B6
IO06NB0F0 L13
IO06PB0F0 L12
IO07NB0F0 C7
IO07PB0F0 C6
IO08NB0F0 F10
IO08PB0F0 G10
IO09NB0F0 D10
IO09PB0F0 E10
IO10NB0F0 H11
IO10PB0F0 H10
IO11NB0F0 A5
IO11PB0F0 A4
IO12NB0F1 D6
IO12PB0F1 D5
IO13NB0F1 A7
IO13PB0F1 A6
IO14NB0F1 J12
IO14PB0F1 J11
IO15NB0F1 D12
IO15PB0F1 D11
IO16NB0F1 F12
IO16PB0F1 G12
IO17NB0F1 E12
IO17PB0F1 E11
IO18NB0F1 K13
IO18PB0F1 K12
IO19NB0F1 B4
IO19PB0F1 C4
IO20NB0F1 H13
IO20PB0F1 H12
IO21NB0F2 C13
IO21PB0F2 C12
IO22NB0F2 M14
IO22PB0F2 M13
IO23NB0F2 B10
IO23PB0F2 B9
IO24NB0F2 J14
IO24PB0F2 J13
IO25NB0F2 A8
IO25PB0F2 A9
IO26NB0F2 G13
IO26PB0F2 F13
IO27NB0F2 D14
IO27PB0F2 D13
IO28NB0F2 L16
IO28PB0F2 L15
IO29NB0F2 B13
IO29PB0F2 B12
IO30NB0F2 C10
IO30PB0F2 C9
IO31NB0F2 E15
IO31PB0F2 E14
IO32NB0F2 K15
IO32PB0F2 K16
IO33NB0F3 A13
IO33PB0F3 A12
IO34NB0F3 G15
IO34PB0F3 F15
IO35NB0F3 C15
IO35PB0F3 D15
IO36NB0F3 J16
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO36PB0F3 J15
IO37NB0F3 A11
IO37PB0F3 A10
IO38NB0F3 H15
IO38PB0F3 H14
IO39NB0F3 B16
IO39PB0F3 B15
IO40NB0F3 M16
IO40PB0F3 M17
IO41NB0F3 E16
IO41PB0F3 F16
IO42NB0F4 H17
IO42PB0F4 J17
IO43NB0F4 A14
IO43PB0F4 A15
IO44NB0F4 G16
IO44PB0F4 H16
IO45NB0F4 A17
IO45PB0F4 A16
IO46NB0F4 M18
IO46PB0F4 M19
IO47NB0F4 E18
IO47PB0F4 E17
IO48NB0F4 G18
IO48PB0F4 H18
IO49NB0F4 C18
IO49PB0F4 B18
IO50NB0F4/HCLKAN J18
IO50PB0F4/HCLKAP K18
IO51NB0F4/HCLKBN D18
IO51PB0F4/HCLKBP D17
Bank 1
IO52NB1F6/HCLKCN K19
IO52PB1F6/HCLKCP J19
IO53NB1F6/HCLKDN D20
IO53PB1F6/HCLKDP D19
IO54NB1F6 H19
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-59
IO54PB1F6 G19
IO55NB1F6 B19
IO55PB1F6 C19
IO56NB1F6 M20
IO56PB1F6 M21
IO57NB1F6 E20
IO57PB1F6 E19
IO58NB1F6 H21
IO58PB1F6 G21
IO59NB1F6 A21
IO59PB1F6 A20
IO60NB1F7 H20
IO60PB1F7 J20
IO61NB1F7 A22
IO61PB1F7 A23
IO62NB1F7 D32
IO62PB1F7 D31
IO63NB1F7 F21
IO63PB1F7 E21
IO64NB1F7 J22
IO64PB1F7 J21
IO65NB1F7 B22
IO65PB1F7 B21
IO66NB1F7 H23
IO66PB1F7 H22
IO67NB1F7 D22
IO67PB1F7 C22
IO68NB1F7 K22
IO68PB1F7 K21
IO69NB1F7 A27
IO69PB1F7 A26
IO70NB1F7 F22
IO70PB1F7 G22
IO71NB1F7 E23
IO71PB1F7 E22
IO72NB1F8 L22
IO72PB1F8 L21
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO73NB1F8 A25
IO73PB1F8 A24
IO74NB1F8 C28
IO74PB1F8 C27
IO75NB1F8 D24
IO75PB1F8 D23
IO76NB1F8 J24
IO76PB1F8 J23
IO77NB1F8 B25
IO77PB1F8 B24
IO78NB1F8 F24
IO78PB1F8 G24
IO79NB1F8 A28
IO79PB1F8 A29
IO80NB1F8 M24
IO80PB1F8 M23
IO81NB1F8 B28
IO81PB1F8 B27
IO82NB1F9 H25
IO82PB1F9 H24
IO83NB1F9 C25
IO83PB1F9 C24
IO84NB1F9 K25
IO84PB1F9 K24
IO85NB1F9 A33
IO85PB1F9 A32
IO86NB1F9 G25
IO86PB1F9 F25
IO87NB1F9 E26
IO87PB1F9 E25
IO88NB1F9 J26
IO88PB1F9 J25
IO89NB1F9 D26
IO89PB1F9 D25
IO90NB1F9 E31
IO90PB1F9 E32
IO91NB1F9 A31
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO91PB1F9 A30
IO92NB1F9 H27
IO92PB1F9 H26
IO93NB1F9 C33
IO93PB1F9 B33
IO94NB1F10 G27
IO94PB1F10 F27
IO95NB1F10 E27
IO95PB1F10 D27
IO96NB1F10 L24
IO96PB1F10 L25
IO97NB1F10 C31
IO97PB1F10 C30
IO98NB1F10 F28
IO98PB1F10 G28
IO99NB1F10 B31
IO99PB1F10 B30
IO100NB1F10 J28
IO100PB1F10 J27
IO101NB1F10 E29
IO101PB1F10 E30
IO102NB1F10 D28
IO102PB1F10 E28
IO103NB1F10 D30
IO103PB1F10 D29
Bank 2
IO104NB2F12 L29
IO104PB2F12 L28
IO105NB2F12 D35
IO105PB2F12 D34
IO106NB2F12 H33
IO106PB2F12 J33
IO107NB2F12 F34
IO107PB2F12 F33
IO108NB2F12 G33
IO108PB2F12 G32
IO109NB2F12 M28
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-60 v5.4
IO109PB2F12 M27
IO110NB2F12 K33
IO110PB2F12 K32
IO111NB2F12 K31
IO111PB2F12 K30
IO112NB2F13 K34
IO112PB2F13 J34
IO113NB2F13 N26
IO113PB2F13 M26
IO114NB2F13 K28
IO114PB2F13 K29
IO115NB2F13 H32
IO115PB2F13 J32
IO116NB2F13 G35
IO116PB2F13 G34
IO117NB2F13 M29
IO117PB2F13 M30
IO118NB2F13 E33
IO118PB2F13 D33
IO119NB2F13 M32
IO119PB2F13 M31
IO120NB2F13 E36
IO120PB2F13 D36
IO121NB2F14 N28
IO121PB2F14 N27
IO122NB2F14 L33
IO122PB2F14 L32
IO123NB2F14 N30
IO123PB2F14 N29
IO124NB2F14 K35
IO124PB2F14 J35
IO125NB2F14 P25
IO125PB2F14 N25
IO126NB2F14 H36
IO126PB2F14 G36
IO127NB2F14 N32
IO127PB2F14 N31
