© Semiconductor Components Industries, LLC, 2011
August, 2011 Rev. 11
1Publication Order Number:
MC33368/D
MC33368
High Voltage GreenLinet
Power Factor Controller
The MC33368 is an active power factor controller that functions as a
boost preconverter in offline power supply applications. MC33368 is
optimized for low power, high density power supplies requiring a
minimum board area, reduced component count and low power
dissipation. The narrow body SOIC package provides a small
footprint. Integration of the high voltage startup saves approximately
0.7 W of power compared to resistor bootstrapped circuits.
The MC33368 features a watchdog timer to initiate output
switching, a one quadrant multiplier to force the line current to follow
the instantaneous line voltage a zero current detector to ensure critical
conduction operation, a transconductance error amplifier, a current
sensing comparator, a 5.0 V reference, an undervoltage lockout
(UVLO) circuit which monitors the VCC supply voltage and a CMOS
driver for driving MOSFETs. The MC33368 also includes a
programmable output switching frequency clamp. Protection features
include an output overvoltage comparator to minimize overshoot, a
restart delay timer and cyclebycycle current limiting.
Features
Lossless OffLine Startup
Output Overvoltage Comparator
Leading Edge Blanking (LEB) for Noise Immunity
Watchdog Timer to Initiate Switching
Restart Delay Timer
This is a PbFree Device*
*For additional information on our PbFree strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
SO16
D SUFFIX
CASE 751K
1
16
MARKING
DIAGRAM
A = Assembly Location
WL = Wafer Lot
YY, Y = Year
WW = Work Week
G = PbFree Package
PIN CONNECTIONS
116
13
12
11
10
9
2
3
4
5
6
7
8
5.0 Vref
Restart Delay
Voltage FB
Current Sense
Zero Current
AGND
Line
LEB
Comp
Mult
Frequency Clamp
VCC
Gate
PGND
SO16
http://onsemi.com
(TOP VIEW)
MC33368D
AWLYWWG
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
ORDERING INFORMATION
1
16
MC33368
http://onsemi.com
2
Figure 1. Representative Block Diagram
This device contains 240 active transistors.
Restart Delay
Output
Overvoltage
Multiplier/
Error
Amplifier
Current
Sense
WatchdogTimer/
Zero Current Detector
FB
Restart Delay
Comp
Mult
LEB
Current Sense
ZC Det Frequency
Clamp
Internal Bias
Generator
UVLO
S
S
RQ
PWM
Line
VCC
Vref
AGND
Gate
PGND
Frequency
Clamp
MAXIMUM RATINGS (TA = 25°C, unless otherwise noted)
Rating Symbol Value Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power Supply Voltage (Transient)
ÁÁÁÁ
ÁÁÁÁ
VCC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
20
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power Supply Voltage (Operating)
ÁÁÁÁ
ÁÁÁÁ
VCC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
16
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Line Voltage
ÁÁÁÁ
ÁÁÁÁ
VLine
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
500
ÁÁÁ
ÁÁÁ
V
Current Sense, Multiplier, Compensation, Voltage Feedback, Restart Delay and Zero
Current Input Voltage
Vin1 1.0 to +10 V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
LEB Input, Frequency Clamp Input
ÁÁÁÁ
ÁÁÁÁ
Vin2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1.0 to +20
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Zero Current Detect Input
ÁÁÁÁ
ÁÁÁÁ
Iin
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
±5.0
ÁÁÁ
ÁÁÁ
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Restart Diode Current
ÁÁÁÁ
ÁÁÁÁ
Iin
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
5.0
ÁÁÁ
ÁÁÁ
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power Dissipation and Thermal Characteristics
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
D Suffix, Plastic Package Case 751K
Maximum Power Dissipation @ TA = 70°C PD450 mW
Thermal Resistance, JunctiontoAir RqJA 178 °C/W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Operating Junction Temperature
ÁÁÁÁ
ÁÁÁÁ
TJ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
150
ÁÁÁ
ÁÁÁ
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Operating Ambient Temperature
ÁÁÁÁ
ÁÁÁÁ
TA
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
25 to +125
ÁÁÁ
ÁÁÁ
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Storage Temperature Range
ÁÁÁÁ
ÁÁÁÁ
Tstg
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
55 to +150
ÁÁÁ
ÁÁÁ
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
NOTE: ESD data available upon request.
