HCPL-4562 HCNW4562 High Bandwidth, Analog/Video Optocouplers Data Sheet Description The HCPL-4562 and HCNW4562 optocouplers provide wide bandwidth isolation for analog signals. They are ideal for video isolation when combined with their application circuit (Figure 4). High linearity and low phase shift are achieved through an AlGaAs LED combined with a high speed detector. These single channel optocouplers are available in 8-Pin DIP and Widebody package configurations. Functional Diagram NC 1 8 VCC ANODE 2 7 VB CATHODE 3 6 VO NC 4 5 GND Features * Wide bandwidth[1]: 17 MHz (HCPL-4562) 9 MHz (HCNW4562) * High voltage gain[1]: 2.0 (HCPL-4562) 3.0 (HCNW4562) * Low GV temperature coefficient: -0.3%/C * Highly linear at low drive currents * High-speed AlGaAs emitter * Safety approval: UL Recognized - 3750 V rms for 1 minute (5000 V rms for 1 minute for HCPL-4562#020 and HCNW4562) per UL 1577 CSA Approved IEC/EN/DIN EN 60747-5-2 Approved - VIORM = 1414 V peak for HCNW4562 * Available in 8-pin DIP and widebody packages Applications * Video isolation for the following standards/formats: NTSC, PAL, SECAM, S-VHS, ANALOG RGB * Low drive current feedback element in switching power supplies, e.g., for ISDN networks * A/D converter signal isolation * Analog signal ground isolation * High voltage insulation CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Selection Guide Single Channel Packages 8-Pin DIP Widebody (300 Mil) (400 Mil) HCPL-4562 HCNW4562 Ordering Information HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is UL Recognized with 5000 Vrms for 1 minute per UL1577. Option Part RoHS non RoHS Number Compliant Compliant -000E no option -300E #300 -500E #500 HCPL-4562 -020E #020 -320E #320 -520E #520 -060E #060 -000E no option HCNW4562 -300E #300 -500E #500 Package 300 mil DIP-8 Surface Mount Gull Wing Tape & Reel X X X X X X X 400 mil Widebody DIP-8 X X X X X X UL 5000 Vrms/ 1 Minute rating X X X X X X X X IEC/EN/DIN EN 60747-5-2 Quantity 50 per tube 50 per tube 1000 per reel 50 per tube 50 per tube 1000 per reel X[1] 50 per tube [2] X 42 per tube [2] X 42 per tube X[2] 750 per reel Notes: 1. IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval. 2. IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval. To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: HCPL-4562-520E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with UL 5000 Vrms/1 minute rating and RoHS compliant. Example 2: HCNW4562 to order product of 8-Pin Widebody DIP package in Tube packaging with IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1 minute rating and non RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation `#XXX' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use `-XXXE.' Schematic ICC 2 ANODE VCC + VF CATHODE 8 IF IO - 6 VO 3 5 IB 7 VB 2 GND Package Outline Drawings 8-Pin DIP Package (HCPL-4562) 7.62 0.25 (0.300 0.010) 9.65 0.25 (0.380 0.010) 8 TYPE NUMBER 7 6 5 6.35 0.25 (0.250 0.010) OPTION CODE* DATE CODE A XXXXZ YYWW RU 1 2 3 4 UL RECOGNITION 1.78 (0.070) MAX. 1.19 (0.047) MAX. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 5 TYP. 3.56 0.13 (0.140 0.005) 4.70 (0.185) MAX. 0.51 (0.020) MIN. 2.92 (0.115) MIN. DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020 OPTION NUMBERS 300 AND 500 NOT MARKED. 