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO128NB2F14 N34
IO128PB2F14 M34
IO129NB2F14 P29
IO129PB2F14 P28
IO130NB2F15 N33
IO130PB2F15 M33
IO131NB2F15 R26
IO131PB2F15 R25
IO132NB2F15 K36
IO132PB2F15 J36
IO133NB2F15 R29
IO133PB2F15 R28
IO134NB2F15 N35
IO134PB2F15 M35
IO135NB2F15 F35
IO135PB2F15 F36
IO136NB2F15 M36
IO136PB2F15 L36
IO137NB2F15 T26
IO137PB2F15 T25
IO138NB2F15 P33
IO138PB2F15 P32
IO139NB2F16 R31
IO139PB2F16 R30
IO140NB2F16 P36
IO140PB2F16 N36
IO141NB2F16 T28
IO141PB2F16 T27
IO142NB2F16 R35
IO142PB2F16 R34
IO143NB2F16 T32
IO143PB2F16 T31
IO144NB2F16 T35
IO144PB2F16 T34
IO145NB2F16 T30
IO145PB2F16 T29
IO146NB2F16 R33
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO146PB2F16 R32
IO147NB2F16 V25
IO147PB2F16 U25
IO148NB2F17 T36
IO148PB2F17 R36
IO149NB2F17 U29
IO149PB2F17 U28
IO150NB2F17 U33
IO150PB2F17 T33
IO151NB2F17 W25
IO151PB2F17 Y25
IO152NB2F17 V36
IO152PB2F17 U36
IO153NB2F17 V31
IO153PB2F17 V30
IO154NB2F17 V32
IO154PB2F17 U32
IO155NB2F17 V27
IO155PB2F17 V28
IO156NB2F17 W34
IO156PB2F17 V34
Bank 3
IO157NB3F18 W29
IO157PB3F18 V29
IO158NB3F18 W35
IO158PB3F18 V35
IO159NB3F18 W30
IO159PB3F18 W31
IO160NB3F18 AA36
IO160PB3F18 Y36
IO161NB3F18 W27
IO161PB3F18 W28
IO162NB3F18 Y32
IO162PB3F18 W32
IO163NB3F18 Y28
IO163PB3F18 Y29
IO164NB3F18 AC36
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-61
IO164PB3F18 AB36
IO165NB3F18 AA26
IO165PB3F18 AA25
IO166NB3F19 AA33
IO166PB3F19 Y33
IO167NB3F19 AA32
IO167PB3F19 AA31
IO168NB3F19 AA34
IO168PB3F19 AA35
IO169NB3F19 AA29
IO169PB3F19 AA30
IO170NB3F19 AB32
IO170PB3F19 AB33
IO171NB3F19 AB31
IO171PB3F19 AB30
IO172NB3F19 AE36
IO172PB3F19 AD36
IO173NB3F19 AA27
IO173PB3F19 AA28
IO174NB3F19 AB34
IO174PB3F19 AB35
IO175NB3F20 AL35
IO175PB3F20 AL36
IO176NB3F20 AG36
IO176PB3F20 AF36
IO177NB3F20 AB25
IO177PB3F20 AB26
IO178NB3F20 AC32
IO178PB3F20 AC33
IO179NB3F20 AB29
IO179PB3F20 AB28
IO180NB3F20 AJ36
IO180PB3F20 AH36
IO181NB3F20 AC25
IO181PB3F20 AD25
IO182NB3F20 AE35
IO182PB3F20 AD35
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO183NB3F20 AC29
IO183PB3F20 AC28
IO184NB3F21 AE34
IO184PB3F21 AD34
IO185NB3F21 AE26
IO185PB3F21 AD26
IO186NB3F21 AE33
IO186PB3F21 AD33
IO187NB3F21 AD30
IO187PB3F21 AD29
IO188NB3F21 AH35
IO188PB3F21 AG35
IO189NB3F21 AD32
IO189PB3F21 AD31
IO190NB3F21 AK35
IO190PB3F21 AK36
IO191NB3F21 AE32
IO191PB3F21 AE31
IO192NB3F21 AN36
IO192PB3F21 AM36
IO193NB3F22 AD27
IO193PB3F22 AD28
IO194NB3F22 AF32
IO194PB3F22 AF33
IO195NB3F22 AE30
IO195PB3F22 AE29
IO196NB3F22 AK34
IO196PB3F22 AL34
IO197NB3F22 AE28
IO197PB3F22 AE27
IO198NB3F22 AN33
IO198PB3F22 AM33
IO199NB3F22 AH31
IO199PB3F22 AH30
IO200NB3F22 AH34
IO200PB3F22 AG34
IO201NB3F22 AF29
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO201PB3F22 AF28
IO202NB3F23 AG32
IO202PB3F23 AG33
IO203NB3F23 AG31
IO203PB3F23 AG30
IO204NB3F23 AL33
IO204PB3F23 AK33
IO205NB3F23 AK32
IO205PB3F23 AK31
IO206NB3F23 AH33
IO206PB3F23 AJ33
IO207NB3F23 AN34
IO207PB3F23 AN35
IO208NB3F23 AG29
IO208PB3F23 AG28
IO209NB3F23 AJ32
IO209PB3F23 AH32
Bank 4
IO210NB4F24 AM28
IO210PB4F24 AN28
IO211NB4F24 AN29
IO211PB4F24 AN30
IO212NB4F24 AH27
IO212PB4F24 AH28
IO213NB4F24 AM30
IO213PB4F24 AM29
IO214NB4F24 AL28
IO214PB4F24 AK28
IO215NB4F24 AR30
IO215PB4F24 AR31
IO216NB4F24 AF24
IO216PB4F24 AF25
IO217NB4F24 AP30
IO217PB4F24 AP31
IO218NB4F24 AL27
IO218PB4F24 AK27
IO219NB4F24 AN27
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-62 v5.4
IO219PB4F24 AM27
IO220NB4F25 AJ26
IO220PB4F25 AJ27
IO221NB4F25 AT32
IO221PB4F25 AT33
IO222NB4F25 AN31
IO222PB4F25 AN32
IO223NB4F25 AT30
IO223PB4F25 AT31
IO224NB4F25 AH25
IO224PB4F25 AH26
IO225NB4F25 AN25
IO225PB4F25 AN26
IO226NB4F25 AL25
IO226PB4F25 AK25
IO227NB4F25 AM25
IO227PB4F25 AM26
IO228NB4F25 AG25
IO228PB4F25 AG24
IO229NB4F25 AR33
IO229PB4F25 AP33
IO230NB4F25 AJ24
IO230PB4F25 AJ25
IO231NB4F25 AT26
IO231PB4F25 AT27
IO232NB4F26 AE23
IO232PB4F26 AE24
IO233NB4F26 AR27
IO233PB4F26 AR28
IO234NB4F26 AH23