MC33368
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS (VCC = 14.5 V, for typical values TA = 25°C, for min/max values TJ = 25 to +125°C)
Characteristic Symbol Min Typ Max Unit
ERROR AMPLIFIER
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Bias Current (VFB = 5.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
IIB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0
ÁÁÁ
ÁÁÁ
1.0
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Offset Voltage (VComp = 3.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
VIO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
2.0
ÁÁÁ
ÁÁÁ
50
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transconductance (VComp = 3.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
gm
ÁÁÁÁÁ
ÁÁÁÁÁ
30
ÁÁÁÁÁ
ÁÁÁÁÁ
51
ÁÁÁ
ÁÁÁ
80
mmho
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Source (VFB = 4.6 V, VComp = 3.0 V)
Output Sink (VFB = 5.4 V, VComp = 3.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
IO
IO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
9.0
9.0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
17.5
17.5
ÁÁÁ
ÁÁÁ
ÁÁÁ
30
30
mA
OVERVOLTAGE COMPARATOR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Voltage Feedback Input Threshold
ÁÁÁÁÁ
ÁÁÁÁÁ
VFB(OV)
ÁÁÁÁÁ
ÁÁÁÁÁ
1.07 VFB
ÁÁÁÁÁ
ÁÁÁÁÁ
1.084 VFB
ÁÁÁ
ÁÁÁ
1.1 VFB
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Propagation Time to Output
ÁÁÁÁÁ
ÁÁÁÁÁ
TP
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
705
ÁÁÁ
ÁÁÁ
ns
MULTIPLIER
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Bias Current, VMult (VFB = 0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
IIB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0.2
ÁÁÁ
ÁÁÁ
1.0
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Threshold, VComp
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth(M)
ÁÁÁÁÁ
ÁÁÁÁÁ
1.8
ÁÁÁÁÁ
ÁÁÁÁÁ
2.1
ÁÁÁ
ÁÁÁ
2.4
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Dynamic Input Voltage Range
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
V
Multiplier Input VMult 0 to 2.5 0 to 3.5
Compensation VComp Vth(M) to
(Vth(M) + 1.0)
Vth(M) to
(Vth(M) + 2.0)
Multiplier Gain (VMult = 0.5 V, VComp = Vth(M) + 1.0 V) K 0.25 0.51 0.75 1/V
ȧ
ȡ
Ȣ
K+
VCS Threshold
VMult ǒVComp–V
th(M)Ǔȧ
ȣ
Ȥ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
VOLTAGE REFERENCE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Voltage Reference (IO = 0 mA, TJ = 25°C)
ÁÁÁÁÁ
ÁÁÁÁÁ
Vref
ÁÁÁÁÁ
ÁÁÁÁÁ
4.95
ÁÁÁÁÁ
ÁÁÁÁÁ
5.0
ÁÁÁ
ÁÁÁ
5.05
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Line Regulation (VCC = 10 V to 16 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
Regline
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
5.0
ÁÁÁ
ÁÁÁ
100
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Load Regulation (IO = 0 5.0 mA)
ÁÁÁÁÁ
ÁÁÁÁÁ
Regload
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
5.0
ÁÁÁ
ÁÁÁ
100
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Total Output Variation Over Line, Load and Temperature
ÁÁÁÁÁ
ÁÁÁÁÁ
Vref
ÁÁÁÁÁ
ÁÁÁÁÁ
4.8
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
5.2
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Maximum Output Current
ÁÁÁÁÁ
ÁÁÁÁÁ
IO
ÁÁÁÁÁ
ÁÁÁÁÁ
5.0
ÁÁÁÁÁ
ÁÁÁÁÁ
10
ÁÁÁ
ÁÁÁ
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Reference Undervoltage Lockout Threshold
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4.5
ÁÁÁ
ÁÁÁ
V
ZERO CURRENT DETECTOR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Threshold Voltage (Vin Increasing)
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth
ÁÁÁÁÁ
ÁÁÁÁÁ
1.0
ÁÁÁÁÁ
ÁÁÁÁÁ
1.2
ÁÁÁ
ÁÁÁ
1.4
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Hysteresis (Vin Decreasing)
ÁÁÁÁÁ
ÁÁÁÁÁ
VH
ÁÁÁÁÁ
ÁÁÁÁÁ
100
ÁÁÁÁÁ
ÁÁÁÁÁ
200
ÁÁÁ
ÁÁÁ
300
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Delay to Output
ÁÁÁÁÁ
ÁÁÁÁÁ
Tpd
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127
ÁÁÁ
ÁÁÁ
ns
CURRENT SENSE COMPARATOR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Bias Current (VCS = 0 to 2.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
IIB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0.2
ÁÁÁ
ÁÁÁ
1.0
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Offset Voltage (VMult = 0.2 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
VIO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4.0
ÁÁÁ
ÁÁÁ
50
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Maximum Current Sense Input Threshold (VComp = 5.0 V,
VMult = 5.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth(max)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1.3
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1.5
ÁÁÁ
ÁÁÁ
ÁÁÁ
1.8
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Delay to Output (VLEB = 12 V, VComp = 5.0 V, VMult = 5.0 V)
(VCS = 0 to 5.0 V Step, CL = 1.0 nF)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
tPHL(in/out)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
50
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
270
ÁÁÁ
ÁÁÁ
ÁÁÁ
425
ns
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
FREQUENCY CLAMP
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Frequency Clamp Input Threshold
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth(FC)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1.9
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
2.0
ÁÁÁ
ÁÁÁ
ÁÁÁ
2.1
