Features
Wide bandwidth[1]:
17 MHz (HCPL-4562)
9 MHz (HCNW4562)
High voltage gain[1]:
2.0 (HCPL-4562)
3.0 (HCNW4562)
Low GV temperature coefficient: -0.3%/°C
Highly linear at low drive currents
High-speed AlGaAs emitter
Safety approval:
UL Recognized
– 3750 V rms for 1 minute (5000 V rms for 1 minute for
HCPL-4562#020 and HCNW4562) per UL 1577
CSA Approved
IEC/EN/DIN EN 60747-5-2 Approved
–V
IORM = 1414 V peak for HCNW4562
Available in 8-pin DIP and widebody packages
Applications
Video isolation for the following standards/formats:
NTSC, PAL, SECAM, S-VHS, ANALOG RGB
Low drive current feedback element in switching power
supplies, e.g., for ISDN networks
A/D converter signal isolation
Analog signal ground isolation
High voltage insulation
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
Functional Diagram
7
1
2
3
45
6
8
NC
ANODE
CATHODE
NC
V
CC
V
B
V
O
GND
HCPL-4562
HCNW4562
High Bandwidth, Analog/Video Opt oc ouplers
Data Sheet
Description
The HCPL-4562 and HCNW4562 optocouplers provide
wide bandwidth isolation for analog signals. They are
ideal for video isolation when combined with their
application circuit (Figure 4). High linearity and low
phase shift are achieved through an AlGaAs LED
combined with a high speed detector. These single
channel optocouplers are available in 8-Pin DIP and
Widebody package configurations.
2
Ordering Information
HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is
UL Recognized with 5000 Vrms for 1 minute per UL1577.
Option
Part RoHS non RoHS Surface Gull Tape UL 5000 Vrms/ IEC/EN/DIN
Number Compliant Compliant Package Mount Wing & Reel 1 Minute rating EN 60747-5-2 Quantity
-000E no option 300 mil DIP-8 50 per tube
-300E #300 X X 50 per tube
-500E #500 X X X 1000 per reel
HCPL-4562
-020E #020 X 50 per tube
-320E #320 X X X 50 per tube
-520E #520 X X X X 1000 per reel
-060E #060 X[1] 50 per tube
-000E no option 400 mil X X[2] 42 per tube
HCNW4562
-300E #300 Widebody X X X X[2] 42 per tube
-500E #500 DIP-8 X X X X X[2] 750 per reel
Notes:
1. IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval.
2. IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval.
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
HCPL-4562-520E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with UL 5000
Vrms/1 minute rating and RoHS compliant.
Example 2:
HCNW4562 to order product of 8-Pin Widebody DIP package in Tube packaging with IEC/EN/DIN EN 60747-5-2
VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1 minute rating and non RoHS compliant.
I
F
8
6
5GND
V
CC
2
3
V
O
I
CC
V
F
I
O
ANODE
CATHODE
+
7 V
B
I
B
Schematic
Selection Guide
Single Channel Packages
8-Pin DIP Widebody
(300 Mil) (400 Mil)
HCPL-4562 HCNW4562
Option datasheets are available. Contact your Avago
sales representative or authorized distributor for
information.
Remarks: The notation ‘#XXX’ is used for existing
products, while (new) products launched since July
15, 2001 and RoHS compliant will use ‘–XXXE.’
3
Package Outline Drawings
8-Pin DIP Package (HCPL-4562)
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)
1.080 ± 0.320
(0.043 ± 0.013) 2.54 ± 0.25
(0.100 ± 0.010)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
5° TYP. 0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
7.62 ± 0.25
(0.300 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXXZ
YYWW
DATE CODE
DIMENSIONS IN MILLIMETERS AND (INCHES).
5678
4321
OPTION CODE*
UL
RECOGNITION
UR
TYPE NUMBER
* MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
3.56 ± 0.13
(0.140 ± 0.005)
0.635 ± 0.25
(0.025 ± 0.010) 12° NOM.