IO234PB4F26 AH24
IO235NB4F26 AT29
IO235PB4F26 AT28
IO236NB4F26 AK24
IO236PB4F26 AL24
IO237NB4F26 AR24
IO237PB4F26 AR25
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO238NB4F26 AF21
IO238PB4F26 AF22
IO239NB4F26 AP24
IO239PB4F26 AP25
IO240NB4F26 AP27
IO240PB4F26 AP28
IO241NB4F26 AN23
IO241PB4F26 AN24
IO242NB4F27 AG21
IO242PB4F27 AG22
IO243NB4F27 AM22
IO243PB4F27 AM23
IO244NB4F27 AK22
IO244PB4F27 AL22
IO245NB4F27 AT24
IO245PB4F27 AT25
IO246NB4F27 AH21
IO246PB4F27 AH22
IO247NB4F27 AP22
IO247PB4F27 AN22
IO248NB4F27 AJ22
IO248PB4F27 AJ23
IO249NB4F27 AR21
IO249PB4F27 AR22
IO250NB4F27 AE21
IO250PB4F27 AE20
IO251NB4F27 AM21
IO251PB4F27 AL21
IO252NB4F27 AH20
IO252PB4F27 AJ20
IO253NB4F27 AT23
IO253PB4F27 AT22
IO254NB4F28 AK21
IO254PB4F28 AJ21
IO255NB4F28 AT20
IO255PB4F28 AT21
IO256NB4F28 AE18
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO256PB4F28 AE19
IO257NB4F28 AM19
IO257PB4F28 AM20
IO258NB4F28 AK19
IO258PB4F28 AJ19
IO259NB4F28 AP19
IO259PB4F28 AR19
IO260NB4F28/CLKEN AH19
IO260PB4F28/CLKEP AG19
IO261NB4F28/CLKFN AN19
IO261PB4F28/CLKFP AN20
Bank 5
IO262NB5F30/CLKGN AG18
IO262PB5F30/CLKGP AH18
IO263NB5F30/CLKHN AN17
IO263PB5F30/CLKHP AN18
IO264NB5F30 AJ18
IO264PB5F30 AK18
IO265NB5F30 AR18
IO265PB5F30 AP18
IO266NB5F30 AE17
IO266PB5F30 AE16
IO267NB5F30 AM17
IO267PB5F30 AM18
IO268NB5F30 AJ16
IO268PB5F30 AK16
IO269NB5F30 AT16
IO269PB5F30 AT17
IO270NB5F30 AF16
IO270PB5F30 AF15
IO271NB5F30 AT15
IO271PB5F30 AT14
IO272NB5F31 AH17
IO272PB5F31 AJ17
IO273NB5F31 AL16
IO273PB5F31 AM16
IO274NB5F31 AH15
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-63
IO274PB5F31 AH16
IO275NB5F31 AR15
IO275PB5F31 AR16
IO276NB5F31 AJ14
IO276PB5F31 AJ15
IO277NB5F31 AN15
IO277PB5F31 AP15
IO278NB5F31 AG15
IO278PB5F31 AG16
IO279NB5F31 AT10
IO279PB5F31 AT11
IO280NB5F31 AL15
IO280PB5F31 AK15
IO281NB5F32 AM14
IO281PB5F32 AM15
IO282NB5F32 AE13
IO282PB5F32 AE14
IO283NB5F32 AT12
IO283PB5F32 AT13
IO284NB5F32 AP9
IO284PB5F32 AP10
IO285NB5F32 AN13
IO285PB5F32 AN14
IO286NB5F32 AN9
IO286PB5F32 AM9
IO287NB5F32 AR12
IO287PB5F32 AR13
IO288NB5F32 AL13
IO288PB5F32 AK13
IO289NB5F32 AT9
IO289PB5F32 AT8
IO290NB5F32 AH13
IO290PB5F32 AH14
IO291NB5F32 AR9
IO291PB5F32 AR10
IO292NB5F32 AJ12
IO292PB5F32 AJ13
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO293NB5F33 AP12
IO293PB5F33 AP13
IO294NB5F33 AG13
IO294PB5F33 AF13
IO295NB5F33 AP4
IO295PB5F33 AR4
IO296NB5F33 AG12
IO296PB5F33 AF12
IO297NB5F33 AM11
IO297PB5F33 AM12
IO298NB5F33 AK12
IO298PB5F33 AL12
IO299NB5F33 AN11
IO299PB5F33 AN12
IO300NB5F33 AN5
IO300PB5F33 AN6
IO301NB5F33 AT6
IO301PB5F33 AT7
IO302NB5F34 AH11
IO302PB5F34 AH12
IO303NB5F34 AT4
IO303PB5F34 AT5
IO304NB5F34 AJ10
IO304PB5F34 AJ11
IO305NB5F34 AM10
IO305PB5F34 AN10
IO306NB5F34 AK10
IO306PB5F34 AL10
IO307NB5F34 AP6
IO307PB5F34 AP7
IO308NB5F34 AK9
IO308PB5F34 AL9
IO309NB5F34 AR6
IO309PB5F34 AR7
IO310NB5F34 AH9
IO310PB5F34 AH10
IO311NB5F34 AM8
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO311PB5F34 AM7
IO312NB5F34 AG9
IO312PB5F34 AG8
IO313NB5F34 AN7
IO313PB5F34 AN8
Bank 6
IO314NB6F36 AF8
IO314PB6F36 AF9
IO315NB6F36 AN2
IO315PB6F36 AN3
IO316NB6F36 AH4
IO316PB6F36 AJ4
IO317NB6F36 AL3
IO317PB6F36 AL4
IO318NB6F36 AK4
IO318PB6F36 AK5
IO319NB6F36 AE10
IO319PB6F36 AE9
IO320NB6F36 AG4
IO320PB6F36 AG5
IO321NB6F36 AE11
IO321PB6F36 AD11
IO322NB6F37 AG3
IO322PB6F37 AH3
IO323NB6F37 AG7
IO323PB6F37 AG6
IO324NB6F37 AH7
IO324PB6F37 AH6
IO325NB6F37 AJ5
IO325PB6F37 AH5
IO326NB6F37 AK2
IO326PB6F37 AK3
IO327NB6F37 AE7
IO327PB6F37 AE8
IO328NB6F37 AM4
IO328PB6F37 AN4
IO329NB6F37 AD9
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-64 v5.4
IO329PB6F37 AD10
IO330NB6F37 AM1
IO330PB6F37 AN1
IO331NB6F38 AE5
IO331PB6F38 AE6
IO332NB6F38 AF4
IO332PB6F38 AF5
IO333NB6F38 AD8
IO333PB6F38 AD7
IO334NB6F38 AG2
IO334PB6F38 AH2
IO335NB6F38 AC12
IO335PB6F38 AD12
IO336NB6F38 AJ1
IO336PB6F38 AK1
IO337NB6F38 AC8
IO337PB6F38 AC9
IO338NB6F38 AD3
IO338PB6F38 AE3