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Frequency Clamp Capacitor Reset Current (VFC = 0.5 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
Ireset
ÁÁÁÁÁ
ÁÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
1.7
ÁÁÁ
ÁÁÁ
4.0
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Frequency Clamp Disable Voltage
ÁÁÁÁÁ
ÁÁÁÁÁ
VDFC
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
7.3
ÁÁÁ
ÁÁÁ
8.0
V
MC33368
http://onsemi.com
4
ELECTRICAL CHARACTERISTICS (continued) (VCC = 14.5 V, for typical values TA = 25°C, for min/max values TJ = 25 to +125°C)
Characteristic UnitMaxTypMinSymbol
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
DRIVE OUTPUT
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Source Resistance (Current Sense = 0 V, VGate = VCC 1.0 V)
Sink Resistance (Current Sense = 3.0 V, VGate = 1.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ROH
ROL
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4.0
4.0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
8.6
7.2
ÁÁÁ
ÁÁÁ
ÁÁÁ
20
20
W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage Rise Time (25% 75%) (CL = 1.0 nF)
ÁÁÁÁÁ
ÁÁÁÁÁ
tr
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
55
ÁÁÁ
ÁÁÁ
200
ns
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage Fall Time (75% 25%) (CL = 1.0 nF)
ÁÁÁÁÁ
ÁÁÁÁÁ
tf
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
70
ÁÁÁ
ÁÁÁ
200
ns
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage in Undervoltage (VCC = 7.0 V, ISink = 1.0 mA)
ÁÁÁÁÁ
ÁÁÁÁÁ
VO(UV)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0.01
ÁÁÁ
ÁÁÁ
0.25
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
LEADING EDGE BLANKING
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Bias Current
ÁÁÁÁÁ
ÁÁÁÁÁ
Ibias
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0.1
ÁÁÁ
ÁÁÁ
0.5
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Threshold (as Offset from VCC) (VLEB Increasing)
ÁÁÁÁÁ
ÁÁÁÁÁ
VLEB
ÁÁÁÁÁ
ÁÁÁÁÁ
1.0
ÁÁÁÁÁ
ÁÁÁÁÁ
2.25
ÁÁÁ
ÁÁÁ
2.75
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Hysteresis (VLEB Decreasing)
ÁÁÁÁÁ
ÁÁÁÁÁ
VH
ÁÁÁÁÁ
ÁÁÁÁÁ
100
ÁÁÁÁÁ
ÁÁÁÁÁ
270
ÁÁÁ
ÁÁÁ
500
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
UNDERVOLTAGE LOCKOUT
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Startup Threshold (VCC Increasing)
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth(on)
ÁÁÁÁÁ
ÁÁÁÁÁ
11.5
ÁÁÁÁÁ
ÁÁÁÁÁ
13
ÁÁÁ
ÁÁÁ
14.5
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Minimum Operating Voltage After TurnOn (VCC Decreasing)
ÁÁÁÁÁ
ÁÁÁÁÁ
VShutdown
ÁÁÁÁÁ
ÁÁÁÁÁ
7.0
ÁÁÁÁÁ
ÁÁÁÁÁ
8.5
ÁÁÁ
ÁÁÁ
10
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Hysteresis
ÁÁÁÁÁ
ÁÁÁÁÁ
VH
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4.5
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TIMER
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Watchdog Timer
ÁÁÁÁÁ
ÁÁÁÁÁ
tDLY
ÁÁÁÁÁ
ÁÁÁÁÁ
180
ÁÁÁÁÁ
ÁÁÁÁÁ
385
ÁÁÁ
ÁÁÁ
800
ms
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Restart Timer Threshold
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth(restart)
ÁÁÁÁÁ
ÁÁÁÁÁ
1.5
ÁÁÁÁÁ
ÁÁÁÁÁ
2.3
ÁÁÁ
ÁÁÁ
3.0
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Restart Pin Output Current (Vrestart = 0 V, Vref = 5.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
Irestart
ÁÁÁÁÁ
ÁÁÁÁÁ
3.1
ÁÁÁÁÁ
ÁÁÁÁÁ
5.2
ÁÁÁ
ÁÁÁ
7.1
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TOTAL DEVICE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Line Startup Current (VCC = 0 V, VLine = 50 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
ISU
ÁÁÁÁÁ
ÁÁÁÁÁ
5.0
ÁÁÁÁÁ
ÁÁÁÁÁ
16
ÁÁÁ
ÁÁÁ
25
mA
Line Operating Current (VCC = Vth(on), VLine = 50 V) IOP 3.0 12.9 20 mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
VCC Dynamic Operating Current (50 kHz, CL = 1.0 nF)
VCC Static Operating Current (IO = 0)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ICC
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
5.3
3.0
ÁÁÁ
ÁÁÁ
ÁÁÁ
8.5
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Line Pin Leakage (VLine = 500 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
ILine
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
30
ÁÁÁ
ÁÁÁ
80
mA
ORDERING INFORMATION
Device Package Shipping
MC33368DG SOIC16
(PbFree)
48 Units / Rail
MC33368DR2G SOIC16
(PbFree)
2500 Units / Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
MC33368
http://onsemi.com
5
VFB(OV), OVERVOLTAGE INPUT THRESHOLD (% V  ) VCS, CURRENT SENSE PIN 6 THRESHOLD (V)
6.0 V
-55
110
-0.12
0.08
10
100
-55
16
-0.2
1.6
θ, EXCESS PHASE (DEGREES)
5.0 ms/DIV
TA, AMBIENT TEMPERATURE (°C)
VM, MULTIPLIER PIN 5 INPUT VOLTAGE (V)
gm, TRANSCONDUCTANCE ( mho)μ
f, FREQUENCY (Hz)
VFB, VOLTAGE FEEDBACK THRESHOLDΔ
TA, AMBIENT TEMPERATURE (°C)
VCS, CURRENT SENSE PIN 6 THRESHOLD (V)
Figure 2. Current Sense Input Threshold
versus Multiplier Input
VM, MULTIPLIER PIN 5 INPUT VOLTAGE (V)
Figure 3. Current Sense Input Threshold
versus Multiplier Input, Expanded View
VCC = 14 V
TA = 25°C
Figure 4. Reference Voltage versus Temperature Figure 5. Overvoltage Comparator Input
Threshold versus Temperature
Figure 6. Error Amplifier Transconductance
and Phase versus Frequency
Figure 7. Error Amplifier Transient Response
VCC = 14 V
VCC = 14 V
TA = 25°C
VCC = 14 V
VO = 2.0 to 4.0 V
RL = 10 kW
TA = 25°C
Phase
Transconductance
CHANGE (mV)
1.2
1.0
0.6
0.4
0.2
0
12
8.0
4.0
0
-4.0
80
60
40
20