0.65 (0.025) MAX. 1.080 0.320 (0.043 0.013) 2.54 0.25 (0.100 0.010) NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562) LAND PATTERN RECOMMENDATION 9.65 0.25 (0.380 0.010) 8 7 6 1.016 (0.040) 5 6.350 0.25 (0.250 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 1.19 (0.047) MAX. 1.780 (0.070) MAX. 9.65 0.25 (0.380 0.010) 7.62 0.25 (0.300 0.010) 3.56 0.13 (0.140 0.005) 1.080 0.320 (0.043 0.013) 0.635 0.25 (0.025 0.010) 0.635 0.130 2.54 (0.025 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 3 2.0 (0.080) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 12 NOM. 8-Pin Widebody DIP Package (HCNW4562) 11.00 MAX. (0.433) 11.15 0.15 (0.442 0.006) 8 7 6 9.00 0.15 (0.354 0.006) 5 TYPE NUMBER A HCNWXXXX DATE CODE YYWW 1 2 3 4 10.16 (0.400) TYP. 1.55 (0.061) MAX. 7 TYP. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 5.10 MAX. (0.201) 3.10 (0.122) 3.90 (0.154) 0.51 (0.021) MIN. 2.54 (0.100) TYP. 1.78 0.15 (0.070 0.006) 0.40 (0.016) 0.56 (0.022) DIMENSIONS IN MILLIMETERS (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562) 11.15 0.15 (0.442 0.006) 8 7 6 LAND PATTERN RECOMMENDATION 5 9.00 0.15 (0.354 0.006) 1 2 3 13.56 (0.534) 4 1.3 (0.051) 2.29 (0.09) 12.30 0.30 (0.484 0.012) 1.55 (0.061) MAX. 11.00 MAX. (0.433) 4.00 MAX. (0.158) 1.78 0.15 (0.070 0.006) 2.54 (0.100) BSC 0.75 0.25 (0.030 0.010) 1.00 0.15 (0.039 0.006) + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 4 7 NOM. Solder Reflow Temperature Profile 300 TEMPERATURE (C) PREHEATING RATE 3C + 1C/-0.5C/SEC. REFLOW HEATING RATE 2.5C 0.5C/SEC. PEAK TEMP. 245C PEAK TEMP. 240C PEAK TEMP. 230C 200 2.5C 0.5C/SEC. 30 SEC. 160C 150C 140C SOLDERING TIME 200C 30 SEC. 3C + 1C/-0.5C 100 PREHEATING TIME 150C, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE ROOM TEMPERATURE 0 50 0 100 150 200 250 TIME (SECONDS) Note: Non-halide flux should be used. Recommended Pb-Free IR Profile tp Tp TEMPERATURE TL Tsmax TIME WITHIN 5 C of ACTUAL PEAK TEMPERATURE 20-40 SEC. 260 +0/-5 C 217 C RAMP-UP 3 C/SEC. MAX. 150 - 200 C RAMP-DOWN 6 C/SEC. MAX. Tsmin ts PREHEAT 60 to 180 SEC. tL 60 to 150 SEC. 25 t 25 C to PEAK TIME NOTES: THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 C, Tsmin = 150 C Note: Non-halide flux should be used. Regulatory Information The devices contained in this data sheet have been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361. CSA Approved under CSA Component Acceptance Notice #5, File CA 88324. 5 IEC/EN/DIN EN 60747-5-2 Approved under: IEC 60747-5-2:1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01 (HCNW4562 only) Insulation and Safety Related Specifications 8-Pin DIP (300 Mil) Parameter Symbol Value Minimum External L(101) 7.1 Air Gap (External Clearance) Minimum External L(102) 7.4 Tracking (External Creepage) Minimum Internal 0.08 Plastic Gap (Internal Clearance) Minimum Internal Tracking (Internal Creepage) Tracking Resistance (Comparative Tracking Index) Isolation Group CTI Widebody (400 Mil) Value 9.6 Units mm 10.0 mm 1.0 mm NA 4.0 mm 200 200 Volts IIIa IIIa Conditions Measured from input terminals to output terminals, shortest distance through air. Measured from input terminals to output terminals, shortest distance path along body. Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. Measured from input terminals to output terminals, along internal cavity. DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) Option 300 - surface mount classification is Class A in accordance with CECC 00802. IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY) Description Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage 600 V rms for rated mains voltage 1000 V rms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5 = VPR, Type and sample test, tm = 60 sec, Partial Discharge < 5 pC Highest Allowable Overvoltage* (Transient Overvoltage, tini = 10 sec) Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 17, Thermal Derating curve.) Case Temperature Input Current Output Power Insulation Resistance at TS, VIO = 500 V Symbol Characteristic Units VIORM I-IV I-III 55/85/21 2 1414 V peak VPR 2652 V peak VPR 2121 V peak VIOTM 8000 V peak TS IS,INPUT PS,OUTPUT RS 150 400 700 109 C mA mW *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. 6 Absolute Maximum Ratings Parameter Symbol Device Min. Max. Units Storage Temperature TS -55 125 C Operating Temperature TA -40 85 C Average Forward Input Current IF(avg) HCPL-4562 HCNW4562 12 25 mA Peak Forward Input Current IF(PEAK) HCPL-4562 HCNW4562 18.6 40 mA Effective Input Current IF(EFF) HCPL-4562 12.9 mA rms Reverse LED Input Voltage (Pin 3-2) VR HCPL-4562 HCNW4562 1.8 3 V Input Power Dissipation PIN HCNW4562 40 mW Average Output Current (Pin 6) IO(AVG) 8 mA Peak Output Current (Pin 6) IO(PEAK) 16 mA Emitter-Base Reverse Voltage (Pin 5-7) VEBR 5 V Supply Voltage (Pin 8-5) VCC -0.3 30 V Output Voltage (Pin 6-5) VO -0.3 20 V Base Current (Pin 7) IB 5 mA Output Power Dissipation PO 100 mW Lead Solder Temperature 1.6 mm Below Seating Plane, 10 Seconds up to Seating Plane, 10 Seconds Reflow Temperature Profile TLS HCPL-4562 260 C HCNW4562 260 C Option 300 See Package Outline Drawings Section TRP Note 2 Recommended Operating Conditions Parameter Symbol Device Min. Max. Units Operating Temperature TA HCPL-4562 -10 70 C Quiescent Input Current IFQ HCPL-4562 6 mA HCNW4562 10 HCPL-4562 10 HCNW4562 17 Peak Input Current 7 IF(PEAK) mA Note Electrical Specifications (DC) TA = 25C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified. Parameter Symbol Base Photo Current IPB IPB Temperature Coefficient IPB / T Min. Typ.* 13 31 19.2 HCPL-4562 IPB Nonlinearity 8 Device HCPL-4562 HCNW4562 Max. Units 65 A Test Conditions IF = 10 mA IF = 6 mA VPB 5 V Fig. 2, 6 -0.3 %/C 2 mA < IF < 10 mA, VPB 5 V 2 0.25 0.15 % 2 mA < IF < 10 mA 6 mA < IF < 14 mA 2, 6 V IF = 5 mA IF = 10 mA V IR = 10 A IR = 100 A 1.6 1.8 Note Input Forward Voltage VF HCPL-4562 HCNW4562 1.1 1.2 1.3 1.6 Input Reverse Breakdown Voltage BVR HCPL-4562 HCNW4562 1.8 3 5 Transistor Current Gain hFE 60 160 Current Transfer Ratio CTR HCPL-4562 HCNW4562 45 52 % VCE = 1.25 V, VPB 5 V 8, 9 DC Output Voltage VOUT HCPL-4562 HCNW4562 4.25 5.0 V GV = 2, VCC = 9 V 4, 15 3 5 IC = 1 mA, VCE = 1.25 V 4 Small Signal Characteristics (AC) TA = 25C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified. Parameter Symbol Device Min. Typ.