IO339NB6F38 AD5
IO339PB6F38 AD6
IO340NB6F39 AD4
IO340PB6F39 AE4
IO341NB6F39 AB8
IO341PB6F39 AB9
IO342NB6F39 AG1
IO342PB6F39 AH1
IO343NB6F39 AA12
IO343PB6F39 AB12
IO344NB6F39 AD2
IO344PB6F39 AE2
IO345NB6F39 AA11
IO345PB6F39 AB11
IO346NB6F39 AE1
IO346PB6F39 AF1
IO347NB6F39 AL1
IO347PB6F39 AL2
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO348NB6F39 AC4
IO348PB6F39 AC5
IO349NB6F40 AB6
IO349PB6F40 AB7
IO350NB6F40 AC1
IO350PB6F40 AD1
IO351NB6F40 AA9
IO351PB6F40 AA10
IO352NB6F40 AB2
IO352PB6F40 AB3
IO353NB6F40 AA7
IO353PB6F40 AA8
IO354NB6F40 AA2
IO354PB6F40 AA3
IO355NB6F40 AA5
IO355PB6F40 AA6
IO356NB6F40 AB4
IO356PB6F40 AB5
IO357NB6F40 W12
IO357PB6F40 Y12
IO358NB6F41 AA1
IO358PB6F41 AB1
IO359NB6F41 Y8
IO359PB6F41 Y9
IO360NB6F41 Y4
IO360PB6F41 AA4
IO361NB6F41 U12
IO361PB6F41 V12
IO362NB6F41 W1
IO362PB6F41 Y1
IO363NB6F41 W6
IO363PB6F41 W7
IO364NB6F41 W5
IO364PB6F41 Y5
IO365NB6F41 W10
IO365PB6F41 W9
IO366NB6F41 V2
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO366PB6F41 W2
Bank 7
IO367NB7F42 V8
IO367PB7F42 W8
IO368NB7F42 V3
IO368PB7F42 W3
IO369NB7F42 V9
IO369PB7F42 V10
IO370NB7F42 U1
IO370PB7F42 V1
IO371NB7F42 V7
IO371PB7F42 V6
IO372NB7F42 U5
IO372PB7F42 V5
IO373NB7F42 U9
IO373PB7F42 U8
IO374NB7F42 R1
IO374PB7F42 T1
IO375NB7F42 T11
IO375PB7F42 T12
IO376NB7F43 T4
IO376PB7F43 U4
IO377NB7F43 T8
IO377PB7F43 T7
IO378NB7F43 T3
IO378PB7F43 T2
IO379NB7F43 T5
IO379PB7F43 T6
IO380NB7F43 R5
IO380PB7F43 R4
IO381NB7F43 R6
IO381PB7F43 R7
IO382NB7F43 N1
IO382PB7F43 P1
IO383NB7F43 T10
IO383PB7F43 T9
IO384NB7F43 R3
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-65
IO384PB7F43 R2
IO385NB7F44 R12
IO385PB7F44 R11
IO386NB7F44 L1
IO386PB7F44 M1
IO387NB7F44 G2
IO387PB7F44 F2
IO388NB7F44 P5
IO388PB7F44 P4
IO389NB7F44 R8
IO389PB7F44 R9
IO390NB7F44 J1
IO390PB7F44 K1
IO391NB7F44 N12
IO391PB7F44 P12
IO392NB7F44 M2
IO392PB7F44 N2
IO393NB7F44 P9
IO393PB7F44 P8
IO394NB7F45 M3
IO394PB7F45 N3
IO395NB7F45 M11
IO395PB7F45 N11
IO396NB7F45 M4
IO396PB7F45 N4
IO397NB7F45 N5
IO397PB7F45 N6
IO398NB7F45 J2
IO398PB7F45 K2
IO399NB7F45 N8
IO399PB7F45 N7
IO400NB7F45 G1
IO400PB7F45 H1
IO401NB7F45 M5
IO401PB7F45 M6
IO402NB7F45 E1
IO402PB7F45 F1
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
IO403NB7F46 N10
IO403PB7F46 N9
IO404NB7F46 L5
IO404PB7F46 L4
IO405NB7F46 M7
IO405PB7F46 M8
IO406NB7F46 G3
IO406PB7F46 F3
IO407NB7F46 M10
IO407PB7F46 M9
IO408NB7F46 D4
IO408PB7F46 D3
IO409NB7F46 J7
IO409PB7F46 J6
IO410NB7F46 J3
IO410PB7F46 K3
IO411NB7F46 L8
IO411PB7F46 L9
IO412NB7F47 K5
IO412PB7F47 K4
IO413NB7F47 K7
IO413PB7F47 K6
IO414NB7F47 E4
IO414PB7F47 F4
IO415NB7F47 G4
IO415PB7F47 G5
IO416NB7F47 H4
IO416PB7F47 J4
IO417NB7F47 D2
IO417PB7F47 D1
IO418NB7F47 K8
IO418PB7F47 K9
IO419NB7F47 H5
IO419PB7F47 J5
Dedicated I/O
GND J8
GND AA13
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
GND AA15
GND AA17
GND AA19
GND AA21
GND AA23
GND AA24
GND AB14
GND AB16
GND AB18
GND AB20
GND AB22
GND AC11
GND AC13
GND AC15
GND AC17
GND AC19
GND AC21
GND AC23
GND AC24
GND AC26
GND AC3
GND AC30
GND AC34
GND AC7
GND AD13
GND AD14
GND AD16
GND AD18
GND AD19
GND AD21
GND AD23
GND AD24
GND AE15
GND AE25
GND AF10
GND AF11
GND AF14
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-66 v5.4
GND AF17
GND AF20
GND AF23
GND AF26
GND AF27
GND AF3
GND AF30
GND AF34
GND AF7
GND AJ29
GND AJ3
GND AJ30
GND AJ34
GND AJ7
GND AK11
GND AK14
GND AK17
GND AK20
GND AK23
GND AK26
GND AK29
GND AK6
GND AK8
GND AL18
GND AL31
GND AL7
GND AM3
GND AM34
GND AP11
GND AP14
GND AP17
GND AP2
GND AP20
GND AP23
GND AP26
GND AP29
GND AP32
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
GND AP35
GND AP5
GND AP8
GND AR3
GND AR34
GND B3
GND B34
GND C11
GND C14
GND C17
GND C2
GND C20
GND C23
GND C26
GND C29
GND C32
GND C35
GND C5
GND C8
GND E3
GND E34
GND F30
GND F7
GND G11
GND G14
GND G17
GND G20
GND G23
GND G26
GND G29
GND G8
GND H3
GND H30
GND H34
GND H7
GND J31
GND L10