0
-20
0.06
0.05
0.03
0.02
0.01
0
109
108
107
106
4.0 V
2.0 V
0 V
-1.0 V
0.04
0.07
0.8
1.4
0.6 1.4 2.2 3.0 -0.06 0 0.06 0.12 0.20
-25 0 25 50 75 125100 -25 0 25 50 75 100 12
5
100 1.0 k 10 k 100 k 1.0 M 10 M
0
30
60
90
120
150
180
VCC = 14 V
FB
VPin 4 = 4.0 V
= 3.0 V
= 2.75 V
= 2.5 V
= 2.25 V
= 2.0 V
= 3.75 V
= 3.5 V
= 3.25 V
VPin 4 = 4.0 V
= 3.0 V
= 2.75 V
= 2.5 V
= 2.25 V
= 2.0 V
MC33368
http://onsemi.com
6
0.01
1000
RJA(t), THERMAL RESISTANCE
°
t, TIME (s)
θ
JUNCTION-TO-AIR ( C/W)
100
10
0.1 1.0 10 100
400
2.0
6.0
-55
500
20
-55
1.80
OUTPUT VOLTAGE (V)
200 ms/DIV
ICC, SUPPLY CURRENT (mA)
VCC, SUPPLY VOLTAGE (V)
tDLY, WATCHDOG TIME DELAY ( s)
TA, AMBIENT TEMPERATURE (°C)
OUTPUT VOLTAGE (V)
5.0 ms/DIV
Vchg, QUICKSTART CHARGE VOLTAGE (V)
TA, AMBIENT TEMPERATURE (°C)
Figure 8. Quickstart Charge Current
versus Temperature
Figure 9. Watchdog Timer Delay
versus Temperature
Figure 10. Drive Output Waveform Figure 11. Supply Current versus
Supply Voltage
Figure 12. Transient Thermal Resistance Figure 13. Low Load Detection
Response Waveform
VCC = 14 V
CL = 1000 pF
TA = 25°C
CO = 1000 pF
Pin 3, 6, 8= GND
Pin 5 = 1.0 k to GND
TA = 25°C
Voltage
Current
OUTPUT CURRENT (A)
Output
Voltage
Load
Current
Ichg, QUICKSTART CHARGE CURRENT (mA)
μ
VCC = 14 V VCC = 14 V
1.76
1.72
1.68
1.64
15
10
5.0
0
200
0
4.0
2.0
0
460
420
380
340
-25 0 25 50 75 100 125 -25 0 25 50 75 100 125
4.0 6.0 8.0 10 12 14
3.0
2.0
1.0
0
1.50
1.30
1.10
0.90
0.70
-5.0
Pulse tested with a 4.0 V peak, 50 kHz square
wave through a 22 k resistance into Pin 7.
MC33368
http://onsemi.com
7
FUNCTIONAL DESCRIPTION
INTRODUCTION
With the goal of exceeding the requirements of legislation
on line current harmonic content, there is an ever increasing
demand for an economical method of obtaining a unity
power factor. This data sheet describes a monolithic control
IC that was specifically designed for power factor control
with minimal external components. It offers the designer a
simple cost effective solution to obtain the benefits of active
power factor correction.
Most electronic ballasts and switching power supplies use
a bridge rectifier and a bulk storage capacitor to derive raw
dc voltage from the utility ac line, Figure 14.
Figure 14. Uncorrected Power Factor Circuit
Rectifiers Converter
Bulk
Storage
Capacitor
Load
AC
Line
This simple rectifying circuit draws power from the line
when the instantaneous ac voltage exceeds the capacitor
voltage. This occurs near the line voltage peak and results in
a high charge current spike, Figure 15. Since power is only
taken near the line voltage peaks, the resulting spikes of
current are extremely nonsinusoidal with a high content of
harmonics. This results in a poor power factor condition
where the apparent input power is much higher than the real
power. Power factor ratios of 0.5 to 0.7 are common.
Figure 15. Uncorrected Power Factor Input Waveforms
Rectified
DC
0
Vpk
Line Sag
AC Line
Voltage
AC Line
Current
0
Power factor correction can be achieved with the use of
either a passive or active input circuit. Passive circuits
usually contain a combination of large capacitors, inductors,
and rectifiers that operate at the ac line frequency. Active
circuits incorporate some form of a high frequency
switching converter for the power processing with the boost
converter being the most popular topology. Since active
input circuits operate at a frequency much higher than that
of the ac line, they are smaller, lighter in weight, and more
efficient than a passive circuit that yields similar results.
With proper control of the preconverter, almost any complex
load can be made to appear resistive to the ac line, thus
significantly reducing the harmonic current content.
Operating Description
The MC33368 contains many of the building blocks and
protection features that are employed in modern high
performance current mode power supply controllers.
Referring to the block diagram in Figure 16, note that a
multiplier has been added to the current sense loop and that
this device does not contain an oscillator. A description of
each of the functional blocks is given below.
Error Amplifier
An Error Amplifier with access to the inverting input and
output is provided. The amplifier is a transconductance type,
meaning that it has high output impedance with controlled
voltagetocurrent gain (gm 50 mmhos). The noninverting
input is internally biased at 5.0 V ±2.0%. The output voltage
of the power factor converter is typically divided down and
monitored by the inverting input. The maximum input bias
current is 1.0 mA which can cause an output voltage error
that is equal to the product of the input bias current and the
value of the upper divider resistor R2. The Error Amplifier
output is internally connected to the Multiplier and is pinned
out (Pin 4) for external loop compensation. Typically, the
bandwidth is set below 20 Hz so that the amplifiers output
voltage is relatively constant over a given ac line cycle. In
effect, the error amplifier monitors the average output voltage
of the converter over several line cycles resulting in a fixed
Drive Output ontime. The amplifier output stage can sink
and source 11.5 mA of current and is capable of swinging from
1.7 to 5.0 V, assuring that the Multiplier can be driven over its
entire dynamic range.