* Max. Voltage Gain GV (0.1 MHz) HCPL-4562 HCNW4562 0.8 2.0 3.0 4.2 GV Temperature Coefficient GV/T Base Photo Current Variation iPB (6 MHz) HCPL-4562 HCNW4562 -3 dB Frequency (iPB) iPB (-3 dB) HCPL-4562 HCNW4562 6 -3 dB Frequency (GV) GV (-3 dB) HCPL-4562 HCNW4562 6 Gain Variation GV (6 MHz) HCPL-4562 HCNW4562 HCPL-4562 GV (10 MHz) Differential Gain at f = 3.58 MHz Differential Phase at f = 3.58 MHz Total Harmonic Distortion Output Noise Voltage Isolation Mode Rejection Ratio 9 THD -0.3 VIN = 1 VP-P %/C VIN = 1 VP-P, fREF = 0.1 MHz 1 6 1, 11 MHz VIN = 1 VP-P, fREF = 0.1 MHz 3, 10, 12 7 17 9 MHz VIN = 1 VP-P, fREF = 0.1 MHz 1, 11 7 -dB 1, 11 1.0 HCNW4562 0.9 HCPL-4562 1 HCNW4562 0.6 HCPL-4562 HCNW4562 2.5 0.75 950 122 119 3.0 -dB Note 15 13 HCPL-4562 3.0 Fig. 3, 10, 12 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 Test Conditions VIN = 1 VP-P, fREF = 0.1 MHz 1.1 0.54 0.8 1.5 1.15 2.27 VO(noise) IMRR 1.1 0.36 Units -dB TA = 25C VIN = 1 VP-P, f REF = 0.1 MHz TA = -10C TA = 70C VIN = 1 VP-P, fREF = 0.1 MHz % IFac = 0.7 mA p-p, IFdc = 3 to 9 mA IFac = 1 mA p-p, IFdc = 7 to 13 mA 3, 7 8 deg. IFac = 0.7 mA p-p, IFdc = 3 to 9 mA IFac = 1 mA p-p, IFdc = 7 to 13 mA 3, 7 9 4 10 % VIN = 1 VP-P, f = 3.58 MHz, GV = 2 V rms 10 Hz to 10 MHz dB f = 120 Hz, GV = 2 1 14 11 Package Characteristics All Typicals at TA = 25C Parameter Input-Output Momentary Withstand Voltage* Input-Output Resistance Sym. VISO RI-O Device HCPL-4562 HCNW4562 HCPL-4562 (Option 020) HCPL-4562 HCNW4562 Min. 3750 5000 5000 1012 Typ. Max. Units Test Conditions V rms RH 50%, t = 1 min., TA = 25C 1012 1013 1011 Input-Output Capacitance CI-O HCPL-4562 HCNW4562 0.6 0.5 pF VI-O = 500 Vdc TA = 25C TA = 100C f = 1 MHz Fig. Note 5, 12 5, 13 5, 13 5 5 0.6 *The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E. Notes: 1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL4562), IFQ = 10 mA (HCNW4562). 2. Derate linearly above 70C free-air temperature at a rate of 2.0 mW/C (HCPL-4562). 3. Maximum variation from the best fit line of IPB vs. IF expressed as a percentage of the peak-to-peak full scale output. 4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%. 5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together. 6. Flat-band, small-signal voltage gain. 7. The frequency at which the gain is 3 dB below the flat-band gain. 10 8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD of the isolated video circuit is measured using a 2.6 k load in series with the 50 input impedance of the spectrum analyzer. 11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler's ability to reject signals or noise that may exist between input and output terminals, is defined by 20 log10 [(VOUT /VIN)/(VOUT / VIM)], where VIM is the isolation mode voltage signal. 12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage detection current limit, II-O 5 A). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable. 13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for 1 second (leakage detection current limit, II-O 5 A). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable. 162 (HCPL-4562) 90.9 (HCNW4562) Figure 1. Gain and bandwidth test circuit. 162 (HCPL-4562) 90.9 (HCNW4562) Figure 2. Base photo current test circuit. Figure 3. Base photo current frequency response test circuit. Figure 4. Recommended isolated video interface circuit. 11 IF - INPUT FORWARD VOLTAGE - mA HCNW4562 HCPL-4562 100 IF + VF - 10 TA = 70 C 1.0 TA = 25 C TA = -10 C 0.1 0.01 1.0 1.1 1.2 1.3 1.4 1.5 VF - FORWARD VOLTAGE - V Figure 5. Input current vs. forward voltage. HCPL-4562 IPB - BASE PHOTO CURRENT - A 80 HCNW4562 70 60 50 40 TA = 25 C VPB > 5 V 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 IF - INPUT CURRENT - mA Figure 6. Base photo current vs. input current. HCPL-4562 HCNW4562 1 SMALL-SIGNAL GAIN 1 PHASE 0 0.98 0.96 NORMALIZED IF = 6 mA f = 3.58 MHz TA = 25 C SEE FIG. 3 0.94 0.92 0 2 4 6 GAIN -1 -2 -3 8 10 12 14 16 18 20 SMALL-SIGNAL PHASE - DEGREES 2 1.02 IF - INPUT CURRENT - mA Figure 7. Small-signal response vs. input current. 12 NORMALIZED CURRENT TRANSFER RATIO HCPL-4562 1.04 HCNW4562 1.02 1.00 0.98 NORMALIZED TA = 25 C IF = 6.0 mA VCE = 1.25 V VPB > 5 V 0.96 0.94 0.92 0.90 0.88 0.86 -10 0 10 20 30 40 50 60 70 T - TEMPERATURE - C CTR - NORMALIZED CURRENT TRANSFER RATIO Figure 8. Current transfer ratio vs. temperature. HCNW4562 HCPL-4562 1.10 1.00 VCE = 5.0 V 0.90 VCE = 1.25 V 0.80 NORMALIZED TA = 25 C IF = 6 mA VCE = 1.25 V VPB > 5 V 0.70 0.60 0.50 0 2 4 VCE = 0.4 V 8 10 12 14 16 18 20 6 IF - INPUT CURRENT - mA iPB - BASE PHOTO CURRENT VARIATION - dB Figure 9. Current transfer ratio vs. input current. HCNW4562 HCPL-4562 -0.9 -1.1 FREQUENCY = 6 MHz -1.3 -1.5 -1.7 FREQUENCY = 10 MHz -1.9 -2.1 TA = 25 C FREF = 0.1 MHz -2.3 -2.5 -2.7 1 2 3 4 5 6 7 8 9 10 11 12 IFQ - QUIESCENT INPUT CURRENT - mA Figure 10. Base photo current variation vs. bias conditions. 13 HCPL-4562 NORMALIZED VOLTAGE GAIN - dB 3 HCNW4562 2 TA = -10 C 1 0 TA = 25 C -1 TA = 70 C -2 -3 NORMALIZED TA = 25 C f = 0.1 MHz -4 -5 -6 -7 0.01 0.1 1.0 10 100 1000 10,000 100,000 f - FREQUENCY - KHz NORMALIZED BASE PHOTO CURRENT - dB Figure 11. Normalized voltage gain vs. frequency. HCPL-4562 0.5 HCNW4562 0 -0.5 -1.0 NORMALIZED TA = 25 C f = 0.1 MHz -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 0.01 0.1 1.0 10 100 1000 10,000 100,000 f - FREQUENCY - KHz Figure 12. Normalized base photo current vs. frequency. HCPL-4562 0 IPB PHASE SEE FIGURE 3 - PHASE - DEGREES -25 -50 -75 TA = 25 C -100 -125 VIDEO INTERFACE CIRCUIT PHASE SEE FIGURE 4 -150 -175 -200 -225 -250 0 2 4 6 8 10 12 14 16 18 20 f - FREQUENCY - MHz Figure 13. Phase vs. frequency. 14 HCNW4562 IMRR - ISOLATION MODE REJECTION RATIO - dB HCPL-4562 150 HCNW4562 TA = 25 C 120 -20 dB/DECADE SLOPE 90 60 IMRR = 20 LOG10 30 0 0.01 0.1 1.0 Gv vOUT/vIM 10 100 1000 10,000 f - FREQUENCY - KHz Figure 14. Isolation mode rejection ratio vs. frequency. HCPL-4562 VO - DC OUTPUT VOLTAGE - V 6.0 HCNW4562 5.5 5.0 4.5 4.0 3.5 3.0 50 100 150 200 250 300 350 400 450 hFE - TRANSISTOR CURRENT GAIN VCC ICQ4 = 2 mA R9 ADDITIONAL BUFFER STAGE Q4 Q3 Q5 R11 R10 VOUT R12 LOW IMPEDANCE LOAD OUTPUT POWER - PS, INPUT CURRENT - IS Figure 15. DC output voltage vs. transistor current gain. HCNW4562 1000 PS (mW) 900 IS (mA) 800 700 600 500 400 300 200 100 0 0 25 50 75 100 125 150 175 TS - CASE TEMPERATURE - C Figure 16. Output buffer stage for low impedance loads. 