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
GND L11
GND L14
GND L17
GND L20
GND L23
GND L26
GND L27
GND L3
GND L30
GND L34
GND L7
GND M15
GND M25
GND N14
GND N16
GND N18
GND N19
GND N21
GND N23
GND N24
GND P11
GND P13
GND P14
GND P16
GND P18
GND P20
GND P22
GND P24
GND P26
GND P3
GND P30
GND P34
GND P7
GND R15
GND R17
GND R19
GND R21
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-67
GND R23
GND R27
GND T13
GND T14
GND T16
GND T18
GND T20
GND T22
GND T24
GND U11
GND U15
GND U17
GND U19
GND U21
GND U23
GND U26
GND U3
GND U30
GND U34
GND U7
GND V13
GND V14
GND V16
GND V18
GND V20
GND V22
GND V24
GND V33
GND V4
GND W11
GND W13
GND W15
GND W17
GND W19
GND W21
GND W23
GND W24
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
GND W26
GND W4
GND Y11
GND Y14
GND Y16
GND Y18
GND Y20
GND Y22
GND Y26
GND Y3
GND Y30
GND Y34
GND Y7
NC AJ8
NC W36
PRA F18
PRB A18
PRC AL19
PRD AT19
TCK H8
TDI F6
TDO H9
TMS F5
TRST G7
VCCA A19
VCCA AA14
VCCA AA16
VCCA AA18
VCCA AA20
VCCA AA22
VCCA AB15
VCCA AB17
VCCA AB19
VCCA AB21
VCCA AB23
VCCA AC14
VCCA AC16
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
VCCA AC18
VCCA AC20
VCCA AC22
VCCA AE12
VCCA AL32
VCCA AL5
VCCA AP3
VCCA AP34
VCCA AT18
VCCA C3
VCCA C34
VCCA J30
VCCA M12
VCCA P15
VCCA P17
VCCA P19
VCCA P21
VCCA P23
VCCA R14
VCCA R16
VCCA R18
VCCA R20
VCCA R22
VCCA T15
VCCA T17
VCCA T19
VCCA T21
VCCA T23
VCCA U14
VCCA U16
VCCA U18
VCCA U20
VCCA U22
VCCA V15
VCCA V17
VCCA V19
VCCA V21
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
3-68 v5.4
VCCA V23
VCCA W14
VCCA W16
VCCA W18
VCCA W20
VCCA W22
VCCA W33
VCCA Y15
VCCA Y17
VCCA Y19
VCCA Y21
VCCA Y23
VCCDA AB10
VCCDA AB27
VCCDA AE22
VCCDA AF18
VCCDA AF19
VCCDA AH29
VCCDA AH8
VCCDA AJ28
VCCDA AJ9
VCCDA AK30
VCCDA AK7
VCCDA AL30
VCCDA AL6
VCCDA AM13
VCCDA AM24
VCCDA AM31
VCCDA AM32
VCCDA AM5
VCCDA AM6
VCCDA AN16
VCCDA AN21
VCCDA AP16
VCCDA AP21
VCCDA C16
VCCDA C21
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
VCCDA D16
VCCDA D21
VCCDA E13
VCCDA E24
VCCDA E5
VCCDA E6
VCCDA F19
VCCDA F31
VCCDA G30
VCCDA G31
VCCDA G6
VCCDA H28
VCCDA H29
VCCDA J29
VCCDA L18
VCCDA L19
VCCDA M22
VCCDA N13
VCCDA R10
VCCDA V11
VCCDA V26
VCCIB0 B11
VCCIB0 B14
VCCIB0 B17
VCCIB0 B5
VCCIB0 B8
VCCIB0 F11
VCCIB0 F14
VCCIB0 F17
VCCIB0 F8
VCCIB0 K11
VCCIB0 K14
VCCIB0 K17
VCCIB0 N15
VCCIB0 N17
VCCIB1 B20
VCCIB1 B23
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
VCCIB1 B26
VCCIB1 B29
VCCIB1 B32
VCCIB1 F20
VCCIB1 F23
VCCIB1 F26
VCCIB1 F29
VCCIB1 K20
VCCIB1 K23
VCCIB1 K26
VCCIB1 N20
VCCIB1 N22
VCCIB2 E35
VCCIB2 H31
VCCIB2 H35
VCCIB2 K27
VCCIB2 L31
VCCIB2 L35
VCCIB2 P27
VCCIB2 P31
VCCIB2 P35
VCCIB2 R24
VCCIB2 U24
VCCIB2 U27
VCCIB2 U31
VCCIB2 U35
VCCIB3 AB24
VCCIB3 AC27
VCCIB3 AC31
VCCIB3 AC35
VCCIB3 AF31
VCCIB3 AF35
VCCIB3 AG27
VCCIB3 AJ31
VCCIB3 AJ35
VCCIB3 AM35
VCCIB3 Y24
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 3-69
VCCIB3 Y27
VCCIB3 Y31
VCCIB3 Y35
VCCIB4 AD20
VCCIB4 AD22
VCCIB4 AG20
VCCIB4 AG23
VCCIB4 AG26
VCCIB4 AL20
VCCIB4 AL23
VCCIB4 AL26
VCCIB4 AL29
VCCIB4 AR20
VCCIB4 AR23
VCCIB4 AR26
VCCIB4 AR29
VCCIB4 AR32
VCCIB5 AD15
VCCIB5 AD17
VCCIB5 AG11
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
VCCIB5 AG14
VCCIB5 AG17
VCCIB5 AL11
VCCIB5 AL14
VCCIB5 AL17
VCCIB5 AL8
VCCIB5 AR11
VCCIB5 AR14
VCCIB5 AR17
VCCIB5 AR5
VCCIB5 AR8
VCCIB6 AB13
VCCIB6 AC10
VCCIB6 AC2
VCCIB6 AC6
VCCIB6 AF2
VCCIB6 AF6
VCCIB6 AG10
VCCIB6 AJ2
VCCIB6 AJ6
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
VCCIB6 AM2
VCCIB6 Y10
VCCIB6 Y13
VCCIB6 Y2
VCCIB6 Y6
VCCIB7 E2
VCCIB7 H2
VCCIB7 H6
VCCIB7 K10
VCCIB7 L2
VCCIB7 L6
VCCIB7 P10
VCCIB7 P2
VCCIB7 P6
VCCIB7 R13
VCCIB7 U10
VCCIB7 U13
VCCIB7 U2
VCCIB7 U6
VPUMP F32
1272-Pin CCGA/LGA
RTAX4000S/SL
Function
Pin
Number
RTAX-S/SL RadTolerant FPGAs
v5.4 4-1
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous version Changes in current version (v5 .4) Page
v5.3
(October 2008)