Note that by using a transconductance type amplifier, the
input is allowed to move independently with respect to the
output, since the compensation capacitor is connected to
ground. This allows dual usage of the Voltage Feedback pin
by the Error Amplifier and Overvoltage Comparator.
Overvoltage Comparator
An Overvoltage Comparator is incorporated to eliminate
the possibility of runaway output voltage. This condition
can occur during initial startup, sudden load removal, or
during output arcing and is the result of the low bandwidth
that must be used in the Error Amplifier control loop. The
Overvoltage Comparator monitors the peak output voltage
of the converter, and when exceeded, immediately
terminates MOSFET switching. The comparator threshold
is internally set to 1.08 Vref. In order to prevent false tripping
during normal operation, the value of the output filter
capacitor C3 must be large enough to keep the peaktopeak
ripple less than 16% of the average dc output.
MC33368
http://onsemi.com
8
Multiplier
A single quadrant, two input multiplier is the critical
element that enables this device to control power factor. The
ac haversines are monitored at Pin 5 with respect to ground
while the Error Amplifier output at Pin 4 is monitored with
respect to the Voltage Feedback Input threshold. A graph of
the Multiplier transfer curve is shown in Figure 2. Note that
both inputs are extremely linear over a wide dynamic range,
0 to 3.2 V for Pin 5 and 2.5 to 4.0 V for Pin 4. The Multiplier
output controls the Current Sense Comparator threshold as
the ac voltage traverses sinusoidally from zero to peak line.
This has the effect of forcing the MOSFET ontime to track
the input line voltage, thus making the preconverter load
appear to be resistive.
Pin 6 Threshold [0.55 ǒVPin 4 –V
Pin 3ǓVPin 5
Zero Current Detector
The MC33368 operates as a critical conduction current
mode controller, whereby output switch conduction is
initiated by the Zero Current Detector and terminated when
the peak inductor current reaches the threshold level
established by the Multiplier output. The Zero Current
Detector initiates the next ontime by setting the RS Latch
at the instant the inductor current reaches zero. This critical
conduction mode of operation has two significant benefits.
First, since the MOSFET cannot turnon until the inductor
current reaches zero, the output rectifiers reverse recovery
time becomes less critical allowing the use of an inexpensive
rectifier. Second, since there are no deadtime gaps between
cycles, the ac line current is continuous thus limiting the
peak switch to twice the average input current
The Zero Current Detector indirectly senses the inductor
current by monitoring when the auxiliary winding voltage
falls below 1.2 V. To prevent false tripping, 200 mV of
hysteresis is provided. The Zero Current Detector input is
internally protected by two clamps. The upper 10 V clamp
prevents input overvoltage breakdown while the lower
0.7 V clamp prevents substrate injection. An external
resistor must be used in series with the auxiliary winding to
limit the current through the clamps to 5.0 mA or less.
Current Sense Comparator and RS Latch
The Current Sense Comparator RS Latch configuration
used ensures that only a single pulse appears at the Drive
Output during a given cycle. The inductor current is
converted to a voltage by inserting a groundreferenced
sense resistor R7 in series with the source of output switch.
This voltage is monitored by the Current Sense Input and
compared to a level derived from the Multiplier output. The
peak inductor current under normal operating conditions is
controlled by the threshold voltage of Pin 6 where:
Ipk +Pin 6 Threshold
R7
Abnormal operating conditions occur when the
preconverter is running at extremely low line or if output
voltage sensing is lost. Under these conditions, the Current
Sense Comparator threshold will be internally clamped to
1.5 V. Therefore, the maximum peak switch current is:
Ipk(max) +1.5 V
R7
With the component values shown in Figure 16, the
Current Sense Comparator threshold, at the peak of the
haversine, varies from 110 mV at 90 Vac to 100 mV at
268 Vac. The Current Sense Input to Drive Output
propagation delay is typically 200 ns.
Timer
A watchdog timer function was added to the IC to
eliminate the need for an external oscillator when used in
stand alone applications. The Timer provides a means to
automatically start or restart the preconverter if the Drive
Output has been off for more than 385 ms after the inductor
current reaches zero.
Undervoltage Lockout and Quickstart
The MC33368 has a 5.0 V internal reference brought out
to Pin 1 and capable of sourcing 10 mA typically. It also
contains an Undervoltage Lockout (UVLO) circuit which
suppresses the Gate output at Pin 11 if the VCC supply
voltage drops below 8.5 V typical.
A Quickstart circuit has been incorporated to optimize
converter startup. During initial startup, compensation
capacitor C1 will be discharged, holding the Error Amplifier
output below the Multipliers threshold. This will prevent
Drive Output switching and delay bootstraping of capacitor
C4 by diode D6. If Pin 4 does not reach the multiplier
threshold before C4 discharges below the lower SMPS
UVLO threshold, the converter will hiccup and experience
a significant startup delay. The Quickstart circuit is designed
to precharge C1 to 1.7 V. This level is slightly below the
Pin 4 Multiplier threshold, allowing immediate Drive
Output switching.