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.65 ± 0.25
(0.380 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
1.080 ± 0.320
(0.043 ± 0.013)
3.56 ± 0.13
(0.140 ± 0.005)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
4
8-Pin Widebody DIP Package (HCNW4562)
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)
5
6
7
8
4
3
2
1
11.15 ± 0.15
(0.442 ± 0.006)
1.78 ± 0.15
(0.070 ± 0.006)
5.10
(0.201)MAX.
1.55
(0.061)
MAX.
2.54 (0.100)
TYP.
DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
7° TYP. 0.254 + 0.076
- 0.0051
(0.010+ 0.003)
- 0.002)
11.00
(0.433)
9.00 ± 0.15
(0.354 ± 0.006)
MAX.
10.16 (0.400)
TYP.
A
HCNWXXXX
YYWW
DATE CODE
TYPE NUMBER
0.51 (0.021) MIN.
0.40 (0.016)
0.56 (0.022)
3.10 (0.122)
3.90 (0.154)
1.00 ± 0.15
(0.039 ± 0.006)
7° NOM.
12.30 ± 0.30
(0.484 ± 0.012)
0.75 ± 0.25
(0.030 ± 0.010)
11.00
(0.433)
5
6
7
8
4
3
2
1
11.15 ± 0.15
(0.442 ± 0.006)
9.00 ± 0.15
(0.354 ± 0.006)
1.3
(0.051)
13.56
(0.534)
2.29
(0.09)
LAND PATTERN RECOMMENDATION
1.78 ± 0.15
(0.070 ± 0.006)
4.00
(0.158)MAX.
1.55
(0.061)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.0051
(0.010+ 0.003)
- 0.002)
MAX.
5
Solder Reflow Temperature Profile
Regulatory Information
The devices contained in this
data sheet have been approved
by the following organizations:
UL
Recognized under UL 1577,
Component Recognition
Program, File E55361.
CSA
Approved under CSA
Component Acceptance Notice
#5, File CA 88324.
IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884
Teil 2):2003-01
(HCNW4562 only)
Recommended Pb-Free IR Profile
0
TIME (SECONDS)
TEMPERATURE (°C)
200
100
50 150100 200 250
300
0
30
SEC.
50 SEC.
30
SEC.
160°C
140°C
150°C
PEAK
TEMP.
245°C
PEAK
TEMP.
240°C PEAK
TEMP.
230°C
SOLDERING
TIME
200°C
PREHEATING TIME
150°C, 90 + 30 SEC.
2.5°C ± 0.5°C/SEC.
3°C + 1°C/–0.5°C
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.
217 °C
RAMP-DOWN
6 °C/SEC. MAX.
RAMP-UP
3 °C/SEC. MAX.
150 - 200 °C
260 +0/-5 °C
t 25 °C to PEAK
60 to 150 SEC.
20-40 SEC.
TIME WITHIN 5 °C of ACTU AL
PEAK TEMPERA TURE
tp
ts
PREHEAT
60 to 180 SEC.
tL
TL
Tsmax
Tsmin
25
Tp
TIME
TEMPERATURE
NOTES:
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.
Tsmax = 200 °C, Tsmin = 150 °C
Note: Non-halide flux should be used.
Note: Non-halide flux should be used.
6
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)
Description Symbol Characteristic Units
Installation classification per DIN VDE 0110/1.89, Table 1
for rated mains voltage 600 V rms I-IV
for rated mains voltage 1000 V rms I-III
Climatic Classification 55/85/21
Pollution Degree (DIN VDE 0110/1.89) 2
Maximum Working Insulation Voltage VIORM 1414 V peak
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, VPR 2652 V peak
Partial Discharge < 5 pC
Input to Output Test Voltage, Method a*
VIORM x 1.5 = VPR, Type and sample test, VPR 2121 V peak
tm = 60 sec, Partial Discharge < 5 pC
Highest Allowable Overvoltage*
(Transient Overvoltage, tini = 10 sec) VIOTM 8000 V peak
Safety Limiting Values
(Maximum values allowed in the event of a failure,
also see Figure 17, Thermal Derating curve.)