RT4000S now supports the low-power grade option. In addition, this device has moved from a
preliminary state to a production state.
N/A
RTAX250S/SL supports 624-CCGA/LGA. The following tables were updated.
"RTAX-S/SL Family Product Profile","Temperature Grade Offerings","Ordering Information"
N/A
All DC input and output tables and timing characteristic tables were updated. N/A
The "Ordering Information" section was updated. B was deleted from the Package Type and the speed
grade description was updated.
ii
The "Temperature Grade Offerings" table note was updated. ii
The "Speed Grade and Temperature Grade Matrix" table was updated. iii
The "I/Os per Package" table is new. iii
In Table 2 Actel MIL-STD-883 Class B Product Flow for RTAX-S/SL1, 2, "TBD" in step 4 was changed
to "Condition A".
iv
In Table 3 Actel Extended Flow for RTAX-S/SL1, 2, 3, 4, "TBD" in step 4 was changed to "Condition
A".
v
In the first paragraph of the "General Description" section, it originally said there were two million
equivalent system gates but that is incorrect because there are four million equivalent system gates.
1-1
Information about segmenting clocks was added to the "Global Resources" section.1-7
The "Prototyping with ProASIC3E Reprogrammable Units" section is new. 1-8
In Table 2-1 I/O Features Comparison, LVTTL was updated. Note 1 was updated and note 4 is new. 2-1
In Table 2-2 Absolute Maximum Ratings, the limit for VI was changed from 4.0 to 4.1 and VPUMP was
added to the table.
2-2
The "5 V Tolerance" section was significantly updated. 2-1
RTAX4000S/SL data was updated in Table 2-4 RTAX-S Standby Current.
For RTAX2000S/SL, ICCDIFFA was changed from 2.96 to 3.13. The IIL/IIH heading was changed to IIH, IIL, or
IOZ. Note 1 is new.
2-3
RTAX4000S/SL data was added to Table 2-5 RTAX-SL Standby Current.
ICCA data was updated for Typical 25°C for RTAX2000S/SL, RTAX1000S/SL, and RTAX250S/SL.
The IIL/IIH heading was changed to IIH, IIL, or IOZ. Note 1 is new.
2-3
Table 2-6 Default Cload / VCCI was significantly updated. 2-4
In the "Ptotal = Pdc + Pac" section, the "Pdc" definition, Nbanks was deleted. 2-5
In the "Pmemory = 0 mW" section, the "Pdc" definition, Nbanks was deleted. 2-6
Table 2-8 Package Thermal Characteristics was updated to include 624-pin CCGA/LGA 2-7
Table 2-9 Temperature and Voltage Timing Derating Factors was significantly updated. 2-9
In the "Hardwired Clock" section, the Clock-to-Out (Pad-to-Pad) was updated. TRCO was changed from
0.9 to 0.96.
2-10
In the "Routed Clock1" section, the Clock-to-Out (Pad-to-Pad) was updated. TRCO was changed from
0.9 to 0.96. Footnote 1 is new.
2-10
The "VCCIBx Supply Voltage" section was updated to include information about unused banks. 2-11
The "HCLKA/B/C/D Dedicated (Hardwired) Clocks A, B, C, and D" section was updated. 2-11
The "VPUMP Supply Voltage (External Pump)" section was updated. 2-11
RTAX-S/SL RadTolerant FPGAs
4-2 v5.4
v5.3
(continued)
The "CLKE/F/G/H Global Clocks E, F, G, and H" section was updated. 2-11
The "PRA/B/C/D Probes A, B, C, and D" section was updated. 2-12
Information about SEUs and cell buffers was added to "Introduction" section.2-12
In Table 2-15 Macros for Single-Ended I/O Standards, the macro names for LVTTL were changed from
_H_ to _F_
2-19
The "Customizing the I/O" section was updated. Table 2-14 Bank Wide Delay Values is new. 2-14
The data in Table 2-19 I/O Weak Pull-Up/Pull-Down Resistances1 was significantly updated. Notes 1,
2, and 3 were also updated.
2-22
The note was updated to include pin compatibility information for "352-Pin CQFP".3-8
The note was updated to include pin compatibility information for "624-Pin CCGA/LGA". the
RTAX250S/SL pin table is new.
3-26
The "352-Pin CQFP" table for the RTAX250S/SL device is new. 3-10
In Table 2-21 DC Input and Output Levels, the footnote is new. 2-26
In Table 2-36 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C, the footnote is
new.