Restart Delay
A restart delay pin is provided to allow hiccup mode fault
protection in case of a short circuit condition and to prevent
the SMPS from repeatedly trying to restart after the input
line voltage has been removed. When power is first applied,
there is no startup delay, but subsequent cycling of the VCC
voltage will result in delay times that are programmed by an
external resistor and capacitor. The Restart Delay, Pin 2, is
a high impedance, so that an external capacitor can provide
delay times as long as several seconds.
If the SMPS output is short circuited, the transformer
winding, which provides the VCC voltage to the control IC
and the MC33368, will be unable to sustain VCC to the
control circuits. The restart delay capacitor at Pin 2 of the
MC33368 prevents the high voltage startup transistor within
the IC from maintaining the voltage on C4. After VCC drops
below the UVLO threshold in the SMPS, the SMPS
switching transistors are held off for the time programmed
by the values of the restart capacitor (C9) and resistor (R8).
MC33368
http://onsemi.com
9
In this manner, the SMPS switching transistors are operated
at very low duty cycles, preventing their destruction. If the
short circuit fault is removed, the power supply system will
turn on by itself in a normal startup mode after the restart
delay has timed out.
Output Switching Frequency Clamp
In normal operation, the MC33368 operates the boost
inductor in the critical mode. That is, the inductor current
ramps to a peak value, ramps down to zero, then
immediately begins ramping positive again. The peak
current is programmed by the multiplier output within the
IC. As the input voltage haversine declines to near zero, the
output switch ontime becomes constant, rather than going
to zero because of the small integrated dc voltage at Pin 5
caused by C2, R3 and R5. Because of this, the average line
current does not exactly follow the line voltage near the zero
crossings. The Output Switching Frequency Clamp
remedies this situation to improve power factor and
minimize EMI generated in this operating region. The
values of R10 and C7, as shown in Figure 16, program a
minimum offtime in the frequency clamp which overrides
the zero current detect signal, forcing a minimum offtime.
This allows discontinuous conduction operation of the boost
inductor in the zero crossing region, and the average line
current more nearly follows the voltage. The Output
Switching Frequency Clamp function can be disabled by
connecting the FC input, Pin 13, to the VCC supply Pin 12.
For best results, the minimum offtime, determined by the
values of R10 and C7, should be chosen so that ts(min) = t(on)
+ t(off)fc. Output drive is inhibited when the voltage at the
frequency clamp input is less than 2.0 V. When the output
drive is high, C7 is discharged through an internal 100 mA
current source. When the output drive switches low, C7 is
charged through R10. The drive output is inhibited until the
voltage across C7 reaches 2.0 V, establishing a minimum
offtime where:
t(off)fc +*R10 C7 logeƪ1*ǒ2
VCCǓƫ
Output
The IC contains a CMOS output driver that was
specifically designed for direct drive of power MOSFETs.
The Gate Output is capable of up to ±1500 mA peak current
with a typical rise and fall time of 50 ns with a 1.0 nF load.
Additional internal circuitry has been added to keep the Gate
Output in a sinking mode whenever the Undervoltage
Lockout is active. This characteristic eliminates the need for
an external gate pulldown resistor. The totempole output
has been optimized to minimize crossconduction current
during high speed operation.
MC33368
http://onsemi.com
10
Table 1. Design Equations
Calculation Formula Notes
Converter Output Power PO+VOIOCalculate the maximum required output power.
Peak Indicator Current
IL(pk) +
22
ǸPO
hVac(LL)
Calculated at the minimum required ac line voltage for
output regulation. Let the efficiency η = 0.92 for low line
operation.
Inductance
LP+
tǒVO
2
Ǹ–Vac(LL)ǓhVac(LL)2
2
ǸVOPO
Let the switching cycle t = 40 ms for universal input (85
to 265 Vac) operation and 20 ms for fixed input (92 to
138 Vac, or 184 to 276 Vac) operation.
Switch OnTime
t(on) +
2P
OLP
hVac2
In theory, the ontime t(on) is constant. In practice, t(on)
tends to increase at the ac line zero crossings due to
the charge on capacitor C5. Let Vac = Vac(LL) for initial
t(on) and t(off) calculations.
Switch OffTime
t(off) +
t(on)
VO
2
ǸVac ŤSin qŤ–1
The offtime t(off) is greatest at the peak of the ac line
voltage and approaches zero at the ac line zero
crossings. Theta (q) represents the angle of the ac line
voltage.
Minimum Switch
OffTime t(off)min +
LPIL(pk)
VO
The offtime is at a minimum at ac line crossings. This
equation is used to calculate t(off) as Theta approaches
zero.
Delay Time
td+–R10C7 lnǒVCC –2
VCC ǓThe delay time is used to override the minimum
offtime at the ac line zero crossings by programming
the Frequency Clamp with C7 and R10.
Switching Frequency
f+1
t(on) )t(off)
The minimum switching frequency occurs at the peak of
the ac line voltage. As the ac line voltage traverses
from peak to zero, t(off) approaches zero producing an
increase in switching frequency.
Peak Switch Current
R7 +
VCS
IL(pk)
Set the current sense threshold VCS to 1.0 V for
universal input (85 to 265 Vac) operation and to 0.5 V
for fixed input (92 to 138 Vac, or 184 to 276 Vac)
operation. Note that VCS must be less than 1.4 V.
Multiplier Input Voltage
VM+Vac 2
Ǹ
ǒR5
R3 )1Ǔ
Set the multiplier input voltage VM to 3.0 V at high line.
Empirically adjust VM for the lowest distortion over the
ac line voltage range while guaranteeing startup at
minimum line.