Case Temperature TS150 °C
Input Current IS,INPUT 400 mA
Output Power PS,OUTPUT 700 mW
Insulation Resistance at TS, VIO = 500 V RS 109
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN
60747-5-2, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in
application.
Insulation and Safety Related Specifications
8-Pin DIP Widebody
(300 Mil) (400 Mil)
Parameter Symbol Value Value Units Conditions
Minimum External L(101) 7.1 9.6 mm Measured from input terminals to
Air Gap (External output terminals, shortest distance
Clearance) through air.
Minimum External L(102) 7.4 10.0 mm Measured from input terminals to
Tracking (External output terminals, shortest distance
Creepage) path along body.
Minimum Internal 0.08 1.0 mm Through insulation distance,
Plastic Gap conductor to conductor, usually the
(Internal Clearance) direct distance between the photo-
emitter and photodetector inside the
optocoupler cavity.
Minimum Internal NA 4.0 mm Measured from input terminals to
Tracking (Internal output terminals, along internal cavity.
Creepage)
Tracking Resistance CTI 200 200 Volts DIN IEC 112/VDE 0303 Part 1
(Comparative
Tracking Index)
Isolation Group IIIa IIIa Material Group
(DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
7
Recommended Operating Conditions
Parameter Symbol Device Min. Max. Units Note
Operating Temperature TAHCPL-4562 -10 70 °C
Quiescent Input Current IFQ HCPL-4562 6 mA
HCNW4562 10
Peak Input Current IF(PEAK) HCPL-4562 10 mA
HCNW4562 17
Absolute Maximum Ratings
Parameter Symbol Device Min. Max. Units Note
Storage Temperature TS-55 125 °C
Operating Temperature TA-40 85 °C
Average Forward Input Current IF(avg) HCPL-4562 12 mA
HCNW4562 25
Peak Forward Input Current IF(PEAK) HCPL-4562 18.6 mA
HCNW4562 40
Effective Input Current IF(EFF) HCPL-4562 12.9 mA rms
Reverse LED Input Voltage (Pin 3-2) VRHCPL-4562 1.8 V
HCNW4562 3
Input Power Dissipation PIN HCNW4562 40 mW
Average Output Current (Pin 6) IO(AVG) 8mA
Peak Output Current (Pin 6) IO(PEAK) 16 mA
Emitter-Base Reverse Voltage (Pin 5-7) VEBR 5V
Supply Voltage (Pin 8-5) VCC -0.3 30 V
Output Voltage (Pin 6-5) VO-0.3 20 V
Base Current (Pin 7) IB5mA
Output Power Dissipation PO100 mW 2
Lead Solder Temperature TLS HCPL-4562 260 °C
HCNW4562 260 °C
Reflow Temperature Profile TRP Option See Package Outline
300 Drawings Section
1.6 mm Below Seating Plane, 10 Seconds up to
Seating Plane, 10 Seconds
8
Electrical Specifications (DC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified.
Parameter Symbol Device Min. Typ.* Max. Units Test Conditions Fig. Note
Base Photo IPB 13 31 65 µAI
F = 10 mA VPB 5 V 2, 6
Current HCPL-4562 19.2 IF = 6 mA
IPB IPB/-0.3 %/°C2 mA < IF < 10 mA, 2
Temperature TV
PB 5 V
Coefficient
IPB HCPL-4562 0.25 % 2 mA < IF < 10 mA 2, 6 3
Nonlinearity HCNW4562 0.15 6 mA < IF < 14 mA
Input Forward VFHCPL-4562 1.1 1.3 1.6 V IF = 5 mA 5
Voltage HCNW4562 1.2 1.6 1.8 IF = 10 mA
Input Reverse BVRHCPL-4562 1.8 5 V IR = 1 0 µA
Breakdown HCNW4562 3 IR = 100 µA
Voltage
Transistor hFE 60 160 IC = 1 mA,
Current Gain VCE = 1.25 V
Current CTR HCPL-4562 45 % VCE = 1.25 V, 8, 9 4
Transfer Ratio HCNW4562 52 VPB 5 V
DC Output VOUT HCPL-4562 4.25 V GV = 2, VCC = 9 V 4,
Voltage HCNW4562 5.0 15
9
Small Signal Characteristics (AC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified.