2-51
Table 2-54 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C was significantly
updated.
2-57
Table 2-88 One RAM Block (Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C)
to Table 2-92 Sixteen RAM Blocks Are Cascaded (Worst-Case Military Conditions VCCA = 1.4 V, VCCI
= 3.0 V, TJ = 125°C) were updated.
2-85 to
2-89
Table 2-96 FIFO Signal Description to Table 2-101 Sixteen FIFO Blocks are Cascaded (Worst-Case
MIlitary Conditions VCCA = 1.4 V, VCCI = 3.0 V, TJ = 125°C) were updated.
2-94 to
2-98
In the "RTAX2000S/SL Function" table, the block numbers were removed. For example "Bank 0, Block
0" was changed to "Bank 0".
3-5
v5.2
(October 2007)
In Table 2-5 RTAX-SL Standby Current, the ICCA specifications were updated for 125°C. 2-3
v5.1
(August 2007)
The "I/O Logic" section was updated to include information about user flip-flops being immune to SEU. 1-5
The "Low-Cost Prototyping Solutions" section was updated significantly. 1-7
Table 2-4 RTAX-S Standby Current was updated to include IIH/IIL.2-3
Table 2-5 RTAX-SL Standby Current was updated to include IIH/IIL.2-3
The CG1272 was updated in the "Package Thermal Characteristics" table.2-7
The temperature in note 1 was changed from 175 to 125 in the "Temperature and Voltage Timing
Derating Factors" table.
2-9
In the "Timing Model", the Hardwired Clock was changed to Routed or Hardwired. 2-10
v5.0
(June 2007)
The "Ordering Information" section was updated to include the Sigma Six Column and BAE Column
designation. A note was added to the "Temperature Grade Offerings" table regarding the Sigma Six
Column and BAE Column.
ii
Previous version Changes in current version (v5 .4) Page
RTAX-S/SL RadTolerant FPGAs
v5.4 4-3
v4.0
(May 2007)
RTAX-SL information is new. N/A
EV Flow (Class V Flow Equivalent Processing) information is new. N/A
The "Ordering Information" section was updated. ii
The "Actel MIL-STD-883 Class B Product Flow" table was updated. iv
The "Actel Extended Flow" table was updated. v
The "Low-Cost Prototyping Solutions" section was updated to include RTAX-SL prototyping
information.
1-7
Table 2-5 RTAX-SL Standby Current is new. 2-3
In the "Sample Case 2: Convection = 0" section, θcb was changed to Tj.2-8
The Axcelerator figure listed below the "VCCDA Supply Voltage" section was incorrect and has been
removed from the datasheet.
2-11
The "256-Pin CQFP" table for the RTAX2000S/SL device is new. 3-5
v3.0
September 2006
All information regarding the RTAX4000S device is new. N/A
The "Timing Model" was updated. 2-10
The "Specifications" section was updated. i
The SEL and SET information was updated in the "Designed for Space" section.i
The maximum I/O counts for the RTAX250S and RTAX1000S were updated in Table 1 RTAX-S/SL
Family Product Profile.
i
The "Device Resources" table was updated for CG1272/LG1272. iii
The RTAX-S/SL Testing and Reliability Update white paper was added to the "White Papers"
section.
1-9
The "User I/Os" section was updated with information on configuring unused I/Os. 2-12
Implementing DDR was updated in the "Using DDR (Double Data Rate)" section.2-17
PSET was changed to PRE and D was changed to E in Figure 2-6 DDR Register.2-18
v3.0 The "JTAG" section was updated with JTAG pin information. 2-100
(continued) Figure 2-1 Use of an External Resistor for 5 V Tolerance was updated. 2-1
Note 2 in Table 2-2 Absolute Maximum Ratings was updated. 2-2
The "Calculating Power Dissipation" section was updated. 2-3
Table 2-25 Worst-Case Military Conditions VCCA = 1.4 V, VCCI = 2.3 V, TJ = 125°C was updated. 2-30
The "Hardwired Clock" and "Routed Clock1" equations were updated. 2-10
Table 2-4 RTAX-S Standby Current was updated. 2-3
Table 2-6 Default Cload / VCCI was updated. 2-4
Table 2-9 Temperature and Voltage Timing Derating Factors was updated. 2-9
All timing characteristic tables were updated. N/A
The "352-Pin CQFP" table for the RTAX4000S is new. 3-22
The "1272-Pin CCGA/LGA" table for the RTAX4000S is new. 3-58
v2.2
May 2006
All Timing Characteristic tables were updated. N/A
Cold Sparing was added to the Hot Insertion heading in Table 2-1 I/O Features Comparison.2-1
The "Thermal Characteristics" section was updated. 2-7
The "Simultaneous Switching Outputs (SSO)" section was updated. 2-14
The "Timing Model" has been updated. 2-10
Previous version Changes in current version (v5 .4) Page
RTAX-S/SL RadTolerant FPGAs
4-4 v5.4
v2.2
(continued)
The "Hardwired Clock" and "Routed Clock1" equations were updated. 2-10
Table 2-6 Default Cload / VCCI was updated. 2-4
Table 2-18 I/O Weak Pull-Up/Pull-Down Resistances1 is new. 2-21
A note was added to Table 2-58 DC Input and Output Levels.2-60
v2.1
October 2005
The LVDS Capable I/O specification was added to "Leading-Edge Performance".i-i
Table 1 RTAX-S/SL Family Product Profile was updated to include CQ256. i-i
CQ256 was added to the"Temperature Grade Offerings" table. i-ii
CQ256 is new and CQ352 for the RTAX1000S device was updated in the "Device Resources" table. i-iii
The "Overshoot/Undershoot Limits" section is new. 2-2
Table 2-2 Absolute Maximum Ratings was updated. 2-2
Table 2-3 RTAX-S/SL Recommended Operating Conditions was updated. 2-2
The "Timing Model" has been updated. 2-10
The "Hardwired Clock" and "Routed Clock1" equations were updated. 2-10
This sentence was updated in the "CLKE/F/G/H Global Clocks E, F, G, and H" section:
When the CLK pins are unused, Actel recommends that they are tied to a known state.
2-11
Figure 2-27 LVPECL Circuit was updated. The following labels were corrected:
INBUF_LVPECL
OUTBUF_LVPECL
2-60
The following sentence was removed from "Global Resource Distribution":
An unused input can be tied to ground for power savings.