Converter Output
Voltage VO+Vref ǒR2
R1 )1Ǔ–I
IB R1 The IIB R1 error term can be minimized with a divider
current in excess of 100 mA.
Converter Output
PeaktoPeak
Ripple Voltage DVO(pp) +IL(pk) ǒ1
2pfac C3Ǔ2
)ESR2
ǸThe calculated peaktopeak ripple must be less than
16% of the average dc output voltage to prevent false
tripping of the Overvoltage Comparator. Refer to the
Overvoltage Comparator Text. ESR is the equivalent
series resistance of C3.
Error Amplifier
Bandwidth BW +gm
2pC1
The bandwidth is typically set to 20 Hz. When operating
at high ac line, the value of C1 may need to be
increased.
NOTE: The following converter characteristics must be chosen:
VO = Desired output voltage. Vac(LL) = AC RMS minimum required operating line voltage for output regulation.
IO = Desired output current. DVO = Converter output peaktopeak ripple voltage.
Vac = AC RMS operating line voltage.
MC33368
http://onsemi.com
11
Multiplier
8
C1
0.68
Figure 16. 80 W Power Factor Controller
Vrms Pin PF Ifund THD 2 3 5 7 VO(pp) VOIOPOn(%)
90 79.7 0.999 0.89 0.5 0.15 0.09 0.06 0.09 3.0 244.4 0.31 76.01 95.4
100 79.3 0.998 0.79 0.5 0.14 0.09 0.08 0.10 3.0 242.9 0.31 75.54 95.3
110 78.9 0.997 0.72 0.5 0.16 0.13 0.08 0.10 3.0 242.9 0.31 75.30 95.4
120 78.5 0.996 0.66 0.5 0.15 0.12 0.08 0.13 3.0 243.0 0.31 75.57 96.3
130 78.1 0.994 0.60 0.5 0.14 0.12 0.07 0.14 3.0 243.0 0.31 75.57 96.7
138 77.8 0.991 0.57 0.5 0.15 0.14 0.08 0.14 3.0 243.0 0.31 75.57 97.1
Power Factor Controller Test Data
Frequency
Clamp
R
SQ
R
S
S
Timer R Zero
Current
Detect
Vref
Leading Edge
Blanking
Low
Load Detect
Comp FB
6
LEB
13
PGND
Gate
ZCD
VCC
Line
RD
AGND
MC33368
16
12
7
11
10
FC
9
314
Quickstart
1.08 x Vref
Overvoltage
Comparator
Set Dominant
15 V
Q
5.0 V
Reference
VO
D5
MUR130
C3
220
MTP8N50E
Q1
D6
1N4934
C4
100
T
R4
22 k
EMI
Filter
92 to
270
Vrms
R7
0.1
0.25 W
C5
1.0
R5
1.3 M
R3
20 k
C2
0.01
R1
10 k
R2
470 k
R8
10 k
C9
330 mF
D1 D3
D2 D4
R11
10
15 V
C6
0.1
13/8.0
UVLO
1.2/1.0
R13
51
D8
Not Used: D7, C8, R6, R9
1N4744
1N4006
320 mH
RS Latch
Vref
Vref
Vref
CS
To VCC
Pin 12
2
5
Mult
1.5 V
AC Line Input
Current Harmonic Distortion (% Ifund)
DC Output
R10
10
C7
10 pF
T: Coilcraft N2881A
Primary = 62 turns of #22 AWG
Secondary = 5 turns of #22 AWG
Core = Coilcraft PT2510, EE25
Gap = 0.072 total for a primary inductance (Lp) of 320 mH
Heatsink = AAVID Engineering Inc., 590302B03600, or 593002B03400
MC33368
http://onsemi.com
12
Figure 17. 175 W Universal Input Power Factor Controller
Not Used: D7, C7, C8, R6, R9, R10
T: Coilcraft N2880A
L = 870 mHy
Primary: 78 turns of #16 AWG
Secondary: 6 turns of #18 AWG
Core: Coilcraft PT4215, EE4215
Gap: 0.104 total
Vrms Pin PF Ifund THD 2 3 5 7 VO(pp) VOIOPOn(%)
90 190.4 0.995 2.11 5.8 0.16 0.32 0.24 0.80 3.6 398.0 0.44 175.9 92.4
120 192.1 0.997 1.60 3.2 0.08 0.17 0.07 0.30 3.6 398.9 0.44 177.1 92.2
138 192.7 0.997 1.40 0.9 0.08 0.24 0.03 0.15 3.6 402.3 0.45 179.0 92.9
180 194.3 0.995 1.08 0.9 0.04 0.18 0.04 0.08 3.6 409.1 0.45 182.9 94.1
240 189.3 0.983 0.80 0.7 0.08 0.21 0.08 0.06 3.6 407.0 0.45 181.1 95.7
268 186.3 0.972 0.71 0.6 0.11 0.32 0.10 0.10 3.6 406.2 0.44 180.4 96.8
AC Line Input
Current Harmonic Distortion (% Ifund)
DC Output
Multiplier
8
C1
2.2
Frequency
Clamp
R
SQ
R
S
S
Timer R Zero
Current
Detect
Vref
Leading Edge
Blanking
Low
Load Detect
Comp FB
6
LEB
13
PGND
Gate
ZCD
VCC
Line
RD
AGND
MC33368
16
12
7
11
10
FC
9
314
Quickstart
1.08 x Vref
Overvoltage
Comparator
Set Dominant
1.5 V
15 V
Q
5.0 V
Reference
VO
D5
MUR460
C3
330
MTW20N50E
Q1
D6
1N4934
C4
100
T
R4
22 k
EMI
Filter
92 to
2
70 Vrms
R7
0.1
C5
1.0
R5
1.3 M
R3
10 k
C2
0.01
R1
10 k
R2
820 k
R8
1.0 M
C9
2.2
D1 D3
D2 D4
R11
10
15 V
C6
0.1
13/8.0
UVLO
1.2/1.0
R13
51
D8
1N4744
1N5406
RS Latch
Vref
Vref
Vref
CS
2
5
Mult
Power Factor Controller Test Data
6.9 V
To VCC
Pin 12
Heatsink = AAVID Engineering Inc., 590302B03600
MC33368
http://onsemi.com
13
Figure 18. Power Factor Test Setup
10
AC Power
Analyzer
PM 1000
A V
Voltech
EMI Filter
T
2X Step-up
Isolation
Transformer
Autoformer
115 Vrms
Input
Line
Neutral
0 to 270 Vac
Output to
Power Factor
Correction
Circuit
HI HI
L.O. L.O.