Parameter Symbol Device Min. Typ.* Max. Units Test Conditions Fig. Note
Voltage Gain GVHCPL-4562 0.8 2.0 4.2 VIN = 1 VP-P 16
(0.1 MHz) HCNW4562 3.0
GV Temperature GV/T-0.3 %/°CV
IN = 1 VP-P,1, 11
Coefficient fREF = 0.1 MHz
Base Photo iPB HCPL-4562 1.1 3.0 -dB VIN = 1 VP-P,3, 10,
Current (6 MHz) HCNW4562 0.36 fREF = 0.1 MHz 12
Variation
-3 dB Frequency iPB HCPL-4562 6 15 MHz VIN = 1 VP-P,3, 10, 7
(iPB)(-3 dB) HCNW4562 13 fREF = 0.1 MHz 12
-3 dB Frequency GVHCPL-4562 6 17 MHz VIN = 1 VP-P,1, 11 7
(GV)(-3 dB) HCNW4562 9 fREF = 0.1 MHz
Gain Variation GVHCPL-4562 1.1 3.0 -dB TA = 25°C V
IN = 1 VP-P,1, 11
(6 MHz) HCNW4562 0.54 f REF = 0.1 MHz
HCPL-4562 0.8 TA = -10°C
1.5 TA = 70°C
GVHCPL-4562 1.15 -dB VIN = 1 VP-P,
(10 MHz) HCNW4562 2.27 fREF = 0.1 MHz
Differential HCPL-4562 ±1.0 % IFac = 0.7 mA p-p, 3, 7 8
Gain at IFdc = 3 to 9 mA
f = 3.58 MHz HCNW4562 ±0.9 IFac = 1 mA p-p,
IFdc = 7 to 13 mA
Differential HCPL-4562 ±1deg. IFac = 0.7 mA p-p, 3, 7 9
Phase at IFdc = 3 to 9 mA
f = 3.58 MHz HCNW4562 ±0.6 IFac = 1 mA p-p,
IFdc = 7 to 13 mA
Total Harmonic THD HCPL-4562 2.5 % VIN = 1 VP-P,410
Distortion HCNW4562 0.75 f = 3.58 MHz, G V = 2
Output Noise VO(noise) 950 µV rms 10 Hz to 10 MHz 1
Voltage
Isolation Mode IMRR HCPL-4562 122 dB f = 120 Hz, GV = 2 14 11
Rejection Ratio HCNW4562 119
10
Notes:
1. When used in the circuit of Figure 1 or
Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL-
4562), IFQ = 10 mA (HCNW4562).
2. Derate linearly above 70°C free-air
temperature at a rate of 2.0 mW/ °C
(HCPL-4562).
3. Maximum variation from the best fit line of
IPB vs. IF expressed as a percentage of the
peak-to-peak full scale output.
4. CURRENT TRANSFER RATIO (CTR) is
defined as the ratio of output collector
current, IO, to the forward LED input
current, IF, times 100%.
5. Device considered a two-terminal device:
Pins 1, 2, 3, and 4 shorted together and
Pins 5, 6, 7, and 8 shorted together.
6. Flat-band, small-signal voltage gain.
7. The frequency at which the gain is 3 dB
below the flat-band gain.
8. Differential gain is the change in the
small-signal gain of the optocoupler at
3.58 MHz as the bias level is varied over a
given range.
9. Differential phase is the change in the
small-signal phase response of the
optocoupler at 3.58 MHz as the bias level
is varied over a given range.
10. TOTAL HARMONIC DISTORTION (THD) is
defined as the square root of the sum of
the square of each harmonic distortion
component. The THD of the isolated video
circuit is measured using a 2.6 k load in
series with the 50 input impedance of
the spectrum analyzer.
11. ISOLATION MODE REJECTION RATIO
(IMRR), a measure of the optocoupler’s
ability to reject signals or noise that may
exist between input and output terminals,
is defined by 20 log10 [(VOUT/VIN)/(VOUT/
VIM)], where VIM is the isolation mode
voltage signal.
12. In accordance with UL 1577, each
optocoupler is proof tested by applying an
insulation test voltage 4500 V rms for 1
second (leakage detection current limit,
II-O 5 µA). This test is performed before
the 100% Production test shown in the
IEC/EN/DIN EN 60747-5-2 Insulation
Related Characteristics Table, if
applicable.
13. In accordance with UL 1577, each
optocoupler is proof tested by applying an
insulation test voltage 6000 V rms for 1
second (leakage detection current limit,
II-O 5 µA). This test is performed before
the 100% Production test shown in the
IEC/EN/DIN EN 60747-5-2 Insulation
Related Characteristics Table, if
applicable.
Package Characteristics
All Typicals at TA = 25°C
Parameter Sym. Device Min. Typ. Max. Units Test Conditions Fig. Note
Input-Output VISO HCPL-4562 3750 V rms RH 50%, 5, 12
Momentary HCNW4562 5000 t = 1 min., 5, 13
Withstand HCPL-4562 5000 TA = 25°C5, 13
Voltage* (Option 020)
Input-Output RI-O HCPL-4562 1012 VI-O = 500 Vdc 5
Resistance HCNW4562 1012 1013 TA = 25°C
1011 TA = 100°C
Input-Output CI-O HCPL-4562 0.6 pF f = 1 MHz 5
Capacitance HCNW4562 0.5 0.6
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage
rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety
specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E.
11
Figure 1. Gain and bandwidth test circuit.
Figure 2. Base photo current test circuit. Figure 3. Base photo current frequency response test circuit.
Figure 4. Recommended isolated video interface circuit.
162 (HCPL-4562)
90.9 (HCNW4562)
162 (HCPL-4562)
90.9 (HCNW4562)
12
Figure 5. Input current vs. forward voltage.
Figure 6. Base photo current vs. input current.
Figure 7. Small-signal response vs. input current.
SMALL-SIGNAL GAIN
0
0.92
I
F
– INPUT CURRENT – mA
204
1
12281016
1.02
0.96
0.94
0.98
18614
PHASE
GAIN
1
2
0
-1
-2
-3
SMALL-SIGNAL PHASE – DEGREES
NORMALIZED
I
F
= 6 mA
f = 3.58 MHz
T
A
= 25 °C
SEE FIG. 3
HCNW4562
HCNW4562
HCPL-4562
HCNW4562
I
F
– INPUT FORWARD VOLTAGE – mA
1.0
0.01
V
F
– FORWARD VOLTAGE – V
1.51.1
1.0
1.2
10
100
0.1
V
F
I
F
1.3
HCPL-4562
1.4
+
T
A
= 70 °C
T
A
= 25 °C
T
A
= -10 °C
I
PB
– BASE PHOTO CURRENT – µA
0
0
I
F
– INPUT CURRENT – mA
204
70
12281016
80
30
20
50
18614
T
A
= 25 °C
V
PB
> 5 V
HCPL-4562
60
40
10
13
Figure 8. Current transfer ratio vs. temperature.
Figure 9. Current transfer ratio vs. input current.
Figure 10. Base photo current variation vs. bias conditions.
HCNW4562
HCNW4562
HCNW4562
NORMALIZED CURRENT TRANSFER RATIO
-10
0.86
T – TEMPERATURE – °C
7010
1.02
400203050
1.04
0.94
0.92
0.98
60
HCPL-4562
1.00
0.96
0.88
NORMALIZED
T
A
= 25 °C
I
F
= 6.0 mA
V
CE
= 1.25 V
V
PB
> 5 V
0.90
CTR – NORMALIZED CURRENT TRANSFER RATIO
0
0.50
I
F
– INPUT CURRENT – mA
204
1.00
12281016
1.10
0.70
0.60
0.90
18614
V
CE
= 5.0 V
NORMALIZED
T
A
= 25 °C
I
F
= 6 mA
V
CE
= 1.25 V
V
PB
> 5 V
0.80 V
CE
= 1.25 V
V
CE
= 0.4 V
HCPL-4562
i
PB
– BASE PHOTO CURRENT VARIATION – dB
1
-2.7
I
FQ
– QUIESCENT INPUT CURRENT – mA
123
-1.1
62457
-0.9
-1.9
-2.1
-1.5
8
HCPL-4562
-1.3
-1.7
-2.5
T
A
= 25 °C
F
REF
= 0.1 MHz
-2.3
91011
FREQUENCY = 6 MHz
FREQUENCY = 10 MHz
14
Figure 11. Normalized voltage gain vs. frequency.
Figure 12. Normalized base photo current vs. frequency.
Figure 13. Phase vs. frequency.
HCNW4562
HCNW4562
HCNW4562
– PHASE – DEGREES
0
-250
f – FREQUENCY – MHz
20
-25
624
0
-150
-175
-100
8
HCPL-4562
-75
-125
-225
VIDEO INTERFACE
CIRCUIT PHASE
SEE FIGURE 4
-200
10 12
-50
14 16 18
TA = 25 °C
IPB PHASE
SEE FIGURE 3
NORMALIZED BASE PHOTO CURRENT – dB
0.01
-4.5
f – FREQUENCY – KHz
100,000
0
100.1 1.0
0.5
-2.5
-3.0
-1.5
100
HCPL-4562
-1.0
-2.0
-4.0
NORMALIZED
T
A
= 25 °C
f = 0.1 MHz
-3.5
1000 10,000
-0.5
NORMALIZED VOLTAGE GAIN – dB
0.01
-7
f – FREQUENCY – KHz
100,000
2
100.1 1.0
3
-3
-4
-1
100
HCPL-4562
0
-2
-6
NORMALIZED
T
A
= 25 °C
f = 0.1 MHz
-5
1000 10,000
T
A
= -10 °C
T
A
= 70 °C
1
T
A
= 25 °C
15
Figure 17. Thermal derating curve, dependence of
safety limiting value with case temperature per
IEC/EN/DIN EN 60747-5-2.
Figure 14. Isolation mode rejection ratio vs. frequency.
Figure 15. DC output voltage vs. transistor current gain.
Figure 16. Output buffer stage for low
impedance loads.
ICQ4 = 2 mA
R9
Q3
R10
R11
Q4
Q5
R12
VOUT
VCC
LOW
IMPEDANCE
LOAD
ADDITIONAL
BUFFER
STAGE
HCNW4562
HCNW4562
OUTPUT POWER – PS, INPUT CURRENT – IS
0
0
TS – CASE TEMPERATURE – °C
175
1000
50
400
12525 75 100 150
600
800
200
100
300
500
700
900 PS (mW)
IS (mA)
HCNW4562
IMRR – ISOLATION MODE REJECTION RATIO – dB
0.01
0
f – FREQUENCY – KHz
10,0000.1
150
60
90
1.0
HCPL-4562
30
10
120
100 1000
T
A
= 25 °C
-20 dB/DECADE SLOPE
G
v
v
OUT/
v
IM
IMRR = 20 LOG
10
V
O
– DC OUTPUT VOLTAGE – V
50
3.0
h
FE
– TRANSISTOR CURRENT GAIN
450150
5.5
100 250 350
6.0
4.0
3.5
5.0
400200 300
4.5
HCPL-4562
Conversion from HCPL-4562 to HCNW4562
In order to obtain similar circuit performance when
converting from the HCPL-4562 to the HCNW4562,
it is recommended to increase the Quiescent Input
Current, IFQ, from 6 mA to 10 mA. If the application
circuit in Figure 4 is used, then potentiometer R4
should be adjusted appropriately.
Design Considerations of the Application Circuit
The application circuit in Figure 4 incorporates
several features that help maximize the bandwidth
performance of the HCPL-4562/HCNW4562. Most
important of these features is peaked response of
the detector circuit that helps extend the frequency
range over which the voltage gain is relatively
constant. The number of gain stages, the overall
circuit topology, and the choice of DC bias points
are all consequences of the desire to maximize
bandwidth performance.
To use the circuit, first select R1 to set VE for the
desired LED quiescent current by:
VEGV VE R10
IFQ = –– ––––––––––––– (1)
R4(IPB/IF) R7R9
For a constant value VINp-p, the circuit topology
(adjusting the gain with R4) preserves linearity by
keeping the modulation factor (MF) dependent only
on VE.
iFp-p VIN/R4(2)
iFp-p iPBp-p VINp-p
–––– ––––– = ––––– (3)
IFQ IPBQ VE
Modulation iF(p-p) VINp-p
Factor (MF): ––––– = –––– (4)
2 IFQ 2 VE
For a given GV, VE, and VCC, DC output voltage will
vary only with hFEX.
R9
VO = VCC VBE ––– [VBEX (IPBQ IBXQ) R7] (5)
R10
Where: GV VER10
IPBQ –––––––– (6)
R7R9
and, VCC 2 VBE
IBXQ –––––––––– (7)
R6 hFEX
Figure 15 shows the dependency of the DC output
voltage on hFEX.
For 9 V < VCC < 12 V, select the value of R11 such
that VO4.25 V
ICQ4 ––– –––––– 9.0 mA (8)
R11 470
The voltage gain of the second stage (Q3) is
approximately equal to:
R91
––– * ––––––––––––––––––––––––– (9)
R10 1
1 + s R9CCQ + –––––––––
2π R11 fT4
Increasing R11 (R11 includes the parallel
combination of R11 and the load impedance) or
reducing R9 (keeping R9/R10 ratio constant) will
improve the bandwidth.
If it is necessary to drive a low impedance load,
bandwidth may also be preserved by adding an
additional emitter following the buffer stage (Q5 in
Figure 16), in which case R11 can be increased to
set ICQ4 2 mA.
Finally, adjust R4 to achieve the desired voltage
gain.
VOUT IPB R7R9
GV –––– –––– –– (10)
VIN IFR4R10
IPB
where typically –––– = 0.0032
IF
Definition:
GV = Voltage Gain
IFQ = Quiescent LED forward current
iFp-p = Peak-to-peak small signal LED forward
current
VINp-p = Peak-to-peak small signal input voltage
iPBp-p = Peak-to-peak small signal
base photo current
IPBQ = Quiescent base photo current
VBEX = Base-Emitter voltage of HCPL-4562/
HCNW4562 transistor
IBXQ = Quiescent base current of HCPL-4562/
HCNW4562 transistor
hFEX = Current Gain (IC/IB) of HCPL-4562/
HCNW4562 transistor
VE = Voltage across emitter degeneration
resistor R4
fT = Unity gain frequency of Q5
CCQ = Effective capacitance from collector of Q3
to ground
p-p
4
(p-p)
p-p
p-p p-p
p-p
Q4
3
4
4
3
16
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2158EN
AV01-0571EN July 7, 2007