2-78
The "RAM" section was updated. 2-81
The "256-Pin CQFP" package figure and is new. 3-4
v2.0 In Tabl e 2- 4, the ICCA column heading was changed to ICCDA and note 3 is new. 2-3
Previous version Changes in current version (v5 .4) Page
RTAX-S/SL RadTolerant FPGAs
v5.4 4-5
Advanced v0.5 The "Designed for Space" section was updated. i-i
Tab le 1 was updated to include 1152 CCGA/LGA. i-i
The "Temperature Grade Offerings" table was updated to include the 1152 CCGA. i-iii
The RTAX1000S and the RTAX2000S columns were updated in the "Device Resources" table. i-iii
Figure 1-9 was updated and a note was added to the figure. 1-8
Table 2-4 RTAX-S Standby Current was updated. 2-3
In Tab le 2 -4 the LVPECL and LVDS specifications were updated. A note was also added to the table. 2-3
The "Global Resource Access Macros" section was updated. 2-80
The "JTAG" section was updated. 2-100
In the "Data Registers (DRs)" section the IDCODE and USERCODE were changed from 32 bits to 33 bits. 2-100
150°C was changed to 125°C in the "Thermal Characteristics" section. 2-7
Table 2-8 Package Thermal Characteristics was updated to include the 1152 CCGA. Values in the
table were updated.
2-7
A note was added to the "FIFO" section. 2-90
Table 2-7 Different Components Contributing to the Total Power Consumption in RTAX-S/SL Devices
was updated.
2-4
Tab le 2- 17 was updated. 2-20
All Timing Characteristic tables from Tab le 2- 22 to Tab le 2 -84 were updated. 2-25 to
2-81
In the "Actel MIL-STD-883 Class B Product Flow" table, #3 for the 883 Method was updated. A note
was also added to the table.
i-iv
In the "Actel Extended Flow" table, #5 for the Method column was updated. The notes were also added
to the table.
i-iv
In the "Pin Descriptions" section, the descriptions for the "HCLKA/B/C/D Dedicated (Hardwired) Clocks
A, B, C, and D" and "CLKE/F/G/H Global Clocks E, F, G, and H" were updated.
2-11
A footnote was added to the "PRA/B/C/D Probes A, B, C, and D", "TCK2 Test Clock", "TDI2 Test Data
Input", "TDO2 Test Data Output", and "TDO2 Test Data Output" descriptions.
2-12
The "1152-Pin CCGA/LGA" section is new. 3-45
Advanced v0.4 LETTH values for SEU and SEL updated under "Designed for Space".i-i
"Ordering Information" was updated/ The "Temperature Grade Offerings", "Speed Grade and
Temperature Grade Matrix"tables are new and the "Device Resources" was updated.
i-ii
Sections "Actel MIL-STD-883 Class B Product Flow" and "Actel Extended Flow" are new. i-iv, i-v
"General Description" was updated. 1-1
Table 2-7 Different Components Contributing to the Total Power Consumption in RTAX-S/SL Devices
was updated.
2-4
The"Thermal Characteristics" section was updated. 2-7
Figure 2-4 Timing Model, the "Hardwired Clock"section and the "Routed Clock1" section were
updated.
2-10
Previous version Changes in current version (v5 .4) Page
RTAX-S/SL RadTolerant FPGAs
4-6 v5.4
Advanced v.04
(continued)
The "Introduction" section under "User I/Os" was updated to give details regarding VREF usage. 2-12
The "Simultaneous Switching Outputs (SSO)" section under "User I/Os" was updated. 2-14
"Using DDR (Double Data Rate)" is new. 2-17
Tab le 2- 18 was updated. 2-22
All Timing Characteristic Tables were updated. 2-25 to
2-99
"Introduction" was updated. 2-66
The "SEU Hardened D Flip-Flop (DFF)" section was moved under "R-Cell" and updated. 2-67
The "Global Resource Distribution" section is new. 2-78
The "Enhancing SEU Performance" section is new. 2-83
Figure 2-49 and Figure 2-50 were updated. 2-84
Figure 2-57 and Figure 2-58 were updated. 2-95
The "Charge Pump Bypass" section is new. 2-100
The "TRST" section was updated. 2-100
The "Global Set Fuse" section is new. 2-102
The "208-Pin CQFP" for both the RTAX250S and RTAX1000S were added. 3-1
The "352-Pin CQFP" pin tables for both the RTAX1000S and RTAX2000S were updated. 3-8
The "624-Pin CCGA/LGA" pin tables for both the RTAX1000S and RTAX2000S were updated. 3-26
Advanced v0.3 The "Designed for Space" section was updated. i-i
A new device, the RTAX250S, was added to the "Designed for Space", "Ordering Information",
"Temperature Grade Offerings" and "Device Resources" sections.
i to iii
2.5V GTL+ support across full military range was removed. n/a
Table 1-1 Number of Core Tiles per Device was updated. 1-4
Table 2-4 RTAX-S Standby Current and Table 2-6 Default Cload / VCCI were updated. 2-4
Table 2-7 Different Components Contributing to the Total Power Consumption in RTAX-S/SL Devices
was updated.
2-4
Table 2-13 Legal I/O Usage Matrix was updated. 2-15
Table 2-17 I/O Macros for Voltage-Referenced I/O Standards 2-20
Advanced v0.2 In the "352-Pin CQFP" for the RTAX1000S, pin 80 has been changed from VCCI to VCCIB6. 3-14
In the "208 CQFP" and "352-Pin CQFP", the NC (VPP) was changed to NC for all pins. 3-2 to
3-14
Advanced v0.1 The 352-Pin CQFP for the RTAX1000S is new. 3-10
Pins 14 and 32 have been changed from VCCA to VCCI for the RTAX2000S in the "352-Pin CQFP". 3-10
The "624-Pin CCGA/LGA" for the RTAX1000S is new. 3-39
Previous version Changes in current version (v5 .4) Page
RTAX-S/SL RadTolerant FPGAs
v5.4 4-7
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production,” and “Datasheet
Supplement.” The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
International Traffic in Arms Regulations (ITAR)
The product described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR). They
require an approved export license prior to export from the United States. An export includes release of product or
disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications
Policy
The Actel products described in this advance status datasheet may not have completed Actel’s qualification process.
Actel may amend or enhance products during the product introduction and qualification process, resulting in changes
in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel
product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-
support, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions
relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel
website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and
lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
5172169-12/5.09
Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655
USA
Phone 650.318.4200
Fax 650.318.4600
Actel Europe Ltd.
River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
Actel Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Actel Hong Kong
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.