15 Figure 17. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-2. Conversion from HCPL-4562 to HCNW4562 In order to obtain similar circuit performance when converting from the HCPL-4562 to the HCNW4562, it is recommended to increase the Quiescent Input Current, IFQ, from 6 mA to 10 mA. If the application circuit in Figure 4 is used, then potentiometer R4 should be adjusted appropriately. Design Considerations of the Application Circuit The application circuit in Figure 4 incorporates several features that help maximize the bandwidth performance of the HCPL-4562/HCNW4562. Most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. The number of gain stages, the overall circuit topology, and the choice of DC bias points are all consequences of the desire to maximize bandwidth performance. To use the circuit, first select R1 to set VE for the desired LED quiescent current by: V GV VE R10 IFQ = --E ------------- R4 (IPB/IF) R7R9 (1) For a constant value VINp-p, the circuit topology (adjusting the gain with R4) preserves linearity by keeping the modulation factor (MF) dependent only on VE. iFp-p VIN /R4 p-p (2) iFp-p iPBp-p VINp-p p-p p-p p-p ---- ----- = ----- IFQ IPBQ VE (3) Modulation i VINp-p F(p-p) p-p (p-p) Factor (MF): ----- = ----- 2 IFQ 2 VE (4) For a given GV, VE, and VCC, DC output voltage will vary only with hFEX. R9 VO = VCC - VBE - --- [VBEX - (IPBQ - IBXQ) R7] 4 R10 (5) Where: GV VER10 IPBQ -------- R 7R 9 (6) and, VCC - 2 VBE IBXQ ---------- R6 hFEX (7) Figure 15 shows the dependency of the DC output voltage on hFEX. 16 For 9 V < VCC < 12 V, select the value of R11 such that VO 4.25 V ICQ4 --- ------ 9.0 mA (8) Q4 R11 470 The voltage gain of the second stage (Q3) is approximately equal to: R9 1 --- * ------------------------- R10 1 + s R C 1 9 CQ 3 + --------- 2 R11 fT44 (9) Increasing R11 (R11 includes the parallel combination of R11 and the load impedance) or reducing R9 (keeping R9 /R10 ratio constant) will improve the bandwidth. If it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage (Q5 in Figure 16), in which case R11 can be increased to set ICQ4 2 mA. Finally, adjust R4 to achieve the desired voltage gain. VOUT IPB R7R9 GV ---- ---- ------ VIN IF R4R10 (10) IPB where typically ---- = 0.0032 IF Definition: GV = Voltage Gain IFQ = Quiescent LED forward current iFp-p = Peak-to-peak small signal LED forward current VINp-p = Peak-to-peak small signal input voltage iPBp-p = Peak-to-peak small signal base photo current IPBQ = Quiescent base photo current VBEX = Base-Emitter voltage of HCPL-4562/ HCNW4562 transistor IBXQ = Quiescent base current of HCPL-4562/ HCNW4562 transistor hFEX = Current Gain (IC/IB) of HCPL-4562/ HCNW4562 transistor VE = Voltage across emitter degeneration resistor R4 fT 4 = Unity gain frequency of Q5 CCQ 3 = Effective capacitance from collector of Q3 to ground For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright (c) 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2158EN AV01-0571EN July 7, 2007