0.1 1.0
WVAPFV
rms Arms
VDAcf Ainst Freq HARM
An RFI filter is required for best performance when connecting the preconverter directly to the ac line. The filter attenuates the level of high
frequency switching that appears on the ac line current waveform. Figures 16 and 17 work well with commercially available two stage filters
such as the Delta Electronics 03DPCG6. Shown above is a single stage test filter that can easily be constructed with four ac line rated
capacitors and a commonmode transformer. Coilcraft CMT3282 was used to test Figures 16 and 17. It has a minimum inductance of 28 mH
and a maximum current rating of 2.0 A. Coilcraft CMT4179 was used to test Figure 20. It has a minimum inductance of 17 mH and a
maximum current rating of 9.0 A. Circuit conversion efficiency η (%) was calculated without the power loss of the RFI filter.
Figure 19. On/Off Control
Multiplier
8
C1
22
Frequency
Clamp
R
SQ
R
S
S
Timer R
Vref
Leading Edge
Blanking
Low
Load Detect
Comp FB
6
LEB
13
PGND
Gate
ZCD
VCC
Line
RD
AGND
MC33368
16
12
7
11
10
FC
9
314
Quickstart
Overvoltage
Comparator
Set Dominant
1.5 V
15 V
Q
5.0 V
Reference
DC
Out
D5
C3
330
MTW14N50E
Q1
D6
C4
100
T
R4
22 k
EMI
Filter
92 to
270 Vrms
R7
0.1
C5
1.0
R5
1.3 M
R3
10 k
C2
0.01
R1
10 k
R2
820 k
R8
10 k
C9
330 mF
D1 D3
D2 D4
R11
10
15 V
C6
0.1
13/8.0
UVLO
1.2/1.0
R13
51
D8
RS Latch
Vref
Vref
Vref
CS
2
5
Mult
VCC
6.9 V
1.0 k
10 k
1.0 k
2N3904
1N4148
On/Off
Input
Zero
Current
Detect
1.08 x Vref
5.0 V Off
0 V On
MC33368
http://onsemi.com
14
Figure 20. 400 W Power Factor Controller
Multiplier
8
C1
1.0
Frequency
Clamp
R
SQ
R
S
S
Timer R
Vref
Leading Edge
Blanking
Low
Load Detect
Comp FB
6
LEB
13
PGND
Gate
ZCD
VCC
Line
RD
AGND
MC33368
16
12
7
11
10
FC
9
314
Quickstart
Overvoltage
Comparator
Set Dominant
1.5 V
15 V
Q
5.0 V
Reference
400 V
MUR460
D5
C3
330
MTW20N50E
Q1
D6
C4
100
T
R4
22 k
EMI
Filter
92 to
270
Vac
R7
0.1
C5
1.0
R5
1.3 M
R3
10.5 k
C2
0.01
R1
10 k
R2
820 k
R8
1.0 M
C9
330 mF
D1 D3
D2 D4
R11
10
15 V
C6
0.1
13/8.0
UVLO
1.2/1.0
R13
51
D8
RS Latch
Vref
Vref
Vref
CS
2
5
Mult
1.5 V
Zero
Current
Detect
1.08 x Vref
1N5406
R10
10 k
C7
470 pF
Vref
C8
0.001
R9
10
1N4744
1N4934
MC33368
http://onsemi.com
15
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÏÏÏÏ
ÏÏÏÏ
Figure 21. Printed Circuit Board and Component Layout
(Circuits of Figures 16 and 17)
DC Output
C6 R3 C2 D1
D3
AC Input
C5
Transformer
D5
DGS
D8
J
J
J
R10
C7
C9
R2
R8 C1
R4
C8
D6
R6
D2 D4
R5
R1
D7
IC1
R11
R9
J
R13
R7 C4
Q1
(Top View)
(Bottom View)
4.5
3.0
MC33368
C3
J = Jumper
MC33368
http://onsemi.com
16
PACKAGE DIMENSIONS
SO16
D SUFFIX
CASE 751K01
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005)
TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
DIM
A
MIN MAX MIN MAX
INCHES
9.80 10.00 0.368 0.393
MILLIMETERS
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.229 0.244
R0.25 0.50 0.010 0.019
____
18
9
16
G
P
C
K14 X D
SEATING
PLANE
J
R_
M_
A
B
M
0.25 (0.010) B S
F
X 45
T
S
A
M
0.25 (0.010) B S
T
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MC33368/D
GreenLine is a trademark of Motorola, Inc.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative